NAND512R3A2CN6E [NUMONYX]

512 Mbit, 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories; 512兆, 528字节/ 264字页, 1.8V / 3V , NAND闪存
NAND512R3A2CN6E
型号: NAND512R3A2CN6E
厂家: NUMONYX B.V    NUMONYX B.V
描述:

512 Mbit, 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
512兆, 528字节/ 264字页, 1.8V / 3V , NAND闪存

闪存 内存集成电路 光电二极管 ISM频段
文件: 总51页 (文件大小:1272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NAND512R3A2C NAND512R4A2C  
NAND512W3A2C NAND512W4A2C  
512 Mbit, 528 byte/264 word page,  
1.8 V/3 V, NAND Flash memories  
Features  
High density NAND Flash memories  
512 Mbit memory array  
Cost effective solutions for mass  
storage applications  
NAND interface  
x 8 or x 16 bus width  
Multiplexed Address/ Data  
TSOP48 12 x 20 mm  
Supply voltage: 1.8 V, 3.0 V  
Page size  
FBGA  
x 8 device: (512 + 16 spare) bytes  
x 16 device: (256 + 8 spare) words  
VFBGA55 8 x 10 x 1 mm  
VFBGA63 9 x 11 x 1 mm  
Block size  
x 8 device: (16 K + 512 spare) bytes  
x 16 device: (8 K + 256 spare) words  
Hardware Data Protection  
Page Read/Program  
Program/Erase locked during Power  
transitions  
Random access:  
12 µs (3 V)/15 µs (1.8 V) (max)  
Data integrity  
Sequential access:  
30 ns (3 V)/50 ns (1.8 V) (min)  
100,000 Program/Erase cycles (with  
ECC)  
Page Program time: 200 µs (typ)  
10 years Data Retention  
®
Copy Back Program mode  
Fast Block Erase: 2 ms (typ)  
Status Register  
ECOPACK packages  
Development tools  
Error Correction Code models  
Electronic signature  
Bad Blocks Management and Wear  
Leveling algorithms  
Chip Enable ‘don’t care’  
Serial Number option  
Hardware simulation models  
Table 1.  
Device summary  
Reference  
Part number  
NAND512R3A2C  
NAND512R4A2C(1)  
NAND512W3A2C  
NAND512W4A2C(1)  
NAND512-A2C  
1. x16 organization only available for MCP.  
January 2008  
Rev 2  
1/51  
www.numonyx.com  
1
Contents  
NAND512-A2C  
Contents  
1
2
3
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Memory array organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
3.10  
3.11  
Inputs/Outputs (I/O0-I/O7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Inputs/Outputs (I/O8-I/O15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Address Latch Enable (AL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Command Latch Enable (CL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Chip Enable (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Read Enable (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Write Enable (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Write Protect (WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Ready/Busy (RB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
V
V
DD supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
SS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
Command Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Address Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write Protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5
6
Command set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Device operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.1  
6.2  
Pointer operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Read Memory Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.2.1  
6.2.2  
Random Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Page Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2/51  
NAND512-A2C  
Contents  
6.3  
6.4  
6.5  
6.6  
6.7  
Page Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Copy Back Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Block Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Read Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
6.7.1  
6.7.2  
6.7.3  
6.7.4  
Write Protection Bit (SR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
P/E/R Controller Bit (SR6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Error Bit (SR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
SR5, SR4, SR3, SR2 and SR1 are reserved . . . . . . . . . . . . . . . . . . . . . 26  
6.8  
Read Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7
Software algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
Bad Block management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
NAND Flash memory failure modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Garbage collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Wear-leveling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Error Correction Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Hardware simulation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
7.6.1  
7.6.2  
Behavioral simulation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
IBIS simulations models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
8
Program and erase times and endurance cycles . . . . . . . . . . . . . . . . . 32  
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
9
10  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
10.1 Ready/Busy signal electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 45  
10.2 Data Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
11  
12  
13  
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
3/51  
List of tables  
NAND512-A2C  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Valid blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Address Insertion, x8 devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Address Insertion, x16 devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Address definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Copy Back Program addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Status Register bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Electronic signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
NAND Flash failure modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Program, Erase Times and Program Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . . . 32  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Operating and AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
DC characteristics, 1.8 V devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
DC Characteristics, 3V devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
AC characteristics for Command, Address, Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
AC Characteristics for operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, package mechanical data. . . . 47  
VFBGA63 9x11mm - 6x8 active ball array, 0.80mm pitch, package mechanical data . . . . 48  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
4/51  
NAND512-A2C  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Logic block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
TSOP48 connections - x8 devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
FBGA63 connections - x8 devices (top view through package) . . . . . . . . . . . . . . . . . . . . . 10  
Memory array organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pointer operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Pointer operations for programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Read (A,B,C) operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Read block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 10. Page Program operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 11. Copy Back operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 12. Block Erase operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 13. Bad Block management flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 14. Garbage collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 15. Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 16. Equivalent testing circuit for AC characteristics measurement. . . . . . . . . . . . . . . . . . . . . . 35  
Figure 17. Command Latch AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 18. Address Latch AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 19. Data Input Latch AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 20. Sequential Data Output after Read AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 21. Read Status Register AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 22. Read Electronic Signature AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 23. Page Read A/ Read B operation AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 24. Read C operation, One Page AC waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 25. Page Program AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 26. Block Erase AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 27. Reset AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 28. Ready/Busy AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 29. Ready/Busy load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 30. Resistor value versus waveform timings for Ready/Busy signal. . . . . . . . . . . . . . . . . . . . . 46  
Figure 31. Data Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 32. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, package outline . . . . . . . . . . . 47  
Figure 33. VFBGA63 9x11mm - 6x8 active ball array, 0.80mm pitch, package outline. . . . . . . . . . . . 48  
5/51  
Description  
NAND512-A2C  
1
Description  
The NAND Flash 528 Byte/ 264 Word Page is a family of non-volatile Flash memories that  
uses the Single Level Cell (SLC) NAND cell technology. It is referred to as the Small Page  
family. The NAND512R3A2C, NAND512R4A2C, NAND512W3A2C, and NAND512W4A2C  
have a density of 512 Mbits and operate with either a 1.8V or 3V voltage supply. The size of  
a Page is either 528 Bytes (512 + 16 spare) or 264 Words (256 + 8 spare) depending on  
whether the device has a x8 or x16 bus width.  
The address lines are multiplexed with the Data Input/Output signals on a multiplexed x8 or  
x16 Input/Output bus. This interface reduces the pin count and makes it possible to migrate  
to other densities without changing the footprint.  
To extend the lifetime of NAND Flash devices it is strongly recommended to implement an  
Error Correction Code (ECC). The use of ECC correction allows to achieve up to 100,000  
program/erase cycles for each block. A Write Protect pin is available to give a hardware  
protection against program and erase operations.  
The devices feature an open-drain Ready/Busy output that can be used to identify if the  
Program/Erase/Read (P/E/R) Controller is currently active. The use of an open-drain output  
allows the Ready/Busy pins from several memories to be connected to a single pull-up  
resistor.  
A Copy Back command is available to optimize the management of defective blocks. When  
a Page Program operation fails, the data can be programmed in another page without  
having to resend the data to be programmed.  
The devices are available in the following packages:  
TSOP48 12 x 20mm  
VFBGA63 (9 x 11 x 1mm, 6 x 8 ball array, 0.8mm pitch)  
®
In order to meet environmental requirements, Numonyx offers the devices in ECOPACK  
packages. ECOPACK packages are Lead-free. The category of second Level Interconnect  
is marked on the package and on the inner box label, in compliance with JEDEC Standard  
JESD97. The maximum ratings related to soldering conditions are also marked on the inner  
box label.  
All devices have the Chip Enable Don't Care option, which allows the code to be directly  
downloaded by a microcontroller, as Chip Enable transitions during the latency time do not  
stop the read operation.  
A Serial Number option, allows each device to be uniquely identified. The Serial Number  
options is subject to an NDA (Non Disclosure Agreement) and so not described in the  
datasheet. For more details of this option contact your nearest Numonyx Sales office.  
For information on how to order these options refer to Table 24: Ordering information  
scheme. Devices are shipped from the factory with Block 0 always valid and the memory  
content bits, in valid blocks, erased to ’1’.  
See Table 2: Product description, for all the devices available in the family.  
6/51  
NAND512-A2C  
Description  
Table 2.  
Product description  
Timings  
Bus  
Width  
Page  
Size  
Block  
Size  
Memory  
Array  
Operating  
Voltage  
Block  
Erase  
Typica  
l
Reference  
Part Number  
Density  
Package  
Random Sequential  
Page  
Program  
Typical  
Access  
Max  
Access  
Min  
NAND512R3A2C  
NAND512W3A2C  
NAND512R4A2C  
NAND512W4A2C  
1.7to 1.95V  
2.7 to 3.6V  
1.7 to 1.95V  
2.7 to 3.6V  
15µs  
12µs  
15µs  
12µs  
50ns  
30ns  
50ns  
30ns  
200µs  
200µs  
200µs  
200µs  
512+16 16K+512  
TSOP48  
VFBGA63  
x8  
Bytes  
Bytes  
NAND512-  
A2C  
32 Pages x  
4096 Blocks  
512Mbit  
2ms  
256+8  
Words  
8K+256  
Words  
(1)  
x16  
1.  
x16 organization only available for MCP.  
Figure 1.  
Logic diagram  
V
DD  
I/O8-I/O15, x16  
E
I/O0-I/O7, x8/x16  
R
W
NAND Flash  
RB  
AL  
CL  
WP  
V
SS  
AI07557C  
7/51  
Description  
Table 3.  
NAND512-A2C  
Signal names  
I/O8-15  
Data Input/Outputs for x16 devices  
I/O0-7  
AL  
Data Input/Outputs, Address Inputs, or Command Inputs for x8 and x16 devices  
Address Latch Enable  
Command Latch Enable  
Chip Enable  
CL  
E
R
Read Enable  
RB  
W
Ready/Busy (open-drain output)  
Write Enable  
WP  
VDD  
VSS  
NC  
DU  
Write Protect  
Supply Voltage  
Ground  
Not Connected Internally  
Do Not Use  
Figure 2.  
Logic block diagram  
Address  
Register/Counter  
AL  
NAND Flash  
Memory Array  
CL  
W
P/E/R Controller,  
High Voltage  
Generator  
Command  
Interface  
Logic  
E
WP  
R
Page Buffer  
Y Decoder  
Command Register  
I/O Buffers & Latches  
RB  
I/O0-I/O7, x8/x16  
I/O8-I/O15, x16  
AI07561c  
8/51  
NAND512-A2C  
Description  
Figure 3.  
TSOP48 connections - x8 devices  
NC  
NC  
NC  
NC  
NC  
NC  
RB  
R
1
48  
NC  
NC  
NC  
NC  
I/O7  
I/O6  
I/O5  
I/O4  
NC  
E
NC  
NC  
NC  
NC  
NAND Flash  
(x8)  
V
12  
13  
37  
36  
V
V
DD  
DD  
SS  
V
SS  
NC  
NC  
CL  
AL  
NC  
NC  
NC  
I/O3  
I/O2  
I/O1  
I/O0  
W
WP  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
24  
25  
AI07585C  
9/51  
Description  
Figure 4.  
NAND512-A2C  
FBGA63 connections - x8 devices (top view through package)  
1
2
3
4
5
6
7
8
9
10  
DU  
DU  
DU  
A
B
DU  
DU  
DU  
DU  
V
SS  
C
WP  
AL  
E
W
RB  
D
E
F
NC  
NC  
NC  
NC  
R
CL  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
I/O3  
NC  
NC  
G
H
J
NC  
NC  
NC  
NC  
I/O0  
I/O1  
I/O2  
NC  
V
DD  
V
I/O5  
I/O6  
I/O7  
DD  
V
K
L
I/O4  
V
SS  
SS  
DU  
DU  
DU  
DU  
DU  
DU  
DU  
DU  
M
AI07586B  
10/51  
NAND512-A2C  
Memory array organization  
2
Memory array organization  
The memory array is made up of NAND structures where 16 cells are connected in series.  
The memory array is organized in blocks where each block contains 32 pages. The array is  
split into two areas, the main area and the spare area. The main area of the array is used to  
store data whereas the spare area is typically used to store Error correction Codes, software  
flags or Bad Block identification.  
In x8 devices the pages are split into a main area with two half pages of 256 Bytes each and  
a spare area of 16 Bytes. In the x16 devices the pages are split into a 256 Word main area  
and an 8 Word spare area. Refer to Figure 5: Memory array organization.  
Bad blocks  
The NAND Flash 528 Byte/ 264 Word Page devices may contain Bad Blocks, that is blocks  
that contain one or more invalid bits whose reliability is not guaranteed. Additional Bad  
Blocks may develop during the lifetime of the device.  
The Bad Block Information is written prior to shipping (refer to Section 7.1: Bad Block  
management for more details).  
Table 4 shows the minimum number of valid blocks in each device. The values shown  
include both the Bad Blocks that are present when the device is shipped and the Bad Blocks  
that could develop later on.  
These blocks need to be managed using Bad Blocks Management, Block Replacement or  
Error Correction Codes (refer to Section 7: Software algorithms).  
Table 4.  
Valid blocks  
Density of device  
Min  
Max  
512 Mbits  
4016  
4096  
11/51  
Memory array organization  
NAND512-A2C  
Figure 5.  
Memory array organization  
x8 DEVICES  
x16 DEVICES  
Block = 32 Pages  
Block = 32 Pages  
Page = 528 Bytes (512+16)  
Page = 264 Words (256+8)  
1st half Page 2nd half Page  
(256 bytes) (256 bytes)  
Main Area  
Block  
Page  
Block  
Page  
8 bits  
16 bits  
256 Words  
512 Bytes  
16  
Bytes  
8
Words  
Page Buffer, 264 Words  
8
Page Buffer, 512 Bytes  
16  
256 Words  
Words  
512 Bytes  
16 bits  
Bytes  
8 bits  
AI07587  
12/51  
NAND512-A2C  
Signal descriptions  
3
Signal descriptions  
See Figure 1: Logic diagram, and Table 3: Signal names, for a brief overview of the signals  
connected to this device.  
3.1  
Inputs/Outputs (I/O0-I/O7)  
Input/Outputs 0 to 7 are used to input the selected address, output the data during a Read  
operation or input a command or data during a Write operation. The inputs are latched on  
the rising edge of Write Enable. I/O0-I/O7 are left floating when the device is deselected or  
the outputs are disabled.  
3.2  
Inputs/Outputs (I/O8-I/O15)  
Input/Outputs 8 to 15 are only available in x16 devices. They are used to output the data  
during a Read operation or input data during a Write operation. Command and Address  
Inputs only require I/O0 to I/O7.  
The inputs are latched on the rising edge of Write Enable. I/O8-I/O15 are left floating when  
the device is deselected or the outputs are disabled.  
3.3  
3.4  
3.5  
Address Latch Enable (AL)  
The Address Latch Enable activates the latching of the Address inputs in the Command  
Interface. When AL is high, the inputs are latched on the rising edge of Write Enable.  
Command Latch Enable (CL)  
The Command Latch Enable activates the latching of the Command inputs in the Command  
Interface. When CL is high, the inputs are latched on the rising edge of Write Enable.  
Chip Enable (E)  
The Chip Enable input activates the memory control logic, input buffers, decoders and read  
circuitry. When Chip Enable is low, V , the device is selected.  
IL  
If Chip Enable goes High (V ) while the device is busy, the device remains selected and  
IH  
does not go into standby mode.  
3.6  
Read Enable (R)  
The Read Enable, R, controls the sequential data output during Read operations. Data is  
valid t  
after the falling edge of R. The falling edge of R also increments the internal  
RLQV  
column address counter by one.  
13/51  
Signal descriptions  
NAND512-A2C  
3.7  
Write Enable (W)  
The Write Enable input, W, controls writing to the Command Interface, Input Address and  
Data latches. Both addresses and data are latched on the rising edge of Write Enable.  
During power-up and power-down a recovery time of 10µs (min) is required before the  
Command Interface is ready to accept a command. It is recommended to keep Write Enable  
high during the recovery time.  
3.8  
3.9  
Write Protect (WP)  
The Write Protect pin is an input that gives a hardware protection against unwanted program  
or erase operations. When Write Protect is Low, V , the device does not accept any  
program or erase operations.  
IL  
It is recommended to keep the Write Protect pin Low, V , during power-up and power-down.  
IL  
Ready/Busy (RB)  
The Ready/Busy output, RB, is an open-drain output that can be used to identify if the P/E/R  
Controller is currently active.  
When Ready/Busy is Low, V , a read, program or erase operation is in progress. When the  
OL  
operation completes Ready/Busy goes High, V  
.
OH  
The use of an open-drain output allows the Ready/Busy pins from several memories to be  
connected to a single pull-up resistor. A Low will then indicate that one, or more, of the  
memories is busy.  
Refer to the Section 10.1: Ready/Busy signal electrical characteristics for details on how to  
calculate the value of the pull-up resistor.  
3.10  
VDD supply voltage  
V
provides the power supply to the internal core of the memory device. It is the main  
DD  
power supply for all operations (read, program and erase).  
An internal voltage detector disables all functions whenever V is below the V  
threshold  
LKO  
DD  
(see Section Figure 31.: Data Protection) to protect the device from any involuntary  
Program/Erase operations during power-transitions.  
Each device in a system should have V decoupled with a 0.1µF capacitor. The PCB track  
DD  
widths should be sufficient to carry the required program and erase currents  
3.11  
VSS ground  
Ground, V  
ground.  
is the reference for the power supply. It must be connected to the system  
SS,  
14/51  
NAND512-A2C  
Bus operations  
4
Bus operations  
There are six standard bus operations that control the memory. Each of these is described  
in this section, see Table 5: Bus operations, for a summary.  
4.1  
Command Input  
Command Input bus operations are used to give commands to the memory. Command are  
accepted when Chip Enable is Low, Command Latch Enable is High, Address Latch Enable  
is Low and Read Enable is High. They are latched on the rising edge of the Write Enable  
signal.  
Only I/O0 to I/O7 are used to input commands.  
See Figure 17 and Table 20 for details of the timings requirements.  
4.2  
Address Input  
Address Input bus operations are used to input the memory address. Three bus cycles are  
required to input the addresses for the 128Mb and 256Mb devices and four bus cycles are  
required to input the addresses for the 512Mb and 1Gb devices (refer to Table 6 and  
Table 7, Address Insertion).  
The addresses are accepted when Chip Enable is Low, Address Latch Enable is High,  
Command Latch Enable is Low and Read Enable is High. They are latched on the rising  
edge of the Write Enable signal. Only I/O0 to I/O7 are used to input addresses.  
See Figure 18 and Table 20 for details of the timings requirements.  
4.3  
4.4  
Data Input  
Data Input bus operations are used to input the data to be programmed.  
Data is accepted only when Chip Enable is Low, Address Latch Enable is Low, Command  
Latch Enable is Low and Read Enable is High. The data is latched on the rising edge of the  
Write Enable signal. The data is input sequentially using the Write Enable signal.  
See Figure 19, Table 20, and Table 21 for details of the timings requirements.  
Data Output  
Data Output bus operations are used to read: the data in the memory array, the Status  
Register, the Electronic Signature and the Serial Number.  
Data is output when Chip Enable is Low, Write Enable is High, Address Latch Enable is Low,  
and Command Latch Enable is Low.  
The data is output sequentially using the Read Enable signal.  
See Figure 20 and Table 21 for details of the timings requirements.  
15/51  
Bus operations  
NAND512-A2C  
4.5  
Write Protect  
Write Protect bus operations are used to protect the memory against program or erase  
operations. When the Write Protect signal is Low the device will not accept program or erase  
operations and so the contents of the memory array cannot be altered. The Write Protect  
signal is not latched by Write Enable to ensure protection even during power-up.  
4.6  
Standby  
When Chip Enable is High the memory enters Standby mode, the device is deselected,  
outputs are disabled and power consumption is reduced.  
Table 5.  
Bus operations  
Bus Operation  
E
AL  
CL  
R
W
WP  
I/O0 - I/O7  
I/O8 - I/O15(1)  
Command Input  
Address Input  
Data Input  
VIL  
VIL  
VIL  
VIL  
VIH  
VIL  
VIH  
VIL  
VIL  
VIH Rising X(2)  
Command  
Address  
X
X
VIH Rising  
VIH Rising  
X
X
Data Input  
Data Input  
Fallin  
VIH  
g
Data Output  
VIL  
VIL  
VIL  
X
Data Output  
Data Output  
Write Protect  
Standby  
X
X
X
X
X
X
X
X
X
VIL  
X
X
X
X
X
VIH  
1. Only for x16 devices.  
2. WP must be VIH when issuing a program or erase command.  
(1)(2)  
Table 6.  
Address Insertion, x8 devices  
Bus  
Cycle  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
1st  
2nd  
3rd  
4th  
A7  
A16  
A24  
VIL  
A6  
A15  
A23  
VIL  
A5  
A14  
A22  
VIL  
A4  
A13  
A21  
VIL  
A3  
A12  
A20  
VIL  
A2  
A11  
A19  
VIL  
A1  
A10  
A18  
VIL  
A0  
A9  
A17  
A25  
1. A8 is set Low or High by the 00h or 01h Command, see Section 6.1: Pointer operations.  
2. Any additional address input cycles will be ignored.  
(1)(2)  
Table 7.  
Address Insertion, x16 devices  
I/O8-  
I/O15  
Bus  
Cycle  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
1st  
2nd  
X
X
X
X
A7  
A16  
A24  
VIL  
A6  
A15  
A23  
VIL  
A5  
A14  
A22  
VIL  
A4  
A13  
A21  
VIL  
A3  
A12  
A20  
VIL  
A2  
A11  
A19  
VIL  
A1  
A10  
A18  
VIL  
A0  
A9  
3rd  
A17  
A25  
4th(4)  
1. A8 is Don’t Care in x16 devices.  
2. Any additional address input cycles will be ignored.  
16/51  
NAND512-A2C  
Bus operations  
Table 8.  
Address definition  
Address  
Definition  
A0 - A7  
A9 - A25  
A9 - A13  
A14 - A25  
Column Address  
Page Address  
Address in Block  
Block Address  
A8 is set Low or High by the 00h or 01h  
Command, and is Don’t Care in x16 devices  
A8  
17/51  
Command set  
NAND512-A2C  
5
Command set  
All bus write operations to the device are interpreted by the Command Interface. The  
Commands are input on I/O0-I/O7 and are latched on the rising edge of Write Enable when  
the Command Latch Enable signal is high. Device operations are selected by writing  
specific commands to the Command Register. The two-step command sequences for  
program and erase operations are imposed to maximize data security.  
The Commands are summarized in Table 9.  
Table 9.  
Commands  
Command  
Bus Write operations(1)(2)  
st CYCLE 2nd CYCLE 3rd CYCLE  
Command  
accepted during  
busy  
1
Read A  
00h  
01h  
50h  
90h  
70h  
80h  
00h  
60h  
FFh  
-
-
Read B(3)  
-
-
Read C  
-
-
-
Read Electronic Signature  
Read Status Register  
Page Program  
-
-
-
Yes  
Yes  
10h  
8Ah  
D0h  
-
-
Copy Back Program  
Block Erase  
(10h)(4)  
-
-
Reset  
1. The bus cycles are only shown for issuing the codes. The cycles required to input the addresses or  
input/output data are not shown.  
2. Any undefined command sequence will be ignored by the device.  
3. The Read B command (code 01h) is not used in x16 devices.  
4. The Program Confirm command (code 10h) is no more necessary for NAND512-A2C devices. It is optional  
and has been maintained for backward compatibility  
18/51  
NAND512-A2C  
Device operations  
6
Device operations  
6.1  
Pointer operations  
As the NAND Flash memories contain two different areas for x16 devices and three different  
areas for x8 devices (see Figure 6) the read command codes (00h, 01h, 50h) are used to  
act as pointers to the different areas of the memory array (they select the most significant  
column address).  
The Read A and Read B commands act as pointers to the main memory area. Their use  
depends on the bus width of the device.  
In x16 devices the Read A command (00h) sets the pointer to Area A (the whole of the  
main area) that is Words 0 to 255.  
In x8 devices the Read A command (00h) sets the pointer to Area A (the first half of the  
main area) that is Bytes 0 to 255, and the Read B command (01h) sets the pointer to  
Area B (the second half of the main area) that is Bytes 256 to 511.  
In both the x8 and x16 devices the Read C command (50h), acts as a pointer to Area C (the  
spare memory area) that is Bytes 512 to 527 or Words 256 to 263.  
Once the Read A and Read C commands have been issued the pointer remains in the  
respective areas until another pointer code is issued. However, the Read B command is  
effective for only one operation, once an operation has been executed in Area B the pointer  
returns automatically to Area A.  
The pointer operations can also be used before a program operation, that is the appropriate  
code (00h, 01h or 50h) can be issued before the program command 80h is issued (see  
Figure 7).  
Figure 6.  
Pointer operations  
x8 Devices  
x16 Devices  
Area A  
(00h)  
Area B  
(01h)  
Area C  
(50h)  
Area A  
(00h)  
Area C  
(50h)  
Bytes 512  
-527  
Words 256  
-263  
Bytes 0- 255  
Bytes 256-511  
Words 0- 255  
A
B
C
Page Buffer  
A
C
Page Buffer  
Pointer  
(00h,01h,50h)  
Pointer  
(00h,50h)  
AI07592  
19/51  
Device operations  
NAND512-A2C  
Figure 7.  
Pointer operations for programming  
AREA A  
10h  
Address  
Inputs  
Address  
Inputs  
80h  
I/O  
00h  
Data Input  
80h  
00h  
Data Input  
10h  
Areas A, B, C can be programmed depending on how much data is input. Subsequent 00h commands can be omitted.  
AREA B  
Address  
Inputs  
Address  
Inputs  
80h  
I/O  
01h  
Data Input  
10h  
80h  
01h  
Data Input  
10h  
Areas B, C can be programmed depending on how much data is input. The 01h command must be re-issued before each program.  
AREA C  
Address  
Inputs  
Address  
Inputs  
80h  
I/O  
50h  
Data Input  
10h  
80h  
50h  
Data Input  
10h  
Only Areas C can be programmed. Subsequent 50h commands can be omitted.  
ai07591  
6.2  
Read Memory Array  
Each operation to read the memory area starts with a pointer operation as shown in the  
Section 6.1: Pointer operations. Once the area (main or spare) has been selected using the  
Read A, Read B or Read C commands four bus cycles (for 512Mb and 1Gb devices) or  
three bus cycles (for 128Mb and 256Mb devices) are required to input the address (refer to  
Table 6 and Table 7) of the data to be read.  
The device defaults to Read A mode after power-up or a Reset operation.  
When reading the spare area addresses:  
A0 to A3 (x8 devices)  
A0 to A2 (x16 devices)  
are used to set the start address of the spare area while addresses:  
A4 to A7 (x8 devices)  
A3 to A7 (x16 devices)  
are ignored.  
Once the Read A or Read C commands have been issued they do not need to be reissued  
for subsequent read operations as the pointer remains in the respective area. However, the  
Read B command is effective for only one operation, once an operation has been executed  
in Area B the pointer returns automatically to Area A and so another Read B command is  
required to start another read operation in Area B.  
Once a read command is issued two types of operations are available: Random Read and  
Page Read.  
6.2.1  
Random Read  
Each time the command is issued the first read is Random Read.  
20/51  
NAND512-A2C  
Device operations  
6.2.2  
Page Read  
After the Random Read access the page data is transferred to the Page Buffer in a time of  
t
(refer to Table 21 for value). Once the transfer is complete the Ready/Busy signal  
WHBH  
goes High. The data can then be read out sequentially (from selected column address to  
last column address) by pulsing the Read Enable signal.  
Figure 8.  
Read (A,B,C) operations  
CL  
E
W
AL  
R
tBLBH1  
(read)  
RB  
I/O  
00h/  
Data Output (sequentially)  
Address Input  
01h/ 50h  
Command  
Code  
Busy  
ai07595c  
21/51  
Device operations  
NAND512-A2C  
Figure 9.  
Read block diagrams  
Read A Command, X8 Devices  
Read A Command, X16 Devices  
Area B  
(2nd half Page)  
Area A  
(1st half Page)  
Area C  
(Spare)  
Area A  
(main area)  
Area C  
(Spare)  
(1)  
A9-A26  
(1)  
A9-A26  
A0-A7  
A0-A7  
Read B Command, X8 Devices  
Read C Command, X8/x16 Devices  
Area B  
(2nd half Page)  
Area A/ B  
Area A  
(1st half Page)  
Area C  
(Spare)  
Area A  
Area C  
(Spare)  
(1)  
A9-A26  
(1)  
A9-A26  
A0-A3 (x8)  
A0-A2 (x16)  
A0-A7  
A4-A7 (x8), A3-A7 (x16) are don't care  
AI07596  
1. Highest address depends on device density.  
22/51  
NAND512-A2C  
Device operations  
6.3  
Page Program  
The Page Program operation is the standard operation to program data to the memory  
array.  
The main area of the memory array is programmed by page, however partial page  
programming is allowed where any number of bytes (1 to 528) or words (1 to 264) can be  
programmed.  
The maximum number of consecutive partial page program operations allowed in the same  
page is three. After exceeding this a Block Erase command must be issued before any  
further program operations can take place in that page.  
Before starting a Page Program operation a Pointer operation can be performed to point to  
the area to be programmed. Refer to the Section 6.1: Pointer operations and Figure 7 for  
details.  
Each Page Program operation consists of five steps (see Figure 10):  
1. One bus cycle is required to setup the Page Program command  
2. Four bus cycles are then required to input the program address (refer to Table 6 and  
Table 7)  
3. The data is then input (up to 528 Bytes/ 264 Words) and loaded into the Page Buffer  
4. One bus cycle is required to issue the confirm command to start the P/E/R Controller.  
5. The P/E/R Controller then programs the data into the array.  
Once the program operation has started the Status Register can be read using the Read  
Status Register command. During program operations the Status Register will only flag  
errors for bits set to '1' that have not been successfully programmed to '0'.  
During the program operation, only the Read Status Register and Reset commands will be  
accepted, all other commands will be ignored.  
Once the program operation has completed the P/E/R Controller bit SR6 is set to ‘1’ and the  
Ready/Busy signal goes High.  
The device remains in Read Status Register mode until another valid command is written to  
the Command Interface.  
Figure 10. Page Program operation  
tBLBH2  
(Program Busy time)  
RB  
Busy  
I/O  
80h  
Data Input  
10h  
Address Inputs  
70h  
SR0  
Confirm  
Code  
Read Status Register  
Page Program  
Setup Code  
ai07566  
1. Before starting a Page Program operation a Pointer operation can be performed. Refer to Section 6.1: Pointer operations  
for details.  
23/51  
Device operations  
NAND512-A2C  
6.4  
Copy Back Program  
The Copy Back Program operation is used to copy the data stored in one page and  
reprogram it in another page.  
The Copy Back Program operation does not require external memory and so the operation  
is faster and more efficient because the reading and loading cycles are not required. The  
operation is particularly useful when a portion of a block is updated and the rest of the block  
needs to be copied to the newly assigned block.  
If the Copy Back Program operation fails an error is signalled in the Status Register.  
However as the standard external ECC cannot be used with the Copy Back operation bit  
error due to charge loss cannot be detected. For this reason it is recommended to limit the  
number of Copy Back operations on the same data and or to improve the performance of the  
ECC.  
The Copy Back Program operation requires two steps:  
1. The source page must be read using the Read A command (one bus write cycle to  
setup the command and then 4 bus write cycles to input the source page address).  
This operation copies all 264 Words/ 528 Bytes from the page into the Page Buffer.  
2. When the device returns to the ready state (Ready/Busy High), the second bus write  
cycle of the command is given with the 4 bus cycles to input the target page address.  
Refer to Table 10 for the addresses that must be the same for the Source and Target  
pages.  
3. The Program Confirm command (code 10h) is no more necessary on NAND512-A2C  
devices. It is optional and has been maintained for backward compatibility.  
After a Copy Back Program operation, a partial-page program is not allowed in the target  
page until the block has been erased.  
See Figure 11 for an example of the Copy Back operation.  
Table 10. Copy Back Program addresses  
Density  
Same Address for Source and Target Pages  
512 Mbit  
A25  
Figure 11. Copy Back operation  
tBLBH1  
tBLBH2  
(Read Busy time)  
(Program Busy time)  
RB  
Busy  
Source  
Target  
Address Inputs  
(1)  
I/O  
00h  
8Ah  
10h  
70h  
SR0  
Address Inputs  
Read  
Code  
Copy Back  
Code  
Read Status Register  
ai13187  
1. The Program Confirm command (code 10h) is no more necessary on NAND512-A2C devices. It is optional and has been  
maintained for backward compatibility.  
24/51  
NAND512-A2C  
Device operations  
6.5  
Block Erase  
Erase operations are done one block at a time. An erase operation sets all of the bits in the  
addressed block to ‘1’. All previous data in the block is lost.  
An erase operation consists of three steps (refer to Figure 12):  
1. One bus cycle is required to setup the Block Erase command.  
2. Only three bus cycles for 512Mb and 1Gb devices, or two for 128Mb and 256Mb  
devices are required to input the block address. The first cycle (A0 to A7) is not  
required as only addresses A14 to A25 are valid, A9 to A13 are ignored. In the last  
address cycle I/O2 to I/O7 must be set to V .  
IL  
3. One bus cycle is required to issue the confirm command to start the P/E/R Controller.  
Once the erase operation has completed the Status Register can be checked for errors.  
Figure 12. Block Erase operation  
tBLBH3  
(Erase Busy time)  
RB  
Busy  
Block Address  
Inputs  
I/O  
60h  
D0h  
70h  
SR0  
Confirm  
Code  
Read Status Register  
Block Erase  
Setup Code  
ai07593  
6.6  
Reset  
The Reset command is used to reset the Command Interface and Status Register. If the  
Reset command is issued during any operation, the operation will be aborted. If it was a  
program or erase operation that was aborted, the contents of the memory locations being  
modified will no longer be valid as the data will be partially programmed or erased.  
If the device has already been reset then the new Reset command will not be accepted.  
The Ready/Busy signal goes Low for t  
after the Reset command is issued. The value  
BLBH4  
of t  
depends on the operation that the device was performing when the command was  
BLBH4  
issued, refer to Table 21 for the values.  
25/51  
Device operations  
NAND512-A2C  
6.7  
Read Status Register  
The device contains a Status Register which provides information on the current or previous  
Program or Erase operation. The various bits in the Status Register convey information and  
errors on the operation.  
The Status Register is read by issuing the Read Status Register command. The Status  
Register information is present on the output data bus (I/O0-I/O7) on the falling edge of Chip  
Enable or Read Enable, whichever occurs last. When several memories are connected in a  
system, the use of Chip Enable and Read Enable signals allows the system to poll each  
device separately, even when the Ready/Busy pins are common-wired. It is not necessary to  
toggle the Chip Enable or Read Enable signals to update the contents of the Status  
Register.  
After the Read Status Register command has been issued, the device remains in Read  
Status Register mode until another command is issued. Therefore if a Read Status Register  
command is issued during a Random Read cycle a new read command must be issued to  
continue with a Page Read.  
The Status Register bits are summarized in Table 11: Status Register bits. Refer to Table 11  
in conjunction with the following text descriptions.  
6.7.1  
Write Protection Bit (SR7)  
The Write Protection bit can be used to identify if the device is protected or not. If the Write  
Protection bit is set to ‘1’ the device is not protected and program or erase operations are  
allowed. If the Write Protection bit is set to ‘0’ the device is protected and program or erase  
operations are not allowed.  
6.7.2  
6.7.3  
6.7.4  
P/E/R Controller Bit (SR6)  
The Program/Erase/Read Controller bit indicates whether the P/E/R Controller is active or  
inactive. When the P/E/R Controller bit is set to ‘0’, the P/E/R Controller is active (device is  
busy); when the bit is set to ‘1’, the P/E/R Controller is inactive (device is ready).  
Error Bit (SR0)  
The Error bit is used to identify if any errors have been detected by the P/E/R Controller. The  
Error Bit is set to ’1’ when a program or erase operation has failed to write the correct data to  
the memory. If the Error Bit is set to ‘0’ the operation has completed successfully.  
SR5, SR4, SR3, SR2 and SR1 are reserved  
26/51  
NAND512-A2C  
Device operations  
Table 11. Status Register bits  
Bit  
Name  
Logic Level  
Definition  
'1'  
'0'  
'1'  
'0'  
Not Protected  
Protected  
SR7  
Write Protection  
P/E/R C inactive, device ready  
P/E/R C active, device busy  
Program/ Erase/ Read  
Controller  
SR6  
SR5, SR4,  
SR3, SR2,  
SR1  
Reserved  
Don’t Care  
‘1’  
‘0’  
Error – operation failed  
SR0  
Generic Error  
No Error – operation successful  
6.8  
Read Electronic Signature  
The device contains a Manufacturer Code and Device Code. To read these codes two steps  
are required:  
1. first use one Bus Write cycle to issue the Read Electronic Signature command (90h),  
followed by an address input of 00h.  
2. then perform two Bus Read operations – the first will read the Manufacturer Code and  
the second, the Device Code. Further Bus Read operations will be ignored.  
Refer to Table 12: Electronic signature, for information on the addresses.  
Table 12. Electronic signature  
Part number  
Manufacturer code  
Device code  
NAND512R3A2C  
NAND512W3A2C  
NAND512R4A2C  
NAND512W4A2C  
36h  
76h  
20h  
0046h  
0056h  
0020h  
27/51  
Software algorithms  
NAND512-A2C  
7
Software algorithms  
This section gives information on the software algorithms that Numonyx recommends to  
implement to manage the Bad Blocks and extend the lifetime of the NAND device.  
NAND Flash memories are programmed and erased by Fowler-Nordheim tunneling using a  
high voltage. Exposing the device to a high voltage for extended periods can cause the  
oxide layer to be damaged. For this reason, the number of program and erase cycles is  
limited (see Table 14 for value) and it is recommended to implement Garbage Collection, a  
Wear-Leveling Algorithm and an Error Correction Code, to extend the number of program  
and erase cycles and increase the data retention.  
To help integrate a NAND memory into an application Numonyx can provide:  
File System OS Native reference software, which supports the basic commands of file  
management.  
Contact the nearest Numonyx sales office for more details.  
7.1  
Bad Block management  
Devices with Bad Blocks have the same quality level and the same AC and DC  
characteristics as devices where all the blocks are valid. A Bad Block does not affect the  
performance of valid blocks because it is isolated from the bit line and common source line  
by a select transistor.  
The devices are supplied with all the locations inside valid blocks erased (FFh). The Bad  
Block Information is written prior to shipping. Any block where the 6th byte (x8 device) / 1st  
word (x16 device) in the spare area of the 1st page does not contain FFh is a Bad Block.  
The Bad Block Information must be read before any erase is attempted as the Bad Block  
Information may be erased. For the system to be able to recognize the Bad Blocks based on  
the original information it is recommended to create a Bad Block table following the  
flowchart shown in Figure 13.  
7.2  
NAND Flash memory failure modes  
Over the lifetime of the device additional Bad Blocks may develop.  
To implement a highly reliable system, all the possible failure modes must be considered:  
Program/Erase failure: in this case the block has to be replaced by copying the data to  
a valid block. These additional Bad Blocks can be identified as attempts to program or  
erase them will give errors in the Status Register.  
As the failure of a Page Program operation does not affect the data in other pages in  
the same block, the block can be replaced by re-programming the current data and  
copying the rest of the replaced block to an available valid block. The Copy Back  
Program command can be used to copy the data to a valid block. See Section 6.4:  
Copy Back Program for more details.  
Read failure: in this case, ECC correction must be implemented. To efficiently use the  
memory space, it is recommended to recover single-bit error in read by ECC, without  
replacing the whole block.  
Refer to Table 13 for the procedure to follow if an error occurs during an operation.  
28/51  
NAND512-A2C  
Software algorithms  
Table 13. NAND Flash failure modes  
Operation  
Procedure  
Erase  
Program  
Read  
Block Replacement  
Block Replacement or ECC  
ECC  
Figure 13. Bad Block management flowchart  
START  
Block Address =  
Block 0  
Increment  
Block Address  
Update  
Bad Block table  
Data  
= FFh?  
NO  
NO  
YES  
Last  
block?  
YES  
END  
AI07588C  
29/51  
Software algorithms  
NAND512-A2C  
7.3  
Garbage collection  
When a data page needs to be modified, it is faster to write to the first available page, and  
the previous page is marked as invalid. After several updates it is necessary to remove  
invalid pages to free some memory space.  
To free this memory space and allow further program operations it is recommended to  
implement a Garbage Collection algorithm. In a Garbage Collection software the valid  
pages are copied into a free area and the block containing the invalid pages is erased (see  
Figure 14).  
Figure 14. Garbage collection  
Old Area  
New Area (After GC)  
Valid  
Page  
Invalid  
Page  
Free  
Page  
(Erased)  
AI07599B  
7.4  
Wear-leveling algorithm  
For write-intensive applications, it is recommended to implement a Wear-leveling Algorithm  
to monitor and spread the number of write cycles per block.  
In memories that do not use a Wear-Leveling Algorithm not all blocks get used at the same  
rate. Blocks with long-lived data do not endure as many write cycles as the blocks with  
frequently-changed data.  
The Wear-leveling Algorithm ensures that equal use is made of all the available write cycles  
for each block. There are two wear-leveling levels:  
First Level Wear-leveling, new data is programmed to the free blocks that have had the  
fewest write cycles  
Second Level Wear-leveling, long-lived data is copied to another block so that the  
original block can be used for more frequently-changed data.  
The Second Level Wear-leveling is triggered when the difference between the maximum  
and the minimum number of write cycles per block reaches a specific threshold.  
7.5  
Error Correction Code  
An Error Correction Code (ECC) can be implemented in the Nand Flash memories to  
identify and correct errors in the data.  
For every 2048 bits in the device it is recommended to implement 22 bits of ECC (16 bits for  
line parity plus 6 bits for column parity).  
30/51  
NAND512-A2C  
Software algorithms  
An ECC model is available in VHDL or Verilog. Contact the nearest Numonyx sales office for  
more details.  
Figure 15. Error Detection  
New ECC generated  
during read  
XOR previous ECC  
with new ECC  
NO  
NO  
>1 bit  
= zero?  
All results  
= zero?  
YES  
YES  
22 bit data = 0  
11 bit data = 1  
1 bit data = 1  
ECC Error  
Correctable  
Error  
No Error  
ai08332  
7.6  
Hardware simulation models  
7.6.1  
Behavioral simulation models  
Denali Software Corporation models are platform independent functional models designed  
to assist customers in performing entire system simulations (typical VHDL/Verilog). These  
models describe the logic behavior and timings of NAND Flash devices, and so allow  
software to be developed before hardware.  
7.6.2  
IBIS simulations models  
IBIS (I/O Buffer Information Specification) models describe the behavior of the I/O buffers  
and electrical characteristics of Flash devices.  
These models provide information such as AC characteristics, rise/fall times and package  
mechanical data, all of which are measured or simulated at voltage and temperature ranges  
wider than those allowed by target specifications.  
IBIS models are used to simulate PCB connections and can be used to resolve compatibility  
issues when upgrading devices. They can be imported into SPICETOOLS.  
31/51  
Program and erase times and endurance cycles  
NAND512-A2C  
8
Program and erase times and endurance cycles  
The Program and Erase times and the number of Program/ Erase cycles per block are  
shown in Table 14.  
Table 14. Program, Erase Times and Program Erase Endurance Cycles  
NAND Flash  
Parameters  
Unit  
Min  
Typ  
Max  
Page Program Time  
Block Erase Time  
200  
2
500  
3
µs  
ms  
Program/Erase Cycles per block (with  
ECC)  
100,000  
10  
cycles  
years  
Data Retention  
32/51  
NAND512-A2C  
Maximum rating  
9
Maximum rating  
Stressing the device above the ratings listed in Table 15: Absolute Maximum Ratings, may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the Operating sections of  
this specification is not implied. Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability. Refer also to the Numonyx SURE Program  
and other relevant quality documents.  
Table 15. Absolute Maximum Ratings  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
TBIAS  
TSTG  
Temperature Under Bias  
Storage Temperature  
– 50  
– 65  
125  
150  
260  
2.7  
4.6  
2.7  
4.6  
°C  
°C  
°C  
V
TLEAD  
Lead temperature during soldering  
1.8V devices  
– 0.6  
– 0.6  
– 0.6  
– 0.6  
(1)  
VIO  
Input or Output Voltage  
Supply Voltage  
3 V devices  
1.8V devices  
3 V devices  
V
V
VDD  
V
1. Minimum Voltage may undershoot to –2V for less than 20ns during transitions on input and I/O pins.  
Maximum voltage may overshoot to VDD + 2V for less than 20ns during transitions on I/O pins.  
33/51  
DC and AC parameters  
NAND512-A2C  
10  
DC and AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC characteristics Tables that  
follow, are derived from tests performed under the Measurement Conditions summarized in  
Table 16: Operating and AC measurement conditions. Designers should check that the  
operating conditions in their circuit match the measurement conditions when relying on the  
quoted parameters.  
Table 16. Operating and AC measurement conditions  
NAND Flash  
Parameter  
Units  
Min  
Max  
1.8 V devices  
3 V devices  
Grade 6  
1.7  
2.7  
1.95  
3.6  
85  
V
V
Supply Voltage (VDD  
)
Ambient Temperature (TA)  
–40  
°C  
pF  
pF  
V
1.8 V devices  
3 V devices  
1.8 V devices  
3 V devices  
1.8 V devices  
3 V devices  
30  
50  
Load Capacitance (CL) (1 TTL GATE  
and CL)  
0
VDD  
2.4  
Input Pulses Voltages  
0.4  
V
0.9  
1.5  
5
V
Input and Output Timing Ref. Voltages  
V
Input Rise and Fall Times  
ns  
k  
Output Circuit Resistors, Rref  
8.35  
(1)(2)  
Table 17. Capacitance  
Symbol  
Parameter  
Test Condition  
Typ  
Max  
Unit  
CIN  
Input Capacitance  
VIN = 0 V  
10  
pF  
Input/Output  
Capacitance  
CI/O  
VIL = 0 V  
10  
pF  
1.  
TA = 25 °C, f = 1 MHz. CIN and CI/O are not 100% tested.  
2. Input/Output capacitances double on stacked devices.  
34/51  
NAND512-A2C  
DC and AC parameters  
M
(1)  
Table 18. DC characteristics, 1.8 V devices  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
tRLRL minimum  
Sequential  
Read  
IDD1  
-
8
15  
mA  
E=VIL, OUT = 0 mA  
I
Operating Current  
IDD2  
IDD3  
Program  
Erase  
-
-
-
-
8
8
15  
15  
mA  
mA  
E=VDD-0.2,  
WP=0/VDD  
IDD5  
Stand-By Current (CMOS)  
-
10  
50  
µA  
ILI  
ILO  
Input Leakage Current  
Output Leakage Current  
Input High Voltage  
VIN= 0 to VDDmax  
VOUT= 0 to VDDmax  
-
-
-
-
±10  
±10  
µA  
µA  
V
-
VIH  
VDD-0.4  
-
VDD+0.3  
0.4  
VIL  
Input Low Voltage  
-
-0.3  
-
V
VOH  
VOL  
Output High Voltage Level  
Output Low Voltage Level  
Output Low Current (RB)  
IOH = -100 µA  
IOL = 100 µA  
VOL = 0.1 V  
VDD-0.1  
-
-
V
-
-
0.1  
V
IOL (RB)  
3
4
mA  
VDD Supply Voltage (Erase and  
Program lockout)  
VLKO  
-
-
-
1.1  
V
1. Leakage currents double on stacked devices.  
Figure 16. Equivalent testing circuit for AC characteristics measurement  
V
DD  
2R  
ref  
NAND Flash  
C
L
2R  
ref  
GND  
GND  
Ai11085  
35/51  
DC and AC parameters  
NAND512-A2C  
(1)  
Table 19. DC Characteristics, 3V devices  
Symbol  
Parameter  
Test Conditions  
tRLRL minimum  
E=VIL, OUT = 0 mA  
Min  
Typ  
Max  
Unit  
Sequential  
Read  
IDD1  
-
10  
20  
mA  
I
Operating  
Current  
IDD2  
IDD3  
IDD4  
IDD5  
ILI  
Program  
Erase  
-
-
-
10  
10  
-
20  
20  
mA  
mA  
mA  
µA  
µA  
µA  
V
-
Stand-by Current (TTL),  
Stand-By Current (CMOS)  
Input Leakage Current  
Output Leakage Current  
Input High Voltage  
E=VIH, WP=0V/VDD  
E=VDD-0.2, WP=0/VDD  
VIN= 0 to VDDmax  
VOUT= 0 to VDDmax  
-
-
1
-
-
10  
-
50  
±10  
±10  
VDD+0.3  
0.8  
ILO  
-
-
VIH  
2.0  
0.3  
2.4  
-
-
VIL  
Input Low Voltage  
-
-
V
VOH  
VOL  
Output High Voltage Level  
Output Low Voltage Level  
Output Low Current (RB)  
IOH = 400µA  
IOL = 2.1mA  
-
-
V
-
0.4  
V
IOL (RB)  
VOL = 0.4V  
8
10  
mA  
VDD Supply Voltage (Erase and  
Program lockout)  
VLKO  
-
-
-
1.7  
V
1. Leakage currents double on stacked devices.  
Table 20. AC characteristics for Command, Address, Data Input  
Alt.  
1.8V  
devices devices  
3V  
Symbol  
Parameter  
Unit  
ns  
Symbol  
tALLWH  
tALHWH  
tCLHWH  
tCLLWH  
tDVWH  
Address Latch Low to Write Enable High  
Address Latch High to Write Enable High  
Command Latch High to Write Enable High  
Command Latch Low to Write Enable High  
Data Valid to Write Enable High  
tALS  
AL Setup time  
Min  
Min  
25  
25  
15  
15  
tCLS  
CL Setup time  
ns  
tDS  
tCS  
Data Setup time Min  
20  
30  
15  
20  
ns  
ns  
tELWH  
Chip Enable Low to Write Enable High  
Write Enable High to Address Latch High  
Write Enable High to Address Latch Low  
Write Enable High to Command Latch High  
Write Enable High to Command Latch Low  
Write Enable High to Data Transition  
E Setup time  
Min  
tWHALH  
tWHALL  
tWHCLH  
tWHCLL  
tWHDX  
tWHEH  
tALH  
AL Hold time  
Min  
10  
10  
5
5
ns  
ns  
tCLH  
CL hold time  
Min  
tDH  
tCH  
Data Hold time Min  
10  
10  
5
5
ns  
ns  
Write Enable High to Chip Enable High  
E Hold time  
Min  
Min  
Min  
W High Hold  
time  
tWHWL  
tWH  
Write Enable High to Write Enable Low  
15  
10  
ns  
tWLWH  
tWLWL  
tWP  
tWC  
Write Enable Low to Write Enable High  
Write Enable Low to Write Enable Low  
W Pulse Width  
25  
45  
15  
30  
ns  
ns  
Write Cycle time Min  
36/51  
NAND512-A2C  
DC and AC parameters  
Table 21. AC Characteristics for operations  
Alt.  
1.8V  
3V  
Symbol  
Parameter  
Unit  
Symbol  
devices devices  
tALLRL1  
tALLRL2  
tBHRL  
Read Electronic Signature  
Read cycle  
Min  
Min  
10  
10  
20  
15  
500  
3
10  
10  
20  
12  
500  
3
ns  
ns  
ns  
µs  
µs  
ms  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
Address Latch Low to  
Read Enable Low  
tAR  
tRR  
Ready/Busy High to Read Enable Low  
Read Busy time  
Min  
tBLBH1  
tBLBH2  
tBLBH3  
Max  
Max  
Max  
Max  
Max  
Max  
Max  
Min  
tPROG  
tBERS  
Program Busy time  
Erase Busy time  
Ready/Busy Low to  
Ready/Busy High  
Reset Busy time, during ready  
5
5
Reset Busy time, during read  
Reset Busy time, during program  
Reset Busy time, during erase  
5
5
tBLBH4  
tRST  
10  
500  
10  
0
10  
500  
10  
0
tCLLRL  
tDZRL  
tEHQZ  
tELQV  
tCLR  
tIR  
tCHZ  
tCEA  
Command Latch Low to Read Enable Low  
Data Hi-Z to Read Enable Low  
Chip Enable High to Output Hi-Z  
Chip Enable Low to Output Valid  
Read Enable High to  
Min  
Max  
Max  
30  
45  
30  
35  
tRHRL  
tREH  
tRHZ  
Read Enable High Hold time  
Min  
15  
30  
10  
30  
ns  
ns  
Read Enable Low  
tRHQZ  
tEHQX  
tRHQX  
Read Enable High to Output Hi-Z  
Max  
TOH  
Chip Enable high or Read Enable high to Output Hold  
Min  
10  
10  
ns  
Read Enable Low to  
Read Enable Pulse Width  
Read Enable High  
tRLRH  
tRLRL  
tRP  
tRC  
Min  
Min  
25  
50  
15  
30  
ns  
ns  
Read Enable Low to  
Read Cycle time  
Read Enable Low  
Read Enable Access time  
Read Enable Low to  
Read ES Access time(1)  
Output Valid  
tRLQV  
tREA  
Max  
Max  
30  
15  
18  
12  
ns  
µs  
Write Enable High to  
Read Busy time  
tWHBH  
tR  
Ready/Busy High  
tWHBL  
tWHRL  
tWB  
Write Enable High to Ready/Busy Low  
Write Enable High to Read Enable Low  
Max  
Min  
100  
60  
100  
60  
ns  
ns  
tWHR  
1. ES = Electronic Signature.  
37/51  
DC and AC parameters  
NAND512-A2C  
Figure 17. Command Latch AC waveforms  
CL  
tCLHWH  
tWHCLL  
(CL Setup time)  
(CL Hold time)  
tWHEH  
(E Hold time)  
tELWH  
H(E Setup time)  
E
tWLWH  
W
tALLWH  
tWHALH  
(ALSetup time)  
(AL Hold time)  
AL  
tDVWH  
(Data Setup time)  
tWHDX  
(Data Hold time)  
I/O  
Command  
ai13105  
Figure 18. Address Latch AC waveforms  
tCLLWH  
(CL Setup time)  
CL  
tWLWL  
tWLWL  
tWLWL  
tWLWL  
tELWH  
(E Setup time)  
E
tWLWH  
tWLWH  
tWLWH  
tWLWH  
tWLWH  
W
tWHWL  
tWHWL  
tWHWL  
tWHWL  
tALHWH  
(AL Setup time)  
tWHALL  
tWHALL  
tWHALL  
tWHALL  
(AL Hold time)  
AL  
I/O  
tDVWH  
tDVWH  
tDVWH  
tWHDX  
tDVWH  
tWHDX  
tDVWH  
tWHDX  
(Data Setup time)  
tWHDX  
tWHDX  
(Data Hold time)  
Adrress  
cycle 3  
Adrress  
cycle 2  
Adrress  
cycle 4  
Adrress  
cycle 5  
Adrress  
cycle 1  
ai13106  
38/51  
NAND512-A2C  
DC and AC parameters  
Figure 19. Data Input Latch AC waveforms  
tWHCLH  
(CL Hold time)  
CL  
E
tWHEH  
(E Hold time)  
tALLWH  
(ALSetup time)  
tWLWL  
AL  
tWLWH  
tWLWH  
tWLWH  
W
tDVWH  
tDVWH  
tWHDX  
tDVWH  
tWHDX  
(Data Setup time)  
tWHDX  
(Data Hold time)  
Data In  
Last  
I/O  
Data In 0  
Data In 1  
ai13107  
Figure 20. Sequential Data Output after Read AC waveforms  
tEHQX  
tEHQZ  
ai08031b  
1. CL = Low, AL = Low, W = High.  
39/51  
DC and AC parameters  
NAND512-A2C  
Figure 21. Read Status Register AC waveforms  
tEHQX  
Figure 22. Read Electronic Signature AC waveform  
CL  
E
W
AL  
tALLRL1  
R
tRLQV  
(Read ES Access time)  
Man.  
code  
Device  
code  
I/O  
90h  
00h  
Read Electronic 1st Cycle  
Manufacturer and  
Device Codes  
Signature  
Command  
Address  
ai08039b  
1. Refer to Table 12 for the values of the Manufacturer and Device Codes.  
40/51  
NAND512-A2C  
DC and AC parameters  
Figure 23. Page Read A/ Read B operation AC waveform  
CL  
E
tWLWL  
tEHQZ  
W
tWHBL  
AL  
tALLRL2  
tWHBH  
tRLRL  
tRHQZ  
(Read Cycle time)  
R
tRLRH  
tBLBH1  
RB  
I/O  
Data  
N
Data  
N+1  
Data  
N+2  
Data  
Last  
00h or  
01h  
Add.N Add.N Add.N  
cycle 2 cycle 3 cycle 4  
Add.N  
cycle 1  
Data Output  
from Address N to Last Byte or Word in Page  
Command  
Code  
Address N Input  
Busy  
tRHQX  
tEHQX  
ai08033c  
41/51  
DC and AC parameters  
NAND512-A2C  
Figure 24. Read C operation, One Page AC waveform  
CL  
E
W
tWHBH  
tWHALL  
AL  
tALLRL2  
tBHRL  
R
Data  
Last  
Add. M Add. M Add. M Add. M  
cycle 1 cycle 2 cycle 3 cycle 4  
I/O  
RB  
50h  
Data M  
Command  
Code  
Data Output from M to  
Last Byte or Word in Area C  
Address M Input  
Busy  
ai08035b  
1. A0-A7 is the address in the Spare Memory area, where A0-A3 are valid and A4-A7 are ‘don’t care’.  
42/51  
NAND512-A2C  
DC and AC parameters  
Figure 25. Page Program AC waveform  
CL  
E
tWLWL  
tWLWL  
tWLWL  
(Write Cycle time)  
W
tWHBL  
tBLBH2  
(Program Busy time)  
AL  
R
Add.N  
Add.N Add.N  
cycle 1 cycle 2  
Add.N  
cycle 3  
I/O  
RB  
80h  
Last  
N
10h  
70h  
SR0  
cycle 4  
Confirm  
Code  
Page Program  
Setup Code  
Page  
Program  
Address Input  
Data Input  
Read Status Register  
ai08037  
43/51  
DC and AC parameters  
NAND512-A2C  
Figure 26. Block Erase AC waveform  
CL  
E
tWLWL  
(Write Cycle time)  
W
AL  
R
tBLBH3  
tWHBL  
(Erase Busy time)  
Add.  
Add.  
Add.  
I/O  
RB  
60h  
D0h  
70h  
SR0  
cycle 1 cycle 2  
cycle 3  
Block Erase  
Setup Command  
Confirm  
Code  
Block Erase  
Read Status Register  
Block Address Input  
ai08038b  
Figure 27. Reset AC waveform  
W
AL  
CL  
R
I/O  
RB  
FFh  
tBLBH4  
(Reset Busy time)  
ai08043  
44/51  
NAND512-A2C  
DC and AC parameters  
10.1  
Ready/Busy signal electrical characteristics  
Figure 28, Figure 29 and Figure 30 show the electrical characteristics for the Ready/Busy  
signal. The value required for the resistor R can be calculated using the following equation:  
P
(
)
V
V
DDmax  
OLmax  
+ I  
R min= -------------------------------------------------------------  
P
I
L
OL  
So,  
1.85V  
R min(1.8V)= ---------------------------  
P
+
3mA  
I
L
3.2V  
R min(3V)= ---------------------------  
P
+
8mA  
I
L
where I is the sum of the input currents of all the devices tied to the Ready/Busy signal. R  
L
P
max is determined by the maximum value of t .  
r
Figure 28. Ready/Busy AC waveform  
ready V  
DD  
V
OH  
V
OL  
busy  
t
t
r
f
AI07564B  
Figure 29. Ready/Busy load circuit  
ibusy  
R
P
V
DD  
DEVICE  
RB  
Open Drain Output  
V
SS  
AI07563B  
45/51  
DC and AC parameters  
NAND512-A2C  
Figure 30. Resistor value versus waveform timings for Ready/Busy signal  
V
= 1.8V, C = 30pF  
V = 3.3V, C = 100pF  
DD L  
DD  
L
400  
300  
200  
400  
300  
200  
4
3
2
4
400  
3
2
300  
2.4  
200  
1.7  
120  
1.2  
100  
0
1
100  
0
1
0.85  
0.8  
100  
3.6  
90  
0.57  
0.6  
3.6  
60  
1.7  
0.43  
1.7  
30  
1.7  
3.6  
3.6  
1.7  
1
2
3
4
1
2
3
4
R
(KΩ)  
R (KΩ)  
P
P
t
t
r
ibusy  
f
ai07565B  
1. T = 25°C.  
10.2  
Data Protection  
The Numonyx NAND device is designed to guarantee Data Protection during Power  
Transitions.  
A V detection circuit disables all NAND operations, if V is below the V threshold.  
LKO  
DD  
DD  
In the V range from V  
to the lower limit of nominal range, the WP pin should be kept  
DD  
LKO  
low (V ) to guarantee hardware protection during power transitions as shown in the below  
IL  
figure.  
Figure 31. Data Protection  
Nominal Range  
V
DD  
V
LKO  
Locked  
Locked  
WP  
Ai13188  
46/51  
NAND512-A2C  
Package mechanical  
11  
Package mechanical  
Figure 32. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, package outline  
1
48  
e
D1  
B
L1  
24  
25  
A2  
A
E1  
E
A1  
α
L
DIE  
C
CP  
TSOP-G  
1. Drawing is not to scale.  
Table 22. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, package mechanical data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
B
1.200  
0.150  
1.050  
0.270  
0.210  
0.080  
12.100  
20.200  
18.500  
0.0472  
0.0059  
0.0413  
0.0106  
0.0083  
0.0031  
0.4764  
0.7953  
0.7283  
0.100  
1.000  
0.220  
0.050  
0.950  
0.170  
0.100  
0.0039  
0.0394  
0.0087  
0.0020  
0.0374  
0.0067  
0.0039  
C
CP  
D1  
E
12.000  
20.000  
18.400  
0.500  
0.600  
0.800  
3°  
11.900  
19.800  
18.300  
0.4724  
0.7874  
0.7244  
0.0197  
0.0236  
0.0315  
3°  
0.4685  
0.7795  
0.7205  
E1  
e
L
0.500  
0.700  
0.0197  
0.0276  
L1  
α
0°  
5°  
0°  
5°  
47/51  
Package mechanical  
NAND512-A2C  
Figure 33. VFBGA63 9x11mm - 6x8 active ball array, 0.80mm pitch, package outline  
D
D2  
D1  
FD1  
FE  
e
SE  
b
E
E2 E1  
ddd  
BALL "A1"  
FE1  
A
A2  
e
SD  
FD  
A1  
BGA-Z75  
1. Drawing is not to scale.  
Table 23. VFBGA63 9x11mm - 6x8 active ball array, 0.80mm pitch, package mechanical data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.05  
0.041  
0.25  
0.010  
0.70  
0.50  
9.10  
0.028  
0.020  
0.358  
0.45  
9.00  
4.00  
7.20  
0.40  
8.90  
0.018  
0.354  
0.157  
0.283  
0.016  
0.350  
D
D1  
D2  
ddd  
E
0.10  
0.004  
0.437  
11.00  
5.60  
8.80  
0.80  
2.50  
0.90  
2.70  
1.10  
0.40  
0.40  
10.90  
11.10  
0.433  
0.220  
0.346  
0.031  
0.098  
0.035  
0.106  
0.043  
0.016  
0.016  
0.429  
E1  
E2  
e
FD  
FD1  
FE  
FE1  
SD  
SE  
48/51  
NAND512-A2C  
Ordering information  
12  
Ordering information  
Table 24. Ordering information scheme  
Example:  
NAND512R3A  
2
C
ZA  
6
E
Device type  
NAND = NAND Flash memory  
Density  
512 = 512Mb  
Operating voltage  
R = VDD = 1.7 to 1.95 V  
W = VDD = 2.7 to 3.6 V  
Bus width  
3 = x 8  
4 = x 16(1)  
Family identifier  
A = 528 bytes/ 264 word page  
Device options  
2 = Chip Enable Don’t Care Enabled  
Product version  
C = Third Version  
Package  
N = TSOP48 12 x 20 mm  
ZA = VFBGA63 9 x 11 x 1 mm, 6 x 8 ball array, 0.8 mm pitch  
Temperature range  
6 = –40 to 85 °C  
Option  
E = ECOPACK package, standard packing  
F = ECOPACK package, tape & reel packing  
1. x16 organization available for MCP only.  
Devices are shipped from the factory with the memory content bits, in valid blocks, erased to  
’1’. For further information on any aspect of this device, please contact your nearest  
Numonyx Sales Office.  
49/51  
Revision history  
NAND512-A2C  
13  
Revision history  
Table 25. Document revision history  
Date  
Revision  
Changes  
26-Oct-2006  
0.1  
Initial release.  
Datasheet status upgraded to ‘Full datasheet’.  
USOP48 package removed.  
08-Feb-2007  
04-Jan-2008  
1
2
Data integrity of 100,000 specified for ECC implemented.  
tWHBH1 removed from Table 21: AC Characteristics for operations.  
Applied Numonyx branding.  
50/51  
NAND512-A2C  
Please Read Carefully:  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR  
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT  
AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY  
WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF  
NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility  
applications.  
Numonyx may make changes to specifications and product descriptions at any time, without notice.  
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the  
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied,  
by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves  
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by  
visiting Numonyx's website at http://www.numonyx.com.  
Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 11/5/7, Numonyx B.V. All Rights Reserved.  
51/51  

相关型号:

NAND512R3A2CN6F

512 Mbit, 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
NUMONYX

NAND512R3A2CN6F

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND512R3A2CN6T

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND512R3A2CV1

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND512R3A2CV1E

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND512R3A2CV1F

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND512R3A2CV1T

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND512R3A2CV6

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND512R3A2CV6E

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND512R3A2CV6F

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND512R3A2CV6T

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND512R3A2CZA1

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR