NAND04GW3B4CZL1F [NUMONYX]

4 Gbit, 8 Gbit, 2112 byte/1056 word page multiplane architecture, 1.8 V or 3 V, NAND Flash memories; 4千兆, 8千兆, 2112字节/ 1056字的页面多平面架构, 1.8 V和3 V , NAND闪存
NAND04GW3B4CZL1F
型号: NAND04GW3B4CZL1F
厂家: NUMONYX B.V    NUMONYX B.V
描述:

4 Gbit, 8 Gbit, 2112 byte/1056 word page multiplane architecture, 1.8 V or 3 V, NAND Flash memories
4千兆, 8千兆, 2112字节/ 1056字的页面多平面架构, 1.8 V和3 V , NAND闪存

闪存
文件: 总69页 (文件大小:1707K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NAND04G-B2D, NAND08G-BxC  
4 Gbit, 8 Gbit, 2112 byte/1056 word page  
multiplane architecture, 1.8 V or 3 V, NAND Flash memories  
Preliminary Data  
Features  
High density NAND Flash Memory  
– Up to 8 Gbit memory array  
– Cost-effective solution for mass storage  
applications  
NAND interface  
TSOP48 12 x 20 mm (N)  
– x8 or 16x bus width  
– Multiplexed address/data  
LGA  
Supply voltage: 1.8 V or 3.0 V device  
Page size  
LGA52 12 x 17 mm (ZL)  
– x8 device: (2048 + 64 spare) bytes  
– x16 device: (1024 + 32 spare) words  
r
Data protection:  
Block size  
– Hardware program/erase disabled during  
power transitions  
– x8 device: (128K + 4 K spare) bytes  
– x16 device: (64K + 2 K spare) words  
– Non-volatile protection option  
ONFI 1.0 compliant command set  
Data integrity  
Multiplane architecture  
– Array split into two independent planes  
– Program/erase operations can be  
– 100 000 program/erase cycles (with ECC  
(error correction code))  
performed on both planes at the same time  
Page read/program  
– 10 years data retention  
– Random access: 25 µs (max)  
– Sequential access: 25 ns (min)  
– Page program time: 200 µs (typ)  
®
ECOPACK packages  
Table 1.  
Device Summary  
Part number  
– Multiplane page program time (2 pages):  
200 µs (typ)  
Reference  
NAND04GR3B2D  
NAND04GW3B2D  
NAND04GR4B2D(1)  
NAND04GW4B2D(1)  
NAND08GR3B2C,  
NAND08GW3B2C  
NAND08GR4B2C(1)  
NAND08GW4B2C(1)  
NAND08GR3B4C  
NAND08GW3B4C  
Copy back program with automatic error  
detection code (EDC)  
NAND04G-B2D  
NAND08G-BxC  
Cache read mode  
Fast block erase  
– Block erase time: 1.5 ms (typ)  
– Multiblock erase time (2 blocks):  
1.5 ms (typ)  
Status Register  
Electronic signature  
Chip Enable ‘don’t care’  
Serial number option  
1. x16 organization only available for MCP products.  
December 2007  
Rev 3  
1/69  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to  
change without notice.  
www.numonyx.com  
1
Contents  
NAND04G-B2D, NAND08G-BxC  
Contents  
1
2
3
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Memory array organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
3.10  
3.11  
Inputs/outputs (I/O0-I/O7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Inputs/Outputs (I/O8-I/O15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Address Latch Enable (AL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Command Latch Enable (CL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Chip Enable (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Read Enable (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write Enable (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Write Protect (WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Ready/Busy (RB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
V
DD supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
SS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
V
4
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
Command input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Address input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Data output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Write protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5
6
Command set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Device operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.1  
Read memory array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.1.1  
6.1.2  
Random read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Page read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.2  
Cache read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2/69  
NAND04G-B2D, NAND08G-BxC  
Contents  
6.3  
Page program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
6.3.1  
6.3.2  
Sequential input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Random data input in page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
6.4  
6.5  
6.6  
6.7  
6.8  
6.9  
Multiplane page program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Copy back program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Multiplane copy back program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Block erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Multiplane block erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Error detection code (EDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
6.10 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.11 Read Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.11.1 Write protection bit (SR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.11.2 P/E/R Controller and cache ready/busy bit (SR6) . . . . . . . . . . . . . . . . . 34  
6.11.3 P/E/R Controller bit (SR5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.11.4 Error bit (SR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.11.5 SR4, SR3, SR2 and SR1 are reserved . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.12 Read status enhanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.13 Read EDC Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.14 Read electronic signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
6.15 Read ONFI signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
6.16 Read parameter page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
7
8
9
Concurrent operations and extended read status . . . . . . . . . . . . . . . . 43  
Data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Software algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
9.1  
9.2  
9.3  
9.4  
9.5  
Bad block management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
NAND Flash memory failure modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Garbage collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Wear-leveling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Error correction code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10  
Program and erase times and endurance cycles . . . . . . . . . . . . . . . . . 48  
3/69  
Contents  
11  
NAND04G-B2D, NAND08G-BxC  
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
12  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
12.1 Ready/Busy signal electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 63  
12.2 Data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
13  
14  
15  
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
4/69  
NAND04G-B2D, NAND08G-BxC  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Device Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Valid Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Address insertion (x8 devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Address insertion (x16 devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Address definition (x8 devices). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Address definition (x16 devices). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Copy back program addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Address definition for EDC units (x8 devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Address definition for EDC units (x16 devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Status Register bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
EDC Status Register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Electronic signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Electronic signature byte 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Electronic signature byte 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Electronic signature byte 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Read ONFI signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Parameter page data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Extended Read Status Register commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Block failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Program erase times and program erase endurance cycles . . . . . . . . . . . . . . . . . . . . . . . 48  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Operating and AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
DC characteristics (1.8 V devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
DC characteristics (3 V devices). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
AC characteristics for command, address, data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
AC characteristics for operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package mechanical data. . . . . 65  
LGA52 12 x 17 mm, 1 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . 66  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
5/69  
List of figures  
NAND04G-B2D, NAND08G-BxC  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
TSOP48 connections for NAND04G-B2D and NAND08G-BxC . . . . . . . . . . . . . . . . . . . . . 11  
LGA52 connections for NAND04G-B2D and NAND08G-B2C devices. . . . . . . . . . . . . . . . 12  
LGA52 connections for the NAND08G-B4C devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Memory array organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Random data output during sequential data output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Cache read (sequential) operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 10. Cache read (random) operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 11. Page program operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 12. Random data input during sequential data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 13. Multiplane page program waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 14. Copy back program (without readout of data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 15. Copy back program (with readout of data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 16. Page copy back program with random data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 17. Multiplane copy back program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 18. Block erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 19. Multiplane block erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 20. Page organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 21. Bad block management flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 22. Garbage collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 23. Error detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 24. Equivalent testing circuit for AC characteristics measurement. . . . . . . . . . . . . . . . . . . . . . 51  
Figure 25. Command latch AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 26. Address latch AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 27. Data input latch AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 28. Sequential data output after read AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 29. Sequential data output after read AC waveforms (EDO mode) . . . . . . . . . . . . . . . . . . . . . 56  
Figure 30. Read Status Register or read EDC Status Register AC waveform. . . . . . . . . . . . . . . . . . . 57  
Figure 31. Read status enhanced waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 32. Read Electronic Signature AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 33. Read ONFI signature waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 34. Page read operation AC waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 35. Page program AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 36. Block erase AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 37. Reset AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 38. Program/erase enable waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 39. Program/erase disable waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 40. Read parameter page waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 41. Ready/Busy AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 42. Ready/Busy load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 43. Resistor value versus waveform timings for Ready/Busy signal. . . . . . . . . . . . . . . . . . . . . 64  
Figure 44. Data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 45. TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package outline . . . . . . . . . . . . 65  
Figure 46. LGA52 12 x 17 mm, 1 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
6/69  
NAND04G-B2D, NAND08G-BxC  
Description  
1
Description  
The NAND04G-B2D and NAND08G-BxC are part of the NAND Flash 2112 byte/1056 word  
page family of non-volatile Flash memories. They use NAND cell technology have a density  
of 4 Gbits and 8 Gbits, respectively.  
The NAND04G-B2D memory array is split into 2 planes of 2048 blocks each. This  
multiplane architecture makes it possible to program 2 pages at a time (one in each plane),  
or to erase 2 blocks at a time (one in each plane). This feature reduces the average program  
and erase times by 50%.  
The NAND08G-BxC is a stacked device that combines two NAND04G-B2D dice, both of  
which feature a multiplane architecture.  
In the NAND08G-B2C devices, only one of the memory components can be enabled at a  
time, therefore, operations can only be performed on one of the memory components at any  
one time.  
In the NAND08G-B4C devices, each NAND04G-B2D die can be accessed independently  
using two sets of signals.  
The devices operate from a 1.8 V or 3 V voltage supply. Depending on whether the device  
has a x8 or x16 bus width, the page size is 2112 bytes (2048 + 64 spare) or or 1056 words  
(1024 + 32 spare), respectively.  
The address lines are multiplexed with the data input/output signals on a multiplexed x8  
input/output bus. This interface reduces the pin count and makes it possible to migrate to  
other densities without changing the footprint.  
Each block can be programmed and erased over 100 000 cycles with ECC (error correction  
code) on. To extend the lifetime of NAND Flash devices, the implementation of an ECC is  
strongly recommended.  
A Write Protect pin is available to provide hardware protection against program and erase  
operations.  
The devices feature an open-drain ready/busy output that identifies if the P/E/R  
(program/erase/read) Controller is currently active. The use of an open-drain output allows  
the ready/busy pins from several memories to connect to a single pull-up resistor.  
A Copy Back Program command is available to optimize the management of defective  
blocks. When a page program operation fails, the data can be programmed in another page  
without having to resend the data to be programmed. An embedded error detection code is  
automatically executed after each copy back operation: 1 error bit can be detected for every  
528 bits. With this feature it is no longer necessary, nor recommended, to use an external 2-  
bit ECC to detect copy back operation errors.  
The devices have a cache read feature that improves the read throughput for large files.  
During cache reading, the device loads the data in a Cache Register while the previous data  
is transferred to the I/O buffers to be read.  
The devices have the Chip Enable ‘don’t care’ feature, which allows code to be directly  
downloaded by a microcontroller. This is possible because Chip Enable transitions during  
the latency time do not stop the read operation.  
Both the NAND04G-B2D and NAND08G-BxC support the ONFI 1.0 specification.  
7/69  
Description  
NAND04G-B2D, NAND08G-BxC  
Two further features are available as options:  
Extra non-volatile protection.  
An individual serial number that acts as an unique identifier.  
More information is available, upon completion of an NDA (non-disclosure agreement), and  
therefore, the details are not described in this datasheet. For more information on these two  
options, contact your nearest Numonyx Sales office.  
The devices are available in the TSOP48 (12 x 20 mm) and LGA52 (12 x 17 mm) packages.  
To meet environmental requirements, Numonyx offers the NAND04G-B2D and NAND08G-  
BxC in ECOPACK® packages.  
For information on how to order these options, refer to Table 34: Ordering information  
scheme. Devices are shipped from the factory with block 0 always valid and the memory  
content bits, in valid blocks, erased to ’1’.  
Table 2: Product description lists the part numbers and other information for all the devices  
able in the family.  
Table 2.  
Product description  
Timings  
Bus  
width  
Page  
size  
Block  
size  
Memory Operating  
Part Number  
Density  
Package  
Sequential  
access  
Random  
access  
Page  
Program Erase  
Block  
array  
voltage  
time (min) time (max)  
(typ)  
(typ)  
1.7 to  
1.95 V  
NAND04GR3B2D  
NAND04GW3B2D  
NAND04GR4B2D  
NAND04GW4B2D  
NAND08GR3B2C  
NAND08GW3B2C  
NAND08GR4B2C  
NAND08GW4B2C  
NAND08GR3B4C  
NAND08GW3B4C  
45 ns  
LGA52  
2048+64  
bytes  
128 K+  
4 K bytes  
x8  
x16  
x8  
2.7 to  
3.6 V  
TSOP48  
LGA52  
25 ns  
25 µs  
45 ns  
64 pages  
x 4096  
blocks  
4 Gb  
200 µs  
1.5ms  
1.7 to  
1.95 V  
1024+  
32 words 2 K words  
64 K +  
(1)  
2.7 to  
3.6 V  
25 ns  
45 ns  
25 ns  
1.7 to  
1.95 V  
(2)  
LGA52  
2048+64  
bytes  
128 K +  
4 K bytes  
2.7 to  
3.6 V  
TSOP48  
(2)  
LGA52  
1.7 to  
1.95 V  
45 ns  
25 µs  
25 ns  
64 pages  
x 8192  
blocks  
1024+  
32 words 2 K words  
64 K +  
(1)(2)  
8 Gb  
x16  
200 µs  
1.5ms  
2.7 to  
3.6 V  
1.7 to  
1.95 V  
x8  
x8  
45 ns  
25 ns  
2048+64  
bytes  
128 K +  
4 K bytes  
(2)  
LGA52  
2.7 to  
3.6 V  
1. x16 organization is only available for MCP products.  
2. The NAND08G-BxC is composed of two 4-Gbit dice.  
8/69  
NAND04G-B2D, NAND08G-BxC  
Description  
Figure 1.  
Logic block diagram  
Address  
Register/Counter  
AL  
CL  
W
NAND Flash  
Memory Array  
P/E/R Controller,  
High Voltage  
Generator  
Command  
Interface  
Logic  
E
WP  
R
Page Buffer  
Cache Register  
Y Decoder  
Command Register  
I/O Buffers & Latches  
RB  
I/O0-I/O7 (x8/x16)  
I/O8-I/O15 (x16)  
AI13166b  
1. The NAND08G-B4C devices have two separate sets of signals for each 4 Gb die.  
Figure 2.  
Logic diagram  
V
DD  
I/O0-I/O7 (x8/x16)  
I/O8-I/O15 (x16)  
E
R
W
NAND FLASH  
RB  
AL  
CL  
WP  
V
SS  
AI13167b  
1. The NAND08G-B4C devices have two separate sets of signals for each 4 Gb die.  
9/69  
Description  
NAND04G-B2D, NAND08G-BxC  
Direction  
(1)  
Table 3.  
Signal  
Signal names  
Function  
Data input/outputs, address inputs, or command inputs (x8/x16  
devices)  
I/O0-7  
Input/output  
I/O8-15  
AL  
Data input/outputs (x16 devices)  
Address Latch Enable  
Command Latch Enable  
Chip Enable  
Input/output  
Input  
CL  
Input  
E
Input  
R
Read Enable  
Input  
RB  
W
Ready/Busy (open-drain output)  
Write Enable  
Output  
Input  
WP  
VDD  
VSS  
NC  
DU  
Write Protect  
Input  
Supply Voltage  
Power supply  
Ground  
N/A  
Ground  
Not connected internally  
Do not use  
N/A  
1. The NAND08G-B4C devices have two separate sets of signals for each 4 Gb die.  
10/69  
NAND04G-B2D, NAND08G-BxC  
Figure 3. TSOP48 connections for NAND04G-B2D and NAND08G-BxC  
Description  
NC  
NC  
NC  
NC  
NC  
NC  
RB  
R
1
48  
NC  
NC  
NC  
NC  
I/O7  
I/O6  
I/O5  
I/O4  
NC  
E
NC  
NC  
NC  
NC  
V
12  
13  
37  
36  
V
V
DD  
DD  
SS  
NAND FLASH  
V
SS  
NC  
NC  
CL  
AL  
NC  
NC  
NC  
I/O3  
I/O2  
I/O1  
I/O0  
W
WP  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
24  
25  
AI13168b  
11/69  
Description  
NAND04G-B2D, NAND08G-BxC  
Figure 4.  
LGA52 connections for NAND04G-B2D and NAND08G-B2C devices  
0
1
2
3
4
5
6
7
8
OA  
OB  
NC  
NC  
NC  
NC  
A
B
C
NC  
CL  
E
NC  
V
V
DD  
SS  
NC  
NC  
AL  
R
D
E
OC  
NC  
NC  
NC  
NC  
NC  
NC  
W
RB  
NC  
F
WP  
V
SS  
I/O7  
I/O5  
G
NC  
I/O0  
I/O2  
NC  
NC  
NC  
H
J
I/O1  
I/O3  
I/O6  
I/O4  
NC  
NC  
NC  
NC  
NC  
OD  
OE  
OF  
NC  
NC  
NC  
K
L
V
SS  
M
N
V
V
SS  
DD  
NC  
NC  
NC  
NC  
AI13634b  
12/69  
NAND04G-B2D, NAND08G-BxC  
Description  
Figure 5.  
LGA52 connections for the NAND08G-B4C devices  
0
1
2
3
4
5
6
7
8
OA  
OB  
NC  
NC  
NC  
A
NC  
AL  
CL  
E
NC  
1
2
1
2
NC  
NC  
B
C
V
V
DD  
SS  
CL  
W
E
R
1
1
D
E
OC  
NC  
AL  
R
2
2
W
RB  
2
RB  
2
1
1
F
WP  
V
SS  
1
G
I/O0  
I/O1  
I/O2  
I/O0  
I/O2  
V
I/O7  
I/O6  
I/O5  
WP  
2
2
2
1
2
2
2
2
H
J
I/O1  
I/O3  
V
I/O7  
I/O5  
V
1
1
I/O6  
1
1
NC  
NC  
NC  
OD  
OE  
OF  
NC  
NC  
NC  
K
L
1
1
I/O4  
1
SS  
M
N
SS  
DD  
I/O4  
NC  
I/O3  
NC  
2
2
1. The NAND08G-B4C devices have two separate sets of signals for each 4 Gb die.  
13/69  
Memory array organization  
NAND04G-B2D, NAND08G-BxC  
2
Memory array organization  
The memory array of the devices is made up of NAND structures where 32 cells are  
connected in series. It is organized into blocks where each block contains 64 pages. The  
array is split into two areas, the main area, and the spare area. The main area of the array is  
used to store data, and the spare area typically stores error correction codes, software flags,  
or bad block identification.  
In x8 devices, the pages are split into a 2048-byte main area and a spare area of 64 bytes.  
In x16 devices, the pages are split into a 1024-word main area and a spare area of 32  
words. Refer to Figure 6: Memory array organization.  
Bad blocks  
In the x8 devices, the NAND Flash 2112 byte/1056 word page devices may contain bad  
blocks, which are blocks that contain one or more invalid bits whose reliability is not  
guaranteed. Additional bad blocks may develop during the lifetime of the device.  
The bad block information is written prior to shipping (refer to Section 9.1: Bad block  
management for more details).  
Table 4 shows the minimum number of valid blocks. The values shown include both the bad  
blocks that are present when the device is shipped and the bad blocks that could develop  
later on. Block 0 is guaranteed to be valid up to 1000 write/erase cycles with 1 bit ECC.  
These blocks need to be managed using bad blocks management, block replacement, or  
error correction codes (refer to Section 9: Software algorithms).  
Table 4.  
Valid Blocks  
Density of Device  
Min  
Max  
4 Gbits  
4016  
8032  
4096  
8192  
8 Gbits(1)  
1. The NAND08G-BxC devices are composed of two 4-Gbit dice. The minimum number of valid blocks is  
4016 for each die.  
14/69  
NAND04G-B2D, NAND08G-BxC  
Figure 6. Memory array organization  
Memory array organization  
x8 bus width  
Plane = 2048 blocks, block = 64 pages, page = 2112 bytes (2048 + 64)  
First plane  
Second plane  
Spare area  
Spare area  
Main area  
Main area  
Block  
Page  
8 bits  
2048 bytes  
2048 bytes  
64  
bytes  
64  
bytes  
Page buffer, 2112 bytes  
64  
Page buffer, 2112 bytes  
64  
2048 bytes  
2,048 bytes  
bytes  
bytes  
8 bits  
2-page buffer, 2 x 2112 bytes  
x16 bus width  
Plane = 2048 blocks, block = 64 pages, page = 1056 words (1024 + 32)  
First plane  
Second plane  
Spare area  
Spare area  
Main area  
Main area  
Block  
Page  
16 bits  
1024 words  
1024 words  
32  
words  
32  
words  
Page buffer, 1056 bytes  
32  
Page buffer, 1056 bytes  
32  
1024 words  
1024 words  
words  
words  
16 bits  
AI13170b  
2-page buffer, 2 x 1056 bytes  
15/69  
Signal descriptions  
NAND04G-B2D, NAND08G-BxC  
3
Signal descriptions  
See Figure 2: Logic diagram and Table 3: Signal names for a brief overview of the signals  
connected to this device. The NAND08G-B4C devices have two separate sets of signals for  
each 4 Gb die.  
3.1  
3.2  
Inputs/outputs (I/O0-I/O7)  
Input/outputs 0 to 7 input the selected address, output the data during a read operation, or  
input a command or data during a write operation. The inputs are latched on the rising edge  
of Write Enable. I/O0-I/O7 are left floating when the device is deselected or the outputs are  
disabled.  
Inputs/Outputs (I/O8-I/O15)  
Input/Outputs 8 to 15 are only available in x16 devices. They output the data during a read  
operation or input data during a write operation. Command and address inputs only require  
I/O0 to I/O7.  
The inputs are latched on the rising edge of Write Enable. I/O8-I/O15 are left floating when  
the device is deselected or the outputs are disabled.  
3.3  
3.4  
3.5  
Address Latch Enable (AL)  
The Address Latch Enable activates the latching of the address inputs in the Command  
Interface. When AL is high, the inputs are latched on the rising edge of Write Enable.  
Command Latch Enable (CL)  
The Command Latch Enable activates the latching of the command inputs in the Command  
Interface. When CL is high, the inputs are latched on the rising edge of Write Enable.  
Chip Enable (E)  
The Chip Enable input, E, activates the memory control logic, input buffers, decoders and  
sense amplifiers. When Chip Enable is low, V , the device is selected. If Chip Enable goes  
IL  
high, V , while the device is busy, the device remains selected and does not go into standby  
IH  
mode.  
3.6  
Read Enable (R)  
The Read Enable pin, R, controls the sequential data output during read operations. Data is  
valid t  
after the falling edge of R. The falling edge of R also increments the internal  
RLQV  
column address counter by one.  
16/69  
NAND04G-B2D, NAND08G-BxC  
Signal descriptions  
3.7  
Write Enable (W)  
The Write Enable input, W, controls writing to the Command Interface, input address and  
data latches. Both addresses and data are latched on the rising edge of Write Enable.  
During power-up and power-down a recovery time of 10 µs (min) is required before the  
command interface is ready to accept a command. It is recommended to keep Write Enable  
high during the recovery time.  
3.8  
3.9  
Write Protect (WP)  
The Write Protect pin is an input that gives a hardware protection against unwanted program  
or erase operations. When Write Protect is Low, V , the device does not accept any  
program or erase operations.  
IL  
It is recommended to keep the Write Protect pin Low, V , during power-up and power-down.  
IL  
Ready/Busy (RB)  
The Ready/Busy output, RB, is an open-drain output that identifies if the P/E/R Controller is  
currently active.  
When Ready/Busy is Low, V , a read, program or erase operation is in progress. When the  
OL  
operation completes, Ready/Busy goes High, V  
.
OH  
The use of an open-drain output allows the ready/busy pins from several memories to be  
connected to a single pull-up resistor. A Low then indicates that one or more of the  
memories is busy.  
During power-up and power-down a minimum recovery time of 10 µs is required before the  
command interface is ready to accept a command. During this period the RB signal is Low,  
V
.
OL  
Refer to Section 12.1: Ready/Busy signal electrical characteristics for details on how to  
calculate the value of the pull-up resistor.  
3.10  
3.11  
VDD supply voltage  
V
provides the power supply to the internal core of the memory device. It is the main  
DD  
power supply for all operations (read, program and erase).  
An internal voltage detector disables all functions whenever V is below V  
Table 29) to protect the device from any involuntary program/erase during power-transitions.  
(see  
LKO  
DD  
Each device in a system should have V decoupled with a 0.1 µF capacitor. The PCB track  
widths should be sufficient to carry the required program and erase currents.  
DD  
VSS ground  
Ground, V  
ground.  
is the reference for the power supply. It must be connected to the system  
SS,  
17/69  
Bus operations  
NAND04G-B2D, NAND08G-BxC  
4
Bus operations  
There are six standard bus operations that control the memory, as described in this section.  
See Table 5: Bus operations for a summary of these operations.  
Typically, glitches of less than 5 ns on Chip Enable, Write Enable, and Read Enable are  
ignored by the memory and do not affect bus operations.  
4.1  
Command input  
Command input bus operations give commands to the memory.  
Commands are accepted when Chip Enable is Low, Command Latch Enable is High,  
Address Latch Enable is Low, and Read Enable is High. They are latched on the rising edge  
of the Write Enable signal.  
Only I/O0 to I/O7 are used to input commands.  
See Figure 25 and Table 30 for details of the timings requirements.  
4.2  
Address input  
Address input bus operations input the memory addresses. Five bus cycles are required to  
input the addresses (refer to Table 6: Address insertion (x8 devices) and Table 7: Address  
insertion (x16 devices)).  
The addresses are accepted when Chip Enable is Low, Address Latch Enable is High,  
Command Latch Enable is Low, and Read Enable is High. They are latched on the rising  
edge of the Write Enable signal.  
Only I/O0 to I/O7 are used to input addresses.  
See Figure 26 and Table 30 for details of the timings requirements.  
4.3  
Data input  
Data input bus operations input the data to be programmed.  
Data is accepted only when Chip Enable is Low, Address Latch Enable is Low, Command  
Latch Enable is Low, and Read Enable is High. The data is latched on the rising edge of the  
Write Enable signal. The data is input sequentially using the Write Enable signal.  
See Figure 27 and Table 30 and Table 31 for details of the timings requirements.  
4.4  
Data output  
Data output bus operations read the data in the memory array, the Status Register, the  
electronic signature, and the unique identifier.  
Data is output when Chip Enable is Low, Write Enable is High, Address Latch Enable is Low,  
and Command Latch Enable is Low.  
The data is output sequentially using the Read Enable signal.  
18/69  
NAND04G-B2D, NAND08G-BxC  
If the Read Enable pulse frequency is lower then 33 MHz (t  
Bus operations  
higher than 30 ns), the  
RLRL  
output data is latched on the rising edge of Read Enable signal (see Figure 28).  
For higher frequencies (t lower than 30 ns), the EDO (extended data out) mode must be  
RLRL  
used. In this mode, data output bus operations are valid on the input/output bus for a time of  
after the falling edge of Read Enable signal (see Figure 29).  
t
RLQX  
See Table 31 for details on the timings requirements.  
4.5  
4.6  
Write protect  
Write protect bus operations protect the memory against program or erase operations.  
When the Write Protect signal is Low the device does not accept program or erase  
operations, and, therefore, the contents of the memory array cannot be altered. The Write  
Protect signal is not latched by Write Enable to ensure protection, even during power-up.  
Standby  
When Chip Enable is High the memory enters Standby mode, the device is deselected,  
outputs are disabled, and power consumption is reduced.  
Table 5.  
Bus operation  
Command input VIL  
Bus operations  
E
AL  
CL  
R
W
WP  
I/O0 - I/O7  
I/O8 - I/O15(1)  
VIL  
VIH  
VIL  
VIL  
X
VIH  
VIL  
VIL  
VIL  
X
VIH  
VIH  
VIH  
Falling  
X
Rising  
Rising  
Rising  
VIH  
X(2)  
X
Command  
Address  
Data input  
Data output  
X
X
Address input  
Data input  
VIL  
VIL  
VIL  
X
X
VIH  
Data input  
Data output  
Write protect  
Standby  
X
Data output  
X
VIL  
X
X
VIH  
X
X
X
X
VIL/VDD  
X
1. Only for x16 devices.  
2. WP must be VIH when issuing a program or erase command.  
Table 6.  
Address insertion (x8 devices)  
Bus  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
Cycle(1)  
1st  
2nd  
3rd  
4th  
5th  
A7  
VIL  
A6  
VIL  
A5  
VIL  
A4  
VIL  
A3  
A11  
A15  
A23  
VIL  
A2  
A10  
A1  
A9  
A0  
A8  
A19  
A27  
VIL  
A18  
A26  
VIL  
A17  
A25  
VIL  
A16  
A24  
VIL  
A14  
A13  
A21  
A29  
A12  
A20  
A28  
A22  
A30(2)  
1. Any additional address input cycles are ignored.  
2. A30 is only valid for the NAND08G-BxC devices.  
19/69  
Bus operations  
NAND04G-B2D, NAND08G-BxC  
Table 7.  
Address insertion (x16 devices)  
Bus  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
Cycle(1)  
1st  
2nd  
3rd  
4th  
5th  
A7  
VIL  
A6  
VIL  
A5  
VIL  
A4  
VIL  
A3  
VIL  
A2  
A10  
A1  
A9  
A0  
A8  
A18  
A26  
VIL  
A17  
A25  
VIL  
A16  
A24  
VIL  
A15  
A23  
VIL  
A14  
A22  
VIL  
A13  
A12  
A20  
A28  
A11  
A19  
A27  
A21  
A29(2)  
1. Any additional address input cycles are ignored.  
2. A29 is only valid for the NAND08G-BxC devices.  
Table 8.  
Address definition (x8 devices)  
Address  
Definition  
A0 - A11  
A12 - A17  
A18 - A29  
A18 - A30  
A18 = 0  
Column address  
Page address  
Block address(NAND04G-B2D)  
Block address (NAND08G-BxC)  
First plane  
A18 = 1  
Second plane  
Table 9.  
Address definition (x16 devices)  
Address  
Definition  
A0 - A10  
A11 - A16  
A17 - A28  
A17 - A29  
A18 = 0  
Column address  
Page address  
Block address (NAND04G-B2D)  
Block address (NAND08G-BxC)  
First plane  
A18 = 1  
Second plane  
20/69  
NAND04G-B2D, NAND08G-BxC  
Command set  
5
Command set  
All bus write operations to the device are interpreted by the command interface. The  
commands are input on I/O0-I/O7 and are latched on the rising edge of Write Enable when  
the command Latch Enable signal is high. Device operations are selected by writing specific  
commands to the Command Register. The two-step command sequences for program and  
erase operations are imposed to maximize data security.  
Table 10 summarizes the commands.  
Table 10. Commands  
Bus write operations  
Commands  
accepted  
during busy  
Command(1)  
1st cycle 2nd cycle 3rd cycle 4th cycle  
Read  
00h  
05h  
31h  
00h  
3Fh  
30h  
E0h  
Random Data Output  
Cache Read (sequential)  
Enhanced Cache Read (random)  
Exit Cache Read  
31h  
Yes(2)  
Page Program  
80h  
10h  
(sequential input default)  
Random Data Input  
85h  
80h  
80h  
00h  
85h  
85h  
85h  
60h  
60h  
60h  
FFh  
90h  
70h  
78h  
ECh  
7Bh  
11h  
11h  
35h  
10h  
11h  
11h  
D0h  
60h  
D1h  
81h  
80h  
10h  
10h  
Multiplane Page Program(3)  
Multiplane Page Program  
Copy Back Read  
Copy Back Program  
Multiplane Copy Back Program(3)  
Multiplane Copy Back Program  
Block Erase  
81h  
85h  
10h  
10h  
Multiplane Block Erase(3)  
Multiplane Block Erase  
Reset  
D0h  
60h  
D0h  
Yes  
Read Electronic Signature  
Read Status Register  
Read Status Enhanced  
Read Parameter Page  
Read EDC Status Register  
Yes  
Yes  
1. Commands in bold are referring to ONFI 1.0 specifications.  
2. Only during cache read busy.  
3. Command maintained for backward compatibility.  
21/69  
Device operations  
NAND04G-B2D, NAND08G-BxC  
6
Device operations  
This section provides details of the device operations.  
6.1  
Read memory array  
At power-up the device defaults to read mode. To enter read mode from another mode, the  
Read command must be issued (see Table 10: Commands).  
6.1.1  
6.1.2  
Random read  
Each time the Read command is issued, the first read is random read.  
Page read  
After the first random read access, the page data (2112 bytes or 1056 words) are  
transferred to the page buffer in a time of t  
(see Table 31 ). Once the transfer is  
WHBH  
complete, the Ready/Busy signal goes High. The data can then be read sequentially (from  
selected column address to last column address) by pulsing the Read Enable signal.  
The device can output random data in a page, instead of consecutive sequential data, by  
issuing a Random Data Output command. The Random Data Output command can be used  
to skip some data during a sequential data output.  
The sequential operation can be resumed by changing the column address of the next data  
to be output, to the address which follows the Random Data Output command. The Random  
Data Output command can be issued as many times as required within a page.  
The Random Data Output command is not accepted during cache read operations.  
22/69  
NAND04G-B2D, NAND08G-BxC  
Device operations  
Figure 7.  
Read operations  
CL  
E
W
AL  
R
tBLBH1  
30h  
RB  
I/O  
Address Input  
00h  
Data Output (sequentially)  
Command  
Code  
Command  
Code  
Busy  
ai12469  
23/69  
Device operations  
NAND04G-B2D, NAND08G-BxC  
Figure 8.  
Random data output during sequential data output  
tBLBH1  
(Read Busy time)  
RB  
Busy  
tRHWL  
W
R
Address  
Address  
Inputs  
30h  
E0h  
I/O  
00h  
05h  
Data Output  
Data Output  
Inputs  
Cmd  
Cmd  
Cmd  
Cmd  
Code  
Code  
Code  
Code  
5 Add cycles  
2 Add cycles  
Col Add 1,2  
Row Add 1,2,3 Col Add 1,2  
Spare  
Area  
Spare  
Main Area  
Main Area  
Area  
ai08658b  
6.2  
Cache read  
The cache read operation improves the read throughput by reading data using the Cache  
Register. As soon as the user starts to read one page, the device automatically loads the  
next page into the Cache Register.  
A Read Page command, as defined in Section 6.1.1: Random read, is issued prior to the  
first Read Cache command in a read cache sequence. Once the data output of the Page  
Read command terminates, the Cache Read command can be issued as follows:  
1. Issue a Sequential Cache Read command to copy the next page in sequential order to  
the Cache Register.  
2. Issue a Random Cache Read command to copy the page addressed in this command  
to the Cache Register.  
The two commands can be used interchangeably, in any order. When there are no more  
pages are to be read, the final page is copied into the Cache Register by issuing the Exit  
Cache Read command. A Read Cache Command must not be issued after the last page of  
the device is read.  
See Figure 9: Cache read (sequential) operation and Figure 10: Cache read (random)  
operation for examples of the two sequences.  
24/69  
NAND04G-B2D, NAND08G-BxC  
Device operations  
After the Sequential Cache Read or Random Cache Read command has been issued, the  
Ready/Busy signal goes Low and the Status Register bits are set to SR5 =' 0' and SR6 ='0'  
for a period of Cache Read busy time, t  
Cache Register.  
, while the device copies the next page into the  
RCBSY  
After the cache read busy time has passed, the Ready/Busy signal goes High and the  
Status Register bits are set to SR5 = '0' and SR6 = '1', signifying that the Cache Register is  
ready to download new data. Data of the previously read page can be output from the page  
buffer by toggling the Read Enable signal. Data output always begins at column address  
00h, but the Random Data Output command is also supported.  
Figure 9.  
Cache read (sequential) operation  
tBLBH1  
tRCBSY  
tRCBSY  
(Read Busy time)  
(Read Cache Busy time)  
(Read Cache Busy time)  
RB  
R
Busy  
Data  
Data  
Outputs  
Address  
Inputs  
31h  
I/O0-7  
30h  
00h  
3Fh  
Exit  
Cache  
Read  
Code  
Outputs  
Read  
Setup  
Code  
Read  
Code  
Cache  
Read  
Sequential  
Code  
ai13176b  
Repeat as many times as ncessary.  
Figure 10. Cache read (random) operation  
tBLBH1  
tRCBSY  
tRCBSY  
(Read Busy time)  
(Read Cache Busy time)  
(Read Cache Busy time)  
RB  
R
Busy  
Address  
31h  
Data  
Outputs  
Address  
Data  
Outputs  
00h  
3Fh  
Exit  
Cache  
Read  
Code  
I/O0-7  
30h  
00h  
Inputs  
Inputs  
Read  
Setup  
Code  
Read  
Code  
Read  
Setup  
Code  
Enhanced  
Cache  
Read  
(random)  
Code  
ai13176c  
Repeat as many times as ncessary.  
25/69  
Device operations  
NAND04G-B2D, NAND08G-BxC  
6.3  
Page program  
The page program operation is the standard operation to program data to the memory array.  
Generally, the page is programmed sequentially, however, the device does support random  
input within a page.  
It is recommended to address pages sequentially within a given block.  
The memory array is programmed by page, however, partial page programming is allowed  
where any number of bytes (1 to 2112) or words (1 to 1056) can be programmed.  
The maximum number of consecutive, partial-page program operations allowed in the same  
page is four. After exceeding four operations a Block Erase command must be issued before  
any further program operations can take place in that page.  
6.3.1  
Sequential input  
To input data sequentially the addresses must be sequential and remain in one block.  
For sequential input each page program operation consists of the following five steps :  
1. One bus cycle is required to set up the Page Program (sequential input) command (see  
Table 10: Commands).  
2. Five bus cycles are then required to input the program address (refer to Table 6:  
Address insertion (x8 devices) and Table 7: Address insertion (x16 devices)).  
3. The data is then loaded into the Data Registers.  
4. One bus cycle is required to issue the Page Program Confirm command to start the  
P/E/R Controller. The P/E/R only starts if the data has been loaded in step 3.  
5. the P/E/R Controller then programs the data into the array.  
See Figure 11: Page program operation for more information.  
6.3.2  
Random data input in page  
During a sequential input operation, the next sequential address to be programmed can be  
replaced by a random address by issuing a Random Data Input command. The following  
two steps are required to issue the command:  
1. One bus cycle is required to set up the Random Data Input command (see Table 10:  
Commands).  
2. Two bus cycles are then required to input the new column address (refer to Table 6:  
Address insertion (x8 devices)).  
Random data input can be repeated as often as required in any given page.  
Once the program operation has started, the Status Register can be read using the Read  
Status Register command. During program operations the Status Register only flags errors  
for bits set to '1' that have not been successfully programmed to '0'.  
During the program operation, only the Read Status Register and Reset commands are  
accepted; all other commands are ignored.  
Once the program operation has completed, the P/E/R Controller bit SR6 is set to ‘1’ and  
the Ready/Busy signal goes High.  
The device remains in Read Status Register mode until another valid command is written to  
the command interface.  
26/69  
NAND04G-B2D, NAND08G-BxC  
Device operations  
Figure 11. Page program operation  
tBLBH2  
(Program Busy time)  
RB  
I/O  
Busy  
Data Input  
10h  
Address Inputs  
80h  
70h  
SR0  
Confirm  
Code  
Read Status Register  
Page Program  
Setup Code  
ai08659  
Figure 12. Random data input during sequential data input  
tBLBH2  
(Program Busy time)  
RB  
Busy  
Address  
Inputs  
Address  
Inputs  
I/O  
80h  
85h  
10h  
Data Intput  
Data Input  
70h  
SR0  
Cmd  
Code  
Cmd  
Confirm  
Code  
Read Status Register  
Code 2 Add cycles  
5 Add cycles  
Col Add 1,2  
Row Add 1,2,3 Col Add 1,2  
Spare  
Area  
Spare  
Area  
Main Area  
Main Area  
ai08664  
27/69  
Device operations  
NAND04G-B2D, NAND08G-BxC  
6.4  
Multiplane page program  
The devices support multiplane page program, which enables the programming of two  
pages in parallel, one in each plane.  
A multiplane page program operation requires the following two steps:  
1. The first step serially loads up to two pages of data (4224 bytes) into the data buffer. It  
requires:  
One clock cycle to set up the Page Program command (see Section 6.3.1:  
Sequential input).  
5 bus write cycles to input the first page address and data. The address of the first  
page must be within the first plane (A18 = 0).  
One bus write cycle to issue the Page Program Confirm code. After this, the  
device is busy for a time of t  
IPBSY.  
When the device returns to the ready state (Ready/Busy High), a multiplane page  
program setup code must be issued, followed by the 2nd page address (5 write  
cycles) and data. The address of the 2nd page must be within the second plane  
(A18 = 1).  
2. The 2nd step programs in parallel the two pages of data loaded into the data buffer into  
the appropriate memory pages. It is started by issuing a the Program Confirm  
command.  
As for standard page program operation, the device supports random data input during both  
data loading phases.  
Once the multiplane page program operation has started, that is during a delay of t  
Status Register can be read using the Read Status Register command.  
, the  
IPBSY  
Once the multiplane page program operation has completed, the P/E/R Controller bit SR6 is  
set to ‘1’ and the Ready/Busy signal goes High.  
If the multiplane page program fails, an error is signaled on bit SR0 of the Status Register.  
To know which page of the two planes failed, the Read Status Enhanced command must be  
issued twice, once for each plane (see Section 6.12).  
Figure 13 provides a description of multiplane page program waveforms.  
Figure 13. Multiplane page program waveform  
tIPBSY  
tBLBH2  
(Program Busy time)  
RB  
Busy  
Busy  
(1)  
I/O  
Data Input  
11h  
Data Input  
10h  
Address Inputs  
A18=0  
Address Inputs  
A18=1  
80h  
70h  
SR0  
80h  
Confirm  
Code  
Multiplane Page  
Program Setup  
code  
Confirm  
Code  
Read Status Register  
Page Program  
Setup Code  
ai13171b  
1. The 81h setup code is also accepted for backward compatibility.  
28/69  
NAND04G-B2D, NAND08G-BxC  
Device operations  
6.5  
Copy back program  
The copy back program operation copies the data stored in one page and reprograms it in  
another page.  
The copy back program operation does not require external memory and so the operation is  
faster and more efficient because the reading and loading cycles are not required. The  
operation is particularly useful when a portion of a block is updated and the rest of the block  
needs to be copied to the newly assigned block.  
The NAND04G-B2D and NAND08G-BxC devices feature automatic EDC during a copy  
back operation. Consequently, external ECC is no longer required. The errors detected  
during copy back operations can be read by performing a read EDC Status Register  
operation (see Section 6.13: Read EDC Status Register). See also Section 6.9 for details of  
EDC operations.  
The copy back program operation requires the following four steps:  
1. The first step reads the source page. The operation copies all 2112 bytes from the  
page into the data buffer. It requires:  
One bus write cycle to set up the command  
5 bus write cycles to input the source page address  
One bus write cycle to issue the confirm command code  
2. When the device returns to the ready state (Ready/Busy High), optional data readout is  
allowed by pulsing R; the next bus write cycle of the command is given with the 5 bus  
cycles to input the target page address. See Table 11 for the addresses that must be  
the same for the source and target page.  
3. Issue the confirm command to start the P/E/R Controller.  
To see the data input cycle for modifying the source page and an example of the copy back  
program operation, refer to Figure 14: Copy back program (without readout of data).  
Figure 16: Page copy back program with random data input shows a data input cycle to  
modify a portion or a multiple distant portion of the source page.  
Table 11. Copy back program addresses  
Density  
Source and target page addresses  
4 Gbits  
8 Gbits  
Same A18  
Same A18 and A30  
Figure 14. Copy back program (without readout of data)  
Source  
Add Inputs  
Target  
Add Inputs  
I/O  
10h  
70h  
SR0  
35h  
85h  
00h  
Read  
Code  
Copy Back  
Code  
Read Status Register  
tBLBH1  
tBLBH2  
(Read Busy time)  
(Program Busy time)  
RB  
Busy  
Busy  
ai09858b  
1. Copy back program is only permitted between odd address pages or even address pages.  
29/69  
Device operations  
NAND04G-B2D, NAND08G-BxC  
Figure 15. Copy back program (with readout of data)  
Source  
Target  
I/O  
10h  
70h  
SR0  
35h  
85h  
00h  
Data Outputs  
Add Inputs  
Add Inputs  
Read  
Code  
Copy Back  
Code  
Read Status  
Register  
tBLBH1  
tBLBH2  
(Read Busy time)  
(Program Busy time)  
RB  
Busy  
Busy  
ai09858c  
Figure 16. Page copy back program with random data input  
2 Cycle  
Target  
Add Inputs  
Source  
Add Inputs  
I/O  
35h  
SR0  
00h  
85h  
Data 85h  
Data 10h  
70h  
Add Inputs  
Read  
Code  
Copy Back  
Code  
Unlimited number of repetitions  
tBLBH1  
tBLBH2  
(Read Busy time)  
(Program Busy time)  
RB  
Busy  
Busy  
ai11001  
6.6  
Multiplane copy back program  
In addition to multiplane page program, the NAND04G-B2D and NAND08G-BxC devices  
support multiplane copy back program.  
A Multiplane Copy Back Program command requires exactly the same steps as a Multiplane  
Page Program command, and must satisfy the same time constraints (see Section 6.4:  
Multiplane page program).  
Prior to executing the multiplane copy back program operation, two single-page read  
operations must be executed to copy back the first page from the first plane and the second  
page from the second plane.  
The EDC check is also performed during the multiplane copy back program. Errors during  
multiplane copy back operations can be detected by performing a Read EDC Status  
Register operation (see Section 6.13: Read EDC Status Register).  
If the multiplane copy back program fails, an error is signaled on bit SR0 of the Status  
Register. To know which page of the two planes failed, the Read Status Enhanced  
command must be executed twice, once for each plane (see Section 6.12).  
30/69  
NAND04G-B2D, NAND08G-BxC  
Device operations  
Figure 17 provides a description of multiplane copy back program waveform.  
Figure 17. Multiplane copy back program  
Source  
Source  
(1)  
Target  
Target  
85h  
I/O  
35h  
10h  
Read Status Register  
tBLBH2  
70h SR0  
35h  
00h  
85h  
11h  
00h  
Add Inputs  
A18=0  
Add Inputs  
Add Inputs  
Add Inputs  
Read  
Code  
Read  
Code  
Copy Back  
Code  
Copy Back  
Code  
A18 = 1  
A18 = 0  
A18 = 1  
tBLBH1  
tBLBH1  
tIPBSY  
(Read Busy time)  
(Read Busy time)  
(Program Busy time)  
RB  
Busy  
Busy  
Busy  
Busy  
ai13172b  
1. The 81h setup code is also accepted for backward compatibility.  
6.7  
Block erase  
Erase operations are done one block at a time. An erase operation sets all of the bits in the  
addressed block to ‘1’. All previous data in the block is lost.  
An erase operation consists of the following three steps (refer to Figure 18: Block erase):  
1. One bus cycle is required to set up the Block Erase command. Only addresses A18-  
A29 are used; all other address inputs are ignored.  
2. Three bus cycles are then required to load the address of the block to be erased. Refer  
to Table 8: Address definition (x8 devices) for the block addresses of each device.  
3. One bus cycle is required to issue the Block Erase Confirm command to start the P/E/R  
Controller.  
The operation is initiated on the rising edge of Write Enable, W, after the Confirm command  
is issued. The P/E/R Controller handles block erase and implements the verify process.  
During the block erase operation, only the Read Status Register and Reset commands are  
accepted; all other commands are ignored.  
Once the program operation has completed, the P/E/R Controller bit SR6 is set to ‘1’ and  
the Ready/Busy signal goes High. If the operation completed successfully, the Write Status  
bit SR0 is ‘0’, otherwise it is set to ‘1’.  
Figure 18. Block erase  
tBLBH3  
(Erase Busy time)  
RB  
Busy  
Block Address  
Inputs  
I/O  
60h  
D0h  
70h  
SR0  
Confirm  
Code  
Read Status Register  
Block Erase  
Setup Code  
ai07593  
31/69  
Device operations  
NAND04G-B2D, NAND08G-BxC  
6.8  
Multiplane block erase  
The multiplane block erase operation allows the erasure of two blocks in parallel, one in  
each plane.  
This operation consists of the following three steps (refer to Figure 19: Multiplane block  
erase):  
1. 8 bus cycles are required to set up the Block Erase command and load the addresses  
of the blocks to be erased. The setup command followed by the address of the block to  
be erased must be issued for each block. t  
busy time is required between the  
IEBSY  
insertion of first and the second block addresses. As for multiplane page program  
operations, the address of the first and second page must be within the first plane (A18  
= 0) and second plane (A8 = 1), respectively.  
2. One bus cycle is then required to issue the Multiplane Block Erase Confirm command  
and start the P/E/R Controller.  
If the multiplane block erase fails, an error is signaled on bit SR0 of the Status Register. To  
know which page of the two planes failed, the Read Status Enhanced command must be  
issued twice, once for each plane (see Section 6.12).  
Figure 19. Multiplane block erase  
tBLBH3  
tIEBSY  
(Erase Busy time)  
RB  
I/O  
Busy  
(1)  
D1h  
Block Address  
Inputs  
Block Address  
Inputs  
60h  
60h  
D0h  
70h  
SR0  
Block Erase  
Setup Code  
A18 = 0  
Multiplane Block Block Erase  
Erase Code Setup Code  
A18 = 1  
Confirm  
Code  
Read Status  
Register  
ai13173b  
1. The D1h Confirm code is required by the ONFI 1.0 command set. To maintain backward compatibility, the D1h Confirm  
code can optionally be ignored, and then the tIEBSY Busy Time does not occur.  
6.9  
Error detection code (EDC)  
The EDC (error detection code) is performed automatically during all program operations. It  
starts immediately after the device becomes busy.  
The EDC detects 1 single bit error per EDC unit. Each EDC unit has a density of 528 bytes  
(or 264 words), split into 512 bytes of main area and 16 bytes of spare area (or 256 + 8  
words). Refer to Table 12 and Figure 20 for EDC unit addresses definition.  
To properly use the EDC, the following conditions apply:  
Page program operations must be performed on a whole page, or on whole EDC  
unit(s).  
The modification of the content of an EDC unit using a random data input before the  
copy back program, must be performed on the whole EDC unit. It can only be done  
once per EDC unit. Any partial modification of the EDC unit results in the corruption of  
the on-chip EDCs.  
32/69  
NAND04G-B2D, NAND08G-BxC  
Device operations  
EDC results can be retrieved only during copy back program and multiplane copy back  
using the Read EDC Status Register command (see Section 6.13).  
Figure 20. Page organization  
Page = 4 EDC units  
Main area (2048 bytes/1024 words)  
Spare area (64 bytes/32 words)  
A area  
B area  
C area  
D area  
E area  
F area  
G area  
H area  
(512 bytes/ (512 bytes/ (512 bytes/ (512 bytes/ (16 bytes/ (16 bytes/ (16 bytes/ (16 bytes/  
256 words) 256 words) 256 words) 256 words) 8 words)  
8 words) 8 words)  
8 words)  
AI13179b  
Table 12. Address definition for EDC units (x8 devices)  
Main area  
EDC unit  
Spare area  
Area name  
Column address  
Area name  
Column address  
1st 528-byte EDC unit  
2nd 528-byte EDC unit  
3rd 528-byte EDC unit  
4th 528-byte EDC unit  
A
B
C
D
0 to 511  
E
F
2048 to 2063  
2064 to 2079  
2080 to 2095  
2096 to 2111  
512 to 1023  
1024 to1535  
1536 to 2047  
G
H
Table 13. Address definition for EDC units (x16 devices)  
Main area  
EDC unit  
Spare area  
Area name  
Column address  
Area name  
Column address  
1st 264-word EDC unit  
2nd 264-word EDC unit  
3rd 264-word EDC unit  
4th 264-word EDC unit  
A
B
C
D
0 to 255  
256 to 511  
512 to 767  
768 to 1023  
E
F
1024 to 1031  
1032 to 1039  
1040 to 1047  
1048 to 1055  
G
H
6.10  
Reset  
The Reset command is used to reset the command interface and Status Register. If the  
Reset command is issued during any operation, the operation is aborted. If the aborted  
operation is a program or erase, the contents of the memory locations being modified are no  
longer valid as the data is partially programmed or erased.  
If the device has already been reset, then the new Reset command is not accepted.  
The Ready/Busy signal goes Low for t  
after the Reset command is issued. The value  
BLBH4  
of t  
depends on the operation that the device was performing when the command was  
BLBH4  
issued. Refer to Table 31 for the values.  
33/69  
Device operations  
NAND04G-B2D, NAND08G-BxC  
6.11  
Read Status Register  
The devices contain a Status Register that provides information on the current or previous  
program or erase operation. The various bits in the Status Register convey information and  
errors on the operation.  
The Status Register is read by issuing the Read Status Register command. The Status  
Register information is present on the output data bus (I/O0-I/O7) on the falling edge of Chip  
Enable or Read Enable, whichever occurs last. When several memories are connected in a  
system, the use of Chip Enable and Read Enable signals allows the system to poll each  
device separately, even when the Ready/Busy pins are common-wired. It is not necessary to  
toggle the Chip Enable or Read Enable signals to update the contents of the Status  
Register.  
After the Read Status Register command has been issued, the device remains in Read  
Status Register mode until another command is issued. Therefore, if a Read Status Register  
command is issued during a Random Read cycle, a new Read command must be issued to  
continue with a page read operation.  
The Status Register bits are summarized in Table 14: Status Register bits. Refer to Table 14  
in conjunction with the following sections.  
6.11.1  
6.11.2  
Write protection bit (SR7)  
The write protection bit identifies if the device is protected or not. If the write protection bit is  
set to ‘1’, the device is not protected and program or erase operations are allowed. If the  
write protection bit is set to ‘0’ the device is protected and program or erase operations are  
not allowed.  
P/E/R Controller and cache ready/busy bit (SR6)  
Status Register bit SR6 has two different functions depending on the current operation.  
During cache operations, SR6 acts as a cache ready/busy bit, which indicates whether the  
Cache Register is ready to accept new data. When SR6 is set to '0', the Cache Register is  
busy, and when SR6 is set to '1', the Cache Register is ready to accept new data.  
During all other operations, SR6 acts as a P/E/R Controller bit, which indicates whether the  
P/E/R Controller is active or inactive. When the P/E/R Controller bit is set to ‘0’, the P/E/R  
Controller is active (device is busy); when the bit is set to ‘1’, the P/E/R Controller is inactive  
(device is ready).  
6.11.3  
P/E/R Controller bit (SR5)  
The Program/Erase/Read Controller bit indicates whether the P/E/R Controller is active or  
inactive during cache operations. When the P/E/R Controller bit is set to ‘0’, the P/E/R  
Controller is active (device is busy); when the bit is set to ‘1’, the P/E/R Controller is inactive  
(device is ready).  
Note:  
This bit is only valid for cache operations.  
6.11.4  
Error bit (SR0)  
The error bit identifies if any errors have been detected by the P/E/R Controller. The error bit  
is set to ’1’ when a program or erase operation has failed to write the correct data to the  
memory. If the error bit is set to ‘0’ the operation has completed successfully.  
34/69  
NAND04G-B2D, NAND08G-BxC  
Device operations  
6.11.5  
SR4, SR3, SR2 and SR1 are reserved  
Table 14. Status Register bits  
Bit  
Name  
Logic level  
Definition  
'1'  
'0'  
'1'  
'0'  
'1'  
'0'  
Not protected  
Protected  
SR7  
Write protection  
P/E/R Controller inactive, device ready  
P/E/R Controller active, device busy  
P/E/R Controller inactive, device ready  
P/E/R Controller active, device busy  
Program/Erase/Read  
Controller  
SR6  
SR5  
Program/Erase/Read  
Controller(1)  
SR4, SR3,  
SR2, SR1  
Reserved  
‘don’t care’  
‘1’  
‘0’  
Error – operation failed  
SR0  
Generic error  
No error – operation successful  
1. Only valid for cache operations.  
6.12  
Read status enhanced  
In NAND Flash devices with multiplane architecture, it is possible to independently read the  
Status Register of a single plane using the Read Status Enhanced command. If the Error bit  
of the Status Register, SR0, reports an error during or after a multiplane operation, the Read  
Status Enhanced command is used to know which of the two planes contains the page that  
failed the operation. Three address cycles are required to address the selected block and  
page (A18-0).  
The output of the Read Status Enhanced command has the same coding as the Read  
Status command. See Table 14 for a full description and Figure 31 for the read status  
enhanced waveform.  
6.13  
Read EDC Status Register  
The devices contain an EDC Status Register, which provides information on the errors that  
occurred during the read cycles of the copy back and multiplane copy back operations. In  
the case of multiplane copy back program, it is not possible to distinguish which of the two  
read operations caused the error.  
The EDCS Status Register is read by issuing the Read EDC Status Register command.  
After issuing the Read EDC Status Register command, a read cycle outputs the content of  
the EDC Status Register to the I/O pins on the falling edge of Chip Enable or Read Enable  
signals, whichever occurs last. The operation is similar to Read Status Register command.  
Table 15: EDC Status Register bits summarizes the EDC Status Register bits. See  
Figure 30 for a description of Read EDC Status Register waveforms.  
35/69  
Device operations  
NAND04G-B2D, NAND08G-BxC  
Definition  
Table 15. EDC Status Register bits  
Bit  
Name  
Logic level  
Copy back or multiplane copy back  
operation failed  
‘1’  
0
Pass/fail  
Copy back or multiplane copy back  
operation succeeded  
‘0’  
‘1’  
Error  
1
2
EDC status  
EDC validity  
‘0’  
No error  
Valid  
‘1’  
‘0’  
Invalid  
-
3
4
Reserved  
Reserved  
‘don’t care’  
‘don’t care’  
-
‘1’  
‘0’  
‘1’  
‘0’  
‘1’  
‘0’  
Ready  
Busy  
5
6
7
Ready/busy(1)  
Ready/busy(1)  
Write protect  
Ready  
Busy  
Not protected  
Protected  
1. See Table 14: Status Register bits for a description of SR5 and SR6 bits.  
6.14  
Read electronic signature  
The devices contain a manufacturer code and device code. The following three steps are  
required to read these codes:  
1. One bus write cycle to issue the Read Electronic Signature command (90h)  
2. One bus write cycle to input the address (00h)  
3. Five bus read cycles to sequentially output the data (as shown in Table 16: Electronic  
signature).  
36/69  
NAND04G-B2D, NAND08G-BxC  
Table 16. Electronic signature  
Device operations  
Byte 5  
Byte 3  
Byte 4  
Root part number  
Byte 1  
Byte 2  
(see Table 17)  
(see Table 18)  
(see Table 19)  
NAND04GR3B2D  
20h  
20h  
ACh  
DCh  
10h  
10h  
15h  
54h  
NAND08GR3B4C(1)  
NAND04GW3B2D  
95h  
54h  
NAND08GW3B4C(1)  
NAND04GR4B2D  
NAND04GW4B2D  
NAND08GR3B2C  
NAND08GW3B2C  
NAND08GR4B2C  
NAND08GW4B2C  
0020h  
0020h  
20h  
BCh  
CCh  
A3h  
D3h  
B3h  
C3h  
10h  
10h  
51h  
51h  
51h  
51h  
55h  
D5h  
15h  
95h  
55h  
D5h  
54h  
54h  
58h  
58h  
58h  
58h  
20h  
0020h  
0020h  
1. For NAND08G-B4C devices, each 4 Gb die returns its own electronic signature.  
Table 17. Electronic signature byte 3  
I/O  
Definition  
Value  
Description  
0 0  
0 1  
1 0  
1 1  
1
2
4
8
I/O1-I/O0  
Internal chip number  
0 0  
0 1  
1 0  
1 1  
2-level cell  
4-level cell  
8-level cell  
I/O3-I/O2  
I/O5-I/O4  
Cell type  
16-level cell  
0 0  
0 1  
1 0  
1 1  
1
2
4
8
Number of simultaneously  
programmed pages  
0
1
Not supported  
Supported  
Interleaved programming  
between multiple devices  
I/O6  
I/O7  
0
1
Not supported  
Supported  
Cache program  
37/69  
Device operations  
NAND04G-B2D, NAND08G-BxC  
Description  
Table 18. Electronic signature byte 4  
I/O  
Definition  
Value  
0 0  
0 1  
1 0  
1 1  
1 Kbytes  
2 Kbytes  
4 Kbytes  
8 Kbytes  
Page size  
I/O1-I/O0  
(without spare area)  
Spare area size  
(byte/512 byte)  
0
1
8
I/O2  
16  
0 0  
1 0  
0 1  
1 1  
30/50 ns  
25 ns  
Minimum sequential access  
time  
I/O7, I/O3  
Reserved  
Reserved  
0 0  
0 1  
1 0  
1 1  
64 Kbytes  
128 Kbytes  
256 Kbytes  
512 Kbytes  
Block size  
I/O5-I/O4  
I/O6  
(without spare area)  
0
1
x8  
Organization  
x16  
Table 19. Electronic signature byte 5  
I/O  
Definition  
Value  
Description  
I/O1 - I/O0  
Reserved  
0 0  
0 0  
0 1  
1 0  
1 1  
1 plane  
2 planes  
4 planes  
8 planes  
I/O3 - I/O2  
Plane number  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
64 Mbits  
128 Mbits  
256 Mbits  
512 Mbits  
1 Gb  
Plane size  
I/O6 - I/O4  
(without spare area)  
2 Gb  
4 Gb  
8 Gb  
I/O7  
Reserved  
0
38/69  
NAND04G-B2D, NAND08G-BxC  
Device operations  
6.15  
Read ONFI signature  
To recognize NAND Flash devices that are compatible with the ONFI 1.0 command set, the  
Read Electronic Signature can be issued, followed by an address of 20h. The next four  
bytes output is the ONFI signature, which is the ASCII encoding of the “ONFI” word.  
Reading beyond four bytes produces indeterminate values.  
Figure 33 provides a description of the read ONFI signature waveform and Table 20  
provides the definition of the output bytes.  
Table 20. Read ONFI signature  
Byte  
Value  
ASCII character  
1st byte  
2nd byte  
3rd byte  
4th byte  
5th byte  
4Fh  
4Eh  
O
N
46h  
F
49h  
I
Undefined  
Undefined  
6.16  
Read parameter page  
The Read Parameter Page command retrieves the data structure that describes the NAND  
Flash organization, features, timings and other behavioral parameters. This data structure  
enables the host processor to automatically recognize the NAND Flash configuration of a  
device. The whole data structure is repeated at least five times.  
See Figure 40 for a description of the read parameter page waveform.  
The Random Data Read command can be issued during execution of the read parameter  
page to read specific portions of the parameter page.  
The Read Status command may be used to check the status of read parameter page during  
execution. After completion of the Read Status command, 00h is issued by the host on the  
command line to continue with the data output flow for the Read Parameter Page command.  
Read status enhanced is not be used during execution of the Read Parameter Page  
command.  
Table 21 defines the parameter page data structure; for parameters that span multiple bytes,  
the least significant byte of the parameter corresponds to the first byte.  
Values are reported in the parameter page in bytes when referring to items related to the  
size of data access (as in an x8 data access device). For example, the chip returns how  
many data bytes are in a page. For a device that supports x16 data access, the host is  
required to convert byte values to word values for its use. Unused fields are set to 0h.  
For more detailed information about parameter page data bits, refer to ONFI  
Specification 1.0, section 5.4.1.  
39/69  
Device operations  
NAND04G-B2D, NAND08G-BxC  
Table 21. Parameter page data structure  
Byte  
O/M(1)  
Description  
Parameter page signature  
– Byte 0: 4Fh, "O"  
– Byte 1: 4Eh, "N"  
– Byte 2: 46h, "F"  
– Byte 3: 49h, "I"  
0-3  
M
Revision number  
Bit 2 to bit 15 Reserved (0)  
4-5  
M
Bit 1  
Bit 0  
1 = supports ONFI version 1.0  
Reserved (0)  
Features supported  
Bit 5 to bit 15 Reserved (0)  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1 = supports odd to even page copyback  
6-7  
M
1 = supports interleaved operations  
1 = supports non-sequential page programming  
1 = supports multiple LUN operations  
1 = supports 16-bit data bus width  
Optional commands supported  
Bit 6 to bit 15 Reserved (0)  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1 = supports Read Unique ID  
1 = supports Copyback  
8-9  
M
1 = supports Read Status Enhanced  
1 = supports Get Features and Set Features  
1 = supports Read Cache commands  
1 = supports Page Cache Program command  
Reserved (0)  
10-31  
32-43  
44-63  
64  
M
M
M
O
Device manufacturer (12 ASCII characters)  
Device model (20 ASCII characters)  
JEDEC manufacturer ID  
65-66  
67-79  
80-83  
84-85  
86-89  
90-91  
92-95  
Date code  
Reserved (0)  
M
M
M
M
M
Number of data bytes per page  
Number of spare bytes per page  
Number of data bytes per partial page  
Number of spare bytes per partial page  
Number of pages per block  
40/69  
NAND04G-B2D, NAND08G-BxC  
Table 21. Parameter page data structure (continued)  
Device operations  
Byte  
O/M(1)  
Description  
96-99  
100  
M
M
Number of blocks per logical unit (LUN)  
Number of logical units (LUNs)  
Number of address cycles  
101  
M
Bit 4 to bit 7  
Bit 0 to bit 3  
Column address cycles  
Row address cycles  
102  
103-104  
105-106  
107  
M
M
M
M
M
M
Number of bits per cell  
Bad blocks maximum per LUN  
Block endurance  
Guaranteed valid blocks at beginning of target  
Block endurance for guaranteed valid blocks  
Number of programs per page  
108-109  
110  
Partial programming attributes  
Bit 5 to bit 7  
4
Reserved  
1 = partial page layout is partial page data followed by  
partial page spare  
111  
M
Bit 1 to bit 3  
0
Reserved  
1 = partial page programming has constraints  
Number of bits ECC correctability  
112  
113  
M
M
Number of interleaved address bits  
Bit 4 to bit 7  
Bit 0 to bit 3  
Reserved (0)  
Number of interleaved address bits  
Interleaved operation attributes  
Bit 4 to bit 7  
Bit 3  
Reserved (0)  
Address restrictions for program cache  
1 = program cache supported  
1 = no block address restrictions  
Overlapped/concurrent interleaving support  
Reserved (0)  
114  
O
M
Bit 2  
Bit 1  
Bit 0  
115-127  
128  
I/O pin capacitance  
41/69  
Device operations  
NAND04G-B2D, NAND08G-BxC  
Table 21. Parameter page data structure (continued)  
Byte  
O/M(1)  
Description  
Timing mode support  
Bit 6 to bit 15 Reserved (0)  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1 = supports timing mode 5  
1 = supports timing mode 4  
1 = supports timing mode 3  
1 = supports timing mode 2  
1 = supports timing mode 1  
1 = supports timing mode 0, shall be 1  
129-130  
M
Program cache timing mode support  
Bit 6 to bit 15 Reserved (0)  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1 = supports timing mode 5  
1 = supports timing mode 4  
1 = supports timing mode 3  
1 = supports timing mode 2  
1 = supports timing mode 1  
1 = supports timing mode 0  
tPROG maximum page program time (µs)  
131-132  
O
133-134  
135-136  
137-138  
139-163  
164-165  
166-253  
254-255  
256-511  
512-767  
M
M
M
M
M
M
M
M
M
t
BERS maximum block erase time (µs)  
tR maximum page read time (µs)  
Reserved (0)  
Vendor specific revision number  
Vendor specific  
Integrity CRC  
Value of bytes 0-255  
Value of bytes 0-255  
768+  
O
Additional redundant parameter pages  
1. O = optional, M = mandatory  
42/69  
NAND04G-B2D, NAND08G-BxC  
Concurrent operations and extended read status  
7
Concurrent operations and extended read status  
The NAND08G-BxC devices are composed of two 4-Gbit dice stacked together. This  
configuration allows the devices to support concurrent operations, which means that while  
performing an operation in one die (erase, read, program, etc.), another operation is  
possible in the other die.  
The standard Read Status Register operation returns the status of the NAND08G-BxC  
device. To provide information on each 4-Gbit die, the NAND08G-BxC devices feature an  
Extended Read Status Register command that independently checks the status of each  
NAND04G-B2D.  
The following steps are required to perform concurrent operations:  
1. Select one of the two dice by setting the most significant address bit A30 to ‘0’ or ‘1’.  
2. Execute one operation on this die.  
3. Launch a concurrent operation on the other die.  
4. Check the status of these operations by performing an Extended Read Status Register  
operation.  
All combinations of operations are possible except read while read. This is due to the fact  
that the input/output bus is common to both dice.  
Refer to Table 22 for the description of the Extended Read Status Register command  
sequence, and to Table 14. for the definition of the Status Register bits.  
Table 22. Extended Read Status Register commands  
Command  
Address range  
1 bus write cycle  
Read 1st die status  
Read 2nd die status  
Address 0x3FFFFFFF  
F2h  
F3h  
0x3FFFFFFF < Address 0x7FFFFFF  
8
Data protection  
The devices feature a Write Protect, WP, pin, which can be used to protect the device  
against program and erase operations. It is recommended to keep WP at V during power-  
IL  
up and power-down.  
43/69  
Software algorithms  
NAND04G-B2D, NAND08G-BxC  
9
Software algorithms  
This section provides information on the software algorithms that Numonyx recommends  
implementing to manage the bad blocks and extend the lifetime of the NAND device.  
NAND Flash memories are programmed and erased by Fowler-Nordheim tunnelling using  
high voltage. Exposing the device to high voltage for extended periods damages the oxide  
layer.  
To extend the number of program and erase cycles and increase the data retention, the:  
Number of program and erase cycles is limited (see Table 24: Program erase times and  
program erase endurance cycles for the values)  
Implementation of a garbage collection, a wear-leveling algorithm and an error  
correction code is recommended.  
To help integrate a NAND memory into an application, Numonyx provides a file system OS  
native reference software, which supports the basic commands of file management.  
Contact the nearest Numonyx sales office for more details.  
9.1  
Bad block management  
Devices with bad blocks have the same quality level and the same AC and DC  
characteristics as devices that have all valid blocks. A bad block does not affect the  
performance of valid blocks because it is isolated from the bit and common source lines by a  
select transistor.  
The devices are supplied with all the locations inside valid blocks erased (FFh). The bad  
block information is written prior to shipping. Any block, where the 1st and 6th bytes or the  
1st word in the spare area of the 1st page, does not contain FFh, is a bad block.  
The bad block information must be read before any erase is attempted as the bad block  
Information may be erased. For the system to be able to recognize the bad blocks based on  
the original information, the creation of a bad block table following the flowchart shown in  
Figure 21: Bad block management flowchart is recommended.  
44/69  
NAND04G-B2D, NAND08G-BxC  
Software algorithms  
9.2  
NAND Flash memory failure modes  
Over the lifetime of the device bad blocks may develop. To implement a highly reliable  
system, the possible failure modes must be considered.  
Program/erase failure  
In this case, the block has to be replaced by copying the data to a valid block. These  
additional bad blocks can be identified because attempts to program or erase them  
gives errors in the Status Register. As the failure of a page program operation does not  
affect the data in other pages in the same block, the block can be replaced by  
reprogramming the current data and copying the rest of the replaced block to an  
available valid block. The Copy Back Program command can be used to copy the data  
to a valid block. See Section 6.5: Copy back program for more details.  
Read failure  
In this case, ECC correction must be implemented. To efficiently use the memory  
space, the recovery of a single-bit error in read by ECC, without replacing the whole  
block, is recommended.  
Refer to Table 23: Block failure for the recommended procedure to follow if an error occurs  
during an operation.  
Table 23. Block failure  
Operation  
Procedure  
Erase  
Program  
Read  
Block replacement  
Block replacement or ECC  
ECC  
Figure 21. Bad block management flowchart  
START  
Block Address =  
Block 0  
Increment  
Block Address  
Update  
Bad Block table  
Data  
= FFh?  
NO  
NO  
YES  
Last  
block?  
YES  
END  
AI07588C  
45/69  
Software algorithms  
NAND04G-B2D, NAND08G-BxC  
9.3  
Garbage collection  
When a data page needs to be modified, it is faster to write to the first available page,  
resulting in the previous page being marked as invalid. After several updates it is necessary  
to remove invalid pages to free memory space.  
To free this memory space and allow further program operations, the implementation of a  
garbage collection algorithm is recommended. In garbage collection software, the valid  
pages are copied into a free area and the block containing the invalid pages is erased as  
show in Figure 22.  
Figure 22. Garbage collection  
Old Area  
New Area (After GC)  
Valid  
Page  
Invalid  
Page  
Free  
Page  
(Erased)  
AI07599B  
9.4  
Wear-leveling algorithm  
For write-intensive applications, the implementation of a wear-leveling algorithm is  
recommended to monitor and spread the number of write cycles per block.  
In memories that do not use a wear-leveling algorithm, not all blocks get used at the same  
rate. The wear-leveling algorithm ensures that equal use is made of all the available write  
cycles for each block. There are two wear-leveling levels:  
First level wear-leveling, where new data is programmed to the free blocks that have  
had the fewest write cycles.  
Second level wear-leveling, where long-lived data is copied to another block so that the  
original block can be used for more frequently-changed data.  
The second level wear-leveling is triggered when the difference between the maximum and  
the minimum number of write cycles per block reaches a specific threshold.  
46/69  
NAND04G-B2D, NAND08G-BxC  
Software algorithms  
9.5  
Error correction code  
An ECC can be implemented in the NAND Flash memories to identify and correct errors in  
the data. For every 2048 bits in the device, the implementation of 22 bits of ECC (16 bits for  
line parity plus 6 bits for column parity) is recommended.  
Figure 23. Error detection  
New ECC generated  
during read  
XOR previous ECC  
with new ECC  
NO  
NO  
>1 bit  
= zero?  
All results  
= zero?  
YES  
YES  
22 bit data = 0  
11 bit data = 1  
1 bit data = 1  
ECC Error  
Correctable  
Error  
No Error  
ai08332  
47/69  
Program and erase times and endurance cycles  
NAND04G-B2D, NAND08G-BxC  
10  
Program and erase times and endurance cycles  
The program and erase times and the number of program/erase cycles per block are shown  
in Table 24.  
Table 24. Program erase times and program erase endurance cycles  
NAND Flash  
Parameters  
Unit  
Min  
Typ  
Max  
Page Program/Multiplane Program time  
Block Erase/Multiplane Erase time  
Multiplane Program time (1.8 V)  
Multiplane Erase (1.8 V)  
200  
1.5  
250  
2
700  
2
µs  
ms  
800  
2.5  
1
µs  
ms  
Multiplane Program Busy time (tIPBSY  
Multiplane Erase Busy time (tIEBSY  
Cache Read Busy time (tRCBSY  
)
0.5  
0.5  
3
µs  
)
1
µs  
)
tR  
µs  
Program/erase cycles per block (with ECC)  
Data retention  
100 000  
10  
Cycles  
Years  
48/69  
NAND04G-B2D, NAND08G-BxC  
Maximum ratings  
11  
Maximum ratings  
Stressing the device above the ratings listed in Table 25: Absolute maximum ratings may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the operating sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability. Refer to the Numonyx SURE Program and  
other relevant quality documents for more information.  
Table 25. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
TBIAS  
TSTG  
Temperature under bias  
– 50  
– 65  
– 0.6  
– 0.6  
125  
150  
4.6  
°C  
°C  
V
Storage temperature  
Input or output voltage  
Supply voltage  
(1)  
VIO  
VDD  
4.6  
V
1. Minimum voltage may undershoot to –2 V for less than 20 ns during transitions on input and I/O pins.  
Maximum voltage may overshoot to VDD + 2 V for less than 20 ns during transitions on I/O pins.  
49/69  
DC and AC parameters  
NAND04G-B2D, NAND08G-BxC  
12  
DC and AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
characteristics of the devices. The parameters in the following DC and AC characteristics  
tables are derived from tests performed under the measurement conditions summarized in  
Table 26. Designers should check that the operating conditions in their circuit match the  
measurement conditions when relying on the quoted parameters.  
Table 26. Operating and AC measurement conditions  
NAND Flash  
Parameter  
Units  
Min  
Max  
Supply voltage (VDD  
)
2.7  
0
3.6  
70  
85  
V
Grade 1  
Grade 6  
°C  
°C  
pF  
pF  
V
Ambient temperature (TA)  
–40  
30  
50  
0
1.8 V device  
3.0 V device  
Load capacitance (CL) (1 TTL GATE  
and CL)  
Input pulses voltages  
VDD  
Input and output timing ref. voltages  
Output circuit resistor Rref  
Input rise and fall times  
VDD/2  
8.35  
5
V
kΩ  
ns  
(1)  
Table 27. Capacitance  
Symbol  
Parameter  
Test condition  
Typ  
Max  
Unit  
CIN  
Input capacitance  
VIN = 0V  
10  
pF  
Input/output  
CI/O  
VIL = 0V  
10  
pF  
capacitance(2)  
1.  
TA = 25°C, f = 1MHz. CIN and CI/O are not 100% tested.  
2. Input/output capacitances double in stacked devices.  
50/69  
NAND04G-B2D, NAND08G-BxC  
DC and AC parameters  
Figure 24. Equivalent testing circuit for AC characteristics measurement  
V
DD  
2R  
ref  
NAND Flash  
C
L
2R  
ref  
GND  
GND  
Ai11085  
Table 28. DC characteristics (1.8 V devices)  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
tRLRL minimum  
Sequential  
read  
IDD1  
-
10  
20  
mA  
E=VIL, OUT = 0 mA  
I
Operating  
current  
IDD2  
IDD3  
Program  
Erase  
-
-
-
-
10  
10  
20  
20  
mA  
mA  
E=VDD-0.2,  
WP=0/VDD  
IDD5  
Standby current (CMOS(1)  
)
-
10  
50  
µA  
ILI  
ILO  
Input leakage current(1)  
Output leakage current(1)  
Input high voltage  
VIN= 0 to VDDmax  
VOUT= 0 to VDDmax  
-
-
-
-
-
-
-
-
-
10  
µA  
µA  
V
-
10  
VIH  
0.8 * VDD  
VDD + 0.3  
VIL  
Input low voltage  
-
-0.3  
0.2 * VDD  
V
VOH  
VOL  
Output high voltage level  
Output low voltage level  
Output low current (RB)  
IOH = -100 µA  
IOL = 100 µA  
VOL = 0.1 V  
VDD - 0.1  
-
0.1  
4
V
-
V
IOL (RB)  
3
mA  
VDD supply voltage (erase and  
program lockout)  
VLKO  
-
-
-
1.2  
V
1. Leakage current and standby current double in stacked devices.  
51/69  
DC and AC parameters  
NAND04G-B2D, NAND08G-BxC  
Table 29. DC characteristics (3 V devices)  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
tRLRL minimum  
Sequential  
read  
IDD1  
-
15  
30  
mA  
E = VIL, OUT = 0 mA  
I
Operating  
current  
IDD2  
IDD3  
Program  
Erase  
-
-
-
-
15  
15  
30  
30  
1
mA  
mA  
mA  
I
Standby current (TTL)(1)  
E = VIH, WP = 0/VDD  
DD4  
E = VDD-0.2,  
WP = 0/VDD  
IDD5  
Standby current (CMOS)(1)  
-
10  
50  
µA  
ILI  
ILO  
Input leakage current(1)  
Output leakage current(1)  
Input High voltage  
VIN= 0 to VDDmax  
VOUT= 0 to VDDmax  
-
-
-
-
-
-
-
-
-
10  
10  
µA  
µA  
V
-
VIH  
0.8 VDD  
VDD+0.3  
0.2 VDD  
-
VIL  
Input Low voltage  
-
-0.3  
2.4  
-
V
VOH  
VOL  
Output High voltage Level  
Output Low voltage Level  
Output Low current (RB)  
IOH = -400 µA  
IOL = 2.1 mA  
VOL = 0.4 V  
V
0.4  
V
IOL (RB)  
8
10  
mA  
VDD supply voltage (erase and  
program lockout)  
VLKO  
-
-
-
1.8  
V
1. leakage current and standby current double in stacked devices.  
Table 30. AC characteristics for command, address, data input  
Alt.  
Symbol  
Parameter  
1.8 V  
25  
3 V  
12  
Unit  
ns  
Symbol  
tALLWH  
tALHWH  
tCLHWH  
tCLLWH  
tDVWH  
tELWH  
Address Latch Low to Write Enable high  
Address Latch High to Write Enable high  
Command Latch High to Write Enable high  
Command Latch Low to Write Enable high  
Data Valid to Write Enable High  
tALS  
AL setup time  
CL setup time  
Min  
tCLS  
Min  
25  
12  
ns  
tDS  
tCS  
Data setup time  
E setup time  
AL hold time  
Min  
Min  
Min  
20  
35  
10  
12  
20  
5
ns  
ns  
ns  
Chip Enable Low to Write Enable high  
Write Enable High to Address Latch High  
Write Enable High to Command Latch High  
Write Enable High to Command Latch Low  
Write Enable High to Data Transition  
Write Enable High to Chip Enable High  
Write Enable High to Write Enable Low  
Write Enable Low to Write Enable High  
Write Enable Low to Write Enable Low  
tWHALH  
tWHCLH  
tWHCLL  
tWHDX  
tWHEH  
tWHWL  
tWLWH  
tWLWL  
tALH  
tCLH  
CL hold time  
Min  
10  
5
ns  
tDH  
tCH  
tWH  
tWP  
tWC  
Data hold time  
E hold time  
Min  
Min  
10  
10  
15  
25  
45  
5
ns  
ns  
ns  
ns  
ns  
5
W high hold time Min  
10  
12  
25  
W pulse width  
Min  
Min  
Write cycle time  
52/69  
NAND04G-B2D, NAND08G-BxC  
DC and AC parameters  
(1)  
Table 31. AC characteristics for operations  
Alt.  
Symbol  
Parameter  
1.8 V  
3 V  
Unit  
symbol  
tALLRL1  
tALLRL2  
tBHRL  
Read electronic signature  
Read cycle  
Min  
Min  
10  
10  
20  
25  
700  
2
10  
10  
20  
25  
700  
2
ns  
ns  
ns  
µs  
µs  
ms  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
Address Latch Low to  
Read Enable Low  
tAR  
tRR  
Ready/Busy High to Read Enable Low  
Read Busy time  
Min  
tBLBH1  
tBLBH2  
tBLBH3  
Max  
Max  
Max  
Max  
Max  
Max  
Max  
Min  
tPROG  
tBERS  
Program Busy time  
Erase Busy time  
Ready/Busy Low to  
Ready/Busy High  
Reset Busy time, during ready  
5
5
Reset Busy time, during read  
Reset Busy time, during program  
Reset Busy time, during erase  
5
5
tBLBH4  
tRST  
10  
500  
10  
0
10  
500  
10  
0
tCLLRL  
tDZRL  
tCLR  
tIR  
Command Latch Low to Read Enable Low  
Data Hi-Z to Read Enable Low  
Min  
tEHQZ  
tEHALX  
tEHCLX  
tRHQZ  
tELQV  
tCHZ  
Chip Enable High to Output Hi-Z  
Max  
30  
30  
Chip Enable High to Address Latch ‘don’t care’  
Chip Enable High to Command Latch ‘don’t care’  
Read Enable High to Output Hi-z  
tCSD  
Min  
10  
10  
ns  
tRHZ  
tCEA  
Max  
Max  
100  
45  
100  
25  
ns  
ns  
Chip Enable Low to Output Valid  
Read Enable High to  
Read Enable High Hold time  
Read Enable Low  
tRHRL  
tREH  
tCOH  
Min  
15  
10  
ns  
tEHQX  
tRHQX  
tRLQX  
Chip Enable high to Output Hold  
Min  
Min  
Min  
15  
15  
5
15  
15  
5
ns  
ns  
ns  
tRHOH Read Enable High to Output Hold  
tRLOH Read Enable Low to Output Hold (EDO mode)  
Read Enable Low to  
tRLRH  
tRLRL  
tRP  
Read Enable pulse width  
Min  
Min  
25  
45  
12  
25  
ns  
ns  
Read Enable High  
Read Enable Low to  
Read Enable Low  
tRC  
Read cycle time  
Read Enable access time  
Read ES access time(2)  
Read Enable Low to  
Output Valid  
tRLQV  
tREA  
Max  
Max  
30  
25  
20  
25  
ns  
µs  
Write Enable High to  
Ready/Busy High  
tWHBH  
tR  
Read Busy time  
tWHBL  
tWHRL  
tRHWL  
tWB  
Write Enable High to Ready/Busy Low  
Write Enable High to Read Enable Low  
Max  
Min  
Min  
100  
60  
100  
60  
ns  
ns  
ns  
tWHR  
tRHW Read Enable High to Write Enable Low  
100  
100  
53/69  
DC and AC parameters  
Table 31. AC characteristics for operations (continued)  
NAND04G-B2D, NAND08G-BxC  
(1)  
Last address latched to data loading time during program  
operations  
(3)  
tWHWH  
tADL  
Min  
Min  
100  
100  
70  
ns  
ns  
tVHWH  
tVLWH  
(4)  
tWW  
Write protection time  
100  
1. The time to Ready depends on the value of the pull-up resistor tied to the Ready/Busy pin. See Figure 41, Figure 42 and  
Figure 43.  
2. ES = Electronic Signature.  
3. tADL is the time from W rising edge during the final address cycle to W rising edge during the first data cycle.  
4. During a Program/Erase Enable Operation, tWW is the delay from WP high to W High.  
During a Program/Erase Disable Operation, tWW is the delay from WP Low to W High.  
Figure 25. Command latch AC waveforms  
CL  
tCLHWH  
tWHCLL  
(CL Setup time)  
(CL Hold time)  
tWHEH  
tELWH  
H(E Setup time)  
(E Hold time)  
E
tWLWH  
W
tALLWH  
tWHALH  
(ALSetup time)  
(AL Hold time)  
AL  
I/O  
tDVWH  
tWHDX  
(Data Setup time)  
(Data Hold time)  
Command  
ai12470b  
54/69  
NAND04G-B2D, NAND08G-BxC  
DC and AC parameters  
Figure 26. Address latch AC waveforms  
tCLLWH  
(CL Setup time)  
CL  
tWLWL  
tELWH  
(E Setup time)  
tWLWL  
tWLWL  
tWLWL  
E
tWLWH  
tWLWH  
tWLWH  
tWLWH  
tWLWH  
W
tWHWL  
tWHWL  
tWHWL  
tWHWL  
tWHALL  
tALHWH  
(AL Setup time)  
tWHALL  
tWHALL  
tWHALL  
(AL Hold time)  
AL  
I/O  
tDVWH  
tDVWH  
tDVWH  
tWHDX  
tDVWH  
tWHDX  
tDVWH  
(Data Setup time)  
tWHDX  
tWHDX  
tWHDX  
ai12471  
(Data Hold time)  
Adrress  
cycle 3  
Adrress  
cycle 2  
Adrress  
cycle 4  
Adrress  
cycle 5  
Adrress  
cycle 1  
Figure 27. Data input latch AC waveforms  
tWHCLH  
(CL Hold time)  
CL  
E
tWHEH  
(E Hold time)  
tALLWH  
(ALSetup time)  
tWLWL  
AL  
tWLWH  
tWLWH  
tWLWH  
W
tDVWH  
tDVWH  
tWHDX  
tDVWH  
tWHDX  
(Data Setup time)  
tWHDX  
(Data Hold time)  
Data In  
Last  
I/O  
Data In 0  
Data In 1  
ai12472  
1. The last data input is the 2112th.  
55/69  
DC and AC parameters  
NAND04G-B2D, NAND08G-BxC  
Figure 28. Sequential data output after read AC waveforms  
tRLRL  
(Read Cycle time)  
E
tEHQX  
tEHQZ  
tRHRL  
(R High Holdtime)  
R
tRHQZ  
tRHQZ  
(2)  
tRHQX  
tRLQV  
tRLQV  
tRLQV  
(R Accesstime)  
I/O  
RB  
Data Out  
Data Out  
Data Out  
tBHRL  
ai13174  
1. CL = Low, AL = Low, W = High.  
2. tRHQX is applicable for frequencies lower than 33MHz (i.e. tRLRL higher than 30ns).  
Figure 29. Sequential data output after read AC waveforms (EDO mode)  
tRLRL  
E
tEHQX  
tEHQZ  
tRLRH  
tRLQV  
tRHRL  
R
tRHQZ  
(2)  
tELQV  
tRLQX  
tRLQV  
tRHQX  
(R Accesstime)  
I/O  
RB  
Data Out  
Data Out  
Data Out  
tBHRL  
ai13175  
1. In EDO mode, CL and AL are Low, VIL, and W is High, VIH  
.
2. tRLQX is applicable for frequencies high than 33 MHz (i.e. tRLRL lower than 30 ns).  
56/69  
NAND04G-B2D, NAND08G-BxC  
DC and AC parameters  
Figure 30. Read Status Register or read EDC Status Register AC waveform  
tCLLRL  
CL  
tWHCLL  
tCLHWH  
tWHEH  
E
tELWH  
tWLWH  
W
R
tELQV  
tRLQV  
tEHQZ  
tEHQX  
tWHRL  
tDZRL  
tWHDX  
tRHQZ  
tRHQX  
tDVWH  
(Data Setup time)  
(Data Hold time)  
Status Register  
Output  
I/O  
70h or 7Bh  
ai13177  
Figure 31. Read status enhanced waveform  
CL  
W
AL  
R
Status Register  
Output  
78h  
Address 1 Address 2 Address 3  
I/O0-7  
ai14408  
57/69  
DC and AC parameters  
NAND04G-B2D, NAND08G-BxC  
Figure 32. Read Electronic Signature AC waveform  
CL  
E
W
AL  
tALLRL1  
R
tRLQV  
(Read ES Access time)  
I/O  
90h  
00h  
Byte1  
Byte2  
Byte3  
Byte4  
Byte5  
Man.  
code  
Device  
code  
Read Electronic 1st Cycle  
see Note.1  
Signature  
Command  
Address  
ai13178  
1. Refer to Table 16 for the values of the manufacturer and device codes, and to Table 17, Table 18, and Table 19 for the  
information contained in byte 3, byte 4, and byte 5.  
Figure 33. Read ONFI signature waveform  
CL  
E
W
AL  
tALLRL1  
R
tRLQV  
(Read ES access time)  
I/O  
90h  
20h  
4Fh  
4Eh  
46h  
49h  
XXh  
Read Electronic 1st cycle  
Signature  
command  
address  
ai13178b  
58/69  
NAND04G-B2D, NAND08G-BxC  
DC and AC parameters  
Figure 34. Page read operation AC waveform  
tEHALX  
tEHCLX  
CL  
E
tWLWL  
tEHQZ  
W
tWHBL  
AL  
tALLRL2  
tWHBH  
tRLRL  
tRHQZ  
(Read Cycle time)  
R
tRLRH  
tBLBH1  
RB  
Data  
N
Data  
N+1  
Data  
N+2  
Data  
Last  
Add.N Add.N Add.N Add.N  
cycle 1 cycle 2 cycle 3 cycle 4  
Add.N  
cycle 5  
I/O  
30h  
00h  
Data Output  
from Address N to Last Byte or Word in Page  
Command Address N Input  
Code  
Busy  
ai12474b  
59/69  
DC and AC parameters  
NAND04G-B2D, NAND08G-BxC  
Figure 35. Page program AC waveform  
CL  
E
tWLWL  
tWLWL  
tWLWL  
(Write Cycle time)  
W
tWHBL  
tWHWH  
tWHRL  
tBLBH2  
(Program Busy time)  
AL  
R
Add.N Add.N  
cycle 4 cycle 5  
Add.N  
Add.N  
Add.N  
I/O  
RB  
80h  
Last  
N
10h  
70h  
SR0  
cycle 1 cycle 2  
cycle 3  
Confirm  
Code  
Page Program  
Setup Code  
Page  
Program  
Address Input  
Data Input  
Read Status Register  
ai12475b  
60/69  
NAND04G-B2D, NAND08G-BxC  
DC and AC parameters  
Figure 36. Block erase AC waveform  
CL  
E
tWLWL  
(Write Cycle time)  
W
AL  
R
tBLBH3  
tWHBL  
(Erase Busy time)  
tWHRL  
Add.  
Add.  
Add.  
I/O  
RB  
70h  
SR0  
60h  
D0h  
cycle 1 cycle 2  
cycle 3  
Block Erase  
Setup Command  
Confirm  
Code  
Block Erase  
Read Status Register  
Block Address Input  
ai08038c  
Figure 37. Reset AC waveform  
W
AL  
CL  
R
I/O  
RB  
FFh  
tBLBH4  
(Reset Busy time)  
ai08043  
61/69  
DC and AC parameters  
NAND04G-B2D, NAND08G-BxC  
Figure 38. Program/erase enable waveform  
W
tVHWH  
WP  
RB  
I/O  
80h  
10h  
ai12477  
Figure 39. Program/erase disable waveform  
W
tVLWH  
WP  
High  
RB  
I/O  
80h  
10h  
ai12478  
Figure 40. Read parameter page waveform  
CL  
W
AL  
R
I/O0-7  
R/B  
ECh  
00h  
P0  
P1  
...  
P0  
P1  
1
...  
0
0
1
tBLBH1  
ai14409  
62/69  
NAND04G-B2D, NAND08G-BxC  
DC and AC parameters  
12.1  
Ready/Busy signal electrical characteristics  
Figure 42, Figure 41 and Figure 43 show the electrical characteristics for the Ready/Busy  
signal. The value required for the resistor R can be calculated using the following equation:  
P
(
)
V
V
DDmax  
OLmax  
L
R min= -------------------------------------------------------------  
P
+ I  
I
OL  
This is an example for 3 V devices:  
3,2V  
R min= ---------------------------  
P
+
8mA  
I
L
where I is the sum of the input currents of all the devices tied to the Ready/Busy signal. R  
L
P
max is determined by the maximum value of t .  
r
Figure 41. Ready/Busy AC waveform  
ready V  
DD  
V
OH  
V
OL  
busy  
t
t
f
r
AI07564B  
Figure 42. Ready/Busy load circuit  
ibusy  
R
P
V
DD  
DEVICE  
RB  
Open Drain Output  
V
SS  
AI07563B  
63/69  
DC and AC parameters  
NAND04G-B2D, NAND08G-BxC  
Figure 43. Resistor value versus waveform timings for Ready/Busy signal  
V
= 3.3 V, C = 50 pF  
L
DD  
200  
150  
100  
4
200  
2.4  
3
2
1
150  
1.2  
100  
0.8  
50  
0
50  
0.6  
1.8  
1.8  
1.8  
1.8  
1
2
3
4
R
(KΩ)  
P
t
t
ibusy  
f
r
ai12476  
1. T = 25°C.  
12.2  
Data protection  
The Numonyx NAND devices aredesigned to guarantee data protection during power  
transitions.  
A V detection circuit disables all NAND operations, if V is below the V threshold.  
LKO  
DD  
DD  
In the V range from V  
to the lower limit of nominal range, the WP pin should be kept  
DD  
LKO  
low (V ) to guarantee hardware protection during power transitions as shown in the below  
IL  
figure.  
Figure 44. Data protection  
Nominal Range  
V
DD  
V
LKO  
Locked  
Locked  
W
Ai11086  
64/69  
NAND04G-B2D, NAND08G-BxC  
Package mechanical  
13  
Package mechanical  
Figure 45. TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package outline  
1
48  
e
D1  
B
L1  
24  
25  
A2  
A
E1  
E
A1  
α
L
DIE  
C
CP  
TSOP-G  
1. Drawing is not to scale.  
Table 32. TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package mechanical data  
Millimeters  
Min  
Inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
B
1.200  
0.150  
1.050  
0.270  
0.210  
0.080  
12.100  
20.200  
18.500  
0.0472  
0.0059  
0.0413  
0.0106  
0.0083  
0.0031  
0.4764  
0.7953  
0.7283  
0.100  
1.000  
0.220  
0.050  
0.950  
0.170  
0.100  
0.0039  
0.0394  
0.0087  
0.0020  
0.0374  
0.0067  
0.0039  
C
CP  
D1  
E
12.000  
20.000  
18.400  
0.500  
0.600  
0.800  
3°  
11.900  
19.800  
18.300  
0.4724  
0.7874  
0.7244  
0.0197  
0.0236  
0.0315  
3°  
0.4685  
0.7795  
0.7205  
E1  
e
L
0.500  
0.700  
0.0197  
0.0276  
5°  
L1  
a
0°  
5°  
0°  
65/69  
Package mechanical  
NAND04G-B2D, NAND08G-BxC  
Figure 46. LGA52 12 x 17 mm, 1 mm pitch, package outline  
D
D2  
D1  
FD1  
FD  
FE1  
FE  
BALL "A1"  
eE1  
e
E
E2 E1  
ddd  
e
b1 b2  
A2  
A
LGA-9G  
Table 33. LGA52 12 x 17 mm, 1 mm pitch, package mechanical data  
Millimeters  
Symbol  
Inches  
Min  
Typ  
Min  
Max  
Typ  
Max  
A
A2  
b1  
0.650  
0.650  
0.750  
1.050  
12.100  
0.0256  
0.0256  
0.0295  
0.0413  
0.4764  
0.700  
1.000  
0.650  
0.950  
0.0276  
0.0394  
0.4724  
0.2362  
0.3937  
0.0256  
0.0374  
0.4685  
b2  
D
12.000  
6.000  
11.900  
D1  
D2  
ddd  
E
10.000  
0.100  
0.0039  
0.6732  
17.000  
12.000  
13.000  
1.000  
2.000  
3.000  
1.000  
2.500  
2.000  
16.900  
17.100  
0.6693  
0.4724  
0.5118  
0.0394  
0.0787  
0.1181  
0.0394  
0.0984  
0.0787  
0.6654  
E1  
E2  
e
eE1  
FD  
FD1  
FE  
FE1  
66/69  
NAND04G-B2D, NAND08G-BxC  
Part numbering  
14  
Part numbering  
Table 34. Ordering information scheme  
Example:  
NAND04GW3B2D N  
6
E
Device type  
NAND Flash memory  
Density  
04 G = 4 Gb  
08 G = 8 Gb  
Operating voltage  
W = VDD = 2.7 to 3.6 V  
R = VDD = 1.7 to 1.95 V  
Bus width  
3 = x8  
4 = x16(1)  
Family identifier  
B = 2112 byte page  
Device options  
2 = Chip Enable ‘don't care’ enabled  
4 = Chip Enable ‘don’t care’ enabled with dual interface  
Product version  
C= Third version (NAND08G-BxC)  
D = Fourth version (NAND04G-B2D)  
Package  
N = TSOP48 12 x 20 mm  
ZL = LGA52 12 x 17 mm  
Temperature range  
1 = 0 to 70 °C  
6 = –40 to 85 °C  
Option  
E = ECOPACK package, standard packing  
F = ECOPACK package, tape and reel packing  
1. x16 organization only available for MCP products  
Devices are shipped from the factory with the memory content bits, in valid blocks, erased to  
’1’. For further information on any aspect of this device, please contact your nearest  
Numonyx Sales Office.  
67/69  
Revision history  
NAND04G-B2D, NAND08G-BxC  
15  
Revision history  
Table 35. Document revision history  
Date  
Revision  
Changes  
22-June-2007  
1
Initial release.  
Added the part numbers NAND08GR3B4C, NAND08GW3B4C,  
therefore referring to the 8 Gbit devices as the NAND08G-BxC.  
Modified all data throughout this document to reflect the addition  
of these part numbers, namely:  
17-Sep-2007  
10-Dec-2007  
2
3
Table 1, Table 2, Table 6, and Table 34.  
– Added Figure 5: LGA52 connections for the NAND08G-B4C  
devices.  
Changed VLKO value in Table 28 from 1.1 to 1.2.  
Applied Numonyx branding.  
68/69  
NAND04G-B2D, NAND08G-BxC  
Please Read Carefully:  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR  
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT  
AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY  
WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF  
NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility  
applications.  
Numonyx may make changes to specifications and product descriptions at any time, without notice.  
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the  
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied,  
by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves  
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by  
visiting Numonyx's website at http://www.numonyx.com.  
Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 11/5/7, Numonyx, B.V., All Rights Reserved.  
69/69  

相关型号:

NAND04GW3B4CZL6E

4 Gbit, 8 Gbit, 2112 byte/1056 word page multiplane architecture, 1.8 V or 3 V, NAND Flash memories
NUMONYX

NAND04GW3B4CZL6F

4 Gbit, 8 Gbit, 2112 byte/1056 word page multiplane architecture, 1.8 V or 3 V, NAND Flash memories
NUMONYX

NAND04GW3B4DN1E

4 Gbit, 8 Gbit, 2112 byte/1056 word page multiplane architecture, 1.8 V or 3 V, NAND Flash memories
NUMONYX

NAND04GW3B4DN1F

4 Gbit, 8 Gbit, 2112 byte/1056 word page multiplane architecture, 1.8 V or 3 V, NAND Flash memories
NUMONYX

NAND04GW3B4DN6E

4 Gbit, 8 Gbit, 2112 byte/1056 word page multiplane architecture, 1.8 V or 3 V, NAND Flash memories
NUMONYX

NAND04GW3B4DN6F

4 Gbit, 8 Gbit, 2112 byte/1056 word page multiplane architecture, 1.8 V or 3 V, NAND Flash memories
NUMONYX

NAND04GW3B4DZL1E

4 Gbit, 8 Gbit, 2112 byte/1056 word page multiplane architecture, 1.8 V or 3 V, NAND Flash memories
NUMONYX

NAND04GW3B4DZL1F

4 Gbit, 8 Gbit, 2112 byte/1056 word page multiplane architecture, 1.8 V or 3 V, NAND Flash memories
NUMONYX

NAND04GW3B4DZL6E

4 Gbit, 8 Gbit, 2112 byte/1056 word page multiplane architecture, 1.8 V or 3 V, NAND Flash memories
NUMONYX

NAND04GW3B4DZL6F

4 Gbit, 8 Gbit, 2112 byte/1056 word page multiplane architecture, 1.8 V or 3 V, NAND Flash memories
NUMONYX

NAND04GW3C2A

4Gbit, 2112 Byte Page, 3V, Multi-level NAND Flash Memory
STMICROELECTR

NAND04GW3C2AN1E

4Gbit, 2112 Byte Page, 3V, Multi-level NAND Flash Memory
STMICROELECTR