PC28F640P30T85 [NUMONYX]

Numonyx StrataFlash Embedded Memory; 恒忆的StrataFlash嵌入式存储器
PC28F640P30T85
型号: PC28F640P30T85
厂家: NUMONYX B.V    NUMONYX B.V
描述:

Numonyx StrataFlash Embedded Memory
恒忆的StrataFlash嵌入式存储器

存储
文件: 总99页 (文件大小:1401K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
Numonyx™ StrataFlash Embedded Memory  
(P30)  
Datasheet  
Product Features  
„ High performance  
„ Security  
— One-Time Programmable Registers:  
— 85 ns initial access  
• 64 unique factory device identifier bits  
• 2112 user-programmable OTP bits  
— Selectable OTP Space in Main Array:  
• Four pre-defined 128-KByte blocks (top or bottom  
configuration)  
— 52 MHz with zero wait states, 17ns clock-to-data output  
synchronous-burst read mode  
— 25 ns asynchronous-page read mode  
— 4-, 8-, 16-, and continuous-word burst mode  
— Buffered Enhanced Factory Programming (BEFP) at 5 μs/  
byte (Typ)  
• Up to Full Array OTP Lockout  
— Absolute write protection: V = V  
PP  
SS  
— 1.8 V buffered programming at 7 μs/byte (Typ)  
— Power-transition erase/program lockout  
— Individual zero-latency block locking  
— Individual block lock-down  
„ Architecture  
— Multi-Level Cell Technology: Highest Density at Lowest  
Cost  
„ Software  
— Asymmetrically-blocked architecture  
— Four 32-KByte parameter blocks: top or bottom  
configuration  
— 20 μs (Typ) program suspend  
— 20 μs (Typ) erase suspend  
— Numonyx™ Flash Data Integrator optimized  
— Basic Command Set and Extended Command Set  
compatible  
— 128-KByte main blocks  
„ Voltage and Power  
— V (core) voltage: 1.7 V – 2.0 V  
CC  
— Common Flash Interface capable  
— V  
(I/O) voltage: 1.7 V – 3.6 V  
CCQ  
„ Density and Packaging  
— Standby current: 20μA (Typ) for 64-Mbit  
— 4-Word synchronous read current:  
13 mA (Typ) at 40 MHz  
— 56- Lead TSOP package (64, 128, 256,  
512- Mbit)  
— 64- Ball Numonyx™ Easy BGA package (64,  
128, 256, 512- Mbit)  
— Numonyx™ QUAD+ SCSP (64, 128, 256,  
512- Mbit)  
„ Quality and Reliability  
— Operating temperature: –40 °C to +85 °C  
— Minimum 100,000 erase cycles per block  
— ETOX™ VIII process technology  
— 16-bit wide data bus  
Order Number: 306666-11  
November 2007  
Legal Lines and Disclaimers  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR  
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN NUMONYX'S TERMS AND  
CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY, RELATING TO SALE AND/OR USE OF NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A  
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Numonyx  
products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.  
Numonyx B.V. may make changes to specifications and product descriptions at any time, without notice.  
Numonyx B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented  
subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or  
otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.Numonyx reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by visiting  
Numonyx's website at http://www.numonyx.com.  
Numonyx, the Numonyx logo, and StrataFlash are trademarks or registered trademarks of Numonyx B.V. or its subsidiaries in other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2007, Numonyx, B.V., All Rights Reserved.  
Datasheet  
2
November 2007  
Order Number: 306666-11  
P30  
Contents  
1.0 Introduction..............................................................................................................6  
1.1  
1.2  
1.3  
Nomenclature.....................................................................................................6  
Acronyms...........................................................................................................6  
Conventions .......................................................................................................7  
2.0 Functional Overview..................................................................................................8  
2.1 Virtual Chip Enable Description..............................................................................8  
3.0 Package Information...............................................................................................10  
3.1  
3.2  
3.3  
56-Lead TSOP................................................................................................... 10  
64-Ball Easy BGA Package.................................................................................. 11  
QUAD+ SCSP Packages...................................................................................... 13  
4.0 Ballout and Signal Descriptions ...............................................................................16  
4.1  
4.2  
4.3  
4.4  
Signal Ballout ................................................................................................... 16  
Signal Descriptions............................................................................................ 19  
Dual-Die Configurations ..................................................................................... 21  
Memory Maps ................................................................................................... 22  
5.0 Maximum Ratings and Operating Conditions............................................................ 25  
5.1  
5.2  
Absolute Maximum Ratings.................................................................................25  
Operating Conditions .........................................................................................25  
6.0 Electrical Specifications........................................................................................... 26  
6.1  
6.2  
DC Current Characteristics.................................................................................. 26  
DC Voltage Characteristics.................................................................................. 27  
7.0 AC Characteristics ................................................................................................... 28  
7.1  
7.2  
7.3  
7.4  
7.5  
AC Test Conditions ............................................................................................ 28  
Capacitance......................................................................................................29  
AC Read Specifications.......................................................................................29  
AC Write Specifications ...................................................................................... 36  
Program and Erase Characteristics....................................................................... 39  
8.0 Power and Reset Specifications...............................................................................41  
8.1  
8.2  
8.3  
Power-Up and Power-Down.................................................................................41  
Reset Specifications........................................................................................... 41  
Power Supply Decoupling ................................................................................... 42  
9.0 Device Operations ................................................................................................... 43  
9.1  
Bus Operations .................................................................................................43  
9.1.1 Reads................................................................................................... 43  
9.1.2 Writes................................................................................................... 44  
9.1.3 Output Disable.......................................................................................44  
9.1.4 Standby................................................................................................44  
9.1.5 Reset.................................................................................................... 44  
Device Commands............................................................................................. 45  
Command Definitions.........................................................................................46  
9.2  
9.3  
10.0 Read Operations......................................................................................................48  
10.1 Asynchronous Page-Mode Read........................................................................... 48  
10.2 Synchronous Burst-Mode Read............................................................................ 48  
10.3 Read Configuration Register................................................................................49  
10.3.1 Read Mode ............................................................................................ 50  
10.3.2 Latency Count........................................................................................50  
November 2007  
Order Number: 306666-11  
Datasheet  
3
P30  
10.3.3 WAIT Polarity.........................................................................................52  
10.3.4 Data Hold ..............................................................................................53  
10.3.5 WAIT Delay............................................................................................53  
10.3.6 Burst Sequence......................................................................................54  
10.3.7 Clock Edge.............................................................................................54  
10.3.8 Burst Wrap ............................................................................................55  
10.3.9 Burst Length..........................................................................................55  
10.3.10End of Word Line (EOWL) Considerations ...................................................55  
11.0 Programming Operations.........................................................................................56  
11.1 Word Programming............................................................................................56  
11.1.1 Factory Word Programming......................................................................57  
11.2 Buffered Programming .......................................................................................57  
11.3 Buffered Enhanced Factory Programming..............................................................58  
11.3.1 BEFP Requirements and Considerations .....................................................58  
11.3.2 BEFP Setup Phase...................................................................................59  
11.3.3 BEFP Program/Verify Phase......................................................................59  
11.3.4 BEFP Exit Phase......................................................................................60  
11.4 Program Suspend ..............................................................................................60  
11.5 Program Resume ...............................................................................................60  
11.6 Program Protection ............................................................................................61  
12.0 Erase Operations......................................................................................................62  
12.1 Block Erase.......................................................................................................62  
12.2 Erase Suspend ..................................................................................................62  
12.3 Erase Resume ...................................................................................................63  
12.4 Erase Protection ................................................................................................63  
13.0 Security Modes ........................................................................................................64  
13.1 Block Locking....................................................................................................64  
13.1.1 Lock Block .............................................................................................64  
13.1.2 Unlock Block ..........................................................................................64  
13.1.3 Lock-Down Block ....................................................................................64  
13.1.4 Block Lock Status ...................................................................................65  
13.1.5 Block Locking During Suspend..................................................................65  
13.2 Selectable One-Time Programmable Blocks ...........................................................66  
13.3 Protection Registers ...........................................................................................66  
13.3.1 Reading the Protection Registers...............................................................67  
13.3.2 Programming the Protection Registers .......................................................68  
13.3.3 Locking the Protection Registers ...............................................................68  
14.0 Special Read States..................................................................................................69  
14.1 Read Status Register..........................................................................................69  
14.1.1 Clear Status Register ..............................................................................70  
14.2 Read Device Identifier ........................................................................................70  
14.3 CFI Query.........................................................................................................71  
A
B
C
D
E
F
Write State Machine.................................................................................................72  
Flowcharts...............................................................................................................79  
Common Flash Interface..........................................................................................87  
Additional Information.............................................................................................97  
Ordering Information for Discrete Products .............................................................98  
Ordering Information for SCSP Products..................................................................99  
Datasheet  
4
November 2007  
Order Number: 306666-11  
P30  
Revision History  
Revision Date  
Revision  
Description  
April 2005  
-001  
Initial Release  
Revised discrete memory maps in Section 4.4, “Memory Maps” on page 22  
Added memory maps for 512-Mbit top parameter devices in Section 4.4, “Memory  
Maps” on page 22  
Fixed size of Programming Region for 256-Mbit to be 8-Mbit in Section 4.4, “Memory  
Maps” on page 22 and Section 11.0, “Programming Operations” on page 56  
August 2005  
-002  
Removed power supply sequencing requirement in Section 8.1, “Power-Up and Power-  
Down” on page 41  
Updated conditions for Table 15, “Capacitance” on page 29  
Updated CFI table in Appendix C, “Common Flash Interface”  
Added note to Table 34, “Device ID codes” on page 71 for stacked Device ID codes  
Synchronous burst read operation is currently not supported for the TSOP package  
Updated 512-Mbit Easy BGA Ball Height (symbol A1) in Figure 2, “Easy BGA Mechanical  
Specifications” on page 11  
September 2005  
-003  
November 2005  
February 2006  
-004  
-005  
Updated read access speed for 265M TSOP package  
Removed all references to 1 Gigabit.  
Added 52 MHz capabilities,  
Added TSOP Package information for 512 Mb throughout the document,  
Added Section 2.1, “Virtual Chip Enable Description” on page 8,  
Modified figures in Section 4.3, “Dual-Die Configurations” on page 21,  
Modified Table 9, “512-Mbit Top and Bottom Parameter Memory Map (Easy BGA and  
QUAD+ SCSP)” on page 23,  
April 2006  
-006  
Modified Notes 5 & 6 to Reset Specifications table in Section 8.2, “Reset  
Specifications” on page 41,  
Added additional note on 512 Mb capability in Table 31, “Selectable OTP Block  
Mapping” on page 66.  
Updated the following tables to 52 MHz: Table 16, “AC Read Specifications for 64/  
128- Mbit Densities” on page 29 and Table 17, “AC Read Specifications for 256/512-Mbit  
Densities” on page 30.  
May 2006  
May-2006  
-007  
-008  
Added notes 1, 2, and 3 to Table 15, “Capacitance” on page 29.  
Correct typos and add clarifications  
Enabled specific burst operation on TSOP packages.  
Updated device commands table.  
Updaed description on synchronous burst operation.  
Added EOWL description.  
June - 2007  
-009  
Updated flowcharts  
Updated for 65nm lithography  
Added W602 - Erase to Suspend  
November 2007  
November 2007  
-010  
11  
Applied Numonyx branding.  
November 2007  
Order Number: 306666-11  
Datasheet  
5
P30  
1.0  
Introduction  
This document provides information about the Numonyx™ StrataFlash® Embedded  
Memory (P30) product and describes its features, operation, and specifications.  
The Numonyx™ StrataFlash® Embedded Memory (P30) product is the latest generation  
of Numonyx™ StrataFlash® memory devices. Offered in 64-Mbit up through 512-Mbit  
densities, the P30 device brings reliable, two-bit-per-cell storage technology to the  
embedded flash market segment. Benefits include more density in less space, high-  
speed interface, lowest cost-per-bit NOR device, and support for code and data  
storage. Features include high-performance synchronous-burst read mode, fast  
asynchronous access times, low power, flexible security options, and three industry  
standard package choices. The P30 product family is manufactured using Intel* 130 nm  
ETOX™ VIII process technology.  
The P30 product family is also planned on the Intel* 65nm process lithography. 65nm  
AC timing changes are noted in this datasheet, and should be taken into account for all  
new designs.  
1.1  
Nomenclature  
1.8 V:  
3.0 V:  
9.0 V:  
VCC (core) voltage range of 1.7 V – 2.0 V  
VCCQ (I/O) voltage range of 1.7 V – 3.6 V  
VPP voltage range of 8.5 V – 9.5 V  
A group of bits, bytes, or words within the flash memory array that erase simultaneously  
when the Erase command is issued to the device. The P30 has two block sizes: 32-KByte  
and 128-KByte.  
Block:  
An array block that is usually used to store code and/or data. Main blocks are larger than  
parameter blocks.  
Main block:  
An array block that is usually used to store frequently changing data or small system  
parameters that traditionally would be stored in EEPROM.  
Parameter block:  
A device with its parameter blocks located at the highest physical address of its memory  
map.  
Top parameter device:  
A device with its parameter blocks located at the lowest physical address of its memory  
map.  
Bottom parameter device:  
1.2  
Acronyms  
BEFP:  
CUI:  
MLC:  
OTP:  
PLR:  
PR:  
Buffer Enhanced Factory Programming  
Command User Interface  
Multi-Level Cell  
One-Time Programmable  
Protection Lock Register  
Protection Register  
RCR:  
Read Configuration Register  
Datasheet  
6
November 2007  
Order Number: 306666-11  
P30  
RFU:  
Reserved for Future Use  
Status Register  
SR:  
WSM:  
Write State Machine  
1.3  
Conventions  
VCC:  
Signal or voltage connection  
VCC  
0x:  
0b:  
:
Signal or voltage level  
Hexadecimal number prefix  
Binary number prefix  
SR[4]:  
A[15:0]:  
A5:  
Denotes an individual register bit.  
Denotes a group of similarly named signals, such as address or data bus.  
Denotes one element of a signal group membership, such as an individual address bit.  
Bit:  
Binary unit  
Byte:  
Eight bits  
Word:  
Kbit:  
Two bytes, or sixteen bits  
1024 bits  
KByte:  
KWord:  
Mbit:  
1024 bytes  
1024 words  
1,048,576 bits  
1,048,576 bytes  
1,048,576 words  
MByte:  
MWord:  
November 2007  
Order Number: 306666-11  
Datasheet  
7
P30  
2.0  
Functional Overview  
This section provides an overview of the features and capabilities of the P30.  
The P30 family provides density upgrades from 64-Mbit through 512-Mbit. This family  
of devices provides high performance at low voltage on a 16-bit data bus. Individually  
erasable memory blocks are sized for optimum code and data storage.  
Upon initial power up or return from reset, the device defaults to asynchronous page-  
mode read. Configuring the Read Configuration Register enables synchronous burst-  
mode reads. In synchronous burst mode, output data is synchronized with a user-  
supplied clock signal. A WAIT signal provides an easy CPU-to-flash memory  
synchronization.  
In addition to the enhanced architecture and interface, the device incorporates  
technology that enables fast factory program and erase operations. Designed for low-  
voltage systems, the  
P30 supports read operations with VCC at 1.8 V, and erase and program operations with  
VPP at 1.8 V or 9.0 V. Buffered Enhanced Factory Programming (BEFP) provides the  
fastest flash array programming performance with VPP at 9.0 V, which increases factory  
throughput. With VPP at 1.8 V, VCC and VPP can be tied together for a simple, ultra low  
power design. In addition to voltage flexibility, a dedicated VPP connection provides  
complete data protection when VPP VPPLK  
.
A Command User Interface (CUI) is the interface between the system processor and all  
internal operations of the device. An internal Write State Machine (WSM) automatically  
executes the algorithms and timings necessary for block erase and program. A Status  
Register indicates erase or program completion and any errors that may have occurred.  
An industry-standard command sequence invokes program and erase automation. Each  
erase operation erases one block. The Erase Suspend feature allows system software to  
pause an erase cycle to read or program data in another block. Program Suspend  
allows system software to pause programming to read other locations. Data is  
programmed in word increments (16 bits).  
The P30 protection register allows unique flash device identification that can be used to  
increase system security. The individual Block Lock feature provides zero-latency block  
locking and unlocking. In addition, the P30 device also has four pre-defined spaces in  
the main array that can be configured as One-Time Programmable (OTP).  
2.1  
Virtual Chip Enable Description  
The P30 512Mbit devices employ a Virtual Chip Enable which combines two 256-Mbit  
die with a common chip enable, F1-CE# for QUAD+ packages or CE# for Easy BGA and  
TSOP packages. (Refer to Figure 9 on page 21 and Figure 10 on page 21). Address A24  
(Quad+ package) or A25 (Easy BGA and TSOP packages) is then used to select  
between the die pair with F1-CE# / CE# asserted depending upon the package option  
used. When chip enable is asserted and QUAD+ A24 (Easy BGA/TSOP A25) is low (VIL),  
The lower parameter die is selected; when chip enable is asserted and QUAD+ A24  
(Easy BGA/TSOP A25) is high (VIH), the upper parameter die is selected. Refer to  
Table 1 and Table 2 for additional details.  
Table 1:  
Virtual Chip Enable Truth Table for 512 Mb (QUAD+ Package)  
Die Selected  
F1-CE#  
A24  
Lower Param Die  
Upper Param Die  
L
L
L
H
Datasheet  
8
November 2007  
Order Number: 306666-11  
P30  
Table 2:  
Virtual Chip Enable Truth Table for 512 Mb (Easy BGA & TSOP Packages)  
Die Selected  
CE#  
A25  
Lower Param Die  
Upper Param Die  
L
L
L
H
November 2007  
Order Number: 306666-11  
Datasheet  
9
P30  
3.0  
Package Information  
3.1  
56-Lead TSOP  
Figure 1: TSOP Mechanical Specifications  
Z
A
2
See Note 2  
See Notes 1 and 3  
Pin 1  
e
See Detail B  
E
Y
D
1
A
1
D
Seating  
Plane  
See Detail A  
A
Detail A  
Detail B  
C
0
b
L
Table 3:  
TSOP Package Dimensions (Sheet 1 of 2)  
Millimeters  
Nom  
Inches  
Nom  
Product Information  
Symbol  
Notes  
Min  
Max  
Min  
Max  
Package Height  
Standoff  
A
A1  
A2  
b
-
-
1.200  
-
-
-
0.047  
-
0.050  
0.965  
0.100  
0.100  
18.200  
13.800  
-
-
0.002  
0.038  
0.004  
0.004  
0.717  
0.543  
-
-
Package Body Thickness  
Lead Width  
0.995  
0.150  
0.150  
18.400  
14.000  
0.500  
20.00  
1.025  
0.200  
0.200  
18.600  
14.200  
-
0.039  
0.006  
0.006  
0.724  
0.551  
0.0197  
0.787  
0.040  
0.008  
0.008  
0.732  
0.559  
-
Lead Thickness  
Package Body Length  
Package Body Width  
Lead Pitch  
c
D1  
E
e
Terminal Dimension  
D
19.800  
20.200  
0.780  
0.795  
Datasheet  
10  
November 2007  
Order Number: 306666-11  
P30  
Table 3:  
TSOP Package Dimensions (Sheet 2 of 2)  
Millimeters  
Inches  
Nom  
Product Information  
Symbol  
Notes  
Min  
Nom  
Max  
Min  
Max  
Lead Tip Length  
Lead Count  
L
N
ý
0.500  
0.600  
56  
0.700  
-
0.020  
0.024  
56  
0.028  
-
-
0°  
-
0°  
Lead Tip Angle  
3°  
5°  
3°  
5°  
Seating Plane Coplanarity  
Lead to Package Offset  
Notes:  
Y
Z
-
-
0.100  
0.350  
-
-
0.004  
0.014  
0.150  
0.250  
0.006  
0.010  
1.  
2.  
3.  
4.  
One dimple on package denotes Pin 1.  
If two dimples, then the larger dimple denotes Pin 1.  
Pin 1 will always be in the upper left corner of the package, in reference to the product mark.  
Daisy Chain Evaluation Unit information is at Numonyx™ Flash Memory Packaging Technology  
http://developer.Numonyx.com/design/flash/packtech.  
3.2  
64-Ball Easy BGA Package  
Figure 2: Easy BGA Mechanical Specifications  
Ball A1  
Corner  
Ball A1  
Corner  
D
S1  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
S2  
A
B
C
D
E
F
A
B
C
D
E
F
b
e
E
G
H
G
H
Top View - Ball side down  
A1  
Bottom View - Ball Side Up  
A2  
A
Seating  
Plane  
Y
Note: Drawing not to scale  
November 2007  
Order Number: 306666-11  
Datasheet  
11  
P30  
Table 4:  
Easy BGA Package Dimensions  
Millimeters  
Nom  
Inches  
Nom  
Product Information  
Symbol  
Notes  
Min  
Max  
Min  
Max  
Package Height (64/128/256-Mbit)  
Package Height (512-Mbit)  
Ball Height  
A
A
-
-
-
-
-
1.200  
1.300  
-
-
-
-
-
-
0.0472  
0.0512  
-
A1  
0.250  
0.0098  
Package Body Thickness (64/128/256-  
Mbit)  
A2  
-
0.780  
-
-
0.0307  
-
Package Body Thickness (512-Mbit)  
Ball (Lead) Width  
A2  
b
-
0.330  
9.900  
12.900  
-
0.910  
0.430  
10.000  
13.000  
1.000  
64  
-
-
0.0358  
0.0169  
0.3937  
0.5118  
0.0394  
64  
-
0.530  
10.100  
13.100  
-
0.0130  
0.3898  
0.5079  
-
0.0209  
0.3976  
0.5157  
-
Package Body Width  
Package Body Length  
Pitch  
D
E
[e]  
N
Ball (Lead) Count  
-
-
-
-
Seating Plane Coplanarity  
Corner to Ball A1 Distance Along D  
Corner to Ball A1 Distance Along E  
Notes:  
Y
-
-
0.100  
1.600  
3.100  
-
-
0.0039  
0.0630  
0.1220  
S1  
S2  
1.400  
2.900  
1.500  
3.000  
0.0551  
0.1142  
0.0591  
0.1181  
1.  
Daisy Chain Evaluation Unit information is at Numonyx™ Flash Memory Packaging Technology  
http://developer.Numonyx.com/design/flash/packtech.  
Datasheet  
12  
November 2007  
Order Number: 306666-11  
P30  
3.3  
QUAD+ SCSP Packages  
Figure 3: 64/128-Mbit, 88-ball (80 active) QUAD+ SCSP Specifications (8x10x1.2 mm)  
A1 Index  
Mark  
S1  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
S2  
A
B
C
D
E
F
A
B
C
D
E
F
D
e
G
G
H
J
H
J
K
K
L
L
M
M
b
E
Top View - Ball  
Down  
Bottom View - Ball Up  
A
A2  
A1  
Y
Drawing not to scale.  
Millimeters  
Nom  
-
Inches  
Nom  
-
Dimens ions  
Package Height  
Ball Height  
Package Body Thickness  
Ball (Lead) Width  
Package Body Width  
Package Body Length  
Pitch  
Ball (Lead) Count  
Seating Plane Coplanarity  
Corner to Ball A1 Distance Along E  
Corner to Ball A1 Distance Along D  
S ymbol  
A
Min  
-
0.200  
-
0.325  
9.900  
7.900  
-
Max  
1.200  
-
Min  
-
Max  
0.0472  
-
1
A
A
-
0.0079  
-
0.0128  
0.3898  
0.3110  
-
-
2
0.860  
0.375  
10.000  
8.000  
0.800  
88  
-
0.0339  
0.0148  
0.3937  
0.3150  
0.0315  
88  
-
b
D
E
e
N
Y
0.425  
10.100  
8.100  
-
0.0167  
0.3976  
0.3189  
-
-
-
-
-
-
-
-
0.100  
1.300  
0.700  
-
0.0039  
0.0512  
0.0276  
1
S
S
1.100  
0.500  
1.200  
0.600  
0.0433  
0.0197  
0.0472  
0.0236  
2
November 2007  
Order Number: 306666-11  
Datasheet  
13  
P30  
Figure 4: 256-Mbit, 88-ball (80 active) QUAD+ SCSP Specifications (8x11x1.0 mm)  
S1  
A1 Index  
Mark  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
S2  
A
B
C
D
E
F
A
B
C
D
E
F
D
e
G
G
H
J
H
J
K
K
L
L
M
M
b
E
Bottom View - Ball Up  
A
Top View - Ball Down  
A2  
A1  
Y
Drawing not to scale.  
Note: Dimensions A1, A2, and b are preliminary  
Millimeters  
Inches  
Dimensions  
Package Height  
Ball Height  
Package Body Thickness  
Ball (Lead) Width  
Package Body Length  
Package Body Width  
Pitch  
Symbol  
Min  
Nom  
-
-
0.740  
0.350  
11.00  
8.00  
0.80  
88  
Max  
1.000  
-
Min  
-
Nom  
-
-
0.0291  
0.0138  
0.4331  
0.3150  
0.0315  
88  
Max  
0.0394  
-
A
A1  
A2  
b
D
E
-
0.117  
-
0.300  
10.900  
7.900  
-
0.0046  
-
0.0118  
0.4291  
0.3110  
-
-
-
0.400  
11.100  
8.100  
-
0.0157  
0.4370  
0.3189  
-
e
N
Ball (Lead) Count  
-
-
-
-
Seating Plane Coplanarity  
Corner to Ball A1 Distance Along E  
Corner to Ball A1 Distance Along D  
Y
S1  
S2  
-
-
0.100  
1.300  
1.200  
-
-
0.0039  
0.0512  
0.0472  
1.100  
1.000  
1.200  
1.100  
0.0433  
0.0394  
0.0472  
0.0433  
Datasheet  
14  
November 2007  
Order Number: 306666-11  
P30  
Figure 5: 512-Mbit, 88-ball (80 active) QUAD+ SCSP Specifications (8x11x1.2 mm)  
S1  
A1 Index  
Mark  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
S2  
A
B
C
D
E
F
A
B
C
D
E
F
D
e
G
G
H
J
H
J
K
K
L
L
M
M
b
E
Bottom View - Ball Up  
A
Top View - Ball Down  
A2  
A1  
Y
Drawing not to scale.  
Millimeters  
Nom  
-
Inches  
Nom  
-
Dimensions  
Package Height  
Ball Height  
Package Body Thickness  
Ball (Lead) Width  
Package Body Length  
Package Body Width  
Pitch  
Symbol  
Min  
Max  
1.200  
-
Min  
-
Max  
0.0472  
-
A
A1  
A2  
b
D
E
-
0.200  
-
0.325  
10.900  
7.900  
-
-
0.0079  
-
0.0128  
0.4291  
0.3110  
-
-
0.860  
0.375  
11.000  
8.000  
0.800  
88  
-
0.0339  
0.0148  
0.4331  
0.3150  
0.0315  
88  
-
0.425  
11.100  
8.100  
-
0.0167  
0.4370  
0.3189  
-
e
N
Ball (Lead) Count  
-
-
-
-
Seating Plane Coplanarity  
Corner to Ball A1 Distance Along E  
Corner to Ball A1 Distance Along D  
Y
S1  
S2  
-
-
0.100  
1.300  
1.200  
-
-
0.0039  
0.0512  
0.0472  
1.100  
1.000  
1.200  
1.100  
0.0433  
0.0394  
0.0472  
0.0433  
November 2007  
Order Number: 306666-11  
Datasheet  
15  
P30  
4.0  
Ballout and Signal Descriptions  
4.1  
Signal Ballout  
Figure 6: 56-Lead TSOP Pinout (64/128/256/512- Mbit)  
WAIT  
A17  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
1
2
3
4
5
6
7
8
A16  
A15  
DQ15  
DQ7  
DQ14  
DQ6  
DQ13  
DQ5  
DQ12  
DQ4  
ADV#  
CLK  
A14  
A13  
A12  
A11  
A10  
A9  
A23  
A22  
A21  
VSS  
VCC  
WE#  
WP#  
A20  
A19  
A18  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A24  
A25  
VSS  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Intel StrataFlash®  
Embedded Memory (P30)  
RST#  
VPP  
56-Lead TSOP Pinout  
14 mm x 20 mm  
DQ11  
DQ3  
DQ10  
DQ2  
VCCQ  
DQ9  
DQ1  
DQ8  
DQ0  
VCC  
OE#  
Top View  
VSS  
CE#  
A1  
Notes:  
1.  
2.  
3.  
4.  
5.  
A1 is the least significant address bit.  
A23 is valid for 128-Mbit densities and above; otherwise, it is a no connect (NC).  
A24 is valid for 256-Mbit densities; otherwise, it is a no connect (NC).  
A25 is valid for 512-Mbit densities; otherwise, it is a no connect (NC).  
Please refer to the latest specification update for synchronous read operation with the TSOP package. The synchronous read  
input signals (i.e. ADV# and CLK) should be tied off to support asynchronous reads. See Section 4.2, “Signal Descriptions”  
on page 19.  
Datasheet  
16  
November 2007  
Order Number: 306666-11  
P30  
Figure 7: 64-Ball Easy BGA Ballout (64/128/256/512-Mbit)  
5
8
8
5
1
2
3
4
6
7
7
6
4
3
2
1
A
B
C
D
A
B
C
D
E
A1  
A6  
A8  
VPP A13 VCC A18 A22  
A22 A18 VCC A13 VPP A8  
RFU A19 A25 A14 CE# A9  
A21 A20 WP# A15 A12 A10  
A17 A16 VCCQ VCCQ RST# A11  
A6  
VSS  
A7  
A1  
A2  
A3  
A4  
A2 VSS  
A9 CE# A14 A25 A19 RFU  
A10 A12 A15 WP# A20 A21  
A11 RST# VCCQ VCCQ A16 A17  
A3  
A4  
A7  
A5  
A5  
E
F
DQ8 DQ1 DQ9 DQ3 DQ4 CLK DQ15 RFU  
RFU DQ0 DQ10 DQ11 DQ12 ADV# WAIT OE#  
A23 RFU DQ2 VCCQ DQ5 DQ6 DQ14 WE#  
RFU DQ15 CLK DQ4 DQ3 DQ9 DQ1 DQ8  
OE# WAIT ADV# DQ12 DQ11 DQ10 DQ0 RFU  
WE# DQ14 DQ6 DQ5 VCCQ DQ2 RFU A23  
F
G
G
H
H
RFU VSS VCC VSS DQ13 VSS DQ7 A24  
A24 DQ7 VSS DQ13 VSS VCC VSS RFU  
Easy BGA  
Easy BGA  
Top View- Ball side down  
Bottom View- Ball side up  
Notes:  
1.  
2.  
3.  
4.  
A1 is the least significant address bit.  
A23 is valid for 128-Mbit densities and above; otherwise, it is a no connect (NC).  
A24 is valid for 256-Mbit densities and above; otherwise, it is a no connect (NC).  
A25 is valid for 512-Mbit densities; otherwise, it is a no connect (NC).  
November 2007  
Order Number: 306666-11  
Datasheet  
17  
P30  
Figure 8: 88-Ball (80-Active Ball) QUAD+ SCSP Ballout  
Pin 1  
1
DU  
A4  
2
3
4
5
6
7
8
DU  
DU  
Depop  
A19  
Depop  
VSS  
Depop  
VCC  
RFU  
Depop  
VCC  
CLK  
RFU  
A20  
DU  
A
B
C
D
E
F
A
B
C
D
E
F
A18  
RFU  
A17  
A7  
A21  
A22  
A9  
A11  
A5  
A23  
VSS  
A12  
A3  
A24  
VPP  
RFU  
A13  
A2  
RFU  
RFU  
DQ2  
DQ1  
WP#  
RST#  
DQ10  
DQ3  
ADV#  
WE#  
DQ5  
A10  
A14  
WAIT  
DQ7  
A15  
A1  
A6  
A8  
A16  
A0  
DQ8  
DQ0  
DQ13  
DQ14  
F2-CE#  
F2-OE#  
G
H
G
H
RFU  
DQ12  
J
K
L
RFU  
F1-CE#  
VSS  
DU  
F1-OE#  
RFU  
VSS  
DU  
DQ9  
RFU  
VCCQ  
Depop  
3
DQ11  
RFU  
VCC  
Depop  
4
DQ4  
RFU  
VSS  
Depop  
5
DQ6  
VCC  
VSS  
Depop  
6
DQ15  
VCCQ  
VSS  
DU  
VCCQ  
RFU  
VSS  
DU  
J
K
L
M
M
1
2
7
8
Notes:  
1.  
2.  
3.  
4.  
A22 is valid for 128-Mbit densities and above; otherwise, it is a no connect (NC).  
A23 is valid for 256-Mbit densities and above; otherwise, it is a no connect (NC).  
A24 is valid for 512-Mbit densities and above; otherwise, it is a no connect (NC).  
F2-CE# and F2-OE# are no connect (NC) for all densities.  
Datasheet  
18  
November 2007  
Order Number: 306666-11  
P30  
4.2  
Signal Descriptions  
This section has signal descriptions for the various P30 packages.  
Table 5:  
TSOP and Easy BGA Signal Descriptions (Sheet 1 of 2)  
Symbol  
Type  
Name and Function  
ADDRESS INPUTS: Device address inputs. 64-Mbit: A[22:1]; 128-Mbit: A[23:1]; 256-Mbit:  
A[24:1]; 512-Mbit: A[25:1]. Note: The virtual selection of the 256-Mbit “Top parameter” die in the  
dual-die 512-Mbit configuration is accomplished by setting A[25] high (VIH).  
A[MAX:1]  
DQ[15:0]  
Input  
DATA INPUT/OUTPUTS: Inputs data and commands during write cycles; outputs data during  
memory, Status Register, Protection Register, and Read Configuration Register reads. Data balls float  
when the CE# or OE# are deasserted. Data is internally latched during writes.  
Input/  
Output  
ADDRESS VALID: Active low input. During synchronous read operations, addresses are latched on  
the rising edge of ADV#, or on the next valid CLK edge with ADV# low, whichever occurs first.  
ADV#  
Input  
In asynchronous mode, the address is latched when ADV# going high or continuously flows through  
if ADV# is held low.  
WARNING: Designs not using ADV# must tie it to VSS to allow addresses to flow through.  
FLASH CHIP ENABLE: Active low input. CE# low selects the associated flash memory die. When  
asserted, flash internal control logic, input buffers, decoders, and sense amplifiers are active. When  
deasserted, the associated flash die is deselected, power is reduced to standby levels, data and  
WAIT outputs are placed in high-Z state.  
CE#  
CLK  
Input  
Input  
WARNING: Chip enable must be driven high when device is not in use.  
CLOCK: Synchronizes the device with the system’s bus frequency in synchronous-read mode. During  
synchronous read operations, addresses are latched on the rising edge of ADV#, or on the next valid  
CLK edge with ADV# low, whichever occurs first.  
WARNING: Designs not using CLK for synchronous read mode must tie it to VCCQ or VSS.  
OUTPUT ENABLE: Active low input. OE# low enables the device’s output data buffers during read  
OE#  
Input  
Input  
cycles. OE# high places the data outputs and WAIT in High-Z.  
RESET: Active low input. RST# resets internal automation and inhibits write operations. This  
provides data protection during power transitions. RST# high enables normal operation. Exit from  
reset places the device in asynchronous read array mode.  
RST#  
WAIT: Indicates data valid in synchronous array or non-array burst reads. Read Configuration  
Register bit 10 (RCR[10], WT) determines its polarity when asserted. WAIT’s active output is VOL or  
VOH when CE# and OE# are VIL. WAIT is high-Z if CE# or OE# is VIH  
.
WAIT  
Output  
In synchronous array or non-array read modes, WAIT indicates invalid data when asserted and  
valid data when deasserted.  
In asynchronous page mode, and all write modes, WAIT is deasserted.  
WRITE ENABLE: Active low input. WE# controls writes to the device. Address and data are latched  
on the rising edge of WE#.  
WE#  
WP#  
Input  
Input  
WRITE PROTECT: Active low input. WP# low enables the lock-down mechanism. Blocks in lock-  
down cannot be unlocked with the Unlock command. WP# high overrides the lock-down function  
enabling blocks to be erased or programmed using software commands.  
Erase and Program Power: A valid voltage on this pin allows erasing or programming. Memory  
contents cannot be altered when VPP VPPLK. Block erase and program at invalid VPP voltages should  
not be attempted.  
Set VPP = VPPL for in-system program and erase operations. To accommodate resistor or diode drops  
from the system supply, the VIH level of VPP can be as low as VPPL min. VPP must remain above VPPL  
min to perform in-system flash modification. VPP may be 0 V during read operations.  
Power/  
Input  
VPP  
VPPH can be applied to main blocks for 1000 cycles maximum and to parameter blocks for 2500  
cycles. VPP can be connected to 9 V for a cumulative total not to exceed 80 hours. Extended use of  
this pin at 9 V may reduce block cycling capability.  
Device Core Power Supply: Core (logic) source voltage. Writes to the flash array are inhibited  
when VCC VLKO. Operations at invalid VCC voltages should not be attempted.  
VCC  
Power  
VCCQ  
VSS  
Power  
Power  
Output Power Supply: Output-driver source voltage.  
Ground: Connect to system ground. Do not float any VSS connection.  
November 2007  
Order Number: 306666-11  
Datasheet  
19  
P30  
Table 5:  
TSOP and Easy BGA Signal Descriptions (Sheet 2 of 2)  
Symbol  
Type  
Name and Function  
Reserved for Future Use: Reserved by Numonyx for future device functionality and enhancement.  
These should be treated in the same way as a Do Not Use (DU) signal.  
RFU  
DU  
NC  
Do Not Use: Do not connect to any other signal, or power supply; must be left floating.  
No Connect: No internal connection; can be driven or floated.  
Table 6:  
QUAD+ SCSP Signal Descriptions (Sheet 1 of 2)  
Symbol  
Type  
Name and Function  
ADDRESS INPUTS: Device address inputs. 64-Mbit: A[21:0]; 128-Mbit: A[22:0]; 256-Mbit:  
A[23:0]; 512-Mbit: A[24:0]. Note: The virtual selection of the 256-Mbit “Top parameter” die in the  
dual-die 512-Mbit configuration is accomplished by setting A[25] high (VIH).  
A[MAX:0]  
DQ[15:0]  
Input  
DATA INPUT/OUTPUTS: Inputs data and commands during write cycles; outputs data during  
memory, Status Register, Protection Register, and Read Configuration Register reads. Data balls float  
when the CE# or OE# are deasserted. Data is internally latched during writes.  
Input/  
Output  
ADDRESS VALID: Active low input. During synchronous read operations, addresses are latched on  
the rising edge of ADV#, or on the next valid CLK edge with ADV# low, whichever occurs first.  
ADV#  
Input  
In asynchronous mode, the address is latched when ADV# going high or continuously flows through  
if ADV# is held low.  
WARNING: Designs not using ADV# must tie it to VSS to allow addresses to flow through.  
FLASH CHIP ENABLE: Active low input. CE# low selects the associated flash memory die. When  
asserted, flash internal control logic, input buffers, decoders, and sense amplifiers are active. When  
deasserted, the associated flash die is deselected, power is reduced to standby levels, data and  
WAIT outputs are placed in high-Z state.  
F1-CE#  
CLK  
Input  
Input  
WARNING: Chip enable must be driven high when device is not in use.  
CLOCK: Synchronizes the device with the system’s bus frequency in synchronous-read mode. During  
synchronous read operations, addresses are latched on the rising edge of ADV#, or on the next valid  
CLK edge with ADV# low, whichever occurs first.  
WARNING: Designs not using CLK for synchronous read mode must tie it to VCCQ or VSS.  
OUTPUT ENABLE: Active low input. OE# low enables the device’s output data buffers during read  
cycles. OE# high places the data outputs and WAIT in High-Z.  
F1-OE#  
RST#  
Input  
Input  
RESET: Active low input. RST# resets internal automation and inhibits write operations. This  
provides data protection during power transitions. RST# high enables normal operation. Exit from  
reset places the device in asynchronous read array mode.  
WAIT: Indicates data valid in synchronous array or non-array burst reads. Read Configuration  
Register bit 10 (RCR[10], WT) determines its polarity when asserted. WAIT’s active output is VOL or  
VOH when CE# and OE# are VIL. WAIT is high-Z if CE# or OE# is VIH  
.
WAIT  
Output  
In synchronous array or non-array read modes, WAIT indicates invalid data when asserted and  
valid data when deasserted.  
In asynchronous page mode, and all write modes, WAIT is deasserted.  
WRITE ENABLE: Active low input. WE# controls writes to the device. Address and data are latched  
WE#  
WP#  
Input  
Input  
on the rising edge of WE#.  
WRITE PROTECT: Active low input. WP# low enables the lock-down mechanism. Blocks in lock-  
down cannot be unlocked with the Unlock command. WP# high overrides the lock-down function  
enabling blocks to be erased or programmed using software commands.  
Erase and Program Power: A valid voltage on this pin allows erasing or programming. Memory  
contents cannot be altered when VPP VPPLK. Block erase and program at invalid VPP voltages should  
not be attempted.  
Set VPP = VPPL for in-system program and erase operations. To accommodate resistor or diode drops  
from the system supply, the VIH level of VPP can be as low as VPPL min. VPP must remain above VPPL  
min to perform in-system flash modification. VPP may be 0 V during read operations.  
Power/  
lnput  
VPP  
VPPH can be applied to main blocks for 1000 cycles maximum and to parameter blocks for 2500  
cycles. VPP can be connected to 9 V for a cumulative total not to exceed 80 hours. Extended use of  
this pin at 9 V may reduce block cycling capability.  
Datasheet  
20  
November 2007  
Order Number: 306666-11  
P30  
Table 6:  
QUAD+ SCSP Signal Descriptions (Sheet 2 of 2)  
Symbol  
Type  
Name and Function  
Device Core Power Supply: Core (logic) source voltage. Writes to the flash array are inhibited  
when VCC VLKO. Operations at invalid VCC voltages should not be attempted.  
VCC  
Power  
VCCQ  
VSS  
Power  
Power  
Output Power Supply: Output-driver source voltage.  
Ground: Connect to system ground. Do not float any VSS connection.  
Reserved for Future Use: Reserved by Numonyx for future device functionality and enhancement.  
These should be treated in the same way as a Do Not Use (DU) signal.  
RFU  
DU  
NC  
Do Not Use: Do not connect to any other signal, or power supply; must be left floating.  
No Connect: No internal connection; can be driven or floated.  
4.3  
Dual-Die Configurations  
Figure 9: 512-Mbit Easy BGA and TSOP Top or Bottom Parameter Block Diagram  
Easy BGA & TSOP 512-Mbit (Dual-Die) Top or Bottom Parameter  
Configuration  
CE#  
Top Param Die  
RST#  
WP#  
OE#  
WE#  
(256-Mbit)  
VCC  
VPP  
VCCQ  
VSS  
CLK  
ADV#  
Bottom Param Die  
(256-Mbit)  
DQ[15:0]  
WAIT  
A[MAX:1]  
Figure 10: 512-Mbit QUAD+ SCSP Top or Bottom Parameter Block Diagram  
QUAD+ 512-Mbit (Dual-Die) Top or Bottom Parameter  
Configuration  
F1-CE#  
Top Param Die  
RST#  
WP#  
OE#  
WE#  
(256-Mbit)  
VCC  
VPP  
VCCQ  
VSS  
CLK  
ADV#  
Bottom Param Die  
(256-Mbit)  
DQ[15:0]  
WAIT  
A[MAX:0]  
Note: Amax = Vih selects the Top parameter Die; Amax = Vil selects the Bottom Parameter Die.  
November 2007  
Order Number: 306666-11  
Datasheet  
21  
P30  
4.4  
Memory Maps  
Table 7 through Table 9 show the P30 memory maps. The memory array is divided into  
multiple 8-Mbit Programming Regions (see Section 11.0, “Programming Operations” on  
page 56).  
Table 7:  
Discrete Top Parameter Memory Maps (all packages)  
Size  
(KB)  
Size  
(KB)  
Blk  
64-Mbit  
Blk  
128-Mbit  
32  
66  
3FC000 - 3FFFFF  
32  
130  
7FC000 - 7FFFFF  
32  
63  
62  
3F0000 - 3F3FFF  
3E0000 - 3EFFFF  
32  
127  
126  
7F0000 - 7F3FFF  
7E0000 - 7EFFFF  
128  
128  
128  
128  
128  
56  
55  
54  
380000 - 38FFFF  
370000 - 37FFFF  
360000 - 36FFFF  
128  
128  
128  
120  
119  
118  
780000 - 78FFFF  
770000 - 77FFFF  
760000 - 76FFFF  
128  
128  
1
0
010000 - 01FFFF  
000000 - 00FFFF  
128  
128  
1
0
010000 - 01FFFF  
000000 - 00FFFF  
Size  
(KB)  
Blk  
256-Mbit  
32  
258  
FFC000 - FFFFFF  
32  
255  
254  
FF0000 - FF3FFF  
FE0000 - FEFFFF  
128  
128  
128  
128  
248  
247  
246  
F80000 - F8FFFF  
F70000 - F7FFFF  
F60000 - F6FFFF  
128  
128  
1
0
010000 - 01FFFF  
000000 - 00FFFF  
Table 8:  
Discrete Bottom Parameter Memory Maps (all packages)  
Size  
(KB)  
Size  
(KB)  
Blk  
64-Mbit  
Blk  
128-Mbit  
128  
128  
66  
65  
3F0000 - 3FFFFF  
3E0000 - 3EFFFF  
128  
128  
130  
129  
7F0000 - 7FFFFF  
7E0000 - 7EFFFF  
128  
128  
12  
11  
090000 - 09FFFF  
080000 - 08FFFF  
128  
128  
12  
11  
090000 - 09FFFF  
080000 - 08FFFF  
Datasheet  
22  
November 2007  
Order Number: 306666-11  
P30  
Table 8:  
Discrete Bottom Parameter Memory Maps (all packages)  
Size  
(KB)  
Size  
(KB)  
Blk  
64-Mbit  
Blk  
128-Mbit  
128  
10  
070000 - 07FFFF  
128  
10  
070000 - 07FFFF  
128  
32  
4
3
010000 - 01FFFF  
00C000 - 00FFFF  
128  
32  
4
3
010000 - 01FFFF  
00C000 - 00FFFF  
32  
0
000000 - 003FFF  
32  
0
000000 - 003FFF  
Size  
(KB)  
Blk  
256-Mbit  
128  
128  
258  
257  
FF0000 - FFFFFF  
FE0000 - FEFFFF  
128  
128  
128  
12  
11  
10  
090000 - 09FFFF  
080000 - 08FFFF  
070000 - 07FFFF  
128  
32  
4
3
010000 - 01FFFF  
00C000 - 00FFFF  
32  
0
000000 - 003FFF  
Block size is referenced in K-Bytes where a byte=8 bits. Block Address range is referenced in K-  
Words where a Word is the size of the flash output bus (16 bits).  
Note: The Dual- Die P30 memory maps are the same for both parameter options because the  
devices employ virtual chip enable (Refer to Section 2.1). The parameter option only defines  
the placement of bottom parameter die.  
Table 9:  
512-Mbit Top and Bottom Parameter Memory Map (Easy BGA and QUAD+ SCSP)  
(Sheet 1 of 2)  
512-Mbit Flash (2x256-Mbit w/ 1CE)  
Size  
(KB)  
Die Stack Config  
Blk  
Address Range  
32  
517  
1FFC000 - 1FFFFFF  
256-Mbit  
32  
514  
513  
1FF0000 - 1FF3FFF  
1FE0000 - 1FEFFFF  
Top Parameter Die  
128  
128  
128  
259  
258  
1000000 - 100FFFF  
FF0000 - FFFFFF  
November 2007  
Order Number: 306666-11  
Datasheet  
23  
P30  
Table 9:  
512-Mbit Top and Bottom Parameter Memory Map (Easy BGA and QUAD+ SCSP)  
(Sheet 2 of 2)  
512-Mbit Flash (2x256-Mbit w/ 1CE)  
Size  
(KB)  
Die Stack Config  
Blk  
Address Range  
256-Mbit  
128  
32  
4
3
010000 - 01FFFF  
00C000 - 00FFFF  
Bottom Parameter Die  
32  
0
000000 - 003FFF  
Note: Refer to the appropriate 256-Mbit Memory Map (Table 7 or Table 8) for Programming Region information; Block size  
is referenced in K-Bytes where a byte=8 bits. Block Address range is referenced in K-Words where a Word is the size of  
the flash output bus (16 bits).  
Datasheet  
24  
November 2007  
Order Number: 306666-11  
P30  
5.0  
Maximum Ratings and Operating Conditions  
5.1  
Absolute Maximum Ratings  
Warning:  
Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent  
damage. These are stress ratings only.  
Table 10:  
Parameter  
Maximum Rating  
Notes  
Temperature under bias  
Storage temperature  
–40 °C to +85 °C  
–65 °C to +125 °C  
–0.5 V to +4.1 V  
–0.2 V to +10 V  
–0.2 V to +2.5 V  
–0.2 V to +4.1 V  
100 mA  
Voltage on any signal (except VCC, VPP and VCCQ)  
1
VPP voltage  
1,2,3  
VCC voltage  
1
1
4
VCCQ voltage  
Output short circuit current  
Notes:  
1.  
Voltages shown are specified with respect to VSS. Minimum DC voltage is –0.5 V on input/output signals and –0.2 V on  
VCC, VCCQ, and VPP. During transitions, this level may undershoot to –2.0 V for periods less than 20 ns. Maximum DC  
voltage on VCC is VCC + 0.5 V, which, during transitions, may overshoot to VCC + 2.0 V for periods less than 20 ns.  
Maximum DC voltage on input/output signals and VCCQ is VCCQ + 0.5 V, which, during transitions, may overshoot to  
VCCQ + 2.0 V for periods less than 20 ns.  
2.  
3.  
Maximum DC voltage on VPP may overshoot to +11.5 V for periods less than 20 ns.  
Program/erase voltage is typically 1.7 V – 2.0 V. 9.0 V can be applied for 80 hours maximum total, to any blocks for  
1000 cycles maximum. 9.0 V program/erase voltage may reduce block cycling capability.  
4.  
Output shorted for no more than one second. No more than one output shorted at a time.  
5.2  
Operating Conditions  
Note: Operation beyond the “Operating Conditions” is not recommended and extended exposure  
beyond the “Operating Conditions” may affect device reliability.  
Table 11: Operating Conditions  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
TC  
Operating Temperature  
VCC Supply Voltage  
–40  
+85  
2.0  
3.6  
3.6  
3.6  
9.5  
80  
°C  
1
3
VCC  
1.7  
CMOS inputs  
TTL inputs  
1.7  
VCCQ  
I/O Supply Voltage  
2.4  
V
VPPL  
VPPH  
tPPH  
VPP Voltage Supply (Logic Level)  
Factory word programming VPP  
Maximum VPP Hours  
0.9  
8.5  
VPP = VPPH  
VPP = VPPL  
VPP = VPPH  
VPP = VPPH  
-
Hours  
Cycles  
2
Main and Parameter Blocks  
Main Blocks  
100,000  
-
Block  
Erase  
Cycles  
-
-
1000  
2500  
Parameter Blocks  
Notes:  
1.  
2.  
3.  
T
C = Case Temperature.  
In typical operation VPP program voltage is VPPL  
.
40Mhz burst operation on the TSOP package has a min Vcc value of 1.85V. Please refer to the latest Specification Update  
regarding synchronous burst operation with the TSOP package  
November 2007  
Order Number: 306666-11  
Datasheet  
25  
P30  
6.0  
Electrical Specifications  
6.1  
DC Current Characteristics  
Table 12: DC Current Characteristics (Sheet 1 of 2)  
CMOS  
TTL Inputs  
Inputs  
(VCCQ  
2.4 V - 3.6  
V)  
=
(VCCQ  
1.7 V - 3.6  
V)  
=
Sym  
Parameter  
Unit  
Test Conditions  
Notes  
Typ  
Max  
Typ  
Max  
VCC = VCCMax  
VCCQ = VCCQMax  
VIN = VCCQ or VSS  
ILI  
Input Load Current  
-
±1  
-
±2  
µA  
µA  
1
Output  
VCC = VCCMax  
VCCQ = VCCQMax  
VIN = VCCQ or VSS  
ILO  
Leakage  
Current  
DQ[15:0],  
-
±1  
-
±10  
WAIT  
64-Mbit  
20  
30  
35  
75  
20  
30  
35  
75  
VCC = VCCMax  
VCCQ = VCCQMax  
CE# = VCCQ  
RST# = VCCQ (for ICCS  
RST# = VSS (for ICCD  
WP# = VIH  
128-Mbit  
256-Mbit  
512-Mbit  
ICCS  
ICCD  
,
VCC Standby,  
Power Down  
µA  
1,2  
)
55  
115  
230  
55  
200  
400  
)
110  
110  
Asynchronous Single-  
Word f = 5 MHz (1 CLK)  
14  
9
16  
10  
14  
9
16  
10  
mA  
mA  
1-Word Read  
Page-Mode Read  
f = 13 MHz (5 CLK)  
4-Word Read  
BL = 4W  
13  
15  
17  
21  
16  
19  
22  
23  
36  
26  
20  
30  
55  
110  
17  
19  
21  
26  
19  
23  
26  
28  
51  
33  
35  
75  
115  
230  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
36  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
51  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Average  
VCC  
VCC = VCCMax  
CE# = VIL  
OE# = VIH  
Inputs: VIL or  
VIH  
BL = 8W  
Synchronous Burst  
f = 40 MHz  
ICCR  
Read  
1
BL = 16W  
BL = Cont.  
BL = 4W  
Current  
BL = 8W  
Synchronous Burst  
f = 52MHz  
BL = 16W  
BL = Cont.  
VPP = VPPL, pgm/ers in progress  
VPP = VPPH, pgm/ers in progress  
1,3,5  
1,3,5  
ICCW,  
ICCE  
VCC Program Current,  
VCC Erase Current  
mA  
26  
33  
64-Mbit  
128-Mbit  
256-Mbit  
512-Mbit  
20  
35  
VCC Program Suspend  
30  
75  
ICCWS, Current,  
CE# = VCCQ; suspend in  
progress  
µA  
1,3,4  
ICCES  
VCC Erase  
55  
200  
400  
Suspend Current  
110  
IPPS,  
VPP Standby Current,  
IPPWS, VPP Program Suspend Current,  
0.2  
5
0.2  
5
µA  
VPP = VPPL, suspend in progress  
1,3  
1,3  
VPP Erase Suspend Current  
IPPES  
IPPR  
VPP Read  
2
0.05  
8
15  
0.10  
22  
2
0.05  
8
15  
0.10  
22  
µA  
VPP = VPPL  
VPP = VPPL, program in progress  
VPP = VPPH, program in progress  
IPPW  
VPP Program Current  
mA  
Datasheet  
26  
November 2007  
Order Number: 306666-11  
P30  
Table 12: DC Current Characteristics (Sheet 2 of 2)  
CMOS  
TTL Inputs  
Inputs  
(VCCQ  
2.4 V - 3.6  
V)  
=
(VCCQ  
1.7 V - 3.6  
V)  
=
Sym  
Parameter  
Unit  
Test Conditions  
Notes  
Typ  
Max  
Typ  
Max  
0.05  
8
0.10  
22  
0.05  
8
0.10  
22  
VPP = VPPL, erase in progress  
IPPE  
VPP Erase Current  
mA  
V
PP = VPPH, erase in progress  
Notes:  
1.  
2.  
3.  
4.  
5.  
All currents are RMS unless noted. Typical values at typical VCC, TC = +25 °C.  
ICCS is the average current measured over any 5 ms time interval 5 µs after CE# is deasserted.  
Sampled, not 100% tested.  
ICCES is specified with the device deselected. If device is read while in erase suspend, current is ICCES plus ICCR  
ICCW, ICCE measured over typical or max times specified in Section 7.5, “Program and Erase  
Characteristics” on page 39.  
.
6.2  
DC Voltage Characteristics  
Table 13: DC Voltage Characteristics  
(1)  
CMOS Inputs  
(VCCQ = 1.7 V – 3.6 V)  
TTL Inputs  
(VCCQ = 2.4 V – 3.6 V)  
Sym  
Parameter  
Unit  
Test Condition  
Notes  
Min  
Max  
Min  
Max  
VIL  
Input Low Voltage  
Input High Voltage  
0
0.4  
0
0.6  
V
V
2
VIH  
VCCQ – 0.4 V  
VCCQ  
2.0  
VCCQ  
VCC = VCCMin  
VCCQ = VCCQMin  
IOL = 100 µA  
VOL  
Output Low Voltage  
Output High Voltage  
-
0.1  
-
-
0.1  
-
V
V
VCC = VCCMin  
VCCQ = VCCQMin  
IOH = –100 µA  
VOH  
VCCQ – 0.1  
VCCQ – 0.1  
VPPLK  
VLKO  
VPP Lock-Out Voltage  
VCC Lock Voltage  
-
0.4  
-
0.4  
V
V
V
3
1.0  
0.9  
-
-
1.0  
0.9  
-
-
VLKOQ  
VCCQ Lock Voltage  
Notes:  
1.  
2.  
3.  
Synchronous read mode is not supported with TTL inputs.  
VIL can undershoot to –0.4 V and VIH can overshoot to VCCQ + 0.4 V for durations of 20 ns or less.  
VPP VPPLK inhibits erase and program operations. Do not use VPPL and VPPH outside their valid ranges.  
November 2007  
Order Number: 306666-11  
Datasheet  
27  
P30  
7.0  
AC Characteristics  
7.1  
AC Test Conditions  
Figure 11: AC Input/Output Reference Waveform  
VCCQ  
Input VCCQ/2  
Test Points  
VCCQ/2 Output  
0V  
IO_REF.WMF  
Note: AC test inputs are driven at VCCQ for Logic "1" and 0 V for Logic "0." Input/output timing begins/ends at VCCQ/2. Input rise  
and fall times (10% to 90%) < 5 ns. Worst case speed occurs at VCC = VCCMin.  
Figure 12: Transient Equivalent Testing Load Circuit  
Device  
Out  
Under Test  
CL  
Notes:  
1.  
2.  
See the following table for component values.  
Test configuration component value for worst-case speed conditions.  
CL includes jig capacitance.  
3.  
.
Table 14: Test Configuration Component Value For Worst Case Speed Conditions  
Test Configuration  
CCQMin Standard Test  
CL (pF)  
V
30  
Figure 13: Clock Input AC Waveform  
R201  
VIH  
CLK [C]  
VIL  
R202  
R203  
Datasheet  
28  
November 2007  
Order Number: 306666-11  
P30  
7.2  
Capacitance  
Table 15: Capacitance  
Parameter  
Signals  
Min  
Typ  
Max  
Unit  
Condition  
Notes  
Address, Data,  
CE#, WE#, OE#,  
RST#, CLK, ADV#,  
WP#  
Typ temp = 25 °C,  
Max temp = 85 °C,  
VCC = (0 V - 2.0 V),  
VCCQ = (0 V - 3.6 V),  
Discrete silicon die  
Input Capacitance  
Output Capacitance  
2
2
6
4
7
5
pF  
pF  
1,2,3  
Data, WAIT  
Notes:  
1.  
Capacitance values are for a single die; for 2-die and 4-die stacks, multiply the capacitance values by the number of  
dies in the stack.  
2.  
3.  
Sampled, but not 100% tested.  
Silicon die capacitance only; add 1 pF for discrete packages.  
7.3  
AC Read Specifications  
Table 16: AC Read Specifications for 64/128- Mbit Densities (Sheet 1 of 2)  
Num  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
Asynchronous Specifications  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
tAVAV  
tAVQV  
tELQV  
tGLQV  
tPHQV  
tELQX  
tGLQX  
tEHQZ  
tGHQZ  
Read cycle time  
85  
-
-
85  
85  
25  
150  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address to output valid  
CE# low to output valid  
OE# low to output valid  
-
-
1,2  
1
RST# high to output valid  
CE# low to output in low-Z  
OE# low to output in low-Z  
CE# high to output in high-Z  
OE# high to output in high-Z  
-
0
0
-
1,3  
1,2,3  
-
24  
24  
-
1,3  
Output hold from first occurring address, CE#, or  
OE# change  
R10  
tOH  
0
-
ns  
R11  
R12  
R13  
R15  
tEHEL  
tELTV  
tEHTZ  
tGLTV  
CE# pulse width high  
20  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
1
CE# low to WAIT valid  
CE# high to WAIT high-Z  
OE# low to WAIT valid  
OE# low to WAIT in low-Z  
OE# high to WAIT in high-Z  
17  
20  
17  
-
-
1,3  
1
-
R16  
R17  
tGLTX  
tGHTZ  
0
-
1,3  
20  
Latching Specifications  
R101  
R102  
R103  
R104  
R105  
R106  
tAVVH  
tELVH  
tVLQV  
tVLVH  
tVHVL  
tVHAX  
Address setup to ADV# high  
CE# low to ADV# high  
10  
10  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ADV# low to output valid  
ADV# pulse width low  
85  
-
1
10  
10  
9
ADV# pulse width high  
Address hold from ADV# high  
-
-
1,4  
November 2007  
Order Number: 306666-11  
Datasheet  
29  
P30  
Table 16: AC Read Specifications for 64/128- Mbit Densities (Sheet 2 of 2)  
Num  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
R108  
R111  
tAPA  
tphvh  
Page address access  
-
25  
-
ns  
ns  
1
RST# high to ADV# high  
30  
Clock Specifications  
-
-
52  
40  
-
MHz  
MHz  
ns  
R200  
R201  
fCLK  
CLK frequency  
CLK period  
TSOP  
TSOP  
19.2  
25  
5
tCLK  
1,3,5,6  
-
ns  
R202  
R203  
tCH/CL  
CLK high/low time  
CLK fall/rise time  
-
ns  
tFCLK/RCLK  
-
3
ns  
Synchronous Specifications(5,6)  
R301  
R302  
R303  
R304  
R305  
R306  
R307  
R311  
R312  
tAVCH/L  
tVLCH/L  
tELCH/L  
tCHQV / tCLQV  
tCHQX  
Address setup to CLK  
ADV# low setup to CLK  
CE# low setup to CLK  
CLK to output valid  
9
9
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
9
-
-
17  
-
Output hold from CLK  
Address hold from CLK  
CLK to WAIT valid  
3
1,7  
1,4,7  
1,7  
1
tCHAX  
10  
-
-
tCHTV  
17  
-
tCHVL  
CLK Valid to ADV# Setup  
WAIT Hold from CLK  
3
tCHTX  
3
-
1,7  
Notes:  
1.  
See Figure 11, “AC Input/Output Reference Waveform” on page 28 for timing measurements and max  
allowable input slew rate.  
2.  
3.  
4.  
5.  
6.  
7.  
OE# may be delayed by up to tELQV – tGLQV after CE#’s falling edge without impact to tELQV.  
Sampled, not 100% tested.  
Address hold in synchronous burst mode is tCHAX or tVHAX, whichever timing specification is satisfied first.  
Please see the latest P30 Spec Update for synchronous burst operation with the TSOP package.  
Synchronous read mode is not supported with TTL level inputs.  
Applies only to subsequent synchronous reads.  
Table 17: AC Read Specifications for 256/512-Mbit Densities (Sheet 1 of 3)  
Num  
Symbol  
Parameter  
Speed  
Min  
Max  
Unit  
Notes  
Asynchronous Specifications  
VCC = 1.8 V – 2.0  
85  
88  
95  
-
-
-
V
VCC = 1.7 V – 2.0  
V
R1  
R2  
tAVAV  
Read cycle time  
ns  
256/512-Mb TSOP  
packages  
VCC = 1.8 V – 2.0  
V
85  
88  
95  
VCC = 1.7 V – 2.0  
V
tAVQV  
Address to output valid  
-
ns  
256/512-Mb TSOP  
packages  
-
Datasheet  
30  
November 2007  
Order Number: 306666-11  
P30  
Table 17: AC Read Specifications for 256/512-Mbit Densities (Sheet 2 of 3)  
Num  
Symbol  
Parameter  
Speed  
Min  
Max  
Unit  
Notes  
VCC = 1.8 V – 2.0  
V
-
85  
VCC = 1.7 V – 2.0  
R3  
tELQV  
CE# low to output valid  
-
-
88  
95  
ns  
V
256/512-Mb TSOP  
packages  
R4  
R5  
R6  
R7  
R8  
R9  
tGLQV  
tPHQV  
tELQX  
tGLQX  
tEHQZ  
tGHQZ  
OE# low to output valid  
-
-
25  
150  
-
ns  
ns  
ns  
ns  
ns  
ns  
1,2  
1
RST# high to output valid  
CE# low to output in low-Z  
OE# low to output in low-Z  
CE# high to output in high-Z  
OE# high to output in high-Z  
0
0
-
1,3  
1,2,3  
-
24  
24  
-
1,3  
Output hold from first occurring address, CE#, or OE#  
change  
R10  
tOH  
0
-
ns  
R11  
R12  
R13  
R15  
tEHEL  
tELTV  
tEHTZ  
tGLTV  
CE# pulse width high  
20  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
1
CE# low to WAIT valid  
CE# high to WAIT high-Z  
OE# low to WAIT valid  
OE# low to WAIT in low-Z  
OE# high to WAIT in high-Z  
17  
20  
17  
-
-
1,3  
1
-
R16  
R17  
tGLTX  
tGHTZ  
0
-
1,3  
20  
Latching Specifications  
R101  
R102  
tAVVH  
tELVH  
Address setup to ADV# high  
CE# low to ADV# high  
10  
10  
-
-
ns  
ns  
V
CC = 1.8 V – 2.0  
-
-
-
85  
88  
95  
V
VCC = 1.7 V – 2.0  
V
R103  
tVLQV  
ADV# low to output valid  
ns  
1
256/512-Mb TSOP  
packages  
R104  
R105  
R106  
R108  
R111  
tVLVH  
tVHVL  
tVHAX  
tAPA  
ADV# pulse width low  
ADV# pulse width high  
Address hold from ADV# high  
Page address access  
10  
10  
9
-
-
ns  
ns  
ns  
ns  
ns  
-
1,4  
1
-
25  
-
tphvh  
RST# high to ADV# high  
30  
Clock Specifications  
-
-
52  
40  
-
MHz  
MHz  
ns  
1,3,5,6  
R200  
R201  
fCLK  
CLK frequency  
CLK period  
TSOP Package  
TSOP Package  
19.2  
25  
5
tCLK  
-
ns  
R202  
R203  
tCH/CL  
CLK high/low time  
CLK fall/rise time  
-
ns  
tFCLK/RCLK  
-
3
ns  
Synchronous Specifications(5,6)  
November 2007  
Order Number: 306666-11  
Datasheet  
31  
P30  
Table 17: AC Read Specifications for 256/512-Mbit Densities (Sheet 3 of 3)  
Num  
R301  
Symbol  
tAVCH/L  
Parameter  
Address setup to CLK  
Speed  
Min  
Max  
Unit  
Notes  
9
9
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
R302  
R303  
R304  
R305  
R306  
R307  
R311  
R312  
tVLCH/L  
tELCH/L  
tCHQV / tCLQV  
tCHQX  
ADV# low setup to CLK  
CE# low setup to CLK  
CLK to output valid  
1
9
-
-
17  
-
Output hold from CLK  
Address hold from CLK  
CLK to WAIT valid  
3
1,7  
1,4,7  
1,7  
1
tCHAX  
10  
-
-
tCHTV  
17  
-
tCHVL  
CLK Valid to ADV# Setup  
WAIT Hold from CLK  
3
tCHTX  
3
-
1,7  
Notes:  
1.  
See Figure 11, “AC Input/Output Reference Waveform” on page 28 for timing measurements and max  
allowable input slew rate.  
2.  
3.  
4.  
5.  
6.  
7.  
OE# may be delayed by up to tELQV – tGLQV after CE#’s falling edge without impact to tELQV.  
Sampled, not 100% tested.  
Address hold in synchronous burst mode is tCHAX or tVHAX, whichever timing specification is satisfied first.  
Please see the latest P30 Spec Update for synchronous burst operation with the TSOP package.  
Synchronous read mode is not supported with TTL level inputs.  
Applies only to subsequent synchronous reads.  
Table 18: AC Read Specification differences for 65nm  
Num  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
Asynchronous Specifications  
100  
110  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
2
R1  
R2  
tAVAV  
tAVQV  
tELQV  
Read cycle time  
TSOP  
TSOP  
TSOP  
TSOP  
100  
110  
100  
110  
100  
110  
2
Address to output valid  
2
-
-
2
R3  
CE# low to output valid  
tVLQV  
2
1,2  
2
R103  
ADV# low to output valid  
Notes:  
1.  
See Figure 11, “AC Input/Output Reference Waveform” on page 28 for timing measurements and  
max allowable input slew rate.  
2.  
This is the recommended specification for all new designs supporting both 130nm and 65nm lithos, or for new designs  
that will use the 65nm lithography.  
Datasheet  
32  
November 2007  
Order Number: 306666-11  
P30  
Figure 14: Asynchronous Single-Word Read (ADV# Low)  
R1  
R2  
Address [A]  
ADV#  
R3  
R8  
CE# [E}  
R4  
R9  
OE# [G]  
R15  
R17  
WAIT [T]  
R7  
R6  
Data [D/Q]  
R5  
RST# [P]  
Note: WAIT shown deasserted during asynchronous read mode (RCR[10]=0, Wait asserted low).  
Figure 15: Asynchronous Single-Word Read (ADV# Latch)  
R1  
R2  
Address [A]  
A[1:0][A]  
R101  
R105  
R106  
ADV#  
CE# [E}  
OE# [G]  
WAIT [T]  
R3  
R8  
R4  
R9  
R15  
R17  
R7  
R6  
R10  
Data [D/Q]  
Note: WAIT shown deasserted during asynchronous read mode (RCR[10]=0, Wait asserted low).  
November 2007  
Order Number: 306666-11  
Datasheet  
33  
P30  
Figure 16: Asynchronous Page-Mode Read Timing  
R1  
R2  
A[Max:2] [A]  
A[1:0]  
R101  
R105  
R106  
ADV#  
CE# [E]  
R3  
R8  
R4  
R10  
OE# [G]  
R15  
R17  
WAIT [T]  
R7  
R9  
R108  
DATA [D/Q]  
Note: WAIT shown deasserted during asynchronous read mode (RCR[10]=0, Wait asserted low).  
Figure 17: Synchronous Single-Word Array or Non-array Read Timing  
R301  
R306  
CLK [C]  
R2  
Address [A]  
R101  
R104  
R106  
R105  
ADV# [V]  
R303  
R102  
R3  
R8  
CE# [E]  
OE# [G]  
WAIT [T]  
R7  
R9  
R15  
R307  
R304  
R17  
R312  
R4  
R305  
Data [D/Q]  
1.  
2.  
WAIT is driven per OE# assertion during synchronous array or non-array read, and can be configured to assert either  
during or one data cycle before valid data.  
This diagram illustrates the case in which an n-word burst is initiated to the flash memory array and it is terminated by  
CE# deassertion after the first word in the burst.  
Datasheet  
34  
November 2007  
Order Number: 306666-11  
P30  
Figure 18: Continuous Burst Read, Showing An Output Delay Timing  
R301  
R302  
R306  
R304  
R304  
R304  
CLK [C]  
Address [A]  
ADV# [V]  
R2  
R101  
R106  
R105  
R303  
R102  
R3  
CE# [E]  
OE# [G]  
R15  
R307  
R304  
R312  
WAIT [T]  
R4  
R7  
R305  
R305  
R305  
R305  
Data [D/Q]  
Notes:  
1.  
WAIT is driven per OE# assertion during synchronous array or non-array read, and can be configured to assert either  
during or one data cycle before valid data.  
At the end of Word Line; the delay incurred when a burst access crosses a 16-word boundary and the starting address is  
not 4-word boundary aligned.  
2.  
Figure 19: Synchronous Burst-Mode Four-Word Read Timing  
R302  
R301  
R306  
CLK [C]  
Address [A]  
ADV# [V]  
R2  
R101  
A
R105  
R102  
R106  
R303  
R3  
R8  
CE# [E]  
OE# [G]  
WAIT [T]  
R9  
R15  
R17  
R307  
R4  
R304  
R305  
Q0  
R7  
R304  
R10  
Data [D/Q]  
Q1  
Q2  
Q3  
Note: WAIT is driven per OE# assertion during synchronous array or non-array read. WAIT asserted during initial latency and  
deasserted during valid data (RCR[10] = 0, Wait asserted low).  
November 2007  
Order Number: 306666-11  
Datasheet  
35  
P30  
7.4  
AC Write Specifications  
Table 19: AC Write Specifications  
Num  
W1  
Symbol  
tPHWL  
Parameter  
Min  
Max  
Unit  
Notes  
RST# high recovery to WE# low  
CE# setup to WE# low  
150  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1,2,3  
1,2,3  
1,2,4  
W2  
tELWL  
0
W3  
tWLWH  
tDVWH  
tAVWH  
tWHEH  
tWHDX  
tWHAX  
tWHWL  
tVPWH  
tQVVL  
WE# write pulse width low  
Data setup to WE# high  
Address setup to WE# high  
CE# hold from WE# high  
Data hold from WE# high  
Address hold from WE# high  
WE# pulse width high  
50  
W4  
50  
W5  
50  
W6  
0
1,2  
W7  
0
W8  
0
W9  
20  
1,2,5  
W10  
W11  
W12  
W13  
W14  
W16  
VPP setup to WE# high  
200  
1,2,3,7  
1,2,3,7  
VPP hold from Status read  
WP# hold from Status read  
WP# setup to WE# high  
WE# high to OE# low  
0
tQVBL  
0
200  
tBHWH  
tWHGL  
tWHQV  
0
1,2,9  
WE# high to read valid  
tAVQV + 35  
1,2,3,6,10  
Write to Asynchronous Read Specifications  
W18 tWHAV WE# high to Address valid  
Write to Synchronous Read Specifications  
0
-
ns  
1,2,3,6,8  
W19  
W20  
tWHCH/L  
tWHVH  
WE# high to Clock valid  
WE# high to ADV# high  
19  
19  
-
-
ns  
ns  
1,2,3,6,10  
Write Specifications with Clock Active  
W21  
W22  
tVHWL  
tCHWL  
ADV# high to WE# low  
Clock high to WE# low  
-
-
20  
20  
ns  
ns  
1,2,3,11  
Notes:  
1.  
2.  
3.  
4.  
Write timing characteristics during erase suspend are the same as write-only operations.  
A write operation can be terminated with either CE# or WE#.  
Sampled, not 100% tested.  
Write pulse width low (tWLWH or tELEH) is defined from CE# or WE# low (whichever occurs last) to CE# or WE# high  
(whichever occurs first). Hence, tWLWH = tELEH = tWLEH = tELWH  
.
5.  
Write pulse width high (tWHWL or tEHEL) is defined from CE# or WE# high (whichever occurs first) to CE# or WE# low  
(whichever occurs last). Hence, tWHWL = tEHEL = tWHEL = tEHWL).  
6.  
7.  
8.  
tWHVH or tWHCH/L must be met when transitioning from a write cycle to a synchronous burst read.  
VPP and WP# should be at a valid level until erase or program success is determined.  
This specification is only applicable when transitioning from a write cycle to an asynchronous read. See spec W19 and  
W20 for synchronous read.  
When doing a Read Status operation following any command that alters the Status Register, W14 is 20 ns.  
Add 10 ns if the write operation results in a RCR or block lock status change, for the subsequent read operation to reflect  
this change.  
9.  
10.  
11.  
These specs are required only when the device is in a synchronous mode and clock is active during address setup phase.  
Datasheet  
36  
November 2007  
Order Number: 306666-11  
P30  
Figure 20: Write-to-Write Timing  
W5  
W8  
W5  
W8  
Address [A]  
W2  
W6  
W2  
W6  
CE# [E}  
W3  
W9  
W3  
WE# [W]  
OE# [G]  
W4  
W7  
W4  
W7  
Data [D/Q]  
W1  
RST# [P]  
Figure 21: Asynchronous Read-to-Write Timing  
R1  
R2  
W5  
W8  
Address [A]  
R3  
R8  
R9  
CE# [E}  
R4  
OE# [G]  
W2  
W3  
W6  
WE# [W]  
R15  
R17  
WAIT [T]  
R7  
R6  
W7  
R10  
W4  
Data [D/Q]  
RST# [P]  
Q
D
R5  
Note: WAIT deasserted during asynchronous read and during write. WAIT High-Z during write per OE# deasserted.  
November 2007  
Order Number: 306666-11  
Datasheet  
37  
P30  
Figure 22: Write-to-Asynchronous Read Timing  
W5  
W8  
R1  
Address [A]  
ADV# [V]  
W2  
W6  
R10  
CE# [E}  
WE# [W]  
OE# [G]  
WAIT [T]  
W3  
W18  
W14  
R15  
R17  
R4  
R2  
R3  
R8  
W4  
W7  
R9  
Data [D/Q]  
RST# [P]  
D
Q
W1  
Figure 23: Synchronous Read-to-Write Timing  
Latency Count  
R301  
R302  
R306  
CLK [C]  
R2  
W5  
R101  
W18  
Address [A]  
R105  
R102  
R106  
R104  
ADV# [V]  
R303  
R11  
R13  
R3  
W6  
CE# [E]  
OE# [G]  
R4  
R8  
W21  
W22  
W21  
W22  
W2  
W8  
W15  
W3  
W9  
WE#  
R16  
R307  
R304  
R312  
WAIT [T]  
R7  
R305  
W7  
Q
D
D
Data [D/Q]  
Note: WAIT shown deasserted and High-Z per OE# deassertion during write operation (RCR[10]=0, Wait asserted low). Clock is  
ignored during write operation.  
Datasheet  
38  
November 2007  
Order Number: 306666-11  
P30  
Figure 24: Write-to-Synchronous Read Timing  
R302  
R301  
R2  
CLK  
W5  
W8  
R306  
R106  
Address [A]  
R104  
R303  
ADV#  
W6  
W2  
R11  
CE# [E}  
W18  
W19  
W20  
W3  
WE# [W]  
OE# [G]  
WAIT [T]  
R4  
R15  
R3  
R307  
W7  
R304  
R305  
R304  
W4  
D
Q
Q
Data [D/Q]  
RST# [P]  
W1  
Note: WAIT shown deasserted and High-Z per OE# deassertion during write operation (RCR[10]=0, Wait asserted low).  
7.5  
Program and Erase Characteristics  
Table 20:  
VPPL  
VPPH  
Typ  
Num  
Symbol  
Parameter  
Units  
Notes  
Min  
Typ  
Max  
Min  
Max  
Conventional Word Programming  
Single word - 130nm  
Single word - 65nm  
Single cell  
-
-
-
90  
125  
30  
200  
150  
60  
-
-
-
85  
125  
30  
190  
150  
60  
Program  
Time  
W200  
tPROG/W  
µs  
1
1
Buffered Programming  
W200  
W251  
tPROG/W  
tBUFF  
Single word  
-
-
90  
440  
200  
880  
-
-
85  
190  
680  
Program  
Time  
µs  
µs  
32-word buffer  
340  
Buffered Enhanced Factory Programming  
W451  
W452  
tBEFP/W  
Single word  
BEFP Setup  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
-
10  
-
-
-
1,2  
1
Program  
tBEFP/Setup  
5
Erasing and Suspending  
November 2007  
Order Number: 306666-11  
Datasheet  
39  
P30  
Table 20:  
VPPL  
Typ  
VPPH  
Typ  
Num  
Symbol  
Parameter  
Units  
Notes  
Min  
Max  
Min  
Max  
W500  
W501  
W600  
W601  
W602  
tERS/PB  
tERS/MB  
tSUSP/P  
tSUSP/E  
tERS/SUSP  
32-KByte Parameter  
128-KByte Main  
Program suspend  
Erase suspend  
-
-
-
-
-
0.4  
1.2  
20  
2.5  
4.0  
25  
25  
-
-
-
-
-
-
0.4  
1.0  
20  
2.5  
4.0  
25  
25  
-
Erase Time  
s
1
Suspend  
Latency  
20  
20  
µs  
Erase to Suspend  
500  
500  
1,3  
Notes:  
1.  
Typical values measured at TC = +25 °C and nominal voltages. Performance numbers are valid for all speed versions. Excludes system  
overhead. Sampled, but not 100% tested.  
2.  
3.  
Averaged over entire device.  
W602 is the typical time between an initial block erase or erase resume command and the a subsequent erase suspend  
command. Violating the specification repeatedly during any particular block erase may cause erase failures.  
Datasheet  
40  
November 2007  
Order Number: 306666-11  
P30  
8.0  
Power and Reset Specifications  
8.1  
Power-Up and Power-Down  
Power supply sequencing is not required if VPP is connected to VCC or VCCQ. Otherwise  
VCC and VCCQ should attain their minimum operating voltage before applying VPP.  
Power supply transitions should only occur when RST# is low. This protects the device  
from accidental programming or erasure during power transitions.  
8.2  
Reset Specifications  
Asserting RST# during a system reset is important with automated program/erase  
devices because systems typically expect to read from flash memory when coming out  
of reset. If a CPU reset occurs without a flash memory reset, proper CPU initialization  
may not occur. This is because the flash memory may be providing status information,  
instead of array data as expected. Connect RST# to the same active low reset signal  
used for CPU initialization.  
Also, because the device is disabled when RST# is asserted, it ignores its control inputs  
during power-up/down. Invalid bus conditions are masked, providing a level of memory  
protection.  
Table 21:  
Num  
Symbol  
tPLPH  
tPLRH  
Parameter  
RST# pulse width low  
Min  
Max  
Unit  
Notes  
P1  
100  
-
-
25  
25  
-
ns  
1,2,3,4  
1,3,4,7  
1,3,4,7  
1,4,5,6  
1,4,5,6  
RST# low to device reset during erase  
P2  
P3  
RST# low to device reset during program  
VCC Power valid to RST# de-assertion (high) 130nm  
-
µs  
60  
300  
tVCCPH  
V
CC Power valid to RST# de-assertion (high) 65nm  
-
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
These specifications are valid for all device versions (packages and speeds).  
The device may reset if tPLPH is < tPLPH MIN, but this is not guaranteed.  
Not applicable if RST# is tied to Vcc.  
Sampled, but not 100% tested.  
When RST# is tied to the VCC supply, device will not be ready until tVCCPH after VCC VCCMIN  
When RST# is tied to the VCCQ supply, device will not be ready until tVCCPH after VCC VCCMIN  
Reset completes within tPLPH if RST# is asserted while no erase or program operation is executing.  
.
.
November 2007  
Order Number: 306666-11  
Datasheet  
41  
P30  
Figure 25: Reset Operation Waveforms  
P1  
P2  
P2  
P3  
R5  
VIH  
VIL  
(
A) Reset during  
RST# [P]  
RST# [P]  
RST# [P]  
VCC  
read mode  
Abort  
Complete  
R5  
(B) Reset during  
VIH  
VIL  
program or block erase  
P1  
P2  
Abort  
Complete  
R5  
(C) Reset during  
VIH  
VIL  
program or block erase  
P1  
P2  
VCC  
0V  
(D) VCC Power-up to  
RST# high  
8.3  
Power Supply Decoupling  
Flash memory devices require careful power supply de-coupling. Three basic power  
supply current considerations are 1) standby current levels, 2) active current levels,  
and 3) transient peaks produced when CE# and OE# are asserted and deasserted.  
When the device is accessed, many internal conditions change. Circuits within the  
device enable charge-pumps, and internal logic states change at high speed. All of  
these internal activities produce transient signals. Transient current magnitudes depend  
on the device outputs’ capacitive and inductive loading. Two-line control and correct  
de-coupling capacitor selection suppress transient voltage peaks.  
Because Numonyx Multi-Level Cell (MLC) flash memory devices draw their power from  
VCC, VPP, and VCCQ, each power connection should have a 0.1 µF ceramic capacitor to  
ground. High-frequency, inherently low-inductance capacitors should be placed as close  
as possible to package leads.  
Additionally, for every eight devices used in the system, a 4.7 µF electrolytic capacitor  
should be placed between power and ground close to the devices. The bulk capacitor is  
meant to overcome voltage droop caused by PCB trace inductance.  
Datasheet  
42  
November 2007  
Order Number: 306666-11  
P30  
9.0  
Device Operations  
This section provides an overview of device operations. The system CPU provides  
control of all in-system read, write, and erase operations of the device via the system  
bus. The on-chip Write State Machine (WSM) manages all block-erase and word-  
program algorithms.  
Device commands are written to the Command User Interface (CUI) to control all flash  
memory device operations. The CUI does not occupy an addressable memory location;  
it is the mechanism through which the flash device is controlled.  
9.1  
Bus Operations  
CE# low and RST# high enable device read operations. The device internally decodes  
upper address inputs to determine the accessed block. ADV# low opens the internal  
address latches. OE# low activates the outputs and gates selected data onto the I/O  
bus.  
In asynchronous mode, the address is latched when ADV# goes high or continuously  
flows through if ADV# is held low. In synchronous mode, the address is latched by the  
first of either the rising ADV# edge or the next valid CLK edge with ADV# low (WE#  
and RST# must be VIH; CE# must be VIL).  
Bus cycles to/from the P30 device conform to standard microprocessor bus operations.  
Table 22 summarizes the bus operations and the logic levels that must be applied to  
the device control signal inputs.  
Table 22: Bus Operations Summary  
DQ[15:0  
]
Bus Operation  
RST#  
CLK  
ADV#  
CE#  
OE#  
WE#  
WAIT  
Notes  
Asynchronous  
VIH  
VIH  
VIH  
VIH  
VIH  
VIL  
X
L
L
L
L
L
L
H
H
L
Output  
Output  
Input  
Deasserted  
Driven  
Read  
Write  
Synchronous  
Running  
X
X
X
X
L
L
H
H
X
X
High-Z  
High-Z  
High-Z  
High-Z  
1
2
Output Disable  
Standby  
Reset  
X
X
X
L
H
X
X
High-Z  
High-Z  
High-Z  
H
X
2
2,3  
Notes:  
1.  
Refer to the Table 23, “Command Bus Cycles” on page 45 for valid DQ[15:0] during a write  
operation.  
2.  
3.  
X = Don’t Care (H or L).  
RST# must be at VSS ± 0.2 V to meet the maximum specified power-down current.  
9.1.1  
Reads  
To perform a read operation, RST# and WE# must be deasserted while CE# and OE#  
are asserted. CE# is the device-select control. When asserted, it enables the flash  
memory device. OE# is the data-output control. When asserted, the addressed flash  
memory data is driven onto the I/O bus. See Section 10.0, “Read Operations” on  
page 48 for details on the available read modes, and see Section 14.0, “Special Read  
States” on page 69 for details regarding the available read states.  
November 2007  
Order Number: 306666-11  
Datasheet  
43  
P30  
9.1.2  
Writes  
To perform a write operation, both CE# and WE# are asserted while RST# and OE# are  
deasserted. During a write operation, address and data are latched on the rising edge  
of WE# or CE#, whichever occurs first. Table 23, “Command Bus Cycles” on page 45  
shows the bus cycle sequence for each of the supported device commands, while  
Table 24, “Command Codes and Definitions” on page 46 describes each command. See  
Section 7.0, “AC Characteristics” on page 28 for signal-timing details.  
Note: Write operations with invalid VCC and/or VPP voltages can produce spurious results and should  
not be attempted.  
9.1.3  
9.1.4  
Output Disable  
When OE# is deasserted, device outputs DQ[15:0] are disabled and placed in a high-  
impedance (High-Z) state, WAIT is also placed in High-Z.  
Standby  
When CE# is deasserted the device is deselected and placed in standby, substantially  
reducing power consumption. In standby, the data outputs are placed in High-Z,  
independent of the level placed on OE#. Standby current, ICCS, is the average current  
measured over any 5 ms time interval, 5 μs after CE# is deasserted. During standby,  
average current is measured over the same time interval 5 μs after CE# is deasserted.  
When the device is deselected (while CE# is deasserted) during a program or erase  
operation, it continues to consume active power until the program or erase operation is  
completed.  
9.1.5  
Reset  
As with any automated device, it is important to assert RST# when the system is reset.  
When the system comes out of reset, the system processor attempts to read from the  
flash memory if it is the system boot device. If a CPU reset occurs with no flash  
memory reset, improper CPU initialization may occur because the flash memory may  
be providing status information rather than array data. Flash memory devices from  
Numonyx allow proper CPU initialization following a system reset through the use of the  
RST# input. RST# should be controlled by the same low-true reset signal that resets  
the system CPU.  
After initial power-up or reset, the device defaults to asynchronous Read Array mode,  
and the Status Register is set to 0x80. Asserting RST# de-energizes all internal  
circuits, and places the output drivers in High-Z. When RST# is asserted, the device  
shuts down the operation in progress, a process which takes a minimum amount of  
time to complete. When RST# has been deasserted, the device is reset to  
asynchronous Read Array state.  
Note: If RST# is asserted during a program or erase operation, the operation is terminated and the  
memory contents at the aborted location (for a program) or block (for an erase) are no longer  
valid, because the data may have been only partially written or erased.  
When returning from a reset (RST# deasserted), a minimum wait is required before the  
initial read access outputs valid data. Also, a minimum delay is required after a reset  
before a write cycle can be initiated. After this wake-up interval passes, normal  
operation is restored. See Section 7.0, “AC Characteristics” on page 28 for details  
about signal-timing.  
Datasheet  
44  
November 2007  
Order Number: 306666-11  
P30  
9.2  
Device Commands  
Device operations are initiated by writing specific device commands to the Command  
User Interface (CUI). See Table 23, “Command Bus Cycles” on page 45. Several  
commands are used to modify array data including Word Program and Block Erase  
commands. Writing either command to the CUI initiates a sequence of internally-timed  
functions that culminate in the completion of the requested task. However, the  
operation can be aborted by either asserting RST# or by issuing an appropriate  
suspend command.  
Table 23: Command Bus Cycles  
First Bus Cycle  
Second Bus Cycle  
Bus  
Mode  
Command  
Cycles  
Oper  
Addr(1)  
Data(2)  
Oper  
Addr(1)  
Data(2)  
Read Array  
1
2  
2  
2
Write  
Write  
Write  
Write  
Write  
DnA  
DnA  
DnA  
DnA  
DnA  
0xFF  
0x90  
0x98  
0x70  
0x50  
-
-
DBA + IA  
DBA + QA  
DnA  
-
ID  
Read Device Identifier  
CFI Query  
Read  
Read  
Read  
-
Read  
QD  
SRD  
-
Read Status Register  
Clear Status Register  
1
-
0x40/  
0x10  
Word Program  
2
Write  
Write  
Write  
WA  
WA  
WA  
Write  
Write  
Write  
WA  
WA  
WA  
WD  
Program  
Buffered Program(3)  
> 2  
> 2  
0xE8  
0x80  
N - 1  
0xD0  
Buffered Enhanced Factory  
Program (BEFP)(4)  
Erase  
Block Erase  
2
Write  
BA  
0x20  
Write  
BA  
0xD0  
Program/Erase Suspend  
Program/Erase Resume  
Lock Block  
1
1
2
2
2
2
2
Write  
Write  
Write  
Write  
Write  
Write  
Write  
DnA  
DnA  
BA  
0xB0  
0xD0  
0x60  
0x60  
0x60  
0xC0  
0xC0  
-
-
-
Suspend  
-
-
-
Write  
Write  
Write  
Write  
Write  
BA  
BA  
BA  
PRA  
LRA  
0x01  
0xD0  
0x2F  
PD  
Block  
Locking/  
Unlocking  
Unlock Block  
BA  
Lock-down Block  
BA  
PRA  
LRA  
Program Protection Register  
Program Lock Register  
Protection  
LRD  
Program Read Configuration  
Register  
Configuration  
2
Write  
RCD  
0x60  
Write  
RCD  
0x03  
Notes:  
1.  
First command cycle address should be the same as the operation’s target address.  
DBA = Device Base Address (NOTE: needed for dual-die 512 Mb device)  
DnA = Address within the device.  
IA = Identification code address offset.  
QA = CFI Query address offset.  
WA = Word address of memory location to be written.  
BA = Address within the block.  
PRA = Protection Register address.  
LRA = Lock Register address.  
RCD = Read Configuration Register data on QUAD+ A[15:0] or EASY BGA A[16:1].  
ID = Identifier data.  
QD = Query data on DQ[15:0].  
2.  
SRD = Status Register data.  
WD = Word data.  
N = Word count of data to be loaded into the write buffer.  
PD = Protection Register data.  
LRD = Lock Register data.  
3.  
4.  
The second cycle of the Buffered Program Command is the word count of the data to be loaded into the write buffer. This  
is followed by up to 32 words of data.Then the confirm command (0xD0) is issued, triggering the array programming  
operation.  
The confirm command (0xD0) is followed by the buffer data.  
November 2007  
Order Number: 306666-11  
Datasheet  
45  
P30  
9.3  
Command Definitions  
Valid device command codes and descriptions are shown in Table 24.  
Table 24: Command Codes and Definitions (Sheet 1 of 2)  
Mode  
Code  
Device Mode  
Read Array  
Description  
0xFF  
Places the device in Read Array mode. Array data is output on DQ[15:0].  
Places the device in Read Status Register mode. The device enters this mode  
after a program or erase command is issued. Status Register data is output  
on DQ[7:0].  
Read Status  
Register  
0x70  
0x90  
Read Device ID  
or Configuration  
Register  
Places device in Read Device Identifier mode. Subsequent reads output  
manufacturer/device codes, Configuration Register data, Block Lock status,  
or Protection Register data on DQ[15:0].  
Read  
Places the device in Read Query mode. Subsequent reads output Common  
Flash Interface information on DQ[7:0].  
0x98  
0x50  
Read Query  
Clear Status  
Register  
The WSM can only set Status Register error bits. The Clear Status Register  
command is used to clear the SR error bits.  
First cycle of a 2-cycle programming command; prepares the CUI for a write  
operation. On the next write cycle, the address and data are latched and the  
WSM executes the programming algorithm at the addressed location. During  
program operations, the device responds only to Read Status Register and  
Program Suspend commands. CE# or OE# must be toggled to update the  
Status Register in asynchronous read. CE# or ADV# must be toggled to  
update the Status Register Data for synchronous Non-array reads. The Read  
Array command must be issued to read array data after programming has  
finished.  
Word Program  
Setup  
Write  
0x40  
Alternate Word  
Program Setup  
0x10  
0xE8  
Equivalent to the Word Program Setup command, 0x40.  
This command loads a variable number of words up to the buffer size of 32  
words onto the program buffer.  
Buffered Program  
The confirm command is Issued after the data streaming for writing into the  
buffer is done. This instructs the WSM to perform the Buffered Program  
algorithm, writing the data from the buffer to the flash memory array.  
Buffered Program  
Confirm  
0xD0  
Write  
First cycle of a 2-cycle command; initiates Buffered Enhanced Factory  
Program mode (BEFP). The CUI then waits for the BEFP Confirm command,  
0xD0, that initiates the BEFP algorithm. All other commands are ignored  
when BEFP mode begins.  
0x80  
0xD0  
BEFP Setup  
If the previous command was BEFP Setup (0x80), the CUI latches the  
address and data, and prepares the device for BEFP mode.  
BEFP Confirm  
First cycle of a 2-cycle command; prepares the CUI for a block-erase  
operation. The WSM performs the erase algorithm on the block addressed by  
the Erase Confirm command. If the next command is not the Erase Confirm  
(0xD0) command, the CUI sets Status Register bits SR[4] and SR[5], and  
places the device in read status register mode.  
0x20  
0xD0  
Block Erase Setup  
Erase  
If the first command was Block Erase Setup (0x20), the CUI latches the  
address and data, and the WSM erases the addressed block. During block-  
erase operations, the device responds only to Read Status Register and Erase  
Suspend commands. CE# or OE# must be toggled to update the Status  
Register in asynchronous read. CE# or ADV# must be toggled to update the  
Status Register Data for synchronous Non-array reads  
Block Erase Confirm  
This command issued to any device address initiates a suspend of the  
currently-executing program or block erase operation. The Status Register  
indicates successful suspend operation by setting either SR[2] (program  
suspended) or SR[6] (erase suspended), along with SR[7] (ready). The Write  
State Machine remains in the suspend mode regardless of control signal  
states (except for RST# asserted).  
Program or Erase  
Suspend  
0xB0  
0xD0  
Suspend  
This command issued to any device address resumes the suspended program  
or block-erase operation.  
Suspend Resume  
Datasheet  
46  
November 2007  
Order Number: 306666-11  
P30  
Table 24: Command Codes and Definitions (Sheet 2 of 2)  
Mode  
Code  
Device Mode  
Description  
First cycle of a 2-cycle command; prepares the CUI for block lock  
configuration changes. If the next command is not Block Lock (0x01), Block  
Unlock (0xD0), or Block Lock-Down (0x2F), the CUI sets Status Register bits  
SR[4] and SR[5], indicating a command sequence error.  
0x60  
Lock Block Setup  
If the previous command was Block Lock Setup (0x60), the addressed block  
is locked.  
0x01  
0xD0  
0x2F  
0xC0  
Lock Block  
Block Locking/  
Unlocking  
If the previous command was Block Lock Setup (0x60), the addressed block  
is unlocked. If the addressed block is in a lock-down state, the operation has  
no effect.  
Unlock Block  
Lock-Down Block  
If the previous command was Block Lock Setup (0x60), the addressed block  
is locked down.  
First cycle of a 2-cycle command; prepares the device for a Protection  
Register or Lock Register program operation. The second cycle latches the  
register address and data, and starts the programming algorithm  
Program Protection  
Register Setup  
Protection  
First cycle of a 2-cycle command; prepares the CUI for device read  
configuration. If the Set Read Configuration Register command (0x03) is not  
the next command, the CUI sets Status Register bits SR[4] and SR[5],  
indicating a command sequence error.  
Read Configuration  
Register Setup  
0x60  
0x03  
Configuration  
If the previous command was Read Configuration Register Setup (0x60), the  
CUI latches the address and writes A[15:0] to the Read Configuration  
Register. Following a Configure Read Configuration Register command,  
subsequent read operations access array data.  
Read Configuration  
Register  
November 2007  
Order Number: 306666-11  
Datasheet  
47  
P30  
10.0  
Read Operations  
The device supports two read modes: asynchronous page mode and synchronous burst  
mode. Asynchronous page mode is the default read mode after device power-up or a  
reset. The Read Configuration Register must be configured to enable synchronous burst  
reads of the flash memory array (see Section 10.3, “Read Configuration Register” on  
page 49).  
The device can be in any of four read states: Read Array, Read Identifier, Read Status  
or Read Query. Upon power-up, or after a reset, the device defaults to Read Array. To  
change the read state, the appropriate read command must be written to the device  
(see Section 9.2, “Device Commands” on page 45). See Section 14.0, “Special Read  
States” on page 69 for details regarding Read Status, Read ID, and CFI Query modes.  
The following sections describe read-mode operations in detail.  
10.1  
Asynchronous Page-Mode Read  
Following a device power-up or reset, asynchronous page mode is the default read  
mode and the device is set to Read Array. However, to perform array reads after any  
other device operation (e.g. write operation), the Read Array command must be issued  
in order to read from the flash memory array.  
Note: Asynchronous page-mode reads can only be performed when Read Configuration Register bit  
RCR[15] is set (see Section 10.3, “Read Configuration Register” on page 49).  
To perform an asynchronous page-mode read, an address is driven onto the Address  
bus, and CE# and ADV# are asserted. WE# and RST# must already have been  
deasserted. WAIT is deasserted during asynchronous page mode. ADV# can be driven  
high to latch the address, or it must be held low throughout the read cycle. CLK is not  
used for asynchronous page-mode reads, and is ignored. If only asynchronous reads  
are to be performed, CLK should be tied to a valid VIH level, WAIT signal can be floated  
and ADV# must be tied to ground. Array data is driven onto DQ[15:0] after an initial  
access time tAVQV delay. (see Section 7.0, “AC Characteristics” on page 28).  
In asynchronous page mode, four data words are “sensed” simultaneously from the flash  
memory array and loaded into an internal page buffer. The buffer word corresponding  
to the initial address on the Address bus is driven onto DQ[15:0] after the initial access  
delay. The lowest two address bits determine which word of the 4-word page is output  
from the data buffer at any given time.  
10.2  
Synchronous Burst-Mode Read  
To perform a synchronous burst-read, an initial address is driven onto the Address bus, and  
CE# and ADV# are asserted. WE# and RST# must already have been deasserted.  
ADV# is asserted, and then deasserted to latch the address. Alternately, ADV# can  
remain asserted throughout the burst access, in which case the address is latched on  
the next valid CLK edge while ADV# is asserted.  
During synchronous array and non-array read modes, the first word is output from the  
data buffer on the next valid CLK edge after the initial access latency delay (see Section  
10.3.2, “Latency Count” on page 50). Subsequent data is output on valid CLK edges  
following a minimum delay. However, for a synchronous non-array read, the same word  
of data will be output on successive clock edges until the burst length requirements are  
satisfied. Refer to the following waveforms for more detailed information:  
Figure 17, “Synchronous Single-Word Array or Non-array Read Timing” on page 34  
Figure 18, “Continuous Burst Read, Showing An Output Delay Timing” on page 35  
Figure 19, “Synchronous Burst-Mode Four-Word Read Timing” on page 35  
Datasheet  
48  
November 2007  
Order Number: 306666-11  
P30  
10.3  
Read Configuration Register  
The Read Configuration Register (RCR) is used to select the read mode (synchronous or  
asynchronous), and it defines the synchronous burst characteristics of the device. To  
modify RCR settings, use the Configure Read Configuration Register command (see  
Section 9.2, “Device Commands” on page 45).  
RCR contents can be examined using the Read Device Identifier command, and then  
reading from offset 0x05 (see Section 14.2, “Read Device Identifier” on page 70).  
The RCR is shown in Table 25. The following sections describe each RCR bit.  
Table 25: Read Configuration Register Description  
Read Configuration Register (RCR)  
Data  
Hold  
WAIT  
Delay  
Burst  
Wrap  
Read  
Mode  
WAIT  
Polarity  
Burst  
Seq  
CLK  
Edge  
RES  
Latency Count  
LC[2:0]  
RES  
RES  
Burst Length  
RM  
15  
Bit  
R
WP  
10  
DH  
9
WD  
8
BS  
7
CE  
6
R
5
R
4
BW  
3
BL[2:0]  
1
14  
13  
12  
11  
2
0
Name  
Description  
0 = Synchronous burst-mode read  
1 = Asynchronous page-mode read (default)  
15  
Read Mode (RM)  
Reserved (R)  
14  
Reserved bits should be cleared (0)  
010 =Code 2  
011 =Code 3  
100 =Code 4  
101 =Code 5  
Latency Count (LC[2:0])  
13:11  
110 =Code 6  
111 =Code 7 (default)  
(Other bit settings are reserved)  
0 =WAIT signal is active low  
1 =WAIT signal is active high (default)  
Wait Polarity (WP)  
Data Hold (DH)  
10  
9
0 =Data held for a 1-clock data cycle  
1 =Data held for a 2-clock data cycle (default)  
0 =WAIT deasserted with valid data  
1 =WAIT deasserted one data cycle before valid data (default)  
8
Wait Delay (WD)  
Burst Sequence (BS)  
0 =Reserved  
1 =Linear (default)  
7
Clock Edge (CE)  
0 = Falling edge  
1 = Rising edge (default)  
6
5:4  
3
Reserved (R)  
Reserved bits should be cleared (0)  
Burst Wrap (BW)  
0 =Wrap; Burst accesses wrap within burst length set by BL[2:0]  
1 =No Wrap; Burst accesses do not wrap within burst length (default)  
001 =4-word burst  
010 =8-word burst  
011 =16-word burst  
111 =Continuous-word burst (default)  
2:0  
Burst Length (BL[2:0])  
(Other bit settings are reserved)  
Note: Latency Code 2, Data Hold for a 2-clock data cycle (DH = 1) WAIT must be deasserted with valid data (WD = 0).  
Latency Code 2, Data Hold for a 2-cock data cycle (DH=1) WAIT deasserted one data cycle before valid data (WD = 1)  
combination is not supported. Table 25, “Read Configuration Register Description” on page 49 is  
shown using the QUAD+ package. For EASY BGA and TSOP packages, the table reference should be adjusted using  
address bits A[16:1].  
November 2007  
Order Number: 306666-11  
Datasheet  
49  
P30  
10.3.1  
10.3.2  
Read Mode  
The Read Mode (RM) bit selects synchronous burst-mode or asynchronous page-mode  
operation for the device. When the RM bit is set, asynchronous page mode is selected  
(default). When RM is cleared, synchronous burst mode is selected.  
Latency Count  
The Latency Count (LC) bits tell the device how many clock cycles must elapse from the  
rising edge of ADV# (or from the first valid clock edge after ADV# is asserted) until the  
first valid data word is to be driven onto DQ[15:0]. The input clock frequency is used to  
determine this value and Figure 26 shows the data output latency for the different  
settings of LC. The maximum Latency Count for P30 would be Code 4 based on the Max  
Clock frequency specification of 52 mhz, and there will be zero WAIT States when  
bursting within the word line. Please also refer to “End of Word Line (EOWL)  
Considerations” on page 55 for more information on EOWL.  
Refer to Table 26, “Latency Count (LC) and Frequency Support” on page 51 for Latency  
Code Settings.  
Datasheet  
50  
November 2007  
Order Number: 306666-11  
P30  
Figure 26: First-Access Latency Count  
CLK [C]  
Valid  
Address  
Address [A]  
ADV# [V]  
Code 0 (Reserved)  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ15-0 [D/Q]  
DQ15-0 [D/Q]  
DQ15-0 [D/Q]  
DQ15-0 [D/Q]  
DQ15-0 [D/Q]  
DQ15-0 [D/Q]  
DQ15-0 [D/Q]  
DQ15-0 [D/Q]  
Code 1  
(Reserved  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Code 2  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Code 3  
Code 4  
Code 5  
Code 6  
Code 7  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Table 26: Latency Count (LC) and Frequency Support  
Latency Count Settings  
Frequency Support (MHz)  
2
3
4
£ 27  
£ 40  
£ 52  
Note: Synchronous burst read operation is currently not supported for the TSOP package.  
November 2007  
Order Number: 306666-11  
Datasheet  
51  
P30  
Figure 27: Example Latency Count Setting using Code 3  
tData  
0
1
2
3
4
CLK  
CE#  
ADV#  
Address  
A[MAX:0]  
Code 3  
High-Z  
Data  
D[15:0]  
R103  
10.3.3  
WAIT Polarity  
The WAIT Polarity bit (WP), RCR[10] determines the asserted level (VOH or VOL) of  
WAIT. When WP is set, WAIT is asserted high (default). When WP is cleared, WAIT is  
asserted low. WAIT changes state on valid clock edges during active bus cycles (CE#  
asserted, OE# asserted, RST# deasserted).  
10.3.3.1  
WAIT Signal Function  
The WAIT signal indicates data valid when the device is operating in synchronous mode  
(RCR[15]=0). The WAIT signal is only “deasserted” when data is valid on the bus.  
When the device is operating in synchronous non-array read mode, such as read  
status, read ID, or read query. The WAIT signal is also “deasserted” when data is valid  
on the bus.  
WAIT behavior during synchronous non-array reads at the end of word line works  
correctly only on the first data access.  
When the device is operating in asynchronous page mode, asynchronous single word  
read mode, and all write operations, WAIT is set to a deasserted state as determined  
by RCR[10]. See Figure 15, “Asynchronous Single-Word Read (ADV# Latch)” on  
page 33, and Figure 16, “Asynchronous Page-Mode Read Timing” on page 34.  
Table 27: WAIT Functionality Table (Sheet 1 of 2)  
Condition  
WAIT  
Notes  
CE# = ‘1, OE# = ‘X’ or CE# = ‘0, OE# = ‘1’  
CE# =’0, OE# = ‘0’  
High-Z  
Active  
Active  
Active  
1
1
1
1
Synchronous Array Reads  
Synchronous Non-Array Reads  
Datasheet  
52  
November 2007  
Order Number: 306666-11  
P30  
Table 27: WAIT Functionality Table (Sheet 2 of 2)  
Condition  
WAIT  
Notes  
All Asynchronous Reads  
All Writes  
Deasserted  
High-Z  
1
1,2  
Notes:  
1.  
2.  
Active: WAIT is asserted until data becomes valid, then deasserts  
When OE# = VIH during writes, WAIT = High-Z  
10.3.4  
Data Hold  
For burst read operations, the Data Hold (DH) bit determines whether the data output  
remains valid on DQ[15:0] for one or two clock cycles. This period of time is called the  
data cycle. When DH is set, output data is held for two clocks (default). When DH is  
cleared, output data is held for one clock (see Figure 28). The processor’s data setup  
time and the flash memory’s clock-to-data output delay should be considered when  
determining whether to hold output data for one or two clocks. A method for  
determining the Data Hold configuration is shown below:  
To set the device at one clock data hold for subsequent reads, the following condition  
must be satisfied:  
tCHQV (ns) + tDATA (ns) One CLK Period (ns)  
tDATA = Data set up to Clock (defined by CPU)  
For example, with a clock frequency of 40 MHz, the clock period is 25 ns. Assuming  
t
CHQV = 20 ns and tDATA = 4 ns. Applying these values to the formula above:  
20 ns + 4 ns 25 ns  
The equation is satisfied and data will be available at every clock period with data hold  
setting at one clock. If tCHQV (ns) + tDATA (ns) >One CLK Period (ns), data hold setting of  
2 clock periods must be used.  
Figure 28: Data Hold Timing  
CLK [C]  
1 CLK  
Data Hold  
Valid  
Output  
Valid  
Output  
Valid  
Output  
D[15:0] [Q]  
2 CLK  
Valid  
Output  
Valid  
Output  
D[15:0] [Q]  
Data Hold  
10.3.5  
WAIT Delay  
The WAIT Delay (WD) bit controls the WAIT assertion-delay behavior during  
synchronous burst reads. WAIT can be asserted either during or one data cycle before  
valid data is output on DQ[15:0]. When WD is set, WAIT is deasserted one data cycle  
before valid data (default). When WD is cleared, WAIT is deasserted during valid data.  
November 2007  
Order Number: 306666-11  
Datasheet  
53  
P30  
10.3.6  
Burst Sequence  
The Burst Sequence (BS) bit selects linear-burst sequence (default). Only linear-burst  
sequence is supported. Table 28 shows the synchronous burst sequence for all burst  
lengths, as well as the effect of the Burst Wrap (BW) setting.  
Table 28: Burst Sequence Word Ordering  
Burst Addressing Sequence (DEC)  
Start  
Addr.  
(DEC)  
Burst  
Wrap  
(RCR[3])  
4-Word Burst  
(BL[2:0] =  
0b001)  
8-Word Burst  
(BL[2:0] = 0b010)  
16-Word Burst  
(BL[2:0] = 0b011)  
Continuous Burst  
(BL[2:0] = 0b111)  
0
1
2
3
4
5
0
0
0
0
0
0
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
0-1-2-3-4…14-15  
1-2-3-4-5…15-0  
0-1-2-3-4-5-6-…  
1-2-3-4-5-6-7-…  
2-3-4-5-6-7-8-…  
3-4-5-6-7-8-9-…  
4-5-6-7-8-9-10…  
5-6-7-8-9-10-11…  
2-3-4-5-6…15-0-1  
3-4-5-6-7…15-0-1-2  
4-5-6-7-8…15-0-1-2-3  
5-6-7-8-9…15-0-1-2-3-4  
6-7-8-9-10…15-0-1-2-3-4-  
5
6
7
0
0
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
6-7-8-9-10-11-12-…  
7-8-9-10-11-12-13…  
7-8-9-10…15-0-1-2-3-4-5-  
6
14  
15  
0
0
14-15-0-1-2…12-13  
15-0-1-2-3…13-14  
14-15-16-17-18-19-20-…  
15-16-17-18-19-20-21-…  
0
1
2
3
4
5
6
1
1
1
1
1
1
1
0-1-2-3  
1-2-3-4  
2-3-4-5  
3-4-5-6  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-8  
0-1-2-3-4…14-15  
1-2-3-4-5…15-16  
2-3-4-5-6…16-17  
3-4-5-6-7…17-18  
4-5-6-7-8…18-19  
5-6-7-8-9…19-20  
6-7-8-9-10…20-21  
0-1-2-3-4-5-6-…  
1-2-3-4-5-6-7-…  
2-3-4-5-6-7-8-…  
3-4-5-6-7-8-9-…  
4-5-6-7-8-9-10…  
5-6-7-8-9-10-11…  
6-7-8-9-10-11-12-…  
2-3-4-5-6-7-8-9  
3-4-5-6-7-8-9-10  
4-5-6-7-8-9-10-11  
5-6-7-8-9-10-11-12  
6-7-8-9-10-11-12-13  
7-8-9-10-11-12-13-  
14  
7
1
7-8-9-10-11…21-22  
7-8-9-10-11-12-13…  
14  
15  
1
1
14-15-16-17-18…28-29  
15-16-17-18-19…29-30  
14-15-16-17-18-19-20-…  
15-16-17-18-19-20-21-…  
10.3.7  
Clock Edge  
The Clock Edge (CE) bit selects either a rising (default) or falling clock edge for CLK.  
This clock edge is used at the start of a burst cycle, to output synchronous data, and to  
assert/deassert WAIT.  
Datasheet  
54  
November 2007  
Order Number: 306666-11  
P30  
10.3.8  
Burst Wrap  
The Burst Wrap (BW) bit determines whether 4-word, 8-word, or 16-word burst length  
accesses wrap within the selected word-length boundaries or cross word-length  
boundaries. When BW is set, burst wrapping does not occur (default). When BW is  
cleared, burst wrapping occurs.  
When performing synchronous burst reads with BW set (no wrap), an output delay may  
occur when the burst sequence crosses its first device-row (16-word) boundary. If the  
burst sequence’s start address is 4-word aligned, then no delay occurs. If the start  
address is at the end of a 4-word boundary, the worst case output delay is one clock  
cycle less than the first access Latency Count. This delay can take place only once, and  
doesn’t occur if the burst sequence does not cross a device-row boundary. WAIT  
informs the system of this delay when it occurs.  
10.3.9  
Burst Length  
The Burst Length bit (BL[2:0]) selects the linear burst length for all synchronous burst  
reads of the flash memory array. The burst lengths are 4-word, 8-word, 16-word, and  
continuous word.  
Continuous-burst accesses are linear only, and do not wrap within any word length  
boundaries (see Table 28, “Burst Sequence Word Ordering” on page 54). When a burst  
cycle begins, the device outputs synchronous burst data until it reaches the end of the  
“burstable” address space.  
10.3.10  
End of Word Line (EOWL) Considerations  
When performing synchronous burst reads with BW set (no wrap) and DH reset (1 clock  
cycle), an output “delay” requiring additions clock Wait States may occur when the  
burst sequence crosses its first device-row (16-word) boundary. The delay would take  
place only once, and will not occur if the burst sequence does not cross a device-row  
boundary. The WAIT signal informs the system of this delay when it occurs. If the burst  
sequence’s start address is 4-word aligned (i.e. 0x00h, 0x04h, 0x08h, 0x0Ch) then no  
delay occurs. If the start address is at the end of a 4-word boundary (i.e. 0x03h,  
0x07h, 0x0Bh, 0x0Fh), the worst case delay (number of Wait States required) will be  
one clock cycle less than the first access Latency Count (LC-1) when crossing the first  
device-row boundary (i.e. 0x0Fh to 0x10h). Other address misalignments may require  
wait states depending upon the LC setting and the starting address alignment. For  
example, an LC setting of 3 with a starting address of 0xFD requires 0 wait states, but  
the same LC setting of 3 with a starting address of 0xFE would require 1 wait state  
when crossing the first device row boundary.  
November 2007  
Order Number: 306666-11  
Datasheet  
55  
P30  
11.0  
Programming Operations  
The device supports three programming methods: Word Programming (40h/10h),  
Buffered Programming (E8h, D0h), and Buffered Enhanced Factory Programming (80h,  
D0h). See  
Section 9.0, “Device Operations” on page 43 for details on the various programming  
commands issued to the device. The following sections describe device programming in  
detail.  
Successful programming requires the addressed block to be unlocked. If the block is  
locked down, WP# must be deasserted and the block must be unlocked before  
attempting to program the block. Attempting to program a locked block causes a  
program error (SR[4] and SR[1] set) and termination of the operation. See Section  
13.0, “Security Modes” on page 64 for details on locking and unlocking blocks.  
The Product Name is segmented into multiple 8-Mbit Programming Regions. See  
Section 4.4, “Memory Maps” on page 22 for complete addressing. Execute in Place  
(XIP) applications must partition the memory such that code and data are in separate  
programming regions. XIP is executing code directly from flash memory. Each  
Programming Region should contain only code or data but not both. The following  
terms define the difference between code and data. System designs must use these  
definitions when partitioning their code and data for the P30 device.  
• Code: Execution code ran out of the flash device on a continuous basis in the  
system.  
• Data: Information periodically programmed into the flash device and read back  
(e.g. execution code shadowed and executed in RAM, pictures, log files, etc.).  
11.1  
Word Programming  
Word programming operations are initiated by writing the Word Program Setup  
command to the device (see Section 9.0, “Device Operations” on page 43). This is  
followed by a second write to the device with the address and data to be programmed.  
The device outputs Status Register data when read. See Figure 38, “Word Program  
Flowchart” on page 79. VPP must be above VPPLK, and within the specified VPPL min/  
max values.  
During programming, the Write State Machine (WSM) executes a sequence of  
internally-timed events that program the desired data bits at the addressed location,  
and verifies that the bits are sufficiently programmed. Programming the flash memory  
array changes “ones” to “zeros. Memory array bits that are zeros can be changed to  
ones only by erasing the block (see Section 12.0, “Erase Operations” on page 62).  
The Status Register can be examined for programming progress and errors by reading  
at any address. The device remains in the Read Status Register state until another  
command is written to the device.  
Status Register bit SR[7] indicates the programming status while the sequence  
executes. Commands that can be issued to the device during programming are  
Program Suspend, Read Status Register, Read Device Identifier, CFI Query, and Read  
Array (this returns unknown data).  
When programming has finished, Status Register bit SR[4] (when set) indicates a  
programming failure. If SR[3] is set, the WSM could not perform the word  
programming operation because VPP was outside of its acceptable limits. If SR[1] is set,  
the word programming operation attempted to program a locked block, causing the  
operation to abort.  
Datasheet  
56  
November 2007  
Order Number: 306666-11  
P30  
Before issuing a new command, the Status Register contents should be examined and  
then cleared using the Clear Status Register command. Any valid command can follow,  
when word programming has completed.  
11.1.1  
Factory Word Programming  
Factory word programming is similar to word programming in that it uses the same  
commands and programming algorithms. However, factory word programming  
enhances the programming performance with VPP = VPPH. This can enable faster  
programming times during OEM manufacturing processes. Factory word programming  
is not intended for extended use. See Section 5.2, “Operating Conditions” on page 25  
for limitations when VPP = VPPH  
.
Note: When VPP = VPPL, the device draws programming current from the VCC supply. If VPP is driven  
by a logic signal, VPPL must remain above VPPL MIN to program the device. When VPP = VPPH  
,
the device draws programming current from the VPP supply. Figure 29, “Example VPP Supply  
Connections” on page 61 shows examples of device power supply configurations.  
11.2  
Buffered Programming  
The device features a 32-word buffer to enable optimum programming performance.  
For Buffered Programming, data is first written to an on-chip write buffer. Then the  
buffer data is programmed into the flash memory array in buffer-size increments. This  
can improve system programming performance significantly over non-buffered  
programming.  
When the Buffered Programming Setup command is issued (see Section 9.2, “Device  
Commands” on page 45), Status Register information is updated and reflects the  
availability of the buffer. SR[7] indicates buffer availability: if set, the buffer is  
available; if cleared, the buffer is not available. To retry, issue the Buffered  
Programming Setup command again, and re-check SR[7]. When SR[7] is set, the  
buffer is ready for loading. (see Figure 40, “Buffer Program Flowchart” on page 81).  
On the next write, a word count is written to the device at the buffer address. This tells  
the device how many data words will be written to the buffer, up to the maximum size  
of the buffer.  
On the next write, a device start address is given along with the first data to be written  
to the flash memory array. Subsequent writes provide additional device addresses and  
data. All data addresses must lie within the start address plus the word count.  
Optimum programming performance and lower power usage are obtained by aligning  
the starting address at the beginning of a 32-word boundary (A[4:0] = 0x00). Crossing  
a 32-word boundary during programming will double the total programming time.  
After the last data is written to the buffer, the Buffered Programming Confirm command  
must be issued to the original block address. The WSM begins to program buffer  
contents to the flash memory array. If a command other than the Buffered  
Programming Confirm command is written to the device, a command sequence error  
occurs and Status Register bits SR[7,5,4] are set. If an error occurs while writing to the  
array, the device stops programming, and Status Register bits SR[7,4] are set,  
indicating a programming failure.  
When Buffered Programming has completed, additional buffer writes can be initiated by  
issuing another Buffered Programming Setup command and repeating the buffered  
program sequence. Buffered programming may be performed with VPP = VPPL or VPPH  
(see Section 5.2, “Operating Conditions” on page 25 for limitations when operating the  
device with VPP = VPPH).  
November 2007  
Order Number: 306666-11  
Datasheet  
57  
P30  
If an attempt is made to program past an erase-block boundary using the Buffered  
Program command, the device aborts the operation. This generates a command  
sequence error, and Status Register bits SR[5,4] are set.  
If Buffered programming is attempted while VPP is below VPPLK, Status Register bits  
SR[4,3] are set. If any errors are detected that have set Status Register bits, the  
Status Register should be cleared using the Clear Status Register command.  
11.3  
Buffered Enhanced Factory Programming  
Buffered Enhanced Factory Programing (BEFP) speeds up Multi-Level Cell (MLC) flash  
programming. The enhanced programming algorithm used in BEFP eliminates  
traditional programming elements that drive up overhead in device programmer  
systems.  
BEFP consists of three phases: Setup, Program/Verify, and Exit (see Figure 41, “BEFP  
Flowchart” on page 82). It uses a write buffer to spread MLC program performance  
across 32 data words. Verification occurs in the same phase as programming to  
accurately program the flash memory cell to the correct bit state.  
A single two-cycle command sequence programs the entire block of data. This  
enhancement eliminates three write cycles per buffer: two commands and the word  
count for each set of 32 data words. Host programmer bus cycles fill the device’s write  
buffer followed by a status check. SR[0] indicates when data from the buffer has been  
programmed into sequential flash memory array locations.  
Following the buffer-to-flash array programming sequence, the Write State Machine  
(WSM) increments internal addressing to automatically select the next 32-word array  
boundary. This aspect of BEFP saves host programming equipment the address-bus  
setup overhead.  
With adequate continuity testing, programming equipment can rely on the WSM’s  
internal verification to ensure that the device has programmed properly. This eliminates  
the external post-program verification and its associated overhead.  
11.3.1  
BEFP Requirements and Considerations  
Table 29: BEFP Requirements  
Parameter/Issue  
Requirement  
Notes  
Case Temperature  
TC = 25 °C ± 5 °C  
VCC  
Within operating range  
Driven to VPPH  
VPP  
Setup and Confirm  
Target block unlocked before issuing the BEFP Setup and Confirm commands  
The first-word address (WA0) of the block to be programmed must be held constant  
from the setup phase through all data streaming into the target block, until transition  
to the exit phase is desired  
Programming  
Buffer Alignment  
Note:  
WA0 must align with the start of an array buffer boundary  
1
1.  
Word buffer boundaries in the array are determined by A[4:0] (0x00 through 0x1F). The alignment start point is A[4:0] =  
0x00.  
Datasheet  
58  
November 2007  
Order Number: 306666-11  
P30  
Table 30: BEFP Considerations  
Parameter/Issue  
Requirement  
Notes  
Cycling  
For optimum performance, cycling must be limited below 100 erase cycles per block.  
BEFP programs one block at a time; all buffer data must fall within a single block  
BEFP cannot be suspended  
1
2
Programming blocks  
Suspend  
Programming the flash  
memory array  
Programming to the flash memory array can occur only when the buffer is full.  
3
Note:  
1.  
2.  
3.  
Some degradation in performance may occur if this limit is exceeded, but the internal algorithm continues to work  
properly.  
If the internal address counter increments beyond the block's maximum address, addressing wraps around to the  
beginning of the block.  
If the number of words is less than 32, remaining locations must be filled with 0xFFFF.  
11.3.2  
BEFP Setup Phase  
After receiving the BEFP Setup and Confirm command sequence, Status Register bit  
SR[7] (Ready) is cleared, indicating that the WSM is busy with BEFP algorithm startup.  
A delay before checking SR[7] is required to allow the WSM enough time to perform all  
of its setups and checks (Block-Lock status, VPP level, etc.). If an error is detected,  
SR[4] is set and BEFP operation terminates. If the block was found to be locked, SR[1]  
is also set. SR[3] is set if the error occurred due to an incorrect VPP level.  
Note: Reading from the device after the BEFP Setup and Confirm command sequence outputs  
Status Register data. Do not issue the Read Status Register command; it will be interpreted  
as data to be loaded into the buffer.  
11.3.3  
BEFP Program/Verify Phase  
After the BEFP Setup Phase has completed, the host programming system must check  
SR[7,0] to determine the availability of the write buffer for data streaming. SR[7]  
cleared indicates the device is busy and the BEFP program/verify phase is activated.  
SR[0] indicates the write buffer is available.  
Two basic sequences repeat in this phase: loading of the write buffer, followed by buffer  
data programming to the array. For BEFP, the count value for buffer loading is always  
the maximum buffer size of 32 words. During the buffer-loading sequence, data is  
stored to sequential buffer locations starting at address 0x00. Programming of the  
buffer contents to the flash memory array starts as soon as the buffer is full. If the  
number of words is less than 32, the remaining buffer locations must be filled with 0xFFFF.  
Caution:  
The buffer must be completely filled for programming to occur. Supplying an  
address outside of the current block's range during a buffer-fill sequence  
causes the algorithm to exit immediately. Any data previously loaded into the  
buffer during the fill cycle is not programmed into the array.  
The starting address for data entry must be buffer size aligned, if not the BEFP  
algorithm will be aborted and the program fails and (SR[4]) flag will be set.  
Data words from the write buffer are directed to sequential memory locations in the  
flash memory array; programming continues from where the previous buffer sequence  
ended. The host programming system must poll SR[0] to determine when the buffer  
program sequence completes. SR[0] cleared indicates that all buffer data has been  
transferred to the flash array; SR[0] set indicates that the buffer is not available yet for  
the next fill cycle. The host system may check full status for errors at any time, but it is  
November 2007  
Order Number: 306666-11  
Datasheet  
59  
P30  
only necessary on a block basis after BEFP exit. After the buffer fill cycle, no write  
cycles should be issued to the device until SR[0] = 0 and the device is ready for the  
next buffer fill.  
Note: Any spurious writes are ignored after a buffer fill operation and when internal program is  
proceeding.  
The host programming system continues the BEFP algorithm by providing the next  
group of data words to be written to the buffer. Alternatively, it can terminate this  
phase by changing the block address to one outside of the current block’s range.  
The Program/Verify phase concludes when the programmer writes to a different block  
address; data supplied must be 0xFFFF. Upon Program/Verify phase completion, the  
device enters the BEFP Exit phase.  
11.3.4  
11.4  
BEFP Exit Phase  
When SR[7] is set, the device has returned to normal operating conditions. A full status  
check should be performed at this time to ensure the entire block programmed  
successfully. When exiting the BEFP algorithm with a block address change, the read  
mode will not change. After BEFP exit, any valid command can be issued to the device.  
Program Suspend  
Issuing the Program Suspend command while programming suspends the  
programming operation. This allows data to be accessed from the device other than the  
one being programmed. The Program Suspend command can be issued to any device  
address. A program operation can be suspended to perform reads only. Additionally, a  
program operation that is running during an erase suspend can be suspended to  
perform a read operation (see Figure 39, “Program Suspend/Resume Flowchart” on  
page 80).  
When a programming operation is executing, issuing the Program Suspend command  
requests the WSM to suspend the programming algorithm at predetermined points. The  
device continues to output Status Register data after the Program Suspend command is  
issued. Programming is suspended when Status Register bits SR[7,2] are set. Suspend  
latency is specified in Section 7.5, “Program and Erase Characteristics” on page 39.  
To read data from the device, the Read Array command must be issued. Read Array,  
Read Status Register, Read Device Identifier, CFI Query, and Program Resume are valid  
commands during a program suspend.  
During a program suspend, deasserting CE# places the device in standby, reducing  
active current. VPP must remain at its programming level, and WP# must remain  
unchanged while in program suspend. If RST# is asserted, the device is reset.  
11.5  
Program Resume  
The Resume command instructs the device to continue programming, and  
automatically clears Status Register bits SR[7,2]. This command can be written to any  
address. If error bits are set, the Status Register should be cleared before issuing the  
next instruction. RST# must remain deasserted (see Figure 39, “Program Suspend/  
Resume Flowchart” on page 80).  
Datasheet  
60  
November 2007  
Order Number: 306666-11  
P30  
11.6  
Program Protection  
When VPP = VIL, absolute hardware write protection is provided for all device blocks. If  
V
PP is at or below VPPLK, programming operations halt and SR[3] is set indicating a VPP-  
level error. Block lock registers are not affected by the voltage level on VPP; they may  
still be programmed and read, even if VPP is less than VPPLK  
.
Figure 29: Example VPP Supply Connections  
VCC  
VCC  
VPP  
VCC  
VPP  
VCC  
VPP  
PROT #  
10K Ω  
Low-voltage Programming only  
Logic Control of Device Protection  
Factory Programming with VPP = VPPH  
Complete write/Erase Protection when VPP VPPLK  
VCC  
VCC  
VCC  
VCC  
VPP  
VPP=VPPH  
VPP  
Low Voltage Programming Only  
Full Device Protection Unavailable  
Low Voltage and Factory Programming  
November 2007  
Order Number: 306666-11  
Datasheet  
61  
P30  
12.0  
Erase Operations  
Flash erasing is performed on a block basis. An entire block is erased each time an  
erase command sequence is issued, and only one block is erased at a time. When a  
block is erased, all bits within that block read as logical ones. The following sections  
describe block erase operations in detail.  
12.1  
Block Erase  
Block erase operations are initiated by writing the Block Erase Setup command to the address of the block to  
be erased (see Section 9.2, “Device Commands” on page 45). Next, the Block Erase Confirm  
command is written to the address of the block to be erased. If the device is placed in standby (CE#  
deasserted) during an erase operation, the device completes the erase operation before  
entering standby.VPP must be above VPPLK and the block must be unlocked (see Figure 42, “Block  
Erase Flowchart” on page 83).  
During a block erase, the Write State Machine (WSM) executes a sequence of  
internally-timed events that conditions, erases, and verifies all bits within the block.  
Erasing the flash memory array changes “zeros” to “ones. Memory array bits that are  
ones can be changed to zeros only by programming the block (see Section 11.0,  
“Programming Operations” on page 56).  
The Status Register can be examined for block erase progress and errors by reading  
any address. The device remains in the Read Status Register state until another  
command is written. SR[0] indicates whether the addressed block is erasing. Status  
Register bit SR[7] is set upon erase completion.  
Status Register bit SR[7] indicates block erase status while the sequence executes.  
When the erase operation has finished, Status Register bit SR[5] indicates an erase  
failure if set. SR[3] set would indicate that the WSM could not perform the erase  
operation because VPP was outside of its acceptable limits. SR[1] set indicates that the  
erase operation attempted to erase a locked block, causing the operation to abort.  
Before issuing a new command, the Status Register contents should be examined and  
then cleared using the Clear Status Register command. Any valid command can follow  
once the block erase operation has completed.  
12.2  
Erase Suspend  
Issuing the Erase Suspend command while erasing suspends the block erase operation.  
This allows data to be accessed from memory locations other than the one being  
erased. The Erase Suspend command can be issued to any device address. A block  
erase operation can be suspended to perform a word or buffer program operation, or a  
read operation within any block except the block that is erase suspended (see  
Figure 39, “Program Suspend/Resume Flowchart” on page 80).  
When a block erase operation is executing, issuing the Erase Suspend command  
requests the WSM to suspend the erase algorithm at predetermined points. The device  
continues to output Status Register data after the Erase Suspend command is issued.  
Block erase is suspended when Status Register bits SR[7,6] are set. Suspend latency is  
specified in Section 7.5, “Program and Erase Characteristics” on page 39.  
To read data from the device (other than an erase-suspended block), the Read Array  
command must be issued. During Erase Suspend, a Program command can be issued  
to any block other than the erase-suspended block. Block erase cannot resume until  
program operations initiated during erase suspend complete. Read Array, Read Status  
Register, Read Device Identifier, CFI Query, and Erase Resume are valid commands  
Datasheet  
62  
November 2007  
Order Number: 306666-11  
P30  
during Erase Suspend. Additionally, Clear Status Register, Program, Program Suspend,  
Block Lock, Block Unlock, and Block Lock-Down are valid commands during Erase  
Suspend.  
During an erase suspend, deasserting CE# places the device in standby, reducing  
active current. VPP must remain at a valid level, and WP# must remain unchanged  
while in erase suspend. If RST# is asserted, the device is reset.  
12.3  
12.4  
Erase Resume  
The Erase Resume command instructs the device to continue erasing, and  
automatically clears status register bits SR[7,6]. This command can be written to any  
address. If status register error bits are set, the Status Register should be cleared  
before issuing the next instruction. RST# must remain deasserted (see Figure 39,  
“Program Suspend/Resume Flowchart” on page 80).  
Erase Protection  
When VPP = VIL, absolute hardware erase protection is provided for all device blocks. If  
VPP is below VPPLK, erase operations halt and SR[3] is set indicating a VPP-level error.  
November 2007  
Order Number: 306666-11  
Datasheet  
63  
P30  
13.0  
Security Modes  
The device features security modes used to protect the information stored in the flash  
memory array. The following sections describe each security mode in detail.  
13.1  
Block Locking  
Individual instant block locking is used to protect user code and/or data within the flash  
memory array. All blocks power up in a locked state to protect array data from being  
altered during power transitions. Any block can be locked or unlocked with no latency.  
Locked blocks cannot be programmed or erased; they can only be read.  
Software-controlled security is implemented using the Block Lock and Block Unlock  
commands. Hardware-controlled security can be implemented using the Block Lock-  
Down command along with asserting WP#. Also, VPP data security can be used to  
inhibit program and erase operations (see Section 11.6, “Program Protection” on  
page 61 and Section 12.4, “Erase Protection” on page 63).  
The P30 device also offers four pre-defined areas in the main array that can be  
configured as One-Time Programmable (OTP) for the highest level of security. These  
include the four 32 KB parameter blocks together as one and the three adjacent 128 KB  
main blocks. This is available for top or bottom parameter devices.  
13.1.1  
Lock Block  
To lock a block, issue the Lock Block Setup command. The next command must be the Lock Block command  
issued to the desired block’s address (see Section 9.2, “Device Commands” on page 45 and  
Figure 44, “Block Lock Operations Flowchart” on page 85). If the Set Read Configuration  
Register command is issued after the Block Lock Setup command, the device  
configures the RCR instead.  
Block lock and unlock operations are not affected by the voltage level on VPP. The block  
lock bits may be modified and/or read even if VPP is at or below VPPLK  
.
13.1.2  
13.1.3  
Unlock Block  
The Unlock Block command is used to unlock blocks (see Section 9.2, “Device  
Commands” on page 45). Unlocked blocks can be read, programmed, and erased.  
Unlocked blocks return to a locked state when the device is reset or powered down. If a  
block is in a lock-down state, WP# must be deasserted before it can be unlocked (see  
Figure 30, “Block Locking State Diagram” on page 65).  
Lock-Down Block  
A locked or unlocked block can be locked-down by writing the Lock-Down Block  
command sequence (see Section 9.2, “Device Commands” on page 45). Blocks in a  
lock-down state cannot be programmed or erased; they can only be read. However,  
unlike locked blocks, their locked state cannot be changed by software commands  
alone. A locked-down block can only be unlocked by issuing the Unlock Block command  
with WP# deasserted. To return an unlocked block to locked-down state, a Lock-Down  
command must be issued prior to changing WP# to VIL. Locked-down blocks revert to  
the locked state upon reset or power up the device (see Figure 30, “Block Locking State  
Diagram” on page 65).  
Datasheet  
64  
November 2007  
Order Number: 306666-11  
P30  
13.1.4  
Block Lock Status  
The Read Device Identifier command is used to determine a block’s lock status (see  
Section 14.2, “Read Device Identifier” on page 70). Data bits DQ[1:0] display the  
addressed block’s lock status; DQ0 is the addressed block’s lock bit, while DQ1 is the  
addressed block’s lock-down bit.  
Figure 30: Block Locking State Diagram  
Locked-  
Down4,5  
[011]  
Hardware  
Locked5  
[011]  
Locked  
Power-Up/Reset  
[X01]  
WP# Hardware Control  
Software  
Locked  
Unlocked  
Unlocked  
[X00]  
[111]  
[110]  
Software Block Lock (0x60/0x01) or Software Block Unlock (0x60/0xD0)  
Software Block Lock-Down (0x60/0x2F)  
WP# hardware control  
Notes:  
1. [a,b,c] represents [WP#, DQ1, DQ0]. X = Don’t Care.  
2. DQ1 indicates Block Lock-Down status. DQ1 = ‘0’, Lock-Down has not been issued  
to this block. DQ1 = ‘1’, Lock-Down has been issued to this block.  
3. DQ0 indicates block lock status. DQ0 = ‘0’, block is unlocked. DQ0 = ‘1’, block is  
locked.  
4. Locked-down = Hardware + Software locked.  
5. [011] states should be tracked by system software to determine difference between  
Hardware Locked and Locked-Down states.  
13.1.5  
Block Locking During Suspend  
Block lock and unlock changes can be performed during an erase suspend. To change  
block locking during an erase operation, first issue the Erase Suspend command.  
Monitor the Status Register until SR[7] and SR[6] are set, indicating the device is  
suspended and ready to accept another command.  
Next, write the desired lock command sequence to a block, which changes the lock  
state of that block. After completing block lock or unlock operations, resume the erase  
operation using the Erase Resume command.  
Note: A Lock Block Setup command followed by any command other than Lock Block, Unlock Block,  
or Lock-Down Block produces a command sequence error and set Status Register bits SR[4]  
and SR[5]. If a command sequence error occurs during an erase suspend, SR[4] and SR[5]  
remains set, even after the erase operation is resumed. Unless the Status Register is cleared  
using the Clear Status Register command before resuming the erase operation, possible erase  
errors may be masked by the command sequence error.  
November 2007  
Order Number: 306666-11  
Datasheet  
65  
P30  
If a block is locked or locked-down during an erase suspend of the same block, the lock  
status bits change immediately. However, the erase operation completes when it is  
resumed. Block lock operations cannot occur during a program suspend. See Appendix  
A, “Write State Machine” on page 72, which shows valid commands during an erase  
suspend.  
13.2  
Selectable One-Time Programmable Blocks  
Any of four pre-defined areas from the main array (the four 32-KB parameter blocks  
together as one and three adjacent 128 KB main blocks) can be configured as OTP so  
further program and erase operations are not allowed. This option is available for top or  
bottom parameter devices.  
Table 31: Selectable OTP Block Mapping  
Density  
Top Parameter Configuration  
Bottom Parameter Configuration  
blocks 258:255 (parameters)  
block 254 (main)  
blocks 3:0 (parameters)  
block 4 (main)  
256-Mbit  
block 253 (main)  
block 5 (main)  
block 252 (main)  
block 6 (main)  
blocks 130:127 (parameters)  
block 126 (main)  
blocks 3:0 (parameters)  
block 4 (main)  
128-Mbit  
block 125 (main)  
block 5 (main)  
block 124 (main)  
block 6 (main)  
blocks 66:63 (parameters)  
block 62 (main)  
blocks 3:0 (parameters)  
block 4 (main)  
64-Mbit  
block 61 (main)  
block 5 (main)  
block 60 (main)  
block 6 (main)  
Notes:  
1.  
The 512-Mbit devices will have multiple die and selectable OTP areas depending on the placement of the parameter  
blocks.  
2.  
When programming the OTP bits for a Top Parameter Device, the following upper address bits must also be driven  
properly: A[Max:17] driven high (VIH) for TSOP and Easy BGA packages, and A[Max:16] driven high (VIH) for QUAD+  
SCSP.  
Note: Please see your local Numonyx representative for details about the Selectable OTP  
implementation.  
13.3  
Protection Registers  
The device contains 17 Protection Registers (PRs) that can be used to implement  
system security measures and/or device identification. Each Protection Register can be  
individually locked.  
The first 128-bit Protection Register is comprised of two 64-bit (8-word) segments. The  
lower 64-bit segment is pre-programmed at the Numonyx factory with a unique 64-bit  
number. The other 64-bit segment, as well as the other sixteen 128-bit Protection  
Registers, are blank. Users can program these registers as needed. When programmed,  
users can then lock the Protection Register(s) to prevent additional bit programming  
(see Figure 31, “Protection Register Map” on page 67).  
Datasheet  
66  
November 2007  
Order Number: 306666-11  
P30  
The user-programmable Protection Registers contain one-time programmable (OTP)  
bits; when programmed, register bits cannot be erased. Each Protection Register can  
be accessed multiple times to program individual bits, as long as the register remains  
unlocked.  
Each Protection Register has an associated Lock Register bit. When a Lock Register bit  
is programmed, the associated Protection Register can only be read; it can no longer be  
programmed. Additionally, because the Lock Register bits themselves are OTP, when  
programmed, Lock Register bits cannot be erased. Therefore, when a Protection  
Register is locked, it cannot be unlocked.  
.
Figure 31: Protection Register Map  
0x109  
128-bit Protection Register 16  
(User-Programmable)  
0x102  
0x91  
128-bit Protection Register 1  
(User-Programmable)  
0x8A  
0x89  
Lock Register 1  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0x88  
64-bit Segment  
(User-Programmable)  
0x85  
0x84  
128-Bit Protection Register 0  
64-bit Segment  
(Factory-Programmed)  
0x81  
0x80  
Lock Register 0  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
13.3.1  
Reading the Protection Registers  
The Protection Registers can be read from any address. To read the Protection Register,  
first issue the Read Device Identifier command at any address to place the device in the  
Read Device Identifier state (see Section 9.2, “Device Commands” on page 45). Next,  
perform a read operation using the address offset corresponding to the register to be  
read. Table 33, “Device Identifier Information” on page 70 shows the address offsets of  
the Protection Registers and Lock Registers. Register data is read 16 bits at a time.  
November 2007  
Order Number: 306666-11  
Datasheet  
67  
P30  
13.3.2  
Programming the Protection Registers  
To program any of the Protection Registers, first issue the Program Protection Register  
command at the parameter’s base address plus the offset to the desired Protection  
Register (see Section 9.2, “Device Commands” on page 45). Next, write the desired  
Protection Register data to the same Protection Register address (see Figure 31,  
“Protection Register Map” on page 67).  
The device programs the 64-bit and 128-bit user-programmable Protection Register  
data 16 bits at a time (see Figure 45, “Protection Register Programming Flowchart” on  
page 86). Issuing the Program Protection Register command outside of the Protection  
Register’s address space causes a program error (SR[4] set). Attempting to program a  
locked Protection Register causes a program error (SR[4] set) and a lock error (SR[1]  
set).  
Note: When programming the OTP bits for a Top Parameter Device, the following upper address  
bits must also be driven properly: A[Max:17] driven high (VIH) for TSOP and Easy BGA  
packages, and A[Max:16] driven high (VIH) for QUAD+ SCSP.  
13.3.3  
Locking the Protection Registers  
Each Protection Register can be locked by programming its respective lock bit in the  
Lock Register. To lock a Protection Register, program the corresponding bit in the Lock  
Register by issuing the Program Lock Register command, followed by the desired Lock  
Register data (see Section 9.2, “Device Commands” on page 45). The physical  
addresses of the Lock Registers are 0x80 for register 0 and 0x89 for register 1. These  
addresses are used when programming the lock registers (see Table 33, “Device  
Identifier Information” on page 70).  
Bit 0 of Lock Register 0 is already programmed at the factory, locking the lower, pre-  
programmed 64-bit region of the first 128-bit Protection Register containing the unique  
identification number of the device. Bit 1 of Lock Register 0 can be programmed by the  
user to lock the user-programmable, 64-bit region of the first 128-bit Protection  
Register. When programming Bit 1 of Lock Register 0, all other bits need to be left as ‘1’  
such that the data programmed is 0xFFFD.  
Lock Register 1 controls the locking of the upper sixteen 128-bit Protection Registers.  
Each of the 16 bits of Lock Register 1 correspond to each of the upper sixteen 128-bit  
Protection Registers. Programming a bit in Lock Register 1 locks the corresponding  
128-bit Protection Register.  
Caution:  
After being locked, the Protection Registers cannot be unlocked.  
Datasheet  
68  
November 2007  
Order Number: 306666-11  
P30  
14.0  
Special Read States  
The following sections describe non-array read states. Non-array reads can be  
performed in asynchronous read or synchronous burst mode. A non-array read  
operation occurs as asynchronous single-word mode. When non-array reads are performed in  
asynchronous page mode only the first data is valid and all subsequent data are undefined. When a non-  
array read operation occurs as synchronous burst mode, the same word of data  
requested will be output on successive clock edges until the burst length requirements  
are satisfied.  
Refer to the following waveforms for more detailed information:  
Figure 14, “Asynchronous Single-Word Read (ADV# Low)” on page 33  
Figure 15, “Asynchronous Single-Word Read (ADV# Latch)” on page 33  
Figure 17, “Synchronous Single-Word Array or Non-array Read Timing” on page 34  
14.1  
Read Status Register  
To read the Status Register, issue the Read Status Register command at any address.  
Status Register information is available to which the Read Status Register, Word  
Program, or Block Erase command was issued. Status Register data is automatically  
made available following a Word Program, Block Erase, or Block Lock command  
sequence. Reads from the device after any of these command sequences outputs the  
device’s status until another valid command is written (e.g. Read Array command).  
The Status Register is read using single asynchronous-mode or synchronous burst  
mode reads. Status Register data is output on DQ[7:0], while 0x00 is output on  
DQ[15:8]. In asynchronous mode the falling edge of OE#, or CE# (whichever occurs  
first) updates and latches the Status Register contents. However, reading the Status  
Register in synchronous burst mode, CE# or ADV# must be toggled to update status  
data.  
The Device Write Status bit (SR[7]) provides overall status of the device. Status  
register bits SR[6:1] present status and error information about the program, erase,  
suspend, VPP, and block-locked operations.  
Table 32: Status Register Description (Sheet 1 of 2)  
Status Register (SR)  
Default Value = 0x80  
Program  
Suspend  
Status  
Device Write EraseSuspend  
Program  
Status  
Block-Locked  
BEFP  
Status  
Erase Status  
VPP Status  
Status  
Status  
Status  
DWS  
7
ESS  
6
ES  
5
PS  
4
VPPS  
3
PSS  
2
BLS  
1
BWS  
0
Bit  
Name  
Description  
0 = Device is busy; program or erase cycle in progress; SR[0] valid.  
1 = Device is ready; SR[6:1] are valid.  
7
6
5
4
Device Write Status (DWS)  
Erase Suspend Status (ESS)  
Erase Status (ES)  
0 = Erase suspend not in effect.  
1 = Erase suspend in effect.  
0 = Erase successful.  
1 = Erase fail or program sequence error when set with SR[4,7].  
0 = Program successful.  
Program Status (PS)  
1 = Program fail or program sequence error when set with SR[5,7]  
November 2007  
Order Number: 306666-11  
Datasheet  
69  
P30  
Table 32: Status Register Description (Sheet 2 of 2)  
Status Register (SR)  
Default Value = 0x80  
0 = VPP within acceptable limits during program or erase operation.  
3
2
1
VPP Status (VPPS)  
1 = VPP < VPPLK during program or erase operation.  
0 = Program suspend not in effect.  
1 = Program suspend in effect.  
Program Suspend Status (PSS)  
Block-Locked Status (BLS)  
0 = Block not locked during program or erase.  
1 = Block locked during program or erase; operation aborted.  
After Buffered Enhanced Factory Programming (BEFP) data is loaded into the  
buffer:  
0 = BEFP complete.  
0
BEFP Status (BWS)  
1 = BEFP in-progress.  
Note: Always clear the Status Register prior to resuming erase operations. It avoids Status Register  
ambiguity when issuing commands during Erase Suspend. If a command sequence error  
occurs during an erase-suspend state, the Status Register contains the command sequence  
error status (SR[7,5,4] set). When the erase operation resumes and finishes, possible errors  
during the erase operation cannot be detected via the Status Register because it contains the  
previous error status.  
14.1.1  
Clear Status Register  
The Clear Status Register command clears the status register. It functions independent  
of VPP. The Write State Machine (WSM) sets and clears SR[7,6,2], but it sets bits  
SR[5:3,1] without clearing them. The Status Register should be cleared before starting  
a command sequence to avoid any ambiguity. A device reset also clears the Status  
Register.  
14.2  
Read Device Identifier  
The Read Device Identifier command instructs the device to output manufacturer code,  
device identifier code, block-lock status, protection register data, or configuration  
register data (see Section 9.2, “Device Commands” on page 45 for details on issuing  
the Read Device Identifier command). Table 33, “Device Identifier Information” on  
page 70 and Table 34, “Device ID codes” on page 71 show the address offsets and data  
values for this device.  
Table 33: Device Identifier Information (Sheet 1 of 2)  
Item  
Address(1)  
Data  
Manufacturer Code  
0x00  
0x01  
0089h  
ID (see Table 34)  
Lock Bit:  
Device ID Code  
Block Lock Configuration:  
Block Is Unlocked  
DQ0 = 0b0  
Block Is Locked  
BBA + 0x02  
DQ0 = 0b1  
Block Is not Locked-Down  
Block Is Locked-Down  
Read Configuration Register  
Lock Register 0  
DQ1 = 0b0  
DQ1 = 0b1  
0x05  
0x80  
RCR Contents  
PR-LK0  
64-bit Factory-Programmed Protection Register  
64-bit User-Programmable Protection Register  
0x81–0x84  
0x85–0x88  
Factory Protection Register Data  
User Protection Register Data  
Datasheet  
70  
November 2007  
Order Number: 306666-11  
P30  
Table 33: Device Identifier Information (Sheet 2 of 2)  
Item  
Address(1)  
Data  
Lock Register 1  
0x89  
PR-LK1  
128-bit User-Programmable Protection Registers  
0x8A–0x109  
Protection Register Data  
Notes:  
1.  
BBA = Block Base Address.  
Table 34: Device ID codes  
Device Identifier Codes  
ID Code Type  
Device Density  
–T  
–B  
(Top Parameter)  
(Bottom Parameter)  
64-Mbit  
128-Mbit  
256-Mbit  
8817  
8818  
8919  
881A  
881B  
891C  
Device Code  
Note: The 512-Mbit devices do not have a Device ID associated with them. Each die within the stack can be identified by  
either of the 256-Mbit Device ID codes depending on its parameter option.  
14.3  
CFI Query  
The CFI Query command instructs the device to output Common Flash Interface (CFI)  
data when read. See Section 9.2, “Device Commands” on page 45 for details on issuing  
the CFI Query command. Appendix C, “Common Flash Interface” on page 87 shows CFI  
information and address offsets within the CFI database.  
November 2007  
Order Number: 306666-11  
Datasheet  
71  
P30  
Appendix A Write State Machine  
Figure 32 through Figure 37 show the command state transitions (Next State Table)  
based on incoming commands. Only one partition can be actively programming or  
erasing at a time. Each partition stays in its last read state (Read Array, Read Device  
ID, CFI Query or Read Status Register) until a new command changes it. The next WSM  
state does not depend on the partition’s output state.  
Figure 32: Write State Machine—Next State Table (Sheet 1 of 6)  
Command Input to Chip and resulting Chip Next State  
BE Confirm,  
Buffered  
Enhanced  
P/E  
Resume,  
ULB,  
Clear  
Status  
Register (5)  
Lock, Unlock,  
Lock-down,  
CR setup (4)  
Buffered  
Program  
(BP)  
BP / Prg /  
Erase  
Suspend  
Read  
Word  
Program (3,4)  
Erase  
Setup (3,4)  
Read  
Status  
Read  
ID/Query  
(2)  
Current Chip  
State (7)  
Factory Pgm  
Array  
Setup (3, 4)  
Confirm (8)  
(FFH)  
(10H/40H)  
(E8H)  
(20H)  
(80H)  
(D0H)  
(B0H)  
(70H)  
(50H)  
(90H, 98H)  
(60H)  
Program  
Setup  
Erase  
Setup  
Lock/CR  
Setup  
Ready  
Ready  
Ready  
BP Setup  
BEFP Setup  
Ready  
(Unlock  
Block)  
Lock/CR Setup  
Ready (Lock Error)  
Ready (Lock Error)  
Setup  
OTP  
Busy  
OTP Busy  
Word Program Busy  
Word  
Setup  
Program Busy  
Word Program Busy  
Busy  
Program  
Suspend  
Word  
Program  
Word  
Program  
Busy  
Word Program Suspend  
Word Program Suspend  
Suspend  
BP Load 1  
BP Load 2  
Setup  
BP Load 1  
BP Confirm if Data load into Program Buffer is complete; Else BP Load 2  
BP Load 2  
BP  
BP  
Confirm  
Ready (Error)  
Ready (Error)  
BP Busy  
BP Busy  
BP Busy  
BP Suspend  
Ready (Error)  
Erase Busy  
BP Busy  
BP Suspend  
BP  
Suspend  
BP Suspend  
Ready (Error)  
BP Busy  
Setup  
Erase Busy  
Erase  
Suspend  
Erase Busy  
Busy  
Erase  
Word  
Program  
Setup in  
Erase  
Lock/CR  
Setup in  
Erase  
BP Setup in  
Erase  
Suspend  
Erase  
Suspend  
Erase Suspend  
Erase Suspend  
Suspend  
Erase Busy  
Suspend  
Suspend  
Datasheet  
72  
November 2007  
Order Number: 306666-11  
P30  
Figure 33: Write State Machine—Next State Table (Sheet 2 of 6)  
Chip  
Command Input to Chip and resulting  
Next State  
BE Confirm,  
Buffered  
Enhanced  
Factory Pgm  
Setup (3, 4)  
P/E  
Resume,  
ULB,  
Confirm (8)  
Clear  
Status  
Register (5)  
Lock, Unlock,  
Lock-down,  
CR setup (4)  
Buffered  
Program  
(BP)  
BP / Prg /  
Erase  
Suspend  
Read  
Word  
Program (3,4)  
Erase  
Setup (3,4)  
Read  
Status  
Read  
ID/Query  
(2)  
Current Chip  
State (7)  
Array  
(FFH)  
(10H/40H)  
(E8H)  
(20H)  
(80H)  
(D0H)  
(B0H)  
(70H)  
(50H)  
(90H, 98H)  
(60H)  
Word Program Busy in Erase Suspend  
Setup  
Word  
Program  
Word Program Busy in Erase Suspend  
Word Program Busy in Erase Suspend Busy  
Word Program Suspend in Erase Suspend  
Busy  
Suspend in  
Erase  
Suspend  
Word  
Program in  
Erase  
Word  
Program  
Busy in  
Erase  
Suspend  
Word Program Suspend in Erase Suspend  
Suspend  
Suspend  
BP Load 1  
BP Load 2  
Setup  
BP Load 1  
BP Confirm if Data load into Program Buffer is complete; Else BP Load 2  
BP Load 2  
BP Busy in  
Erase  
Suspend  
BP in Erase  
Suspend  
BP  
Confirm  
Erase Suspend (Error)  
Ready (Error in Erase Suspend)  
BP Suspend  
in Erase  
BP Busy in Erase Suspend  
BP Busy in Erase Suspend  
BP Busy  
Suspend  
BP Busy in  
Erase  
Suspend  
BP  
Suspend  
BP Suspend in Erase Suspend  
BP Suspend in Erase Suspend  
Erase  
Suspend  
(Unlock  
Block)  
Lock/CR Setup in Erase  
Suspend  
Erase Suspend (Lock Error)  
Ready (Error)  
Erase Suspend (Lock Error [Botch])  
Ready (Error)  
BEFP  
Loading  
Buffered  
Setup  
Enhanced  
Factory  
Data (X=32)  
Program  
BEFP  
Mode  
BEFP Program and Verify Busy (if Block Address given matches address given on BEFP Setup command). Commands treated as data. (7)  
Busy  
November 2007  
Order Number: 306666-11  
Datasheet  
73  
P30  
Figure 34: Write State Machine—Next State Table (Sheet 3 of 6)  
Chip  
Command Input to Chip and resulting  
Next State  
Lock  
Block  
Confirm (8) Confirm  
Lock-Down  
OTP  
Setup (4)  
Write RCR  
Block Address  
Illegal Cmds or  
BEFP Data (1)  
Block  
WSM  
Operation  
Completes  
Current Chip  
State (7)  
(8)  
9
Confirm  
(?WA0)  
(8)  
(C0H)  
(01H)  
(2FH)  
(03H)  
(XXXXH)  
(all other codes)  
OTP  
Setup  
Ready  
Ready  
Ready  
(Lock  
Error)  
Ready  
(Lock  
Block)  
Ready  
(Lock Down  
Blk)  
Ready  
(Set CR)  
N/A  
Lock/CR Setup  
Ready (Lock Error)  
Setup  
OTP Busy  
OTP  
Busy  
Ready  
N/A  
Word Program Busy  
Word Program Busy  
Setup  
Ready  
Busy  
Word  
Program  
Word Program Suspend  
BP Load 1  
Suspend  
Setup  
BP Load 2  
Ready (BP Load 2 BP Load 2  
BP Load 1  
BP Confirm if  
Data load into  
Program Buffer is  
complete; ELSE  
BP Load 2  
N/A  
BP Confirm if Data load into Program Buffer is  
complete; ELSE BP load 2  
BP Load 2  
Ready  
BP  
Ready (Error)  
(Proceed if  
unlocked or lock  
error)  
BP  
Confirm  
Ready (Error)  
Ready (Error)  
BP Busy  
BP Busy  
BP Suspend  
Ready (Error)  
Erase Busy  
Ready  
N/A  
BP  
Suspend  
Setup  
Busy  
Ready  
Erase  
Suspend  
Erase Suspend  
N/A  
Datasheet  
74  
November 2007  
Order Number: 306666-11  
P30  
Figure 35: Write State Machine—Next State Table (Sheet 4 of 6)  
Chip  
Command Input to Chip and resulting  
Next State  
Lock  
Block  
Confirm (8) Confirm  
Lock-Down  
OTP  
Setup (4)  
Write RCR  
Block Address  
Illegal Cmds or  
BEFP Data (1)  
Block  
WSM  
Operation  
Completes  
(8)  
9
Current Chip  
State (7)  
Confirm  
(?WA0)  
(8)  
(C0H)  
(01H)  
(2FH)  
(03H)  
(XXXXH)  
(all other codes)  
Word Program Busy in Erase Suspend  
Setup  
NA  
Word Program Busy in Erase Suspend Busy  
Busy  
Erase Suspend  
Word  
Program in  
Erase  
Suspend  
Word Program Suspend in Erase Suspend  
BP Load 1  
Suspend  
N/A  
Setup  
BP Load 2  
Ready (BP Load 2 BP Load 2  
BP Load 1  
BP Confirm if  
Data load into  
Program Buffer is  
complete; Else  
BP Load 2  
BP Confirm if Data load into Program Buffer is  
complete; Else BP Load 2  
N/A  
Ready  
BP Load 2  
BP in Erase  
Suspend  
BP  
Ready (Error)  
(Proceed if  
unlocked or lock  
error)  
Ready (Error in Erase Suspend)  
Ready (Error)  
Confirm  
BP Busy in Erase Suspend  
Erase Suspend  
BP Busy  
BP  
Suspend  
BP Suspend in Erase Suspend  
Erase  
Suspend Suspend  
(Lock  
Error)  
Erase  
Erase  
Erase  
Suspend  
Lock/CR Setup in Erase  
Suspend  
Erase Suspend (Lock Error)  
Suspend  
(Set CR)  
N/A  
(Lock  
Block)  
(Lock Down  
Block)  
Ready (BEFP  
Ready (Error)  
Loading Data)  
Ready (Error)  
Buffered  
Enhanced  
Factory  
Program  
Mode  
Setup  
BEFP Program and Verify Busy (if Block Address  
given matches address given on BEFP Setup  
command). Commands treated as data. (7)  
BEFP  
Busy  
Ready  
Ready  
BEFP Busy  
November 2007  
Order Number: 306666-11  
Datasheet  
75  
P30  
Figure 36: Write State Machine—Next State Table (Sheet 5 of 6)  
Output Next State Table  
Output  
Command Input to Chip and resulting  
Mux Next State  
BE Confirm,  
Buffered  
P/E  
Clear  
Status  
Register (5)  
Lock, Unlock,  
Lock-down,  
Word  
Program  
Setup (3,4)  
Program/  
Erase  
Suspend  
Read  
Erase  
Enhanced  
Factory Pgm  
Setup (3, 4)  
Read  
Status  
Read  
ID/Query  
Resume,  
BP Setup  
(E8H)  
(2)  
Array  
Setup (3,4)  
Current chip state  
CR setup (4)  
ULB Confirm  
(8)  
(FFH)  
(10H/40H)  
(20H)  
(30H)  
(D0H)  
(B0H)  
(70H)  
(50H)  
(90H, 98H)  
(60H)  
BEFP Setup,  
BEFP Pgm & Verify  
Busy,  
Erase Setup,  
OTP Setup,  
BP: Setup, Load 1,  
Load 2, Confirm,  
Word Pgm Setup,  
Word Pgm Setup in  
Erase Susp,  
Status Read  
BP Setup, Load1,  
Load 2, Confirm in  
Erase Suspend  
Lock/CR Setup,  
Lock/CR Setup in  
Erase Susp  
Status Read  
Status  
Read  
OTP Busy  
Ready,  
Erase Suspend,  
BP Suspend  
BP Busy,  
Word Program  
Busy,  
Erase Busy,  
BP Busy  
Output mux  
does not  
change.  
Read Array  
Status Read  
Output does not change.  
Status Read  
Status Read  
ID Read  
BP Busy in Erase  
Suspend  
Word Pgm  
Suspend,  
Word Pgm Busy in  
Erase Suspend,  
Pgm Suspend In  
Erase Suspend  
Datasheet  
76  
November 2007  
Order Number: 306666-11  
P30  
Figure 37: Write State Machine—Next State Table (Sheet 6 of 6)  
Output Next State Table  
Output  
Command Input to Chip and resulting  
Mux Next State  
Lock  
Block  
Confirm (8) Confirm  
Lock-Down  
OTP  
Setup (4)  
Write CR  
Illegal Cmds or  
BEFP Data (1)  
Block Address  
(?WA0)  
Block  
WSM  
(8)  
Confirm  
(8)  
Operation  
Completes  
Current chip state  
(C0H)  
(01H)  
(2FH)  
(03H)  
(FFFFH)  
(all other codes)  
BEFP Setup,  
BEFP Pgm & Verify  
Busy,  
Erase Setup,  
OTP Setup,  
BP: Setup, Load 1,  
Load 2, Confirm,  
Word Pgm Setup,  
Word Pgm Setup in  
Erase Susp,  
Status Read  
BP Setup, Load1,  
Load 2, Confirm in  
Erase Suspend  
Lock/CR Setup,  
Lock/CR Setup in  
Erase Susp  
Array  
Read  
Status Read  
Status Read  
Output does  
not change.  
OTP Busy  
Ready,  
Erase Suspend,  
BP Suspend  
BP Busy,  
Word Program  
Busy,  
Erase Busy,  
BP Busy  
Status  
Read  
Output does not  
change.  
Output does not change.  
Array Read  
BP Busy in Erase  
Suspend  
Word Pgm  
Suspend,  
Word Pgm Busy in  
Erase Suspend,  
Pgm Suspend In  
Erase Suspend  
Notes:  
1.  
"Illegal commands" include commands outside of the allowed command set (allowed commands: 40H [pgm], 20H [erase],  
etc.)  
2.  
3.  
4.  
If a "Read Array" is attempted from a busy partition, the result will be invalid data. The ID and Query data are located at  
different locations in the address map.  
1st and 2nd cycles of "2 cycles write commands" must be given to the same partition address, or unexpected results will  
occur.  
To protect memory contents against erroneous command sequences, there are specific instances in a multi-cycle  
command sequence in which the second cycle will be ignored. For example, when the device is program suspended and an  
erase setup command (0x20) is given followed by a confirm/resume command (0xD0), the second command will be  
ignored because it is unclear whether the user intends to erase the block or resume the program operation.  
The Clear Status command only clears the error bits in the status register if the device is not in the following modes: WSM  
running (Pgm Busy, Erase Busy, Pgm Busy In Erase Suspend, OTP Busy, BEFP modes).  
BEFP writes are only allowed when the status register bit #0 = 0, or else the data is ignored.  
5.  
6.  
November 2007  
Order Number: 306666-11  
Datasheet  
77  
P30  
7.  
The "current state" is that of the "chip" and not of the "partition"; Each partition "remembers" which output (Array, ID/CFI  
or Status) it was last pointed to on the last instruction to the "chip", but the next state of the chip does not depend on  
where the partition's output mux is presently pointing to.  
8.  
9.  
Confirm commands (Lock Block, Unlock Block, Lock-Down Block, Configuration Register) perform the operation and then  
move to the Ready State.  
WA0 refers to the block address latched during the first write cycle of the current operation.  
Datasheet  
78  
November 2007  
Order Number: 306666-11  
P30  
Appendix B Flowcharts  
Figure 38: Word Program Flowchart  
WORD PROGRAM PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Program Data = 0x40  
Setup Addr = Location to program  
Write  
Write  
Read  
Write 0x40,  
Word Address  
(Setup)  
Data = Data to program  
Data  
Addr = Location to program  
Write Data,  
Word Address  
(Confirm)  
None  
None  
Status register data  
Program  
Suspend  
Loop  
Read Status  
Register  
Check SR[7]  
1 = WSM Ready  
0 = WSM Busy  
Idle  
No  
Suspend?  
Yes  
0
SR[7] =  
1
Repeat for subsequent Word Program operations.  
Full Status Register check can be done after each program, or  
after a sequence of program operations.  
Full Status  
Check  
(if desired)  
Write 0xFF after the last operation to set to the Read Array  
state.  
Program  
Complete  
FULL STATUS CHECK PROCEDURE  
Read Status  
Register  
Bus  
Command  
Operation  
Comments  
Check SR[3]:  
1 = VPP Error  
Idle  
Idle  
None  
None  
1
1
1
VPP Range  
Error  
SR[3] =  
0
Check SR[4]:  
1 = Data Program Error  
Program  
Error  
Check SR[1]:  
1 = Block locked; operation aborted  
SR[4] =  
0
Idle  
None  
If an error is detected, clear the Status Register before  
continuing operations - only the Clear Staus Register  
command clears the Status Register error bits.  
Device  
Protect Error  
SR[1] =  
0
Program  
Successful  
November 2007  
Order Number: 306666-11  
Datasheet  
79  
P30  
Figure 39: Program Suspend/Resume Flowchart  
PROGRAM SUSPEND / RESUME PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Read Status  
Write 70h  
Read  
Data = 70h  
Write  
Write  
Status Addr = Block to suspend(BA)  
Program Data = B0h  
Suspend Addr = X  
Program Suspend  
Write B0h  
Any Address  
Status register data  
Initiate a read cycle to update Status  
register  
Addr = Suspended block (BA)  
Read  
Read Status  
Register  
Check SR.7  
Standby  
Standby  
1 = WSM ready  
0 = WSM busy  
0
0
SR.7 =  
1
Check SR.2  
1 = Program suspended  
0 = Program completed  
Program  
Completed  
SR.2 =  
1
Read  
Array  
Data = FFh  
Addr = Block address to read (BA)  
Write  
Read  
Write  
Read Array  
Write FFh  
Read array data from block other than  
the one being programmed  
Read Array  
Data  
Program Data = D0h  
Resume Addr = Suspended block (BA)  
Done  
No  
Reading  
Yes  
Program Resume  
Read Array  
Write FFh  
Write D0h  
Any Address  
Program  
Resumed  
Read Array  
Data  
PGM_SUS.WMF  
Datasheet  
80  
November 2007  
Order Number: 306666-11  
P30  
Figure 40: Buffer Program Flowchart  
Bus  
Operation  
Command  
Comments  
Data = E8H  
Write to  
Buffer  
Write  
Read  
Addr = Block Address  
Start  
SR.7 = Valid  
Addr = Block Address  
Device  
Check SR.7  
1 = Device WSM is Busy  
0 = Device WSM is Ready  
Use Single Word  
Supports Buffer  
Standby  
No  
Programming  
Writes?  
Yes  
Data = N-1 = Word Count  
N = 0 corresponds to count = 1  
Addr = Block Address  
Write  
(Notes1, 2)  
Set Timeout or  
Loop Counter  
Write  
(Notes3, 4)  
Data = Write Buffer Data  
Addr = Start Address  
Get Next  
Target Address  
Write  
(Notes5, 6)  
Data = Write Buffer Data  
Addr = Block Address  
Issue Write to Buffer  
Command E8h and  
Block Address  
Program  
Confirm  
Data = D0H  
Addr = Block Address  
Write  
Read  
Status register Data  
CE# and OE# low updates SR  
Addr = Block Address  
Read Status Register  
(at Block Address)  
Check SR.7  
1 = WSM Ready  
0 = WSM Busy  
No  
Standby  
Timeout  
or Count  
Expired?  
0 = No  
Is WSM Ready?  
SR.7 =  
1. Word count values on DQ0-DQ7 are loaded into the Count  
register. Count ranges for this device are N = 0000h to 0001Fh.  
2. The device outputs the status register when read.  
3. Write Buffer contents will be programmed at the device start  
address or destination flash address.  
Yes  
1 = Yes  
Write Word Count,  
Block Address  
4. Align the start address on a Write Buffer boundary for  
maximum programming performance(i.e., A4–A0 of the start  
address = 0).  
Write Buffer Data,  
Start Address  
5. The device aborts the Buffered Program command if the  
current address is outside the original block address.  
6. The Status register indicates an "improper command  
sequence" if the Buffered Program command is aborted. Follow  
this with a Clear Status Register command.  
X = X + 1  
Write Buffer Data,  
Block Address  
X = 0  
Full status check can be done after all erase and write  
sequences complete. Write FFh after the last operation to reset  
the device to read array mode.  
No  
No  
Abort Bufferred  
Program?  
X = N?  
Yes  
Yes  
Write Confirm D0h  
and Block Address  
Write to another  
Block Address  
Buffered Program  
Aborted  
Read Status Register  
No  
Suspend  
Program  
Loop  
Yes  
0
Suspend  
Program  
SR.7 =?  
Full Status  
Check if Desired  
1
Yes  
Another Buffered  
Programming?  
No  
Program Complete  
November 2007  
Order Number: 306666-11  
Datasheet  
81  
P30  
Figure 41: BEFP Flowchart  
BUFFERED ENHANCED FACTORY PROGRAMMING (BEFP) PROCEDURE  
Setup Phase  
Program & Verify Phase  
Exit Phase  
Read  
Status Reg.  
Read  
Status Reg.  
Start  
VPP applied  
Block Unlocked  
No (SR[7]=0)  
BEFP  
Exited?  
No (SR[0]=1)  
Data Stream  
Ready?  
Yes (SR[0]=0)  
Yes (SR[7]=1)  
Write 80h @  
1st Word Address  
Initialize Count:  
X = 0  
Full Status Check  
Procedure  
Write D0h @  
1st Word Address  
Write Data @ 1st  
Word Address  
Program  
Complete  
BEFP Setup delay  
Increment Count:  
X = X+1  
Read  
Status Reg.  
N
Check  
X = 32?  
Yes (SR[7]=0)  
Y
BEFP Setup  
Done?  
Read  
No (SR[7]=1)  
Status Reg.  
No (SR[0]=1)  
Check VPP, Lock  
errors (SR[3,1])  
Program  
Done?  
Yes (SR[0]=0)  
Exit  
N
Last  
Data?  
Y
Write 0xFFFF,  
Address Not within  
Current Block  
BEFP Setup  
BEFP Program & Verify  
BEFP Exit  
Operation Comments  
Bus  
State  
Bus  
State  
Bus  
State  
Operation  
Comments  
Operation  
Comments  
Unlock  
Block  
Status  
Register  
Data = Status Register Data  
Address = 1st Word Addr.  
Status  
Register  
Data = Status Register Data  
Address = 1st Word Addr.  
Read  
Write  
VPPH applied to VPP  
Read  
Write  
(Note 1)  
BEFP  
Setup  
Data = 0x80 @ 1st Word  
Address  
Data = 0x80 @ 1st Word  
Address1  
Check SR[0]:  
0 = Ready for Data  
1 = Not Ready for Data  
Check  
Exit  
Status  
Check SR[7]:  
0 = Exit Not Completed  
1 = Exit Completed  
Data Stream  
Ready?  
Standby  
Standby  
Standby  
BEFP  
Confirm  
Write  
Read  
Initialize  
Count  
Repeat for subsequent blocks ;  
X = 0  
Status  
Register  
Data = Status Register Data  
Address = 1st Word Addr.  
After BEFP exit, a full Status Register check can  
determine if any program error occurred;  
Write  
(note 2)  
Load  
Buffer  
Data = Data to Program  
Address = 1st Word Addr.  
BEFP  
Setup  
Done?  
Check SR[7]:  
0 = BEFP Ready  
1 = BEFP Not Ready  
Standby  
Standby  
Increment  
Count  
See full Status Register check procedure in the  
Word Program flowchart.  
Standby  
Standby  
Read  
X = X+1  
X = 32?  
Yes = Read SR[0]  
No = Load Next Data Word  
Error  
Condition  
Check  
If SR[7] is set, check:  
SR[3] set = VPP Error  
SR[1] set = Locked Block  
Buffer  
Full?  
Write 0xFF to enter Read Array state.  
Status  
Register  
Data = Status Reg. Data  
Address = 1st Word Addr.  
Check SR[0]:  
0 = Program Done  
1 = Program in Progress  
Program  
Done?  
Standby  
Last  
Data?  
No = Fill buffer again  
Yes = Exit  
Standby  
Write  
Exit Prog & Data = 0xFFFF @ address  
Verify Phase not in current block  
NOTES:  
1. First-word address to be programmed within the target block must be aligned on a write -buffer boundary.  
2. Write-buffer contents are programmed sequentially to the flash array starting at the first word address (WSM internally increments addressing).  
Datasheet  
82  
November 2007  
Order Number: 306666-11  
P30  
Figure 42: Block Erase Flowchart  
BLOCK ERASE PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Block  
Erase  
Setup  
Data = 0x20  
Addr = Block to be erased (BA)  
Write  
Write  
Read  
Write 0x20,  
Block Address  
(Block Erase)  
Erase Data = 0xD0  
Confirm Addr = Block to be erased (BA)  
Write 0xD0,  
Block Address  
(Erase Confirm)  
None  
None  
Status Register data.  
Suspend  
Erase  
Loop  
Read Status  
Register  
Check SR[7]:  
1 = WSM ready  
0 = WSM busy  
Idle  
No  
Suspend  
Erase  
0
Yes  
SR[7] =  
1
Repeat for subsequent block erasures.  
Full Status register check can be done after each block erase  
or after a sequence of block erasures.  
Full Erase  
Status Check  
(if desired)  
Write 0xFF after the last operation to enter read array mode.  
Block Erase  
Complete  
FULL ERASE STATUS CHECK PROCEDURE  
Read Status  
Register  
Bus  
Command  
Operation  
Comments  
Check SR[3]:  
1 = VPP Range Error  
Idle  
Idle  
Idle  
None  
None  
None  
1
VPP Range  
Error  
SR[3] =  
0
Check SR[4,5]:  
Both 1 = Command Sequence Error  
1,1  
1
Command  
Sequence Error  
Check SR[5]:  
1 = Block Erase Error  
SR[4,5] =  
0
Check SR[1]:  
1 = Attempted erase of locked block;  
erase aborted.  
Block Erase  
Error  
Idle  
None  
SR[5] =  
0
Only the Clear Status Register command clears SR[1, 3, 4, 5].  
If an error is detected, clear the Status register before  
attempting an erase retry or other error recovery.  
1
Block Locked  
Error  
SR[1] =  
0
Block Erase  
Successful  
November 2007  
Order Number: 306666-11  
Datasheet  
83  
P30  
Figure 43: Erase Suspend/Resume Flowchart  
ERASE SUSPEND / RESUME PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Read Status  
Write 70h  
Any Address  
Read  
Data = 70h  
Write  
Write  
Status Addr = Any device address  
Data = B0h  
Addr = Same partition address as  
Erase  
Suspend  
above  
Erase Suspend  
Write B0h  
Any Address  
Status register data. Toggle CE# or  
OE# to update Status register  
Addr =X  
Read  
Read Status  
Register  
Check SR.7  
Standby  
1 = WSM ready  
0 = WSM busy  
0
0
SR.7 =  
1
Check SR.6  
1 = Erase suspended  
0 = Erase completed  
Standby  
Write  
Erase  
Completed  
SR.6 =  
1
Read Array Data = FFh or 40h  
or Program Addr = Block to program or read  
Read or  
Write  
Read array or program data from/to  
block other than the one being erased  
Read  
Program  
Read or  
Program ?  
Read Array  
Data  
Program  
Loop  
Program Data = D0h  
Resume Addr = Any address  
No  
Write  
Done?  
Yes  
Erase Resume  
Read Array  
Write D0h  
Write FFh  
Any Address  
Any Addres  
Erase  
Resumed  
Read Array  
Data  
Read Status  
Write 70h  
Any Address  
ERAS_SUS.WMF  
Datasheet  
84  
November 2007  
Order Number: 306666-11  
P30  
Figure 44: Block Lock Operations Flowchart  
LOCKING OPERATIONS PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Lock Setup  
Write 60h  
Block Address  
Lock  
Setup  
Data = 60h  
Addr = Block to lock/unlock/lock-down (BA)  
Write  
Write  
Lock,  
Unlock, or  
Lockdown  
Data = 01h (Lock block)  
D0h (Unlock block)  
Lock Confirm  
Write 01,D0,2Fh  
Block Address  
2Fh (Lockdown block)  
Confirm Addr = Block to lock/unlock/lock-down (BA)  
Read ID Plane  
Write 90h  
Write  
(Optional)  
Read ID Data = 90h  
Plane  
Addr = Block address offset+2 (BA+2)  
Read  
(Optional)  
Block Lock Block Lock status data  
Status Addr = Block address offset+2 (BA+2)  
Read Block Lock  
Status  
Confirm locking change on DQ , DQ0.  
(See Block Locking State Transitions Table  
for valid combinations.)  
1
Standby  
(Optional)  
Locking  
No  
Change?  
Yes  
Read  
Array  
Data = FFh  
Addr = Block address (BA)  
Write  
Read Array  
Write FFh  
Any Address  
Lock Change  
Complete  
LOCK_OP.WMF  
November 2007  
Order Number: 306666-11  
Datasheet  
85  
P30  
Figure 45: Protection Register Programming Flowchart  
PROTECTION REGISTER PROGRAMMING PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Program Data = 0xC0  
PR Setup Addr = First Location to Program  
Write  
Write 0xC0,  
PR Address  
(Program Setup)  
(Confirm Data)  
Protection Data = Data to Program  
Program Addr = Location to Program  
Write  
Read  
Write PR  
Address & Data  
None  
None  
Status Register Data.  
Read Status  
Register  
Check SR[7]:  
1 = WSM Ready  
0 = WSM Busy  
Idle  
Program Protection Register operation addresses must be  
within the Protection Register address space. Addresses  
outside this space will return an error.  
0
SR[7] =  
1
Repeat for subsequent programming operations.  
Full Status  
Check  
(if desired)  
Full Status Register check can be done after each program, or  
after a sequence of program operations.  
Write 0xFF after the last operation to set Read Array state.  
Program  
Complete  
FULL STATUS CHECK PROCEDURE  
Read Status  
Register Data  
Bus  
Operation  
Command  
Comments  
Check SR[3]:  
1 =VPP Range Error  
Idle  
Idle  
Idle  
None  
1
1
1
SR[3] =  
0
VPP Range Error  
Check SR[4]:  
1 =Programming Error  
None  
None  
Check SR[1]:  
1 =Block locked; operation aborted  
SR[4] =  
0
Program Error  
Only the Clear Staus Register command clears SR[1, 3, 4].  
If an error is detected, clear the Status register before  
attempting a program retry or other error recovery.  
Register Locked;  
Program Aborted  
SR[1] =  
0
Program  
Successful  
Datasheet  
86  
November 2007  
Order Number: 306666-11  
P30  
Appendix C Common Flash Interface  
The Common Flash Interface (CFI) is part of an overall specification for multiple  
command-set and control-interface descriptions. This appendix describes the database  
structure containing the data returned by a read operation after issuing the CFI Query  
command (see Section 9.2, “Device Commands” on page 45). System software can  
parse this database structure to obtain information about the flash device, such as  
block size, density, bus width, and electrical specifications. The system software will  
then know which command set(s) to use to properly perform flash writes, block erases,  
reads and otherwise control the flash device.  
C.1  
Query Structure Output  
The Query database allows system software to obtain information for controlling the  
flash device. This section describes the device’s CFI-compliant interface that allows  
access to Query data.  
Query data are presented on the lowest-order data outputs (DQ7-0) only. The numerical  
offset value is the address relative to the maximum bus width supported by the device.  
On this family of devices, the Query table device starting address is a 10h, which is a  
word address for x16 devices.  
For a word-wide (x16) device, the first two Query-structure bytes, ASCII “Q” and “R,”  
appear on the low byte at word addresses 10h and 11h. This CFI-compliant device  
outputs 00h data on upper bytes. The device outputs ASCII “Q” in the low byte (DQ7-0  
)
and 00h in the high byte (DQ15-8).  
At Query addresses containing two or more bytes of information, the least significant  
data byte is presented at the lower address, and the most significant data byte is  
presented at the higher address.  
In all of the following tables, addresses and data are represented in hexadecimal  
notation, so the “h” suffix has been dropped. In addition, since the upper byte of word-  
wide devices is always “00h,the leading “00” has been dropped from the table  
notation and only the lower byte value is shown. Any x16 device outputs can be  
assumed to have 00h on the upper byte in this mode.  
Table 35: Summary of Query Structure Output as a Function of Device and Mode  
Hex  
Hex  
Code  
51  
52  
59  
ASCII  
Value  
"Q"  
"R"  
"Y"  
Device  
Offset  
00010:  
00011:  
00012:  
Device Addresses  
November 2007  
Order Number: 306666-11  
Datasheet  
87  
P30  
Table 36: Example of Query Structure Output of x16- Devices  
Word Addressing:  
Byte Addressing:  
Offset  
AX–A0  
Hex Code  
Value  
Offset  
AX–A0  
Hex Code  
Value  
D15–D0  
D7–D0  
00010h  
00011h  
00012h  
00013h  
00014h  
00015h  
00016h  
00017h  
00018h  
...  
0051  
0052  
0059  
P_IDLO  
P_IDHI  
PLO  
"Q"  
"R"  
"Y"  
00010h  
00011h  
00012h  
00013h  
00014h  
00015h  
00016h  
00017h  
00018h  
...  
51  
52  
59  
P_IDLO  
P_IDLO  
P_IDHI  
...  
"Q"  
"R"  
"Y"  
PrVendor  
ID #  
PrVendor  
TblAdr  
AltVendor  
ID #  
PrVendor  
ID #  
ID #  
PHI  
...  
A_IDLO  
A_IDHI  
...  
...  
C.2  
Query Structure Overview  
The Query command causes the flash component to display the Common Flash  
Interface (CFI) Query structure or “database.The structure sub-sections and address  
locations are summarized below.  
Table 37: Query Structure  
Description(1)  
Offset  
Sub-Section Name  
00001-Fh Reserved  
Reserved for vendor-specific information  
Command set ID and vendor data offset  
Device timing & voltage information  
Flash device layout  
00010h  
0001Bh  
00027h  
CFI query identification string  
System interface information  
Device geometry definition  
Vendor-defined additional information specific  
to the Primary Vendor Algorithm  
P(3)  
Primary Intel-specific Extended Query Table  
Notes:  
1.  
Refer to the Query Structure Output section and offset 28h for the detailed definition of offset address as a function of  
device bus width and mode.  
2.  
3.  
BA = Block Address beginning location (i.e., 08000h is block 1’s beginning location when the block size is 32-KWord).  
Offset 15 defines “P” which points to the Primary Numonyx-specific Extended Query Table.  
C.3  
CFI Query Identification String  
The Identification String provides verification that the component supports the  
Common Flash Interface specification. It also indicates the specification version and  
supported vendor-specified command set(s).  
Table 38: CFI Identification  
Hex  
Offset Length  
Description  
Query-unique ASCII string “QRY“  
Add. Code Value  
3
10:  
11:  
12:  
13:  
14:  
15:  
16:  
17:  
18:  
19:  
1A:  
10h  
--51  
--52  
--59  
--01  
--00  
--0A  
--01  
--00  
--00  
--00  
--00  
"Q"  
"R"  
"Y"  
2
2
2
2
Primary vendor command set and control interface ID code.  
16-bit ID code for vendor-specified algorithms  
Extended Query Table primary algorithm address  
13h  
15h  
17h  
19h  
Alternate vendor command set and control interface ID code.  
0000h means no second vendor-specified algorithm exists  
Secondary algorithm Extended Query Table address.  
0000h means none exists  
Datasheet  
88  
November 2007  
Order Number: 306666-11  
P30  
Table 39: System Interface Information  
Hex  
Code  
--17  
Offset  
Length  
Description  
Add.  
1B:  
Value  
1.7V  
1Bh  
1
V
CC logic supply minimum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 BCD volts  
1Ch  
1Dh  
1Eh  
1
1
1
VCC logic supply maximum program/erase voltage  
1C:  
1D:  
1E:  
--20  
--85  
--95  
2.0V  
8.5V  
9.5V  
bits 0–3 BCD 100 mV  
bits 4–7 BCD volts  
V
PP [programming] supply minimum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 HEX volts  
VPP [programming] supply maximum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 HEX volts  
“n” such that typical single word program time-out = 2n μ-sec  
“n” such that typical max. buffer write time-out = 2n μ-sec  
“n” such that typical block erase time-out = 2n m-sec  
“n” such that typical full chip erase time-out = 2n m-sec  
“n” such that maximum word program time-out = 2n times typical  
“n” such that maximum buffer write time-out = 2n times typical  
“n” such that maximum block erase time-out = 2n times typical  
“n” such that maximum chip erase time-out = 2n times typical  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
1
1
1
1
1
1
1
1
1F:  
20:  
21:  
22:  
23:  
24:  
25:  
26:  
--08 256μs  
--09 512μs  
--0A  
--00  
1s  
NA  
--01 512μs  
--01 1024μs  
--02  
--00  
4s  
NA  
November 2007  
Order Number: 306666-11  
Datasheet  
89  
P30  
C.4  
Device Geometry Definition  
Table 40: Device Geometry Definition  
Offset  
27h  
Length  
Description  
Code  
See table below  
“n” such that device size = 2n in number of bytes  
Flash device interface code assignment:  
1
27:  
28:  
"n" such that n+1 specifies the bit field that represents the flash  
device width capabilities as described in the table:  
7
6
5
4
3
2
1
x16  
9
0
x8  
8
28h  
2
15  
14  
13  
12  
x64  
11  
x32  
10  
--01  
x16  
64  
29:  
2A:  
2B:  
2C:  
--00  
--06  
--00  
“n” such that maximum number of bytes in write buffer = 2n  
2
1
2Ah  
2Ch  
Number of erase block regions (x) within device:  
1. x = 0 means no erase blocking; the device erases in bulk  
2. x specifies the number of device regions with one or  
more contiguous same-size erase blocks.  
See table below  
3. Symmetrically blocked partitions have one blocking region  
Erase Block Region 1 Information  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
4
4
4
2Dh  
31h  
35h  
2D:  
2E:  
2F:  
30:  
31:  
32:  
33:  
34:  
35:  
36:  
37:  
38:  
See table below  
See table below  
See table below  
Erase Block Region 2 Information  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
Reserved for future erase block region information  
Address  
64-Mbit  
128-Mbit  
256-Mbit  
–B  
–T  
–B  
–T  
–B  
–T  
27:  
28:  
29:  
2A:  
2B:  
2C:  
2D:  
2E:  
2F:  
30:  
31:  
32:  
33:  
34:  
35:  
36:  
37:  
38:  
--17  
--01  
--00  
--06  
--00  
--02  
--03  
--00  
--80  
--00  
--3E  
--00  
--00  
--02  
--00  
--00  
--00  
--00  
--17  
--01  
--00  
--06  
--00  
--02  
--3E  
--00  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--00  
--00  
--18  
--01  
--00  
--06  
--00  
--02  
--03  
--00  
--80  
--00  
--7E  
--00  
--00  
--02  
--00  
--00  
--00  
--00  
--18  
--01  
--00  
--06  
--00  
--02  
--7E  
--00  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--00  
--00  
--19  
--01  
--00  
--06  
--00  
--02  
--03  
--00  
--80  
--00  
--FE  
--00  
--00  
--02  
--00  
--00  
--00  
--00  
--19  
--01  
--00  
--06  
--00  
--02  
--FE  
--00  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--00  
--00  
Datasheet  
90  
November 2007  
Order Number: 306666-11  
P30  
C.5  
Numonyx-Specific Extended Query Table  
Table 41: Primary Vendor-Specific Extended Query  
Offset(1)  
Hex  
Length  
Description  
P = 10Ah  
(Optional flash features and commands)  
Add. Code Value  
(P+0)h  
(P+1)h  
(P+2)h  
(P+3)h  
(P+4)h  
(P+5)h  
(P+6)h  
(P+7)h  
(P+8)h  
3
Primary extended query table  
Unique ASCII string “PRI“  
10A  
10B:  
10C:  
10D:  
10E:  
10F:  
110:  
111:  
--50  
--52  
--49  
--31  
--34  
--E6  
--01  
--00  
"P"  
"R"  
"I"  
"1"  
"4"  
1
1
4
Major version number, ASCII  
Minor version number, ASCII  
Optional feature and command support (1=yes, 0=no)  
bits 11–29 are reserved; undefined bits are “0.” If bit 31 is  
“1” then another 31 bit field of Optional features follows at  
the end of the bit–30 field.  
112: See table below  
bit 0 Chip erase supported  
bit 1 Suspend erase supported  
bit 2 Suspend program supported  
bit 3 Legacy lock/unlock supported  
bit 4 Queued erase supported  
bit 5 Instant individual block locking supported  
bit 6 Protection bits supported  
bit 7 Pagemode read supported  
bit 8 Synchronous read supported  
bit 9 Simultaneous operations supported  
bit 10 Extended Flash Array Blocks supported  
bit 0 = 0  
bit 1 = 1  
bit 2 = 1  
bit 3 = 0  
bit 4 = 0  
bit 5 = 1  
bit 6 = 1  
bit 7 = 1  
bit 8 = 1  
bit 9 = 0  
bit 10 = 0  
No  
Yes  
Yes  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
No  
See  
table  
below  
bit 30 CFI Link(s) to follow  
bit 30  
bit 31  
bit 31 Another "Optional Features" field to follow  
(P+9)h  
1
2
Supported functions after suspend: read Array, Status, Query  
Other supported operations are:  
bits 1–7 reserved; undefined bits are “0”  
bit 0 Program supported after erase suspend  
Block status register mask  
bits 2–15 are Reserved; undefined bits are “0”  
bit 0 Block Lock-Bit Status register active  
bit 1 Block Lock-Down Bit Status active  
bit 4 EFA Block Lock-Bit Status register active  
bit 5 EFA Block Lock-Down Bit Status active  
VCC logic supply highest performance program/erase voltage  
bits 0–3 BCD value in 100 mV  
bits 4–7 BCD value in volts  
113:  
--01  
bit 0 = 1  
114:  
115:  
Yes  
(P+A)h  
(P+B)h  
--03  
--00  
bit 0 = 1  
Yes  
Yes  
No  
No  
1.8V  
bit 1 = 1  
bit 4 = 0  
bit 5 = 0  
(P+C)h  
(P+D)h  
1
1
116:  
--18  
VPP optimum program/erase supply voltage  
117:  
--90  
9.0V  
bits 0–3 BCD value in 100 mV  
bits 4–7 HEX value in volts  
Discrete  
512-Mbit  
Address  
112:  
–B  
–T  
–-  
–B  
die 1 (B) die 2 (T) die 1 (T) die 2 (B)  
--40 --00 --40 --00  
–T  
–-  
--00  
--00  
November 2007  
Order Number: 306666-11  
Datasheet  
91  
P30  
Table 42: Protection Register Information  
Offset(1)  
Length  
P = 10Ah  
Hex  
Add. Code Value  
Description  
(Optional flash features and commands)  
Number of Protection register fields in JEDEC ID space.  
“00h,” indicates that 256 protection fields are available  
Protection Field 1: Protection Description  
This field describes user-available One Time Programmable  
(OTP) Protection register bytes. Some are pre-programmed  
with device-unique serial numbers. Others are user  
programmable. Bits 0–15 point to the Protection register Lock  
byte, the section’s first byte. The following bytes are factory  
pre-programmed and user-programmable.  
(P+E)h  
1
4
118: --02  
2
(P+F)h  
(P+10)h  
(P+11)h  
(P+12)h  
119: --80  
11A: --00  
80h  
00h  
11B: --03 8 byte  
11C: --03 8 byte  
bits 0–7 = Lock/bytes Jedec-plane physical low address  
bits 8–15 = Lock/bytes Jedec-plane physical high address  
bits 16–23 = “n” such that 2n = factory pre-programmed bytes  
bits 24–31 = “n” such that 2n = user programmable bytes  
(P+13)h  
(P+14)h  
(P+15)h  
(P+16)h  
(P+17)h  
(P+18)h  
(P+19)h  
(P+1A)h  
(P+1B)h  
(P+1C)h  
10  
Protection Field 2: Protection Description  
Bits 0–31 point to the Protection register physical Lock-word  
address in the Jedec-plane.  
Following bytes are factory or user-programmable.  
bits 32–39 = “n” n = factory pgm'd groups (low byte)  
bits 40–47 = “n” n = factory pgm'd groups (high byte)  
bits 48–55 = “n” \ 2n = factory programmable bytes/group  
bits 56–63 = “n” n = user pgm'd groups (low byte)  
11D: --89  
11E: --00  
11F: --00  
120: --00  
89h  
00h  
00h  
00h  
0
0
0
16  
0
16  
--00  
--00  
--00  
121:  
122:  
123:  
124: --10  
--00  
125:  
126:  
bits 64–71 = “n” n = user pgm'd groups (high byte)  
n
bits 72–79 = “n” 2 = user programmable bytes/group  
--04  
Table 43: Burst Read Information  
Offset(1)  
Hex  
Length  
Description  
P = 10Ah  
(Optional flash features and commands)  
Add. Code Value  
(P+1D)h  
1
Page Mode Read capability  
127: --03 8 byte  
bits 0–7 = “n” such that 2n HEX value represents the number of  
read-page bytes. See offset 28h for device word width to  
determine page-mode data output width. 00h indicates no  
read page buffer.  
Number of synchronous mode read configuration fields that  
follow. 00h indicates no burst capability.  
Synchronous mode read capability configuration 1  
Bits 3–7 = Reserved  
(P+1E)h  
(P+1F)h  
1
1
128: --04  
129: --01  
4
4
bits 0–2 “n” such that 2n+1 HEX value represents the  
maximum number of continuous synchronous reads when  
the device is configured for its maximum word width. A value  
of 07h indicates that the device is capable of continuous  
linear bursts that will output data until the internal burst  
counter reaches the end of the device’s burstable address  
space. This field’s 3-bit value can be written directly to the  
Read Configuration Register bits 0–2 if the device is  
configured for its maximum word width. See offset 28h for  
word width to determine the burst data output width.  
Synchronous mode read capability configuration 2  
Synchronous mode read capability configuration 3  
Synchronous mode read capability configuration 4  
(P+20)h  
(P+21)h  
(P+22)h  
1
1
1
12A: --02  
12B: --03  
12C: --07  
8
16  
Cont  
Datasheet  
92  
November 2007  
Order Number: 306666-11  
P30  
Table 44: Partition and Erase Block Region Information  
Offset(1)  
P = 10Ah  
See table below  
Address  
Description  
Bot  
Top  
Bottom  
Top  
(Optional flash features and commands)  
Len  
Number of device hardware-partition regions within the device.  
x = 0: a single hardware partition device (no fields follow).  
x specifies the number of device partition regions containing  
one or more contiguous erase block regions.  
1
12D:  
12D:  
(P+23)h (P+23)h  
Table 45: Partition Region 1 Information  
Offset(1)  
P = 10Ah  
See table below  
Address  
Description  
Bot  
12E:  
12F  
130:  
131:  
132:  
Top  
Bottom  
(P+24)h (P+24)h  
Top  
(Optional flash features and commands)  
Len  
2
Data size of this Parition Region Information field  
(P+25)h (P+25)h (# addressable locations, including this field)  
12E  
12F  
130:  
131:  
132:  
Number of identical partitions within the partition region  
2
1
(P+26)h (P+26)h  
(P+27)h (P+27)h  
(P+28)h (P+28)h Number of program or erase operations allowed in a partition  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+29)h (P+29)h Simultaneous program or erase operations allowed in other partitions while a  
partition in this region is in Program mode  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+2A)h (P+2A)h Simultaneous program or erase operations allowed in other partitions while a  
partition in this region is in Erase mode  
1
1
1
133:  
134:  
135:  
133:  
134:  
135:  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+2B)h (P+2B)h Types of erase block regions in this Partition Region.  
x = 0 = no erase blocking; the Partition Region erases in bulk  
x = number of erase block regions w/ contiguous same-size  
erase blocks. Symmetrically blocked partitions have one  
blocking region. Partition size = (Type 1 blocks)x(Type 1  
block sizes) + (Type 2 blocks)x(Type 2 block sizes) +…+  
(Type n blocks)x(Type n block sizes)  
November 2007  
Order Number: 306666-11  
Datasheet  
93  
P30  
Table 46: Partition Region 1 Information (continued)  
Offset(1)  
P = 10Ah  
See table below  
Address  
Description  
Bot  
Top  
136:  
137:  
138:  
139:  
13A:  
13B:  
13C:  
Bottom  
Top  
(Optional flash features and commands)  
Len  
4
(P+2C)h (P+2C)h Partition Region 1 Erase Block Type 1 Information  
(P+2D)h (P+2D)h bits 0–15 = y, y+1 = # identical-size erase blks in a partition  
(P+2E)h (P+2E)h  
(P+2F)h (P+2F)h  
(P+30)h (P+30)h  
(P+31)h (P+31)h  
136:  
137:  
138:  
139:  
13A:  
13B:  
13C:  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
Partition 1 (Erase Block Type 1)  
Block erase cycles x 1000  
2
1
(P+32)h (P+32)h Partition 1 (erase block Type 1) bits per cell; internal EDAC  
bits 0–3 = bits per cell in erase region  
bit 4 = internal EDAC used (1=yes, 0=no)  
bits 5–7 = reserve for future use  
(P+33)h (P+33)h Partition 1 (erase block Type 1) page mode and synchronous mode capabilities  
defined in Table 10.  
1
6
13D:  
13D:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host writes permitted (1=yes, 0=no)  
bits 3–7 = reserved for future use  
Partition Region 1 (Erase Block Type 1) Programming Region Information  
(P+34)h (P+34)h  
(P+35)h (P+35)h  
(P+36)h (P+36)h  
(P+37)h (P+37)h  
(P+38)h (P+38)h  
(P+39)h (P+39)h  
13E:  
13F:  
140:  
141:  
142:  
143:  
144:  
145:  
146:  
147:  
148:  
149:  
14A:  
bits 0–7 = x, 2^x = Programming Region aligned size (bytes)  
bits 8–14 = Reserved; bit 15 = Legacy flash operation (ignore 0:7)  
bits 16–23 = y = Control Mode valid size in bytes  
13E:  
13F:  
140:  
141:  
142:  
143:  
144:  
145:  
146:  
147:  
148:  
149:  
14A:  
bits 24-31 = Reserved  
bits 32-39 = z = Control Mode invalid size in bytes  
bits 40-46 = Reserved; bit 47 = Legacy flash operation (ignore 23:16 & 39:32)  
(P+3A)h (P+3A)h Partition Region 1 Erase Block Type 2 Information  
(P+3B)h (P+3B)h bits 0–15 = y, y+1 = # identical-size erase blks in a partition  
(P+3C)h (P+3C)h bits 16–31 = z, region erase block(s) size are z x 256 bytes  
(P+3D)h (P+3D)h  
(P+3E)h (P+3E)h  
(P+3F)h (P+3F)h  
4
Partition 1 (Erase Block Type 2)  
Block erase cycles x 1000  
2
1
(P+40)h (P+40)h Partition 1 (erase block Type 2) bits per cell; internal EDAC  
bits 0–3 = bits per cell in erase region  
bit 4 = internal EDAC used (1=yes, 0=no)  
bits 5–7 = reserve for future use  
(P+41)h (P+41)h Partition 1 (erase block Type 2) page mode and synchronous mode capabilities  
defined in Table 10.  
1
6
14B:  
14B:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host writes permitted (1=yes, 0=no)  
bits 3–7 = reserved for future use  
Partition Region 1 (Erase Block Type 2) Programming Region Information  
(P+42)h (P+42)h  
(P+43)h (P+43)h  
(P+44)h (P+44)h  
(P+45)h (P+45)h  
(P+46)h (P+46)h  
(P+47)h (P+47)h  
14C:  
14D:  
14E:  
14F:  
150:  
151:  
bits 0–7 = x, 2^x = Programming Region aligned size (bytes)  
bits 8–14 = Reserved; bit 15 = Legacy flash operation (ignore 0:7)  
bits 16–23 = y = Control Mode valid size in bytes  
14C:  
14D:  
14E:  
14F:  
150:  
151:  
bits 24-31 = Reserved  
bits 32-39 = z = Control Mode invalid size in bytes  
bits 40-46 = Reserved; bit 47 = Legacy flash operation (ignore 23:16 & 39:32)  
Datasheet  
94  
November 2007  
Order Number: 306666-11  
P30  
Table 47: Partition and Erase Block Region Information  
Address  
64-Mbit  
128-Mbit  
256-Mbit  
–B  
–T  
–B  
–T  
–B  
–T  
12D:  
12E:  
12F:  
130:  
131:  
132:  
133:  
134:  
135:  
136:  
137:  
138:  
139:  
13A:  
13B:  
13C:  
13D:  
13E:  
13F:  
140:  
141:  
142:  
143:  
144:  
145:  
146:  
147:  
148:  
149:  
14A:  
14B:  
14C:  
14D:  
14E:  
14F:  
150:  
151:  
--01  
--24  
--00  
--01  
--00  
--11  
--00  
--00  
--02  
--03  
--00  
--80  
--00  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--3E  
--00  
--00  
--02  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--01  
--24  
--00  
--01  
--00  
--11  
--00  
--00  
--02  
--3E  
--00  
--00  
--02  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--03  
--00  
--80  
--00  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--01  
--24  
--00  
--01  
--00  
--11  
--00  
--00  
--02  
--03  
--00  
--80  
--00  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--7E  
--00  
--00  
--02  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--01  
--24  
--00  
--01  
--00  
--11  
--00  
--00  
--02  
--7E  
--00  
--00  
--02  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--03  
--00  
--80  
--00  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--01  
--24  
--00  
--01  
--00  
--11  
--00  
--00  
--02  
--03  
--00  
--80  
--00  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--FE  
--00  
--00  
--02  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--01  
--24  
--00  
--01  
--00  
--11  
--00  
--00  
--02  
--FE  
--00  
--00  
--02  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--03  
--00  
--80  
--00  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
November 2007  
Order Number: 306666-11  
Datasheet  
95  
P30  
Table 48: CFI Link Information  
Offset(1)  
Length  
Hex  
Description  
P = 10Ah  
(Optional flash features and commands)  
CFI Link Field bit definitions  
Add.  
152:  
153:  
154:  
155:  
Code  
Value  
(P+48)h  
(P+49)h  
(P+4A)h  
(P+4B)h  
4
Bits 0–9 = Address offset (within 32Mbit segment) of referenced CFI table  
Bits 10–27 = nth 32Mbit segment of referenced CFI table  
Bits 28–30 = Memory Type  
Bit 31 = Another CFI Link field immediately follows  
CFI Link Field Quantity Subfield definitions  
Bits 0–3 = Quantity field (n such that n+1 equals quantity)  
Bit 4 = Table & Die relative location  
See table below  
See table below  
(P+4C)h  
1
156:  
Bit 5 = Link Field & Table relative location  
Bits 6–7 = Reserved  
Discrete  
512-Mbit  
Address  
–B  
–-  
–T  
–-  
–B  
–T  
die 1 (B)  
--10  
--20  
--00  
--00  
die 2 (T)  
die 1 (T)  
--10  
--20  
--00  
--00  
die 2 (B)  
--FF  
--FF  
--FF  
--FF  
152:  
153:  
154:  
155:  
156:  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--10  
--10  
--FF  
Datasheet  
96  
November 2007  
Order Number: 306666-11  
P30  
Appendix D Additional Information  
Order/Document  
Document/Tool  
Number  
309045  
308291  
300783  
290667  
P30 Family Specification Update  
Schematic Review Checklist for Numonyx™ StrataFlash® Embedded Memory (P30)  
Using Numonyx™ Flash Memory: Asynchronous Page Mode and Synchronous Burst Mode  
Numonyx™ StrataFlash® Memory (J3) Datasheet  
Migration Guide for Numonyx™ StrataFlash® Memory (J3) to Numonyx™ StrataFlash® Embedded  
Memory (P30/P33) Application Note 812  
306667  
Numonyx™ StrataFlash® Memory (P30) to Numonyx™ StrataFlash® Embedded Memory (P33)  
Conversion Guide Application Note 867  
314750  
290737  
306669  
Numonyx™ StrataFlash® Synchronous Memory (K3/K18) Datasheet  
Migration Guide for Numonyx™ StrataFlash® Synchronous Memory (K3/K18) to Numonyx™  
StrataFlash® Embedded Memory (P30) Application Note 825  
290701  
290702  
252802  
298161  
253418  
296514  
297833  
298136  
Numonyx™ Wireless Flash Memory (W18) Datasheet  
Numonyx™ Wireless Flash Memory (W30) Datasheet  
Numonyx™ Flash Memory Design for a Stacked Chip Scale Package (SCSP)  
Numonyx™ Flash Memory Chip Scale Package User’s Guide  
Numonyx™ Wireless Communications and Computing Package User's Guide  
Numonyx™ Small Outline Package Guide  
Numonyx™ Flash Data Integrator (Numonyx™ FDI) User Guide  
Numonyx™ Persistent Storage Manager (Numonyx™ PSM) User Guide  
Migration Guide for Spansion* S29GLxxxN to Numonyx™ StrataFlash® Embedded Memory (P30/P33)  
Application Note 813  
306668  
Note: Contact your local Numonyx or distribution sales office or visit Numonyx’s World Wide Web home page at http://  
www.numonyx.com for technical documentation, tools, or the most current information on Numonyx™ Flash Memory.  
November 2007  
Order Number: 306666-11  
Datasheet  
97  
P30  
Appendix E Ordering Information for Discrete Products  
Figure 46: Decoder for Discrete P30  
T E 2 8 F 6 4 0 P 3 0 B 8 5  
Access Speed  
Package Designator  
85 ns  
TE = 56-Lead TSOP, leaded  
JS = 56-Lead TSOP, lead-free  
RC = 64-Ball Easy BGA, leaded  
PC = 64-Ball Easy BGA, lead-free  
Parameter Location  
B = Bottom Parameter  
T = Top Parameter  
Product Line Designator  
28F = Intel® Flash Memory  
Product Family  
P30 = Intel StrataFlash® Embedded Memory  
VCC = 1.7 – 2.0 V  
VCCQ = 1.7 – 3.6 V  
Device Density  
640 = 64-Mbit  
128 = 128-Mbit  
256 = 256-Mbit  
Table 49: Valid Combinations for Discrete Products  
64-Mbit  
128-Mbit  
256-Mbit  
TE28F640P30B85  
TE28F640P30T85  
JS28F640P30B85  
JS28F640P30T85  
RC28F640P30B85  
RC28F640P30T85  
PC28F640P30B85  
PC28F640P30T85  
TE28F128P30B85  
TE28F128P30T85  
JS28F128P30B85  
JS28F128P30T85  
RC28F128P30B85  
RC28F128P30T85  
PC28F128P30B85  
PC28F128P30T85  
TE28F256P30B95  
TE28F256P30T95  
JS28F256P30B95  
JS28F256P30T95  
RC28F256P30B85  
RC28F256P30T85  
PC28F256P30B85  
PC28F256P30T85  
Datasheet  
98  
November 2007  
Order Number: 306666-11  
P30  
Appendix F Ordering Information for SCSP Products  
Figure 47: Decoder for SCSP P30  
R D 4 8 F 4 0 0 0 P 0 Z B Q 0  
Package Designator  
RD = Intel® SCSP, leaded  
Device Details  
PF = Intel® SCSP, lead-free  
0 = Original version of the product  
RC = 64-Ball Easy BGA, leaded  
PC = 64-Ball Easy BGA, lead-free  
datasheet for details)  
TE = 56-Lead TSOP, leaded  
(refer to the latest version of the  
JS = 56-Lead TSOP, lead-free  
Ballout Designator  
Q = QUAD+ ballout  
Group Designator  
48F = Flash Memory only  
0 = Discrete ballout  
Flash Density  
0 = No die  
2 = 64-Mbit  
Parameter, Mux Configuration  
B = Bottom Parameter, Non Mux  
T = Top Parameter, Non Mux  
3 = 128-Mbit  
4 = 256-Mbit  
I/O Voltage, CE# Configuration  
Z = Individual Chip Enable(s)  
V = Virtual Chip Enable(s)  
VCC = 1.7 V – 2.0 V  
Product Family  
P = Intel StrataFlash® Embedded Memory  
0 = No die  
VCCQ = 1.7 V – 3.6 V  
Note: For 512-Mbit only, “B” is used for both top and bottom Parameter/Mux configurations.  
Table 50: Valid Combinations for Dual- Die Products  
64-Mbit  
128-Mbit  
256-Mbit  
512-Mbit*  
RD48F2000P0ZBQ0  
RD48F2000P0ZTQ0  
PF48F2000P0ZBQ0  
PF48F2000P0ZTQ0  
RD48F3000P0ZBQ0  
RD48F3000P0ZTQ0  
PF48F3000P0ZBQ0  
PF48F3000P0ZTQ0  
RD48F4000P0ZBQ0  
RD48F4000P0ZTQ0  
PF48F4000P0ZBQ0  
PF48F4000P0ZTQ0  
RD48F4400P0VBQ0  
PF48F4400P0VBQ0  
RC48F4400P0VB00  
PC48F4400P0VB00  
TE48F4400P0VB00  
JS48F4400P0VB00  
Note: * The “B” parameter is used for both “top” and “bottom” options in the 512-Mbit density.  
November 2007  
Order Number: 306666-11  
Datasheet  
99  

相关型号:

PC28F640P30T85A

Flash, 4MX16, 88ns, PBGA64, LEAD FREE, BGA-64
NUMONYX

PC28F640P30T85B

Flash, 4MX16, 88ns, PBGA64, LEAD FREE, BGA-64
NUMONYX

PC28F640P33B85B

Flash, 4MX16, 85ns, PBGA64, LEAD FREE, BGA-64
NUMONYX

PC28F640P33B85D

Flash, 4MX16, 85ns, PBGA64, LEAD FREE, BGA-64
NUMONYX

PC28F640P33BF60

Numonyx® P33-65nm Flash Memory
NUMONYX

PC28F640P33BF60A

Numonyx® P33-65nm Flash Memory
MICRON

PC28F640P33BF60D

Numonyx® P33-65nm Flash Memory 128-Mbit, 64-Mbit Single Bit per Cell (SBC)
NUMONYX

PC28F640P33T85B

Flash, 4MX16, 85ns, PBGA64, LEAD FREE, BGA-64
NUMONYX

PC28F640P33TF60

Numonyx® P33-65nm Flash Memory
NUMONYX

PC28F800C3BD70

Flash, 512KX16, 70ns, PBGA64, LEAD FREE, BGA-64
NUMONYX

PC28F800C3BD70

Flash, 512KX16, 70ns, PBGA64, LEAD FREE, BGA-64
INTEL

PC28F800C3TD70

Flash, 512KX16, 70ns, PBGA64, LEAD FREE, BGA-64
NUMONYX