NAND16GW3C4BN1E [NUMONYX]

8 or 16 Gbit, 2112 byte page, 3 V supply, multilevel, multiplane, NAND Flash memory; 8或16个千兆, 2112字节的页, 3 V电源供电,多层次,多平面, NAND闪存
NAND16GW3C4BN1E
型号: NAND16GW3C4BN1E
厂家: NUMONYX B.V    NUMONYX B.V
描述:

8 or 16 Gbit, 2112 byte page, 3 V supply, multilevel, multiplane, NAND Flash memory
8或16个千兆, 2112字节的页, 3 V电源供电,多层次,多平面, NAND闪存

闪存
文件: 总60页 (文件大小:1134K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NAND08GW3C2B  
NAND16GW3C4B  
8 or 16 Gbit, 2112 byte page,  
3 V supply, multilevel, multiplane, NAND Flash memory  
Target Specification  
Features  
High density multilevel cell (MLC) Flash  
memory  
– Up to 16 Gbit memory array  
– Up to 512 Mbit spare area  
– Cost-effective solutions for mass storage  
applications  
NAND interface  
TSOP48 12 x 20 mm (N)  
– x8 bus width  
– Multiplexed address/data  
Supply voltage: V = 2.7 to 3.6 V  
DD  
Page size: (2048 + 64 spare) bytes  
Block size: (256K + 8K spare) bytes  
LGA52 12 x 17 mm (N)  
Multiplane architecture  
– Array split into two independent planes  
– Program/erase operations can be  
Serial number option  
performed on both planes at the same time  
Chip enable ‘don’t care’  
Data protection  
Memory cell array:  
(2 K + 64 ) bytes x 128 pages x 4096 blocks  
– Hardware program/erase locked during  
power transitions  
Page read/program  
– Random access: 60 µs (max)  
– Sequential access: 25 ns (min)  
– Page program operation time: 800 µs (typ)  
Development tools  
– Error correction code models  
– Bad block management and wear leveling  
algorithm  
Multipage program time (2 pages): 800 µs (typ)  
– HW simulation models  
Copy-back program  
– Fast page copy  
Data integrity  
– 10,000 program/erase cycles (with ECC)  
Fast block erase  
– 10 years data retention  
– Block erase time: 2.5 ms (typ)  
®
ECOPACK packages available  
Multiblock erase time (2 blocks): 2.5 ms (typ)  
Status register  
Electronic signature  
March 2008  
Rev 2  
1/60  
This is preliminary information on a new product foreseen to be developed. Details are subject to change without notice.  
www.numonyx.com  
1
NAND08GW3C2B, NAND16GW3C4B  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Memory array organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.1  
Bad blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3
Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
3.10  
Inputs/outputs (I/O0-I/O7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Address Latch Enable (AL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Command Latch Enable (CL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Chip Enable (E1, E2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Read Enable (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write Enable (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write Protect (WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Ready/Busy (RB1, RB2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
V
DD supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
SS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
V
4
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
Command input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Address input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Data output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Write protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5
6
Command set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Device operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.1  
6.2  
6.3  
6.4  
Read memory array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Random read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Page read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Page program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2/60  
NAND08GW3C2B, NAND16GW3C4B  
6.5  
6.6  
6.7  
6.8  
6.9  
Sequential input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Random data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Copy-back program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Multiplane copy-back program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Multiplane page program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.10 Block Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6.11 Multiplane block erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6.12 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
6.13 Read Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
6.13.1 Write protection bit (SR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.13.2 P/E/R controller bit (SR6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.13.3 Error bit (SR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.14 Read electronic signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Concurrent operations and ERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Software algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
7
8
9
9.1  
9.2  
9.3  
9.4  
9.5  
Bad block management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
NAND Flash memory failure modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Garbage collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Wear-leveling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Hardware simulation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
9.5.1  
9.5.2  
Behavioral simulation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
IBIS simulations models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
10  
11  
12  
Program and erase times and endurance cycles . . . . . . . . . . . . . . . . . 41  
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
12.1 Ready/Busy signal electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 54  
13  
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
3/60  
NAND08GW3C2B, NAND16GW3C4B  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
14  
15  
4/60  
NAND08GW3C2B, NAND16GW3C4B  
List of tables  
Table 1.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Valid blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Address insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Address definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Paired page address information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Status Register bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Device identifier codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Electronic signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Electronic signature byte 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Electronic signature byte 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Electronic signature byte 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Extended Read Status Register commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Block Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Program and erase times and program erase endurance cycles . . . . . . . . . . . . . . . . . . . . 41  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Operating and AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
AC characteristics for command, address, data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
AC characteristics for operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package mechanical data. . . . . 56  
LGA52 12 x 17 mm, 1 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . 57  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
5/60  
NAND08GW3C2B, NAND16GW3C4B  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
TSOP48 connections for NAND08GW3C2B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
TSOP48 connections for NAND16GW3C4B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
ULGA52 connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Memory array organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Random data output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Page program operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 10. Random data input during sequential data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 11. Copy-back Program operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 12. Copy-back Program operation with random data input . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 13. Multiplane Copy-back Program operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 14. Multiplane page program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 15. Block Erase operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 16. Multiplane block erase operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 17. Data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 18. Bad block management flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 19. Garbage collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 20. Command latch AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 21. Address latch AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 22. Data input latch AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 23. Sequential data output after Read AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 24. Sequential data output after Read AC waveforms (EDO mode). . . . . . . . . . . . . . . . . . . . . 48  
Figure 25. Read Status Register AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 26. Read electronic signature AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 27. Page read operation AC waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 28. Page program AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 29. Block erase AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 30. Reset AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 31. Program/erase enable waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 32. Program/erase disable waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 33. Ready/Busy AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 34. Ready/Busy load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 35. Resistor value versus waveform timings for Ready/Busy signal. . . . . . . . . . . . . . . . . . . . . 55  
Figure 36. TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package outline . . . . . . . . . . . . 56  
Figure 37. LGA52 12 x 17 mm, 1 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
6/60  
NAND08GW3C2B, NAND16GW3C4B  
1 Description  
1
Description  
The NAND08GW3C2B and NAND16GW3C4B are multilevel cell (MLC) devices from the  
NAND Flash 2112-byte page family of non-volatile Flash memories. The NAND08GW3C2B  
and the NAND16GW3C4B have a density of 8- and 16-Gbit, respectively. The  
NAND16GW3C4B is composed of two 8-Gbit dice; each die can be accessed independently  
using two Chip Enable and two Ready/Busy signals. The devices operate from a 3 V VDD  
power supply.  
The address lines are multiplexed with the data input/output signals on a multiplexed  
x8 input/output bus. This interface reduces the pin count and makes it possible to migrate to  
other densities without changing the footprint.  
Each block can be programmed and erased over 10,000 cycles (with error correction code  
(ECC) on). The device also has hardware security features; a write protect pin is available to  
provide hardware protection against program and erase operations.  
The devices feature an open-drain, ready/busy output that identifies if the  
Program/Erase/Read (P/E/R) Controller is currently active. The use of an open-drain output  
allows the ready/busy pins of several memories to be connected to a single pull-up resistor.  
The memory array is split into 2 planes of 2048 blocks each. This multiplane architecture  
makes it possible to program 2 pages at a time (one in each plane) or to erase 2 blocks at a  
time (one in each plane), dividing by two the average program and erase times.  
The devices have the Chip Enable ’don’t care’ feature, which allows code to be directly  
downloaded by a microcontroller, as Chip Enable transitions during the latency time do not  
stop the Read operation.  
There is the option of a unique identifier (serial number), which allows the  
NAND08GW3C2B and the NAND16GW3C4B to be uniquely identified. It is subject to an  
NDA (non-disclosure agreement) and is, therefore, not described in the datasheet. For more  
details of this option contact your nearest Numonyx sales office.  
The devices are available in TSOP48 (12 × 20 mm) and LGA52 (12 x 17 x 0.65 mm)  
packages. They are shipped from the factory with block 0 always valid and the memory  
content bits, in valid blocks, erased to ‘1’.  
Refer to the list of available part numbers and to Table 26: Ordering information scheme for  
information on how to order these options.  
7/60  
1 Description  
NAND08GW3C2B, NAND16GW3C4B  
Table 1.  
Device summary  
Timings  
Operating  
voltage  
Bus  
width size  
Page Block Memory  
Random  
access  
time  
Part number Density  
Sequential  
access  
time (min)  
Page  
program erase  
(typ)  
Block Package  
size  
array  
(VDD  
)
(typ)  
(max)  
128  
pages x  
4096  
TSOP48  
ULGA52  
NAND08GW3  
8 Gb  
C2B  
2048+ 256K  
64 + 8 K  
bytes bytes  
blocks  
2.7 to  
3.6 V  
2.5  
ms  
x8  
25 ns  
60 µs  
800 µs  
128  
pages x  
8192  
TSOP48  
ULGA52  
NAND16GW3  
16 Gb  
C4B(1)  
blocks  
1. The NAND16GW3C4B is composed of two 8-Gbit dice.  
Figure 1.  
Logic block diagram  
Address  
register/counter  
AL  
NAND Flash  
memory array  
CL  
W
E
P/E/R controller  
high voltage  
generator  
Command  
interface  
logic  
1
E
2
WP  
R
Page buffer  
Y decoder  
Command register  
Data register  
Buffers  
I/O  
RB  
RB  
2
1
AI13296b  
1. E2 and RB2 are only present in the NAND16GW3C4B.  
8/60  
NAND08GW3C2B, NAND16GW3C4B  
Figure 2. Logic diagram  
1 Description  
V
DD  
E
E
1
I/O0 - I/O7 x8  
2
R
NAND Flash  
W
RB  
1
AL  
CL  
RB  
2
WP  
V
SS  
AI13632b  
1. E2 and RB2 are only present in the NAND16GW3C4A.  
Table 2.  
Signal names  
Signal  
Function  
Data input/outputs(1)  
Direction  
I/O0 - I/O7  
CL  
Input/output  
Input  
Command Latch Enable  
Address Latch Enable  
Chip Enable(2)  
AL  
Input  
E1, E2  
R
Input  
Read Enable  
Input  
W
Write Enable  
Input  
WP  
Write Protect  
Input  
RB1, RB2  
VDD  
VSS  
Ready/Busy (open drain output)(2)  
Output  
Power supply  
Ground  
Power supply  
Ground  
NC  
No connection  
DU  
Do not use  
1. On the LGA52 package, each 8-Gbit die is accessed and controlled via two sets of I/Os and control  
signals.  
2. E2 and RB2 are only present in the NAND16GW3C4B.  
9/60  
1 Description  
Figure 3.  
NAND08GW3C2B, NAND16GW3C4B  
TSOP48 connections for NAND08GW3C2B  
NC  
NC  
NC  
NC  
NC  
NC  
RB  
R
1
48  
NC  
NC  
NC  
NC  
I/O7  
I/O6  
I/O5  
I/O4  
NC  
E
NC  
NC  
NC  
NC  
NAND Flash  
V
V
12  
13  
37  
36  
DD  
DD  
V
V
SS  
NC  
SS  
NC  
NC  
CL  
AL  
NC  
NC  
I/O3  
I/O2  
I/O1  
I/O0  
W
WP  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
24  
25  
AI13633  
10/60  
NAND08GW3C2B, NAND16GW3C4B  
Figure 4. TSOP48 connections for NAND16GW3C4B  
1 Description  
NC  
NC  
1
48  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
I/O7  
I/O6  
I/O5  
I/O4  
NC  
RB2  
RB1  
R
E1  
E2  
NC  
NC  
NC  
V
12  
13  
37  
36  
V
V
DD  
DD  
SS  
NAND FLASH  
V
SS  
NC  
NC  
CL  
AL  
NC  
NC  
NC  
I/O3  
I/O2  
I/O1  
I/O0  
W
WP  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
24  
25  
AI13169  
11/60  
1 Description  
NAND08GW3C2B, NAND16GW3C4B  
Figure 5.  
ULGA52 connections  
0
1
2
3
4
5
6
7
8
OA  
OB  
NC  
NC  
NC  
NC  
A
B
C
NC  
AL  
CL  
E
NC  
1
1
2
V
V
DD  
SS  
CL  
W
E
R
1
1
2
D
E
OC  
NC  
AL  
R
NC  
2
2
W
RB  
2
RB  
2
1
1
F
WP  
V
SS  
1
G
I/O0  
I/O1  
I/O2  
I/O0  
I/O2  
V
I/O7  
I/O6  
I/O5  
WP  
2
2
2
1
2
2
2
2
H
J
I/O1  
I/O3  
V
I/O7  
I/O5  
V
1
1
I/O6  
1
1
NC  
NC  
NC  
OD  
OE  
OF  
NC  
NC  
NC  
K
L
1
1
I/O4  
1
SS  
M
N
SS  
DD  
I/O4  
NC  
I/O3  
NC  
2
2
AI13634  
1. On the LGA52 package, each 8-Gbit die is accessed and controlled via two sets of signals.  
12/60  
NAND08GW3C2B, NAND16GW3C4B  
2 Memory array organization  
2
Memory array organization  
The memory array is comprised of NAND structures where 32 cells are connected in series.  
The memory array is organized into blocks where each block contains 128 pages. The array  
is split into two areas, the main area and the spare area. The main area of the array stores  
data, whereas the spare area typically stores software flags or bad block identification.  
The pages are split into a 2048-byte main area and a spare area of 64 bytes. Refer to  
Figure 6: Memory array organization.  
2.1  
Bad blocks  
The NAND08GW3C2B and NAND16GW3C4B devices may contain bad blocks, where the  
reliability of blocks that contain one or more invalid bits is not guaranteed. Additional bad  
blocks may develop during the lifetime of the device.  
The bad block Information is written prior to shipping (refer to Section 9.1: Bad block  
management for more details).  
Table 3: Valid blocks shows the minimum number of valid blocks in each device. The values  
shown include both the bad blocks that are present when the device is shipped and the bad  
blocks that could develop later on.  
These blocks need to be managed using bad blocks management and block replacement  
(refer to Section 9: Software algorithms).  
(1)  
Table 3.  
Valid blocks  
Density of device  
Minimum  
Maximum  
8 Gbits  
4016  
8032  
4096  
8192  
16 Gbits  
1. The NAND16GW3C4B is composed of two 8-Gbit dice. The minimum number of valid blocks is 4096 for  
each die.  
13/60  
2 Memory array organization  
NAND08GW3C2B, NAND16GW3C4B  
Figure 6.  
Memory array organization  
x8 bus width  
Plane = 2048 blocks  
Block = 128 Pages  
Page = 2112 Bytes (2,048 + 64)  
First Plane  
Second Plane  
Spare Area  
Spare Area  
Main Area  
Main Area  
Block  
Page  
8 bits  
2048 Bytes  
2048 Bytes  
64  
Bytes  
64  
Bytes  
Page Buffer, 2112 Bytes  
64  
Page Buffer, 2112 Bytes  
64  
2,048 Bytes  
2,048 Bytes  
Bytes  
Bytes  
8 bits  
2 Page Buffer, 2x 2112 Bytes  
AI13170  
14/60  
NAND08GW3C2B, NAND16GW3C4B  
3 Signal descriptions  
3
Signal descriptions  
See Figure 1: Logic block diagram, and Table 2: Signal names for a brief overview of the  
signals connected to this device.  
3.1  
Inputs/outputs (I/O0-I/O7)  
Input/outputs 0 to 7 are used to input the selected address, output the data during a read  
operation, or input a command or data during a write operation. The inputs are latched on  
the rising edge of Write Enable. I/O0-I/O7 are left floating when the device is deselected or  
the outputs are disabled.  
3.2  
3.3  
3.4  
Address Latch Enable (AL)  
The Address Latch Enable activates the latching of the address inputs in the command  
interface. When AL is High, the inputs are latched on the rising edge of Write Enable.  
Command Latch Enable (CL)  
The Command Latch Enable activates the latching of the command inputs in the command  
interface. When CL is High, the inputs are latched on the rising edge of Write Enable.  
Chip Enable (E1, E2)  
The Chip Enable input activates the memory control logic, input buffers, decoders and  
sense amplifiers. When Chip Enable is Low, V , the device is selected. If Chip Enable goes  
IL  
High, v , while the device is busy, the device remains selected and does not go into standby  
IH  
mode.  
E is only available on the NAND16GW3C4B.  
2
3.5  
3.6  
Read Enable (R)  
The Read Enable pin, R, controls the sequential data output during read operations. Data is  
valid t  
after the falling edge of R. The falling edge of R also increments the internal  
RLQV  
column address counter by one.  
Write Enable (W)  
The Write Enable input, W, controls writing to the command interface, input address, and  
data latches. Both addresses and data are latched on the rising edge of Write Enable.  
During power-up and power-down a recovery time of 10 µs (min) is required before the  
command interface is ready to accept a command. It is recommended to keep Write Enable  
High during the recovery time.  
15/60  
3 Signal descriptions  
NAND08GW3C2B, NAND16GW3C4B  
3.7  
Write Protect (WP)  
The Write Protect pin is an input that gives a hardware protection against unwanted  
Program or Erase operations. When Write Protect is Low, V , the device does not accept  
IL  
any Program or Erase operations.  
It is recommended to keep the Write Protect pin Low, V , during power-up and power-down.  
IL  
3.8  
Ready/Busy (RB1, RB2)  
The Ready/Busy output, RB, is an open-drain output that can identify if the P/E/R controller  
is currently active.  
When Ready/Busy is Low, V , a read, program or erase operation is in progress. When the  
OL  
operation completes, Ready/Busy goes High, V  
.
OH  
The use of an open-drain output allows the Ready/Busy pins from several memories to be  
connected to a single pull-up resistor. A Low indicates that one, or more, of the memories is  
busy.  
During power-up and power-down a minimum recovery time of 10 µs is required before the  
command interface is ready to accept a command. During this period the Ready/Busy signal  
is Low, VOL.  
RB is only available on the NAND16GW3C4B.  
2
Refer to Section 12.1: Ready/Busy signal electrical characteristics for details on how to  
calculate the value of the pull-up resistor.  
3.9  
VDD supply voltage  
V
provides the power supply to the internal core of the memory device. It is the main  
DD  
power supply for operations (read, program and erase).  
3.10  
VSS ground  
Ground, V  
ground.  
is the reference for the power supply. It must be connected to the system  
SS,  
16/60  
NAND08GW3C2B, NAND16GW3C4B  
4 Bus operations  
4
Bus operations  
There are six standard bus operations that control the memory. Each of these is described  
in this section. See the summary in Table 4: Bus operations.  
Typically, glitches of less than 5 ns on Chip Enable, Write Enable and Read Enable are  
ignored by the memory and do not affect bus operations.  
4.1  
Command input  
Command input bus operations give commands to the memory. Commands are accepted  
when Chip Enable is Low, Command Latch Enable is High, Address Latch Enable is Low  
and Read Enable is High. They are latched on the rising edge of the Write Enable signal.  
Only I/O0 to I/O7 are used to input commands.  
See Figure 20 and Table 22 for details of the timings requirements.  
4.2  
Address input  
Address input bus operations input the memory addresses. Five bus cycles are required to  
input the addresses (refer to Table 5: Address insertion).  
The addresses are accepted when Chip Enable is Low, Address Latch Enable is High,  
Command Latch Enable is Low and Read Enable is High. They are latched on the rising  
edge of the Write Enable signal. Only I/O0 to I/O7 are used to input addresses.  
See Figure 21 and Table 22 for details of the timings requirements.  
4.3  
4.4  
Data input  
Data input bus operations input the data to be programmed. Data is only accepted when  
Chip Enable is Low, Address Latch Enable is Low, Command Latch Enable is Low and Read  
Enable is High. The data is latched on the rising edge of the Write Enable signal. The data is  
input sequentially using the Write Enable signal.  
See Figure 22 and Table 22 for details of the timing requirements.  
Data output  
Data output bus operations read the data in the memory array, the status register, the  
electronic signature, and the unique identifier.  
Data is output when Chip Enable is Low, Write Enable is High, Address Latch Enable is Low,  
and Command Latch Enable is Low.  
The data is output sequentially using the Read Enable signal.  
If the Read Enable pulse frequency is lower then 33 MHz (t  
higher than 30 ns), the  
RLRL  
output data is latched on the rising edge of Read Enable signal (see Figure 23).  
17/60  
4 Bus operations  
For higher frequencies (t  
NAND08GW3C2B, NAND16GW3C4B  
lower than 30 ns), the extended data out (EDO) mode must be  
RLRL  
considered. In this mode, data output is valid on the input/output bus for a time of t  
after  
RLQX  
the falling edge of Read Enable signal (see Figure 24).  
See Table 23 for details on the timings requirements.  
4.5  
4.6  
Write protect  
Write protect bus operations protect the memory against program or erase operations.  
When the Write Protect signal is Low the device does not accept program or erase  
operations, therefore, the contents of the memory array cannot be altered. The Write Protect  
signal is not latched by Write Enable to ensure protection, even during power-up.  
Standby  
The memory enters standby mode by holding Chip Enable, E, High for at least 10 µs. In  
standby mode, the device is deselected, outputs are disabled and power consumption is  
reduced.  
Table 4.  
Bus operation  
Command input  
Bus operations  
E
AL  
CL  
R
W
WP  
I/O0 - I/O7  
VIL  
VIL  
VIL  
VIL  
X
VIL  
VIH  
VIL  
VIL  
X
VIH  
VIL  
VIL  
VIL  
X
VIH  
VIH  
VIH  
Falling  
X
Rising  
Rising  
Rising  
VIH  
X(1)  
X
Command  
Address  
Data input  
Data output  
X
Address input  
Data input  
VIH  
Data output  
Write protect  
Standby  
X
X
VIL  
VIH  
X
X
X
X
VIL/VDD  
X
1. WP must be VIH when issuing a program or erase command.  
18/60  
NAND08GW3C2B, NAND16GW3C4B  
4 Bus operations  
(1)  
Table 5.  
Address insertion  
Bus cycle  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
1st  
2nd  
3rd  
4th  
5th  
A7  
VIL  
A6  
VIL  
A5  
VIL  
A4  
VIL  
A3  
A11  
A2  
A1  
A9  
A0  
A8  
A10  
A14  
A22  
A30  
A19  
A27  
VIL  
A18  
A26  
VIL  
A17  
A25  
VIL  
A16  
A24  
VIL  
A15  
A13  
A21  
A29  
A12  
A20  
A28  
A23  
A31(2)  
1. Any additional address input cycles are ignored.  
2. A31 is valid only for the NAND16GW3C4B.  
Table 6.  
Address definitions  
Address  
Definition  
A0 - A11  
A12 - A18  
A19 - A31  
Column address  
Page address  
Block address  
19/60  
5 Command set  
NAND08GW3C2B, NAND16GW3C4B  
5
Command set  
All bus write operations to the device are interpreted by the command interface. The  
commands are input on I/O0-I/O7 and are latched on the rising edge of Write Enable when  
the Command Latch Enable signal is High. Device operations are selected by writing  
specific commands to the Command Register. The two-step command sequences for  
Program and Erase operations are imposed to maximize data security.  
The commands are summarized in Table 7: Commands.  
Table 7.  
Commands  
Command  
Bus write operations(1)  
Commands  
accepted  
during busy  
1st cycle  
2nd cycle  
3rd cycle  
4th cycle  
Page Read  
00h  
00h  
90h  
FFh  
80h  
80h  
85h  
85h  
60h  
60h  
70h  
85h  
05h  
30h  
35h  
Read for copy-back  
Read ID  
Reset  
Yes  
Page Program  
10h  
11h  
10h  
11h  
D0h  
60h  
Multiplane Page Program  
Copy-back Program  
Multiplane Copy Back Program  
Block Erase  
81h  
81h  
D0h  
10h  
10h  
Multiplane Block Erase  
Read Status Register  
Random Data Input  
Random Data Output  
Yes  
E0h  
1. The bus cycles are only shown for issuing the codes. The cycles required to input the addresses or  
input/output data are not shown.  
20/60  
NAND08GW3C2B, NAND16GW3C4B  
6 Device operations  
6
Device operations  
This section gives the details of the device operations.  
6.1  
Read memory array  
At power-up the device defaults to read mode. To enter read mode from another mode the  
Read command must be issued, see Table 7: Commands. Once a read command is issued,  
subsequent consecutive read commands only require the confirm command code (30h).  
Once a read command is issued, two types of operations are available: random read and  
page read.  
6.2  
6.3  
Random read  
Each time the Read command is issued, the first read is random-read.  
Page read  
After the first random read access, the page data (2112 bytes) is transferred to the page  
buffer in a time of t  
(refer to Table 23 for value). Once the transfer is complete, the  
WHBH  
Ready/Busy signal goes High. The data can then be read out sequentially (from the  
selected column address to last column address) by pulsing the Read Enable signal.  
The device can output random data in a page, instead of the consecutive sequential data, by  
issuing a Random Data Output command. The Random Data Output command can be used  
to skip some data during a sequential data output.  
The sequential operation can be resumed by changing the column address of the next data  
to be output, to the address which follows the Random Data Output command.The Random  
Data Output command can be issued as many times as required within a page.  
21/60  
6 Device operations  
NAND08GW3C2B, NAND16GW3C4B  
Figure 7.  
Read operations  
CL  
E
W
AL  
R
tBLBH1  
30h  
RB  
I/O  
Address Input  
00h  
Data Output (sequentially)  
Command  
Code  
Command  
Code  
Busy  
Ai11016  
1. Highest address depends on device density.  
22/60  
NAND08GW3C2B, NAND16GW3C4B  
6 Device operations  
Figure 8.  
Random data output  
tBLBH1  
(Read Busy time)  
RB  
Busy  
R
Address  
Inputs  
Address  
Inputs  
30h  
E0h  
I/O  
000h  
05h  
Data Output  
Data Output  
Cmd  
Cmd  
Cmd  
Cmd  
Code  
Code  
Code  
Code  
5 Add cycles  
2Add cycles  
Col Add 1,2  
Row Add 1,2,3 Col Add 1,2  
Spare  
Area  
Spare  
Area  
Main Area  
Main Area  
ai08658b  
6.4  
Page program  
The page program operation is the standard operation to program data to the memory array.  
Generally, data is programmed sequentially, however, the device does support random input  
within a page.  
The memory array is programmed by page, however, partial page programming is allowed  
where any number of bytes (1 to 2112) can be programmed.  
Only one consecutive partial page program operation is allowed on the same page. After  
exceeding this a Block Erase command must be issued before any further program  
operations can take place in that page.  
When a program operation is abnormally aborted (such as during a power-down), the page  
data under program data as well as the paired page data may be damaged (see Table 8:  
Paired page address information).  
23/60  
6 Device operations  
Table 8.  
NAND08GW3C2B, NAND16GW3C4B  
Paired page address  
Paired page address information  
Paired page address  
00h  
04h  
08h  
0Ch  
10h  
14h  
18h  
1Ch  
20h  
24h  
28h  
2Ch  
30h  
34h  
38h  
3Ch  
40h  
44h  
48h  
4Ch  
50h  
54h  
58h  
5Ch  
60h  
64h  
68h  
6Ch  
70h  
74h  
78h  
7Ch  
7Eh  
01h  
03h  
07h  
0Bh  
0Fh  
13h  
17h  
1Bh  
1Fh  
23h  
27h  
2Bh  
2Fh  
33h  
37h  
3Bh  
3Fh  
43h  
47h  
4Bh  
4Fh  
53h  
57h  
5Bh  
5Fh  
63h  
67h  
6Bh  
6Fh  
73h  
77h  
7Bh  
05h  
09h  
0Dh  
11h  
15h  
19h  
1Dh  
21h  
25h  
29h  
2Dh  
31h  
35h  
39h  
3Dh  
41h  
45h  
49h  
4Dh  
51h  
55h  
59h  
5Dh  
61h  
65h  
69h  
6Dh  
71h  
75h  
79h  
7Dh  
7Fh  
02h  
06h  
0Ah  
0Eh  
12h  
16h  
1Ah  
1Eh  
22h  
26h  
2Ah  
2Eh  
32h  
36h  
3Ah  
3Eh  
42h  
46h  
4Ah  
4Eh  
52h  
56h  
5Ah  
5Eh  
62h  
66h  
6Ah  
6Eh  
72h  
76h  
7Ah  
24/60  
NAND08GW3C2B, NAND16GW3C4B  
6 Device operations  
6.5  
Sequential input  
To input data sequentially the addresses must be sequential and remain in one block.  
For sequential input, each page program operation comprises five steps:  
1. One bus cycle is required to set up the Page Program (sequential input) command (see  
Table 7).  
2. Five bus cycles are then required to input the program address (refer to Table 5).  
3. The data is loaded into the data registers.  
4. One bus cycle is required to issue the Page Program Confirm command to start the  
P/E/R controller. The P/E/R only starts if the data has been loaded in step 3.  
5. The P/E/R controller then programs the data into the array.  
6.6  
Random data input  
During a sequential input operation, the next sequential address to be programmed can be  
replaced by a random address issuing a Random Data Input command. The following two  
steps are required to issue the command:  
1. One bus cycle is required to setup the Random Data Input command (see Table 7).  
2. Two bus cycles are then required to input the new column address (refer to Table 5).  
Random data input operations can be repeated as often as required in any given page.  
Once the program operation has started the Status Register can be read using the Read  
Status Register command. During program operations the status register only flags errors  
for bits set to ‘1’ that have not been successfully programmed to ‘0’.  
During the program operation, only the Read Status Register and Reset commands are  
accepted; all other commands are ignored. Once the program operation has completed, the  
P/E/R controller bit SR6 is set to ‘1’ and the Ready/Busy signal goes High.  
The device remains in read Status Register mode until another valid command is written to  
the command interface.  
Figure 9.  
Page program operation  
tBLBH2  
(Program Busy time)  
RB  
Busy  
I/O  
Data Input  
10h  
Address Inputs  
80h  
70h  
SR0  
Confirm  
Code  
Read Status Register  
Page Program  
Setup Code  
ai08659  
25/60  
6 Device operations  
NAND08GW3C2B, NAND16GW3C4B  
Figure 10. Random data input during sequential data input  
tBLBH2  
(Program Busy time)  
RB  
Busy  
Address  
Inputs  
Address  
Inputs  
I/O  
80h  
85h  
10h  
Data Intput  
Data Input  
70h  
SR0  
Cmd  
Code  
Cmd  
Confirm  
Code  
Read Status Register  
Code 2 Add cycles  
5 Add cycles  
Col Add 1,2  
Row Add 1,2,3 Col Add 1,2  
Spare  
Area  
Spare  
Area  
Main Area  
Main Area  
ai08664  
6.7  
Copy-back program  
The copy-back program with read for copy-back operation is configured to quickly and  
efficiently rewrite data stored in one page without data reloading when the bit error is not in  
data stored.  
Since the time-consuming re-loading cycles are removed, the system performance is  
improved. The benefit is especially obvious when a portion of a block is updated and the rest  
of the block also needs to be copied to the newly-assigned free block. The copy-back  
operation is a sequential execution of read for copy-back and copy-back program with the  
destination page address. A read operation with a 35h command in the address of the  
source page moves the entire 2112 bytes into the internal data buffer. A bit error is checked  
by sequentially reading the data output. In the case where there is no bit error, the data does  
not need to be reloaded. Therefore, the copy-back program operation is initiated by issuing  
the Page-Copy Data-Input command (85h) with destination page address.  
The actual programming operation begins after the Program Confirm command (10h) is  
issued. Once the program process starts, the Read Status Register command (70h) may be  
entered to read the Status Register. The system controller can detect the completion of a  
program cycle by monitoring the RB#output, or the status bit (I/O 6) of the Status Register.  
When the copy-back program is complete, the write status bit (I/O 0) may be checked. The  
Command Register remains in read status command mode until another valid command is  
written to the command register. During the copy-back program, data modification is  
possible using random data input command (85h) as shown in Figure 11.  
26/60  
NAND08GW3C2B, NAND16GW3C4B  
6 Device operations  
Figure 11. Copy-back Program operation  
Source  
Target  
Add Inputs  
I/O  
10h  
70h  
SR0  
35h  
85h  
00h  
Add Inputs  
Read  
Code  
Copy Back  
Code  
Read Status Register  
tBLBH1  
tBLBH2  
(Read Busy time)  
(Program Busy time)  
RB  
Busy  
Busy  
ai09858b  
Figure 12. Copy-back Program operation with random data input  
2 Cycle  
Add Inputs  
Target  
Add Inputs  
Source  
Add Inputs  
I/O  
35h  
SR0  
00h  
85h  
Data 85h  
Data 10h  
70h  
Read  
Code  
Copy Back  
Code  
Unlimited number of repetitions  
tBLBH1  
tBLBH2  
(Read Busy time)  
(Program Busy time)  
RB  
Busy  
Busy  
ai11001  
27/60  
6 Device operations  
NAND08GW3C2B, NAND16GW3C4B  
6.8  
Multiplane copy-back program  
The two-plane copy-back program operation is an extension of the copy-back program  
operation, which is for a single plane with 2112 byte page registers. As the device is  
equipped with two memory planes, this operation activates the two sets of 2112 bytes.  
Figure 13. Multiplane Copy-back Program operation  
Copy back  
code  
Copy back  
Read Status Register  
10h 70h SR0  
Read  
code  
Read  
code  
code  
2
Add. 5  
cycles  
Add. 5  
cycles  
Add. 5  
cycles  
Add. 5  
cycles  
I/O  
35h  
35h  
00h  
85h  
11h  
81h  
00h  
Col. Add. 1, 2  
Col. Add. 1, 2  
Col. Add. 1, 2  
Col. Add. 1, 2  
Row Add. 1, 2, 3  
Row Add. 1, 2, 3  
Row Add. 1, 2, 3  
Row Add. 1, 2, 3  
Source address on 1st plane  
Source address on 2nd plane  
Destination address  
Destination address  
A0-A11 = set to 'Low'  
A0-A11 = set to 'Low'  
A12-A18 = set to 'Low'  
A19 = set to 'Low'  
A12-A18 = Valid  
A19 = set to 'High'  
A20-A30 = Valid  
A20-A30 = set to 'Low'  
tBLBH1  
tBLBH1  
tIPBSY  
tBLBH2  
(Read Busy time)  
(Read Busy time)  
(Program Busy time)  
RB  
Busy  
Busy  
Busy  
Busy  
Second plane  
First plane  
Source page  
Source page  
Target page  
(1): Read for copy back on first plane  
(2): Read for copy back on second plane  
(3): Two-plane copy back program  
Target page  
(1)  
(3)  
(2)  
(3)  
Main area  
Main area  
Spare area  
Spare area  
ai13172d  
28/60  
NAND08GW3C2B, NAND16GW3C4B  
6 Device operations  
6.9  
Multiplane page program  
The devices support multiplane page program, that allows the programming of two pages in  
parallel, one in each plane.  
A multiplane page program operation requires two steps:  
1. The first step loads serially up to two pages of data (4224 bytes) into the data buffer. It  
requires:  
One clock cycle to set up the Page Program command (see Section 6.5:  
Sequential input).  
Five bus write cycles to input the first page address and data. The address of the  
first page must be within the first plane (A19 = 0).  
One bus write cycle to issue the Page Program Confirm code. After this the device  
is busy for a time of t  
.
BLBH5  
When the device returns to the ready state (Ready/Busy High), a multiplane page  
program setup code must be issued, followed by the second page address (5 write  
cycles) and data. The address of the second page must be within the second  
plane (A19=1), and A18 to A12 must be the address bits loaded during the first  
address insertion.  
2. The second step programs, in parallel, the two pages of data loaded into the data buffer  
into the appropriate memory pages. It is started by issuing a Program Confirm  
command.  
As for standard page program operations, the device supports random data input during  
both data loading phases.  
Once the multiplane page program operation has started, maintaining a delay of t  
, the  
BLBH5  
Status Register can be read using the Read Status Register command. Once the multiplane  
page program operation has completed, the P/E/R controller bit SR6 is set to ‘1’ and the  
Ready/Busy signal goes High.  
If the multiplane page program fails, an error is signaled on bit SR0 of the Status Register.  
However, there is no way to identify for which page the program operation failed.  
29/60  
6 Device operations  
NAND08GW3C2B, NAND16GW3C4B  
Figure 14. Multiplane page program  
tBLBH5  
tBLBH2  
(Program Busy time)  
RB  
Busy  
Busy  
I/O  
Data Input  
11h  
Data Input  
10h  
Address Inputs  
Address Inputs  
80h  
81h  
70h  
SR0  
Page Program  
Setup Code  
A0-A11: Valid  
A12-A18: Fixed 'Low'  
A19: Fixed 'Low'  
A0-A11: Valid  
A12-A18: Valid  
A19: Fixed 'High'  
A20-A30: Valid  
Confirm  
Code  
Confirm  
Code  
Multiplane Page  
Program Setup  
Code  
Read Status Register  
A20-A30: Fixed 'Low'  
81h  
10h  
80h  
11h  
Data  
Input  
Plane 1  
Plane 0  
(2048 blocks)  
(2048 blocks)  
Block 1  
Block 3  
Block 0  
Block 2  
.
.
.
.
Block 4093  
Block 4095  
Block 4092  
Block 4094  
ai13636b  
1. Note that the same addresses except for A19 apply to both blocks.  
2. No command between 11h and 81h is permitted except 70h and FFh.  
6.10  
Block Erase  
Erase operations are done one block at a time. An erase operation sets all of the bits in the  
addressed block to ‘1’. All previous data in the block is lost.  
An erase operation consists of three steps (refer to Figure 15):  
1. One bus cycle is required to setup the Block Erase command. Only addresses A19 to  
A31 are used; the other address inputs are ignored.  
2. Three bus cycles are then required to load the address of the block to be erased. Refer  
to Table 6 for the block addresses of each device.  
3. One bus cycle is required to issue the Block Erase Confirm command to start the P/E/R  
controller.  
The erase operation is initiated on the rising edge of Write Enable, W, after the Confirm  
command is issued. The P/E/R Controller handles block erase and implements the verify  
process.  
During the block erase operation, only the Read Status Register and Reset commands are  
accepted; all other commands are ignored.  
Once the program operation has completed, the P/E/R controller bit SR6 is set to ‘1’ and the  
Ready/Busy signal goes High. If the operation completes successfully, the write status bit  
SR0 is ‘0’, otherwise it is set to ‘1’.  
30/60  
NAND08GW3C2B, NAND16GW3C4B  
Figure 15. Block Erase operation  
6 Device operations  
tBLBH3  
(Erase Busy time)  
RB  
Busy  
Block Address  
Inputs  
I/O  
60h  
D0h  
70h  
SR0  
Confirm  
Code  
Read Status Register  
Block Erase  
Setup Code  
ai07593  
6.11  
Multiplane block erase  
The multiplane block erase operation allows the erasure of two blocks in parallel, one in  
each plane. It consists of three steps (refer to Figure 16: Multiplane block erase operation):  
1. Eight bus cycles are required to set up the Block Erase command and load the  
addresses of the blocks to be erased. The Setup command, followed by the address of  
the block to be erased, must be issued for each block. No dummy busy time is required  
between the first and second block address insertion. As for multiplane page program,  
the address of the first and second page must be within the first plane (A19 = 0) and  
second plane (A19 = 1), respectively.  
2. One bus cycle is then required to issue the Multiplane Block Erase Confirm command  
and start the P/E/R controller.  
If the multiplane block erase fails, an error is signaled on bit SR0 of the status register.  
However, there is no way to identify for which page the multiplane block erase operation  
failed.  
Figure 16. Multiplane block erase operation  
tBLBH3  
(Erase Busy time)  
RB  
Busy  
Block Address  
Inputs  
Block Address  
Inputs  
I/O  
60h  
60h  
D0h  
70h  
SR0  
A12-A18: Fixed 'Low'  
A19: Fixed 'Low'  
A12-A18: Valid  
A19: Fixed 'High'  
A20-A30: Valid  
Confirm  
Code  
Block Erase  
Setup Code  
Read Status Register  
Block Erase  
Setup Code  
A20-A30: Fixed 'Low'  
ai13637b  
31/60  
6 Device operations  
NAND08GW3C2B, NAND16GW3C4B  
6.12  
Reset  
The Reset command resetd the command interface and Status Register. If the Reset  
command is issued during any operation, the operation is aborted. If it is a program or erase  
operation that is being aborted, the contents of the memory locations being modified are no  
longer valid as the data is partially programmed or erased.  
If the device has already been reset, then the new Reset command is not accepted.  
The Ready/Busy signal goes Low for t  
after the Reset command is issued. The value  
BLBH4  
of t  
depends on the operation that the device was performing when the command was  
BLBH4  
issued. Refer to Table 23 for the values.  
6.13  
Read Status Register  
The device contains a Status Register that provides information on the current or previous  
program or erase operation. The various bits in the Status Register convey information and  
errors on the operation.  
The Status Register is read by issuing the Read Status Register command. The Status  
Register information is present on the output data bus (I/O0-I/O7) on the falling edge of Chip  
Enable, or Read Enable, whichever occurs last. When several memories are connected in a  
system, the use of Chip Enable and Read Enable signals allows the system to poll each  
device separately, even when the Ready/Busy pins are common-wired. It is not necessary to  
toggle the Chip Enable or Read Enable signals to update the contents of the status register.  
After the Read Status Register command has been issued, the device remains in read  
Status Register mode until another command is issued. Therefore, if a Read Status Register  
command is issued during a random read cycle a new read command must be issued to  
continue with a page read operation.  
Refer to Table 9 which summarizes Status Register bits and should be read in conjunction  
with the following text descriptions.  
Table 9.  
I/O  
Status Register bits  
Page program  
(SP/DP)  
Block erase  
(SD/DP)  
Page read  
Definition  
Pass: ‘0’, Fail: ‘1’  
0
1
2
3
4
5
6
7
Pass/fail  
Plane 0: Pass/fail  
Plane 1: Pass/fail  
NA  
Pass/fail  
Plane 0 Pass/fail  
Plane 1 Pass/fail  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
Plane 0: Pass: ‘0’, Fail: ‘1’  
Plane 1: Pass: ‘0’, Fail: ‘1’  
-
-
-
NA  
NA  
NA  
NA  
Ready/busy  
Write protect  
Ready/busy  
Write protect  
Ready/busy Busy: ‘0’, Ready: ‘1’  
Write protect Protected: ‘0’, Not protected: ‘1’  
32/60  
NAND08GW3C2B, NAND16GW3C4B  
6 Device operations  
6.13.1  
6.13.2  
6.13.3  
6.14  
Write protection bit (SR7)  
The write protection bit can identify if the device is protected or not. If the write protection bit  
is set to ‘1’ the device is not protected and program or erase operations are allowed. If the  
write protection bit is set to ‘0’ the device is protected and program or erase operations are  
not allowed.  
P/E/R controller bit (SR6)  
Status Register bit SR6 acts as a P/E/R controller bit, which indicates whether the P/E/R  
controller is active or inactive. When the P/E/R controller bit is set to ‘0’, the P/E/R controller  
is active (device is busy); when the bit is set to ‘1’, the P/E/R controller is inactive (device is  
ready).  
Error bit (SR0)  
The error bit identifyies if any errors have been detected by the P/E/R controller. The error bit  
is set to ‘1’ when a program or erase operation has failed to write the correct data to the  
memory. If the error bit is set to ‘0’, the operation has completed successfully.  
Read electronic signature  
The device contains a manufacturer code and device code. The following three steps are  
required to read these codes:  
1. One bus write cycle to issue the Read Electronic Signature command (90h)  
2. One bus write cycle to input the address (00h)  
3. Four bus read cycles to sequentially output the data (as shown in Table 11: Electronic  
signature).  
Table 10. Device identifier codes  
Device identifier cycle  
Description  
1st  
2nd  
3rd  
4th  
5th  
Manufactuer code  
Device identifier  
Internal chip number, cell type, etc.  
Page size, block size, spare size orgranization  
Multiplane information  
Table 11. Electronic signature  
Byte/word 1  
Byte/word 2  
Byte 3  
Byte 4  
Byte 5  
Part number  
Manufacturer  
(see Table 12)  
(see Table 13)  
(see Table 14)  
Device code  
code  
NAND08GW3C2B  
20h  
D3h  
14h  
A5h  
34h  
NAND16GW3C4B(1)  
1. Each 8-Gbit die returns its own electronic signature.  
33/60  
6 Device operations  
NAND08GW3C2B, NAND16GW3C4B  
Table 12. Electronic signature byte 3  
I/O  
Definition  
Value  
Description  
0 0  
0 1  
1 0  
1 1  
1
2
4
8
I/O1-I/O0  
Die/package  
0 0  
0 1  
1 0  
1 1  
2-level cell  
4-level cell  
8-level cell  
16-level cell  
I/O3-I/O2  
I/O5-I/O4  
Cell type  
0 0  
0 1  
1 0  
1 1  
1
2
4
8
Number of simultaneously  
programmed pages  
0
1
Not supported  
Supported  
Interleaved programming  
between multiple devices  
I/O6  
I/O7  
0
1
Not supported  
Supported  
Write cache  
34/60  
NAND08GW3C2B, NAND16GW3C4B  
Table 13. Electronic signature byte 4  
6 Device operations  
Description  
I/O  
Definition  
Value  
0 0  
0 1  
1 0  
1 1  
1 KBytes  
2 KBytes  
4 KBytes  
8 KBytes  
Page size  
I/O1-I/O0  
(without spare area)  
Spare area size  
(byte/512 byte)  
0
1
8
I/O2  
16  
0 0  
0 1  
1 0  
1 1  
50 ns  
30 ns  
I/O7, I/O3  
Serial access time  
25 ns  
Reserved  
0 0  
0 1  
1 0  
1 1  
64 KBytes  
128 KBytes  
256 KBytes  
512 KBytes  
Block size  
I/O5-I/O4  
I/O6  
(without spare area)  
0
1
x8  
Organization  
x16  
Table 14. Electronic signature byte 5  
I/O  
Definition  
Value  
Description  
I/O1 - I/O0  
Reserved  
0 0  
0 0  
0 1  
1 0  
1 1  
1 plane  
2 planes  
4 planes  
8 planes  
I/O3 - I/O2  
Plane number  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
512 Mbits  
1 Gbyte  
2 Gbytes  
4 Gbytes  
8 Gbytes  
Reserved  
Reserved  
Reserved  
Plane size  
I/O6 - I/O4  
(without redundant area)  
I/O7  
Reserved  
0
35/60  
7 Concurrent operations and ERS  
NAND08GW3C2B, NAND16GW3C4B  
7
Concurrent operations and ERS  
The NAND16GW3C4B is composed of two 8-Gbit dice stacked together. This configuration  
allows the device to support concurrent operations. This means that while performing an  
operation in one die (erase, read, program, etc.), another operation is possible in the other  
die.  
The standard Read Status Register (ERS) operation returns the status of the  
NAND16GW3C4B device. To provide information on each 8-Gbit die, the NAND16GW3C4B  
features an Extended Read Status Register command that allows to check independently  
the status of each die.  
The following steps are required to perform concurrent operations:  
1. Select one of the two dice by setting the most significant address bit A31 to ‘0’ or ‘1’.  
2. Execute one operation on this die.  
3. Launch a concurrent operation on the other die.  
4. Check the status of these operations by performing an extended read Status Register  
operation.  
All combinations of operations are possible except executing read on both dice. This is due  
to the fact that the input/output bus is common to both dice.  
Refer to Table 15 for the description of the Extended Read Status Register command  
sequence, and to Table 9. for the definition of the Status Register bits.  
Table 15. Extended Read Status Register commands  
Command  
Address range  
1 bus write cycle  
Read 1st die status  
Read 2nd die status  
Address 0x7FFFFFFF  
F1h  
F2h  
0x7FFFFFFF < Address 0xFFFFFFF  
36/60  
NAND08GW3C2B, NAND16GW3C4B  
8 Data protection  
8
Data protection  
The device has hardware features to protect against spurious program and erase  
operations. An internal voltage detector disables all functions whenever V is below the  
CC  
V
threshold. It is recommended to keep WP at V during power-up and power-down.  
LKO  
IL  
In the V range from V  
to the lower limit of nominal range, the WP pin should be kept  
DD  
LKO  
Low (V ) to guarantee hardware protection during power transitions, as shown in Figure 17.  
IL  
Figure 17. Data protection  
Nominal Range  
V
DD  
V
LKO  
Locked  
Locked  
WP  
Ai11086b  
9
Software algorithms  
This section provides information on the software algorithms that Numonyx recommends  
implementing to manage the bad blocks and extend the lifetime of the NAND device.  
NAND Flash memories are programmed and erased by Fowler-Nordheim tunneling using  
high voltage. Exposing the device to high voltage for extended periods can cause the oxide  
layer to be damaged. For this reason, the number of program and erase cycles is limited  
(see Table 17 for value). It is recommended to implement garbage collection, wear-leveling  
and error correction code algorithms to extend the number of program and erase cycles and  
to increase data retention.  
To help integrate a NAND memory into an application Numonyx can provide a File System  
OS native reference software, which supports the basic commands of file management.  
Contact the nearest Numonyx sales office for more details.  
37/60  
9 Software algorithms  
NAND08GW3C2B, NAND16GW3C4B  
9.1  
Bad block management  
Devices with bad blocks have the same quality level and the same AC and DC  
characteristics as devices where all the blocks are valid. A bad block does not affect the  
performance of valid blocks because it is isolated from the bit line and common source line  
by a select transistor.  
The devices are supplied with all the locations inside valid blocks erased (FFh). The bad  
block information is written prior to shipping. Any block, where the 1st byte in the spare area  
of the last page, does not contain FFh, is a bad block.  
The bad block information must be read before any erase is attempted as the bad block  
Information may be erased. For the system to be able to recognize the bad blocks based on  
the original information it is recommended to create a bad block table following the flowchart  
shown in Figure 18.  
9.2  
NAND Flash memory failure modes  
The NAND08GW3C2B and NAND16GW3C4B devices may contain bad blocks, where the  
reliability of blocks that contain one or more invalid bits is not guaranteed. Additional bad  
blocks may develop during the lifetime of the device.  
To implement a highly reliable system, all the possible failure modes must be considered:  
Program/erase failure  
in this case, the block has to be replaced by copying the data to a valid block. These  
additional bad blocks can be identified as attempts to program or erase them and give  
errors in the Status Register.  
Because the failure of a Page Program operation does not affect the data in other  
pages in the same block, the block can be replaced by re-programming the current data  
and copying the rest of the replaced block to an available valid block. The Copy Back  
Program command can be used to copy the data to a valid block. See Section Figure  
10.: Random data input during sequential data input for more details.  
Read failure  
in this case, ECC correction must be implemented. To efficiently use the memory  
space, it is recommended to recover single-bit errors in read by ECC, without replacing  
the whole block.  
Refer to Table 16 for the procedure to follow if an error occurs during an operation.  
Table 16. Block Failure  
Operation  
Procedure  
Erase  
Program  
Read  
Block replacement  
Block replacement or ECC (with 4 bit/528 byte)  
ECC (with 4 bit/528 byte)  
38/60  
NAND08GW3C2B, NAND16GW3C4B  
9 Software algorithms  
Figure 18. Bad block management flowchart  
START  
Block Address =  
Block 0  
Increment  
Block Address  
Update  
Bad Block table  
Data  
= FFh?  
NO  
NO  
YES  
Last  
block?  
YES  
END  
AI07588C  
9.3  
Garbage collection  
When a data page needs to be modified, it is faster to write to the first available page and  
mark the previous page as invalid. After several updates it is necessary to remove invalid  
pages to free some memory space.  
To free this memory space and allow further program operations, it is recommended to  
implement a garbage collection algorithm. In a garbage collection software the valid pages  
are copied into a free area and the block containing the invalid pages is erased (see  
Figure 19).  
Figure 19. Garbage collection  
Old Area  
New Area (After GC)  
Valid  
Page  
Invalid  
Page  
Free  
Page  
(Erased)  
AI07599B  
39/60  
9 Software algorithms  
NAND08GW3C2B, NAND16GW3C4B  
9.4  
Wear-leveling algorithm  
For write-intensive applications, it is recommended to implement a wear-leveling algorithm  
to monitor and spread the number of write cycles per block.  
In memories that do not use a wear-leveling algorithm, not all blocks get used at the same  
rate. The wear-leveling algorithm ensures that equal use is made of all the available write  
cycles for each block.  
There are two wear-leveling levels:  
1. First level wear-leveling, where new data is programmed to the free blocks that have  
had the fewest write cycles  
2. Second level wear-leveling, where long-lived data is copied to another block so that the  
original block can be used for more frequently changed data.  
The second level wear-leveling is triggered when the difference between the maximum and  
the minimum number of write cycles per block reaches a specific threshold.  
9.5  
Hardware simulation models  
9.5.1  
Behavioral simulation models  
Denali Software Corporation models are platform-independent functional models designed  
to assist customers in performing entire system simulations (typical VHDL/Verilog). These  
models describe the logic behavior and timings of NAND Flash devices, and, therefore,  
allow software to be developed before hardware.  
9.5.2  
IBIS simulations models  
I/O buffer information specification (IBIS) models describe the behavior of the I/O buffers  
and electrical characteristics of Flash devices.  
These models provide information such as AC characteristics, rise/fall times, and package  
mechanical data, all of which are measured or simulated at voltage and temperature ranges  
wider than those allowed by target specifications.  
IBIS models are used to simulate PCB connections and can be used to resolve compatibility  
issues when upgrading devices. They can be imported into SPICETOOLS.  
40/60  
NAND08GW3C2B, NAND16GW3C4B  
10 Program and erase times and endurance cycles  
10  
Program and erase times and endurance cycles  
Table 17 shows the program and erase times and the number of program/erase cycles per  
block.  
Table 17. Program and erase times and program erase endurance cycles  
NAND08GW3C2B, NAND16GW3C4B  
Parameters  
Unit  
Min  
Typ  
Max  
Page program time  
800  
2.5  
2000  
10  
µs  
Block erase time  
ms  
Program/erase cycles (per block (with ECC)  
Data retention  
10,000  
10  
cycles  
years  
Number of partial program cycles (NOP)  
within the same page (main array or spare  
arrary)  
1
cycle  
41/60  
11 Maximum ratings  
NAND08GW3C2B, NAND16GW3C4B  
11  
Maximum ratings  
Stressing the device above the ratings listed in Table 18: Absolute maximum ratings may  
cause permanent damage to the device. These are stress ratings only, and operation of the  
device at these or any other conditions above those indicated in the operating sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability. Refer also to the Numonyx SURE program  
and other relevant quality documents.  
Table 18. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
TBIAS  
TSTG  
Temperature under bias  
Storage temperature  
Input or output voltage  
Supply voltage  
– 50  
– 65  
– 0.6  
– 0.6  
125  
150  
4.6  
4.6  
°C  
°C  
V
(1)  
VIO  
VDD  
V
1. Minimum voltage may undershoot to –2 V for less than 20 ns during transitions on input and I/O pins.  
Maximum voltage may overshoot to VDD + 2 V for less than 20 ns during transitions on I/O pins.  
42/60  
NAND08GW3C2B, NAND16GW3C4B  
12 DC and AC parameters  
12  
DC and AC parameters  
This section summarizes the operating and measurement conditions as well as the DC and  
AC characteristics of the device. The parameters in the following DC and AC characteristics  
tables are derived from tests performed under the measurement conditions summarized in  
Table 19: Operating and AC measurement conditions. Designers should check that the  
operating conditions in their circuit match the measurement conditions when relying on the  
quoted parameters.  
Table 19. Operating and AC measurement conditions  
NAND08GW3C2B,  
NAND16GW3C4B  
Parameter  
Units  
Min  
Max  
Supply voltage (VDD  
)
2.7  
0
3.6  
70  
85  
V
°C  
°C  
pF  
V
Ambient temperature (TA)  
–40  
Load capacitance (CL) (1 TTL GATE and CL)  
Input pulses voltages  
50  
0.4  
2.4  
Input and output timing ref. voltages  
Output circuit resistor Rref  
1.5  
8.35  
5
V
kΩ  
ns  
Input rise and fall times  
(1)  
Table 20. Capacitance  
Symbol  
Parameter  
Test condition  
Typ  
Max  
Unit  
CIN  
Input capacitance  
VIN = 0 V  
10  
pF  
pF  
Input/output  
capacitance  
CI/O  
VIL = 0 V  
10  
1. TA = 25°C, f = 1 MHz. CIN and CI/O are not 100% tested.  
43/60  
12 DC and AC parameters  
NAND08GW3C2B, NAND16GW3C4B  
Table 21. DC characteristics  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
tRLRL minimum  
Sequential  
read  
IDD1  
-
15  
30  
mA  
E=VIL, OUT = 0 mA  
I
Operating  
current  
IDD2  
IDD3  
Program  
Erase  
-
-
-
-
15  
15  
30  
30  
1
mA  
mA  
mA  
I
Standby current (TTL)  
E=VIH, WP=0/VDD  
DD4  
E=VDD-0.2,  
WP=0/VDD  
IDD5  
Standby current (CMOS)  
-
10  
50  
µA  
ILI  
ILO  
Input leakage Current  
Output leakage Current  
Input high voltage  
VIN= 0 to 3.6 V  
VOUT= 0 to 3.6 V  
-
-
-
-
-
10  
10  
µA  
µA  
V
VIH  
2.0  
-0.3  
2.4  
-
-
VDD+0.3  
0.8  
VIL  
Input low voltage  
-
-
V
VOH  
VOL  
Output high voltage level  
Output low voltage level  
Output low current (RB)  
IOH = -400 µA  
IOL = 2.1 mA  
VOL = 0.4 V  
-
-
V
-
0.4  
V
IOL (RB)  
8
10  
mA  
VDD supply voltage (erase and  
program lockout)  
VLKO  
-
-
-
2.5  
V
Table 22. AC characteristics for command, address, data input  
Symbol Alt. symbol  
Parameter  
Value  
Unit  
tALLWH  
Address Latch Low to Write Enable High  
Address Latch High to Write Enable High  
Command Latch High to Write Enable High  
Command Latch Low to Write Enable High  
Data Valid to Write Enable High  
tALS  
AL setup time  
CL setup time  
Min  
Min  
12  
ns  
tALHWH  
tCLHWH  
tCLS  
12  
ns  
tCLLWH  
tDVWH  
tELWH  
tDS  
tCS  
Data setup time Min  
12  
20  
ns  
ns  
Chip Enable Low to Write Enable High  
Write Enable High to Address Latch High  
Write Enable High to Address Latch Low  
Write Enable High to Command Latch High  
Write Enable High to Command Latch Low  
Write Enable High to Data Transition  
Write Enable High to Chip Enable High  
Write Enable High to Write Enable Low  
Write Enable Low to Write Enable High  
Write Enable Low to Write Enable Low  
E setup time  
Min  
tWHALH  
tWHALL  
tWHCLH  
tWHCLL  
tWHDX  
tWHEH  
tWHWL  
tWLWH  
tWLWL  
tALH  
AL hold time  
Min  
5
5
ns  
ns  
tCLH  
CL hold time  
Min  
tDH  
tCH  
tWH  
tWP  
tWC  
Data hold time  
E hold time  
Min  
Min  
5
ns  
ns  
ns  
ns  
ns  
5
W High hold time Min  
W pulse width Min  
Write cycle time Min  
10  
12  
25  
44/60  
NAND08GW3C2B, NAND16GW3C4B  
12 DC and AC parameters  
Table 23. AC characteristics for operations  
Alt.  
Value  
Unit  
Min Typ Max  
Symbol  
Parameter  
Symbol  
tALLRL1  
tALLRL2  
tBHRL  
Read electronic signature  
Read cycle  
10  
10  
20  
ns  
ns  
ns  
µs  
Address Latch Low to Read Enable  
Low  
tAR  
tRR  
Ready/Busy High to Read Enable Low  
tBLBH1  
tBLBH2  
tBLBH3  
Read Busy time  
Program Busy time  
Erase Busy time  
60  
tPROG  
tBERS  
Ready/Busy Low to Ready/Busy High  
2000 µs  
3
5
ms  
µs  
µs  
µs  
Reset Busy time, during ready  
Reset Busy time, during read  
Reset Busy time, during program  
Reset Busy time, during erase  
20  
20  
tBLBH4  
tRST  
500 µs  
tBLBH5  
tCLLRL  
tDZRL  
tEHQZ  
tELQV  
tRHRL  
tEHQX  
tRHQX  
tRLQX  
tRHQZ  
tRLRH  
tRLRL  
tCBSY  
tCLR  
tIR  
Dummy Busy Time for Multiplane operations  
Command Latch Low to Read Enable Low  
Data Hi-Z to Read Enable Low  
1
2
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
0
tCHZ  
tCEA  
tREH  
tCOH  
Chip Enable High to Output Hi-Z  
Chip Enable Low to Output Valid  
50  
25  
Read Enable High to Read Enable Low Read Enable High Hold time 10  
Chip Enable High to Output Hold  
15  
15  
5
tRHOH Read Enable High to Output Hold  
tRLOH Read Enable Low to Output Hold (EDO Mode)  
tRHZ  
tRP  
Read Enable High to Output Hi-Z  
100 ns  
Read Enable Low to Read Enable High  
Read Enable Pulse Width  
Read Cycle time  
12  
25  
ns  
ns  
tRC  
Read Enable Low to Read Enable Low  
Read Enable Access time  
Read ES Access time(1)  
Read Busy time  
tRLQV  
tREA  
Read Enable Low to Output Valid  
20  
60  
ns  
tWHBH  
tWHBL  
tWHRL  
tR  
Write Enable High to Ready/Busy High  
µs  
tWB  
Write Enable High to Ready/Busy Low  
Write Enable High to Read Enable Low  
100 ns  
tWHR  
tADL  
80  
ns  
ns  
ns  
ns  
(2)  
tWHWH  
Last Address latched on Data Loading Time during Program operations 70  
(3)  
tVHWH  
100  
tWW  
Write Protection time  
100  
(3)  
tVLWH  
1. ES = Electronic Signature.  
2. tWHWH is the delay from Write Enable rising edge during the final address cycle to Write Enable rising edge during the first  
data cycle.  
3. WP High to W High during Program/Erase Enable operations.  
45/60  
12 DC and AC parameters  
NAND08GW3C2B, NAND16GW3C4B  
Figure 20. Command latch AC waveforms  
CL  
tCLHWH  
tWHCLL  
(CL Setup time)  
(CL Hold time)  
tWHEH  
tELWH  
H(E Setup time)  
(E Hold time)  
E
tWLWH  
W
tALLWH  
tWHALH  
(ALSetup time)  
(AL Hold time)  
AL  
tDVWH  
tWHDX  
(Data Setup time)  
(Data Hold time)  
I/O  
Command  
ai12470b  
Figure 21. Address latch AC waveforms  
tCLLWH  
(CL Setup time)  
CL  
tWLWL  
tWLWL  
tWLWL  
tWLWL  
tELWH  
(E Setup time)  
E
tWLWH  
tWLWH  
tWLWH  
tWLWH  
tWLWH  
W
tWHWL  
tWHWL  
tWHWL  
tWHWL  
tALHWH  
(AL Setup time)  
tWHALL  
tWHALL  
tWHALL  
tWHALL  
(AL Hold time)  
AL  
I/O  
tDVWH  
tDVWH  
tDVWH  
tWHDX  
tDVWH  
tWHDX  
tDVWH  
tWHDX  
(Data Setup time)  
tWHDX  
tWHDX  
(Data Hold time)  
Adrress  
cycle 3  
Adrress  
cycle 2  
Adrress  
cycle 4  
Adrress  
cycle 5  
Adrress  
cycle 1  
ai12471  
46/60  
NAND08GW3C2B, NAND16GW3C4B  
12 DC and AC parameters  
Figure 22. Data input latch AC waveforms  
tWHCLH  
(CL Hold time)  
CL  
E
tWHEH  
(E Hold time)  
tALLWH  
(ALSetup time)  
tWLWL  
AL  
tWLWH  
tWLWH  
tWLWH  
W
tDVWH  
tDVWH  
tWHDX  
tDVWH  
tWHDX  
(Data Setup time)  
tWHDX  
(Data Hold time)  
Data In  
Last  
I/O  
Data In 0  
Data In 1  
ai12472  
1. The last data input is the 2112th.  
Figure 23. Sequential data output after Read AC waveforms  
tRLRL  
(Read Cycle time)  
E
tEHQX  
tEHQZ  
tRHRL  
(R High Holdtime)  
R
tRHQZ  
tRHQZ  
(2)  
tRHQX  
tRLQV  
tRLQV  
tRLQV  
(R Accesstime)  
I/O  
RB  
Data Out  
Data Out  
Data Out  
tBHRL  
ai13174  
1. CL = Low, AL = Low, W = High.  
2. tRHQX is applicable for frequencies lower than 33 MHz (i.e. tRLRL higher than 30 ns).  
47/60  
12 DC and AC parameters  
NAND08GW3C2B, NAND16GW3C4B  
Figure 24. Sequential data output after Read AC waveforms (EDO mode)  
tRLRL  
E
tEHQX  
tEHQZ  
tRLRH  
tRLQV  
tRHRL  
R
tRHQZ  
(2)  
tELQV  
tRLQX  
tRLQV  
tRHQX  
(R Accesstime)  
I/O  
RB  
Data Out  
Data Out  
Data Out  
tBHRL  
ai13175  
1. In EDO mode, CL and AL are Low, VIL, and W is High, VIH  
.
2. tRLQX is applicable for frequencies higher than 33 MHz (i.e. tRLRL lower than 30 ns).  
Figure 25. Read Status Register AC waveform  
tCLLRL  
CL  
tWHCLL  
tCLHWH  
tWHEH  
E
tELWH  
tWLWH  
W
R
tELQV  
tRLQV  
tEHQZ  
tWHRL  
tEHQX  
tDZRL  
tWHDX  
tRHQZ  
tRHQX  
tDVWH  
(Data Setup time)  
(Data Hold time)  
Status Register  
Output  
I/O  
70h or 7Bh  
ai13177  
48/60  
NAND08GW3C2B, NAND16GW3C4B  
12 DC and AC parameters  
Figure 26. Read electronic signature AC waveform  
CL  
E
W
AL  
tALLRL1  
R
tRLQV  
(Read ES Access time)  
I/O  
90h  
00h  
Byte1  
Byte2  
Byte3  
Byte4  
Byte5  
Man.  
code  
Device  
code  
Read Electronic 1st Cycle  
see Note.1  
Signature  
Command  
Address  
ai13178  
1. Refer to Table 11 for the values of the manufacturer and device codes, and to Table 12, Table 13, and Table 14 for the  
information contained in Byte 3, Byte 4, and Byte 5.  
49/60  
12 DC and AC parameters  
NAND08GW3C2B, NAND16GW3C4B  
Figure 27. Page read operation AC waveform  
CL  
E
tWLWL  
tEHQZ  
W
tWHBL  
AL  
tALLRL2  
tWHBH  
tRLRL  
tRHQZ  
(Read Cycle time)  
R
tRLRH  
tBLBH1  
RB  
Data  
N
Data  
N+1  
Data  
N+2  
Data  
Last  
Add.N Add.N Add.N Add.N  
cycle 1 cycle 2 cycle 3 cycle 4  
Add.N  
cycle 5  
I/O  
30h  
00h  
Data Output  
from Address N to Last Byte or Word in Page  
Command Address N Input  
Code  
Busy  
ai13638  
50/60  
NAND08GW3C2B, NAND16GW3C4B  
12 DC and AC parameters  
Figure 28. Page program AC waveform  
CL  
E
tWLWL  
tWLWL  
tWLWL  
(Write Cycle time)  
W
tWHBL  
tWHWH  
tBLBH2  
(Program Busy time)  
AL  
R
Add.N Add.N  
cycle 4 cycle 5  
Add.N  
Add.N  
Add.N  
cycle 3  
I/O  
RB  
80h  
Last  
N
10h  
70h  
SR0  
cycle 1 cycle 2  
Confirm  
Code  
Page Program  
Setup Code  
Page  
Program  
Address Input  
Data Input  
Read Status Register  
ai13639  
51/60  
12 DC and AC parameters  
NAND08GW3C2B, NAND16GW3C4B  
Figure 29. Block erase AC waveform  
CL  
E
tWLWL  
(Write Cycle time)  
W
AL  
R
tBLBH3  
tWHBL  
(Erase Busy time)  
Add.  
Add.  
Add.  
I/O  
RB  
70h  
SR0  
60h  
D0h  
cycle 1 cycle 2  
cycle 3  
Block Erase  
Setup Command  
Confirm  
Code  
Block Erase  
Read Status Register  
Block Address Input  
ai08038c  
Figure 30. Reset AC waveform  
W
AL  
CL  
R
I/O  
RB  
FFh  
tBLBH4  
(Reset Busy time)  
ai08043  
52/60  
NAND08GW3C2B, NAND16GW3C4B  
12 DC and AC parameters  
Figure 31. Program/erase enable waveform  
W
tVHWH  
WP  
RB  
I/O  
80h  
10h  
ai12477  
Figure 32. Program/erase disable waveform  
W
tVLWH  
WP  
High  
RB  
I/O  
80h  
10h  
ai12478  
53/60  
12 DC and AC parameters  
NAND08GW3C2B, NAND16GW3C4B  
12.1  
Ready/Busy signal electrical characteristics  
Figure 34, Figure 33 and Figure 35 show the electrical characteristics for the Ready/Busy  
signal. The value required for the resistor R can be calculated using the following equation:  
P
(
)
V
V
DDmax  
OLmax  
+ I  
R min= -------------------------------------------------------------  
P
I
L
OL  
So,  
3,2V  
R min= ---------------------------  
P
+
8mA  
I
L
where I is the sum of the input currents of all the devices tied to the Ready/Busy signal. R  
L
P
max is determined by the maximum value of t .  
r
Figure 33. Ready/Busy AC waveform  
ready V  
DD  
V
OH  
V
OL  
busy  
t
t
r
f
AI07564B  
Figure 34. Ready/Busy load circuit  
ibusy  
R
P
V
DD  
DEVICE  
RB  
Open Drain Output  
V
SS  
AI07563B  
54/60  
NAND08GW3C2B, NAND16GW3C4B  
12 DC and AC parameters  
Figure 35. Resistor value versus waveform timings for Ready/Busy signal  
V
= 3.3 V, C = 50 pF  
L
DD  
381  
3.3  
290  
1.65  
189  
1.1  
96  
0.825  
4.2  
4.2  
4.2  
4.2  
1
2
3
4
R
(KΩ)  
P
t
t
ibusy  
f
r
ai  
1. T = 25°C.  
55/60  
13 Package mechanical  
NAND08GW3C2B, NAND16GW3C4B  
13  
Package mechanical  
®
To meet environmental requirements, Numonyx offers the devices in ECOPACK packages.  
ECOPACK packages are lead-free. In compliance with JEDEC Standard JESD97, the  
category of second level interconnect is marked on the package and on the inner box label.  
The maximum ratings related to soldering conditions are also marked on the inner box label.  
Figure 36. TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package outline  
1
48  
e
D1  
B
L1  
24  
25  
A2  
A
E1  
E
A1  
α
L
DIE  
C
CP  
TSOP-G  
1. Drawing is not to scale.  
Table 24. TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package mechanical data  
Millimeters  
Min  
Inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
B
1.200  
0.150  
1.050  
0.270  
0.210  
0.080  
12.100  
20.200  
18.500  
0.0472  
0.0059  
0.0413  
0.0106  
0.0083  
0.0031  
0.4764  
0.7953  
0.7283  
0.100  
1.000  
0.220  
0.050  
0.950  
0.170  
0.100  
0.0039  
0.0394  
0.0087  
0.0020  
0.0374  
0.0067  
0.0039  
C
CP  
D1  
E
12.000  
20.000  
18.400  
0.500  
0.600  
0.800  
3°  
11.900  
19.800  
18.300  
0.4724  
0.7874  
0.7244  
0.0197  
0.0236  
0.0315  
3°  
0.4685  
0.7795  
0.7205  
E1  
e
L
0.500  
0.700  
0.0197  
0.0276  
5°  
L1  
a
0°  
5°  
0°  
56/60  
NAND08GW3C2B, NAND16GW3C4B  
Figure 37. LGA52 12 x 17 mm, 1 mm pitch, package outline  
13 Package mechanical  
D
D2  
D1  
FD1  
FD  
FE1  
FE  
BALL "A1"  
eE1  
e
E
E2 E1  
ddd  
e
b1 b2  
A2  
A
LGA-9G  
Table 25. LGA52 12 x 17 mm, 1 mm pitch, package mechanical data  
Millimeters  
Symbol  
inches  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
A2  
b1  
0.650  
0.650  
0.750  
1.050  
12.100  
0.0256  
0.0256  
0.0295  
0.0413  
0.4764  
0.700  
1.000  
0.650  
0.950  
0.0276  
0.0394  
0.4724  
0.2362  
0.3937  
0.0256  
0.0374  
0.4685  
b2  
D
12.000  
6.000  
11.900  
D1  
D2  
ddd  
E
10.000  
0.100  
0.0039  
0.6732  
17.000  
12.000  
13.000  
1.000  
2.000  
3.000  
1.000  
2.500  
2.000  
16.900  
17.100  
0.6693  
0.4724  
0.5118  
0.0394  
0.0787  
0.1181  
0.0394  
0.0984  
0.0787  
0.6654  
E1  
E2  
e
eE1  
FD  
FD1  
FE  
FE1  
57/60  
14 Part numbering  
NAND08GW3C2B, NAND16GW3C4B  
14  
Part numbering  
Table 26. Ordering information scheme  
Example:  
NAND08G W 3 C 2  
B
N 1  
E
Device type  
NAND Flash memory  
Density  
08G = 8 Gbits  
16G = 16 Gbits  
Operating voltage  
W = VDD = 2.7 to 3.6 V  
Bus width  
3 = x8  
Family identifier  
C = 2112 bytes page MLC  
Device options  
2 = Chip Enable ‘don't care’ enabled  
4 = Chip Enable ‘don't care’ enabled with 2 Chip  
Enable and 2 Ready/Busy signals  
Product version  
B = second version  
Package  
N = TSOP48 12 x 20 mm  
ZL = ULGA52 12 x 17 mm  
Temperature range  
1 = 0 to 70 °C  
6 = 40 to 85 °C  
Option  
E = ECOPACK® package, standard packing  
F = ECOPACK® package, tape and reel packing  
Devices are shipped from the factory with the memory content bits, in valid blocks, erased to  
‘1’. For further information on any aspect of this device, please contact your nearest  
Numonyx sales office.  
58/60  
NAND08GW3C2B, NAND16GW3C4B  
15 Revision history  
15  
Revision history  
Table 27. Document revision history  
Date  
Revision  
Changes  
25-Feb-2008  
19-Mar-2008  
1
2
Initial release.  
Applied Numonyx branding.  
59/60  
NAND08GW3C2B, NAND16GW3C4B  
Please Read Carefully:  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR  
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT  
AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY  
WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF  
NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility  
applications.  
Numonyx may make changes to specifications and product descriptions at any time, without notice.  
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the  
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied,  
by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves  
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by  
visiting Numonyx's website at http://www.numonyx.com.  
Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 11/5/7, Numonyx, B.V., All Rights Reserved.  
60/60  

相关型号:

NAND16GW3C4BN1F

8 or 16 Gbit, 2112 byte page, 3 V supply, multilevel, multiplane, NAND Flash memory
NUMONYX

NAND16GW3C4BN6E

8 or 16 Gbit, 2112 byte page, 3 V supply, multilevel, multiplane, NAND Flash memory
NUMONYX

NAND16GW3C4BN6F

8 or 16 Gbit, 2112 byte page, 3 V supply, multilevel, multiplane, NAND Flash memory
NUMONYX

NAND16GW3C4BZL1E

8 or 16 Gbit, 2112 byte page, 3 V supply, multilevel, multiplane, NAND Flash memory
NUMONYX

NAND16GW3C4BZL1F

8 or 16 Gbit, 2112 byte page, 3 V supply, multilevel, multiplane, NAND Flash memory
NUMONYX

NAND16GW3C4BZL6E

8 or 16 Gbit, 2112 byte page, 3 V supply, multilevel, multiplane, NAND Flash memory
NUMONYX

NAND16GW3C4BZL6F

8 or 16 Gbit, 2112 byte page, 3 V supply, multilevel, multiplane, NAND Flash memory
NUMONYX

NAND256-A

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND256-M

256/512Mb/1Gb (x8/x16, 1.8/3V, 528 Byte Page) NAND Flash Memories + 256/512Mb (x16/x32, 1.8V) LPSDRAM, MCP
STMICROELECTR

NAND256R3A

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND256R3A0AN1

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND256R3A0AN1E

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR