NAND512R4A0DN6E [NUMONYX]

Flash, 32MX16, 15000ns, PDSO48, 12 X 20 MM, ROHS COMPLIANT, PLASTIC, TSOP-48;
NAND512R4A0DN6E
型号: NAND512R4A0DN6E
厂家: NUMONYX B.V    NUMONYX B.V
描述:

Flash, 32MX16, 15000ns, PDSO48, 12 X 20 MM, ROHS COMPLIANT, PLASTIC, TSOP-48

光电二极管 内存集成电路
文件: 总53页 (文件大小:1334K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NAND512xxA2D  
NAND01GxxA2C  
512-Mbit, 1-Gbit, 528-byte/264-word page,  
1.8 V/3 V, SLC NAND flash memories  
Features  
High density SLC NAND flash memories  
512-Mbit, 1-Gbit memory array  
Cost effective solutions for mass  
storage applications  
NAND interface  
TSOP48 12 x 20 mm (N)  
x8 or x16 bus width  
Multiplexed address/ data  
FBGA  
Supply voltage: 1.8 V, 3 V  
Page size  
VFBGA63 9 x 11 x 1.05 mm (ZA)  
x8 device: (512 + 16 spare) bytes  
x16 device: (256 + 8 spare) words  
Block size  
Hardware data protection: program/erase  
locked during power transitions  
x8 device: (16 K + 512 spare) bytes  
x16 device: (8 K + 256 spare) words  
Security features  
Page read/program  
OTP area  
Random access:  
12 µs (3 V)/15 µs (1.8 V) (max)  
Serial number (unique ID)  
Data integrity  
Sequential access:  
30 ns (3 V)/50 ns (1.8 V) (min)  
100,000 program/erase cycles (with  
ECC)  
Page program time: 200 µs (typ)  
10 years data retention  
Copy back program mode  
Fast block erase: 1.5 ms (typ)  
Status register  
RoHS compliant packages  
Development tools  
Error correction code models  
Electronic signature  
Bad blocks management and wear  
leveling algorithms  
Chip Enable ‘don’t care’  
Hardware simulation models  
Table 1.  
Device summary  
NAND512xxA2D  
NAND01GxxA2C  
NAND512R3A2D  
NAND512R4A2D  
NAND512W3A2D  
NAND512W4A2D  
NAND01GR3A2C  
NAND01GR4A2C  
NAND01GW3A2C  
NAND01GW4A2C  
November 2009  
Rev 7  
1/53  
www.numonyx.com  
1
Contents  
NAND512xxA2D, NAND01GxxA2C  
Contents  
1
2
3
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Memory array organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
3.10  
3.11  
Inputs/outputs (I/O0-I/O7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Inputs/outputs (I/O8-I/O15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Address Latch Enable (AL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Command Latch Enable (CL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Chip Enable (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Read Enable (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Write Enable (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Write Protect (WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Ready/Busy (RB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
V
V
DD supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
SS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
Command input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Address input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Data output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5
6
Command set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Device operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.1  
6.2  
Pointer operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Read memory array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.2.1  
6.2.2  
6.2.3  
Random read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Page read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Sequential row read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2/53  
NAND512xxA2D, NAND01GxxA2C  
Contents  
6.3  
6.4  
6.5  
6.6  
6.7  
Page program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Copy back program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Block erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Read status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.7.1  
6.7.2  
6.7.3  
6.7.4  
Write protection bit (SR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
P/E/R controller bit (SR6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Error bit (SR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
SR5, SR4, SR3, SR2 and SR1 are reserved . . . . . . . . . . . . . . . . . . . . . 27  
6.8  
Read electronic signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
7
Software algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
Bad block management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
NAND flash memory failure modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Garbage collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Wear-leveling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Error correction code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Hardware simulation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
7.6.1  
7.6.2  
Behavioral simulation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
IBIS simulations models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
8
Program and erase times and endurance cycles . . . . . . . . . . . . . . . . . 33  
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
9
10  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
10.1 Ready/Busy signal electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 45  
10.2 Data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
11  
12  
13  
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
3/53  
List of tables  
NAND512xxA2D, NAND01GxxA2C  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Signals names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Valid blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Address insertion, x8 devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Address insertion, x16 devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Address definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Copy back program addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Status register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Electronic signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
NAND flash failure modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Program, erase times and program erase endurance cycles . . . . . . . . . . . . . . . . . . . . . . . 33  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Operating and AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
DC characteristics, 1.8 V devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
DC characteristics, 3 V devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
AC characteristics for command, address, data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
AC characteristics for operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package mechanical data. . . . . 48  
VFBGA63 9 x 11 x 1.05 mm - 6 x 8 +15, 0.80 mm pitch, package mechanical data . . . . . 50  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
4/53  
NAND512xxA2D, NAND01GxxA2C  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Logic block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
TSOP48 connections - x8 devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
VFBGA63 connections - x8 devices (top view through package). . . . . . . . . . . . . . . . . . . . 10  
Memory array organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pointer operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Pointer operations for programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Read (A,B,C) operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Sequential row read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 10. Sequential row read block diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 11. Read block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 12. Page program operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 13. Copy back operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 14. Block erase operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 15. Bad block management flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 16. Garbage collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 17. Equivalent testing circuit for AC characteristics measurement. . . . . . . . . . . . . . . . . . . . . . 35  
Figure 18. Command Latch AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 19. Address Latch AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 20. Data Input Latch AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 21. Sequential data output after read AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 22. Read status register AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 23. Read electronic signature AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 24. Page read A/ read B operation AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 25. Read C operation, one page AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 26. Page program AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 27. Block erase AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 28. Reset AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 29. Program/erase enable waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 30. Program/erase disable waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 31. Ready/Busy AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 32. Ready/Busy load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 33. Resistor value versus waveform timings for Ready/Busy signal. . . . . . . . . . . . . . . . . . . . . 47  
Figure 34. Data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 35. TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package outline . . . . . . . . . . . . 48  
Figure 36. VFBGA63 9 x 11 x 1.05 mm - 6 x 8 +15, 0.80 mm pitch, package outline . . . . . . . . . . . . . 49  
5/53  
Description  
NAND512xxA2D, NAND01GxxA2C  
1
Description  
The NAND flash 528-byte/264-word page is a family of non-volatile flash memories that  
uses the single level cell (SLC) NAND technology. It is referred to as the small page family.  
The NAND512xxA2D and NAND01GxxA2C devices have a density of 512 Mbits and 1 Gbit,  
respectively. They operate with either a 1.8 V or 3 V voltage supply. The size of a page is  
either 528 bytes (512 + 16 spare) or 264 words (256 + 8 spare) depending on whether the  
device has a x8 or x16 bus width.  
The address lines are multiplexed with the data input/output signals on a multiplexed x8 or  
x16 input/output bus. This interface reduces the pin count and makes it possible to migrate  
to other densities without changing the footprint.  
To extend the lifetime of NAND flash devices it is mandatory to implement an error  
correction code (ECC). The use of ECC correction allows to achieve up to 100,000  
program/erase cycles for each block. A write protect pin is available to give a hardware  
protection against program and erase operations.  
The devices feature an open-drain ready/busy output that can be used to identify if the  
program/erase/read (P/E/R) controller is currently active. The use of an open-drain output  
allows the ready/busy pins from several memories to be connected to a single pull-up  
resistor.  
A Copy Back command is available to optimize the management of defective blocks. When  
a page program operation fails, the data can be programmed in another page without having  
to resend the data to be programmed.  
The NAND512xxA2D devices are available in the TSOP48 (12 x 20 mm) and VFBGA63  
(9 x 11 x 1.05 mm) packages while the NAND01GxxA2C devices are only available in the  
TSOP48 (12 x 20 mm) package.  
The NAND512xxA2D and NAND01GxxA2C devices are available in two different versions:  
No option (Chip Enable ‘care’, sequential row read enabled): the sequential row read  
feature allows to download up to all the pages in a block with one read command and  
addressing only the first page to read  
With Chip Enable ‘don’t care’ feature. This enables the sharing of the bus between  
more active memories that are simultaneously active as Chip Enable transitions during  
latency do not stop read operations. Program and erase operations are not interrupted  
by Chip Enable transitions.  
and come with two security features:  
OTP (one time programmable) area, which is a restricted access area where sensitive  
data/code can be stored permanently. The access sequence and further details about  
this feature are subject to an NDA (non disclosure agreement)  
Serial number (unique identifier), which enables each device to be uniquely identified. It  
is subject to an NDA and is, therefore, not described in the datasheet.  
For more details about these security features, contact your nearest Numonyx sales office.  
For information on how to order these options refer to Table 24: Ordering information  
scheme. Devices are shipped from the factory with block 0 always valid and the memory  
content bits, in valid blocks, erased to ’1’.  
Table 2: Product description lists the part numbers and other information for all the devices  
in the family.  
6/53  
NAND512xxA2D, NAND01GxxA2C  
Description  
Table 2.  
Product description  
Timings  
Random Sequential  
Bus  
width  
Page  
size  
Block  
size  
Memory  
array  
Operating  
voltage  
Reference  
Part number  
Density  
Package  
Page  
Block  
access  
Max  
access  
Min  
program erase  
Typ  
Typ  
NAND512R3A2D  
NAND512W3A2D  
NAND512R4A2D  
NAND512W4A2D  
NAND01GR3A2C  
NAND01GW3A2C  
NAND01GR4A2C  
NAND01GW4A2C  
1.7 to 1.95 V  
2.7 to 3.6 V  
1.7 to 1.95 V  
2.7 to 3.6 V  
1.7 to 1.95 V  
2.7 to 3.6 V  
1.7 to 1.95 V  
2.7 to 3.6 V  
15 µs  
12 µs  
15 µs  
12 µs  
15 µs  
12 µs  
15 µs  
12 µs  
50 ns  
30 ns  
50 ns  
30 ns  
50 ns  
30 ns  
50 ns  
30 ns  
512+16 16K+512  
x8  
x16  
x8  
bytes  
bytes  
512  
Mbits  
32 pages x  
4096 blocks  
TSOP48  
VFBGA63  
NAND512xxA2D  
256+8  
words  
8K+256  
words  
200 µs  
2 ms  
512+16 16K+512  
bytes  
bytes  
32 pages x  
8192 blocks  
NAND01GxxA2C  
1 Gbit  
TSOP48  
256+8  
words  
8K+256  
words  
x16  
Figure 1.  
Logic diagram  
V
DD  
8
I/O8-I/O15, x16  
E
I/O0-I/O7, x8/x16  
R
W
NAND flash  
RB  
AL  
CL  
WP  
V
SS  
AI07557C  
7/53  
Description  
NAND512xxA2D, NAND01GxxA2C  
Table 3.  
Signal  
Signals names  
Function  
Data input/outputs for x16 devices  
Direction  
I/O8-I/O15  
I/O0-I/O7  
I/O  
Data inputs/outputs, address inputs, or command inputs for x8 and  
x16 devices  
I/O  
AL  
CL  
E
Address Latch Enable  
Command Latch Enable  
Chip Enable  
Input  
Input  
Input  
R
Read Enable  
Input  
RB  
W
Ready/Busy (open-drain output)  
Write Enable  
Output  
Input  
WP  
VDD  
VSS  
NC  
DU  
Write Protect  
Input  
Supply voltage  
Power supply  
Ground  
Ground  
Not connected internally  
Do not use  
Figure 2.  
Logic block diagram  
Address  
register/counter  
AL  
CL  
W
NAND flash  
memory array  
P/E/R controller,  
high voltage  
generator  
Command  
interface  
logic  
E
WP  
R
Page buffer  
Y decoder  
Command register  
I/O buffers & latches  
RB  
I/O0-I/O7, x8/x16  
I/O8-I/O15, x16  
AI07561c  
8/53  
NAND512xxA2D, NAND01GxxA2C  
Description  
Figure 3.  
TSOP48 connections - x8 devices  
NC  
NC  
NC  
NC  
NC  
NC  
RB  
R
1
48  
NC  
NC  
NC  
NC  
I/O7  
I/O6  
I/O5  
I/O4  
NC  
E
NC  
NC  
NC  
NC  
NAND flash  
(x8)  
V
12  
13  
37  
36  
V
V
DD  
DD  
SS  
V
SS  
NC  
NC  
CL  
AL  
NC  
NC  
NC  
I/O3  
I/O2  
I/O1  
I/O0  
W
WP  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
24  
25  
AI07585C  
9/53  
Description  
Figure 4.  
NAND512xxA2D, NAND01GxxA2C  
VFBGA63 connections - x8 devices (top view through package)  
1
2
3
4
5
6
7
8
9
10  
DU  
DU  
DU  
A
B
DU  
DU  
DU  
DU  
AL  
V
SS  
C
WP  
E
W
RB  
D
E
F
NC  
NC  
NC  
NC  
R
CL  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
I/O3  
NC  
NC  
G
H
J
NC  
NC  
NC  
NC  
I/O0  
I/O1  
I/O2  
NC  
V
DD  
V
I/O5  
I/O6  
I/O7  
DD  
V
K
L
I/O4  
V
SS  
SS  
DU  
DU  
DU  
DU  
DU  
DU  
DU  
DU  
M
AI13103  
10/53  
NAND512xxA2D, NAND01GxxA2C  
Memory array organization  
2
Memory array organization  
The memory array is made up of NAND structures where 16 cells are connected in series.  
The memory array is organized in blocks where each block contains 32 pages. The array is  
split into two areas, the main area and the spare area. The main area of the array is used to  
store data whereas the spare area is typically used to store error correction codes, software  
flags or bad block identification.  
In x8 devices the pages are split into a main area with two half pages of 256 bytes each and  
a spare area of 16 bytes. In the x16 devices the pages are split into a 256-word main area  
and an 8-word spare area. Refer to Figure 5: Memory array organization.  
Bad blocks  
The NAND flash 528-byte/264-word page devices may contain bad blocks, that is blocks  
that contain one or more invalid bits whose reliability is not guaranteed. Additional bad  
blocks may develop during the lifetime of the device.  
The bad block information is written prior to shipping (refer to Section 7.1: Bad block  
management for more details).  
Table 4 shows the minimum number of valid blocks in each device. The values shown  
include both the bad blocks that are present when the device is shipped and the bad blocks  
that could develop later on.  
These blocks need to be managed using bad blocks management, block replacement or  
error correction codes (refer to Section 7: Software algorithms).  
Table 4.  
Valid blocks  
Density of device  
Min  
Max  
512 Mbits  
1 Gbit  
4016  
8032  
4096  
8192  
11/53  
Memory array organization  
NAND512xxA2D, NAND01GxxA2C  
Figure 5.  
Memory array organization  
x8 DEVICES  
x16 DEVICES  
Block = 32 pages  
Block = 32 pages  
Page = 528 bytes (512+16)  
Page = 264 words (256+8)  
Spare area  
Spare area  
Main area  
1st half page 2nd half page  
(256 bytes) (256 bytes)  
Block  
Page  
Block  
Page  
8 bits  
16 bits  
256 words  
8
512 bytes  
16  
bytes  
words  
Page buffer, 264 words  
8
Page buffer, 512 bytes  
16  
256 words  
words  
512 bytes  
16 bits  
bytes  
8 bits  
AI07587  
12/53  
NAND512xxA2D, NAND01GxxA2C  
Signals description  
3
Signals description  
See Figure 1: Logic diagram, and Table 3: Signals names, for a brief overview of the signals  
connected to this device.  
3.1  
Inputs/outputs (I/O0-I/O7)  
Inputs/outputs 0 to 7 are used to input the selected address, output the data during a read  
operation or input a command or data during a write operation. The inputs are latched on  
the rising edge of Write Enable. I/O0-I/O7 are left floating when the device is deselected or  
the outputs are disabled.  
3.2  
Inputs/outputs (I/O8-I/O15)  
Inputs/outputs 8 to 15 are only available in x16 devices. They are used to output the data  
during a read operation or input data during a write operation. Command and address  
inputs only require I/O0 to I/O7.  
The inputs are latched on the rising edge of Write Enable. I/O8-I/O15 are left floating when  
the device is deselected or the outputs are disabled.  
3.3  
3.4  
3.5  
Address Latch Enable (AL)  
The Address Latch Enable activates the latching of the address inputs in the command  
interface. When AL is High, the inputs are latched on the rising edge of Write Enable.  
Command Latch Enable (CL)  
The Command Latch Enable activates the latching of the command inputs in the command  
interface. When CL is High, the inputs are latched on the rising edge of Write Enable.  
Chip Enable (E)  
The Chip Enable input activates the memory control logic, input buffers, decoders and read  
circuitry. When Chip Enable is Low, V , the device is selected.  
IL  
If Chip Enable goes High (V ) while the device is busy programming or erasing, the device  
IH  
remains selected and does not go into standby mode.  
While the device is busy reading:  
the Chip Enable input should be held Low during the whole busy time (t  
devices that do not feature the Chip Enable don’t care option. Otherwise, the read  
operation in progress is interrupted and the device goes into standby mode.  
) for  
BLBH1  
for devices that feature the Chip Enable don’t care option, the Chip Enable going High  
during the busy time (t  
go into standby mode.  
) will not interrupt the read operation and the device will not  
BLBH1  
13/53  
Signals description  
NAND512xxA2D, NAND01GxxA2C  
3.6  
Read Enable (R)  
The Read Enable, R, controls the sequential data output during read operations. Data is  
valid t  
after the falling edge of R. The falling edge of R also increments the internal  
RLQV  
column address counter by one.  
3.7  
Write Enable (W)  
The Write Enable input, W, controls writing to the command interface, input address and  
data latches. Both addresses and data are latched on the rising edge of Write Enable.  
During power-up and power-down a recovery time of 10 µs (min) is required before the  
command interface is ready to accept a command. It is recommended to keep Write Enable  
High during the recovery time.  
3.8  
3.9  
Write Protect (WP)  
The Write Protect pin is an input that gives a hardware protection against unwanted program  
or erase operations. When Write Protect is Low, V , the device does not accept any  
program or erase operations.  
IL  
It is recommended to keep the Write Protect pin Low, V , during power-up and power-down.  
IL  
Ready/Busy (RB)  
The Ready/Busy output, RB, is an open-drain output that can be used to identify if the P/E/R  
controller is currently active.  
When Ready/Busy is Low, V , a read, program or erase operation is in progress. When the  
OL  
operation completes Ready/Busy goes High, V  
.
OH  
The use of an open-drain output allows the Ready/Busy pins from several memories to be  
connected to a single pull-up resistor. A Low will then indicate that one, or more, of the  
memories is busy.  
During power-up and power-down a recovery time of 10 µs (min) is required before the  
command interface is ready to accept a command. During the recovery time the RB signal is  
Low, V  
.
OL  
Refer to the Section 10.1: Ready/Busy signal electrical characteristics for details on how to  
calculate the value of the pull-up resistor.  
3.10  
VDD supply voltage  
V
provides the power supply to the internal core of the memory device. It is the main  
DD  
power supply for all operations (read, program and erase).  
An internal voltage detector disables all functions whenever V is below the V  
threshold  
LKO  
DD  
(see Figure 34: Data protection) to protect the device from any involuntary program/erase  
operations during power-transitions.  
Each device in a system should have V decoupled with a 0.1 µF capacitor. The PCB track  
DD  
widths should be sufficient to carry the required program and erase currents  
14/53  
NAND512xxA2D, NAND01GxxA2C  
Signals description  
3.11  
VSS ground  
Ground, V  
ground.  
is the reference for the power supply. It must be connected to the system  
SS,  
15/53  
Bus operations  
NAND512xxA2D, NAND01GxxA2C  
4
Bus operations  
There are six standard bus operations that control the memory. Each of these is described  
in this section, see Table 5: Bus operations, for a summary.  
4.1  
Command input  
Command input bus operations are used to give commands to the memory. Command are  
accepted when Chip Enable is Low, Command Latch Enable is High, Address Latch Enable  
is Low and Read Enable is High. They are latched on the rising edge of the Write Enable  
signal.  
Only I/O0 to I/O7 are used to input commands.  
See Figure 18 and Table 20 for details of the timings requirements.  
4.2  
Address input  
Address input bus operations are used to input the memory address. Three bus cycles are  
required to input the addresses for the 128-Mbit and 256-Mbit devices and four bus cycles  
are required to input the addresses for the 512-Mbit and 1-Gbit devices (refer to Table 6 and  
Table 7, Address Insertion).  
The addresses are accepted when Chip Enable is Low, Address Latch Enable is High,  
Command Latch Enable is Low and Read Enable is High. They are latched on the rising  
edge of the Write Enable signal. Only I/O0 to I/O7 are used to input addresses.  
See Figure 19 and Table 20 for details of the timings requirements.  
4.3  
4.4  
Data input  
Data input bus operations are used to input the data to be programmed.  
Data is accepted only when Chip Enable is Low, Address Latch Enable is Low, Command  
Latch Enable is Low and Read Enable is High. The data is latched on the rising edge of the  
Write Enable signal. The data is input sequentially using the Write Enable signal.  
See Figure 20, Table 20, and Table 21 for details of the timings requirements.  
Data output  
Data Output bus operations are used to read: the data in the memory array, the status  
register, the electronic signature and the serial number.  
Data is output when Chip Enable is Low, Write Enable is High, Address Latch Enable is Low,  
and Command Latch Enable is Low.  
The data is output sequentially using the Read Enable signal.  
See Figure 21 and Table 21 for details of the timings requirements.  
16/53  
NAND512xxA2D, NAND01GxxA2C  
Bus operations  
4.5  
Write protect  
Write protect bus operations are used to protect the memory against program or erase  
operations. When the Write Protect signal is Low the device will not accept program or erase  
operations and so the contents of the memory array cannot be altered. The Write Protect  
signal is not latched by Write Enable to ensure protection even during power-up.  
4.6  
Standby  
When Chip Enable is High the memory enters standby mode, the device is deselected,  
outputs are disabled and power consumption is reduced.  
Table 5.  
Bus operations  
Bus operation  
E
AL  
CL  
R
W
WP  
I/O0 - I/O7  
I/O8 - I/O15(1)  
Command input  
Address input  
Data input  
VIL  
VIL  
VIL  
VIL  
X
VIL  
VIH  
VIL  
VIL  
X
VIH  
VIL  
VIL  
VIL  
X
VIH  
VIH  
VIH  
Falling  
X
Rising X(2)  
Command  
Address  
Data input  
Data output  
X
X
Rising  
Rising  
VIH  
X
X
X
Data input  
Data output  
Write protect  
Standby  
X
Data output  
X
VIL  
X
X
X
VIH  
X
X
X
X
X
1. Only for x16 devices.  
2. WP must be VIH when issuing a program or erase command.  
(1)(2)  
Table 6.  
Address insertion, x8 devices  
Bus  
cycle  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
1st  
2nd  
3rd  
4th  
A7  
A16  
A24  
VIL  
A6  
A15  
A23  
VIL  
A5  
A14  
A22  
VIL  
A4  
A13  
A21  
VIL  
A3  
A12  
A20  
VIL  
A2  
A11  
A19  
VIL  
A1  
A10  
A0  
A9  
A18  
A17  
A25  
A26(3)  
1. A8 is set Low or High by the 00h or 01h command, see Section 6.1: Pointer operations.  
2. Any additional address input cycles is ignored.  
3. Only for 1-Gbit devices.  
(1)(2)  
Table 7.  
Address insertion, x16 devices  
I/O8-  
I/O15  
Bus  
cycle  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
1st  
2nd  
3rd  
4th  
X
X
X
X
A7  
A16  
A24  
VIL  
A6  
A15  
A23  
VIL  
A5  
A14  
A22  
VIL  
A4  
A13  
A21  
VIL  
A3  
A12  
A20  
VIL  
A2  
A11  
A19  
VIL  
A1  
A10  
A0  
A9  
A18  
A17  
A25  
A26(3)  
1. A8 is don’t care in x16 devices.  
2. Any additional address input cycle is ignored.  
3. Only for 1-Gbit devices.  
17/53  
Bus operations  
NAND512xxA2D, NAND01GxxA2C  
Table 8.  
Address definition  
NAND512xxA2D  
NAND01GxxA2C  
Definition  
Address  
Definition  
Address  
A0 - A7  
A9 - A25  
A9 - A13  
A14 - A25  
Column address  
Page address  
Address in block  
Block address  
A0 - A7  
A9 - A26  
A9 - A13  
A14 - A26  
Column address  
Page address  
Address in block  
Block address  
A8 is set Low or High by the 00h or  
01h command, and is don’t care in  
x16 devices  
A8 is set Low or High by the 00h or  
01h command, and is don’t care in  
x16 devices  
A8  
A8  
A25  
Plane address  
A25, A26  
Plane address  
18/53  
NAND512xxA2D, NAND01GxxA2C  
Command set  
5
Command set  
All bus write operations to the device are interpreted by the command interface. The  
commands are input on I/O0-I/O7 and are latched on the rising edge of Write Enable when  
the Command Latch Enable signal is High. Device operations are selected by writing  
specific commands to the command register. The two-step command sequences for  
program and erase operations are imposed to maximize data security.  
The commands are summarized in Table 9.  
Table 9.  
Commands  
Command  
Bus write operations(1)(2)  
Command  
accepted during  
busy  
1
st cycle  
2nd cycle  
3rd cycle  
Read A  
00h  
01h  
50h  
90h  
70h  
80h  
00h  
60h  
FFh  
Read B(3)  
Read C  
Read Electronic Signature  
Read Status Register  
Page Program  
Yes  
Yes  
10h  
8Ah  
D0h  
Copy Back Program  
Block Erase  
(10h)(4)  
Reset  
1. The bus cycles are only shown for issuing the codes. The cycles required to input the addresses or  
input/output data are not shown.  
2. Any undefined command sequence is ignored by the device.  
3. The Read B command (code 01h) is not used in x16 devices.  
4. The Program Confirm command (code 10h) is no more necessary for NAND512xxA2D devices. It is  
optional and has been maintained for backward compatibility.  
19/53  
Device operations  
NAND512xxA2D, NAND01GxxA2C  
6
Device operations  
6.1  
Pointer operations  
As the NAND flash memories contain two different areas for x16 devices and three different  
areas for x8 devices (see Figure 6) the read command codes (00h, 01h, 50h) are used to  
act as pointers to the different areas of the memory array (they select the most significant  
column address).  
The Read A and Read B commands act as pointers to the main memory area. Their use  
depends on the bus width of the device.  
In x16 devices the Read A command (00h) sets the pointer to area A (the whole of the  
main area) that is words 0 to 255.  
In x8 devices the Read A command (00h) sets the pointer to area A (the first half of the  
main area) that is bytes 0 to 255, and the Read B command (01h) sets the pointer to  
area B (the second half of the main area) that is bytes 256 to 511.  
In both the x8 and x16 devices the Read C command (50h), acts as a pointer to area C (the  
spare memory area) that is bytes 512 to 527 or words 256 to 263.  
Once the Read A and Read C commands have been issued the pointer remains in the  
respective areas until another pointer code is issued. However, the Read B command is  
effective for only one operation, once an operation has been executed in area B the pointer  
returns automatically to area A.  
The pointer operations can also be used before a program operation, that is the appropriate  
code (00h, 01h or 50h) can be issued before the program command 80h is issued (see  
Figure 7).  
Figure 6.  
Pointer operations  
x8 devices  
x16 devices  
Area A  
(00h)  
Area B  
(01h)  
Area C  
(50h)  
Area A  
(00h)  
Area C  
(50h)  
bytes  
words  
bytes 0 - 255 bytes 256 - 511  
words 0 - 255  
512 - 527  
256 - 263  
A
B
C
Page buffer  
A
C
Page buffer  
Pointer  
(00h,01h,50h)  
Pointer  
(00h,50h)  
AI07592  
20/53  
NAND512xxA2D, NAND01GxxA2C  
Device operations  
Figure 7.  
Pointer operations for programming  
AREA A  
10h  
Address  
Inputs  
Address  
Inputs  
80h  
I/O  
00h  
Data Input  
80h  
00h  
Data Input  
10h  
Areas A, B, C can be programmed depending on how much data is input. Subsequent 00h commands can be omitted.  
AREA B  
Address  
Inputs  
Address  
Inputs  
80h  
I/O  
01h  
Data Input  
10h  
80h  
01h  
Data Input  
10h  
Areas B, C can be programmed depending on how much data is input. The 01h command must be re-issued before each program.  
AREA C  
Address  
Inputs  
Address  
Inputs  
80h  
I/O  
50h  
Data Input  
10h  
80h  
50h  
Data Input  
10h  
Only Areas C can be programmed. Subsequent 50h commands can be omitted.  
ai07591  
6.2  
Read memory array  
Each operation to read the memory area starts with a pointer operation as shown in the  
Section 6.1: Pointer operations. Once the area (main or spare) has been selected using the  
Read A, Read B or Read C commands, four bus cycles (for 512-Mbit and 1-Gbit devices) or  
three bus cycles (for 128-Mbit and 256-Mbit devices) are required to input the address (refer  
to Table 6 and Table 7) of the data to be read.  
The device defaults to read A mode after power-up or a reset operation.  
When reading the spare area addresses:  
A0 to A3 (x8 devices)  
A0 to A2 (x16 devices)  
are used to set the start address of the spare area while addresses:  
A4 to A7 (x8 devices)  
A3 to A7 (x16 devices)  
are ignored.  
Once the Read A or Read C commands have been issued they do not need to be reissued  
for subsequent read operations as the pointer remains in the respective area. However, the  
Read B command is effective for only one operation, once an operation has been executed  
in area B the pointer returns automatically to area A and so another Read B command is  
required to start another read operation in area B.  
Once a Read command is issued two types of operations are available: random read and  
page read.  
6.2.1  
Random read  
Each time the command is issued the first read is random read.  
21/53  
Device operations  
NAND512xxA2D, NAND01GxxA2C  
6.2.2  
Page read  
After the random read access the page data is transferred to the page buffer in a time of  
t
(refer to Table 21 for value). Once the transfer is complete the Ready/Busy signal  
WHBH  
goes High. The data can then be read out sequentially (from selected column address to  
last column address) by pulsing the Read Enable signal.  
Figure 8.  
Read (A,B,C) operations  
CL  
E
W
AL  
R
tBLBH1  
(read)  
RB  
I/O  
00h/  
Data output (sequentially)  
Address input  
01h/ 50h  
Command  
code  
Busy  
ai07595c  
6.2.3  
Sequential row read  
After the data in last column of the page is output, if the Read Enable signal is pulsed and  
Chip Enable remains Low, then the next page is automatically loaded into the page buffer  
and the read operation continues. A sequential row read operation can only be used to read  
within a block. If the block changes a new read command must be issued. Refer to Figure 9:  
Sequential row read operations and Figure 10: Sequential row read block diagrams for  
details about sequential row read operations. To terminate a sequential row read operation,  
set to High the Chip Enable signal for more than t  
. Sequential row read is not available  
EHEL  
when the Chip Enable don’t care option is enabled.  
22/53  
NAND512xxA2D, NAND01GxxA2C  
Device operations  
Figure 9.  
Sequential row read operations  
tBLBH1  
tBLBH1  
tBLBH1  
(Read busy time)  
RB  
Busy  
Busy  
Busy  
1st  
2nd  
page output  
Nth  
00h/  
I/O  
Address inputs  
page output  
page output  
01h/ 50h  
Command  
code  
ai07597  
Figure 10. Sequential row read block diagrams  
Read A command, x8 devices  
Read A command, x16 devices  
Area B  
(2nd half Page)  
Area A  
(1st half Page)  
Area C  
(Spare)  
Area A  
(main area)  
Area C  
(Spare)  
1st page  
2nd page  
Nth page  
1st page  
2nd page  
Nth page  
Block  
Block  
Read B command, x8 devices  
Read C command, x8/x16 devices  
Area B  
(2nd half Page)  
Area A  
(1st half Page)  
Area C  
(Spare)  
Area A  
Area A/ B  
Area C  
(Spare)  
1st page  
2nd page  
Nth page  
1st page  
2nd page  
Nth page  
Block  
Block  
AI07598  
Figure 11. Read block diagrams  
Read A command, x8 devices  
Read A command, x16 devices  
Area B  
(2nd half page)  
Area A  
(1st half page)  
Area C  
(spare)  
Area A  
(main area)  
Area C  
(spare)  
(1)  
A9-A26  
(1)  
A9-A26  
A0-A7  
A0-A7  
Read B command, x8 devices  
Read C command, x8/x16 devices  
Area B  
(2nd half page)  
Area A/ B  
Area A  
(1st half page)  
Area C  
(spare)  
Area A  
Area C  
(spare)  
(1)  
A9-A26  
(1)  
A9-A26  
A0-A3 (x 8)  
A0-A2 (x 16)  
A0-A7  
A4-A7 (x 8), A3-A7 (x 16) are don't care  
AI07596  
1. Highest address depends on device density.  
23/53  
Device operations  
NAND512xxA2D, NAND01GxxA2C  
6.3  
Page program  
The page program operation is the standard operation to program data to the memory array.  
The main area of the memory array is programmed by page, however partial page  
programming is allowed where any number of bytes (1 to 528) or words (1 to 264) can be  
programmed.  
The maximum number of consecutive partial page program operations allowed in the same  
page is three. After exceeding this a Block Erase command must be issued before any  
further program operations can take place in that page.  
Before starting a page program operation a pointer operation can be performed to point to  
the area to be programmed. Refer to the Section 6.1: Pointer operations and Figure 7 for  
details.  
Each page program operation consists of five steps (see Figure 12):  
1. One bus cycle is required to setup the Page Program command  
2. Four bus cycles are then required to input the program address (refer to Table 6 and  
Table 7)  
3. The data is then input (up to 528 bytes/264 words) and loaded into the page buffer  
4. One bus cycle is required to issue the confirm command to start the P/E/R controller  
5. The P/E/R controller then programs the data into the array.  
Once the program operation has started the status register can be read using the Read  
Status Register command. During program operations the status register only flags errors  
for bits set to '1' that have not been successfully programmed to '0'.  
During the program operation, only the Read Status Register and Reset commands are  
accepted, all other commands are ignored.  
Once the program operation has completed the P/E/R controller bit SR6 is set to ‘1’ and the  
Ready/Busy signal goes High.  
The device remains in read status register mode until another valid command is written to  
the command interface.  
Figure 12. Page program operation  
tBLBH2  
(Program Busy time)  
RB  
Busy  
I/O  
80h  
Data Input  
10h  
Address Inputs  
70h  
SR0  
Confirm  
Code  
Read Status Register  
Page Program  
Setup Code  
ai07566  
1. Before starting a page program operation a pointer operation can be performed. Refer to Section 6.1: Pointer operations for  
details.  
24/53  
NAND512xxA2D, NAND01GxxA2C  
Device operations  
6.4  
Copy back program  
The copy back program operation is used to copy the data stored in one page and  
reprogram it in another page.  
The copy back program operation does not require external memory and so the operation is  
faster and more efficient because the reading and loading cycles are not required. The  
operation is particularly useful when a portion of a block is updated and the rest of the block  
needs to be copied to the newly assigned block.  
If the copy back program operation fails an error is signalled in the status register. However  
as the standard external ECC cannot be used with the copy back operation bit error due to  
charge loss cannot be detected. For this reason it is recommended to limit the number of  
copy back operations on the same data and or to improve the performance of the ECC.  
The copy back program operation requires three steps:  
1. The source page must be read using the Read A command (one bus write cycle to  
setup the command and then 4 bus write cycles to input the source page address).  
This operation copies all 264 words/528 bytes from the page into the page buffer  
2. When the device returns to the ready state (Ready/Busy High), the second bus write  
cycle of the command is given with the 4 bus cycles to input the target page address.  
Refer to Table 10 for the addresses that must be the same for the source and target  
pages  
3. The Program Confirm command (code 10h) is no more necessary on NAND512xxA2D  
and NAND01GxxA2C devices. It is optional and has been maintained for backward  
compatibility.  
After a copy back program operation, a partial-page program is not allowed in the target  
page until the block has been erased.  
See Figure 13 for an example of the copy back operation.  
Table 10. Copy back program addresses  
Density  
Same address for source and target pages  
512 Mbits  
1 Gbit  
A25  
A25, A26  
Figure 13. Copy back operation  
tBLBH1  
tBLBH2  
(Read Busy time)  
(Program Busy time)  
RB  
Busy  
Source  
Target  
Address Inputs  
(1)  
I/O  
00h  
8Ah  
10h  
70h  
SR0  
Address Inputs  
Read  
Code  
Copy Back  
Code  
Read Status Register  
ai13187  
1. The Program Confirm command (code 10h) is no more necessary on NAND512xxA2D and NAND01GxxA2C devices. It is  
optional and has been maintained for backward compatibility.  
25/53  
Device operations  
NAND512xxA2D, NAND01GxxA2C  
6.5  
Block erase  
Erase operations are done one block at a time. An erase operation sets all of the bits in the  
addressed block to ‘1’. All previous data in the block is lost.  
An erase operation consists of three steps (refer to Figure 14):  
1. One bus cycle is required to setup the Block Erase command  
2. Only three bus cycles are required to input the block address. The first cycle (A0 to A7)  
is not required as only addresses A14 to A25 are valid, A9 to A13 are ignored. In the  
last address cycle I/O2 to I/O7 must be set to V .  
IL  
3. One bus cycle is required to issue the confirm command to start the P/E/R controller.  
Once the erase operation has completed the status register can be checked for errors.  
Figure 14. Block erase operation  
tBLBH3  
(Erase Busy time)  
RB  
Busy  
Block Address  
Inputs  
I/O  
60h  
D0h  
70h  
SR0  
Confirm  
Code  
Read Status Register  
Block Erase  
Setup Code  
ai07593  
6.6  
Reset  
The Reset command is used to reset the command interface and status register. If the  
Reset command is issued during any operation, the operation will be aborted. If it was a  
program or erase operation that was aborted, the contents of the memory locations being  
modified will no longer be valid as the data will be partially programmed or erased.  
If the device has already been reset then the new Reset command will not be accepted.  
The Ready/Busy signal goes Low for t  
after the Reset command is issued. The value  
BLBH4  
of t  
depends on the operation that the device was performing when the command was  
BLBH4  
issued, refer to Table 21 for the values.  
26/53  
NAND512xxA2D, NAND01GxxA2C  
Device operations  
6.7  
Read status register  
The device contains a status register which provides information on the current or previous  
program or erase operation. The various bits in the status register convey information and  
errors on the operation.  
The status register is read by issuing the Read Status Register command. The status  
register information is present on the output data bus (I/O0-I/O7) on the falling edge of Chip  
Enable or Read Enable, whichever occurs last. When several memories are connected in a  
system, the use of Chip Enable and Read Enable signals allows the system to poll each  
device separately, even when the Ready/Busy pins are common-wired. It is not necessary to  
toggle the Chip Enable or Read Enable signals to update the contents of the status register.  
After the Read Status Register command has been issued, the device remains in read  
status register mode until another command is issued. Therefore if a Read Status Register  
command is issued during a random read cycle a new read command must be issued to  
continue with a page read.  
The status register bits are summarized in Table 11: Status register bits. Refer to Table 11 in  
conjunction with the following text descriptions.  
6.7.1  
Write protection bit (SR7)  
The write protection bit can be used to identify if the device is protected or not. If the write  
protection bit is set to ‘1’ the device is not protected and program or erase operations are  
allowed. If the write protection bit is set to ‘0’ the device is protected and program or erase  
operations are not allowed.  
6.7.2  
6.7.3  
6.7.4  
P/E/R controller bit (SR6)  
The program/erase/read controller bit indicates whether the P/E/R controller is active or  
inactive. When the P/E/R controller bit is set to ‘0’, the P/E/R controller is active (device is  
busy); when the bit is set to ‘1’, the P/E/R controller is inactive (device is ready).  
Error bit (SR0)  
The error bit is used to identify if any errors have been detected by the P/E/R controller. The  
error bit is set to ’1’ when a program or erase operation has failed to write the correct data to  
the memory. If the error bit is set to ‘0’ the operation has completed successfully.  
SR5, SR4, SR3, SR2 and SR1 are reserved  
Table 11. Status register bits  
Bit  
Name  
Logic level  
Definition  
Not protected  
'1'  
SR7  
Write protection  
'0'  
Protected  
'1'  
P/E/R C inactive, device ready  
P/E/R C active, device busy  
SR6  
SR5, SR4, SR3, SR2, SR1  
SR0  
Program/ erase/ read controller  
Reserved  
'0'  
Don’t care  
‘1’  
Error – operation failed  
Generic error  
‘0’  
No error – operation successful  
27/53  
Device operations  
NAND512xxA2D, NAND01GxxA2C  
6.8  
Read electronic signature  
The device contains a manufacturer code and device code. To read these codes two steps  
are required:  
1. first use one bus write cycle to issue the Read Electronic Signature command (90h),  
followed by an address input of 00h  
2. then perform two bus read operations – the first reads the manufacturer code and the  
second, the device code. Further bus read operations are ignored.  
Refer to Table 12: Electronic signature, for information on the addresses.  
Table 12. Electronic signature  
Root part number  
Manufacturer code  
Device code  
NAND512R3A2D  
NAND512W3A2D  
NAND512R4A2D  
NAND512W4A2D  
NAND01GR3A2C  
NAND01GW3A2C  
NAND01GR4A2C  
NAND01GW4A2C  
36h  
76h  
20h  
0046h  
0056h  
78h  
0020h  
20h  
79h  
0072h  
0074h  
0020h  
28/53  
NAND512xxA2D, NAND01GxxA2C  
Software algorithms  
7
Software algorithms  
This section gives information on the software algorithms that Numonyx recommends to  
implement to manage the bad blocks and extend the lifetime of the NAND device.  
NAND flash memories are programmed and erased by Fowler-Nordheim tunneling using a  
high voltage. Exposing the device to a high voltage for extended periods can cause the  
oxide layer to be damaged. For this reason, the number of program and erase cycles is  
limited (see Table 14: Program, erase times and program erase endurance cycles for value)  
and it is recommended to implement garbage collection, a wear-leveling algorithm and an  
error correction code, to extend the number of program and erase cycles and increase the  
data retention.  
To help integrate a NAND memory into an application Numonyx can provide a full range of  
software solutions: file system, sector management, drivers, and code management.  
Contact the nearest Numonyx sales office or visit www.numonyx.com for more details.  
7.1  
Bad block management  
Devices with bad blocks have the same quality level and the same AC and DC  
characteristics as devices where all the blocks are valid. A bad block does not affect the  
performance of valid blocks because it is isolated from the bit line and common source line  
by a select transistor.  
The devices are supplied with all the locations inside valid blocks erased (FFh). The bad  
block information is written prior to shipping. Any block, where the 6th byte (x8 device)/1st  
word (x16 device) in the spare area of the 1st page, does not contain FFh is a bad block.  
The bad block information must be read before any erase is attempted as the bad block  
information may be erased. For the system to be able to recognize the bad blocks based on  
the original information it is recommended to create a bad block table following the flowchart  
shown in Figure 15.  
7.2  
NAND flash memory failure modes  
Over the lifetime of the device additional bad blocks may develop.  
To implement a highly reliable system, all the possible failure modes must be considered:  
Program/erase failure: in this case the block has to be replaced by copying the data to a  
valid block. These additional bad blocks can be identified as attempts to program or  
erase them will give errors in the status register.  
As the failure of a page program operation does not affect the data in other pages in the  
same block, the block can be replaced by re-programming the current data and copying  
the rest of the replaced block to an available valid block. The Copy Back Program  
command can be used to copy the data to a valid block. See Section 6.4: Copy back  
program for more details  
Read failure: in this case, ECC correction must be implemented. To efficiently use the  
memory space, it is mandatory to recover single-bit errors, which occur during read  
operations, by using ECC without replacing the whole block.  
Refer to Table 13 for the procedure to follow if an error occurs during an operation.  
29/53  
Software algorithms  
NAND512xxA2D, NAND01GxxA2C  
Procedure  
Table 13. NAND flash failure modes  
Operation  
Erase  
Program  
Read  
Block replacement  
Block replacement  
ECC  
Figure 15. Bad block management flowchart  
START  
Block Address =  
Block 0  
Increment  
Block Address  
Update  
Bad Block table  
Data  
= FFh?  
NO  
NO  
YES  
Last  
block?  
YES  
END  
AI07588C  
30/53  
NAND512xxA2D, NAND01GxxA2C  
Software algorithms  
7.3  
Garbage collection  
When a data page needs to be modified, it is faster to write to the first available page, and  
the previous page is marked as invalid. After several updates it is necessary to remove  
invalid pages to free some memory space.  
To free this memory space and allow further program operations it is recommended to  
implement a garbage collection algorithm. In a garbage collection software the valid pages  
are copied into a free area and the block containing the invalid pages is erased (see  
Figure 16).  
Figure 16. Garbage collection  
Old area  
New area (after GC)  
Valid  
page  
Invalid  
page  
Free  
page  
(erased)  
AI07599B  
7.4  
Wear-leveling algorithm  
For write-intensive applications, it is recommended to implement a wear-leveling algorithm  
to monitor and spread the number of write cycles per block.  
In memories that do not use a wear-leveling algorithm not all blocks get used at the same  
rate.  
The wear-leveling algorithm ensures that equal use is made of all the available write cycles  
for each block. There are two wear-leveling levels:  
First level wear-leveling, new data is programmed to the free blocks that have had the  
fewest write cycles  
Second level wear-leveling, long-lived data is copied to another block so that the  
original block can be used for more frequently-changed data.  
The second level wear-leveling is triggered when the difference between the maximum and  
the minimum number of write cycles per block reaches a specific threshold.  
7.5  
Error correction code  
An error correction code (ECC) must be implemented in the NAND flash memories to  
identify and correct errors in the data.  
In this family of devices is required the implementation of an ECC algorithm able to correct  
1 bit and to detect 2 bits for every 512 bytes. All the memory array must be covered by ECC,  
including the spare area, when in this area sensible data are stored.  
31/53  
Software algorithms  
NAND512xxA2D, NAND01GxxA2C  
An ECC model is available in VHDL or Verilog. Contact the nearest Numonyx sales office for  
more details.  
7.6  
Hardware simulation models  
7.6.1  
Behavioral simulation models  
Denali software corporation models are platform independent functional models designed to  
assist customers in performing entire system simulations (typical VHDL/Verilog). These  
models describe the logic behavior and timings of NAND flash devices, and so allow  
software to be developed before hardware.  
7.6.2  
IBIS simulations models  
IBIS (I/O buffer information specification) models describe the behavior of the I/O buffers  
and electrical characteristics of flash devices.  
These models provide information such as AC characteristics, rise/fall times and package  
mechanical data, all of which are measured or simulated at voltage and temperature ranges  
wider than those allowed by target specifications.  
IBIS models are used to simulate PCB connections and can be used to resolve compatibility  
issues when upgrading devices. They can be imported into SPICETOOLS.  
32/53  
NAND512xxA2D, NAND01GxxA2C  
Program and erase times and endurance cycles  
8
Program and erase times and endurance cycles  
The program and erase times and the number of program/erase cycles per block are shown  
in Table 14.  
Table 14. Program, erase times and program erase endurance cycles  
NAND flash  
Parameters  
Unit  
Min  
Typ  
Max  
Page program time  
200  
1.5  
700  
3
µs  
ms  
Block erase time  
Program/erase cycles per block (with ECC)  
Data retention  
100,000  
10  
cycles  
years  
9
Maximum ratings  
Stressing the device above the ratings listed in Table 15: Absolute maximum ratings, may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the operating sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Table 15. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
TBIAS  
TSTG  
Temperature under bias  
– 50  
– 65  
125  
150  
260  
2.7  
4.6  
2.7  
4.6  
°C  
°C  
°C  
V
Storage temperature  
TLEAD  
Lead temperature during soldering  
1.8 V devices  
– 0.6  
– 0.6  
– 0.6  
– 0.6  
(1)  
VIO  
Input or output voltage  
Supply voltage  
3 V devices  
1.8 V devices  
3 V devices  
V
V
VDD  
V
1. Minimum Voltage may undershoot to –2 V for less than 20 ns during transitions on input and I/O pins.  
Maximum voltage may overshoot to VDD + 2 V for less than 20 ns during transitions on I/O pins.  
33/53  
DC and AC parameters  
NAND512xxA2D, NAND01GxxA2C  
10  
DC and AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC characteristics tables that  
follow, are derived from tests performed under the measurement conditions summarized in  
Table 16: Operating and AC measurement conditions. Designers should check that the  
operating conditions in their circuit match the measurement conditions when relying on the  
quoted parameters.  
Table 16. Operating and AC measurement conditions  
NAND flash  
Parameter  
Units  
Min  
Max  
1.8 V devices  
3 V devices  
Grade 6  
1.7  
2.7  
1.95  
3.6  
85  
V
V
Supply voltage (VDD  
)
Ambient temperature (TA)  
–40  
°C  
pF  
pF  
V
1.8 V devices  
3 V devices  
1.8 V devices  
3 V devices  
1.8 V devices  
3 V devices  
30  
50  
Load capacitance (CL) (1 TTL GATE  
and CL)  
0
VDD  
2.4  
Input pulses voltages  
0.4  
V
0.9  
1.5  
5
V
Input and output timing ref. voltages  
V
Input rise and fall times  
ns  
k  
Output circuit resistors, Rref  
8.35  
(1)(2)  
Table 17. Capacitance  
Symbol  
Parameter  
Test condition  
Typ  
Max  
Unit  
CIN  
Input capacitance  
VIN = 0 V  
10  
pF  
Input/output  
capacitance  
CI/O  
VIL = 0 V  
10  
pF  
1.  
TA = 25 °C, f = 1 MHz. CIN and CI/O are not 100% tested.  
2. Input/output capacitances double on stacked devices.  
34/53  
NAND512xxA2D, NAND01GxxA2C  
DC and AC parameters  
(1)  
Table 18. DC characteristics, 1.8 V devices  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
tRLRL minimum  
Sequential  
read  
IDD1  
8
15  
mA  
E=VIL, OUT = 0 mA  
I
Operating current  
IDD2  
IDD3  
Program  
Erase  
8
8
15  
15  
mA  
mA  
E = VDD - 0.2,  
WP=0/VDD  
IDD5  
Standby current (CMOS)  
10  
50  
µA  
ILI  
ILO  
Input leakage current  
Output leakage current  
Input high voltage  
VIN = 0 to VDDmax  
VOUT = 0 to VDDmax  
4
±10  
±10  
µA  
µA  
V
0.8 x VDD  
-0.3  
VIH  
VDD + 0.3  
0.2 x VDD  
VIL  
Input low voltage  
V
VOH  
VOL  
Output high voltage level  
Output low voltage level  
Output low current (RB)  
IOH = -100 µA  
IOL = 100 µA  
VOL = 0.1 V  
VDD-0.1  
V
0.1  
V
IOL (RB)  
3
mA  
VDD supply voltage (erase and  
program lockout)  
VLKO  
1.1  
V
1. Leakage currents double on stacked devices.  
Figure 17. Equivalent testing circuit for AC characteristics measurement  
V
DD  
2R  
ref  
NAND flash  
C
L
2R  
ref  
GND  
GND  
Ai11085  
35/53  
DC and AC parameters  
NAND512xxA2D, NAND01GxxA2C  
(1)  
Table 19. DC characteristics, 3 V devices  
Symbol  
Parameter  
Test conditions  
tRLRL minimum  
E = VIL, OUT = 0 mA  
Min  
Typ  
Max  
Unit  
Sequential  
read  
IDD1  
15  
30  
mA  
I
Operating current  
IDD2  
IDD3  
IDD4  
IDD5  
ILI  
Program  
Erase  
15  
15  
30  
30  
mA  
mA  
mA  
µA  
µA  
µA  
V
Standby current (TTL),  
Standby current (CMOS)  
Input leakage current  
Output leakage current  
Input high voltage  
E=VIH, WP=0V/VDD  
E=VDD-0.2, WP=0/VDD  
VIN= 0 to VDDmax  
VOUT= 0 to VDDmax  
1
10  
50  
±10  
ILO  
±10  
VIH  
0.8 x VDD  
VDD+0.3  
0.2 x VDD  
VIL  
Input low voltage  
0.3  
2.4  
V
VOH  
VOL  
Output high voltage level  
Output low voltage level  
Output low current (RB)  
IOH = 400 µA  
IOL = 2.1 mA  
VOL = 0.4 V  
V
0.4  
V
IOL (RB)  
8
10  
mA  
VDD supply voltage (erase and  
program lockout)  
VLKO  
1.8  
V
1. Leakage currents double on stacked devices.  
Table 20. AC characteristics for command, address, data input  
Alt.  
1.8 V  
devices devices  
3 V  
Symbol  
Parameter  
Unit  
ns  
symbol  
tALLWH  
tALHWH  
tCLHWH  
tCLLWH  
tDVWH  
Address Latch Low to Write Enable High  
Address Latch High to Write Enable High  
Command Latch High to Write Enable High  
Command Latch Low to Write Enable High  
Data Valid to Write Enable High  
tALS  
AL setup time  
CL setup time  
Min  
Min  
25  
25  
15  
15  
tCLS  
ns  
tDS  
tCS  
Data setup time Min  
20  
30  
15  
20  
ns  
ns  
tELWH  
Chip Enable Low to Write Enable High  
Write Enable High to Address Latch High  
Write Enable High to Address Latch Low  
Write Enable High to Command Latch High  
Write Enable High to Command Latch Low  
Write Enable High to Data Transition  
E setup time  
Min  
tWHALH  
tWHALL  
tWHCLH  
tWHCLL  
tWHDX  
tWHEH  
tALH  
AL hold time  
Min  
10  
10  
5
5
ns  
ns  
tCLH  
CL hold time  
Min  
tDH  
tCH  
Data hold time  
E hold time  
Min  
Min  
10  
10  
5
5
ns  
ns  
Write Enable High to Chip Enable High  
W High hold  
time  
tWHWL  
tWH  
Write Enable High to Write Enable Low  
Min  
Min  
15  
10  
ns  
tWLWH  
tWLWL  
tWP  
tWC  
Write Enable Low to Write Enable High  
Write Enable Low to Write Enable Low  
W pulse width  
25  
45  
15  
30  
ns  
ns  
Write cycle time Min  
36/53  
NAND512xxA2D, NAND01GxxA2C  
DC and AC parameters  
Table 21. AC characteristics for operations  
Alt.  
1.8 V  
devices devices  
3 V  
Symbol  
Parameter  
Unit  
symbol  
tALLRL1  
tALLRL2  
tBHRL  
Read electronic signature  
Read cycle  
Min  
Min  
10  
10  
20  
15  
500  
3
10  
10  
20  
12  
500  
3
ns  
ns  
ns  
µs  
µs  
ms  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
Address Latch Low to  
Read Enable Low  
tAR  
tRR  
Ready/Busy High to Read Enable Low  
Read busy time  
Min  
tBLBH1  
tBLBH2  
tBLBH3  
Max  
Max  
Max  
Max  
Max  
Max  
Max  
Min  
tPROG  
tBERS  
Program busy time  
Erase busy time  
Ready/Busy Low to  
Ready/Busy High  
Reset busy time, during ready  
5
5
Reset busy time, during read  
Reset busy time, during program  
Reset busy time, during erase  
5
5
tBLBH4  
tRST  
10  
500  
10  
0
10  
500  
10  
0
tCLLRL  
tDZRL  
tEHQZ  
tELQV  
tCLR  
tIR  
tCHZ  
tCEA  
Command Latch Low to Read Enable Low  
Data Hi-Z to Read Enable Low  
Chip Enable High to Output Hi-Z  
Chip Enable Low to Output Valid  
Read Enable High to  
Min  
Max  
Max  
20  
45  
20  
35  
tRHRL  
tREH  
tRHZ  
Read Enable High hold time  
Min  
15  
30  
10  
30  
ns  
ns  
Read Enable Low  
tRHQZ  
tEHQX  
tRHQX  
Read Enable High to Output Hi-Z  
Max  
TOH  
Chip Enable High or Read Enable High to Output Hold  
Min  
10  
10  
ns  
Read Enable Low to  
Read Enable pulse width  
Read Enable High  
tRLRH  
tRLRL  
tRP  
tRC  
Min  
Min  
25  
50  
15  
30  
ns  
ns  
Read Enable Low to  
Read cycle time  
Read Enable Low  
Read Enable access time  
Read Enable Low to  
Read ES access time(1)  
Output Valid  
tRLQV  
tREA  
Max  
Max  
30  
15  
18  
12  
ns  
µs  
Write Enable High to  
Read busy time  
tWHBH  
tR  
Ready/Busy High  
tWHBL  
tWHRL  
tVHWH  
tWB  
Write Enable High to Ready/Busy Low  
Write Enable High to Read Enable Low  
Max  
Min  
100  
60  
100  
60  
ns  
ns  
tWHR  
tWW  
Write protection time  
Min  
100  
100  
ns  
(2)  
tVLWH  
1. ES = electronic signature.  
2. During a program/erase enable operation, tVHWH is the delay from WP High to W High. During a program/erase disable  
operation, tVLWH is the delay from WP Low to W High.  
37/53  
DC and AC parameters  
NAND512xxA2D, NAND01GxxA2C  
Figure 18. Command Latch AC waveforms  
CL  
tCLHWH  
tWHCLL  
(CL Setup time)  
(CL Hold time)  
tWHEH  
(E Hold time)  
tELWH  
H(E Setup time)  
E
tWLWH  
W
tALLWH  
tWHALH  
(ALSetup time)  
(AL Hold time)  
AL  
tDVWH  
(Data Setup time)  
tWHDX  
(Data Hold time)  
I/O  
Command  
ai13105  
Figure 19. Address Latch AC waveforms  
tCLLWH  
(CL Setup time)  
CL  
tWLWL  
tWLWL  
tWLWL  
tWLWL  
tELWH  
(E Setup time)  
E
tWLWH  
tWLWH  
tWLWH  
tWLWH  
tWLWH  
W
tWHWL  
tWHWL  
tWHWL  
tWHWL  
tALHWH  
(AL Setup time)  
tWHALL  
tWHALL  
tWHALL  
tWHALL  
(AL Hold time)  
AL  
I/O  
tDVWH  
tDVWH  
tDVWH  
tWHDX  
tDVWH  
tWHDX  
tDVWH  
tWHDX  
(Data Setup time)  
tWHDX  
tWHDX  
ai13106  
(Data Hold time)  
Adrress  
cycle 3  
Adrress  
cycle 2  
Adrress  
cycle 4  
Adrress  
cycle 5  
Adrress  
cycle 1  
38/53  
NAND512xxA2D, NAND01GxxA2C  
DC and AC parameters  
Figure 20. Data Input Latch AC waveforms  
tWHCLH  
(CL Hold time)  
CL  
E
tWHEH  
(E Hold time)  
tALLWH  
(ALSetup time)  
tWLWL  
AL  
tWLWH  
tWLWH  
tWLWH  
W
tDVWH  
tDVWH  
tWHDX  
tDVWH  
tWHDX  
(Data Setup time)  
tWHDX  
(Data Hold time)  
Data In  
Last  
I/O  
Data In 0  
Data In 1  
ai13107  
Figure 21. Sequential data output after read AC waveforms  
tEHQX  
tEHQZ  
ai08031b  
1. CL = Low, AL = Low, W = High.  
39/53  
DC and AC parameters  
NAND512xxA2D, NAND01GxxA2C  
Figure 22. Read status register AC waveforms  
tCLHWH  
tELWH  
tEHQX  
ai08032c  
Figure 23. Read electronic signature AC waveforms  
CL  
E
W
AL  
tALLRL1  
R
tRLQV  
(Read ES Access time)  
Man.  
code  
Device  
code  
I/O  
90h  
00h  
Read Electronic 1st Cycle  
Manufacturer and  
Device Codes  
Signature  
Command  
Address  
ai08039b  
1. Refer to Table 12 for the values of the manufacturer and device codes.  
40/53  
NAND512xxA2D, NAND01GxxA2C  
DC and AC parameters  
Figure 24. Page read A/ read B operation AC waveforms  
CL  
E
tWLWL  
tEHQZ  
W
tWHBL  
AL  
tALLRL2  
tWHBH  
tRLRL  
tRHQZ  
(Read Cycle time)  
R
tRLRH  
tBLBH1  
RB  
I/O  
Data  
N
Data  
N+1  
Data  
N+2  
Data  
Last  
00h or  
01h  
Add.N Add.N Add.N  
cycle 2 cycle 3 cycle 4  
Add.N  
cycle 1  
Data Output  
from Address N to Last Byte or Word in Page  
Command  
Code  
Address N Input  
Busy  
tRHQX  
tEHQX  
ai08033c  
41/53  
DC and AC parameters  
NAND512xxA2D, NAND01GxxA2C  
Figure 25. Read C operation, one page AC waveforms  
CL  
E
W
tWHBH  
tWHALL  
AL  
tALLRL2  
tBHRL  
R
Data  
Last  
Add. M Add. M Add. M Add. M  
cycle 1 cycle 2 cycle 3 cycle 4  
I/O  
RB  
50h  
Data M  
Command  
Code  
Data Output from M to  
Last Byte or Word in Area C  
Address M Input  
Busy  
ai08035b  
1. A0-A7 is the address in the spare memory area, where A0-A3 are valid and A4-A7 are don’t care.  
42/53  
NAND512xxA2D, NAND01GxxA2C  
DC and AC parameters  
Figure 26. Page program AC waveforms  
CL  
E
tWLWL  
tWLWL  
tWLWL  
(Write Cycle time)  
W
tWHBL  
tBLBH2  
(Program Busy time)  
AL  
R
Add.N  
Add.N Add.N  
cycle 1 cycle 2  
Add.N  
cycle 3  
I/O  
RB  
80h  
Last  
N
10h  
70h  
SR0  
cycle 4  
Confirm  
Code  
Page Program  
Setup Code  
Page  
Program  
Address Input  
Data Input  
Read Status Register  
ai08037  
43/53  
DC and AC parameters  
NAND512xxA2D, NAND01GxxA2C  
Figure 27. Block erase AC waveforms  
CL  
E
tWLWL  
(Write Cycle time)  
W
tBLBH3  
tWHBL  
(Erase Busy time)  
AL  
R
Add.  
Add.  
Add.  
cycle 3  
I/O  
60h  
D0h  
70h  
SR0  
cycle 1 cycle 2  
RB  
Block Erase  
Setup Command  
Confirm  
Code  
Block Erase  
Read Status Register  
Block Address Input  
ai08038b  
Figure 28. Reset AC waveforms  
W
AL  
CL  
R
I/O  
RB  
FFh  
tBLBH4  
(Reset Busy time)  
ai08043  
44/53  
NAND512xxA2D, NAND01GxxA2C  
DC and AC parameters  
Figure 29. Program/erase enable waveforms  
W
tVHWH  
WP  
RB  
I/O  
80h  
10h  
ai12477  
Figure 30. Program/erase disable waveforms  
W
tVLWH  
WP  
High  
RB  
I/O  
80h  
10h  
ai12478  
10.1  
Ready/Busy signal electrical characteristics  
Figure 31, Figure 32 and Figure 33 show the electrical characteristics for the Ready/Busy  
signal. The value required for the resistor R can be calculated using the following equation:  
P
(
)
V
V
DDmax  
OLmax  
+ I  
R min= -------------------------------------------------------------  
P
I
L
OL  
So,  
1.85V  
R min(1.8V)= ---------------------------  
P
+
3mA  
I
L
3.2V  
R min(3V)= ---------------------------  
P
+
8mA  
I
L
where I is the sum of the input currents of all the devices tied to the Ready/Busy signal. R  
L
P
max is determined by the maximum value of t .  
r
45/53  
DC and AC parameters  
NAND512xxA2D, NAND01GxxA2C  
Figure 31. Ready/Busy AC waveform  
1.8 V device - V : 0.1 V, V  
: V  
- 0.1 V  
OL  
OH  
OH  
DD  
3.3 V device - V : 0.4 V, V  
OL  
: 2.4 V  
ready V  
DD  
V
OH  
V
OL  
busy  
t
t
r
f
NI3087  
Figure 32. Ready/Busy load circuit  
ibusy  
R
P
V
DD  
DEVICE  
RB  
Open Drain Output  
V
SS  
AI07563B  
46/53  
NAND512xxA2D, NAND01GxxA2C  
DC and AC parameters  
Figure 33. Resistor value versus waveform timings for Ready/Busy signal  
1. T = 25°C.  
10.2  
Data protection  
The Numonyx NAND device is designed to guarantee data protection during power  
transitions.  
A V detection circuit disables all NAND operations, if V is below the V threshold.  
LKO  
DD  
DD  
In the V range from V  
to the lower limit of nominal range, the WP pin should be kept  
DD  
LKO  
Low (V ) to guarantee hardware protection during power transitions as shown in the figure  
IL  
below (Figure 34).  
Figure 34. Data protection  
Nominal Range  
V
DD  
V
LKO  
Locked  
Locked  
WP  
Ai13188  
47/53  
Package mechanical  
NAND512xxA2D, NAND01GxxA2C  
11  
Package mechanical  
To meet environmental requirements, Numonyx offers these devices in RoHS compliant  
packages, which have a lead-free second-level interconnect. The category of second-level  
interconnect is marked on the package and on the inner box label, in compliance with  
JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also  
marked on the inner box label.  
RoHS compliant specifications are available at www.numonyx.com.  
Figure 35. TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package outline  
1
48  
e
D1  
B
L1  
24  
25  
A2  
A
E1  
E
A1  
α
L
DIE  
C
CP  
TSOP-G  
1. Drawing is not to scale.  
Table 22. TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package mechanical data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
B
1.20  
0.15  
1.05  
0.27  
0.21  
0.08  
12.10  
20.20  
18.50  
0.047  
0.006  
0.041  
0.011  
0.008  
0.003  
0.476  
0.795  
0.728  
0.10  
1.00  
0.22  
0.05  
0.95  
0.17  
0.10  
0.004  
0.039  
0.009  
0.002  
0.037  
0.007  
0.004  
C
CP  
D1  
E
12.00  
20.00  
18.40  
0.50  
0.60  
0.80  
3°  
11.90  
19.80  
18.30  
0.472  
0.787  
0.724  
0.020  
0.024  
0.031  
3°  
0.468  
0.779  
0.720  
E1  
e
L
0.50  
0.70  
0.020  
0.028  
L1  
α
0°  
5°  
0°  
5°  
48/53  
NAND512xxA2D, NAND01GxxA2C  
Package mechanical  
Figure 36. VFBGA63 9 x 11 x 1.05 mm - 6 x 8 +15, 0.80 mm pitch, package outline  
D
D2  
D1  
FD1  
FE  
e
SE  
b
E
E2 E1  
ddd  
BALL "A1"  
FE1  
A
A2  
e
SD  
FD  
A1  
BGA-Z75  
1. Drawing is not to scale.  
49/53  
Package mechanical  
NAND512xxA2D, NAND01GxxA2C  
Table 23. VFBGA63 9 x 11 x 1.05 mm - 6 x 8 +15, 0.80 mm pitch, package mechanical data  
millimeters  
inches  
Symbol  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
A1  
A2  
b
1.05  
0.041  
0.25  
0.010  
0.65  
0.45  
9.00  
4.00  
7.20  
0.026  
0.018  
0.354  
0.157  
0.283  
0.40  
8.90  
0.50  
9.10  
0.016  
0.350  
0.020  
0.358  
D
D1  
D2  
ddd  
E
0.10  
0.004  
0.437  
11.00  
5.60  
8.80  
10.90  
0.80  
11.10  
0.433  
0.220  
0.346  
0.429  
E1  
E2  
e
0.031  
FD  
FD1  
FE  
FE1  
SD  
SE  
2.50  
0.90  
2.70  
1.10  
0.098  
0.035  
0.106  
0.043  
0.40  
0.40  
0.016  
0.016  
50/53  
NAND512xxA2D, NAND01GxxA2C  
Ordering information  
12  
Ordering information  
Table 24. Ordering information scheme  
Example:  
NAND512W3A  
2
D
N
6
E
Device type  
NAND = NAND flash memory  
Density  
512 = 512 Mbits  
01G = 1 Gbit(1)  
Operating voltage  
R = VDD = 1.7 to 1.95 V  
W = VDD = 2.7 to 3.6 V  
Bus width  
3 = x8  
4 = x16  
Family identifier  
A = 528-byte/ 264-word page  
Device options  
0 = no option (Chip Enable ‘care’; sequential row read enabled)  
2 = Chip Enable don’t care enabled  
Product version  
C = third version (only for 1-Gbit devices)  
D = fourth version (only for 512-Mbit devices)  
Package  
N = TSOP48 12 x 20 mm  
ZA = VFBGA63 9 x 11 x 1.05 mm  
Temperature range  
6 = –40 to 85 °C  
Option  
E = RoHS compliant package, standard packing  
F = RoHS compliant package, tape & reel packing  
1. 1-Gbit devices are only available in the TSOP48 package.  
Note:  
Not all combinations are necessarily available. For a list of available devices or for further  
information on any aspect of these products, please contact your nearest Numonyx sales  
office.  
51/53  
Revision history  
NAND512xxA2D, NAND01GxxA2C  
13  
Revision history  
Table 25. Document revision history  
Date  
Revision  
Changes  
06-Nov-2008  
1
Initial release.  
Document status promoted from target specification to preliminary  
data. Added NAND01GxxA2C root part numbers throughout the  
document.  
Modified Figure 31: Ready/Busy AC waveform and Figure 33:  
Resistor value versus waveform timings for Ready/Busy signal.  
10-Feb-2009  
2
Removed Figure 17: Error detection. References to ECOPACK  
removed and replaced by information on RoHS compliance  
throughout the document.  
Removed information about the VFBGA55 package and added  
information about the VFBGA63 package throughout the document.  
27-Apr-2009  
26-May-2009  
3
4
Re-added information about VFBGA55 package throughout the  
document and modified dimension A2 of the VFBGA63 package in  
Table 23: VFBGA63 9 x 11 x 1.05 mm - 6 x 8 +15, 0.80 mm pitch,  
package mechanical data.  
09-Jun-2009  
10-Jul-2009  
5
6
Document status promoted from preliminary data to full datasheet.  
Removed information about the VFBGA55 package throughout the  
document.  
Modified: typical and maximum values of IDD1, IDD2 and IDD3 in  
Table 18: DC characteristics, 1.8 V devices, tCS minimum value for  
1.8 devices in Table 20: AC characteristics for command, address,  
data input, and maximum value for tPROG in Table 21: AC  
characteristics for operations.  
25-Nov-2009  
7
52/53  
NAND512xxA2D, NAND01GxxA2C  
Please Read Carefully:  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR  
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT  
AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY  
WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF  
NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility  
applications.  
Numonyx may make changes to specifications and product descriptions at any time, without notice.  
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the  
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied,  
by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves  
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by  
visiting Numonyx's website at http://www.numonyx.com.  
Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 11/5/7, Numonyx B.V. All Rights Reserved.  
53/53  

相关型号:

NAND512R4A0DN6F

Flash, 32MX16, 15000ns, PDSO48, 12 X 20 MM, ROHS COMPLIANT, PLASTIC, TSOP-48
NUMONYX

NAND512R4A1AN1T

32MX16 FLASH 1.8V PROM, 15000ns, PDSO48, 12 X 20 MM, PLASTIC, TSOP-48
STMICROELECTR

NAND512R4A1AZB6E

Flash, 32MX16, 10000ns, PBGA55, 8 X 10 MM, 1.20 MM HEIGHT, 0.80 MM PITCH, LEAD FREE, TFBGA-55
STMICROELECTR

NAND512R4A1DZA1T

Flash, 32MX16, 15000ns, PBGA63, 8.50 X 15 MM, 1 MM HEIGHT, 0.80 MM PITCH, VFBGA-63
STMICROELECTR

NAND512R4A2AN1

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND512R4A2AN1E

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND512R4A2AN1F

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND512R4A2AN1T

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND512R4A2AN6

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND512R4A2AN6E

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND512R4A2AN6F

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND512R4A2AN6T

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR