PF38F5070M0R0C0 [NUMONYX]

StrataFlash㈢ Cellular Memory; StrataFlash㈢蜂窝内存
PF38F5070M0R0C0
型号: PF38F5070M0R0C0
厂家: NUMONYX B.V    NUMONYX B.V
描述:

StrataFlash㈢ Cellular Memory
StrataFlash㈢蜂窝内存

蜂窝
文件: 总139页 (文件大小:2135K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
Numonyx™ StrataFlash Cellular Memory  
(M18)  
Datasheet  
Product Features  
„ High-Performance Read, Program and Erase  
„ Power  
— Core voltage: 1.7 V - 2.0 V  
— 96 ns initial read access  
— 108 MHz with zero wait-state synchronous  
burst reads: 7 ns clock-to-data output  
— 133 MHz with zero wait-state synchronous  
burst reads: 5.5 ns clock-to-data output  
— 8-, 16-, and continuous-word  
synchronous-burst Reads  
— Programmable WAIT configuration  
— Customer-configurable output driver  
impedance  
— Buffered Programming:  
— I/O voltage: 1.7 V - 2.0 V  
— Standby current: 60 µA (typ) for 512-Mbit,  
65 nm  
— Deep Power-Down mode: 2 µA (typ)  
— Automatic Power Savings mode  
— 16-word synchronous-burst read current:  
23 mA (typ) @ 108 MHz; 24 mA (typ) @  
133 MHz  
„ Software  
— Numonyx™ Flash Data Integrator  
(Numonyx™ FDI) optimized  
— Basic Command Set and Extended  
Command Set compatible  
2.0 µs/Word (typ), 512-Mbit 65 nm;  
Block Erase: 0.9 s per block (typ)  
— 20 µs (typ) program/erase suspend  
„ Architecture  
— Common Flash Interface  
— 16-bit wide data bus  
— Multi-Level Cell Technology  
„ Security  
— OTP Registers:  
— Symmetrically-Blocked Array Architecture  
— 256-Kbyte Erase Blocks  
64 unique pre-programmed bits  
2112 user-programmable bits  
— Absolute write protection with VPP = GND  
— Power-transition erase/program lockout  
— Individual zero-latency block locking  
— Individual block lock-down  
— 1-Gbit device: Eight 128-Mbit partitions  
— 512-Mbit device: Eight 64-Mbit partitions  
— 256-Mbit device: Eight 32-Mbit partitions.  
— 128-Mbit device: Eight 16-Mbit partitions.  
— Read-While-Program and Read-While-Erase  
— Status Register for partition/device status  
— Blank Check feature  
„ Density and Packaging  
— Density: 128-, 256-, and 512-Mbit, and 1-  
Gbit  
— Address-data multiplexed and non-  
multiplexed interfaces  
— x16D (105-ball) Flash SCSP  
— x16C (107-ball) Flash SCSP  
— 0.8 mm pitch lead-free solder-ball  
„ Quality and Reliability  
— Expanded temperature: –30 °C to +85 °C  
— Minimum 100,000 erase cycles per block  
— ETOX™ X Process Technology (65 nm)  
— ETOX™ IX Process Technology (90 nm)  
Order Number: 309823-11  
April 2008  
Legal Lines and Disclaimers  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR  
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN NUMONYX'S TERMS AND  
CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY, RELATING TO SALE AND/OR USE OF NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A  
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Numonyx  
products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.  
Numonyx B.V. may make changes to specifications and product descriptions at any time, without notice.  
Numonyx B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented  
subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or  
otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.Numonyx reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by visiting the  
Numonyx website at http://www.numonyx.com.  
Numonyx, the Numonyx logo, and StrataFlash are trademarks or registered trademarks of Numonyx B.V. or its subsidiaries in other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2008, Numonyx B.V., All Rights Reserved.  
Datasheet  
2
April 2008  
Order Number: 309823-11  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Contents  
1.0 Introduction..............................................................................................................8  
1.1  
1.2  
1.3  
1.4  
Document Purpose ..............................................................................................8  
Nomenclature.....................................................................................................8  
Acronyms...........................................................................................................8  
Conventions .......................................................................................................9  
2.0 Functional Description............................................................................................. 10  
2.1  
2.2  
2.3  
Product Overview.............................................................................................. 10  
Configuration and Memory Map........................................................................... 11  
Device ID......................................................................................................... 12  
3.0 Package Information...............................................................................................13  
4.0 Ballouts and Signal Descriptions.............................................................................. 23  
4.1  
Ballouts, x16D .................................................................................................. 23  
4.1.1 x16D (105-Ball) Ballout, Non-Mux ............................................................ 23  
4.1.2 x16D (105-Ball) Ballout, AD-Mux.............................................................. 24  
4.1.3 x16D Mux (105-Ball) Ballout, AA/D Mux .................................................... 25  
Signal Descriptions, x16D................................................................................... 26  
Ballouts, x16C .................................................................................................. 29  
4.3.1 x16C (107-Ball) Ballout, Non-Mux ............................................................ 29  
4.3.2 x16C (107-Ball) Ballout, AD-Mux.............................................................. 31  
4.3.3 x16C (107-Ball) Ballout, AA/D-Mux...........................................................32  
Signal Descriptions x16C.................................................................................... 33  
Ballouts, x16 Split Bus.......................................................................................37  
4.5.1 x16 Split Bus (165-Ball) Ballout, Non-Mux .................................................37  
Signal Descriptions, x16 Split Bus........................................................................38  
4.2  
4.3  
4.4  
4.5  
4.6  
5.0 Maximum Ratings and Operating Conditions............................................................ 42  
5.1  
5.2  
Absolute Maximum Ratings.................................................................................42  
Operating Conditions .........................................................................................42  
6.0 Electrical Characteristics .........................................................................................43  
6.1  
Initialization ..................................................................................................... 43  
6.1.1 Power-Up/Down Characteristics................................................................43  
6.1.2 Reset Characteristics .............................................................................. 43  
6.1.3 Power Supply Decoupling ........................................................................43  
DC Current Specifications................................................................................... 44  
DC Voltage Specifications................................................................................... 46  
Capacitance......................................................................................................47  
6.2  
6.3  
6.4  
7.0 NOR Flash AC Characteristics................................................................................... 48  
7.1  
7.2  
AC Test Conditions ............................................................................................ 48  
Read Specifications............................................................................................ 49  
7.2.1 Read Timing Waveforms..........................................................................52  
7.2.2 Timings: Non-Mux Device, Async Read...................................................... 53  
7.2.3 Timings: Non-Mux Device, Sync Read ....................................................... 54  
7.2.4 Timings: AD-Mux Device, Async Read ....................................................... 57  
7.2.5 Timings: AD-Mux Device, Sync Read.........................................................58  
Write Specifications........................................................................................... 60  
7.3.1 Write Timing Waveforms .........................................................................61  
7.3.2 Timings: Non Mux Device ........................................................................62  
7.3.3 Timings: AD-Mux Device .........................................................................65  
Program and Erase Characteristics....................................................................... 68  
7.3  
7.4  
April 2008  
Order Number: 309823-11  
Datasheet  
3
Numonyx™ StrataFlash® Cellular Memory (M18)  
7.5  
7.6  
Reset Specifications ...........................................................................................69  
Deep Power Down Specifications..........................................................................69  
8.0 NOR Flash Bus Interface ..........................................................................................71  
8.1  
Bus Reads ........................................................................................................71  
8.1.1 Asynchronous single-word reads...............................................................72  
8.1.2 Asynchronous Page Mode (Non-multiplexed devices only) ............................72  
8.1.3 Synchronous Burst Mode .........................................................................72  
Bus Writes........................................................................................................73  
Reset ...............................................................................................................73  
Deep Power-Down .............................................................................................73  
Standby ...........................................................................................................74  
Output Disable ..................................................................................................74  
Bus Cycle Interleaving........................................................................................74  
8.7.1 Read Operation During Program Buffer fill..................................................75  
Read-to-Write and Write-to-Read Bus Transitions...................................................75  
8.8.1 Write to Asynchronous read transition .......................................................75  
8.8.2 Write to synchronous read transition .........................................................75  
8.8.3 Asynchronous/Synchronous read to write transition.....................................75  
8.8.4 Bus write with active clock.......................................................................75  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
9.0 NOR Flash Operations ..............................................................................................76  
9.1  
9.2  
9.3  
Status Register..................................................................................................76  
9.1.1 Clearing the Status Register.....................................................................77  
Read Configuration Register................................................................................77  
9.2.1 Latency Count........................................................................................78  
Enhanced Configuration Register..........................................................................79  
9.3.1 Output Driver Control..............................................................................80  
9.3.2 Programming the ECR .............................................................................80  
Read Operations................................................................................................81  
9.4.1 Read Array ............................................................................................81  
9.4.2 Read Status Register...............................................................................82  
9.4.3 Read Device Information .........................................................................82  
9.4.4 CFI Query..............................................................................................83  
Programming Modes ..........................................................................................83  
9.5.1 Control Mode .........................................................................................84  
9.5.2 Object Mode ..........................................................................................85  
Programming Operations ....................................................................................88  
9.6.1 Single-Word Programming .......................................................................88  
9.6.2 Buffered Programming ............................................................................89  
9.6.3 Buffered Enhanced Factory Programming (BEFP).........................................90  
Block Erase Operations.......................................................................................92  
Blank Check Operation .......................................................................................93  
Suspend and Resume.........................................................................................93  
9.4  
9.5  
9.6  
9.7  
9.8  
9.9  
9.10 Simultaneous Operations....................................................................................95  
9.11 Security ...........................................................................................................95  
9.11.1 Block Locking.........................................................................................95  
9.11.2 One-Time Programmable (OTP) Registers ..................................................97  
9.11.3 Global Main-Array Protection....................................................................99  
10.0 Device Command Codes .........................................................................................100  
11.0 Flow Charts............................................................................................................101  
12.0 Common Flash Interface........................................................................................110  
12.1 Query Structure Output ....................................................................................110  
12.2 Block Status Register .......................................................................................111  
Datasheet  
4
April 2008  
Order Number: 309823-11  
Numonyx™ StrataFlash® Cellular Memory (M18)  
12.3 CFI Query Identification String.......................................................................... 111  
12.4 Device Geometry Definition .............................................................................. 113  
12.5 Numonyx-Specific Extended Query Table............................................................ 114  
13.0 Next State ............................................................................................................. 120  
A
B
C
AADM Mode ........................................................................................................... 128  
Additional Information .......................................................................................... 136  
Ordering Information ............................................................................................ 136  
April 2008  
Order Number: 309823-11  
Datasheet  
5
Numonyx™ StrataFlash® Cellular Memory (M18)  
Revision History  
Date  
Revision Description  
14-April-06  
001  
002  
Initial Release  
Updated the template (naming and branding).  
On the cover page, changed BEFP from 1.6 µs/byte (typ) to 3.2 µs/Word (typ).  
28-April-06  
Correced the BEFP on the cover page to read 3.2 µs/Word and synchronized the BEFP on the  
cover with that in Section 7.4, “Program and Erase Characteristics” on page 68.  
Added Figure 1, “Mechanical Specifications: x16D (105-ball) package (8x10x1.0 mm)” on page 14 and  
Figure 5, “Mechanical Specifications: x16 Split Bus (165-ball) package (10x11x1.2 mm)” on page 18.  
Added the following line item part numbers:  
—PF48F6000M0Y0BE  
—PF38F6070M0Y0BE  
20-June-06  
003  
004  
—PF38F6070M0Y0VE  
—PF48F6000M0Y1BE  
Removed information on the 90 nm Extended Flash Array (EFA) feature that is no longer  
supported.  
October 2006  
Revised to include 65 nm, 1-Gbit device information. Moved sections for Device ID, Additional  
Information, and Order Information to Functional Description chapter. Created a separate M18  
Developer’s Manual to include the following information:  
—Bus Interface  
—Flash Operations  
—Device Command Codes  
—Flow Charts  
—Common Flash Interface  
—Next State Table  
Removed line item PF5566MMY0C0 (512+512 M18 + 128 + 128 PSRAM) and its accompanying  
package (8x11x1.4, x16C 107 ball).  
Added the following line items:  
—PF48F6000M0Y0BE, 65 nm  
—PF38F6070M0Y0BE, 65 nm  
—PF38F4060M0Y0B0  
November 2006  
005  
—PF58F0031M0Y1BE, 65 nm  
—PF38F6070M0Y0C0, 65 nm  
—PF38F4060M0Y0C0  
—PF38F4060M0Y1C0  
—PF38F6070M0Y0VE, 65 nm  
Added the following packages to support new line items:  
—8x10x1.0, x16D 105 ball  
—11x15x1.2, x16D 105 ball  
—11x11x1.2, x16C 107 ball  
—8x10x1.2, x16C 107 ball  
—10x11x1.2, x16SB 165 ball  
November 2006  
February 2007  
006  
007  
Updated line item information.  
Added the following line items and package as applicable:  
PF48F4000M0Y0CE, 8x10x1.0 x16C  
June 2007  
March 2008  
March 2007  
008  
009  
008  
Merged the Developer Manual and Datasheet content into a single document.  
Updated the Performance specifications for 133MHz Capulet 1G improvements.  
Updated timing diagrams in AC Characteristics section.  
Datasheet  
6
April 2008  
Order Number: 309823-11  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Date  
Revision Description  
Added note stating the value of RCR8 in timing diagrams inSection 7.2.1, “Read Timing Waveforms”  
on page 52.  
July 2007  
009  
Resized several timing diagrams in AC Characteristics section.  
Updated timing diagrams Figure 31, “Async Read to Write (Non-Mux)” on page 62, Figure 36, “Async Read  
to Write (AD-Mux)” on page 66 and Figure 37, “Write to Async Read (AD-Mux)” on page 66  
March 2008  
April 2008  
010  
11  
Updated Program performance specs with Capulet improved performance values.  
Applied Numonyx branding.  
April 2008  
Order Number: 309823-11  
Datasheet  
7
Numonyx™ StrataFlash® Cellular Memory (M18)  
1.0  
Introduction  
Numonyx™ StrataFlash® Cellular Memory is the sixth generation Numonyx™  
StrataFlash® memory with multi-level cell (MLC) technology. It provides high-  
performance, low-power synchronous-burst read mode and asynchronous read mode  
at 1.8 V. It features flexible, multi-partition read-while-program and read-while-erase  
capability, enabling background programming or erasing in one partition  
simultaneously with code execution or data reads in another partition. The eight  
partitions allow flexibility for system designers to choose the size of the code and data  
segments. The Numonyx™ StrataFlash® Cellular Memory is manufactured using Intel*  
65 nm ETOX* X and 90 nm ETOX* IX process technology and is available in industry-  
standard chip-scale packaging.  
1.1  
Document Purpose  
This document describes the specifications of the Numonyx™ StrataFlash® Cellular  
Memory device.  
1.2  
Nomenclature  
Table 1:  
Definition of Terms  
Term  
Definition  
1.8 V  
Refers to VCC and VCCQ voltage range of 1.7 V to 2.0 V  
Block  
A group of bits that erase with one erase command  
Main Array  
A group of 256-KB blocks used for storing code or data  
Partition  
A group of blocks that share common program and erase circuitry and command status register  
Programming Region  
An aligned 1-KB section within the main array  
Segment  
Byte  
Word  
Kb  
A 32-byte section within the programming region  
8 bits  
2 bytes = 16 bits  
1024 bits  
KB  
1024 bytes  
KW  
1024 words  
1,048,576 bits  
1,048,576 bytes  
Mb  
MB  
1.3  
Acronyms  
Table 2:  
List of Acronyms  
Acronym  
Meaning  
APS  
CFI  
DU  
Automatic Power Savings  
Common Flash Interface  
Don’t Use  
ECR  
Enhanced Configuration Register (Flash)  
Datasheet  
8
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 2:  
List of Acronyms  
Acronym  
Meaning  
ETOX  
FDI  
EPROM Tunnel Oxide  
Numonyx™ Flash Data Integrator  
Read Configuration Register (Flash)  
Reserved for Future Use  
RCR  
RFU  
SCSP  
Stacked Chip Scale Package  
1.4  
Conventions  
Table 3:  
Datasheet Conventions  
Convention  
Meaning  
Square brackets are used to designate group membership or to define a group of signals with a  
similar function, such as A[21:1].  
Group Membership Brackets  
VCC vs. VCC  
When referring to a signal or package-connection name, the notation used is VCC. When  
referring to a voltage level, the notation used is subscripted such as VCC  
.
This term is used interchangeably throughout this document to denote either a particular die, or  
all die in the package.  
Device  
This is the method used to refer to more than one chip-enable or output enable. When each is  
referred to individually, the reference is F1-CE# and F1-OE# (for die #1), and F2-CE# and F2-  
OE# (for die #2).  
F[3:1]-CE#,  
F[2:1]-OE#  
When referencing flash memory signals, the notation used is F-VCC or F-VCC, respectively. When  
the reference is to PSRAM signals or timings, the notation is prefixed with “P-” (for example, P-  
VCC, P-VCC).  
When referencing SRAM signals or timings, the notation is prefixed with “S-” (for example, S-  
VCC or S-VCC).  
F-VCC P-VCC, S-VCC  
P-VCC and S-VCC are RFU for stacked combinations that do not include PSRAM or SRAM.  
Used to identify RAM OE#, LB#, UB#, WE# signals, and are usually shared between two or  
more RAM die. R-OE#, R-LB#, R-UB# and R-WE# are RFU for stacked combinations that do not  
include PSRAM or SRAM.  
R-OE#, R-LB#,  
R-UB#, R-WE#  
00FFh  
Denotes 16-bit hexadecimal numbers  
Denotes 32-bit hexadecimal numbers  
00FF 00FFh  
April 2008  
309823-10  
Datasheet  
9
Numonyx™ StrataFlash® Cellular Memory (M18)  
2.0  
Functional Description  
2.1  
Product Overview  
The Numonyx™ StrataFlash® Cellular Memory (M18) device provides high read and  
write performance at low voltage on a 16-bit data bus.  
The flash memory device has a multi-partition architecture with read-while-program  
and read-while-erase capability.  
The device supports synchronous burst reads up to 108 MHz using ADV# and CLK  
address-latching on some litho/density combinations and up to 133 MHz using CLK  
address-latching only on some litho/density combinations. It is listed below in the  
following table.  
Table 4:  
M18 Product Litho/Density/Frequency Combinations  
Litho (nm)  
Density (Mbit)  
Supports frequency up to (MHz)  
Sync read address-latching  
CLK-latching  
256  
512  
133  
108  
133  
133  
133  
108  
133  
90  
ADV#- and CLK-latching  
CLK-latching  
128  
256  
CLK-latching  
65  
512  
CLK-latching  
1024  
1024  
ADV#- and CLK-latching  
CLK-latching  
In continuous-burst mode, a data Read can traverse partition boundaries.  
Upon initial power-up or return from reset, the device defaults to asynchronous array-  
read mode. Synchronous burst-mode reads are enabled by programming the Read  
Configuration Register. In synchronous burst mode, output data is synchronized with a  
user-supplied clock signal. A WAIT signal provides easy CPU-to-flash memory  
synchronization.  
Designed for low-voltage applications, the device supports read operations with VCC at  
1.8 V, and erase and program operations with VPP at 1.8 V or 9.0 V. VCC and VPP can  
be tied together for a simple, ultra-low power design. In addition to voltage flexibility, a  
dedicated VPP connection provides complete data protection when VPP is less than  
VPPLK  
.
A Status Register provides status and error conditions of erase and program  
operations.  
One-Time-Programmable (OTP) registers allow unique flash device identification that  
can be used to increase flash content security. Also, the individual block-lock feature  
provides zero-latency block locking and unlocking to protect against unwanted program  
or erase of the array.  
The flash memory device offers three power savings features:  
• Automatic Power Savings (APS) mode: The device automatically enters APS  
following a read-cycle completion.  
• Standby mode: Standby is initiated when the system deselects the device by  
deasserting CE#.  
Datasheet  
10  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
• Deep Power-Down (DPD) mode: DPD provides the lowest power consumption and  
is enabled by programming in the Enhanced Configuration Register. DPD is initiatied  
by asserting the DPD pin.  
2.2  
Configuration and Memory Map  
The Numonyx™ StrataFlash® Cellular Memory device features a symmetrical block  
architecture. The flash device main array is divided as follows:  
• The main array of the 128-Mbit device is divided into eight 16-Mbit partitions. Each  
parition is divided into eight 256-KByte blocks: 8 x 8 = 64 blocks in the main array  
of a 128-Mbit device.  
• The main array of the 256-Mbit device is divided into eight 32-Mbit partitions. Each  
parition is divided into sixteen 256-KByte blocks: 8 x 16 = 128 blocks in the main  
array of a 256-Mbit device.  
• The main array of the 512-Mbit device is divided into eight 64-Mbit partitions. Each  
parition is divided into thirty-two 256-KByte blocks: 8 x 32 = 256 blocks in the  
main array of a 256-Mbit device.  
• The main array of the 1-Gbit device is divided into eight 128-Mbit partitions. Each  
parition is divided into sixty-four 256-KByte blocks: 8 x 64 = 512 blocks in the  
main array of a 1-Gbit device.  
Each block is divided into as many as two-hundred-fifty-six 1-KByte programming  
regions. Each region is divided into as many as thirty-two 32-Byte segments.  
Table 5:  
Main Array Memory Map (Sheet 1 of 2)  
128-Mbit Device  
256-Mbit Device  
512-Mbit Device  
1-Gbit Device  
Partition  
Mbit  
Mbit  
Mbit  
Mbit  
Blk  
#
Address  
Range  
Blk  
#
Address  
Range  
Blk  
#
Address  
Range  
Blk  
#
Address  
Range  
07E0000-  
07FFFFF  
0FE0000-  
0FFFFFF  
1FE0000-  
1FFFFFF  
3FE0000-  
3FFFFFF  
63  
127  
255  
511  
7
6
5
4
16  
32  
64  
128  
0700000-  
071FFFF  
0E00000-  
0E1FFFF  
1C00000-  
1C1FFFF  
3800000-  
381FFFF  
56  
55  
112  
111  
224  
223  
448  
447  
06E0000-  
06FFFFF  
0DE0000-  
0DFFFFF  
1BE0000-  
1BFFFFF  
37E0000-  
37FFFFF  
16  
16  
16  
32  
32  
32  
64  
64  
64  
128  
128  
128  
0600000-  
061FFFF  
0C00000-  
0C1FFFF  
1800000-  
181FFFF  
3000000-  
301FFFF  
48  
47  
96  
95  
192  
191  
384  
383  
05E0000-  
05FFFFF  
0BE0000-  
0BFFFFF  
17E0000-  
17FFFFF  
2FE0000-  
2FFFFFF  
0500000-  
051FFFF  
0A00000-  
0A1FFFF  
1400000-  
141FFFF  
2800000-  
281FFFF  
40  
39  
80  
79  
160  
159  
320  
319  
04E0000-  
04FFFFF  
09E0000-  
09FFFFF  
13E0000-  
13FFFFF  
27E0000-  
27FFFFF  
0400000-  
041FFFF  
0800000-  
081FFFF  
1000000-  
101FFFF  
2000000-  
201FFFF  
32  
64  
128  
256  
April 2008  
309823-10  
Datasheet  
11  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 5:  
Main Array Memory Map (Sheet 2 of 2)  
128-Mbit Device  
256-Mbit Device  
512-Mbit Device  
1-Gbit Device  
Partition  
Mbit  
Mbit  
Mbit  
Mbit  
Blk  
#
Address  
Range  
Blk  
#
Address  
Range  
Blk  
#
Address  
Range  
Blk  
#
Address  
Range  
03E0000-  
03FFFFF  
07E0000-  
07FFFFF  
0FE0000-  
0FFFFFF  
1FE0000-  
1FFFFFF  
31  
63  
127  
255  
3
2
1
0
16  
32  
64  
128  
0300000-  
031FFFF  
0600000-  
061FFFF  
0C00000-  
0C1FFFF  
1800000-  
181FFFF  
24  
23  
48  
47  
96  
95  
192  
191  
02E0000-  
02FFFFF  
05E0000-  
05FFFFF  
0BE0000-  
0BFFFFF  
17E0000-  
17FFFFF  
16  
16  
16  
32  
32  
32  
64  
64  
64  
128  
128  
128  
0200000-  
021FFFF  
0400000-  
041FFFF  
0800000-  
081FFFF  
1000000-  
101FFFF  
16  
15  
32  
31  
64  
63  
128  
127  
01E0000-  
01FFFFF  
03E0000-  
03FFFFF  
07E0000-  
07FFFFF  
0FE0000-  
0FFFFFF  
0100000-  
011FFFF  
0200000-  
021FFFF  
0400000-  
041FFFF  
0800000-  
081FFFF  
8
7
16  
15  
32  
31  
64  
63  
00E0000-  
00FFFFF  
01E0000-  
01FFFFF  
03E0000-  
03FFFFF  
07E0000-  
07FFFFF  
0000000-  
001FFFF  
0000000-  
001FFFF  
0000000-  
001FFFF  
0000000-  
001FFFF  
0
0
0
0
2.3  
Device ID  
Table 6:  
Device ID codes  
Device Identifier Code  
(Hex)  
Density  
Litho (nm)  
65  
Product  
Non-Mux  
8900  
8903  
8901  
8904  
887E  
8881  
88B0  
88B1  
128 Mbit  
256 Mbit  
512 Mbit  
1024 Mbit  
AD-Mux  
Non-Mux  
AD-Mux  
Non-Mux  
AD-Mux  
Non-Mux  
AD-Mux  
65, 90  
65, 90  
65  
Note: To order parts listed above and to obtain a datasheet for the M18 SCSP parts, please contact your local Numonyx sales  
office.  
Datasheet  
12  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
3.0  
Package Information  
The following figures show the ballout package information for the device:  
Figure 1, “Mechanical Specifications: x16D (105-ball) package (8x10x1.0 mm)”  
Figure 2, “Mechanical Specifications: x16D (105-ball) package (8x10x1.4 mm)” on  
page 15  
Figure 3, “Mechanical Specifications: x16D (105-ball) package (9x11x1.2 mm)”  
Figure 4, “Mechanical Specifications: x16D (105 balls) Package (11x15x1.2 mm)”  
on page 17  
Figure 5, “Mechanical Specifications: x16 Split Bus (165-ball) package (10x11x1.2  
mm)”  
Figure 6, “Mechanical Specifications: x16C (107-ball) package (8x10x1.0 mm)” on  
page 19  
Figure 7, “Mechanical Specifications: x16C (107-ball) package (8x10x1.2 mm)” on  
page 20  
Figure 8, “Mechanical Specifications: x16C (107-ball) package (8x11x1.2 mm)” on  
page 21  
Figure 9, “Mechanical Specifications: x16C (107-ball) package (11x11x1.2 mm)”  
on page 22  
April 2008  
309823-10  
Datasheet  
13  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 1: Mechanical Specifications: x16D (105-ball) package (8x10x1.0 mm)  
S1  
Pin  
1
Corner  
1
2
3
4
5
6
7
8
9
S2  
A
B
C
D
E
F
D
G
H
J
K
L
e
M
b
E
SCS  
Top Vi ew P- Bal l Si de  
Down  
A2  
A1  
A
Y
Note: Drawing not to scale.  
Dimensions  
Package Height  
Ball Height  
Package Body Thickness  
Ball (Lead) Width  
Package Body Length  
Package Body Width  
Pitch  
Symbol  
Min  
Nom  
Max Notes  
1.0  
Min  
Nom  
Max  
0.0394  
A
A1  
A2  
b
D
E
0.200  
0.0079  
0.660  
0.375  
10.00  
8.00  
0.800  
105  
0.0260  
0.0148  
0.3937  
0.3150  
0.0315  
105  
0.325  
9.90  
7.90  
0.425  
10.10  
8.10  
0.0128  
0.3898  
0.3110  
0.0167  
0.3976  
0.3189  
e
N
Ball (Lead) Count  
Seating Plane Coplanarity  
Corner to Ball Distance Along E  
Corner to Ball Distance Along D  
Y
S1  
S2  
0.100  
0.900  
0.700  
0.0039  
0.0354  
0.0276  
0.700  
0.500  
0.800  
0.600  
0.0276  
0.0197  
0.0315  
0.0236  
Datasheet  
14  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 2: Mechanical Specifications: x16D (105-ball) package (8x10x1.4 mm)  
S1  
Pin  
1
Corner  
1
2
3
4
5
6
7
8
9
S2  
A
B
C
D
E
F
D
G
H
J
K
L
e
M
b
E
SCS  
Top Vi ew P- Bal l Si de  
Down  
A2  
A1  
A
Y
Note: Drawing not to scale.  
Dimensions  
Package Height  
Ball Height  
Package Body Thickness  
Ball (Lead) Width  
Package Body Length  
Package Body Width  
Pitch  
Symbol  
Min  
Nom  
Max Notes  
1.4  
Min  
Nom  
Max  
0.0551  
A
A1  
A2  
b
D
E
0.200  
0.0079  
1.070  
0.375  
10.00  
8.00  
0.800  
105  
0.0421  
0.0148  
0.3937  
0.3150  
0.0315  
105  
0.325  
9.90  
7.90  
0.425  
10.10  
8.10  
0.0128  
0.3898  
0.3110  
0.0167  
0.3976  
0.3189  
e
N
Ball (Lead) Count  
Seating Plane Coplanarity  
Corner to Ball Distance Along E  
Corner to Ball Distance Along D  
Y
S1  
S2  
0.100  
0.900  
0.700  
0.0039  
0.0354  
0.0276  
0.700  
0.500  
0.800  
0.600  
0.0276  
0.0197  
0.0315  
0.0236  
April 2008  
309823-10  
Datasheet  
15  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 3: Mechanical Specifications: x16D (105-ball) package (9x11x1.2 mm)  
S1  
Pin 1  
Corner  
1
2
3
4
5
6
7
8
9
S2  
A
B
C
D
E
F
D
G
H
J
K
L
e
M
b
E
Top View- Ball Side Down  
A2  
A1  
A
Y
Note: Drawing not to scale.  
Dimensions  
Package Height  
Ball Height  
Package Body Thickness  
Ball (Lead) Width  
Package Body Length  
Package Body Width  
Pitch  
Symbol  
Min  
Nom  
Max Notes  
1.2  
Min  
Nom  
Max  
0.0472  
A
A1  
A2  
b
D
E
0.200  
0.0079  
0.860  
0.375  
11.00  
9.00  
0.800  
105  
0.0339  
0.0148  
0.4331  
0.3543  
0.0315  
105  
0.325  
10.90  
8.90  
0.425  
11.10  
9.10  
0.0128  
0.4291  
0.3504  
0.0167  
0.4370  
0.3583  
e
N
Ball (Lead) Count  
Seating Plane Coplanarity  
Corner to Ball Distance Along E  
Corner to Ball Distance Along D  
Y
S1  
S2  
0.100  
1.400  
1.200  
0.0039  
0.0551  
0.0472  
1.200  
1.000  
1.300  
1.100  
0.0472  
0.0394  
0.0512  
0.0433  
Datasheet  
16  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 4: Mechanical Specifications: x16D (105 balls) Package (11x15x1.2 mm)  
April 2008  
309823-10  
Datasheet  
17  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 5: Mechanical Specifications: x16 Split Bus (165-ball) package (10x11x1.2 mm)  
S1  
Ball one Corner  
1
2
3
4
5
6
7
8
9
10 11  
12  
A
B
S2  
C
D
E
F
G
H
J
D
K
L
M
e
b
N
P
R
E
Top View - Ball  
Side Down  
A2  
A1  
A
Y
Note: Drawing not to scale.  
Millimeters  
Min  
Inches  
Min  
Dimensions  
Package Height  
Ball Height  
Symbol  
Nom  
Max Notes  
1.2  
Nom  
Max  
0.0472  
A
A1  
A2  
b
D
E
e
N
Y
S1  
S2  
0.200  
0.0079  
Package Body Thickness  
Ball (Lead) Width  
Package Body Length  
Package Body Width  
Pitch  
Ball (Lead) Count  
Seating Plane Coplanarity  
Corner to Ball Distance Along E  
Corner to Ball Distance Along D  
0.860  
0.375  
11.00  
10.00  
0.650  
165  
0.0339  
0.0148  
0.4331  
0.3937  
0.0256  
165  
0.325  
10.90  
9.90  
0.425  
11.10  
10.10  
0.0128  
0.4291  
0.3898  
0.0167  
0.4370  
0.3976  
0.100  
1.525  
1.700  
0.0039  
0.0600  
0.0669  
1.325  
1.500  
1.425  
1.600  
0.0522  
0.0591  
0.0561  
0.0630  
Datasheet  
18  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 6: Mechanical Specifications: x16C (107-ball) package (8x10x1.0 mm)  
S1  
Pin  
1
Corner  
1
2
3
4
5
6
7
8
9
10  
S2  
A
B
C
D
E
F
D
G
H
J
K
L
e
M
b
E
SCS  
Top Vi ewP- Bal l Si de  
Down  
A2  
A1  
A
Y
Note: Drawing not to scale.  
Dimensions  
Package Height  
Ball Height  
Package Body Thickness  
Ball (Lead) Width  
Package Body Length  
Package Body Width  
Pitch  
Symbol  
Min  
Nom  
Max Notes  
1.0  
Min  
Nom  
Max  
0.0394  
A
A1  
A2  
b
D
E
0.200  
0.0079  
0.660  
0.375  
10.00  
8.00  
0.800  
107  
0.0260  
0.0148  
0.3937  
0.3150  
0.0315  
107  
0.325  
9.90  
7.90  
0.425  
10.10  
8.10  
0.0128  
0.3898  
0.3110  
0.0167  
0.3976  
0.3189  
e
N
Ball (Lead) Count  
Seating Plane Coplanarity  
Corner to Ball Distance Along E  
Corner to Ball Distance Along D  
Y
S1  
S2  
0.100  
0.900  
0.700  
0.0039  
0.0354  
0.0276  
0.700  
0.500  
0.800  
0.600  
0.0276  
0.0197  
0.0315  
0.0236  
April 2008  
309823-10  
Datasheet  
19  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 7: Mechanical Specifications: x16C (107-ball) package (8x10x1.2 mm)  
S1  
Pin  
1
Corner  
1
2
3
4
5
6
7
8
9
10  
S2  
A
B
C
D
E
F
D
G
H
J
K
L
e
M
b
E
SCS  
Top ViewP-Ball Side  
Down  
A2  
A1  
A
Y
Note: Drawing not to scale.  
Dimensions  
Package Height  
Ball Height  
Package Body Thickness  
Ball (Lead) Width  
Package Body Length  
Package Body Width  
Pitch  
Symbol  
Min  
Nom  
Max Notes  
1.2  
Min  
Nom  
Max  
0.0472  
A
A1  
A2  
b
D
E
0.200  
0.0079  
0.860  
0.375  
10.00  
8.00  
0.800  
107  
0.0339  
0.0148  
0.3937  
0.3150  
0.0315  
107  
0.325  
9.90  
7.90  
0.425  
10.10  
8.10  
0.0128  
0.3898  
0.3110  
0.0167  
0.3976  
0.3189  
e
N
Ball (Lead) Count  
Seating Plane Coplanarity  
Corner to Ball Distance Along E  
Corner to Ball Distance Along D  
Y
S1  
S2  
0.100  
0.900  
0.700  
0.0039  
0.0354  
0.0276  
0.700  
0.500  
0.800  
0.600  
0.0276  
0.0197  
0.0315  
0.0236  
Datasheet  
20  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 8: Mechanical Specifications: x16C (107-ball) package (8x11x1.2 mm)  
Pin 1  
Corner  
S1  
1
2
3
4
5
6
7
8
9
S2  
A
B
C
D
E
F
D
G
H
J
K
L
e
M
b
E
Top View- Ball Side Down  
A2  
A1  
A
Y
Note: Drawing not to scale.  
Millimeters  
Inches  
Dimensions  
Package Height  
Ball Height  
Package Body Thickness  
Ball (Lead) Width  
Package Body Length  
Package Body Width  
Pitch  
Symbol  
Min  
Nom  
Max Notes  
1.2  
Min  
Nom  
Max  
0.0472  
A
A1  
A2  
b
D
E
0.200  
0.0079  
0.860  
0.375  
11.00  
8.00  
0.800  
107  
0.0339  
0.0148  
0.4331  
0.3150  
0.0315  
107  
0.325  
10.90  
7.90  
0.425  
11.10  
8.10  
0.0128  
0.4291  
0.3110  
0.0167  
0.4370  
0.3189  
e
N
Ball (Lead) Count  
Seating Plane Coplanarity  
Corner to Ball Distance Along E  
Corner to Ball Distance Along D  
Y
S1  
S2  
0.100  
0.900  
1.200  
0.0039  
0.0354  
0.0472  
0.700  
1.000  
0.800  
1.100  
0.0276  
0.0394  
0.0315  
0.0433  
April 2008  
309823-10  
Datasheet  
21  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 9: Mechanical Specifications: x16C (107-ball) package (11x11x1.2 mm)  
Datasheet  
22  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
4.0  
Ballouts and Signal Descriptions  
This section provides ballout and signal description information for x16D (105-ball),  
x16C (107-ball), and x16 Split Bus (165-ball) packages, Non-Mux, AD-Mux, AA/D Mux  
interfaces.  
4.1  
Ballouts, x16D  
4.1.1  
x16D (105-Ball) Ballout, Non-Mux  
Figure 10: x16D (105-Ball) Electrical Ballout, Non-Mux  
Pin 1  
1
2
3
4
5
6
7
8
9
DU  
A4  
A6  
A7  
A19  
A23  
A24  
A25  
DU  
A
B
C
D
E
F
A
B
C
D
E
F
A2  
A1  
A3  
A5  
A17  
VSS  
A18  
F-DPD  
VSS  
A22  
VSS  
A26  
VSS  
N-ALE  
A10  
A9  
A16  
A15  
A14  
A13  
A12  
A11  
VSS  
VSS  
D-VCC  
ADV#  
N-CLE  
A0  
S-VCC  
WE#  
D-VCC  
D2-CS#  
F1-VCC  
F2-VCC  
D-VCC  
A21  
Depop  
(Index)  
F4-CE# /  
A27  
F-WP1#  
F-WP2#  
RFU  
Depop  
(RFUs)  
N-RE# /  
S-CS1#  
D1-CS#  
F2-CE#  
D-CAS# D-RAS#  
A20  
Depop  
(RFUs)  
G
H
J
F1-CE#  
F3-CE#  
VCCQ  
VSS  
D-BA0  
D-BA1  
F1-VCC  
VSS  
D-CKE  
D-WE#  
F2-VCC  
VSS  
F-RST#  
OE#  
A8  
G
H
J
N-WE# /  
S-CS2  
D-DM1 / D-DM0 /  
S-UB#  
N-RY/BY#  
F-VPP  
DQ2  
D-CLK#  
D-CLK  
F-CLK  
DQ7  
S-LB#  
VCCQ  
VSS  
VCCQ  
VSS  
VCCQ  
F-WAIT  
K
L
VSS  
DQ13  
DQ14  
K
L
DQ1  
DQ3  
DQ5  
DQ6  
DQ9  
DQ11  
DQ12  
DU  
DQ0  
D-LDQS  
DQ4  
DQ8  
DQ10  
D-UDQS  
DQ15  
DU  
M
M
1
2
3
4
5
6
7
8
9
Top View - Ball Side Down  
Active Balls  
De-Populated Balls  
Reserved for Future Use  
Do Not Use  
Legend:  
April 2008  
309823-10  
Datasheet  
23  
Numonyx™ StrataFlash® Cellular Memory (M18)  
4.1.2  
x16D (105-Ball) Ballout, AD-Mux  
Figure 11: x16D (105-Ball) Electrical Ballout, AD-Mux  
Pin 1  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
DU  
A4  
A6  
A7  
A19  
A23  
A24  
A25  
DU  
A
B
C
D
E
F
A2  
A1  
A3  
VSS  
A5  
A17  
VSS  
A18  
F-DPD  
VSS  
A22  
VSS  
A26  
VSS  
N-ALE  
A10  
A9  
A16  
A15  
A14  
A13  
A12  
A11  
VSS  
D-VCC  
ADV#  
N-CLE  
A0  
S-VCC  
WE#  
D-VCC  
D2-CS#  
F1-VCC  
F2-VCC  
D-VCC  
A21  
Depop  
(Index)  
F4-CE# /  
A27  
F-WP1#  
F-WP2#  
RFU  
Depop  
(RFUs)  
N-RE# /  
S-CS1#  
D1-CS# D-CAS# D-RAS#  
A20  
Depop  
(RFUs)  
G
H
J
F2-CE#  
F1-CE#  
F3-CE#  
VCCQ  
VSS  
D-BA0  
D-BA1  
F1-VCC  
VSS  
D-CKE  
D-WE#  
F2-VCC  
VSS  
F-RST#  
OE#  
A8  
G
H
J
N-WE# /  
S-CS2  
D-DM1 / D-DM0 /  
R-UB#  
N-RY/BY#  
F-VPP  
AD2  
D-CLK#  
D-CLK  
F-CLK  
AD7  
R-LB#  
VCCQ  
VSS  
VCCQ  
VSS  
VCCQ  
F-WAIT  
K
L
VSS  
AD13  
AD14  
K
L
AD1  
AD3  
AD5  
AD6  
AD9  
AD11  
AD12  
M
DU  
AD0  
D-LDQS  
AD4  
AD8  
AD10  
D-UDQS  
AD15  
DU  
M
1
2
3
4
5
6
7
8
9
Top View - Ball Side Down  
Active Balls  
De-Populated Balls  
Reserved for Future Use  
Do Not Use  
Legend:  
Datasheet  
24  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
4.1.3  
x16D Mux (105-Ball) Ballout, AA/D Mux  
Figure 12: x16D (105-Ball) Electrical Ballout, AA/D Mux  
Pin 1  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
DU  
A4  
A6  
A7  
RFU  
RFU  
RFU  
RFU  
DU  
A
B
C
D
E
F
A2  
A1  
A3  
A5  
RFU  
VSS  
RFU  
F-DPD  
VSS  
RFU  
VSS  
F-ADV2#  
VSS  
RFU  
A15  
A14  
A13  
A12  
A11  
VSS  
VSS  
D-VCC  
F-ADV#  
N-CLE  
A0  
S-VCC  
WE#  
D-VCC  
D2-CS#  
F-VCC  
F-VCC  
F4-CE#  
D-VCC  
RFU  
N-ALE  
A10  
Depop  
(Index)  
F-WP1#  
F-WP2#  
RFU  
Depop  
(RFU)  
S-CS1 /  
N-RE#  
D1-CS#  
F2-CE#  
D-CAS# D-RAS#  
RFU  
A9  
Depop  
(RFU)  
G
H
J
F1-CE#  
F3-CE#  
VCCQ  
VSS  
D-BA0  
D-BA1  
F-VCC  
VSS  
D-CKE  
D-WE#  
F-VCC  
VSS  
F-RST#  
OE#  
A8  
G
H
J
S-CS2 /  
N-WE#  
D-DM1 / D-DM0 /  
S-UB#  
N-RY/BY#  
F-VPP  
AD2  
D-CLK#  
D-CLK  
F-CLK  
AD7  
S-LB#  
VCCQ  
VSS  
VCCQ  
VSS  
VCCQ  
F-WAIT  
K
L
VSS  
AD13  
AD14  
K
L
AD1  
AD3  
AD5  
AD6  
AD9  
AD11  
AD12  
M
DU  
1
AD0  
2
D-LDQS  
3
AD4  
4
AD8  
5
AD10  
6
D-UDQS  
7
AD15  
8
DU  
9
M
Top View - Ball Side Down  
Active Balls  
De-Populated Balls  
Reserved for Future Use  
Do Not Use  
Legend:  
April 2008  
309823-10  
Datasheet  
25  
Numonyx™ StrataFlash® Cellular Memory (M18)  
4.2  
Signal Descriptions, x16D  
Table 7:  
Signal Descriptions, x16D Non-Mux/AD-Mux; x16D AA/D-Mux (Sheet 1 of 4)  
Symbol  
Type  
Signal Descriptions  
Notes  
Address and Data Signals, Non-Mux  
ADDRESS: Global device signals.  
Shared address inputs for all memory die during Read and Write operations.  
4-Gbit: AMAX = A27  
2-Gbit: AMAX = A26  
1-Gbit: AMAX = A25  
512-Mbit: AMAX = A24  
256-Mbit: AMAX = A23  
A[MAX: 0]  
Input  
1
128-Mbit: AMAX = A22  
A[12:0] are the row and A[9:0] are the column addresses for 512-Mbit LPSDRAM.  
A[12:0] are the row and A[8:0] are the column addresses for 256-Mbit LPSDRAM.  
A[11:0] are the row and A[8:0] are the column addresses for 128-Mbit LPSDRAM.  
Unused address inputs should be treated as RFU.  
DATA INPUT/OUTPUTS: Global device signals.  
DQ[15:0] are used to input commands and write-data during Write cycles, and to output read-  
data during Read cycles. During NAND accesses, DQ[7:0] are used to input commands, address-  
data, and write-data, and to output read-data.  
Input/  
Output  
DQ[15:0]  
F-ADV#  
Data signals are High-Z when the device is deselected or its output is disabled.  
FLASH ADDRESS VALID: Flash-specific signal; low-true input.  
During synchronous flash Read operations, the address is latched on the rising edge of F-ADV#,  
or on the first rising edge of F-CLK after F-ADV# goes low for devices that support up to 108  
MHz, or on the last rising edge of F-CLK after F-ADV# goes low for devices that support up to  
133 MHz.  
Input  
In an asynchronous flash Read operation, the address is latched on the rising edge of F-ADV# or  
continuously flows through while F-ADV# is low.  
Address and Data Signals, AD-Mux  
ADDRESS: Global device signals.  
Shared address inputs for all Flash and SRAM memory die during Read and Write operations.  
4-Gbit: AMAX = A27  
2-Gbit: AMAX = A26  
1-Gbit: AMAX = A25  
512-Mbit: AMAX = A24  
256-Mbit: AMAX = A23  
128-Mbit: AMAX = A22  
A[MAX:16]  
Input  
1
Unused address inputs should be treated as RFU.  
ADDRESS-DATA MULTIPLEXED INPUTS/ OUTPUTS: AD-Mux flash and SRAM lower address  
and data signals; LPSDRAM data signals.  
During AD-Mux flash and SRAM Write cycles, AD[15:0] are used to input the lower address  
followed by commands or write-data.  
During AD-Mux flash Read cycles, AD[15:0] are used to input the lower address followed by  
read-data output.  
Input /  
Output  
AD[15:0]  
A[15:0]  
During LPSDRAM accesses, AD[15:0] are used to input commands and write-data during Write  
cycles or to output read-data during Read cycles.  
During NAND accesses, AD[7:0] are used to input commands, address, or write-data, and to  
output read-data.  
AD[15:0] are High-Z when the flash or SRAM is deselected or its output is disabled.  
Input  
RFU, except for DRAM.  
Datasheet  
26  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 7:  
Signal Descriptions, x16D Non-Mux/AD-Mux; x16D AA/D-Mux (Sheet 2 of 4)  
Symbol  
Type  
Signal Descriptions  
Notes  
FLASH ADDRESS VALID: Flash-specific signal; low-true input.  
During synchronous flash Read operations, the address is latched on the rising edge of F-ADV#,  
or on the first rising edge of F-CLK after F-ADV# goes low for devices that support up to 108  
MHz, or on the last rising edge of F-CLK after F-ADV# goes low for devices that support up to  
133 MHz.  
F-ADV#  
Input  
In an asynchronous flash Read operation, the address is latched on the rising edge of F-ADV#.  
ADDRESS: Global device signals.  
Shared address inputs for all memory die during Read and Write operations.  
4-Gbit: AMAX = A27  
2-Gbit: AMAX = A26  
1-Gbit: AMAX = A25  
512-Mbit: AMAX = A24  
A[MAX: 0]  
Input  
1
256-Mbit: AMAX = A23  
128-Mbit: AMAX = A22  
A[12:0] are the row and A[9:0] are the column addresses for 512-Mbit LPSDRAM.  
A[12:0] are the row and A[8:0] are the column addresses for 256-Mbit LPSDRAM.  
A[11:0] are the row and A[8:0] are the column addresses for 128-Mbit LPSDRAM.  
Unused address inputs should be treated as RFU.  
ADDRESS-DATA MULTIPLEXED INPUTS/ OUTPUTS: AAD-Mux flash address and data;  
LPSDRAM data.  
During AAD-Mux flash Write cycles, AD[15:0] are used to input the upper address, lower  
address, and commands or write-data.  
During AAD-Mux flash Read cycles, AD[15:0] are used to input the upper address and lower  
address, and output read-data.  
During LPSDRAM accesses, AD[15:0] are used to input commands and write-data during Write  
cycles or to output read-data during Read cycles.  
Input /  
Output  
AD[15:0]  
During NAND accesses, AD[7:0] are used to input commands, address-data, or write-data, and  
to output read-data.  
AD[15:0] are High-Z when the device is deselected or its output is disabled.  
FLASH ADDRESS VALID: Flash-specific signal; low-true input.  
During a synchronous flash Read operation, the address is latched on the F-ADV# rising edge or  
the first F-CLK edge after F-ADV# low in devices that support up to 104 MHz, and on the last  
rising F-CLK edge after F-ADV# low in devices that support upto 133 MHz.  
F-ADV#  
During a synchronous flash Read operation, the address is latched on the rising edge of F-ADV#  
or the first active F-CLK edge whichever occurs first.  
In an asynchronous flash Read operation, the address is latched on the rising edge of F-ADV#.  
Input  
F-ADV2#  
During AAD-Mux flash accesses, the upper address is latched on the valid edge of F-CLK while  
F-ADV2# is low; the lower address is latched on the valid edge of F-CLK while F-ADV# is low.  
The upper address is always latched first, followed by the lower address.  
Control Signals  
FLASH CHIP ENABLE: Flash-specific signal; low-true input.  
When low, F-CE# selects the associated flash memory die. When high, F-CE# deselects the  
associated flash die. Flash die power is reduced to standby levels, and its data and F-WAIT  
outputs are placed in a High-Z state.  
F[4:1]-  
CE#  
F1-CE# is dedicated to flash die #1.  
F[4:2]-CE# are dedicated to flash die #4 through #2, respectively, if present. Otherwise,  
any unused flash chip enable should be treated as RFU.  
Input  
1
For NOR/NAND stacked device, F1-CE# selects NOR die #1, F2-CE# selects NOR die #2  
while F4-CE# selects NAND die #1 and NAND die #2 using virtual chip-select scheme, F3-  
CE# selects NAND die #3 if present.  
FLASH CLOCK: Flash-specific signal; rising active-edge input.  
F-CLK synchronizes the flash with the system clock during synchronous operations.  
F-CLK  
Input  
Input  
Input  
LPSDRAM CLOCK: LPSDRAM-specific signal; rising active-edge input.  
D-CLK synchronizes the LPSDRAM and DDR LPSDRAM with the system clock.  
D-CLK  
D-CLK#  
2
2
DDR LPSDRAM CLOCK: DDR LPSDRAM-specific signal; falling active-edge input.  
D-CLK# synchronizes the DDR LPSDRAM with the system clock.  
April 2008  
309823-10  
Datasheet  
27  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 7:  
Signal Descriptions, x16D Non-Mux/AD-Mux; x16D AA/D-Mux (Sheet 3 of 4)  
Symbol  
Type  
Signal Descriptions  
Notes  
OUTPUT ENABLE: Flash- and SRAM-specific signal; low-true input.  
When low, OE# enables the output drivers of the selected flash or SRAM die. When high, OE#  
disables the output drivers of the selected flash or SRAM die and places the output drivers in  
High-Z.  
OE#  
Input  
FLASH RESET: Flash-specific signal; low-true input.  
F-RST#  
Input  
When low, F-RST# resets internal operations and inhibits writes. When high, F-RST# enables  
normal operation.  
FLASH WAIT: Flash -specific signal; configurable-true output.  
F-WAIT  
WE#  
Output  
Input  
Input  
When asserted, F-WAIT indicates invalid output data. F-WAIT is driven whenever F-CE# and  
OE# are low. F-WAIT is High-Z whenever F-CE# or OE# is high.  
WRITE ENABLE: Flash- and SRAM-specific signal; low-true input.  
When low, WE# enables Write operations for the enabled flash or SRAM die.  
LPSDRAM WRITE ENABLE: LPSDRAM-specific signal; low-true input.  
D-WE#, together with A[MAX:0], D-BA[1:0], D-CKE, D-CS#, D-CAS#, and D-RAS#, define the  
LPSDRAM command or operation. D-WE# is sampled on the rising edge of D-CLK.  
D-WE#  
2
FLASH WRITE PROTECT: Flash-specific signals; low-true inputs.  
When low, F-WP# enables the Lock-Down mechanism. When high, F-WP# overrides the Lock-  
Down function, enabling locked-down blocks to be unlocked with the Unlock command.  
F-  
Input  
WP[2:1]#  
F-WP1# is dedicated to flash die #1.  
F-WP2# is common to all other flash dies, if present. Otherwise it is RFU.  
For NOR/NAND stacked device, F-WP1# selects all NOR dies; F-WP2# selects all NAND dies.  
FLASH DEEP POWER-DOWN: Flash-specific signal; configurable-true input.  
F-DPD  
N-CLE  
N-ALE  
Input  
Input  
Input  
When enabled in the ECR, F-DPD is used to enter and exit Deep Power-Down mode.  
NAND COMMAND LATCH ENABLE: NAND-specific signal; high-true input.  
When high, N-CLE enables commands to be latched on the rising edge of N-WE#.  
2
2
NAND ADDRESS LATCH ENABLE: NAND-specific signal; high-true input.  
When high, N-ALE enables addresses to be latched on the rising edge of N-WE#.  
NAND READ ENABLE: NAND-specific signal; low-true input.  
N-RE#  
Input  
2, 4  
When low, N-RE# enables the output drivers of the selected NAND die. When high, N-RE#  
disables the output drivers of the selected NAND die and places the output drivers in High-Z.  
NAND READY/BUSY: NAND-specific signal; low-true output.  
N-RY/BY#  
N-WE#  
Output  
Input  
Input  
Input  
Input  
2
2, 5  
2
When low, N-RY/BY# indicates the NAND is busy performing a read, program, or erase  
operation. When high, N-RY/BY# indicates the NAND device is ready.  
NAND WRITE ENABLE: NAND-specific signal; low-true input.  
When low, N-WE# enables Write operations for the enabled NAND die.  
LPSDRAM CLOCK ENABLE: LPSDRAM-specific signal; high-true input.  
D-CKE  
When high, D-CKE indicates that the next D-CLK edge is valid. When low, D-CKE indicates that  
the next D-CLK edge is invalid and the selected LPSDRAM die is suspended.  
LPSDRAM BANK SELECT: LPSDRAM-specific input signals.  
D-BA[1:0] selects one of four banks in the LPSDRAM die.  
D-BA[1:0]  
D-RAS#  
2
LPSDRAM ROW ADDRESS STROBE: LPSDRAM-specific signal; low-true input.  
2
D-RAS#, together with A[MAX:0], D-BA[1:0], D-CKE, D-CS#, D-CAS#, and D-WE#, define the  
LPSDRAM command or operation. D-RAS# is sampled on the rising edge of D-CLK.  
LPSDRAM COLUMN ADDRESS STROBE: LPSDRAM-specific signal; low-true input.  
D-CAS#  
Input  
Input  
2
2
D-CAS#, together with A[MAX:0], D-BA[1:0], D-CKE, D-CS#, D-RAS#, and D-WE#, define the  
LPSDRAM command or operation. D-CAS# is sampled on the rising edge of D-CLK.  
LPSDRAM CHIP SELECT: LPSDRAM-specific signal; low-true input.  
When low, D-CS# selects the associated LPSDRAM memory die and starts the command input  
cycle. When D-CS# is high, commands are ignored but operations continue.  
D[2:1]-  
CS#  
D-CS#, together with A[MAX:0], D-BA[1:0], D-CKE, D-RAS#, D-CAS#, and D-WE#, define  
the LPSDRAM command or operation. D-CS# is sampled on the rising edge of D-CLK.  
D[2:1]-CS# are dedicated to LPSDRAM die #2 and die #1, respectively, if present.  
Otherwise, any unused LPSDRAM chip selects should be treated as RFU.  
Datasheet  
28  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 7:  
Signal Descriptions, x16D Non-Mux/AD-Mux; x16D AA/D-Mux (Sheet 4 of 4)  
Symbol  
Type  
Signal Descriptions  
Notes  
LPSDRAM DATA MASK: LPSDRAM-specific signal; high-true input.  
When high, D-DM[1:0] controls masking of input data during writes and output data during  
reads.  
D-DM[1:0]  
Input  
2, 3  
D-DM1 corresponds to the data on DQ[15:8].  
D-DM0 corresponds to the data on DQ[7:0].  
LPSDRAM UPPER/LOWER DATA STROBE: DDR LPSDRAM-specific input/output signals.  
D-UDQS and D-LDQS provide as output the read-data strobes, and as input the write-data  
strobes.  
D-UDQS  
D-LDQS  
Input/  
Output  
2
D-UDQS corresponds to the data on DQ[15:8].  
D-LDQS corresponds to the data on DQ[7:0].  
SRAM CHIP SELECTS: SRAM-specific signals; S-CS1# low-true input, S-CS2 high-true input.  
When both are asserted, S-CS1# and S-CS2 select the SRAM die. When either is deasserted, the  
SRAM die is deselected and its power is reduced to standby levels.  
S-CS1#  
S-CS2  
Input  
Input  
2, 4, 5  
2, 3  
SRAM UPPER/LOWER BYTE ENABLES: SRAM-specific signals; low-true inputs.  
S-UB#  
S-LB#  
When low, S-UB# enables DQ[15:8] and S-LB# enables DQ[7:0] during SRAM Read and Write  
cycles. When high, S-UB# masks DQ[15:8] and S-LB# masks DQ[7:0].  
Power Signals  
FLASH PROGRAM/ERASE VOLTAGE: Flash specific.  
F-VPP supplies program or erase power to the flash die.  
F-VPP  
Power  
FLASH CORE POWER SUPPLY: Flash specific.  
F1-VCC supplies the core power to the NOR flash die.  
F1-VCC  
Power  
Power  
FLASH CORE POWER SUPPLY: Flash specific.  
F2-VCC supplies the core power to either 1) the NOR flash die in stack packages with multiple  
NOR flash dies, or 2) NAND flash die in stack packages with NOR-NAND flash dies.  
F2-VCC  
6
I/O POWER SUPPLY: Global device I/O power.  
VCCQ  
D-VCC  
S-VCC  
VSS  
Power  
Power  
Power  
VCCQ supplies the device input/output driver voltage.  
LPSDRAM CORE POWER SUPPLY: LPSDRAM specific.  
D-VCC supplies the core power to the LPSDRAM die.  
2
2
SRAM POWER SUPPLY: SRAM specific.  
S-VCC supplies the core power to the SRAM die.  
DEVICE GROUND: Global ground reference for all signals and power supplies.  
Groun  
d
Connect all VSS balls to system ground. Do not float any VSS connections.  
DO NOT USE:  
DU  
Ball should not be connected to any power supplies, signals, or other balls. Ball can be left  
floating.  
RESERVED FOR FUTURE USE:  
RFU  
Reserved by Numonyx for future device functionality/enhancement. Ball must be left floating.  
Notes:  
1.  
F4-CE# and A27 share the same package ball at location E6. Only one signal function is available, depending on the  
stacked device combination.  
2.  
3.  
Only available on stacked device combinations with NAND, SRAM, and/or LPSDRAM die; otherwise, treated as RFU.  
D-DM[1:0] and S-UB#/S-LB# share the same package balls at locations H8 and H9, respectively. Only one signal function  
for each ball location is available, depending on the stacked device combination.  
S-CS1# and N-RE# share the same package ball at location F6. Only one signal function is available, depending on the  
stacked device combination.  
S-CS2 and N-WE# share the same package ball at location H2. Only one signal function is available, depending on the  
stacked device combination.  
4.  
5.  
6.  
In stack packages with only one NOR flash die, this signal can be left floating.  
4.3  
Ballouts, x16C  
4.3.1  
x16C (107-Ball) Ballout, Non-Mux  
April 2008  
309823-10  
Datasheet  
29  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 13: x16C (107-Ball) Electrical Ballout, Non-Mux  
Pin 1  
1
2
DU  
A4  
3
4
A27  
5
6
7
8
9
DU  
A
B
C
D
E
F
N-CLE  
A18  
A26  
P-VCC  
F1-VCC  
S-CS2  
R-WE#  
ADV#  
F-WE#  
DQ5  
F-DPD  
F2-VCC  
CLK  
VSS  
A21  
A
B
C
D
E
F
A19  
VSS  
A11  
A12  
A13  
A15  
A16  
F2-CE#  
DU  
N-ALE  
VSS  
A5  
R-LB#  
A17  
A23  
VSS  
A22  
A3  
A24  
F-VPP  
F-WP1#  
F-RST#  
DQ10  
DQ3  
P1-CS#  
A20  
A9  
VSS  
A2  
A7  
A25  
A10  
F-WP2#  
VCCQ  
VSS  
A1  
A6  
R-UB#  
DQ2  
DQ1  
DQ9  
F3-CE#  
VCCQ  
A8  
A14  
A0  
DQ8  
DQ13  
DQ14  
DQ6  
WAIT  
DQ7  
DQ15  
VCCQ  
VSS  
G
H
J
G
H
J
F2-OE# /  
N-RE#  
R-OE#  
DQ0  
DQ12  
DQ4  
S-CS1# /  
N-WE#  
RFU  
F1-OE#  
P2-CS#  
VSS  
DQ11  
S-VCC  
F1-VCC  
VCCQ  
P-Mode# /  
P-CRE  
F4-CE#  
RFU  
F1-CE#  
VSS  
P-VCC  
VSS  
F2-VCC  
VSS  
K
L
K
L
VSS  
M
DU  
N-RY/BY#  
RFU  
RFU  
RFU  
RFU  
RFU  
RFU  
DU  
M
1
2
3
4
5
6
7
8
9
Top View - Ball Side Down  
Active Balls  
Reserved for Future Use  
Do Not Use  
Legend:  
Datasheet  
30  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
4.3.2  
x16C (107-Ball) Ballout, AD-Mux  
Figure 14: x16C (107-Ball) Electrical Ballout, AD-Mux  
Pin 1  
1
2
3
N-CLE  
A18  
4
A27  
5
6
7
8
9
DU  
A
B
C
D
E
F
DU  
A26  
P-VCC  
F1-VCC  
S-CS2  
R-WE#  
ADV#  
F-WE#  
AD5  
F-DPD  
F2-VCC  
CLK  
VSS  
A21  
A
B
C
D
E
F
DU  
N-ALE  
VSS  
RFU  
RFU  
RFU  
RFU  
RFU  
RFU  
R-OE#  
A19  
VSS  
RFU  
RFU  
RFU  
RFU  
A16  
R-LB#  
A17  
A23  
VSS  
A22  
A24  
F-VPP  
F-WP1#  
F-RST#  
AD10  
AD3  
P1-CS#  
A20  
RFU  
RFU  
RFU  
WAIT  
AD7  
AD15  
VCCQ  
VSS  
RFU  
8
VSS  
RFU  
RFU  
AD8  
A25  
F-WP2#  
VCCQ  
VSS  
R-UB#  
AD2  
AD1  
AD9  
F3-CE#  
VCCQ  
RFU  
4
RFU  
G
H
J
AD13  
AD14  
AD6  
F2-CE#  
G
H
J
F2-OE# /  
N-RE#  
AD0  
AD12  
AD4  
S-CS1# /  
N-WE#  
RFU  
F1-OE#  
P2-CS#  
VSS  
AD11  
S-VCC  
F1-VCC  
RFU  
VCCQ  
P-Mode# /  
P-CRE  
K
L
F4-CE#  
RFU  
F1-CE#  
VSS  
P-VCC  
VSS  
F2-VCC  
VSS  
K
L
VSS  
DU  
9
M
DU  
N-RY/BY#  
2
RFU  
3
RFU  
RFU  
M
1
5
6
7
Top View - Ball Side Down  
Active Balls  
Reserved for Future Use  
Do Not Use  
Legend:  
April 2008  
309823-10  
Datasheet  
31  
Numonyx™ StrataFlash® Cellular Memory (M18)  
4.3.3  
x16C (107-Ball) Ballout, AA/D-Mux  
Figure 15: x16C (107-Ball) Electrical Ballout, AA/D-Mux  
Pin 1  
1
2
3
4
RFU  
RFU  
RFU  
RFU  
RFU  
R-UB#  
AD2  
5
6
7
8
9
DU  
A
B
C
D
E
F
DU  
N-CLE  
RFU  
RFU  
P-VCC  
F1-VCC  
S-CS2  
R-WE#  
ADV#  
F-WE#  
AD5  
F-DPD  
F2-VCC  
CLK  
VSS  
RFU  
RFU  
RFU  
RFU  
RFU  
WAIT  
AD7  
AD15  
VCCQ  
VSS  
RFU  
8
A
B
C
D
E
F
DU  
N-ALE  
VSS  
RFU  
RFU  
RFU  
RFU  
RFU  
RFU  
R-OE#  
VSS  
RFU  
RFU  
RFU  
RFU  
RFU  
F2-CE#  
R-LB#  
RFU  
VSS  
F-VPP  
F-WP1#  
F-RST#  
AD10  
AD3  
P1-CS#  
RFU  
VSS  
RFU  
F-WP2#  
VCCQ  
VSS  
RFU  
RFU  
G
H
J
AD8  
AD13  
AD14  
AD6  
G
H
J
F2-OE# /  
N-RE#  
AD0  
AD1  
AD12  
AD4  
S-CS1# /  
N-WE#  
RFU  
F1-OE#  
P2-CS#  
VSS  
AD9  
AD11  
S-VCC  
F1-VCC  
RFU  
VCCQ  
P-Mode# /  
P-CRE  
K
L
F4-CE#  
RFU  
F1-CE#  
VSS  
F3-CE#  
VCCQ  
RFU  
4
P-VCC  
VSS  
F2-VCC  
VSS  
K
L
VSS  
DU  
9
M
DU  
N-RY/BY#  
2
RFU  
F-ADV2#  
6
RFU  
M
1
3
5
7
Top View - Ball Side Down  
Active Balls  
Reserved for Future Use  
Do Not Use  
Legend:  
Datasheet  
32  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
4.4  
Signal Descriptions x16C  
Table 8:  
Signal Descriptions for x16C / x16C AD-Mux / x16C AA/D-Mux Ballout (Sheet 1  
of 3)  
Symbol  
Type  
Signal Descriptions  
Notes  
Address and Data Signals, Non-Mux  
ADDRESS: Global device signals.  
Shared address inputs for all memory die during Read and Write operations.  
• 4-Gbit: AMAX = A27• 128-Mbit: AMAX = A22  
• 2-Gbit: AMAX = A26• 64-Mbit: AMAX = A21  
A[MAX:0]  
Input  
• 1-Gbit: AMAX = A25• 32-Mbit: AMAX = A20  
• 512-Mbit: AMAX = A24• 16-Mbit: AMAX = A19  
• 256-Mbit: AMAX = A23• 8-Mbit: AMAX = A18  
Unused address inputs should be treated as RFU.  
DATA INPUT/OUTPUTS: Global device signals.  
Inputs data and commands during Write cycles, outputs data during Read cycles. Data signals  
are High-Z when the device is deselected or its output is disabled.  
Input /  
Output  
DQ[15:0]  
ADV#  
ADDRESS VALID: Flash- and Synchronous PSRAM-specific signal; low-true input.  
During synchronous flash Read operations, the address is latched on the rising edge of F-ADV#,  
or on the first rising edge of F-CLK after F-ADV# goes low for devices that support up to 108  
MHz, or on the last rising edge of F-CLK after F-ADV# goes low for devices that support up to  
133 MHz.  
Input  
In an asynchronous flash Read operation, the address is latched on the rising edge of ADV# or  
continuously flows through while ADV# is low.  
Address and Data Signals, AD-Mux  
ADDRESS: Global device signals.  
Shared address inputs for all memory die during Read and Write operations.  
• 4-Gbit: AMAX = A27• 128-Mbit: AMAX = A22  
• 2-Gbit: AMAX = A26• 64-Mbit: AMAX = A21  
A[MAX:16]  
Input  
• 1-Gbit: AMAX = A25• 32-Mbit: AMAX = A20  
• 512-Mbit: AMAX = A24• 16-Mbit: AMAX = A19  
• 256-Mbit: AMAX = A23• 8-Mbit: AMAX = A18  
Unused address inputs should be treated as RFU.  
ADDRESS-DATA MULTIPLEXED INPUTS/ OUTPUTS: Global device signals.  
During AD-Mux Write cycles, AD[15:0] are used to input the lower address followed by  
commands or data. During AD-Mux Read cycles, AD[15:0] are used to input the lower address  
followed by read-data output.  
Input /  
Output  
AD[15:0]  
During NAND accesses, AD[7:0] is used to input commands, address-data, or write-data, and  
output read-data.  
AD[15:0] are High-Z when the device is deselected or its output is disabled.  
ADDRESS VALID: Flash- and Synchronous PSRAM-specific signal; low-true input.  
During synchronous flash Read operations, the address is latched on the rising edge of F-ADV#,  
or on the first rising edge of F-CLK after F-ADV# goes low for devices that support up to 108  
MHz, or on the last rising edge of F-CLK after F-ADV# goes low for devices that support up to  
133 MHz.  
ADV#  
Input  
In an asynchronous flash Read operation, the address is latched on the rising edge of ADV#.  
Address and Data Signals, AAD-Mux  
ADDRESS-DATA MULTIPLEXED INPUTS/ OUTPUTS: Global device signals.  
During AAD-Mux flash Write cycles, AD[15:0] are used to input the upper address, lower  
address, and commands or data. During AAD-Mux flash Read cycles, AD[15:0] are used to  
input the upper address and lower address, and output read-data.  
During NAND accesses, AD[7:0] is used to input commands, address-data, or write-data, and  
output read-data.  
Input /  
Output  
AD[15:0]  
AD[15:0] are High-Z when the device is deselected or its output is disabled.  
April 2008  
309823-10  
Datasheet  
33  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 8:  
Signal Descriptions for x16C / x16C AD-Mux / x16C AA/D-Mux Ballout (Sheet 2  
of 3)  
Symbol  
Type  
Signal Descriptions  
Notes  
FLASH ADDRESS VALID: Flash-specific signal; low-true input.  
F-ADV2#  
ADV#  
During AAD-Mux flash accesses, the upper address is latched on the valid edge of CLK while  
F-ADV2# is low; the lower address is latched on the valid edge of CLK while ADV# is low.  
Input  
The upper address is always latched first, followed by the lower address.  
Control Signals  
FLASH CHIP ENABLE: Flash-specific signal; low-true input.  
When low, F-CE# selects the associated flash memory die. When high, F-CE# deselects the  
associated flash die. Flash die power is reduced to standby levels, and its data and F-WAIT  
outputs are placed in a High-Z state.  
F1-CE# is dedicated to flash die #1.  
F[4:1]-CE#  
Input  
F[4:2]-CE# are dedicated to flash die #4 through #2, respectively, if present. Otherwise,  
any unused flash chip enable should be treated as RFU.  
For NOR/NAND stacked device, F1-CE# selects NOR die #1, F2-CE# selects NOR die #2  
while F4-CE# selects NAND die #1 and NAND die #2 using virtual chip-select scheme, F3-  
CE# selects NAND die #3 if present.  
CLOCK: Flash- and Synchronous PSRAM-specific input signal.  
CLK  
Input  
Input  
CLK synchronizes the flash and/or synchronous PSRAM with the system clock during  
synchronous operations.  
FLASH OUTPUT ENABLE: Flash-specific signal; low-true input.  
When low, F-OE# enables the output drivers of the selected flash die. When high, F-OE#  
disables the output drivers of the selected flash die and places the output drivers in High-Z.  
F[2:1]-OE#  
2
1
For NOR only stacked device, F[2:1]-OE# are common to all NOR dies in the device.  
For NOR/NAND stacked device, F1-OE# enables all NOR dies, F2-OE# selects all NAND dies  
if present.  
RAM OUTPUT ENABLE: PSRAM- and SRAM-specific signal; low-true input.  
When low, R-OE# enables the output drivers of the selected memory die. When high, R-OE#  
disables the output drivers of the selected memory die and places the output drivers in High-Z.  
R-OE#  
Input  
Input  
FLASH RESET: Flash-specific signal; low-true input.  
When low, F-RST# resets internal operations and inhibits writes. When high, F-RST# enables  
normal operation.  
F-RST#  
WAIT: Flash -and Synchronous PSRAM-specific signal; configurable true-level output.  
When asserted, WAIT indicates invalid output data. When deasserted, WAIT indicates valid  
output data.  
WAIT  
Output  
WAIT is driven whenever the flash or the synchronous PSRAM is selected and its output  
enable is low.  
WAIT is High-Z whenever flash or the synchronous PSRAM is deselected, or its output  
enable is high.  
FLASH WRITE ENABLE: Flash-specific signal; low-true input.  
F-WE#  
R-WE#  
Input  
Input  
When low, F-WE# enables Write operations for the enabled flash die. Address and data are  
latched on the rising edge of F-WE#.  
RAM WRITE ENABLE: PSRAM- and SRAM-specific signal; low-true input.  
When low, R-WE# enables Write operations for the selected memory die. Data is latched on the  
rising edge of R-WE#.  
1
FLASH WRITE PROTECT: Flash-specific signals; low-true inputs.  
When low, F-WP# enables the Lock-Down mechanism. When high, F-WP# overrides the Lock-  
Down function, enabling locked-down blocks to be unlocked with the Unlock command.  
F-WP[2:1]#  
Input  
F-WP1# is dedicated to flash die #1.  
F-WP2# is common to all other flash dies, if present. Otherwise it is RFU.  
For NOR/NAND stacked device, F-WP1# selects all NOR dies, while F-WP2# selects all  
NAND dies.  
FLASH DEEP POWER-DOWN: Flash-specific signal; configurable-true input.  
When enabled in the ECR, F-DPD is used to enter and exit Deep Power-Down mode.  
F-DPD  
N-CLE  
Input  
Input  
NAND COMMAND LATCH ENABLE: NAND-specific signal; high-true input.  
When high, N-CLE enables commands to be latched on the rising edge of N-WE#.  
1
Datasheet  
34  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 8:  
Signal Descriptions for x16C / x16C AD-Mux / x16C AA/D-Mux Ballout (Sheet 3  
of 3)  
Symbol  
Type  
Signal Descriptions  
Notes  
NAND ADDRESS LATCH ENABLE: NAND-specific signal; high-true input.  
When high, N-ALE enables addresses to be latched on the rising edge of N-WE#.  
N-ALE  
Input  
Input  
1
NAND READ ENABLE: NAND-specific signal; low-true input.  
N-RE#  
1, 2  
When low, N-RE# enables the output drivers of the selected NAND die. When high, N-RE#  
disables the output drivers of the selected NAND die and places the output drivers in High-Z.  
NAND READY/BUSY: NAND-specific signal; low-true output.  
N-RY/BY#  
N-WE#  
P-CRE  
Output  
Input  
Input  
1
When low, N-RY/BY# indicates the NAND is busy performing a Read, Program, or Erase  
operation. When high, N-RY/BY# indicates the NAND device is ready.  
NAND WRITE ENABLE: NAND-specific signal; low-true input.  
When low, N-WE# enables Write operations for the enabled NAND die.  
1, 4  
1, 3  
PSRAM CONTROL REGISTER ENABLE: Synchronous PSRAM-specific signal; high-true input.  
When high, P-CRE enables access to the Refresh Control Register (P-RCR) or Bus Control  
Register (P-BCR). When low, P-CRE enables normal Read or Write operations.  
PSRAM MODE#: Asynchronous only PSRAM-specific signal; low-true input.  
P-MODE#  
Input  
Input  
1, 3  
When low, P-MODE# enables access to the configuration register, and to enter or exit Low-  
Power mode. When high, P-MODE# enables normal Read or Write operations.  
PSRAM CHIP SELECT: PSRAM-specific signal; low-true input.  
When low, P-CS# selects the associated PSRAM memory die. When high, P-CS# deselects the  
associated PSRAM die. PSRAM die power is reduced to standby levels, and its data and WAIT  
outputs are placed in a High-Z state.  
P[2:1]-CS#  
1
P1-CS# is dedicated to PSRAM die #1.  
P2-CS# IS dedicated to PSRAM die #2. Otherwise, any unused PSRAM chip select should be  
treated as RFU.  
SRAM CHIP SELECTS: SRAM-specific signals; S-CS1# low-true input, S-CS2 high-true input.  
When both S-CS1# and S-CS2 are asserted, the SRAM die is selected. When either S-CS1# or  
S-CS2 is deasserted, the SRAM die is deselected.  
S-CS1#  
S-CS2  
Input  
Input  
1, 4  
1
RAM UPPER/LOWER BYTE ENABLES: PSRAM- and SRAM-specific signals; low-true inputs.  
When low, R-UB# enables DQ[15:8] and R-LB# enables DQ[7:0] during PSRAM or SRAM Read  
and Write cycles. When high, R-UB# masks DQ[15:8] and R-LB# masks DQ[7:0].  
R-UB#  
R-LB#  
Power Signals  
FLASH PROGRAM/ERASE VOLTAGE: Flash specific.  
F-VPP  
Power  
F-VPP supplies program or erase power to the flash die.  
FLASH CORE POWER SUPPLY: Flash specific.  
F[2:1]-VCC supplies the core power to the flash die.  
For NOR/NAND stacked device, F1-VCC is dedicated for all NOR dies, F2-VCC is dedicated for all  
NAND dies.  
F[2:1]-VCC  
Power  
5
I/O POWER SUPPLY: Global device I/O power.  
VCCQ supplies the device input/output driver voltage.  
VCCQ  
P-VCC  
S-VCC  
VSS  
Power  
Power  
Power  
PSRAM CORE POWER SUPPLY: PSRAM specific.  
1
1
P-VCC supplies the core power to the PSRAM die.  
SRAM POWER SUPPLY: SRAM specific.  
S-VCC supplies the core power to the SRAM die.  
DEVICE GROUND: Global ground reference for all signals and power supplies.  
Connect all VSS balls to system ground. Do not float any VSS connections.  
Groun  
d
DO NOT USE:  
DU  
Ball should not be connected to any power supplies, signals, or other balls. Ball can be left  
floating.  
RESERVED for FUTURE USE:  
Reserved by Numonyx for future device functionality and enhancement. Ball must be left  
floating.  
RFU  
April 2008  
309823-10  
Datasheet  
35  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Notes:  
1.  
2.  
Only available on stacked device combinations with NAND, SRAM, and/or LPSDRAM die. Otherwise treated as RFU.  
F2-OE# and N-RE# share the same package ball at location H9. Only one signal function is available, depending on the  
stacked device combination.  
3.  
4.  
5.  
P-CRE and P-MODE# share the same package ball at location K9. Only one signal function is available, depending on the  
stacked device combination.  
S-CS1# and N-WE# share the same package ball at location J2. Only one signal function is available, depending on the  
stacked device combination.  
The F2-VCC signal applies to a NAND flash die if one exists; if not, the F2-VCC signal applies to the NOR flash die.  
Datasheet  
36  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
4.5  
Ballouts, x16 Split Bus  
4.5.1  
x16 Split Bus (165-Ball) Ballout, Non-Mux  
Figure 16: x16 Split Bus (165 Active Ball) Electrical Ballout, Non-Mux  
Pin 1  
1
2
3
4
5
6
7
8
9
10  
11  
12  
B: D-BA0  
B: D-A11  
B: D-A4  
A
B
C
D
E
F
DU  
B: D-A2  
B: D-A0  
B: D-A12 B: D-A8 B: D-A6  
B: D-A13 B: D-A9 B: D-A7  
B: D-CKE B: D-A14 A: VSS  
DU  
A
B
C
D
E
F
B: D-BA1  
B: D-WE#  
B: D-A5  
RFU  
A: F-A15  
B: D-A3  
B: D-A1  
RFU  
DU  
DU  
A: F3-  
CE# /  
N2-CE#  
A: F4-  
CE# /  
N1-CE#  
A: F-D7 / A: F-D14 /  
N-ADQ7  
A: F-A13 A: F-A14 A: F-A16 A: VSS  
N-ADQ14  
B: D1-  
CE#  
B: D2-  
CE#  
B: D-  
CLK#  
A: F-D15 /  
N-ADQ15 N-ADQ6  
A: F-D6 /  
B: D-VCC  
RFU  
A: VSS  
A: VCCQ  
A: VCCQ  
A: F-A22 A: F2-CE# B: D-A10  
A: F-A21 A: N-R/B# A: F-DPD  
B: D-CLK  
A: F-A12  
A: F-A11  
B: D-  
RAS#  
B: D-  
CAS#  
A: F-  
WAIT  
A: F-D13 /  
RFU  
RFU  
N-ADQ13  
A: F2-  
VCC /  
N-VCC  
Depop  
(Index)  
Depop  
(RFU)  
Depop  
(RFU)  
A: F-D5 /  
A: VSS  
A: F-A10 A: F-A20 A: F-WE# A: VSS  
A: F-  
A: VSS  
RFU  
N-ADQ5  
Depop  
(RFU)  
A: F-  
ADV#  
Depop  
(RFU)  
A: F-D12 / A: F-D4 /  
N-ADQ12  
RFU  
WP2# /  
N-WP#  
A: F-A26 A: F-WP1#  
B: D-VCC  
G
H
J
A: F-A9  
G
H
J
N-ADQ4  
Depop  
(RFU)  
Depop  
(RFU)  
A: F1-  
VCC  
A: F1-CE#  
RFU  
A: F-A8 A: F-A24 A: F-A25 A: VSS  
A: VSS  
RFU  
RFU  
A: F-CLK  
A: F2-  
VCC /  
Depop  
(RFU)  
Depop  
(RFU)  
A: F-D10 /  
N-ADQ10  
A: F-D11 /  
N-ADQ11  
A: F-OE#  
A: VCCQ  
A: VCCQ  
A: VSS  
RFU  
A: F-A19 A: F-A23 A: N-CLE  
RFU  
RFU  
A: F-A18  
N-VCC  
Depop  
(RFU)  
Depop  
(RFU)  
A: F-D3 /  
N-ADQ3  
B: D-VCC  
K
L
A: F-A7 A: F-A17  
RFU  
A: VSS  
A: VSS  
A: VSS  
RFU  
K
L
A: F-  
RST#  
A: F-D2 /  
N-ADQ2  
A: F1-VCC  
B: D-DM0  
B: D-VSS  
B: D-D5  
A: N-RE#  
A: F-A6 A: N-ALE A: N-WE#  
B: D-  
RFU  
A: F-VPP  
A: F-A5  
A: F-A3  
A: F-A1  
DU  
B: D-  
VDDQ  
B: D-  
VDDQ  
B: D-  
DM1  
B: D-  
VDDQ  
A: F-D1 / A: F-D9 /  
N-ADQ1  
M
N
P
R
A: F-A4  
RFU  
M
N
P
R
VDDQ  
N-ADQ9  
B: D-  
DQS0  
B: D-  
DQS1  
A: F-D8 /  
N-ADQ8 N-ADQ0  
A: F-D0 /  
A: VSS  
B: D-D7  
A: F-A2 B: D-VSS  
B: D-VSS  
B: D-VSS  
B: D-D14  
A: F-A0  
B: D-D1  
B: D-D3  
B: D-D8 B: D-D10 B: D-D12  
B: D-D9 B: D-D11 B: D-D13  
RFU  
DU  
B: D-D4  
5
B: D-D6  
6
B: D-D15  
10  
DU  
2
B: D-D0  
3
B: D-D2  
4
DU  
11  
1
7
8
9
12  
Top View- Ball Side Down  
B5173-01  
April 2008  
309823-10  
Datasheet  
37  
Numonyx™ StrataFlash® Cellular Memory (M18)  
4.6  
Signal Descriptions, x16 Split Bus  
Table 9:  
Signal Descriptions, x16 Split Bus, Non-Mux (Sheet 1 of 4)  
Symbol  
Type  
Signal Descriptions  
Notes  
Address and Data Signals, Non-Mux  
FLASH ADDRESS: Flash device signals.  
Dedicated address inputs for Flash memory die during read and write operations.  
2-Gbit: AMAX = A26  
1-Gbit: AMAX = A25  
512-Mbit: AMAX = A24  
256-Mbit: AMAX = A23  
128-Mbit: AMAX = A22  
F-A[MAX:0]  
Input  
Input  
Unused address inputs are RFU.  
LPSDRAM ADDRESS: LSPDRAM device signals.  
Dedicated address inputs for LPSDRAM memory die during read and write operations.  
A[12:0] are the row and A[9:0] are the column addresses for 512-Mbit LPSDRAM.  
A[12:0] are the row and A[8:0] are the column addresses for 256-Mbit LPSDRAM.  
A[11:0] are the row and A[8:0] are the column addresses for 128-Mbit LPSDRAM.  
D-A[MAX:0]  
Unused address inputs are RFU.  
FLASH DATA INPUT/OUTPUTS: Flash device signals.  
Inputs Flash data and commands during write cycles.  
Outputs data during read cycles.  
Data signals are High-Z when the device is deselected or its output is disabled.  
Input/  
Output  
F-DQ[15:0]  
D-DQ[15:0]  
LPSDRAM DATA INPUT/OUTPUTS: LPSDRAM device signals.  
Inputs LPSDRAM data and commands during write cycles.  
Outputs data during read cycles.  
Data signals are High-Z when the device is deselected or its output is disabled.  
Input/  
Output  
Address and Data Signals, A/D Mux  
ADDRESS: Flash device signals.  
Shared address inputs for all Flash memory die during Read and Write operations.  
2-Gbit: AMAX = A26  
1-Gbit: AMAX = A25  
512-Mbit: AMAX = A24  
256-Mbit: AMAX = A23  
128-Mbit: AMAX = A22  
F-A[MAX:16]  
Input  
Unused address inputs should be treated as RFU.  
ADDRESS-DATA MULTIPLEXED INPUTS/ OUTPUTS: AD-Mux flash lower address and data  
signals; LPSDRAM data signals.  
During AD-Mux flash Write cycles, ADQ[15:0] are used to input the lower address followed by  
commands or write-data.  
During AD-Mux flash Read cycles, ADQ[15:0] are used to input the lower address followed by  
read-data output.  
Input /  
Output  
F-ADQ[15:0]  
During LPSDRAM accesses, ADQ[15:0] are used to input commands and write-data during  
Write cycles or to output read-data during Read cycles.  
During NAND accesses, ADQ[7:0] are used to input commands, address, or write-data, and to  
output read-data.  
ADQ[15:0] are High-Z when the flash is deselected or its output is disabled.  
Control Signals  
Datasheet  
38  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 9:  
Signal Descriptions, x16 Split Bus, Non-Mux (Sheet 2 of 4)  
Symbol  
Type  
Signal Descriptions  
Notes  
FLASH ADDRESS VALID: Flash-specific signal; low-true input.  
During synchronous flash Read operations, the address is latched on the rising edge of F-  
ADV#, or on the first rising edge of F-CLK after F-ADV# goes low for devices that support up  
to 108 MHz, or on the last rising edge of F-CLK after F-ADV# goes low for devices that support  
up to 133 MHz.  
F-ADV#  
Input  
In an asynchronous flash Read operation, the address is latched on the rising edge of F-ADV#.  
FLASH CHIP ENABLE: Flash-specific signal; low-true input.  
When low, F-CE# selects the associated flash memory die.  
When high, F-CE# deselects the associated flash die. Flash die power is reduced to standby  
levels, and its data and F-WAIT outputs are placed in a High-Z state.  
F[4:1]-CE#  
Input  
F1-CE# is dedicated to flash die #1.  
F[4:2]-CE# are dedicated to flash die #4 through #2, respectively, if present. Otherwise,  
treat any unused flash chip enable as RFU.  
When NAND is used, F4-CE# is dedicated for NAND die 1 and NAND die 2. Otherwise, this  
is RFU.  
FLASH CLOCK: Flash-specific signal; configurable active-edge input.  
F-CLK synchronizes the flash memory with the system clock during synchronous operations.  
F-CLK  
Input  
Input  
Input  
LPSDRAM CLOCK: LPSDRAM-specific signal; rising active-edge input.  
D-CLK synchronizes the LPSDRAM and DDR LPSDRAM with the system clock.  
D-CLK  
D-CLK#  
1
1
DDR LPSDRAM CLOCK: DDR LPSDRAM-specific signal; falling active-edge input.  
D-CLK# synchronizes the DDR LPSDRAM with the system clock.  
FLASH OUTPUT ENABLE: Flash-specific signal; low-true input.  
When low, OE# enables the output drivers of the selected flash die.  
When high, OE# disables the output drivers of the selected flash die and places the  
output drivers in High-Z.  
F-OE#  
Input  
Input  
FLASH RESET: Flash-specific signal; low-true input.  
F-RST#  
F-WAIT  
When low, F-RST# resets internal operations and inhibits writes.  
When high, F-RST# enables normal operation.  
FLASH WAIT: Flash-specific signal; configurable-true output.  
When asserted, F-WAIT indicates invalid output data.  
Output  
F-WAIT is driven whenever F-CE# and OE# is low.  
F-WAIT is High-Z whenever F-CE# or OE# is high.  
FLASH WRITE ENABLE: Flash-specific signal; low-true input.  
F-WE#  
N-WE#  
Input  
Input  
When low, WE# enables write operations for the selected flash die.  
NAND WRITE ENABLE: NAND-specific signal; low-true input.  
When low, WE# enables write operations for the selected NAND die.  
1
1
LPSDRAM WRITE ENABLE: LPSDRAM-specific signal; low-true input.  
D-WE#, together with A[MAX:0], D-BA[1:0], D-CKE, D-CS#, D-CAS#, and D-RAS#, define  
the LPSDRAM command or operation. D-WE# is sampled on the rising edge of D-CLK.  
D-WE#  
Input  
FLASH WRITE PROTECT: Flash-specific signals; low-true inputs.  
When low, F-WP# enables the Lock-Down mechanism.  
When high, F-WP# overrides the Lock-Down function, enabling locked-down blocks to be  
unlocked with the Unlock command.  
F-WP[2:1]#  
Input  
F-WP1# is dedicated to flash die #1.  
F-WP2# is used for NAND die when available. Otherwise, this signal is for all other NOR  
die.  
FLASH DEEP POWER-DOWN: Flash-specific signal; configurable-true input.  
When enabled in the ECR, F-DPD is used to enter or exit Deep Power-Down mode.  
F-DPD  
N-CLE  
N-ALE  
Input  
Input  
Input  
NAND COMMAND LATCH ENABLE: NAND-specific signal; high-true input.  
When high, N-CLE enables commands to be latched on the rising edge of WE#.  
1
1
NAND ADDRESS LATCH ENABLE: NAND-specific signal; high-true input.  
When high, N-ALE enables addresses to be latched on the rising edge of WE#.  
April 2008  
309823-10  
Datasheet  
39  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 9:  
Signal Descriptions, x16 Split Bus, Non-Mux (Sheet 3 of 4)  
Symbol  
Type  
Signal Descriptions  
Notes  
NAND READY/BUSY: NAND-specific signal; low-true output.  
When low, N-RY/BY# indicates the NAND device is busy performing a read, program, or  
erase operations.  
N-R/B#  
N-RE#  
D-CKE  
Output  
1
When high, N-RY/BY# indicates the NAND device is ready.  
NAND READ ENABLE: NAND-specific signal; drives the data onto the flash bus after the falling  
edge of N-RE#.  
Output  
Input  
1
1
This signal increments the internal column address and reads out each data.  
LPSDRAM CLOCK ENABLE: LPSDRAM-specific signal; high-true input.  
When high, D-CKE indicates that the next D-CLK edge is valid.  
When low, D-CKE indicates that the next D-CLK edge is invalid and the selected LPSDRAM  
die is suspended.  
LPSDRAM BANK SELECT: LPSDRAM-specific input signals.  
D-BA[1:0] selects one of four banks in the LPSDRAM die.  
D-BA[1:0]  
D-RAS#  
Input  
Input  
1
1
LPSDRAM ROW ADDRESS STROBE: LPSDRAM-specific signal; low-true input.  
D-RAS#, together with A[MAX:0], D-BA[1:0], D-CKE, D-CS#, D-CAS#, and D-WE#, define  
the LPSDRAM command or operation. D-RAS# is sampled on the rising edge of D-CLK.  
LPSDRAM COLUMN ADDRESS STROBE: LPSDRAM-specific signal; low-true input.  
D-CAS#  
Input  
1
D-CAS#, together with A[MAX:0], D-BA[1:0], D-CKE, D-CS#, D-RAS#, and D-WE#, define  
the LPSDRAM command or operation. D-CAS# is sampled on the rising edge of D-CLK.  
LPSDRAM CHIP ENABLE: LPSDRAM-specific signal; low-true input.  
When low, D-CS# selects the associated LPSDRAM memory die and starts the command input  
cycle.  
When D-CS# is high, commands are ignored but operations continue.  
D[2:1]-CE#  
Input  
1
D-CS#, together with A[MAX:0], D-BA[1:0], D-CKE, D-RAS#, D-CAS#, and D-WE#,  
define the LPSDRAM command or operation. D-CS# is sampled on the rising edge of D-  
CLK.  
D[2:1]-CS# are dedicated to LPSDRAM die #2 and die #1, respectively, if present.  
Otherwise, treat any unused LPSDRAM chip selects as RFU.  
LPSDRAM DATA MASK: LPSDRAM-specific signal; high-true input.  
When high, D-DM[1:0] controls masking of input data during writes and output data during  
reads.  
D-DM[1:0]  
Input  
1
1
D-DM1 corresponds to the data on DQ[15:8].  
D-DM0 corresponds to the data on DQ[7:0].  
LPSDRAM UPPER/LOWER DATA STROBE: DDR LPSDRAM-specific input/output signals.  
D-DQS1 and D-DQS0 provide as output the read data strobes, and as input the write data  
strobes.  
D-DQS1  
D-DQS0  
Input /  
Output  
D-DQS1 corresponds to the data on DQ[15:8].  
D-DQS0 corresponds to the data on DQ[7:0].  
SRAM CHIP SELECTS: SRAM-specific signals.  
S-CS1# low-true input.  
S-CS2# high-true input.  
When both are asserted, S-CS1# and S-CS2 select the SRAM die.  
S-CS1#  
S-CS2#  
Input  
Input  
Power  
3
When either is deasserted, the SRAM die is deselected and its power is reduced to  
standby levels.  
SRAM UPPER/LOWER BYTE ENABLES: SRAM-specific signals; low-true inputs.  
S-UB#  
S-LB#  
When low, S-UB# enables DQ[15:8] and S-LB# enables DQ[7:0] during SRAM read and  
write cycles.  
When high, S-UB# masks DQ[15:8] and S-LB# masks DQ[7:0].  
2,3  
Power Signals  
FLASH PROGRAM/ERASE VOLTAGE: Flash specific.  
F-VPP supplies program or erase power to the flash die.  
F-VPP  
Datasheet  
40  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 9:  
Signal Descriptions, x16 Split Bus, Non-Mux (Sheet 4 of 4)  
Symbol  
Type  
Signal Descriptions  
Notes  
FLASH CORE POWER SUPPLY: Flash specific.  
F-VCC supplies the core power to the flash die.  
F[2:1]-VCC  
Power  
F1-VCC is dedicated for NOR die.  
F2-VCC is used for NAND die when available. Otherwise, this signal is for NOR die. (When  
NAND is available, the F2-VCC signal is named N-VCC.)  
LPSDRAM CORE POWER SUPPLY: LPSDRAM specific.  
D-VCC supplies the core power to the LPSDRAM die.  
D-VCC  
S-VCC  
VCCQ  
D-VDDQ  
VSS  
Power  
Power  
Power  
Power  
Ground  
1
SRAM POWER SUPPLY: SRAM specific.  
S-VCC supplies the core power to the SRAM die.  
FLASH I/O POWER SUPPLY: Global device I/O power.  
VCCQ supplies the device input/output driver voltage to the flash die.  
LPSDRAM I/O POWER SUPPLY: Global device I/O power.  
VDDQ supplies the device input/output driver voltage to the LPSDRAM die.  
1
1
FLASH DEVICE GROUND: Global ground reference for all flash signals and power supplies.  
Connect all A: VSS balls to system ground. Do not float any VSS connections.  
LPSDRAM DEVICE GROUND: Global ground reference for all LPSDRAM signals and power  
supplies.  
D-VSS  
DU  
Ground  
Connect all B: D-VSS balls to system ground. Do not float any VSS connections.  
DO NOT USE:  
Do not connect this ball to any power supplies, signals, or other balls. This ball can be left  
floating.  
RESERVED for FUTURE USE:  
RFU  
Reserved by Numonyx for future device functionality and enhancement. This ball must be left  
floating.  
Notes:  
6.  
Available only on stacked device combinations with NAND, and/or LPSDRAM die. Otherwise, treat the signal as RFU.  
April 2008  
309823-10  
Datasheet  
41  
Numonyx™ StrataFlash® Cellular Memory (M18)  
5.0  
Maximum Ratings and Operating Conditions  
5.1  
Absolute Maximum Ratings  
Warning:  
Stressing the device beyond the Absolute Maximum Ratings may cause permanent  
damage. These are stress ratings only.  
NOTICE: This document contains information available at the time of its release. The specifications are subject to change without  
notice. Verify with your local Numonyx sales office that you have the latest datasheet before finalizing a design.  
Table 10: Absolute Maximum Ratings  
Parameter  
Min  
Max  
Unit  
Conditions  
Notes  
Temperature under Bias Expanded  
Storage Temperature  
–30  
–65  
+85  
°C  
°C  
V
1
1
+125  
F-VCC Voltage  
–2.0  
–2.0  
VCCQ + 2.0  
VCCQ + 2.0  
2,3  
2,4  
VCCQ and P-VCC Voltage  
V
Voltage on any input/output signal (except  
VCC, VCCQ,and VPP)  
–2.0  
VCCQ + 2.0  
V
2,4  
F-VPP Voltage  
–2.0  
+11.5  
100  
80  
V
2,3  
5
ISH Output Short Circuit Current  
VPPH Time  
mA  
Hours  
Cycles  
6
Block Program/Erase Cycles: Main Blocks  
100,000  
F-VPP = VCC or F-VPP = VPPH  
6
Notes:  
1.  
2.  
3.  
Temperature is Ambient, not Case.  
Voltage is referenced to VSS  
During signal transitions, minimum DC voltage may undershoot to –2.0 V for periods < 20 ns; maximum DC voltage  
may overshoot to VCC (max) + 2.0 V for periods < 20 ns.  
.
4.  
During signal transitions, minimum DC voltage may undershoot to –1.0 V for periods < 20 ns; maximum DC voltage  
may overshoot to VCCQ (max) + 1.0 V for periods < 20 ns.  
5.  
6.  
Output shorted for no more than one second. No more than one output shorted at a time.  
Operation beyond this limit may degrade performance.  
5.2  
Operating Conditions  
Warning:  
Operation beyond the “Operating Conditions” is not recommended and extended  
exposure beyond the “Operating Conditions” may affect device reliability.  
Table 11: Operating Conditions  
Symbol  
TC  
Description  
Min  
Max  
Unit  
Conditions  
Operating Temperature (Case Temperature)  
VCC Supply Voltage  
–30  
+1.7  
+1.7  
+0.9  
+8.5  
+85  
+2.0  
+2.0  
+2.0  
+9.5  
°C  
V
VCC  
VCCQ  
VPPL  
VPPH  
I/O Supply Voltage  
V
Programming Voltage (Logic Level)  
Factory Programming Voltage (High Level)  
V
V
Datasheet  
42  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
6.0  
Electrical Characteristics  
6.1  
Initialization  
Proper device initialization and operation is dependent on the power-up/down  
sequence, reset procedure, and adequate power-supply decoupling. The following  
sections describe each of these areas.  
6.1.1  
Power-Up/Down Characteristics  
To prevent conditions that could result in spurious program or erase operations, the  
power-up/power-down sequence shown in Table 12 is recommended. Note that each  
power supply must reach its minimum voltage range before applying/removing the  
next supply voltage.  
Table 12: Power-Up/Down Sequence  
Power Supply  
Power-Up Sequence  
Voltage  
Power-Down Sequence  
VCC(min)  
VCCQ(min)  
VPP(min)  
1st  
2nd  
3rd  
1st  
3rd  
2nd  
1st  
2nd  
1st*  
2nd  
2nd*  
Sequencing not  
required*  
Sequencing not  
required*  
2nd*  
1st*  
1st  
* Power supplies connected or sequenced together.  
Device inputs must not be driven until all supply voltages reach their minimum range.  
RST# should be low during power transitions.  
Note:  
If VCCQ is below VLKOQ, the device is reset.  
6.1.2  
Reset Characteristics  
During power-up and power-down, RST#should be asserted to prevent spurious  
program or erase operations. While RST#is low, device operations are disabled; all  
inputs such as address and control are ignored; and all outputs such as data and WAIT  
are placed in High-Z. Invalid bus conditions are effectively masked out.  
Upon power-up, RST#can be deasserted after tVCCPH, allowing the device to exit from  
reset. Upon exiting from reset, the device defaults to asynchronous Read Array mode,  
and the Status Register defaults to 0080h. Array data is available after tPHQV, or a bus-  
write cycle can begin after tPHWL.  
If RST#is asserted during a program or erase operation, the operation will abort and  
array contents at that location will be invalid.  
For proper system initialization, connect RST#to the low-true reset signal that asserts  
whenever the processor is reset. This will ensure the flash device is in the expected  
read mode (i.e., Read Array) upon startup.  
6.1.3  
Power Supply Decoupling  
High-speed flash memories require adequate power-supply decoupling to prevent  
external transient noise from affecting device operations, and to prevent internally-  
generated transient noise from affecting other devices in the system.  
April 2008  
309823-10  
Datasheet  
43  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Ceramic chip capacitors of 0.01 to 0.1 µF capacitors should be used between all VCC,  
VCCQ, VPPsupply connections and system ground. These high-frequency, inherently  
low-inductance capacitors should be placed as close as possible to the device package,  
or on the opposite side of the printed circuit board close to the center of the device-  
package footprint.  
Larger (4.7 µF to 33.0 µF) electrolytic or tantulum bulk capacitors should also be  
distributed as needed throughout the system to compensate for voltage sags caused by  
circuit trace inductance.  
Transient current magnitudes depend on the capacitive and inductive loading on the  
device’s outputs. For best signal integrity and device performance, high-speed design  
rules should be used when designing the printed-circuit board. Circuit-trace  
impedances should match output-driver impedance with adequate ground-return  
paths. This will help minimize signal reflections (overshoot/undershoot) and noise  
caused by high-speed signal edge rates.  
6.2  
DC Current Specifications  
The M18 device includes specifications for different lithographies, densities, and  
frequencies. For additional information on combinations, see Table 4, “M18 Product  
Litho/Density/Frequency Combinations” on page 10 in the Section 2.0, “Functional  
Description.  
Table 13: DC Current Specifications (Sheet 1 of 3)  
1.7 V – 2.0 V  
Litho  
(nm)  
Density  
(Mbit)  
Sym  
Parameter  
Unit  
Test Conditions  
Notes  
Typ  
Max  
V
CC = VCC Max  
ILI  
Input Load Current  
±1  
µA  
µA  
VCCQ = VCCQ Max  
VIN = VCCQ or VSS  
1
V
CC = VCC Max  
ILO  
Output Leakage Current  
±1  
95  
VCCQ = VCCQ Max  
VIN = VCCQ or VSS  
256  
35  
90  
65  
90  
65  
512  
128  
50  
45  
120  
115  
VCC = VCCMax  
VCCQ = VCCQMax  
CE# = VCCQ  
ICCS  
VCC Standby  
µA  
1,2  
RST# = VCCQ or GND  
256  
512  
50  
60  
130  
160  
(for ICCS  
)
WP# = VIH  
1,024  
256  
70  
35  
185  
95  
512  
128  
50  
45  
120  
115  
VCC = VCC Max  
VCCQ = VCCQ Max  
CE# = VSSQ  
RST# = VCCQ  
All inputs are at rail to  
rail (VCCQ or VSSQ).  
ICCAPS APS  
µA  
256  
512  
50  
60  
70  
130  
160  
185  
1,024  
Datasheet  
44  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 13: DC Current Specifications (Sheet 2 of 3)  
1.7 V – 2.0 V  
Litho  
(nm)  
Density  
(Mbit)  
Sym  
Parameter  
Unit  
Test Conditions  
Notes  
Typ  
Max  
V
CC = VCC Max  
VCCQ = VCCQ Max  
CE# = VCCQ  
RST# = VCCQ  
ECR[15] = VCCQ  
DPD = VCCQ or VSSQ  
IDPD  
DPD  
2
30  
µA  
8
All inputs are at rail to  
rail (VCCQ or VSSQ).  
V
CC = VCCMAX  
Average VCC Read: Asynchronous Single Word Read  
f = 5 MHz, (1 CLK)  
CE# = VIL  
OE# = VIH  
Inputs: VIL or VIH  
ICCR  
ICCR  
ICCR  
ICCR  
ICCR  
25  
11  
30  
15  
mA  
mA  
1,3,4,5  
1,3,4,5  
1,3,4,5  
1,3,4,5  
1,3,4,5  
VCC = VCCMAX  
CE# = VIL  
OE# = VIH  
Average VCC Read:  
Page Mode Read  
Burst = 16 Word  
f = 13 MHz, (17 CLK)  
Inputs: VIL or VIH  
Burst = 8 Word  
22  
19  
25  
26  
23  
30  
26  
24  
33  
32  
26  
34  
36  
30  
42  
35  
33  
46  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VCC = VCCMAX  
CE# = VIL  
OE# = VIH  
Average VCC Read:  
Burst = 16 Word  
Burst = Continuous  
Burst = 8 Word  
Synchronous Burst Read  
f = 66 MHz, LC = 7  
Inputs: VIL or VIH  
VCC = VCCMAX  
CE# = VIL  
OE# = VIH  
Average VCC Read:  
Burst = 16 Word  
Burst = Continuous  
Burst = 8 Word  
Synchronous Burst Read  
f = 108 MHz, LC = 10  
Inputs: VIL or VIH  
VCC = VCCMAX  
CE# = VIL  
OE# = VIH  
Average VCC Read:  
Synchronous Burst Read  
f = 133 MHz, LC = 13  
Burst = 16 Word  
Burst = Continuous  
Inputs: VIL or VIH  
ICCW,  
ICCE  
ICCBC  
VCC Program  
VCC Erase  
VCC Blank Check  
VPP = VPPL or VPP =  
VPPH, program/erase in  
progress  
1,3,4,  
5,7  
35  
35  
50  
95  
mA  
256  
90  
65  
512  
128  
50  
45  
120  
115  
ICCWS, VCC Program Suspend  
CE# = VCCQ; suspend in  
progress  
µA  
1,3,6  
ICCES  
VCC Erase Suspend  
256  
512  
50  
60  
70  
130  
160  
185  
1,024  
IPPS,  
IPPWS,  
IPPES  
VPP Standby  
VPP Program Suspend  
VPP Erase Suspend  
VPP = VPPL; suspend in  
progress  
0.2  
5
µA  
3
IPPR  
VPP Read  
2
15  
µA  
VPP VCC  
3
3
VPP = VPPL = VPPH,  
program in progress  
IPPW  
VPP Program  
0.05  
0.1  
mA  
April 2008  
309823-10  
Datasheet  
45  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 13: DC Current Specifications (Sheet 3 of 3)  
1.7 V – 2.0 V  
Litho  
(nm)  
Density  
(Mbit)  
Sym  
Parameter  
Unit  
Test Conditions  
Notes  
Typ  
Max  
VPP = VPPL = VPPH, erase  
in progress  
IPPE  
VPP Erase  
VPP Blank Check  
0.05  
0.1  
mA  
mA  
3
3
VPP = VPPL = VPPH, blank  
check in progress  
IPPBC  
0.05  
0.1  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
All currents are RMS unless noted. Typical values at typical VCC, TC = +25 °C.  
ICCS is the average current measured over any 5 ms time interval 5 µs after CE# is deasserted.  
Sampled, not 100% tested.  
VCC read + program current is the sum of VCC read and VCC program currents.  
VCC read + erase current is the sum of VCC read and VCC erase currents.  
ICCES is specified with the device deselected. If device is read while in erase suspend, current is ICCES plus ICCR  
ICCW, ICCE measured over typical or max times specified in Section 7.4, “Program and Erase  
Characteristics” on page 68  
8.  
IDPD is the current measured 40 µs after entering DPD.  
6.3  
DC Voltage Specifications  
Table 14: DC Voltage Specifications  
VCCQ  
1.7 V – 2.0 V  
Symbol  
Parameter  
Unit  
Test Condition  
Notes  
Min  
Max  
VIL  
Input Low Voltage  
0
0.4  
1
VIH  
Input High Voltage  
VCCQ –0.4  
VCCQ  
VCC = VCCMIN  
VCCQ = VCCQMIN  
IOL = 100 µA  
VOL  
Output Low Voltage  
0.1  
V
VCC = VCCMIN  
VCCQ = VCCQMIN  
IOH = –100 µA  
VOH  
Output High Voltage  
VCCQ –0.1  
VPPLK  
VLKO  
VPP Lock-Out Voltage  
VCC Lock Voltage  
0.4  
2
1.0  
0.9  
VLKOQ  
VCCQ Lock Voltage  
Notes:  
1.  
During signal transitions, voltage can undershoot to –1.0 V and overshoot to maximum VCCQ+1.0 V for durations of < 2  
ns.  
2.  
VPP VPPLK inhibits erase and program operations. Do not use VPPL and VPPH outside their valid ranges.  
Datasheet  
46  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
6.4  
Capacitance  
Table 15: Capacitance  
Symbol  
CIN  
Parameter  
Min  
Typ  
Max  
Unit  
Condition  
Notes  
Input Capacitance (Address, CLK, CE#,  
OE#, ADV#, WE#, WP#, DPD and RST#)  
2
2
4
5
6
6
VIN = 0 - 2.0 V  
pF  
1,2  
COUT  
Output Capacitance (Data and WAIT)  
VOUT = 0 - 2.0 V  
Notes:  
1.  
2.  
3.  
TC = +25°C, f = 1 MHz.  
Sampled, not 100% tested.  
Silicon die capacitance only. Add 1 pF for discrete packages; for SCSP total capacitance equals 2 pF + sum of silicon die  
capacitance.  
April 2008  
309823-10  
Datasheet  
47  
Numonyx™ StrataFlash® Cellular Memory (M18)  
7.0  
NOR Flash AC Characteristics  
Timing symbols used in the timing diagrams within this document conform to the  
following conventions:  
Figure 17: Timing Symbol Notation Convention  
E L Q V  
t
Source Signal  
Source State  
Target State  
Target Signal  
Table 16: Codes for Timing Signals and Timing States  
Signal  
Code  
State  
Code  
Address  
Data - Read  
A
Q
D
E
High  
Low  
High-Z  
Low-Z  
Valid  
Invalid  
H
L
Data - Write  
Z
Chip Enable (CE#)  
Output Enable (OE#)  
Write Enable (WE#)  
Address Valid (ADV#)  
Reset (RST#)  
X
G
W
V
P
V
I
Clock (CLK)  
C
T
WAIT  
Note:  
Exceptions to this conventions include tACC and tAPA. tACC is a generic timing symbol  
that refers to the aggregate initial-access delay as determined by tAVQV, tELQV, and  
tGLQV (whichever is satisfied last) of the flash device. tAPA is specified in the flash  
device datasheet, and is the address-to-data delay for subsequent page-mode reads.  
7.1  
AC Test Conditions  
Figure 18: AC Input/Output Reference Waveform  
VCCQ  
VIH  
Input  
V
CCQ/2  
Test Points  
VCCQ/2  
Output  
VIL  
tRISE/FALL  
0V  
Note: AC test inputs are driven at VCCQ for Logic ‘1’ and 0.0 V for Logic ‘0. Input/output timing begins and ends at VCCQ/2.  
Datasheet  
48  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 17: AC Input Requirements  
Symbol  
Parameter  
Frequency  
Min  
0.3  
Max  
Unit  
Condition  
@133MHz, 108MHz  
@66MHz  
1.2  
3
Inputs rise/fall time (Address, CLK, CE#,  
OE#, ADV#, WE#, WP#)  
tRISE/FALL  
tASKW  
VIL to VIH or VIH to VIL  
At VCCQ/2  
0
0
ns  
Address-Address skew  
3
Figure 19: Transient Equivalent Testing Load Circuit  
Device  
Under Test  
Out  
CL  
Notes:  
1.  
2.  
3.  
See the following table for component values.  
Test configuration component value for worst case speed conditions.  
CL includes jig capacitance.  
Table 18: Test Configuration Component Value for Worst Case Speed Conditions  
Test Configuration  
CL (pF)  
1.7 V Standard Test  
2.0 V Standard Test  
30  
30  
Figure 20: Clock Input AC Waveform  
R201  
R202  
VIH  
VCCQ/2  
VIL  
CLK [C]  
R203  
CLKINPUT.vsd  
7.2  
Read Specifications  
Read specifications for 108 MHz and 133 MHz M18 devices are included here. For  
additional information on lithography, density, and frequency combinations, see  
Table 4, “M18 Product Litho/Density/Frequency Combinations” on page 10 in the  
Section 2.0, “Functional Description.  
Devices which support frequencies up to 133 MHz must meet additional timing  
specifications for synchronous reads (for address latching with CLK) as listed in  
Table 20, “AC Read, 133 MHz, VCCQ = 1.7 V to 2.0 V” on page 51.  
April 2008  
309823-10  
Datasheet  
49  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 19: AC Read, 108 MHz, VCCQ = 1.7 V to 2.0 V (Sheet 1 of 2)  
96 ns  
Nbr.  
Symbol  
Parameter1  
Unit  
Notes  
Min  
Max  
Asynchronous Specifications  
R1  
R2  
tAVAV  
tAVQV  
tELQV  
tGLQV  
tPHQV  
tELQX  
tGLQX  
tEHQZ  
tGHQZ  
tOH  
Read cycle time  
96  
0
96  
96  
20  
150  
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
Address to output valid  
CE# low to output valid  
OE# low to output valid  
RST# high to output valid  
CE# low to output in low-Z  
R3  
R4  
R5  
3
R6  
R7  
OE# low to output in low-Z  
0
2,3  
R8  
CE# high to output in high-Z  
OE# high to output in high-Z  
Output hold from first occurring address, CE#, or OE# change  
CE# pulse width high  
0
R9  
9
3
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
11  
9
tEHEL  
tELTV  
tEHTZ  
tGHTV  
tGLTV  
tGLTX  
tGHTZ  
7
3
CE# low to WAIT valid  
0
CE# high to WAIT high Z  
OE# high to WAIT valid (AD-Mux only)  
OE# low to WAIT valid  
7
3
7
OE# low to WAIT in low-Z  
9
OE# low to WAIT in high-Z (non-mux only)  
0
3
Latching Specifications  
R101  
R102  
R103  
R104  
R105  
R106  
R107  
R108  
R111  
tAVVH  
tELVH  
tVLQV  
tVLVH  
tVHVL  
tVHAX  
tVHGL  
tAPA  
Address setup to ADV# high  
CE# low to ADV# high  
5
9
96  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4
ADV# low to output valid  
7
ADV# pulse width low  
ADV# pulse width high  
7
Address hold from ADV# high  
ADV# high to OE# low (AD-Mux only)  
Page address access (non-mux only)  
RST# high to ADV# high  
5
7
30  
tPHVH  
Clock Specifications  
R200  
R201  
fCLK  
tCLK  
CLK frequency  
CLK period  
108  
MHz  
ns  
9.26  
CLK  
R202  
R203  
tCH/CL  
CLK high/low time  
0.45  
0.3  
0.55  
1.2  
period  
tFCLK/RCLK CLK fall/rise time  
ns  
Synchronous Specifications  
R301  
R302  
tAVCH  
tVLCH  
Address setup to CLK high  
ADV# low setup to CLK high  
5
5
ns  
ns  
Datasheet  
50  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 19: AC Read, 108 MHz, VCCQ = 1.7 V to 2.0 V (Sheet 2 of 2)  
96 ns  
Nbr.  
Symbol  
Parameter1  
Unit  
Notes  
Min  
Max  
R303  
R304  
R305  
R306  
R307  
R311  
R312  
tELCH  
tCHQV  
tCHQX  
tCHAX  
tCHTV  
tCHVL  
tCHTX  
CE# low setup to CLK high  
CLK to output valid  
5
2
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4
Output hold from CLK high  
7
Address hold from CLK high  
CLK high to WAIT valid  
CLK high to ADV# Setup  
WAIT hold from CLK  
5
2
2
Notes:  
1.  
See Figure 18, “AC Input/Output Reference Waveform” on page 48 for timing measurements and  
maximum allowable input slew rate.  
2.  
3.  
4.  
OE# may be delayed by up to tELQV – tGLQV after CE#’s falling edge without impact to tELQV.  
Sampled, not 100% tested.  
Address hold in synchronous burst mode is tCHAX or tVHAX, whichever timing specification is satisfied first.  
Table 20: AC Read, 133 MHz, VCCQ = 1.7 V to 2.0 V (Sheet 1 of 2)  
96 ns  
Nbr.  
Symbol  
Parameter1  
Units  
Notes  
Min  
Max  
Asynchronous Specifications  
R1  
R2  
tAVAV  
tAVQV  
tELQV  
tGLQV  
tPHQV  
tELQX  
tGLQX  
tEHQZ  
tGHQZ  
tOH  
Read cycle time  
96  
0
96  
96  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
Address to output valid  
CE# low to output valid  
OE# low to output valid  
RST# high to output valid  
R3  
R4  
R5  
150  
7
3
R6  
CE# low to output in low-Z  
R7  
OE# low to output in low-Z  
0
2,3  
R8  
CE# high to output in high-Z  
OE# high to output in high-Z  
Output hold from first occurring address, CE#, or OE# change  
CE# pulse width high  
0
R9  
7
3
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
8
tEHEL  
tELTV  
tEHTZ  
tGHTV  
tGLTV  
tGLTX  
tGHTZ  
7
3
CE# low to WAIT valid  
0
CE# high to WAIT high Z  
7
OE# high to WAIT valid (AD-Mux only)  
OE# low to WAIT valid  
5.5  
5.5  
7
3
OE# low to WAIT in low-Z  
OE# high to WAIT in high-Z (non-mux only)  
0
3
Latching Specifications  
R101  
R102  
R103  
tAVVH  
tELVH  
tVLQV  
Address setup to ADV# high  
CE# low to ADV# high  
5
7
ns  
ns  
ns  
ADV# low to output valid  
96  
April 2008  
309823-10  
Datasheet  
51  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 20: AC Read, 133 MHz, VCCQ = 1.7 V to 2.0 V (Sheet 2 of 2)  
96 ns  
Nbr.  
Symbol  
Parameter1  
Units  
Notes  
Min  
Max  
R104  
R105  
R106  
R107  
R108  
R111  
tVLVH  
tVHVL  
tVHAX  
tVHGL  
tAPA  
ADV# pulse width low  
ADV# pulse width high  
7
7
15  
ns  
ns  
ns  
ns  
ns  
ns  
Address hold from ADV# high  
ADV# high to OE# low (AD-Mux only)  
Page address access (non-mux only)  
RST# high to ADV# high  
5
2
30  
tPHVH  
Clock Specifications  
R200  
R201  
fCLK  
tCLK  
CLK frequency  
CLK period  
133  
MHz  
ns  
7.5  
CLK  
Period  
R202  
R203  
tCH/CL  
CLK high/low time  
0.45  
0.3  
0.55  
1.2  
4
tFCLK/RCLK CLK fall/rise time  
ns  
Synchronous Specifications  
R301  
R302  
R303  
R304  
R305  
R306  
R307  
R311  
R312  
R313  
R314  
R315  
R316  
R317  
tAVCH  
tVLCH  
tELCH  
tCHQV  
tCHQX  
tCHAX  
tCHTV  
tCHVL  
tCHTX  
tCHVH  
tCHGL  
tACC  
Address setup to CLK high  
ADV# low setup to CLK high  
CE# low setup to CLK high  
CLK to output valid  
2
2
5.5  
5.5  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
clks  
ns  
2.5  
2
Output hold from CLK high  
Address hold from CLK high  
CLK high to WAIT valid  
2
2
CLK high to ADV# Setup  
WAIT hold from CLK high  
2
ADV# hold from CLK high  
CLK to OE# low (AD-Mux only)  
Read access time from address latching clock  
ADV# pulse width low for sync reads  
ADV# high to CLK high  
2
2
96  
1
tVLVH  
tVHCH  
2
Notes:  
1.  
See Figure 18, “AC Input/Output Reference Waveform” on page 48 for timing measurements and  
maximum allowable input slew rate.  
2.  
3.  
OE# may be delayed by up to tELQV – tGLQV after CE#’s falling edge without impact to tELQV.  
Sampled, not 100% tested.  
7.2.1  
Read Timing Waveforms  
The following sections show the timing waveforms for Asynchronous and Synchronous  
read specifications for Non-Mux and AD-Mux M18 devices.  
The Synchronous read timing waveforms apply to both the 108 and 133 MHz devices.  
However please note that M18 devices which only support up to 108 MHz need not  
meet the R313 to R317 timing specifications.  
Datasheet  
52  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Please note that the WAIT signal polarity in all the timing waveforms is low-true  
(RCR10 = 0). WAIT is shown as de-asserted with valid data (RCR8 = 0). WAIT is de-  
asserted during asynchronous reads.  
Table 21: List of Read Timing waveforms  
M18 Device  
Description  
Async Page-Mode Read  
Synchronous 8- or 16-word Burst Read  
Non-Mux  
Synchronous Continuous Mis-aligned Burst Read  
Synchronous Burst with Burst-Interrupt  
Async Single-Word Read  
Synchronous 8- or 16-word Burst Read  
Synchronous Continuous Mis-aligned Burst Read  
Synchronous Burst with Burst-Interrupt  
ADMux  
7.2.2  
Timings: Non-Mux Device, Async Read  
Figure 21: Async Page-Mode Read (Non-Mux)  
R1  
R2  
R106  
A[MAX:4]  
A[3:0]  
R101  
R111  
R105  
R104  
R103  
ADV#  
R102  
R11  
R13  
R3  
CE#  
R4  
R17  
OE#  
R12  
R15  
R16  
WAIT  
R9  
R8  
R7  
R6  
R108  
R10  
R108  
R10  
R108  
R10  
R10  
DQ[15:0]  
R5  
RST#  
April 2008  
309823-10  
Datasheet  
53  
Numonyx™ StrataFlash® Cellular Memory (M18)  
7.2.3  
Timings: Non-Mux Device, Sync Read  
Figure 22: Sync Single-Word Array/Non-Array Read, 108 MHz  
Latency Count  
R301  
R306  
CLK [C]  
R2  
Address [A]  
R101  
R104  
R106  
R105  
ADV# [V]  
R303  
R102  
R3  
CE# [E]  
OE# [G]  
WAIT [T]  
R7  
R16  
R307  
R304  
R13  
R4  
R8  
R9  
R305  
Data [D/Q]  
Figure 23: Synchronous 8- or 16-word Burst Read (Non-Mux)  
R1  
Latency Count  
R201  
R202  
R202  
CLK  
R306  
R302  
A[MAX:0]  
R301  
R101  
R106  
R317  
R104  
R316  
R105  
R311  
R313  
ADV#  
R11  
R13  
R102  
R303  
CE#  
OE#  
R16  
R15  
R12  
R307  
R307  
R312  
R17  
WAIT  
R315  
R7  
R304  
R4  
R103  
R3  
R8  
R305  
R304  
R305  
R304  
R2  
R9  
DQ[15:0]  
RST#  
R111  
R5  
Notes:  
1.  
8-word and 16-word burst are always wrap-only.  
Datasheet  
54  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
2.  
3.  
R2, R3 and R103 apply to legacy-latching only; R315 and R316 apply to clock-only latching only.  
For legacy-latching (ADV# OR CLK latching), ADV# can be held low throughout the synchronous read operation.  
.
Figure 24: Synchronous Continuous Mis-aligned Burst (Non-Mux)  
R1  
Latency Count  
R201  
R202  
R202  
CLK  
R306  
R302  
A[MAX:0]  
R301  
R101  
R105  
R106  
R317  
R104  
R316  
R311  
R313  
ADV#  
R102  
R303  
R11  
R13  
CE#  
OE#  
R12  
R15  
R307  
R307  
R312  
R307  
R312  
R16  
R7  
R17  
R10  
WAIT  
R315  
R4  
R103  
R10  
R6  
R304  
R9  
R2  
R3  
R305  
R304  
R305  
R304  
R8  
DQ[15:0]  
RST#  
Q
Q
Q
End of WL  
Q
Q
R111  
R5  
Notes:  
1.  
2.  
R2, R3 and R103 apply to legacy-latching only; R315 and R316 apply to clock-only latching only.  
For legacy-latching (ADV# OR CLK latching), ADV# can be held low throughout the synchronous read operation.  
April 2008  
309823-10  
Datasheet  
55  
Numonyx™ StrataFlash® Cellular Memory (M18)  
.
Figure 25: Sync Burst with Burst-Interrupt (Non-Mux)  
R202  
R1  
Latency Count  
R201  
R202  
CLK  
R302  
R306  
R302  
R306  
A[MAX:0]  
R301  
R101  
R301  
R101  
R106  
R317  
R10  
R313  
R313  
R104  
R316  
R311  
R11  
R104  
R316  
R311  
R105  
ADV#  
R303  
R102  
R102  
R303  
CE#  
OE#  
R12  
R307  
R307  
R312  
R16  
R15  
WAIT  
R315  
R7  
R4  
R103  
R6  
R304  
R2  
R3  
R304  
R305  
R305  
DQ[15:0]  
RST#  
Q
Q
Q
Q
R111  
R5  
Notes:  
1.  
2.  
3.  
R2, R3 and R103 apply to legacy-latching only; R315 and R316 apply to clock-only latching only  
For legacy-latching (ADV# OR CLK latching), ADV# can be held low throughout the synchronous read operation.  
A burst can be interrupted by toggling CE# or ADV#. If ADV# interrupts burst, then R105 applies.  
Datasheet  
56  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
7.2.4  
Timings: AD-Mux Device, Async Read  
Figure 26: Async Single-Word Read (AD-Mux)  
R1  
R1  
R2  
R2  
A[MAX:16]  
A/DQ[15:0]  
A
A
R7  
R7  
A
Q
A
Q
R101  
R106  
R101  
R106  
R111  
R103  
R104  
R102  
R104  
R102  
R105  
R103  
R3  
ADV#  
CE#  
R10  
R8  
R11  
R10  
R8  
R3  
R4  
R4  
R107  
R9  
R107  
R9  
OE#  
WAIT  
RST#  
R12  
R13  
R12  
R13  
R5  
Note: Diagram shows back-to-back read operations.  
April 2008  
309823-10  
Datasheet  
57  
Numonyx™ StrataFlash® Cellular Memory (M18)  
7.2.5  
Timings: AD-Mux Device, Sync Read  
.
Figure 27: Synchronous 8- or 16-word burst read (AD-Mux)  
R1  
Latency Count  
R201  
R202  
R202  
CLK  
A[MAX:16]  
A
A
A
A
R315  
R304  
R305  
R302  
R306  
R304  
R2  
R302  
R306  
A/DQ[15:0]  
Q
Q
Q
R313  
R313  
R301  
R101  
R301  
R101  
R106  
R317  
R10  
R104  
R316  
R104  
R316  
R103  
R311  
R11  
R311  
R105  
ADV#  
CE#  
R303  
R102  
R303  
R102  
R3  
R7  
R107  
R314  
R10  
R9  
R4  
OE#  
R307  
R15  
R16  
R12  
WAIT  
RST#  
R111  
R5  
Notes:  
1.  
2.  
8-word and 16-word burst are always wrap-only.  
R2, R3 and R103 apply to legacy-latching only; R315 and R316 apply to clock-only latching only.  
Datasheet  
58  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 28: Synchronous Continuous Mis-Aligned Burst (AD-Mux)  
R1  
Latency Count  
R201  
R202  
R202  
CLK  
A[MAX:16]  
A
A
R306  
R315  
R2  
R304  
R305  
R304  
R305  
R302  
R304  
A/DQ[15:0]  
Q
Q
Q
End of WL  
Q
Q
Q
R104  
R301  
R101  
R105  
R106  
R317  
R316  
R103  
R311  
R313  
ADV#  
R102  
R11  
R8  
R3  
R303  
R10  
CE#  
OE #  
R107  
R314  
R7  
R10  
R9  
R4  
R307  
R307  
R312  
R307  
R312  
R13  
R15  
R16  
R12  
R14  
WAIT  
RST#  
R111  
R5  
Note: R2, R3 and R103 apply to legacy-latching only; R315 and R316 apply to clock-only latching only.  
Figure 29: Synchronous Burst with Burst-Interrupt (AD-Mux)  
R1  
Latency Count  
R201  
R202  
R202  
CLK  
A[MAX:16]  
A
A
A
A
R315  
R304  
R305  
R302  
R306  
R304  
R2  
R302  
R306  
A/DQ[15:0]  
Q
Q
Q
R313  
R313  
R301  
R101  
R301  
R101  
R106  
R317  
R10  
R104  
R316  
R104  
R316  
R103  
R311  
R11  
R311  
R105  
ADV#  
CE#  
R303  
R102  
R303  
R102  
R3  
R7  
R107  
R314  
R10  
R9  
R4  
OE#  
R307  
R15  
R16  
R12  
WAIT  
RST#  
R111  
R5  
Notes:  
1.  
2.  
R2, R3 and R103 apply to legacy-latching only (ADV# OR CLK latching); R315 and R316 apply to clock-only latching only  
A burst can be interrupted by toggling CE# or ADV#.  
April 2008  
309823-10  
Datasheet  
59  
Numonyx™ StrataFlash® Cellular Memory (M18)  
7.3  
Write Specifications  
The M18 device includes specifications for different lithographies, densities, and  
frequencies. For additional information on combinations, see Table 4, “M18 Product  
Litho/Density/Frequency Combinations” on page 10 in the Section 2.0, “Functional  
Description.  
Table 22: AC Write Specifications  
Number  
W1  
Symbol  
tPHWL  
Parameter (1, 2)  
Min  
Max  
Units  
Notes  
RST# high recovery to WE# low  
CE# setup to WE# low  
150  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1,2,3  
1,2  
W2  
tELWL  
0
W3  
tWLWH  
tDVWH  
tAVWH  
tWHEH  
tWHDX  
tWHAX  
tWHWL  
tVPWH  
tQVVL  
tQVBL  
tBHWH  
tWHGL  
tVLWH  
tWHQV  
WE# write pulse width low  
Data setup to WE# high  
40  
1,2,4  
W4  
40  
W5  
Address setup to WE# high  
CE# hold from WE# high  
Data hold from WE# high  
Address hold from WE# high (non-mux only)  
WE# pulse width high  
40  
W6  
0
1,2  
W7  
0
W8  
0
W9  
20  
1,2,5  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
VPP setup to WE# high  
200  
VPP hold from Status read  
WP# hold from Status read  
WP# setup to WE# high  
0
1,2,3,7  
0
200  
WE# high to OE# low  
0
1,2,8  
1,2  
ADV# low to WE# high (AD-Mux only)  
WE# high to read valid  
55  
tAVQV+30  
1,2,3,9  
Write to Synchronous Read Specifications  
W19  
W27  
W28  
tWHCH  
tWHEL  
tWHVL  
WE# high to Clock high  
WE# high to CE# low  
WE# high to ADV# low  
15  
9
ns  
ns  
ns  
1,2,3,6,9  
1,2,3,6,9  
1,2,3,6,9  
7
Bus Write with Active Clock Specifications  
W21  
W22  
tVHWL  
tCHWL  
ADV# high to WE# low  
Clock high to WE# low  
27  
27  
ns  
ns  
1,2,10,11  
Notes:  
1.  
2.  
3.  
4.  
Write timing characteristics during erase suspend are the same as write-only operations.  
A write operation can be terminated with either CE# or WE#.  
Sampled, not 100% tested.  
Write pulse width low (tWLWH or tELEH) is defined from CE# or WE# low (whichever occurs last) to CE# or WE# high  
(whichever occurs first). Hence, tWLWH = tELEH = tWLEH = tELWH  
.
5.  
6.  
Write pulse width high (tWHWL or tEHEL) is defined from CE# or WE# high (whichever occurs first) to CE# or WE# low  
(whichever occurs last). Hence, tWHWL = tEHEL = tWHEL = tEHWL).  
tWHCH must be met when transitioning from a write cycle to a synchronous burst read. In addition there must be a CE#  
toggle after WE# goes high.  
7.  
8.  
9.  
VPP and WP# should be at a valid level until erase or program success is determined.  
When doing a Read Status operation following any command that alters the Status Register data, W14 is 20ns.  
Add 10ns if the write operations results in a RCR or block lock status change, for the subsequent read operation to reflect  
this change.  
10.  
11.  
This specification is applicable only if the part is configured in synchronous mode and an active clock is running. Either  
tVHWL or tCHWL must be met depending on the whether the address is latched on ADV# or CLK.  
These specifications are not applicable to 133 MHz devices.  
Datasheet  
60  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
7.3.1  
Write Timing Waveforms  
The following sections show the timing waveforms for write specifications and write-to-  
read and read-to-write transitions for Non-Mux and AD-Mux M18 devices.  
The Synchronous read timings apply to both the 108 and 133 MHz devices. However  
please note that M18 devices which only support up to 108 MHz need not meet the  
R313 to R317 timing specifications.  
Please note that the WAIT signal polarity in all the timing waveforms is low-true  
(RCR10 = 0). WAIT is de-asserted during asynchronous reads.  
Table 23: List of Write Timing waveforms  
M18 Device  
Description  
Write to Write  
Async Read to Write  
Write to Async Read  
Sync Read to Write  
Write to Sync Read  
Write to Write  
Non-Mux  
Async Read to Write  
Write to Async Read  
Sync Read to Write  
Write to Sync Read  
ADMux  
April 2008  
309823-10  
Datasheet  
61  
Numonyx™ StrataFlash® Cellular Memory (M18)  
7.3.2  
Timings: Non Mux Device  
Figure 30: Write to Write (Non-Mux)  
W5  
W8  
W5  
W8  
Address [A]  
ADV#  
W2  
W6  
W2  
W6  
CE# [E}  
W3  
W9  
W3  
WE# [W]  
OE# [G]  
W7  
W7  
W4  
W4  
Data [D/Q]  
W1  
RST# [P]  
W13  
WP#  
Figure 31: Async Read to Write (Non-Mux)  
Address [A]  
ADV# [V]  
A
A
R105  
R11  
CE# [E]  
OE# [G]  
W6  
W7  
W2  
W3  
W15  
WE# [W]  
R4  
R10  
R8  
R9  
R2  
R3  
W4  
D/Q[15:0]  
WAIT [T]  
Q
D
R15  
R17  
Datasheet  
62  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 32: Write to Async Read (Non-Mux)  
Address [A]  
ADV# [V]  
Write Adr  
Read Adr  
W2  
R11  
CE# [E]  
W5  
W6  
W3  
W8  
WE# [W]  
OE# [G]  
WAIT [T]  
W14  
R15  
R4  
R17  
High-Z  
R3  
R2  
R10  
R8  
W7  
W4  
W16  
R9  
D
Q
Data [D/Q]  
.
Figure 33: Sync Read to Write (Non-Mux)  
R311  
R313  
R306  
W22  
CLK [C]  
Address [A]  
CE# [E]  
R301  
W5  
R303  
R11  
R302  
R316  
R105  
ADV# [V]  
W3  
WE# [W]  
OE# [G]  
R305  
R304  
R304  
R307  
R305  
W4  
W7  
Data [D/Q]  
WAIT [T]  
Q0  
Q1  
D
High-Z  
High-Z  
April 2008  
309823-10  
Datasheet  
63  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 34: Write to Sync Read (Non-Mux)  
W19  
R302  
R303  
CLK  
R301  
Wrt Addr  
Rd Addr  
Address [A]  
R311  
R105  
R313  
ADV# [V]  
CE# [E]  
W9  
R11  
W27  
W3  
W22  
W28  
WE# [W]  
OE# [G]  
W14  
W7  
R304  
R305  
R304  
R305  
W4  
R304  
R307  
R305  
Q2  
D
Q0  
Q1  
Data [D/Q]  
WAIT [T]  
R15  
Datasheet  
64  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
7.3.3  
Timings: AD-Mux Device  
Figure 35: Write to Write (AD-Mux)  
A[max-16] [A]  
W5  
W4  
R101  
W7  
W6  
A/DQ[15-0] [A/D]  
ADV# [v]  
A
D
A
D
R106  
W15  
W2  
W2  
W6  
CE# [E]  
W3  
W9  
W3  
WE# [W]  
OE# [G]  
W1  
RST# [P]  
WP#  
W13  
April 2008  
309823-10  
Datasheet  
65  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 36: Async Read to Write (AD-Mux)  
A[Max:16]  
A/DQ[15:0]  
ADV# [V]  
A
A
R2  
R10  
A
Q
A
D
R101  
R105  
R8  
R11  
R3  
CE# [E]  
OE# [G]  
R4  
R107  
R9  
W7  
W3  
W4  
W15  
WE# [W]  
WAIT [T]  
R12  
R13  
R12  
R13  
Figure 37: Write to Async Read (AD-Mux)  
W5  
A[Max:16]  
A/DQ[15:0]  
CE# [E]  
A
A
A
W4  
W7  
W6  
R2  
R3  
D
A
Q
R11  
R8  
R105  
W15  
ADV# [V]  
WE# [W]  
W2  
W3  
R4  
R107  
W14  
R9  
OE# [G]  
R12  
R13  
R12  
R13  
WAIT [T]  
Datasheet  
66  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 38: Sync Read to Write (AD-Mux)  
R311  
R313  
R306  
W22  
CLK [C]  
R301  
W5  
A[Max:16]  
A
A
A
R305  
R304  
R304  
R305  
A/DQ[15:0]  
CE# [E]  
A
Q0  
Q1  
D
R303  
R11  
R302  
R316  
W15  
ADV# [V]  
W7  
W4  
WE# [W]  
OE# [G]  
R307  
High-Z  
High-Z  
WAIT [T]  
Notes:  
1.  
2.  
CLK may be stopped during write cycle.  
W22 is the time between the Address-latching-CLK and WE#. In case of ADV#-latching, W21 must be met instead.  
Figure 39: Write to Sync Read (AD-Mux)  
W19  
CLK  
W5  
A[Max:16]  
A/DQ[15:0]  
WAIT [T]  
A
A
A
A
W4  
R305  
R304  
R305  
R304  
W7  
R304  
R307  
R305  
Q2  
D
Q0  
Q1  
R15  
R105  
W15  
W28  
ADV# [V]  
CE# [E]  
R11  
W3  
W22  
W27  
WE# [W]  
OE# [G]  
W14  
Note: CLK may be stopped during write cycle.  
April 2008  
309823-10  
Datasheet  
67  
Numonyx™ StrataFlash® Cellular Memory (M18)  
7.4  
Program and Erase Characteristics  
The M18 device includes specifications for different lithographies, densities, and  
frequencies. For additional information on combinations, see Table 4, “M18 Product  
Litho/Density/Frequency Combinations” on page 10 in the Section 2.0, “Functional  
Description.  
Table 24: Program-Erase Characteristics  
V
PPL/VPPH  
Nbr.  
Symbol  
Parameter  
Unit Notes  
Density  
(Mbit)  
Litho (nm)  
Min  
Typ  
Max  
Conventional Word Programming  
Single word (first  
115  
50  
230  
230  
word)  
Program  
Time  
W200  
tPROG/W  
µs  
1,2  
Single word  
(subsequent word)  
Buffered Programming  
W200  
tPROG/W  
Single word  
250  
500  
4.3  
µs  
256, 512  
Program  
Time  
90  
2.15  
1
One Buffer (512  
words)  
W250  
tPROG/PB  
ms  
128, 256, 512,  
1024  
65  
1.02  
2.05  
Buffered Enhanced Factory Programming  
90  
256, 512  
4.2  
W451  
W452  
tBEFP/W  
Single word  
5
1,3,4  
1
Program  
Time  
65  
128, 256, 512  
2.0  
µs  
tBEFP/  
Setup  
Buffered EFP Setup  
Erasing and Suspending  
Erase  
Time  
128-Kword Main  
Array Block  
W501  
tERS/MAB  
0.9  
4
s
1
W600  
W601  
tSUSP/P  
tSUSP/E  
Suspen  
d
Latency  
Program suspend  
Erase suspend  
20  
20  
30  
30  
1
1
µs  
Blank Check  
Blank  
Check  
W702  
tBC/MB  
Main array block  
3.2  
ms  
1
Notes:  
1.  
Typical values measured at TC = +25 °C and nominal voltages. Performance numbers are valid for all speed versions.  
Sampled, but not 100% tested.  
2.  
3.  
4.  
First and subsequent words refer to first word and subsequent words in Control Mode programming region.  
Averaged over entire device.  
BEFP not validated at VPPL  
.
Datasheet  
68  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
7.5  
Reset Specifications  
Table 25: Reset Specifications  
Nbr.  
Symbol  
tPLPH  
Parameter  
RST# pulse width low  
Min  
Max  
Unit  
Notes  
P1  
100  
ns  
1,2,3,4,7  
1,3,4,7  
1,3,4,7  
1,4,5,6  
RST# low to device reset during erase  
RST# low to device reset during program  
VCC Power valid to RST# de-assertion (high)  
25  
25  
P2  
tPLRH  
µs  
P3  
tVCCPH  
300  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
These specifications are valid for all device versions (packages and speeds).  
The device may reset if tPLPH is < tPLPH MIN, but this is not guaranteed.  
Not applicable if RST# is tied to Vccq.  
Sampled, but not 100% tested.  
If RST# is tied to the VCC supply, device will not be ready until tVCCPH after VCC VCC min.  
If RST# is tied to any supply/signal with VCCQ voltage levels, the RST# input voltage must not exceed VCC until VCC  
VCC(min).  
7.  
Reset completes within tPLPH if RST# is asserted while no erase or program operation is executing.  
Figure 40: Reset Operation Timing  
P1  
P2  
P2  
P3  
R5  
VIH  
VIL  
(
A) Reset during  
read mode  
RST# [P]  
RST# [P]  
RST# [P]  
VCC  
Abort  
Complete  
R5  
(B) Reset during  
VIH  
VIL  
program or block erase  
P1  
P2  
Abort  
Complete  
R5  
(C) Reset during  
VIH  
VIL  
program or block erase  
P1  
P2  
VCC  
0V  
(D) VCC Power-up to  
RST# high  
7.6  
Deep Power Down Specifications  
Table 26: Deep Power Down Specifications (Sheet 1 of 2)  
Nbr.  
Symbol  
Parameter  
DPD asserted pulse width  
Min  
100  
Max  
Unit  
Notes  
S1  
t
SLSH (tSHSL)  
ns  
1,2,3  
April 2008  
309823-10  
Datasheet  
69  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 26: Deep Power Down Specifications (Sheet 2 of 2)  
Nbr.  
Symbol  
Parameter  
CE# high to DPD asserted  
Min  
Max  
Unit  
Notes  
S2  
S3  
tEHSH (tEHSL)  
0
1,2  
1,2  
t
SHEL (tSLEL)  
DPD deasserted to CE# low  
75  
µs  
RST# high during DPD state to CE# low (DPD  
deasserted to CE# low)  
S4  
tPHEL  
75  
1,2  
Notes:  
1.  
2.  
3.  
These specifications are valid for all device versions (packages and speeds).  
Sampled, but not 100% tested.  
DPD must remain asserted for the duration of Deep Power Down mode. DPD current levels are achieved 40 µs after  
entering the DPD mode.  
Figure 41: Deep Power Down Operation Timing  
S2  
S1  
DPD [S]  
S3  
CE# [E]  
RST# [P]  
Note: DPD pin is low-true (ECR14 = 0)  
Figure 42: Reset During Deep Power Down Operation Timing  
RST# [P]  
S2  
DPD [S]  
S4  
CE# [E]  
Note: DPD pin is low-true (ECR14 = 0)  
Datasheet  
70  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
8.0  
NOR Flash Bus Interface  
The flash device uses low-true control signal inputs, and is selected by asserting the  
chip enable (CE#) input. The output enable (OE#) input is asserted for read  
operations, while the write enable (WE#) input is asserted for write operations. OE#  
and WE# should never be asserted at the same time; otherwise, indeterminate device  
operation will result. All bus cycles to or from the flash memory conform to standard  
microcontroller bus cycles.  
Commands are written to the device to control all operations.  
Table 27 shows the logic levels that must be applied to the control-signal inputs of the  
device for the various bus operations.  
Table 27: Flash Memory Control Signals  
Operation  
RST#  
DPD2  
CE#1  
OE#1  
WE#1  
Address1  
Data I/O  
Reset  
Read  
Low  
High  
High  
High  
High  
High  
X
X
X
X
Valid  
X
High-Z  
Output  
High-Z  
Low  
Low  
Low  
High  
High  
High  
Output Disable  
High  
High  
High  
High  
Low  
High  
High  
Valid  
Valid  
Input  
Input  
Write  
Low  
Standby  
High  
High  
High  
Low  
High  
High  
X
X
X
X
X
X
High-Z  
High-Z  
Deep Power-Down  
Notes:  
1.  
2.  
X = Don’t care (High or Low)  
DPD polarity determined by ECR14. Shown low-true here.  
8.1  
Bus Reads  
To perform a read operation, both CE# and OE# must be asserted; #RST# and WE#  
must be deasserted. OE# is the data-output control and when asserted, the output  
data is driven on to the data I/O bus. All read operations are independent of the  
voltage level on VPP.  
The Automatic Power Savings (APS) feature provides low power operation following  
reads during active mode. After data is read from the memory array and the address  
lines are quiescent, APS automatically places the device into standby. In APS, device  
current is reduced to ICCAPS  
.
The device supports two read configurations:  
• Asynchronous reads. RCR15 = 1. This is the default configuration after power-up/  
reset.  
— Non-multiplexed devices support asynchronous page-mode reads. AD-  
Multiplexed devices support only asychronous single-word reads.  
• Synchronous Burst reads. RCR15 = 0.  
April 2008  
309823-10  
Datasheet  
71  
Numonyx™ StrataFlash® Cellular Memory (M18)  
8.1.1  
8.1.2  
Asynchronous single-word reads  
In asynchronous single-word read mode, a single word of data corresponding to the  
address is driven onto the data bus after the initial access delay. The address is latched  
when ADV# is deasserted. For AD-multiplexed devices, ADV# must be deasserted  
before OE# is asserted.  
If only asynchronous reads are to be performed, CLK must be tied to a valid VIH or VIL  
level, and the WAIT signal can be floated. In addition, for non-multiplexed devices,  
ADV# must be tied to ground.  
Asynchronous Page Mode (Non-multiplexed devices only)  
In asynchronous page mode, sixteen data words are “sensed” simultaneously from the  
flash memory array and loaded into an internal page buffer. The buffer word  
corresponding to the initial address is driven onto the data bus after the initial access  
delay. Subsequent words in the page are output after the page access delay. A[3:0]  
bits determine which page word is output during a read operation. A[MAX:4] and ADV#  
must be stable throughout the page access.  
WAIT is deasserted during asynchronous page mode. ADV# can be driven high to latch  
the address, or held low throughout the read cycle. CLK is not used for asynchronous  
page-mode reads, and is ignored.  
8.1.3  
Synchronous Burst Mode  
Synchronous burst mode is a clock-synchronous read operation that improves the read  
performance of flash memory over that of asynchronous reads.  
Synchronous burst mode is enabled by programming the Read Configuration Register  
(RCR) of the flash memory device. The RCR is also used to configure the burst  
parameters of the flash device, including Latency Count, burst length of 8, 16 and  
continuous, and WAIT polarity.  
Three additional signals are used for burst mode: CLK, ADV#, and WAIT.  
The address for synchronous read operations is latched on the ADV# rising edge or the  
first rising CLK edge after ADV# low, whichever occurs first for devices that support up  
to 108 MHz. For devices that support up to 133 MHz, the address is latched on the last  
CLK edge when ADV# is low.  
During synchronous read modes, the first word is output from the data buffer on the  
rising CLK edge after the initial access latency delay. Subsequent data is output on  
rising CLK edges following a tCHQV delay. However, for a synchronous non-array read,  
the same word of data will be output on successive rising clock edges until the burst  
length requirements are satisfied.  
8.1.3.1  
WAIT Operation  
Upon power up or exit from reset, WAIT polarity defaults to low-true operation (RCR10  
= 0). During synchronous reads (RCR15 = 0), WAIT asserts when read data is invalid,  
and deasserts when read data is valid. During asynchronous reads (RCR15 = 1), WAIT  
is deasserted. During writes, WAIT is High-Z on non-mux devices, and deasserted on  
AD-mux devices. Table 28 summarizes WAIT behavior.  
Datasheet  
72  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 28: WAIT Behavior Summary  
Device Operation  
CE#  
High  
OE#  
WE#  
WAIT  
High-Z  
Notes  
Device not selected  
Non-Mux Device  
Standby  
X
X
1
2
Output Disable  
Sync Read  
Async Read  
Write  
High  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
High  
High  
Low  
High-Z  
Active  
Deasserted  
High-Z  
Low  
Output Disable  
Sync Read  
Async Read  
Write  
High  
High  
High  
Low  
Deasserted  
Active  
2
AD-Mux Device  
Deasserted  
Deasserted  
Notes:  
1.  
2.  
X = don’t care (high or low).  
Active: WAIT asserted = invalid data; WAIT deasserted = valid data.  
8.2  
8.3  
8.4  
Bus Writes  
To perform a write operation, both CE# and WE# are asserted while RST# and OE# are  
deasserted. All device write operations are asynchronous, with CLK being ignored, but  
CLK can be kept active/toggling. During a write operation in non-muxed devices,  
address and data are latched on the rising edge of WE# or CE#, whichever occurs first.  
During a write operation in muxed devices, address is latched during the rising edge of  
ADV# OR CE# whichever occurs first and Data is latched during the rising edge of WE#  
OR CE# whichever occurs first.  
Reset  
The device enters a reset mode when RST# is asserted. In reset mode, internal  
circuitry is turned off and outputs are placed in a high-impedance state. The device  
shuts down any operation in progress, a process which takes a minimum amount of  
time to complete.  
To return from reset mode, RST# must be deasserted. Normal operation is restored  
after a wake-up interval.  
Deep Power-Down  
The device enters DPD mode when the following two conditions are met: ECR15 is  
set(1) and DPD is asserted. The two conditions can be satisfied in any order. ECR14 bit  
determines the DPD asserted logic level. While in this mode, RST# and CE# must be  
deasserted.  
The device exits DPD mode when DPD is deasserted. There is an exit latency before the  
device returns to standby mode and any operations are allowed. See the datasheet for  
the timing specifications.  
The device should not be placed in DPD mode when a program/erase operation is  
ongoing or suspended. If the device enters DPD mode in the middle of a program,  
erase or suspend, the operation is terminated and the memory contents at the aborted  
location (for a program) or block (for an erase) are no longer valid.  
April 2008  
309823-10  
Datasheet  
73  
Numonyx™ StrataFlash® Cellular Memory (M18)  
While in DPD mode, the read-mode of each partition, configuration registers (RCR and  
ECR), and block lock bits, are preserved. Status register is reset to 0080h; i.e., if the  
Status register contains error bits, they will be cleared.  
8.5  
Standby  
When CE# is deasserted, the device is deselected and placed in standby, substantially  
reducing power consumption. In standby, data outputs are placed in high-Z,  
independent of the level placed on OE#. If deselected during a Program or Erase  
operation, the device continues to consume active power until the operation is  
complete. There is no additional latency for subsequent read operations.  
8.6  
8.7  
Output Disable  
When OE# is deasserted with CE# asserted, the device outputs are disabled. Output  
pins are placed in a high-impedance state. WAIT is deasserted in AD-muxed devices  
and driven to High-Z in non-multiplexed devices.  
Bus Cycle Interleaving  
When issuing commands to the device, a read operation can occur between the two  
write cycles of a 2-cycle command. (See Figure 43 and Figure 44) However, a write  
operation cannot occur between the two write cycles of a 2-cycle command and will  
cause a command sequence error (See Figure 45).  
Figure 43: Operating Mode with Correct Command Sequence Example  
Address [A]  
WE# [W]  
Partition A  
Partition A  
Partition B  
OE# [G]  
Data [D/Q]  
0x20  
0xD0  
0xFF  
Figure 44: Operating Mode with Correct Command Sequence Example  
Address [A]  
WE# [W]  
Partition A  
Partition B  
Partition A  
OE# [G]  
Data [D/Q]  
0x20  
Valid Array Data  
0xD0  
Datasheet  
74  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 45: Operating Mode with Illegal Command Sequence Example  
Address [A]  
WE# [W]  
Partition A  
Partition B  
Partition A  
Partition A  
OE# [G]  
Data [D/Q]  
0x20  
0xFF  
0xD0  
SR[7:0]  
8.7.1  
Read Operation During Program Buffer fill  
Due to the large buffer size of devices, the system interrupt latency may be impacted  
during the buffer fill phase of a buffered programming operation. Please refer to the  
relevant Application Note listed in Section 1.4, “Additional Information” on page 7 to  
implement a software solution for your system.  
8.8  
Read-to-Write and Write-to-Read Bus Transitions  
Consecutive read and write bus cycles must be properly separated from each other to  
avoid bus contention. These cycle separation specs are described in the sections below.  
8.8.1  
8.8.2  
Write to Asynchronous read transition  
To transition from a bus write to an asynchronous read operation, either CE# or ADV#  
must be toggled after WE# goes high.  
Write to synchronous read transition  
To transition from a bus write to a synchronous read operation, either CE# or ADV#  
must be toggled after WE# goes high. In addition, W19 (tWHCH -WE# high to CLK high)  
must be met.  
8.8.3  
8.8.4  
Asynchronous/Synchronous read to write transition  
To transition from a asynchronous/synchronous read to a write operation, either CE# or  
ADV# must be toggled after OE# goes high.  
Bus write with active clock  
To perform a bus write when the device is in synchronous mode and the clock is active,  
W21 (tVHWL- ADV# High to WE# Low) or W22 (tCHWL -Clock high to WE# low) must be  
met.  
April 2008  
309823-10  
Datasheet  
75  
Numonyx™ StrataFlash® Cellular Memory (M18)  
9.0  
NOR Flash Operations  
This section describes the operational features of NOR flash memory. Operations are  
command-based—command codes are first issued to the device, and then the device  
performs the desired operation. All command codes are issued to the device using bus-  
write cycles as explained in Section 3.0, “NOR Flash Bus Interface” on page 10. A  
complete list of available command codes can be found in Section 5.0, “Device  
Command Codes” on page 40.  
9.1  
Status Register  
The Status Register (SR) is a 16-bit, read-only register that indicates device and  
partition status, and operational errors. To read the Status Register, issue the Read  
Status Register command. Subsequent reads output Status Register information on  
AD/DQ[15:10].  
SR status bits are set and cleared by the device. SR error bits are set by the device,  
and must be cleared using the Clear Status Register command. Upon power-up or exit  
from reset, the Status Register defaults to 0080h.  
Table 29: Status Register Bit Definitions (Sheet 1 of 2)  
Status Register (SR) Bits  
Default Value = 0080h  
Program  
/Erase  
Voltage  
Error  
Region  
Reserved Program  
Status  
Erase  
Suspend  
Status  
Program  
Suspend  
Status  
Block-  
Partition  
Locked  
Status  
Error  
Ready  
Status  
Erase  
Error  
Program  
Error  
15-10  
9-8  
7
6
5
4
3
2
1
0
Bit  
Name  
Description  
15-10  
Reserved  
Reserved for future use; these bits will always be set to zero.  
SR9 SR8  
0
1
0
0
=
=
Region program successful.  
Region program error - Attempted write with object data to Control  
Mode region.  
9-8  
Region Program Status  
0
1
1
1
=
=
Region program error - Attempted rewrite to Object Mode region.  
Region program error - Attempted write using illegal command.  
SR4 will also be set along with SR[8,9] for the above error  
conditions.  
0
1
=
=
Device is busy; SR[9:8], SR[6:1] are invalid;  
Device is ready; SR[9:8], SR[6:1] are valid.  
7
6
Ready Status  
0
1
=
=
Erase suspend not in effect.  
Erase suspend in effect.  
Erase Suspend Status  
Erase  
Error /  
Blank  
Check  
Error  
SR5 SR4  
5
0
0
1
1
0
1
0
1
=
=
=
=
Program or erase operation successful.  
Program error - operation aborted.  
Erase error: operation aborted / Blank check error: operation failed.  
Command sequence error - command aborted.  
Command  
Sequence Error  
Program  
Error  
4
3
0
1
=
=
VPP within acceptable limits during program or erase operation.  
VPP not within acceptable limits during program or erase operation.  
VPP Error  
Datasheet  
76  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 29: Status Register Bit Definitions (Sheet 2 of 2)  
Status Register (SR) Bits  
Default Value = 0080h  
Program  
/Erase  
Voltage  
Error  
Region  
Reserved Program  
Status  
Erase  
Suspend  
Status  
Program  
Suspend  
Status  
Block-  
Partition  
Locked  
Status  
Error  
Ready  
Status  
Erase  
Error  
Program  
Error  
15-10  
9-8  
7
6
5
4
3
2
1
0
Bit  
2
Name  
Description  
0
1
=
=
Program suspend not in effect.  
Program suspend in effect.  
Program Suspend Status  
Block-Locked Error  
0
1
=
=
Block NOT locked during program or erase - operation successful.  
Block locked during program or erase - operation aborted.  
1
SR7 SR0  
0
0
1
1
0
1
0
1
=
=
=
=
Active program or erase operation in addressed partition.  
BEFP: Program or Verify complete, or Ready for data.  
Active program or erase operation in other partition.  
BEFP: Program or Verify in progress.  
No active program or erase operation in any partition.  
BEFP: Operation complete  
0
Partition Status  
Reserved.  
9.1.1  
Clearing the Status Register  
The Status Register (SR) contain status and error bits which are set by the device. SR  
status bits are cleared by the device; however, SR error bits are cleared by issuing the  
Clear Status Register command. Resetting the device also clears the Status Register.  
Table 30: Clear Status Register Command Bus Cycles  
Setup Write Cycle  
Command  
Confirm Write Cycle  
Address Bus Data Bus  
Address Bus  
Data Bus  
Clear Status Register  
Device Address  
0050h  
---  
---  
Depending on the current state of the partition, issuing the Clear Status Command will  
place the addressed partition in Read Status mode. Please see 'Next State' Table for  
further details. Other partitions are not affected.  
Note:  
Care should be taken to avoid Status Register ambiguity. If a command sequence error  
occurs while in an Erase Suspend condition, the Status Register will indicate a  
Command Sequence error by setting SR4 and SR5. When the erase operation is  
resumed (and finishes), any errors that may have occurred during the erase operation  
will be masked by the Command Sequence error. To avoid this situation, clear the  
Status Register prior to resuming a suspended erase operation.  
The Clear Status Register command functions independent of the voltage level on VPP.  
9.2  
Read Configuration Register  
The Read Configuration Register (RCR) is a 16-bit read/write register used to select  
bus-read modes, and to configure synchronous-burst read characteristics of the flash  
device. All Read Configuration Register bits are set and cleared using the Program Read  
Configuration Register command.  
April 2008  
309823-10  
Datasheet  
77  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Upon power-up or exit from reset, the Read Configuration Register defaults to  
asynchronous mode (RCR15 = 1; RCR[14:11] and RCR[9:0] are ignored).  
To read the RCR value, issue the Read Device Information command to the desired  
partition. Subsequent reads from the <partition base address> + 05h will output  
RCR[15:0] on the data bus.  
When using a Latency Count of Code 2 and a Data Hold of two cycles (CR9 = 1), WAIT  
must be configured to deassert with valid data (CR8 = 0).  
Table 31: Read Configuration Register Bit Definitions  
Read Configuration Register (RCR)  
Default: CR15 = 1  
Burst Length  
Read  
WAIT  
Polarity  
WAIT  
Delay  
Latency Count  
Mode  
R
Reserved  
15  
14  
13  
12  
11  
10  
9
8
7:3  
2
1
0
Bit  
Name  
Description  
0 = Synchronous burst-mode reads  
15  
Read Mode  
1 = Asynchronous page-mode reads (default)  
Bits: 14 13 12 11  
0
0
0
0
0
1
1
1
1
1
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
=
=
=
=
=
=
=
=
=
=
3
4
5
6
7
8
9
14:11  
Latency Count  
10  
11  
12  
(Other bit settings are reserved)  
0
1
=
=
WAIT signal is active low (default)  
WAIT signal is active high  
10  
WAIT Polarity  
9
Reserved  
WAIT Delay  
Reserved  
Write 0 to reserved bits  
0
1
=
=
WAIT de-asserted with valid data  
WAIT de-asserted one cycle before valid data (default)  
8
7:3  
Write 0 to reserved bits  
0
0
1
1
1
1
0
1
1
=
=
=
8-word burst (wrap only)  
16-word burst (wrap only)  
Continuous-word burst (no-wrap; default) (Other bit settings  
are reserved)  
2:0  
Burst Length  
9.2.1  
Latency Count  
The Latency Count value programmed into RCR[14:11] is the number of valid CLK  
edges from address-latch to the start of the data-output delay. When the Latency  
Count has been satisfied, output data is driven after tCHQV.  
Datasheet  
78  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 46: Latency Count Period  
Latency Count  
CLK Latch (1)  
CLK  
ADV# (1)  
ADV#-Latch (2)  
ADV# (2)  
A[Max:0]  
CE#  
OE#  
tCHQV  
DQ[15:0]  
Notes:  
1.  
2.  
Address latched on valid clock edge with ADV# low and LC count begins.  
Address latched on ADV# rising edge. LC count begins on subsequent valid CLK edge.  
Table 32: CLK Frequencies for LC Settings  
VCCQ = 1.7 V to 2.0 V  
Latency Count Setting  
Frequency Supported (MHz)  
3
32.6 MHz  
43.5 MHz  
54.3 MHz  
65.2 MHz  
76.1 MHz  
87 MHz  
4
5
6
7
8
9
97.8 MHz  
108.7 MHz  
119.6 MHz  
130.4 MHz  
133.3 MHz  
10  
11  
12  
13  
9.3  
Enhanced Configuration Register  
The Enhanced Configuration Register (ECR) is a volatile 16-bit, read/write register used  
to select Deep Power Down (DPD) operation and to modify the output-driver strength  
of the flash device. All Enhanced Configuration Register bits are set and cleared using  
the Program Enhanced Configuration Register command. Upon power-up or exit from  
reset, the Enhanced Configuration Register defaults to 0004h.  
To read the value of the ECR, issue the Read Device Information command to the  
desired partition. Subsequent reads from the <partition base address> + 06h returns  
ECR[15:0].  
April 2008  
309823-10  
Datasheet  
79  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 33: Enhanced Configuration Register Bit Definitions  
Enhanced Configuration Register  
Default = 0004h  
Output Driver Control  
Deep Power Down  
DPD Polarity  
14  
Reserved  
(DPD) Mode  
15  
13:3  
2
1
0
Bit  
Name  
Description  
0
1
= DPD Disabled (default)  
15  
Deep Power Down (DPD) Mode  
=
DPD Enabled  
0
1
=
=
Active Low (default)  
Active High  
14  
DPD Pin Polarity  
Reserved  
13:3  
Write 0 to reserved bits  
Bits:  
2
0
1
1
0
0
1
1
1
0
1
0
1
0
0
0
0
0
1
1
1
=
=
=
=
=
=
1
2
3
2:0  
Output Driver Control  
4 (default)  
5
6
(Other bit settings are reserved)  
9.3.1  
Output Driver Control  
Output Driver Control enables the user to adjust the device’s output-driver strength of  
the data I/O bus and WAIT signal. Upon power-up or reset, ECR[2:0] defaults to an  
output impedance setting of 30 Ohms. To change the output-driver strength, ECR[2:0]  
must be programmed to the desired setting as shown in Table 34, “Output Driver  
Control Characteristics”.  
Table 34: Output Driver Control Characteristics  
Control Bits ECR[2:0]  
Impedance @ VCCQ/2 (Ohm)  
90  
Driver Multiplier  
Load Driven at Same Speed (pF)  
10  
001  
(1)  
1/3  
1/2  
2/3  
1
010  
011  
100  
101  
110  
(2)  
60  
45  
30  
20  
15  
15  
20  
30  
35  
40  
(3)  
(4) default  
(5)  
3/2  
2
(6)  
9.3.2  
Programming the ECR  
The ECR is programmed by issuing the Program Enhanced Configuration Register  
command. This is a two-cycle command sequence requiring a Setup command to be  
issued first, followed by a Confirm command. Bus-write cycles to the flash device  
between the setup and confirm commands are not allowed—a command sequence  
error will result. However, flash bus-read cycles between the Setup and Confirm  
commands are allowed.  
Datasheet  
80  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 35: Program Enhanced Configuration Register Command Bus Cycles  
Setup Write Cycle  
Confirm Write Cycle  
Command  
Address Bus  
Register Data  
Data Bus  
Address Bus  
Data Bus  
Program Enhanced Configuration Register  
0060h  
Register Data  
0004h  
To program the Enhanced Configuration Register, the desired settings for ECR[15:0]  
are placed on the address bus. The setup command (0060h) is driven on the data bus.  
Upon issuing the setup command, the device/addressed partition is automatically  
changed to Read Status Register mode.  
Next, the Confirm command (0004h) is driven on the data bus. After issuing the  
Confirm command, the addressed partition is automatically switched to Read Array  
mode.  
This command functions independently of the applied VPP voltage.  
Note:  
Since the desired register value is placed on the address lines, any hardware-  
connection offsets between the host’s address outputs and the flash device’s address  
inputs must be considered, similar to programming the RCR.  
9.4  
Read Operations  
The following types of data can be read from the device: array data, device  
information, CFI data, and device status Upon power-up or return from reset, the  
device defaults to Read Array mode. To change the device’s read mode, the appropriate  
command must be issued to the device. Table 36, “Read Mode Command Bus Cycles”  
shows the command codes used to configure the device for the desired read mode. The  
following sections describe each read mode.  
Table 36: Read Mode Command Bus Cycles  
Setup Write Cycle  
Address Bus  
Partition Address  
Confirm Write Cycle  
Address Bus Data Bus  
Command  
Data Bus  
00FFh  
Read Array  
---  
---  
---  
---  
---  
---  
---  
---  
Read Status Register  
Read Device Information  
CFI Query  
Partition Address  
Partition Address  
Partition Address  
0070h  
0090h  
0098h  
9.4.1  
Read Array  
Upon power-up or exit from reset, the device defaults to Read Array mode. Issuing the  
Read Array command places the addressed partition in Read Array mode. Subsequent  
reads output array data. The addressed partition remains in Read Array mode until a  
different read command is issued, or a program or erase operation is performed in that  
partition, in which case, the read mode is automatically changed to Read Status.  
To changea partition to Read Array mode while it is programming or erasing, first issue  
the Suspend command. After the operation has been suspended, issue the Read Array  
command to the partition. When the program or erase operation is subsequently  
resumed, the read state of the partition will not change. To change the read state of  
the partition to Status read mode, issue a Read Status command to the partition.  
April 2008  
309823-10  
Datasheet  
81  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Note:  
Issuing the Read Array command to a partition that is actively programming or erasing  
causes subsequent reads from that partition to output invalid data. Valid array data is  
output only after the program or erase operation has finished.  
The Read Array command functions independent of the voltage level on VPP.  
9.4.2  
Read Status Register  
Issuing the Read Status Register command places the addressed partition in Read  
Status Register mode. Subsequent reads from that partition output Status Register  
information. The addressed partition remains in Read Status Register mode until a  
different read-mode command is issued to that partition. Performing a program, erase,  
or block-lock operation also changes the partition’s read mode to Read Status Register  
mode.  
The Status Register is updated on the falling edge of CE#, or OE# when CE# is low.  
Status Register contents are valid only when SR7 = 1.  
The Read Status Register command functions independent of the voltage level on VPP.  
9.4.3  
Read Device Information  
Issuing the Read Device Information command places the addressed partition in Read  
Device Information mode. Subsequent reads output device information on the data  
bus. The address offsets for reading the available device information are shown here.  
Table 37: Device Information Summary  
Device Information  
Address Bus  
Data Bus  
Device Manufacturer Code (Numonyx)  
Device ID Code  
Partition Base Address + 00h  
Partition Base Address + 01h  
0089h  
Device IDs  
D0 = Lock Status  
D1 = Lock-Down Status  
Main Block Lock Status  
Block Base Address + 02h  
Read Configuration Register  
Partition Base Address + 05h  
Partition Base Address + 06h  
Configuration Register Data  
Enhanced Configuration  
Register Data  
Enhanced Configuration Register  
OTP Lock Register 0  
Partition Base Address + 80h  
Lock Register 0 Data  
Factory-Programmed Data  
User Data  
OTP Register - Factory Segment  
OTP Register - User-Programmable Segment  
OTP Lock Register 1  
Partition Base Address + 81h to 84h  
Partition Base Address + 85h to 88h  
Partition Base Address + 89h  
Lock Register 1 Data  
User Data  
OTP Registers 1 through 16  
Partition Base Address + 8Ah to 109h  
The addressed partition remains in Read Device Information mode until a different read  
command is issued. Also, performing a program, erase, or block-lock operation changes  
the addressed partition to Read Status Register mode.  
Note:  
Issuing the Read Device Information command to a partition that is actively  
programming or erasing changes that partition’s read mode to Read Device Information  
mode. Subsequent reads from that partition will return invalid data until the program or  
erase operation has completed.  
The Read Device Information command functions independent of the voltage level on  
VPP.  
Datasheet  
82  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
9.4.4  
CFI Query  
Issuing the CFI Query command places the addressed partition in CFI Query mode.  
Subsequent reads from that partition output CFI information.  
The addressed partition remains in CFI Query mode until a different read command is  
issued, or a program or erase operation is performed, which changes the read mode to  
Read Status Register mode.  
Note:  
Issuing the CFI Query command to a partition that is actively programming or erasing  
changes that partition’s read mode to CFI Query mode. Subsequent reads from that  
partition will return invalid data until the program or erase operation has completed.  
The CFI Query command functions independent of the voltage level on VPP.  
9.5  
Programming Modes  
To understand programming modes, it is also important to understand the fundamental  
memory array configuration. The flash device main array is divided as follows:  
• The main array of the 128-Mbit device is divided into eight 16-Mbit partitions. Each  
parition is divided into eight 256-KByte blocks: 8 x 8 = 64 blocks in the main array  
of a 128-Mbit device.  
• The main array of the 256-Mbit device is divided into eight 32-Mbit partitions. Each  
partition is divided into sixteen 256-KByte blocks: 8 x 16 = 128 blocks in the main  
array of a 256-Mbit device.  
• The main array of the 512-Mbit device is divided into eight 64-Mbit partitions. Each  
partition is divided into thirty-two 256-KByte blocks: 8 x 32 = 256 blocks in the  
main array of a 256-Mbit device.  
• The main array of the 1-Gbit device is divided into eight 128-Mbit partitions. Each  
partition is divided into sixty-four 256-KByte blocks: 8 x 64 = 512 blocks in the  
main array of a 1-Gbit device.  
Each block is divided into as many as two-hundred-fifty-six 1-KByte programming  
regions. Each region is divided into as many as thirty-two 32-Byte segments.  
Each programming region in a flash block can be configured for one of two  
programming modes: Control Mode or Object Mode. The programming mode is  
automatically set based on the data pattern when a region is first programmed. The  
selection of either Control Mode or Object Mode is done according to the specific needs  
of the system with consideration given to two types of information:  
• Control Mode: Flash File System (FFS) or Header information, including frequently  
changing code or data  
• Object Mode: Large, infrequently changing code or data, such as objects or  
payloads  
By implementing the appropriate programming mode, software can efficiently organize  
how information is stored in the flash memory array.  
Control Mode programming regions and Object Mode programming regions can be  
intermingled within the same erase block. However, the programming mode of any  
region within a block can be changed only after erasing the entire block.  
April 2008  
309823-10  
Datasheet  
83  
Numonyx™ StrataFlash® Cellular Memory (M18)  
9.5.1  
Control Mode  
Control Mode programming is invoked when only the A-half (A3 = 0) of the  
programming region is programmed to 0s, as shown in Figure 47, “Configurable  
Programming Regions: Control Mode and Object Mode” on page 85. The B-half (A3 =  
1) remains erased. Control mode allows up to 512 bytes of data to be programmed in  
the region. The information can be programmed in bits, bytes, or words.  
Control Mode supports the following programming methods:  
— Single-word Programming (0041h)  
— Buffered Programming (00E9h/00D0h), and  
— Buffered Enhanced Factory Programming (0080h/00D0h)  
When buffered programming is used in Control Mode, all addresses must be in the A-  
half of the buffer (A3 = 0). During buffer fill, the B-half (A3 = 1) addresses do not need  
to be filled with 0xFFFF.  
Control Mode programming is useful for storing dynamic information, such as FFS  
Headers, File Info, and so on. Typically, Control Mode programming does not require  
the entire 512 bytes of data to be programmed at once. It may also contain data that is  
changed after initial programming using a technique known as “bit twiddling. Header  
information can be augmented later with additional new information within a Control  
Mode-programmed region. This allows implementation of legacy file systems, as well as  
transaction-based power-loss recovery.  
In a control mode region, programming operations can be performed multiple times.  
However, care must be taken to avoid programming any zero’s in the B-half (A3 = 1) of  
the region. Violation of this usage will cause SR4 and SR9 to be set, and the program  
operation will be aborted. See Table 38, “Programming Region Next State Table” on  
page 88 for details.  
Datasheet  
84  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 47: Configurable Programming Regions: Control Mode and Object Mode  
Main Array  
256-Kbyte Block  
256 KBytes  
256 KBytes  
.
.
1 KByte  
256 KBytes  
Programming region in Object Mode  
256 KBytes  
Address Bit A3 = 0: Allows up to 1  
KByte of data to be programmed .  
.
.
256 KBytes  
512 Bytes  
512 Bytes  
Programming region in Control Mode  
.
.
.
A half  
B half  
(Control  
(Erased)  
Mode )  
Address Bit A3 = 1: Allows up to 512  
Bytes of data to be programmed to  
the A half by bit, byte, or word.  
.
.
.
.
.
.
.
.
.
.
.
.
Programming region in Object Mode  
1 KByte  
.
.
.
Programming region in Object Mode  
256 KBytes  
1 KByte  
256 KBytes  
.
.
256 KBytes  
9.5.2  
Object Mode  
Object mode programming is invoked when one or more bits are programmed to zero  
in the B-half of the programming region (A3 = 1). Object mode allows up to 1KB to be  
stored in a programming region. Multiple regions are used to store more than 1Kbyte of  
information. If the object is less than 1Kbyte, the unused content will remain as 0xFFFF  
(erased).  
Object Mode supports two programming methods:  
— Buffered Programming (00E9h/00D0h), and  
— Buffered Enhanced Factory Programming (0080h/00D0h)  
April 2008  
309823-10  
Datasheet  
85  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Single-word programming (0041h) is not supported in Object mode. To perform  
multiple programming operations within a programming region, Control mode must be  
used.  
Object mode is useful for storing static information, such as objects or payloads, that  
rarely change.  
Once the programming region is configured in Object mode, it cannot be augmented or  
over-written without first erasing the entire block containing the region. Subsequent  
programming operations to a programming region configured in Object mode will cause  
SR4 and SR8 to be set and the program operation to be aborted. See Table 38,  
“Programming Region Next State Table” on page 88 for details.  
Note:  
Issuing the 41h command to the B-half of an erased region will set error bits SR8 and  
SR9, and the programming operation will not proceed. See Table 38, “Programming  
Region Next State Table” on page 88 for more details.  
Datasheet  
86  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 48: Configurable Programming Regions: Control Mode and Object Mode Segments  
32 Bytes  
Segments  
31  
Object  
30  
Object  
Object  
Object  
Object  
.
.
3
2
1
0
Object  
Object  
Object  
Object  
Object  
Programming region in  
Object Mode  
Program up to  
1 KByte of data  
1 KByte  
.
.
.
256-Kbyte Block  
1 KByte  
512 Bytes  
512 Bytes  
A half  
B half  
(Control  
(Erased)  
Mode)  
Program up to 512  
Bytes of data  
Programming  
region in  
Control Mode  
Segments  
31  
Sequence Table Entry  
Header  
Header  
Header  
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
30  
.
.
3
2
1
0
Header  
File Information  
Header  
Directory Information  
Header  
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
Sequence Table Entry  
Header  
16 Bytes  
16 Bytes  
April 2008  
309823-10  
Datasheet  
87  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 38: Programming Region Next State Table  
Command Issued  
Current State of  
Programming  
Region  
0041h to B-half  
(A3 = 1)  
0041h to A-half  
(A3 = 0)  
00E9h to B-half  
(A3 = 1)  
00E9h to A-half  
(A3 = 0)  
Program Successful  
SR[4,8,9] = 0  
Region configured to  
Control Mode  
Program Successful  
SR[4,8,9] = 0  
Region configured to  
Object Mode  
Program Successful  
SR[4,8,9] = 0  
Region configured to  
Control Mode  
Erased  
Program Fail;  
Object data to Control  
mode region  
Program Fail; Illegal  
Command  
SR[4,8,9] = 1  
Program Successful  
SR[4,8,9] = 0  
Program Successful  
SR[4,8,9] = 0  
Control Mode  
Object Mode  
SR[4,9] = 1  
SR8 = 0  
Program Fail; Rewrite to Object mode region  
SR[4,8] = 1  
SR9 = 0  
9.6  
Programming Operations  
Programming the flash array changes ‘ones’ to ‘zeros. To change zeros to ones, an  
Erase operation must be performed. Only one programming operation can occur at a  
time. Programming is permitted during Erase Suspend.  
Information is programmed into the flash array by issuing the appropriate command.  
Table 39, “Programming Commands Bus Cycles” shows the two-cycle command  
sequences used for programming.  
Table 39: Programming Commands Bus Cycles  
Setup Write Cycle  
Address Bus Data Bus  
Confirm Write Cycle  
Command  
Address Bus  
Data Bus  
Single-Word Program  
Device Address  
Device Address  
Device Address  
0041h  
00E9h  
0080h  
Device Address  
Device Address  
Device Address  
Array Data  
00D0h  
Buffered Program  
Buffered Enhanced Factory Program  
00D0h  
Caution:  
All programming operations require the addressed block to be unlocked, and a  
valid VPP voltage applied throughout the programming operation. Otherwise,  
the programming operation will abort, setting the appropriate Status Register  
error bit(s).  
The following sections describe each programming method.  
9.6.1  
Single-Word Programming  
Main array programming is performed by first issuing the Single-Word Program  
command. This is followed by writing the desired data at the desired array address. The  
read mode of the addressed partition is automatically changed to Read Status Register  
mode, which remains in effect until another read-mode command is issued.  
Datasheet  
88  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Note:  
Issuing the Read Status Register command to another partition switches that partition’s  
read mode to Read Status Register mode, thereby allowing programming progress to  
be monitored from that partition’s address.  
Single-Word Programming is supported in Control mode only. The array address  
specified must be in the A-half of the programming region.  
During programming, the Status Register indicates a busy status (SR7 = 0). Upon  
completion, the Status Register indicates a ready status (SR7 = 1). The Status Register  
should be checked for any errors, then cleared.  
The only valid commands during programming are Read Array, Read Device  
Information, CFI Query, Read Status and Program Suspend. After programming has  
finished, any valid command can be issued.  
Note:  
Issuing the Read Array, Read Device Information, or CFI Query command to a partition  
that is actively programming causes subsequent reads from that partition to output  
invalid data. Valid data is output only after the program operation has finished.  
Standby power levels are not realized until the programming operation has finished.  
Asserting RST# immediately aborts the programming operation, and array contents at  
the addressed location are indeterminate. The addressed block should be erased, and  
the data re-programmed.  
9.6.2  
Note:  
Buffered Programming  
Buffered Programming programs multiple words simultaneously into the flash memory  
array. Data is first written to a write buffer and then programmed into the flash  
memory array in buffer-size increments. This can significantly reduce the effective  
word-write time. Section 6.0, “Flow Charts” on page 41 contains a flow chart of the  
buffered-programming operation.  
Optimal performance and power consumption is realized only by aligning the start  
address on 32-word boundaries, e.g., A[4:0] = 00000b. Crossing a 32-word boundary  
during a Buffered Programming operation can cause the programming time to double.  
Buffered Programming is supported in both Control mode and Object mode. In Object  
mode, the region must be programmed only once between erases. However in Control  
mode, the region may be programmed multiple times.  
Caution:  
When using the Buffered Program command in Object mode, the start address  
must be aligned to the 512-word buffer boundary. In Control mode, the  
programming array address specified must be in the A-half of the  
programming region.  
First issue the Read Status command to the desired partition. The read mode of the  
addressed partition is changed to Read Status Register mode.  
Poll SR7 to determine write-buffer availability (0 = not available, 1 = available). If the  
write buffer is not available, re-issue the Read Status command and check SR7; repeat  
until SR7 = 1.  
If desired issue a Read Array command to the desired partition to change the read  
mode of the partition to Array reads.  
To perform a buffered programming operation, issue the Buffered Program setup  
command at the desired starting address. Next, issue a word count at the desired  
starting address. The word count is the total number of words to be written into the  
write buffer, minus one. This value can range from 0000h (one word) up to a maximum  
of 01FFh (512 words). Exceeding the allowable range causes the operation to abort.  
April 2008  
309823-10  
Datasheet  
89  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Following the word count, subsequent bus-write cycles fill the write buffer with user-  
data up to the word count.  
Note:  
User-data is programmed into the flash array at the address issued when filling the  
write buffer.  
The Confirm command (00D0h) is issued after all user-data is written into the write  
buffer. The read mode of the device/addressed partition is automatically changed to  
Read Status Register mode. If other than the Confirm command is issued to the device,  
a command sequence error occurs and the operation aborts.  
After the Confirm command has been issued, the write-buffer contents are  
programmed into the flash memory array. The Status Register indicates a busy status  
(SR7 = 0) during array programming.  
During array programming, the only valid commands are Read Array, Read Device  
Information, CFI Query, Read Status, and Program Suspend. After array programming  
has completed (SR7 = 1), any valid command can be issued. Reading from another  
partition is allowed while data is being programmed into the flash memory array from  
the write buffer.  
Note:  
Issuing the Read Array, Read Device Information, or CFI Query command to a partition  
that is actively programming or erasing causes subsequent reads from that partition to  
output invalid data. Valid data is output only after the program or erase operation has  
finished.  
Upon completion of array programming, the Status Register indicates ready (SR7 =  
1b). A full Status Register check should be performed to check for any programming  
errors. Then the Status Register should be cleared using the Clear Status Register  
command.  
A subsequent buffered programming operation can be initiated by repeating the  
buffered programming sequence. Any errors in the Status Register caused by the  
previous operation must be cleared to prevent them from masking any errors that may  
occur during the subsequent operation.  
9.6.3  
Buffered Enhanced Factory Programming (BEFP)  
Buffered Enhanced Factory Programming (BEFP) improves programming performance  
through the use of the write buffer, elevated programming voltage (VPPH), and  
enhanced programming algorithm. User-data is written into the write buffer, then the  
buffer contents are automatically written into the flash array in buffer-size increments.  
BEFP is allowed in both Control Mode and Object Mode. The programming mode  
selection for the entire flash array block is driven by the specific type of information,  
such as header or object data. Header/object data is aligned on a 1 KB programming  
region boundary in the main array block.  
Internal verification during programming (inherent to MLC technology) and Status  
Register error checking are used to determine proper completion of the programming  
operation. This eliminates delays incurred when switching between single-word  
program and verify operations.  
BEFP consists of three distinct phases:  
1. Setup Phase: VPPH and block-lock checks  
2. Program/Verify Phase: buffered programming and verification  
3. Exit Phase: block-error check  
Datasheet  
90  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Section 6.0, “Flow Charts” on page 41 contains a flow chart of the BEFP operation.  
Table 40, “BEFP Requirements and Considerations” on page 91 lists specific BEFP  
requirements and considerations.  
Note:  
For BEFP voltage and temperature operating restrictions, see the datasheet. The block  
erase cycles in Table 40, “BEFP Requirements and Considerations” are recommended  
for optimal performance. If exceeded some degradation in performance may occur;  
however, the internal algorithm will still function correctly.  
Table 40: BEFP Requirements and Considerations  
Temperature (TCASE) must be 25 °C, ± 5 °C  
Voltage on VCC must be within the allowable operating range  
Voltage on VPP must be within the allowable operating range  
Block being programmed must be erased and unlocked  
Block cycling below 100 erase cycles  
BEFP Requirements  
Reading from another partition during EFP (RWW) is not allowed  
BEFP programs within one block at a time  
BEFP Considerations  
BEFP cannot be suspended  
9.6.3.1  
Caution:  
9.6.3.2  
Setup Phase  
Issuing the BEFP Setup and Confirm command sequence starts the BEFP algorithm. The  
read mode of the addressed partition is automatically changed to Read Status Register  
mode.  
The address used when issuing the setup/confirm commands must be buffer-size  
aligned within the block being programmed -- buffer contents cannot cross block  
boundaries.  
The Read Status Register command must not be issued -- it will be interpreted  
as data to be written to the write buffer.  
A setup delay (tBEFP/Setup) occurs while the internal algorithm checks VPP and block-lock  
status. If errors are detected, the appropriate Status Register error bits are set and the  
operation aborts.  
The Status Register should be polled for successful BEFP setup, indicated by SR[7,0] =  
0 (Device Busy, Buffer Ready for Data).  
Program/Verify Phase  
Data is first written into the write buffer, then programmed into the flash array. During  
the buffer-fill sequence, the address used must be buffer-size aligned. Use of any other  
address will cause the operation to abort with a program fail error, and any data  
previously loaded in the buffer will not be programmed into the array.  
The buffer-fill data is stored in sequential buffer locations starting at address 00h. A  
word count equal to the maximum buffer size is used, therefore, the buffer must be  
completely filled. If the amount of data is less than the maximum buffer size, the  
remaining buffer locations must be “padded” with FFFFh to completely fill the buffer.  
Flash array programming starts as soon as the write buffer is full. Data words from the  
write buffer are programmed into sequential array locations. SR0 = 1 indicates the  
write buffer is not available while the BEFP algorithm programs the array.  
April 2008  
309823-10  
Datasheet  
91  
Numonyx™ StrataFlash® Cellular Memory (M18)  
The Status Register should be polled for SR0 = 0 (Buffer Ready for Data) to determine  
when the array programming has completed, and the write buffer is again available for  
loading. The internal address is automatically incremented to enable subsequent array  
programming to continue from where the previous buffer-fill/array-program sequence  
ended within the block. This cycle can be repeated to program the entire block.  
To exit the Program/Verify Phase, write FFFFh to an address outside of the block.  
9.6.3.3  
Exit Phase  
The Status Register should be polled for SR7 = 1 (Device Ready) indicating the BEFP  
algorithm has finished running, and the device has returned to normal operation. A full  
error check should be performed to ensure the block was programmed successfully.  
9.7  
Block Erase Operations  
Erasing a block changes ‘zeros’ to ‘ones. To change ones to zeros, a program operation  
must be performed (see Section 9.6, “Programming Operations). Erasing is performed  
on a block basis— an entire block is erased each time an erase command sequence is  
issued. Once a block is fully erased, all addressable locations within that block read as  
logical ‘ones’ (FFFFh).  
Only one block-erase operation can occur at a time. A block-erase operation is not  
permitted during Program Suspend.  
To perform a block-erase operation, issue the Block Erase command sequence at the  
desired block address. Table 41 shows the two-cycle Block Erase command sequence.  
Table 41: Block-Erase Command Bus Cycles  
Setup Write Cycle  
Confirm Write Cycle  
Address Bus Data Bus  
Block Address 00D0h  
Command  
Address Bus  
Data Bus  
Block Erase  
Device Address  
0020h  
Caution:  
All block-erase operations require the addressed block to be unlocked, and a  
valid voltage applied to VPP throughout the block-erase operation. Otherwise,  
the operation aborts, setting the appropriate Status Register error bit(s).  
The Erase Confirm command latches the address of the block to be erased. The  
addressed block is preconditioned (programmed to all zeros), erased, and then verified.  
The read mode of the addressed partition is automatically changed to Read Status  
Register mode, and remains in effect until another read-mode command is issued.  
Note:  
Issuing the Read Status Register command to another partition switches that partition’s  
read mode to the Read Status Register, thereby allowing block-erase progress to be  
monitored from that partition’s address. SR0 indicates whether the addressed partition  
or other partition is erasing.  
During a block-erase operation, the Status Register indicates a busy status (SR7 = 0).  
Upon completion, the Status Register indicates a ready status (SR7 = 1). The Status  
Register should be checked for any errors, and then cleared.  
The only valid commands during a block erase operation are Read Array, Read Device  
Information, CFI Query, Read Status and Erase Suspend. After the block-erase  
operation has completed, any valid command can be issued.  
Datasheet  
92  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Note:  
Issuing the Read Array command to a partition that is actively erasing a main block  
causes subsequent reads from that partition to output invalid data. Valid array data is  
output only after the block-erase operation has finished.  
Standby power levels are not realized until the block-erase operation has finished.  
Asserting RST# immediately aborts the block-erase operation, and array contents at  
the addressed location are indeterminate. The addressed block should be erased, and  
the data re-programmed.  
9.8  
Blank Check Operation  
Blank Check is used to see if a main-array block is completely erased. A Blank Check  
operation is performed one block at a time, and cannot be used during Program  
Suspend or Erase Suspend.  
To use Blank Check, first issue the Blank Check setup command followed by the confirm  
command. The read mode of the addressed partition is automatically changed to Read  
Status Register mode, which remains in effect until another read-mode command is  
issued.  
Table 42: Blank Check Command Bus Cycles  
Setup Write Cycle  
Address Bus Data Bus  
Block Address 00BCh  
Confirm Write Cycle  
Command  
Address Bus  
Data Bus  
00D0h  
Blank Check  
Block Address  
During a blank check operation, the Status Register indicates a busy status (SR7 = 0).  
Upon completion, the Status Register indicates a ready status (SR7 = 1).  
Note:  
Issuing the Read Status Register command to another partition switches that partition’s  
read mode to Read Status Register mode, thereby allowing the blank check operation  
to be monitored from that partition’s address.  
The Status Register should be checked for any errors, and then cleared. If the Blank  
Check operation fails, i.e., the block is not completely erased, then the Status Register  
will indicate a Blank Check error (SR[7,5] = 1).  
The only valid command during a Blank Check operation is Read Status. Blank Check  
cannot be suspended. After the blank check operation has completed, any valid  
command can be issued.  
9.9  
Suspend and Resume  
Program and erase operations of the main array can be suspended to perform other  
device operations, and then subsequently resumed. However, OTP Register  
programming or blank check operations cannot be suspended.  
To suspend an on-going erase or program operation, issue the Suspend command to  
any device address; the corresponding partition is not affected. Table 43 shows the  
Suspend and Resume command bus-cycles.  
Note:  
Issuing the Suspend command does not change the read mode of the partition. The  
partition will be in Read Status Register mode from when the erase or program  
command was first issued, unless the read mode was changed prior to issuing the  
Suspend command.  
April 2008  
309823-10  
Datasheet  
93  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 43: Suspend and Resume Command Bus Cycles  
Setup Write Cycle  
Confirm Write Cycle  
Address Bus Data Bus  
Command  
Address Bus  
Data Bus  
Suspend  
Resume  
Device Address  
Device Address  
00B0h  
00D0h  
---  
---  
---  
---  
The program or erase operation suspends at pre-determined points during the  
operation after a delay of tSUSP. Suspend is achieved when SR[7,6] = 1 (erase-  
suspend) or SR[7,2] = 1 (program-suspend).  
Note:  
Throughout the Block Erase Suspend or Program Suspend period, the addressed block  
must remain unlocked and a valid voltage applied to VPP. Otherwise, the erase or  
program operation will abort, setting the appropriate Status Register error bit(s). Also,  
WP# must remain unchanged.  
Asserting RST# aborts suspended block-erase and programming operations -- array  
contents at the addressed locations are indeterminate. The addressed block should be  
erased, and the data re-programmed.  
Not all commands are allowed when the device is suspended. Table 44 shows which  
device commands are allowed during Program Suspend or Erase Suspend.  
Table 44: Valid Commands During Suspend  
Device Command  
Program Suspend  
Allowed  
Erase Suspend  
Read Array  
Allowed  
Allowed  
Allowed  
Allowed  
Allowed  
Allowed  
Allowed  
Read Status Register  
Clear Status Register  
Read Device Information  
CFI Query  
Allowed  
Allowed  
Allowed  
Allowed  
Word Program  
Not Allowed  
Not Allowed  
Not Allowed  
Not Allowed  
Not Allowed  
Allowed  
Buffered Program  
Buffered Enhanced Factory Program  
Block Erase  
Not Allowed  
Not Allowed  
Not Allowed  
Allowed  
Program/Erase Suspend  
Program/Erase Resume  
During Suspend, reading from a block that is being erased or programmed is not  
allowed. Also, programming to a block that is in erase-suspend state is not allowed,  
and if attempted, will result in Status Register program error to be set (SR4 = 1).  
A block-erase under program-suspend is not allowed. However, word-program under  
erase-suspend is allowed, and can be suspended. This results in a simultaneous erase-  
suspend/ program-suspend condition, indicated by SR[7,6,2] = 1.  
To resume a suspended program or erase operation, issue the Resume command to  
any device address. The read mode of the resumed partition is unchanged; issue the  
Read Status Register command to return the partition to Read Status mode. The  
operation continues where it left off, and the respective Status Register suspend bits  
are cleared.  
Datasheet  
94  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
When the Resume command is issued during a simultaneous erase-suspend/ program-  
suspend condition, the programming operation is resumed first. Upon completion of the  
programming operation, the Status Register should be checked for any errors, and  
cleared. The resume command must be issued again to complete the erase operation.  
Upon completion of the erase operation, the Status Register should be checked for any  
errors, and cleared.  
9.10  
Simultaneous Operations  
The multi-partition architecture of the flash device allows programming or erasing to  
occur in one partition while reads are performed from another partition. Only status  
reads are allowed in partitions that are busy programming or erasing.  
Note:  
When OTP Registercommands are issued to a parameter any partition address, the OTP  
Registeris mapped onto that partition.  
Table 45, “Read-While-Program and Read-While-Erase Rules” shows the rules for  
reading from a partition while simultaneously programming or erasing within another  
partition.  
Table 45: Read-While-Program and Read-While-Erase Rules  
Read modes allowed when program/erase busy in partition A  
Non-Array Reads1  
Active Operation  
Read Status  
Array Reads  
Main-Array Program  
Main-Array Erase  
All partitions  
All partitions  
All partitions  
All partitions except busy partition A  
All partitions except busy partition A  
All partitions except busy partition A  
All partitions except busy partition A  
All partitions except busy partition A  
Not allowed  
OTP Register Program  
Note: OTP Register, Device Information, CFI Query.  
9.11  
Security  
The flash device incorporates features for protecting main-array contents and for  
implementing system-level security schemes. The following sections describe the  
available features.  
9.11.1  
Block Locking  
Two methods of block-lock control are available: software and hardware. Software  
control uses the Block Lock and Block Unlock commands; hardware control uses WP#  
along with the Block Lock-Down command.  
Upon power up or exit from reset, all main array blocks are locked, but not locked  
down. Locked blocks cannot be erased or programmed.  
Block lock and unlock operations are independent of the voltage level on VPP.  
Table 46 summarizes the command bus-cycles.  
April 2008  
309823-10  
Datasheet  
95  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 46: Block Locking Command Bus Cycles  
Setup Write Cycle  
Confirm Write Cycle  
Address Bus Data Bus  
Command  
Address Bus  
Data Bus  
Lock Block  
Block Address  
Block Address  
Block Address  
0060h  
0060h  
0060h  
Block Address  
Block Address  
Block Address  
0001h  
00D0h  
002Fh  
Unlock Block  
Lock-Down Block  
To lock, unlock, or lock-down a block, first issue the setup command to any address  
within the desired block. The read mode of the addressed partition is automatically  
changed to Read Status Register mode. Next, issue the desired confirm command to  
the block’s address. Note that the confirm command determines the operation  
performed. The Status Register should be checked for any errors, and then cleared.  
The lock status of a block can be determined by issuing the Read Device Information  
command, and then reading from <block base address> + 02h. DQ0 indicates the lock  
status of the addressed block (0 = unlocked, 1 = locked), and DQ1 indicates the lock-  
down status of the addressed block (0 = lock-down not issued; 1 = locked-down  
issued). Section 9.4.3, “Read Device Information” on page 82 summarizes the details  
of this operation.  
Blocks cannot be locked or unlocked while being actively programmed or erased. Blocks  
can be locked or unlocked during erase-suspend, but not during program-suspend.  
Note:  
If a block-erase operation is suspended, and then the block is locked or locked down,  
the lock status of the block will be changed immediately. When resumed, the erase  
operation will still complete.  
Block lock-down protection is dependent on WP#. When WP# = VIL, blocks locked  
down are locked, and cannot be unlocked using the Block Unlock command. When  
WP# = VIH, block lock-down protection is disabled—locked-down blocks can be  
individually unlocked using the Block Unlock command. Subsequently, when WP# =  
VIL, previously locked-down blocks are once again locked and locked-down, including  
locked-down blocks that may have been unlocked while WP# was de-asserted.  
A locked-down block can only be unlocked by issuing the Unlock Block command with  
WP# deasserted. To return an unlocked block to the locked-down state, a Lock-Down  
command must be issued prior to asserting WP#.  
Issuing the Block Lock-Down command to an unlocked block does not lock the block.  
However, asserting WP# after issuing the Block Lock-Down command locks (and locks  
down) the block. Lock-down for all blocks is cleared upon power-up or exit from reset.  
Figure 49 summarizes block-locking operations.  
Datasheet  
96  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 49: Block Locking Operations  
Locked  
Down  
[0,1,1]  
Hardware  
Locked2  
[0,1,1]  
Locked  
[X,0,1]  
2
WP# = VIL  
WP# = VIH  
Power Up  
-or-  
Exit from Reset  
Software  
Locked  
[1,1,1]  
Unlocked  
[X,0,0]  
Unlocked  
[1,1,0]  
Software Control(Lock, Unlock, Lock-Down Command)  
Hardware Control(WP#)  
Notes:  
1.  
2.  
[n,n,n] denotes logical state of WP#, DQ1,and DQ0, respectively; X = Don’t Care.  
[0,1,1] states should be tracked by system software to differentiate between the Hardware-Locked state and the Lock-  
Down state.  
9.11.2  
One-Time Programmable (OTP) Registers  
The device contains seventeen 128-bit One-Time Programmable (OTP) Registers, and  
twoa 16-bit OTP Lock Registers, as shown in Figure 50, “2-Kbit OTP Registers” on  
page 98. The OTP Lock Register 0 is used for locking the OTP Register 0, and OTP Lock  
Register 1 is used for locking OTP Registers 1 through 16.  
The OTP Register 0 consists of two 64-bit segments: a lower segment that is pre-  
programmed with a unique 64-bit value and locked at the factory; and an upper  
segment that contains all “ones” and is user-programmable. OTP Registers 1 through  
16 contain all “ones” and are user-programmable.  
April 2008  
309823-10  
Datasheet  
97  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 50: 2-Kbit OTP Registers  
0x109  
128-bit OTP Register 16  
(User-Programmable)  
0x102  
0x91  
128-bit OTP Register 1  
(User-Programmable)  
0x8A  
0x89  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
OTP Lock Register 1  
0x88  
64-bit Segment  
(User-Programmable)  
0x85  
0x84  
128-Bit OTP Register 0  
64-bit Segment  
(Factory-Programmed)  
0x81  
0x80  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
OTP Lock Register 0  
Each register contains OTP bits that can only be programmed from “one” to “zero” -  
register bits cannot be erased from “zero” back to “one. This feature makes the OTP  
registers particularly useful for implementing system-level security schemes, for  
permanently storing data, or for storing fixed system parameters.  
OTP Lock Register bits “lock out” subsequent programming of the corresponding OTP  
register. Each OTP Register can be locked by programming its corresponding lock bit to  
zero. As long as an OTP register remains unlocked (that is, its lock bit = 1), any of its  
remaining “one” bits can be programmed to “zero.  
Caution:  
Once an OTP Register is locked, it cannot be unlocked. Attempts to program a  
locked OTP Register will fail with error bits set.  
To program any OTP bits, first issue the Program OTP Register setup command at any  
device address. Next, write the desired OTP Register data at the desired OTP Register  
address. OTP Register and OTP Lock Register programming is performed 16 bits at a  
time; only “zeros” within the data word affect any change to the OTP register bits.  
Datasheet  
98  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 47: Program OTP Register Command Bus Cycles  
Setup Write Cycle  
Command  
Confirm Write Cycle  
Address Bus Data Bus  
OTP Register Address Register Data  
Address Bus  
Data Bus  
Program OTP Register  
Device Address  
00C0h  
Attempting to program an OTP register outside of the OTP register space causes a  
program error (SR4 = 1). Attempting to program a locked OTP Register causes a  
program error and a lock error (SR4 = 1, SR1 = 1).  
To read from any of the OTP registers, first issue the Read Device Information  
command. Then read from the desired OTP Register address offset. For additional  
details, refer to Section 9.4.3, “Read Device Information” on page 82.  
9.11.3  
Global Main-Array Protection  
Global main-array protection can be implemented by controlling VPP. When  
programming or erasing main-array blocks, VPP must be equal to, or greater than VPPL  
(min). When VPP is below VPPLK, program or erase operations are inhibited, thus  
providing absolute protection of the main array.  
Various methods exist for controlling VPP, ranging from simple logic control to off-board  
voltage control. Figure 51 shows example VPP supply connections that can be used to  
support program/erase operations and main-array protection.  
Figure 51: Example VPP Supply Connections  
VCC  
VCC  
VPP  
VCC  
VCC  
VPP  
VPPH  
VPPL  
PROT#  
≤ 10Κ  
Factory Programming: VPP = VPPH  
Program/Erase Protection: VPP VPPLK  
Program/Erase Enable: PROT# = VIH  
Program/Erase Protection: PROT# = VIL  
VCC  
VCC  
VPP  
VCC  
VCC  
VPP  
VPPL  
VPPL  
VPPH  
Low-Voltage Programming: VPP = VPPL  
- or-  
Factory Programming: VPP = VPPH  
Low-Voltage Programming: VPP = VCC  
Program/Erase Protection: None  
April 2008  
309823-10  
Datasheet  
99  
Numonyx™ StrataFlash® Cellular Memory (M18)  
10.0  
Device Command Codes  
Table 48: Command Bus Operations  
Code  
(Setup/Confirm)  
Command  
Description  
Program Read  
Issuing this command sequence programs the Read Configuration  
Register. The RCR value is placed on the address bus.  
0060h/0003h  
0060h/0004h  
Configuration Register  
Issuing this command sequence programs the Enhanced  
Configuration Register. The ECR value is placed on the address  
bus.  
Program Enhanced  
Configuration Register  
Issuing this command programs the Protection Registers or the  
Lock Registers associated with them.  
Program OTP Register  
Read Array  
00C0h  
00FFh  
Issuing this command places the addressed partition in Read Array  
mode. Subsequent reads outputs array data.  
Issuing this command places the addressed partition in Read  
Status mode. Subsequent reads outputs Status Register data.  
Read Status Register  
Clear Status Register  
0070h  
0050h  
Issuing this command clears all error bits in the Status Register.  
Issuing this command places the addressed partition in Read  
Device Information mode. Subsequent reads from specified  
address offsets outputs unique device information.  
Read Device Information  
CFI Query  
0090h  
0098h  
Issuing this command places the addressed partition in CFI Query  
mode. Subsequent reads from specified address offsets outputs  
CFI data.  
This command prepares the device for programming a single word  
into the flash array. On the next bus write cycle, the address and  
data are latched and written to the flash array. The addressed  
partition automatically switches to Read Status Register mode.  
Word Program  
0041h  
This command sequence initiates and executes a buffered  
programming operation. Additional bus write/read cycles are  
required between the setup and confirm commands to properly  
perform this operation. The addressed partition automatically  
switches to Read Status Register mode.  
Buffered Program  
00E9h/00D0h  
0080h/00D0h  
This command sequence initiates and executes a BEFP operation.  
Additional bus write/read cycles are required after the confirm  
command to properly perform the operation. The addressed  
partition automatically switches to Read Status Register mode.  
Buffered Enhanced Factory  
Program  
Issuing this command sequence erases the addressed block. The  
addressed partition automatically switches to Read Status mode.  
Block Erase  
0020h/00D0h  
00B0h  
Issuing this command to any device address initiates a suspend of  
a program or block-erase operation already in progress. SR6 = 1  
indicates erase suspend, and SR2 = 1 indicates program suspend.  
Program/Erase Suspend  
Issuing this command to any device address resumes a suspended  
program or block-erase operation. A program suspend nested  
within an erase suspend is resumed first.  
Program/Erase Resume  
00D0h  
This command sequence initiates the blank check operation on a  
block.  
Blank Check  
Lock Block  
00BCh/00D0h  
0060h/0001h  
Issuing this command sequence sets the lock bit of the addressed  
block.  
Issuing this command sequence clears the lock bit of the  
addressed block.  
Unlock Block  
0060h/00D0h  
0060h/002Fh  
Lock Down Block  
Issuing this command sequence locks down the addressed block.  
Datasheet  
100  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
11.0  
Flow Charts  
Figure 52: Word Program for Main Array Flowchart  
WORD PROGRAM PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Program Data = 0x41  
Write  
Write  
Read  
Setup  
Addr = Location to program  
Write 0x41,  
Word Address  
(Setup )  
Data = Data to program  
Addr = Location to program  
Data  
Write Data,  
Word Address  
(Confirm)  
None  
None  
Main or Parameter status register data  
Program  
Suspend  
Loop  
Read Status  
Register  
Check SR[7]  
1 = WSM Ready  
0 = WSM Busy  
Idle  
No  
Suspend?  
Yes  
0
SR[7] =  
1
Repeat for subsequent Word Program operations.  
Full Status Register check can be done after each program, or  
after a sequence of program operations.  
Full Status  
Check  
(if desired)  
Write 0xFF after the last operation to set to the Read Array  
state.  
Program  
Complete  
FULL STATUS CHECK PROCEDURE  
Read Status  
Register  
Bus  
Command  
Operation  
Comments  
Check SR[4]:  
1 = Data Program Error  
Idle  
Idle  
None  
None  
0
1
1
Program  
Success  
SR[4] =  
1
Check SR[1]:  
1 = Block locked; operation aborted  
Device Protect  
Error  
SR[1]  
=
Check SR[3]:  
Idle  
None  
1 =  
VPP Error  
0
Check SR[8] AND SR[9]:  
00=Region program successfu.l  
Vpp Range  
Error  
SR[3] =  
0
10= Attempted write with object  
data to Control Mode regio.n  
Idle  
None  
01= Attempted rewrite to Object  
Mode region.  
SR[8] or  
SR[9] =  
1
See Table on the  
right for explantion  
11=Attempted write using illegal  
command.  
0
SR[3] MUST be cleared before the Write State Machine will  
allow further program attempts.  
Program Fail  
If an error is detected, clear the Status Register before  
continuing operations - only the Clear Staus Register  
command clears the Status Register error bits.  
.
April 2008  
309823-10  
Datasheet  
101  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 53: Program Suspend/Resume Flowchart  
P R O G R A M S U S P E N D / R E S U M E P R O C E D U R E  
S ta rt  
B u s  
O p e ra tio n  
P ro g ra m S u sp e n d  
W rite B 0 h  
C o m m an d  
C o m m e n ts  
A n y A dd re ss  
P rog ra m D a ta = B 0 h  
S u sp en d A dd r = B loc k to su sp en d (B A )  
W rite  
R e a d  
S ta tu s  
(1)  
W rite S R  
(1 )  
R ea d  
D a ta = S R  
S a m e P a rtition  
W rite  
R e ad  
S ta tus  
A dd r = S am e pa rtition  
R ea d S ta tu s  
R eg iste r  
S ta tus re gis ter d ata  
A dd r = S usp en de d blo ck (B A )  
C h eck S R .7  
S tan db y  
S tan db y  
1 = W S M re ad y  
0 = W S M bu sy  
0
0
S R .7 =  
1
C h eck S R .2  
1 = P ro gram su sp en de d  
0 = P ro gram co m ple ted  
P ro gram  
C om p lete d  
S R .2 =  
1
D a ta = F F h  
A dd r = A ny ad dress w ith in the  
su sp en de d p artitio n  
R ea d  
A rra y  
W rite  
R e ad  
W rite  
R e a d  
A rra y  
W rite F F h  
S us p P a rtition  
R e ad arra y d ata from b loc k o the r tha n  
th e on e b ein g pro gram m ed  
R ea d A rra y  
D ata  
P rog ra m D a ta = D 0 h  
R es um e A dd r = S usp en de d blo ck (B A )  
If th e s u s p en d e d p a rtitio n w as p lac ed in R e ad A rra y m o d e:  
D o ne  
N o  
R ea din g  
R e turn p artitio n to S tatu s m o de:  
D a ta = S R  
A dd r = S am e pa rtition  
R ea d  
S ta tus  
(1 )  
W rite  
Y e s  
P ro g ra m  
R e su m e  
R e a d  
A rra y  
W rite D 0 h  
W rite F F h  
A n y A dd re ss  
P g m 'd P artitio n  
P rog ram  
R e su m e d  
R ea d A rray  
D ata  
R e a d  
S ta tu s  
W rite 70 h  
S a m e P a rtition  
P G M _ S U S .W M F  
Datasheet  
102  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 54: Buffered Program Flowchart  
Buffer Programming Procedure  
Bus  
Operation  
Command  
Comments  
SR[7] = Valid  
Read  
(Note 1)  
None  
Addr = Block Address  
Issue Read Status  
Register Command  
at Partition Address  
Check SR[7]:  
1 = Write Buffer available  
0 = No Write Buffer available  
Idle  
None  
No  
Write  
(Note 2)  
Data = 0xFF  
Addr = Block Address  
Read Array  
0 = No  
Flash Ready?  
SR[7] =  
Timeout?  
Write  
(Note 3)  
Buffer Prog. Data = 0xE9  
Setup  
Addr = Block Address  
1 = Yes  
Data = N = Word Count - 1  
(N = 0 corresponds to count = 1)  
Addr = Buffer Address  
Yes  
Timeout error  
Write  
(Notes4,5)  
None  
Issue Read Array  
Command at Partition  
Write  
(Notes 6, 7)  
Data = Write Buffer Data  
Addr = Word Address  
Address  
None  
None  
Write  
(Notes 6, 7)  
Data = Write Buffer Data  
Addr = Word Address  
Set Timeout or  
Loop Counter  
Write  
Buffer Prog. Data = 0xD0  
(Note 8)  
Conf.  
Addr = Block Address  
Issue Buffer Prog. Cmd.  
0xE9,  
Read  
(Note 9)  
Status register Data  
Addr = Block Address  
None  
Block Address  
Check SR[7]:  
1 = WSM Ready  
0 = WSM Busy  
Write Word Count-1,  
Buffer Address  
Standby  
None  
NOTES:  
Buffer Program Data,  
Word Address  
X = X + 1  
1. The device outputs the Status Register when read.  
2. The device outputs the array data when read.  
3. Buffer Programming is available in the main array only. This  
algorithm may be used for MLC or PSBC programming. Upon  
issuing 0xE9 the partition state does not changed.  
4. Word count value on D[8:0] is loaded into the word count  
register. Count ranges for this device are N = 0x000 to 0x1FF.  
5. Buffer address on A[MAX:9] specifies a single 512-word  
buffer-size array region. This is latched and held constant  
during the entire operation.  
Write Buffer Data,  
Word Address  
X = 0  
No  
No  
Abort Buffer  
Program?  
X = N?  
6. The word address within the buffer, specified by A [8:0], is  
provided. Upper address bits are ignored.  
7. The device aborts the Buffer Program command if the current  
Yes  
Write to another  
Block Address  
address is outside the original block address .  
Yes  
8. Upon issuing 0xD0 the partition is placed in Status Read  
mode. If block address changes, Buffer Program will abort.  
9. The Status Register indicates an improper command  
sequence if the Buffer Program command is aborted; use the  
Clear Status Register command to clear error bits.  
Write Confirm 0xD0  
and Block Address  
Buffer Program Aborted  
Full status check can be done after all erase and write  
sequences complete. For a detailed flowchart, please refer to  
‘Full Status Check Procedure’ flowchart under ‘Word Program  
for Main Array’ flowchart.  
Write 0xFF after the last operation to place the partition in the  
Read Array state.  
Suspend  
Program  
Loop  
Read Status Register  
No  
0
Suspend  
Program?  
Yes  
SR[7] =?  
1
Full Status  
Check if Desired  
Program Complete  
.
.
April 2008  
309823-10  
Datasheet  
103  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 55: Buffered EFP Flowchart  
BUFFERED ENHANCED FACTORY PROGRAMMING(Buffered-EFP) PROCEDURE  
Setup Phase  
Program & Verify Phase  
Exit Phase  
Start  
Data Stream Ready  
Read Status Reg .  
VPP applied ,  
Block unlocked  
Initialize Count :  
X = 0  
No (SR [7]=0)  
BEFP  
Exited?  
Yes (SR[7]=1)  
Write 0x80 @  
Write Data @ 1ST  
Word Address  
1ST Word Address  
Full Status Check  
Procedure  
Write 0xD0 @  
Increment Count :  
X = X+1  
1ST Word Address  
Program  
Complete  
BEFP setup delay  
Read Status Reg .  
N
X = 512?  
Y
Read Status Reg .  
No (SR[0]=1)  
Yes (SR[7]=0)  
BEFP Setup  
Done ?  
Program  
Done ?  
No (SR[7]=1)  
Yes (SR[0]=0)  
Check VPP , Lock  
Errors (SR[3,1])  
N
Last  
Data?  
Y
Exit  
Write 0xFFFF,  
Address Not within  
Current Block  
BEFP Setup  
Bus  
State  
BEFP Program & Verify  
BEFP Exit  
Bus  
State  
Operation  
Comments  
Bus State Operation  
Comments  
Operation  
Comments  
Unlock  
Block  
Status  
Read  
Data = Status Register Data  
Address = 1ST Word Addr .  
Status  
Register  
Data = Status Reg. Data  
Address = 1ST Word Addr  
Write  
VPPH applied to VPP  
Read  
Register  
Write  
(Note 2)  
BEFP  
Setup  
Data = 0x80 @ 1ST Word  
Address  
Check SR [0]:  
0 = Ready for Data  
1 = Not Ready for Data  
Check SR[7]:  
0 = Exit Not Completed  
1 = Exit Completed  
Data Stream  
Standby  
Check Exit  
Status  
Standby  
Ready ?  
BEFP  
Confirm  
Data = 0xD0 @ 1ST  
Word Address  
Write  
Read  
Initialize  
Standby  
Repeat for subsequent blocks  
After BEFP exit , a full Status Register check can  
determine if any program error occurred  
;
X = 0  
Count  
Status  
Register  
Data = Status Reg . Data  
Address = 1ST Word Addr  
Write  
Load  
Data = Data to Program  
;
(Note 3)  
Buffer  
Address = 1ST Word Addr .  
BEFP  
Setup  
Done ?  
Check SR [7]:  
0 = BEFP Ready  
1 = BEFP Not Ready  
See full Status Register check procedure in the  
Word Program flowchart .  
Standby  
Increment  
Count  
Standby  
Standby  
Read  
X = X+1  
Write0xFF to enter Read Array state  
.
X = 512?  
Yes = Read SR [0]  
No = Load Next Data Word  
Error  
If SR[7] is set, check:  
Buffer  
Full?  
Standby Condition SR[3] set = VPP Error  
Check SR[1] set = Locked Block  
Status  
Register  
Data = Status Reg . data  
Address = 1ST Word Addr .  
Check SR [0]:  
0 = Program Done  
1 = Program in Progress  
Program  
Done?  
Standby  
Last  
Data?  
No = Fill buffer again  
Yes = Exit  
Standby  
Write  
Exit Prog  
Verify Phase current block  
&
Data = 0xFFFF @ address not in  
NOTES:  
1. BEFP is available in the main array only  
2. First-word address to be programmed within the target block must be aligned on a write  
3. Write-buffer contents are programmed sequentially to the flash array starting at the first word address  
.
-buffer boundary  
.
; WSM internally increments addressing  
.
Datasheet  
104  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 56: Block Erase for Main Array Flowchart  
BLOCK ERASE PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Block  
Erase  
Setup  
Data = 0x20  
Addr = Block to be erased (BA)  
Write  
Write  
Read  
Write 0x20  
Block Address  
(Block Erase)  
Erase  
Data = 0xD0  
Confirm Addr = Block to be erased (BA)  
Write 0xD0,  
Block Address  
(Erase Confirm )  
None  
None  
Status Register data  
Suspend  
Erase  
Loop  
Read Status  
Register (2)  
Check SR[7]:  
1 = WSM ready  
0 = WSM busy  
Idle  
No  
0
Suspend  
Erase  
Yes  
SR[7] =  
1
Repeat for subsequent block erasures.  
Full Status register check can be done after each block erase  
or after a sequence of block erasures.  
Full Erase  
Status Check  
(if desired)  
Write 0xFF after the last operation to enter read array mode.  
Block Erase  
Complete  
FULL ERASE STATUS CHECK PROCEDURE  
Read Status  
Register  
Bus  
Command  
Operation  
Comments  
Check SR[4,5]:  
Idle  
Idle  
None  
None  
Both 1 = Command Sequence Error  
1,1  
0
Command  
Sequence Error  
SR[4,5] =  
0
Check SR[5]:  
1 = Block Erase Error  
Block Erase  
Success  
Check SR[1]:  
1 = Attempted erase of locked block;  
erase aborted.  
SR[5] =  
1
Idle  
Idle  
None  
None  
Check SR[3]:  
1
1
Block Locked  
Error  
SR[1] =  
0
1 =  
VPP Range Error  
SR[1,3] must be cleared before the Write State Machine will  
allow further erase attempts.  
VPP Range  
Error  
SR[3] =  
0
Only the Clear Status Register command clears SR[1, 3, 4, 5].  
If an error is detected, clear the Status register before  
attempting an erase retry or other error recovery.  
Erase Fail  
.
April 2008  
309823-10  
Datasheet  
105  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 57: Erase Suspend/Resume Flowchart  
ERASE SUSPEND / RESUME PROCEDURE  
Start  
Bus  
Command  
Comments  
Operation  
Write 0x70,  
Same Partition  
Read  
Status  
Data = 0x70  
Addr = Any partition address  
(Read Status)  
Write  
Write  
Read  
Data = 0xB0  
Addr = Same partition address as  
above  
Erase  
Suspend  
Write 0xB0,  
Any Address  
(Erase Suspend)  
Status Register data.  
Addr = Same partition  
None  
None  
Read Status  
Register  
Check SR[7]:  
1 = WSM ready  
0 = WSM busy  
Idle  
0
SR[7] =  
1
Check SR[6]:  
1 = Erase suspended  
Idle  
None  
0 = Erase completed  
0
Erase  
Completed  
SR[6] =  
1
Data = 0xFF or 0x40  
Addr = Any address within the  
suspended partition  
Read Array  
or Program  
Write  
Read or  
Write  
Read array or program data from/to  
block other than the one being erased  
Read  
Program  
Read or  
Program?  
None  
Read Array  
Data  
Program  
Loop  
Program Data = 0xD0  
Resume Addr = Any address  
No  
Write  
Done  
If the suspended partition was placed in  
Read Array mode or a Program Loop:  
Read  
Status  
Return partition to Status mode:  
Data = 0x70  
Write 0xD0,  
Any Address  
Write  
(Erase Resume)  
Register Addr = Same partition  
Erase  
Resumed  
Write 0xFF,  
Erased Partition  
(Read Array)  
Write 0x70,  
Same Partition  
Read Array  
Data  
(Read Status)  
Datasheet  
106  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 58: Main Array Block Lock Operations Flowchart  
LOCKING OPERATIONS PROCEDURE  
Start  
Bus  
Command  
Operation  
Comments  
Write 0x60,  
Block Address  
Lock  
Data = 0x60  
(Lock Setup)  
Write  
Setup Addr = Block to lock/unlock/lock-down  
Lock, Data = 0x01 (Block Lock)  
Write either  
0x01/0xD0/0x2F,  
Block Address  
Unlock, or  
0xD0 (Block Unlock)  
(Lock Confirm)  
(Read Device ID)  
Write  
Write  
Lock-Down  
0x2F (Lock-Down Block)  
Confirm Addr = Block to lock/unlock/lock-down  
Read Data = 0x90  
(Optional) Device ID Addr = Block address + offset 2  
Write 0x90  
Read Block Lock Block Lock status data  
(Optional) Status Addr = Block address + offset 2  
Read Block  
Lock Status  
Idle  
None Confirm locking change on D[1,0].  
Locking  
No  
Change?  
Yes  
Read Data = 0xFF  
Array Addr = Block address  
Write  
Write 0xFF  
Partition Address  
(Read Main  
Array)  
Lock Change  
Complete  
d
April 2008  
309823-10  
Datasheet  
107  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 59: Protection Register Programming Flowchart  
PROTECTION REGISTER PROGRAMMING PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Program Data = 0xC0  
PR Setup Addr = First Location to Program  
Write  
Write  
Read  
Write 0xC0,  
PR Address  
(Program Setup )  
(Confirm Data)  
Protection Data = Data to Program  
Program Addr = Location to Program  
Write PR  
Address & Data  
None  
None  
Status Register Data.  
Read Status  
Register  
Check SR[7]:  
1 = WSM Ready  
0 = WSM Busy  
Idle  
Program Protection Register operation addresses must be  
within the Protection Register address space. Addresses  
outside this space will return an error.  
0
SR[7] =  
1
Repeat for subsequent programming operations.  
Full Status  
Check  
(if desired)  
Full Status Register check can be done after each program, or  
after a sequence of program operations.  
Write 0xFF after the last operation to set Read Array stat.e  
Program  
Complete  
FULL STATUS CHECK PROCEDURE  
Read Status  
Register Data  
Bus  
Operation  
Command  
Comments  
Check SR[4]:  
1 =Programming Error  
Idle  
Idle  
Idle  
None  
Protection Register  
Program Pass  
0
1
1
SR[4] =  
1
Check SR[1]:  
1 = Block locked; operation aborted  
None  
None  
Check SR[3]:  
1 =VPP Range Error  
Register Locked;  
Program Aborted  
SR[1] =  
0
SR[3] must be cleared before the Write State Machine will  
allow further program attempts.  
SR[3] =  
0
VPP Range Error  
Only the Clear Staus Register command clears SR[1, 3, 4].  
If an error is detected, clear the Status register before  
attempting a program retry or other error recovery.  
Protection Register  
Program Fail  
.
Datasheet  
108  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 60: Blank Check Operation Flowchart  
BLANK CHECK PROCEDURE  
Start  
Bus  
Operation  
Command  
Comments  
Write 0xBC,  
Block Address  
Blank  
Check  
Setup  
Data = 0xBC  
Addr = Block to be read (BA)  
Write  
Write  
Read  
Blank  
Check  
Confirm  
Write 0xD0,  
Block Address  
Data = 0xD0  
Addr = Block to be read (BA)  
None  
None  
Status Register data.  
Read Status  
Register  
Check SR[7]:  
1 = WSM ready  
0 = WSM busy  
Idle  
No  
0
SR[7] =  
Repeat for subsequent block Blank Check.  
1
Full Status register check should be read after Blank Check  
has been performed on each block.  
Full Blank  
Check Status  
Read  
Blank Check  
FULL BLANK CHECK STATUS CHECK PROCEDURE  
Read Status  
Register  
Bus  
Operation  
Command  
Comments  
Check SR[4,5]:  
Both 1 = Command Sequence Error  
Idle  
None  
Command  
Sequence Error  
1,1  
SR[4,5] =  
0
Check SR[5]:  
1 = Blank Check Error  
Idle  
None  
Blank Check  
Error  
1
SR[1,3] must be cleared before the Write State Machine will  
allow Blank Check to be performed.  
SR[5] =  
0
Only the Clear Status Register command clears SR[1, 3, 4, 5].  
Blank Check  
Successful  
If an error is detected, clear the Status register before  
attempting a Blank Check retry or other error recovery.  
April 2008  
309823-10  
Datasheet  
109  
Numonyx™ StrataFlash® Cellular Memory (M18)  
12.0  
Common Flash Interface  
The Common Flash Interface (CFI) is part of an overall specification for multiple  
command-set and control-interface descriptions. It describes the database structure  
containing the data returned by a read operation after issuing the CFI Query command.  
System software can parse this database structure to obtain information about the  
flash device, such as block size, density, bus width, and electrical specifications. The  
system software will then know which command set(s) to use to properly perform flash  
writes, block erases, reads and otherwise control the flash device.  
12.1  
Query Structure Output  
The Query database allows system software to obtain information for controlling the  
flash device. This section describes the device’s CFI-compliant interface that allows  
access to Query data.  
Query data are presented on the lowest-order data outputs (A/DQ7-0) only. The  
numerical offset value is the address relative to the maximum bus width supported by  
the device. On this family of devices, the Query table device starting address is a 10h,  
which is a word address for x16 devices.  
For a word-wide (x16) device, the first two Query-structure bytes, ASCII “Q” and “R,”  
appear on the low byte at word addresses 10h and 11h. This CFI-compliant device  
outputs 00h data on upper bytes. The device outputs ASCII “Q” in the low byte  
(A/DQ7-0) and 00h in the high byte (A/DQ15-8).  
At Query addresses containing two or more bytes of information, the least significant  
data byte is presented at the lower address, and the most significant data byte is  
presented at the higher address.  
In all of the following tables, addresses and data are represented in hexadecimal  
notation, so the “h” suffix has been dropped. In addition, since the upper byte of word-  
wide devices is always “00h,” the leading “00” has been dropped from the table  
notation and only the lower byte value is shown. Any x16 device outputs can be  
assumed to have 00h on the upper byte in this mode.  
Table 49: Summary of Query Structure Output as a Function of Device and Mode  
Hex  
Offset  
Hex  
Code  
Device  
ASCII  
00010:  
00011:  
51  
52  
“Q”  
“R”  
Device Addresses  
Table 50: Example of Query Structure Output of x16 Devices (Sheet 1 of 2)  
Word Addressing  
Hex Code  
Byte Addressing  
Hex Code  
Offset  
Value  
Offset  
Value  
AX - A0  
A15 - A0  
AX - A0  
A7 - A0  
00010h  
0051  
“Q”  
“R”  
“Y”  
00010h  
0051  
“Q”  
“R”  
“Y”  
00011h  
00012h  
00013h  
00014h  
0052  
00011h  
00012h  
00013h  
00014h  
0052  
0059  
0059  
P_IDLO  
P_IDHI  
PrVendor  
ID#  
P_IDLO  
P_IDLO  
PrVendor  
ID#  
Datasheet  
110  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 50: Example of Query Structure Output of x16 Devices (Sheet 2 of 2)  
Word Addressing  
Hex Code  
Byte Addressing  
Hex Code  
Offset  
X - A0  
Value  
Offset  
Value  
A
A15 - A0  
PrVendor  
AX - A0  
A7 - A0  
ID#  
00015h  
00016h  
00017h  
00018h  
PLO  
00015h  
P_IDHI  
PHI  
TblAdr  
AltVendor  
ID#  
00016h  
00017h  
00018h  
A_IDLO  
A_IDHI  
12.2  
Block Status Register  
The Block Status Register indicates whether an erase operation completed successfully  
or whether a given block is locked or can be accessed for flash program/erase  
operations.  
Block Erase Status (BSR[1]) allows system software to determine the success of the  
last block erase operation. BSR[1] can be used just after power-up to verify that the  
VCC supply was not accidentally removed during an erase operation. Only issuing  
another operation to the block resets this bit. The Block Status Register is accessed  
from word address 02h within each block.  
Table 51: Block Status Register  
Offset  
Length  
Description  
Block Lock Status Register  
Address  
Value  
(BA + 2)h  
1
BA + 2  
-00 or -01  
BSR.0 Block Lock Status:  
0 = Unlocked  
(BA + 2)h  
1
BA + 2  
(bit 0): 0 or 1  
1 = Locked  
BSR.1 Block Lock Down Status:  
0 = Not Locked Down  
1 = Locked Down  
(BA + 2)h  
(BA + 2)h  
1
1
BA + 2  
BA + 2  
(bit 0): 0 or 1  
(bit 0): 0 or 1  
BSR.2-3, 6-7: Reserved for future use  
Note: BA = The beginning of a Block Address; that is, 020000h is the beginning location in word mode of the 256-KB block 1.  
12.3  
CFI Query Identification String  
The Identification String provides verification that the component supports the  
Common Flash Interface specification. It also indicates the specification version and  
supported vendor-specified command set(s).  
Table 52: CFI Identification (Sheet 1 of 2)  
Offset  
Length  
Description  
Address  
Hex Code  
Value  
10  
11  
12  
--51  
--52  
--59  
“Q”  
“R”  
“Y”  
10h  
3
Query unique ASCII string “QRY”  
April 2008  
309823-10  
Datasheet  
111  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 52: CFI Identification (Sheet 2 of 2)  
Offset  
Length  
Description  
Address  
Hex Code  
Value  
13  
14  
15  
16  
17  
18  
19  
1A  
--00  
--02  
--0A  
--01  
--00  
--00  
--00  
--00  
Primary vendor command set and control interface ID code.  
16-bit ID code for vendor-specified algorithms.  
13h  
2
15h  
17h  
19h  
2
2
2
Extended Query Table primary algorithm address.  
Alternate vendor command set and control interface ID code.  
0000h means no second vendor-specified algorithm exists.  
Secondary algorithm Extended Query Table address. 0000h  
means none exists.  
Table 53: System Interface Information (Sheet 1 of 2)  
Offset  
Length  
Description  
Address  
Hex Code  
Value  
V
CC logic supply minimum  
program/erase voltage.  
bits 0-3 BCD 100 mV  
bits 4-7 BCD volts  
1Bh  
1
1B  
--17  
1.7 V  
2.0 V  
8.5 V  
VCC logic supply maximum  
program/erase voltage.  
1Ch  
1Dh  
1
1
1C  
1D  
--20  
--85  
bits 0-3 BCD 100 mV  
bits 4-7 BCD volts  
VPP [programming] supply  
minimum program/erase voltage.  
bits 0-3 BCD 100 mV  
bits 4-7 hex volts  
VPP [programming] supply  
maximum program/erase  
voltage.  
bits 0-3 BCD 100 mV  
bits 4-7 hex volts  
1Eh  
1Fh  
20h  
1
1
1
1E  
1F  
20  
--95  
--06  
9.5 V  
64 µs  
“n” such that typical single word  
program timeout = 2n µs.  
2048 µs (256, 512 Mbit -  
90 nm; 1024 Mbit - 65  
nm)  
1024 µs (128. 256, 512  
Mbit - 65 nm)  
--0B (256, 512 Mbit - 90 nm;  
1024 Mbit - 65 nm)  
“n” such that typical full buffer  
write timeout = 2n µs.  
--0A (128. 256, 512 Mbit -  
65 nm)  
“n” such that typical block erase  
timeout = 2n ms.  
21h  
22h  
1
1
21  
22  
--0A  
--00  
1 s  
NA  
“n” such that typical full chip  
erase timeout = 2n ms.  
“n” such that maximum word  
program timeout = 2n times  
typical.  
23h  
1
23  
--02  
256 µs  
Datasheet  
112  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 53: System Interface Information (Sheet 2 of 2)  
Offset  
Length  
Description  
Address  
Hex Code  
Value  
8192 µs (256, 512 Mbit -  
90 nm; 128, 256, 512  
Mbit - 65 nm)  
4096 µs (1024 Mbit - 65  
nm)  
--02 (256, 512 Mbit - 90 nm;  
128, 256, 512 Mbit - 65 nm)  
--01 (1024 Mbit - 65 nm)  
“n” such that maximum buffer  
write timeout = 2n times typical.  
24h  
1
24  
“n” such that maximum block  
25h  
26h  
1
1
25  
26  
--02  
--00  
4 s  
NA  
erase timeout = 2n times typical.  
“n” such that maximum chip  
erase timeout = 2n times typical.  
12.4  
Device Geometry Definition  
Table 54: Device Geometry Definition  
Offset  
Length  
Description  
n such that device size in bytes = 2n.  
Address  
27:  
Hex Code  
Value  
27h  
1
Flash device interface code assignment: n such that n + 1 specifies  
the bit field that represents the flash device width capabilities as  
described here:  
Table 55, “Device  
Geometry Definition: Addr,  
Hex Code, Value” on  
page 114  
7
6
5
4
3
x64  
11  
2
x32  
10  
1
x16  
9
0
x8  
8
28h  
2
15  
14  
13  
12  
28:  
--01  
x16  
29:  
--00  
2A:  
2B:  
--0A  
--00  
2Ah  
2Ch  
2
1
n such that maximum number of bytes in write buffer = 2n.  
1024  
Number of erase block regions (x) within the device:  
1) x = 0 means no erase blocking; the device erases in bulk.  
2) x specifies the number of device regions with one or more  
contiguous, same-size erase blocks.  
2C:  
3) Symmetrically blocked partitions have one blocking region.  
2D:  
2E:  
2F:  
30:  
Erase block region 1 information:  
bits 0 - 15 = y, y + 1 = number of identical-size erase blocks.  
bits 16 - 31 = z, region erase block(s) size are z x 256 bytes.  
2Dh  
31h  
35h  
4
4
4
Table 55, “Device  
Geometry  
Definition: Addr,  
Hex Code, Value”  
on page 114  
31:  
32:  
33:  
34:  
Reserved for future erase block region information.  
Reserved for future erase block region information.  
35:  
36:  
37:  
38:  
April 2008  
309823-10  
Datasheet  
113  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 55: Device Geometry Definition: Addr, Hex Code, Value  
128 Mbit  
256 Mbit  
512 Mbit  
1 Gbit  
Address  
B
T
B
T
B
T
B
T
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
18  
01  
00  
0A  
00  
01  
3F  
00  
00  
04  
19  
01  
00  
0A  
00  
01  
7F  
00  
00  
04  
1A  
01  
00  
0A  
00  
01  
FF  
1B  
01  
00  
0A  
00  
01  
FF  
00  
00  
04  
01  
00  
04  
12.5  
Numonyx-Specific Extended Query Table  
Table 56: Primary Vendor-Specific Extended Query (Sheet 1 of 2)  
Offset  
P = 10Ah  
Description (Optional flash features and  
commands  
Length  
Address  
Hex Code  
Value  
(P+0)h  
(P+1)h  
(P+2)h  
(P+3)h  
(P+4)h  
10A:  
10B:  
10C:  
10D:  
10E:  
--50  
--52  
--49  
--31  
--34  
P
R
I
Primary extended query table.  
Unique ASCII string PRI  
3
1
1
Major version number, ASCII  
Minor version number, ASCII  
1
4
Datasheet  
114  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 56: Primary Vendor-Specific Extended Query (Sheet 2 of 2)  
Offset  
P = 10Ah  
Description (Optional flash features and  
commands  
Length  
Address  
Hex Code  
Value  
--E6 (Non-Mux)  
--66 (A/D Mux)  
10F:  
Optional feature and command support:  
(1 = yes; 0 = no)  
Bits 10 - 31 are reserved; undefined bits are 0.  
110:  
111:  
112:  
--07  
--00  
--00  
If the value in bit 31 is 1, an additional 31 bit field of  
optional features follows the bit 30 field.  
Bit 0: Chip erase supported.  
Bit 0 = 0  
No  
Yes  
Yes  
No  
Bit 1: Suspend erase supported.  
Bit 2: Suspend program supported.  
Bit 3: Legacy lock/unlock supported.  
Bit 4: Queued erase supported.  
Bit 5: Instant individual block locking supported.  
Bit 6: OTP bits supported.  
Bit 1 = 1  
Bit 2 = 1  
Bit 3 = 0  
Bit 4 = 0  
Bit 5 = 1  
Bit 6 = 1  
(P+5)h  
(P+6)h  
(P+7)h  
(P+8)h  
4
No  
Yes  
Yes  
No: A/D Mux  
Yes: Non-Mux  
Bit 7: Page mode read supported.  
Bit 7 = 0  
Bit 8: Synchronous read supported.  
Bit 9: Simultaneous operations supported.  
Bit 30: CFI links to follow.  
Bit 8 = 1  
Bit 9 = 1  
Yes  
Yes  
No  
Bit 30 = 0  
Bit 31 = 0  
Bit 31: Another Optional Features field to follow.  
No  
Supported functions after Suspend: Read Array, Status,  
Query. Other supported options include:  
Bits 1 - 7: Reserved; undefined bits are 0.  
113:  
--01  
(P+9)h  
1
2
Bit 0: Program supported after Erase Suspend.  
Bit 0 = 1  
--33  
--00  
Bit 0 = 1  
Bit 1 = 1  
Yes  
114:  
115:  
Block Lock Status Register mask: Bits 2 - 3 and 6 - 15  
are reserved; undefined bits are 0.  
(P+A)h  
(P+B)h  
2
2
Bit 0: Block Lock Bit Status register active.  
Bit 1: Block Lock Down bit Status active.  
Yes  
Yes  
Vcc logic supply highest performance program/erase  
voltage:  
Bits 0 - 3: BCD value in 100 mV  
Bits 4 - 7: BCD value in volts  
(P+C)h  
(P+D)h  
1
1
116:  
117:  
--18  
1.8 V  
9.0 V  
VPP optimum program/erase supply voltage:  
Bits 0 - 3: BCD value in 100 mV  
Bits 4 - 7: Hex value in volts  
--90  
April 2008  
309823-10  
Datasheet  
115  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 57: One Time Programmable (OTP) Register Information  
Offset  
P = 10Ah  
Length  
Description  
Address  
Hex Code  
Value  
Number of OTP register fields in JEDEC ID space. 00h indicates  
that 256 OTP fields are available.  
(P+E)h  
1
118:  
--02  
2
OTP Field 1: OTP Description: This field describes user available  
OTP register bytes. Some are preprogrammed with device-unique  
serial numbers. Others are user programmable.  
Bits 0 - 15 point to the OTP register Lock byte, the register’s first  
byte.  
(P+F)h  
The following bytes are factory preprogrammed and user-  
programmable:  
(P+10)h  
(P+11)h  
(P+12)h  
4
Bits 0 - 7 = Lock/bytes JEDEC plane physical low address.  
Bits 8 - 15 = Lock/bytes JEDEC plane physical high address.  
Bits 16 - 23 = n where 2n equals factory preprogrammed bytes.  
Bits 24 - 31 = n where 2n equals user programmable bytes.  
OTP Field 2: OTP Description  
119:  
11A:  
11B:  
11C:  
--80  
--00  
--03  
--03  
80h  
00h  
8 byte  
8 byte  
11D:  
11E:  
11F:  
120:  
--89  
--00  
--00  
--00  
89h  
00h  
00h  
00h  
Bits 0 - 31 point to the OTP register physical Lock word address in  
the JEDEC plane.  
(P+13)h  
(P+14)h  
(P+15)h  
(P+16)h  
(P+17)h  
(P+18)h  
(P+19)h  
(P+1A)h  
(P+1B)h  
(P+1C)h  
The following bytes are factory or user programmable:  
Bits 32 - 39 = n where n equals factory programmed groups (low  
byte).  
Bits 40 - 47 = n where n equals factory programmed groups  
(high byte).  
Bits 48 - 55 = n where 2n equals factory programmed bytes/  
groups.  
121:  
122:  
123:  
--00  
--00  
--00  
0
0
0
10  
Bits 56 - 63 = n where n equals user programmed groups (low  
byte).  
Bits 64 - 71 = n where n equals user programmed groups (high  
byte).  
Bits 72 - 79 = n where n equals user programmable bytes/  
groups.  
124:  
125:  
126:  
--10  
--00  
--04  
16  
0
16  
Datasheet  
116  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 58: Burst Read Information  
Offset  
P = 10Ah  
Description (Optional flash features and  
commands)  
Length  
Address  
Hex Code  
Value  
Page Mode Read capability:  
Bits 0 - 7 = n where 2n hex value represents the  
number of read-page bytes. See offset 28h for  
device word width to determine page-mode data  
output width. 00h indicates no read page buffer.  
--05 (Non Mux) 32-byte (Non Mux)  
(P+1D)h  
(P+1E)h  
1
1
127:  
128:  
--00 (A/D Mux  
0 (AD Mux)  
Number of synchronous mode read configuration  
fields that follow. 00h indicates no burst capability.  
--03  
3
Synchronous mode read capability configuration 1:  
Bits 3 - 7 = Reserved.  
Bits 0 - 2 = n where 2n+1 hex value represents the  
maximum number of continuous synchronous reads  
when the device is configured for its maximum word  
width.  
A value of 07h indicates that the device is capable of  
continuous linear bursts that will output data until  
the internal burst counter reaches the end of the  
device’s burstable address space.  
(P+1F)h  
1
129:  
--02  
8
This fields’s 3-bit value can be written directly to the  
Read Configuration Register bits 0 - 2 if the device is  
configured for its maximum word width. See offset  
28h for word width to determine the burst data  
output width.  
(P+20)h  
(P+21)h  
1
1
Synchronous mode read capability configuration 2.  
Synchronous mode read capability configuration 3.  
12A:  
12B:  
--03  
--07  
16  
Cont  
Table 59: Partition and Erase Block Information—Region 1 (Sheet 1 of 2)  
Offset  
P = 10Ah  
Address  
Description (Optional flash features and commands)  
Length  
Bottom  
Top  
Bottom  
Top  
Number of device hardware partition regions with the device:  
x = 0: a single hardware partition device (no fields follow). x specifies the  
number of device partition regions containing one or more contiguous  
erase block regions.  
(P+22)h  
(P+22)h  
1
12C:  
12C:  
Partition Region 1 Information  
(P+23)h  
(P+24)h  
(P+25)h  
(P+26)h  
(P+23)h  
(P+24)h  
(P+25)h  
(P+26)h  
12D:  
12E:  
12F:  
130:  
12D:  
12E:  
12F:  
130:  
Data size of this Partition Region information field: (number of  
addressable locations, including this field.  
2
1
Number of identical partitions within the partition region.  
Number of Program or Erase operations allowed in a partition:  
(P+27)h  
(P+28)h  
(P+27)h Bits 0 - 3 = Number of simultaneous Program operations.  
Bits 4 - 7 = Number of simultaneous Erase operations.  
1
1
131:  
132:  
131:  
132:  
Number of Program or Erase operations allowed in other partitions while a  
partition in this region is in Program mode:  
(P+28)h  
Bits 0 - 3 = Number of simultaneous Program operations.  
Bits 4 - 7 = Number of simultaneous Erase operations.  
Number of Program or Erase operations allowed in other partitions while a  
partition in this region is in Erase mode:  
(P+29)h  
(P+29)h  
1
133:  
133:  
Bits 0 - 3 = Number of simultaneous Program operations.  
Bits 4 - 7 = Number of simultaneous Erase operations.  
April 2008  
309823-10  
Datasheet  
117  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 59: Partition and Erase Block Information—Region 1 (Sheet 2 of 2)  
Offset  
P = 10Ah  
Address  
Description (Optional flash features and commands)  
Length  
Bottom  
Top  
Bottom  
Top  
Types of erase block regions in this partition region:  
x = 0: No erase blocking; the partition region erases in bulk.  
x = Number of erase block regions with contiguous, same-size erase  
(P+2A)h blocks.  
Symmetrically blocked partitions have one blocking region.  
(P+2A)h  
1
134:  
134:  
Partition size = (Type 1 blocks) x (Type 1 block sizes) + (Type 2 blocks) x  
(Type 2 block sizes) +...+ (Type n blocks) x (Type n block sizes).  
(P+2B)h  
(P+2C)h  
(P+2D)h  
(P+2E)h  
(P+2F)h  
(P+30)h  
(P+2B)h  
(P+2C)h  
(P+2D)h  
(P+2E)h  
(P+2F)h  
(P+30)h  
135:  
136:  
137:  
138:  
139:  
13A:  
135:  
136:  
137:  
138:  
139:  
13A:  
Partition region 1 erase block type 1 information:  
Bits 0 - 15 = y, y + 1: Number of identical-sized erase blocks in a  
partition.  
4
Bits 16 - 30 = z, where region erase block(s) size is z x 256 bytes.  
Partition 1 (Erase Block Type 1):  
Block erase cycles x 1000  
2
1
Partition 1 (Erase Block Type 1) bits per cell; internal EDAC:  
Bits 0 - 3 = bits per cell in erase region  
Bit 4 = internal EDAC used (1=yes, 0=no)  
Bit 5 - 7 = reserved for future use  
(P+31)h  
(P+31)h  
13B:  
13B:  
Partition 1 (Erase Block Type 1) page mode and synchronous mode  
capabilities:  
Bits 0 = page mode host reads permitted (1=yes, 0=no)  
Bit 1 = synchronous host reads permitted (1=yes, 0=no)  
Bit 2 = synchronous host writes permitted (1=yes, 0=no)  
Bit 3 - 7 = reserved for future use  
(P+32)h  
(P+32)h  
1
13C:  
13C:  
(P+33)h  
(P+34)h  
(P+35)h  
(P+36)h  
(P+37)h  
(P+33)h Partition 1 (Erase Block Type 1) programming region information:  
13D:  
13E:  
13F:  
140:  
141:  
13D:  
13E:  
13F:  
140:  
141:  
Bits 0 - 7 = x, 2x: programming region aligned size (bytes)  
(P+34)h  
Bit 8 - 14 = reserved for future use  
(P+35)h  
(P+36)h  
(P+37)h  
Bit 15 = legacy flash operation; ignore 0:7  
Bit 16 - 23 = y: control mode valid size (bytes)  
Bit 24 - 31 = reserved for future use  
6
Bit 32 - 39 = z: control mode invalid size (bytes)  
Bit 40 - 46 = reserved for future use  
Bit 47 = legacy flash operation (ignore 23:16 and 39:32)  
(P+38)h  
(P+38)h  
142:  
142:  
Table 60: Partition and Erase Block Region Information (Sheet 1 of 2)  
128 Mbit  
256 Mbit  
512 Mbit  
1 Gbit  
Address  
B
T
B
T
B
T
B
T
12C:  
12D:  
12E:  
12F:  
130:  
131:  
132:  
133:  
--01  
--16  
--00  
--08  
--00  
--11  
--00  
--00  
--01  
--16  
--00  
--08  
--00  
--11  
--00  
--00  
--01  
--16  
--00  
--08  
--00  
--11  
--00  
--00  
--01  
--16  
--00  
--08  
--00  
--11  
--00  
--00  
Datasheet  
118  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 60: Partition and Erase Block Region Information (Sheet 2 of 2)  
128 Mbit  
256 Mbit  
512 Mbit  
1 Gbit  
Address  
B
T
B
T
B
T
B
T
134:  
135:  
136:  
137:  
138:  
139:  
13A:  
13B:  
--01  
--07  
--00  
--00  
--04  
--64  
--00  
--12  
--01  
--0F  
--00  
--00  
--04  
--64  
--00  
--12  
--01  
--1F  
--00  
--00  
--04  
--64  
--00  
--12  
--01  
--3F  
--00  
--00  
--04  
--64  
--00  
--12  
--02 Mux  
--03 Non Mux  
--02 Mux  
--03 Non Mux  
--02 Mux  
--03 Non Mux  
--02 Mux  
--03 Non Mux  
13C:  
13D:  
13E:  
13F:  
140:  
141:  
142:  
--0A  
--00  
--10  
--00  
--10  
--00  
--0A  
--00  
--10  
--00  
--10  
--00  
--0A  
--00  
--10  
--00  
--10  
--00  
--0A  
--00  
--10  
--00  
--10  
--00  
April 2008  
309823-10  
Datasheet  
119  
Numonyx™ StrataFlash® Cellular Memory (M18)  
13.0  
Next State  
The Next State Table shows command inputs and the resulting next state of the chip.  
The Output Next State Table shows command inputs and the resulting output  
multiplexed next state of the chip.  
Table 61: Next State Table (Sheet 1 of 7)  
Command Input and Resulting Chip Next State  
Current Chip State  
(9  
(0  
(2 3h  
(F  
(4  
(E  
(2  
(8  
(D  
0h  
)
(7  
(5 0h (6  
(B (C  
(0  
(x  
xh  
)
(B  
0)  
Fh 1h 9h 0h 0h  
0h 0h  
,
98  
h)  
0h Ch 0h 1h Fh  
,
04  
h)  
other  
)
)
)
)
)
)
)
)
)
)
)
)
Lo  
ck  
/
RC  
R
/
EC  
R
Se  
tu  
p
Pr  
og  
rm  
Er  
as  
e
BE  
FP  
Se  
tu  
p
OT  
P
Se  
tu  
p
BC  
BP  
Se  
tu  
p
Re  
ad  
y
N/  
A
N/  
A
Se  
tu  
p
Ready  
Ready  
Ready  
Ready  
Se  
tu  
p
Se  
tu  
p
Re  
ad  
y
(L  
oc  
k
Er  
ror  
[B  
ot  
ch  
])  
Re  
Re ad  
Re  
ad  
y
(U  
nlo  
ck  
ad  
y
(L  
oc  
k
y
(L  
oc  
k
Re  
ad  
y
(S  
et  
Ready  
(Lock Error  
[Botch])  
Ready (Lock  
Error [Botch])  
Lock/RCR/ECR  
Setup  
N/  
A
N/  
A
Ready (Lock Error [Botch])  
do  
Bl wn CR  
Blo  
ck)  
oc  
k)  
Bl  
oc  
k)  
)
N/  
A
N/  
A
Setup  
OTP Busy  
OTP Busy  
OTP Busy  
OTP Busy  
IS  
OT  
P
Bu  
in OT  
IS in  
OT  
P
P
Bu  
Illegal State  
in OTP Busy  
N/  
A
OTP  
Busy  
OTP  
OTP Busy  
OTP Busy  
Re  
ad  
y
Busy  
sy Bu sy  
sy  
IS in OTP  
Busy  
OTP Busy  
OTP Busy  
Datasheet  
120  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 61: Next State Table (Sheet 2 of 7)  
Command Input and Resulting Chip Next State  
Current Chip State  
(9  
(0  
(F  
(4  
(E  
(2  
(8  
(D  
(7  
0h 0h  
)
(5  
0h (6  
(B  
(C  
(0  
(2  
3h (x  
(B  
0)  
Fh 1h 9h 0h 0h 0h  
)
,
98  
h)  
0h Ch 0h 1h Fh  
)
,
04  
h)  
xh  
)
other  
)
)
)
)
)
)
)
)
)
)
N/  
A
N/  
A
Setup  
Word Program Busy  
Pgm Busy  
IS  
in  
Pg  
m
Pg  
m
Pg  
m
Pg  
m
Pg  
IS in  
Pgm  
Busy  
m
Word Pgm  
Busy  
IS in Word  
Pgm Busy  
Word Pgm  
Busy  
N/  
A
Busy  
Pgm Busy  
Re  
ad  
y
Bu  
Bu  
Bu Su  
sy Bu sy  
sy  
sy  
sp  
IS in Pgm  
Busy  
Word Pgm Busy  
Word  
Progra  
m
Pg  
m
Su  
sp  
(E  
r
bit  
s
cle  
ar)  
W
or  
d
Pg  
m
Su  
sp  
IS Pg  
Pg  
m
in  
m
Pg  
m
Bu  
sy  
IS in  
Pgm  
Susp  
Illegal State  
in Pgm  
Suspend  
Word  
Program  
Suspend  
Pg Su  
sp  
Pgm  
Susp  
N/  
A
Word Pgm  
Susp  
Suspend  
Su  
m
N/  
A
sp Su en  
sp  
d
IS in Pgm  
Suspend  
Word Program Suspend  
April 2008  
309823-10  
Datasheet  
121  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 61: Next State Table (Sheet 3 of 7)  
Command Input and Resulting Chip Next State  
Current Chip State  
(9  
(5 0h (6  
(0  
(F  
(4  
(E  
(2  
(8  
(D  
0h  
)
(7  
0h 0h  
)
(B (C  
(0  
(2 3h  
(x  
xh  
)
(B  
0)  
Fh 1h 9h 0h 0h  
)
,
0h Ch 0h 1h Fh  
)
,
04  
h)  
other  
)
)
)
)
)
98  
h)  
)
)
)
)
Setup  
BP Load 1  
BP Load 2 if word count >0, else BP confirm  
BP Load 1  
(10)  
Re  
ad  
y
(E  
rro  
r
[B  
ot  
ch  
])  
BP Confirm  
if data load  
in program  
buffer is  
complete,  
else BP  
load 2  
BP Load 2  
(10)  
BP Confirm if data load in program buffer is complete, ELSE BP load 2  
N/  
A
Re  
ad  
y
(E  
rro  
r
[B  
ot  
ch  
])  
Re  
ad  
y
(E  
BP  
rro  
Bu  
r
BP  
Confirm  
sy  
[B  
ot  
ch  
])  
Ill  
eg  
al  
Buffer  
Progra  
m
IS  
in  
IS  
in  
BP  
Bu  
sy  
St  
at  
e
(BP)  
BP  
BP  
BP BP BP  
Bu Su Bu  
BP  
Bu  
sy  
BP  
Bu  
sy  
BP Busy  
Bu BP Bu  
sy Bu sy  
sy  
Re  
ad  
y
sy  
sp  
sy  
in  
BP  
Bu  
sy  
BP  
Bu  
sy  
IS in BP  
Busy  
Ill  
eg  
al  
St  
at  
e
BP  
Su  
IS BP  
BP  
sp  
(E BP  
r
IS  
in  
Su BP  
BP  
Su  
sp  
en  
d
BP  
in  
Su  
BP Su  
Bu  
sy  
BP  
Suspend  
N/  
A
Su BP sp  
sp Su en  
sp  
en  
d
BP Susp  
bit sp Su  
in  
sp  
d
s
cle  
ar)  
sp  
N/  
A
BP  
Bu  
sy  
BP  
Su  
sp  
en  
d
IS in BP  
Suspend  
Datasheet  
122  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 61: Next State Table (Sheet 4 of 7)  
Command Input and Resulting Chip Next State  
Current Chip State  
(9  
(0  
(F  
(4  
(E  
(2  
(8  
(D  
(7  
0h 0h  
)
(5  
0h (6  
(B  
(C  
(0  
(2  
3h (x  
(B  
0)  
Fh 1h 9h 0h 0h 0h  
)
,
98  
h)  
0h Ch 0h 1h Fh  
)
,
04  
h)  
xh  
)
other  
)
)
)
)
)
)
)
)
)
)
Era  
se  
Bu  
sy  
N/  
A
Ready (Err  
Botch0])  
N/  
A
Setup  
Busy  
Ready (Error [Botch])  
IS  
Ready (Error [Botch])  
Er  
as  
e
in  
Er  
as  
e
Er  
as  
e
Er  
as  
e
Su  
sp  
Era  
se  
Bu  
sy  
IS in  
Erase  
Busy  
IS in Erase  
N/  
A
Erase Busy  
Erase Busy  
Erase Busy  
Re  
ad  
y
Busy  
Bu  
Bu  
sy Bu sy  
sy  
IS in Erase  
Busy  
Erase Busy  
Lo  
ck  
/
RC  
R/  
EC  
R
Se  
tu  
p
W
or  
d
Erase  
Er  
BP  
as  
Pg Se  
e
IS  
in  
Er  
as  
e
m
Se  
tu  
p
in  
Er  
tu  
p
in  
Er  
as  
e
Er  
as  
e
Su  
sp  
Su Er  
Er  
as  
e
IS in  
Erase  
Suspen  
d
Era  
se  
Bu  
sy  
Erase  
Suspen  
d
sp  
(E  
r
bit sp  
s
cle  
ar)  
as  
e
Su  
Erase  
Suspend  
N/  
A
Suspend  
Erase Susp  
N/  
A
Su  
sp Su  
sp  
in  
as Su  
e
Su  
sp  
Er  
as  
e
sp  
Su  
sp  
IS in Erase  
Susp  
Erase Suspend  
Word Pgm  
Busy in Ers  
Suspend  
N/  
A
N/  
A
Setup  
Word Pgm busy in Erase Suspend  
W
or  
d
W
or  
d
W
IS  
in  
Wo  
or  
rd  
d
Word  
Progra  
m in  
Erase  
Suspe  
Pg Pg Pg  
m
bu bu bu  
sy  
in  
Er  
as  
e
Pg  
Pg  
m
IS in  
Word  
Pgm  
busy in  
Ers  
m
m
Er  
as  
e
Su  
sp  
m
bu  
sy  
in  
Era  
se  
Su  
sp  
Word Pgm  
busy in Erase  
Susp  
IS in Word  
Pgm busy in  
Ers Susp  
Su  
sp  
in  
Busy  
sy  
in  
Er  
s
sy  
in  
Er  
as  
e
Word Pgm busy in Erase Susp  
nd  
Susp  
Er  
s
Su  
sp  
Su  
Su sp Su  
sp  
sp  
April 2008  
309823-10  
Datasheet  
123  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 61: Next State Table (Sheet 5 of 7)  
Command Input and Resulting Chip Next State  
Current Chip State  
(9  
(5 0h (6  
(0  
(F  
(4  
(E  
(2  
(8  
(D  
0h  
)
(7  
0h 0h  
)
(B (C  
(0  
(2 3h  
(x  
xh  
)
(B  
0)  
Fh 1h 9h 0h 0h  
)
,
0h Ch 0h 1h Fh  
)
,
04  
h)  
other  
)
)
)
)
)
98  
h)  
)
)
)
)
IS  
in  
Er  
as  
e
Su  
sp  
Illegal  
State (IS)  
in Pgm  
busy in  
Erase  
Word Pgm  
busy in  
Erase  
Word Pgm busy in Erase Suspend  
Suspend  
Suspend  
W
or  
d
Pg  
W
or  
d
Pg  
m
su  
sp  
in  
Er  
as  
e
Su  
sp  
W
or  
d
Pg  
m
su  
sp  
in  
Er  
as  
e
Su  
sp  
W
W
or  
d
W
or  
d
Pg  
m
Su  
sp  
in  
Er  
as  
e
Su  
sp  
iS  
in  
pg  
m
su  
sp  
in  
Er  
as  
e
Su  
sp  
m
Su  
sp  
in  
Wo or  
rd  
Pg  
m
bu  
sy  
in  
d
Pg Pg  
m
su Su  
sp sp  
in  
Word  
IS in  
m
Progra  
Er  
as  
e
Su  
sp  
:
Er  
ror  
bit  
s
pgm  
susp in  
Erase  
Susp  
IS in Word  
Pgm Susp in  
Erase Susp  
Word Pgm  
Susp in  
Erase Susp  
Word Pgm  
Susp in  
Erase Susp  
m in  
N/  
A
Suspend  
Erase  
Suspe  
nd  
in  
Er  
as  
e
Era Er  
se  
Su  
sp  
as  
e
Su Su  
sp sp  
N/  
A
cle  
ar  
Illegal  
State in  
Word  
Program  
Suspend  
in Erase  
Suspend  
Word  
PgmSuspen  
d in Erase  
Suspend  
Word Pgm Suspend in Erase Suspend  
Datasheet  
124  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 61: Next State Table (Sheet 6 of 7)  
Command Input and Resulting Chip Next State  
Current Chip State  
(9  
(0  
(F  
(4  
(E  
(2  
(8  
(D  
(7  
0h 0h  
)
(5  
0h (6  
(B  
(C  
(0  
(2  
3h (x  
(B  
0)  
Fh 1h 9h 0h 0h 0h  
)
,
98  
h)  
0h Ch 0h 1h Fh  
)
,
04  
h)  
xh  
)
other  
)
)
)
)
)
)
)
)
)
)
Setup  
BP Load 1  
BP Load 2 if word count >0, else BP confirm  
BP Load 1  
(10)  
Er  
as  
e
Su  
sp  
:
Er  
ror  
[B  
ot  
ch  
]
BP Confirm  
in Erase  
Suspend  
when  
count=0,  
ELSE BP  
load 2  
BP Load 2  
(10)  
BP Confirm if data load in program buffer is complete, ELSE BP load 2  
N/  
A
BP  
Bu  
sy  
in  
Ers  
Su  
sp  
BP  
Confirm  
Erase Suspend (Error  
[BotchBP])  
Erase Susp: Error [Botch BP]  
IS  
BP  
in  
BP  
BP  
Su  
sp  
in  
Er  
as  
e
Bu BP Bu  
sy Bu sy  
Er  
as  
e
Su  
sp  
in  
Er  
as  
e
sy  
in  
Er  
as  
e
in  
Er  
as  
e
Illegal State  
in BP Busy in  
Erase Susp  
IS in BP Busy  
BP Busy in  
in Erase  
BP Busy in  
Erase Susp  
N/  
A
BP Busy in  
Erase Susp  
BP in  
BP Busy  
Erase Susp  
Suspend  
Erase  
Suspe  
nd  
Su  
Su  
Su  
sp  
sp Su sp  
sp  
IS  
in  
Er  
as  
e
IS in BP  
Busy  
BP Busy in Erase Suspend  
Su  
sp  
BP  
Su  
sp  
in  
BP  
Er  
Su  
as  
sp  
e
Su  
sp  
:
Er  
ror  
bit  
s
IS  
BP  
in  
BP  
BP  
Su BP Su  
sp Su sp  
Bu  
Illegal  
sy  
in  
Er  
as  
e
sp  
in  
Er  
as  
e
in  
State in  
BPSusp  
in Erase  
Susp  
in IS in BP Busy  
in  
Era  
se  
Su  
sp  
BP Susp in  
Erase Susp  
N/  
A
BP Susp in  
Erase Susp  
BP Susp  
Er BPBusy  
as in Erase  
e
Su  
Er  
as  
e
in Erase  
Suspend  
N/  
A
Susp  
Su  
Su  
sp  
sp Su sp  
sp  
April 2008  
309823-10  
Datasheet  
125  
cle  
ar  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 61: Next State Table (Sheet 7 of 7)  
Command Input and Resulting Chip Next State  
Current Chip State  
(9  
(5 0h (6  
(0  
(F  
(4  
(E  
(2  
(8  
(D  
0h  
)
(7  
0h 0h  
)
(B (C  
(0  
(2 3h  
(x  
xh  
)
(B  
0)  
Fh 1h 9h 0h 0h  
)
,
0h Ch 0h 1h Fh  
)
,
04  
h)  
other  
)
)
)
)
)
98  
h)  
)
)
)
)
Er  
as  
e
Su  
sp  
:
Er  
ror  
[B  
ot  
ch  
]
Er  
as  
e
Era  
se  
Su  
sp:  
Un  
-
loc  
k
Blo  
ck  
Er  
as  
e
Er  
as  
e
Su  
Lock/RCR/ECR  
Setup in Erase  
Suspend  
Su sp  
Erase  
Susp: Error  
[Botch]  
Erase Suspend: Lock  
Error [Botch]  
Erase Susp: Lock Error  
[Botch]  
Su N/  
N/  
A
sp  
Bl  
k
Bl  
k
Lk  
-
sp  
CR  
Se  
t
A
Lo  
ck Do  
wn  
BC  
Bu  
sy  
Ready:  
Error  
[Botch]  
N/  
A
Setup  
Ready (Error [Botch])  
IS  
Ready: Error [Botch]  
Blank  
Check  
(BC)  
Blank  
Check  
Busy  
BC  
in BC  
Bu BC Bu  
sy Bu sy  
sy  
IS in BC  
Busy  
IS in BC  
Busy  
N/  
A
BC Busy  
BC Busy  
BC Busy  
BC Busy  
Re  
ad  
y
IS in Blank  
Check  
BC Busy  
Busy  
BE  
FP  
Lo  
ad  
Da  
ta  
N/  
A
Setup  
Ready: Error [Botch]  
Ready: Error [Botch]  
BEFP  
Re  
ad  
y
Re  
ad  
y
BEFP Program and Verify Busy (if Block Address given matches address given on  
BEFP Setup command). Commands treated as data. (7)  
BEFP Busy  
BEFP Busy  
Datasheet  
126  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 62: Output Next State Table  
Command Input to Chip and Resulting Output MUX Next State  
Current Chip State  
(9  
(0  
(F  
(4  
(E  
(E  
(2  
(8 (D  
(7 (5 0h (6 (B (C (0 (2 3h  
ot  
he  
r
(B  
0)  
Fh 1h 9h Bh 0h 0h 0h  
)
0h 0h  
,
98  
h)  
0h Ch 0h 1h Fh  
,
04  
h)  
)
)
)
)
)
)
)
)
)
)
)
)
)
BEFPSetup,  
BEFP Pgm & Verify Busy,  
Erase Setup,  
OTP Setup,  
BP Confirm  
WordPgmSetup,  
Word Pgm Setup in Erase  
Susp,  
Status Read  
BP Confirm in Erase  
Suspend,  
Blank Check Setup,  
Blank Check Busy  
Ar  
ra  
y
Re  
ad  
Lock/RCR/ECR Setup,  
Status  
Read  
Status Read  
Lock/RCR/ECR Setup in  
Erase Susp  
BP Setup, Load 1, Load 2  
Output MUX will not change  
BP Setup, Load1, Load 2 -  
in Erase Susp.  
BP Busy  
BP Busy in Erase Suspend  
Word Program Busy,  
Word Prgm Busy in Erase  
Suspend,  
Status  
Read  
Erase Busy  
Ready,  
Word Prgm Suspend,  
BP Suspend,  
Phase-1 BP Suspend,  
Erase Suspend,  
Output MUX  
does not  
change  
Status  
Read  
Output  
MUX  
Status Read  
does  
not  
Change  
BP Suspend in Erase  
Suspend  
SR  
Re  
ad  
Status  
Read  
OTP Busy  
Notes:  
1.  
The Partition Data When Read field shows what users read from the flash chip after issuing the appropriate command,  
given the Partition Address is not changed from the address given during the command. Read-while-write functionality  
gives more flexibility in data output from the device. The data read from the chip depends on the Partition Address applied  
to the device. Depending on the command issued to the chip, each partition is placed into one of the following three  
output states during commands: Read Array, Read Status or Read ID/CFI. This partition's output state is retained until a  
April 2008  
309823-10  
Datasheet  
127  
Numonyx™ StrataFlash® Cellular Memory (M18)  
new command is issued to the chip at that Partition Address. This allows the user to set partition #1's output state to Read  
Array, and partition #4's output state to Read Status. Each time the partition address is changed to partition #4 (without  
issuing a new command), the Status will be read from the chip.  
Illegal commands include commands outside of the allowed command set (allowed commands: 41H [pgm], 20H [erase],  
etc.)  
All partitions default to Read Array on powerup.  
If a Read Array is attempted from a busy partition, the result is unreliable data. When the user returns to this partition  
address later, the output mux will be in the “Read Array” state from its last visit. the Read ID and Read Query commands  
perform the same function in the device. The ID and Query data are located at different locations in the address map.  
1st and 2nd cycles of "2 cycles write commands" must be given to the same partition address, or unexpected results will  
occur.  
The Clear Status command clears only the error bits in the status register if the device is not in the following modes: 1)  
WSM running (Pgm Busy, Erase Busy, Pgm Busy In Erase Suspend, OTP Busy, BEFP modes) 2) Suspend states (Erase  
Suspend, Pgm Suspend, Pgm Suspend In Erase Suspend).  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
BEFP writes are allowed only when the status register bit #0 = 0 or else the data is ignored.  
The current state is that of the chip and not of the partition. Each partition remembers which output (Array, ID/CFI or  
Status) it was last pointed to on the last instruction to the chip, but the next state of the chip does not depend on where  
the partition's output mux is presently pointing to.  
Confirm commands (Lock Block, Unlock Block, Lock-Down Block, Configuration Register and Blank Check) perform the  
operation and then move to the Ready State.  
9.  
10.  
Buffered programming will botch when a different block address (as compared to address given with E9 command) is  
written during the BP Load1 and BP Load2 states.  
11.  
12.  
WA0 refers to the block address latched during the first write cycle of the current operation.  
All two cycle commands are considered as a contiguous whole during device suspend states. Individual commands are not  
parsed separately; that is, the 2nd cycle of an erase command issued in program suspend will NOT resume the program  
operation.  
13.  
The Buffered Program setup command (0xE9) will not change the partition state. The Buffered Program Confirm command  
(0xD0) will place the partition in read status mode.  
Appendix A AADM Mode  
A.1  
AADM Feature Overview  
The following is a list of general requirements for AADM mode. Additional details can be  
found in subsequent sections.  
Feature Availability: AADM mode is available in devices that are configured as A/  
D MUX. With this configuration, AADM mode is enabled by setting a specific volatile  
bit in the RCR.  
High Address Caputure (A[MAX:16]): When AADM mode is enabled,  
A[MAX:16] and A[15:0] are captured from the A/DQ[15:0] balls. The selection of  
A[MAX:16] or A[15:0] is determined by the state of the OE# input, as A[MAX:16]  
is captured when OE# is at VIL.  
Read & Write Cycle Support: In AADM mode, both asynchronous and  
synchronous Cycles are supported.  
Customer Requirements: For AADM operation, the customer is required to  
ground A16-Amax.  
Other Characteristics: For AADM, all other device characteristics (pgm time,  
erase time, ICCS, etc.) are the same as A/D MUX unless otherwise stated.  
A.2  
AADM Mode Enable (RCR[4]=1)  
Setting RCR.4 to its non-default state (‘1b) enables AADM mode:  
• The default device configuration upon Reset or Powerup is A/D MUX Mode  
• Upon setting RCR[4]=1, the upper Addresses A[max:16] are latched as all 0’s by  
default.  
Datasheet  
128  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
A.3  
Bus Cycles and Address Capture  
AADM bus operations have one or two address cycles. For two address cycles, the  
upper address (A[MAX:16]) must be issued first, followed by the lower address  
(A[15:0]). For bus operations with only one address cycle, only the lower address is  
issued. The upper address that applies is the one that was most recently latched on a  
previous bus cycle. For all read cycles, sensing begins when the lower address is  
latched, regardless of whether there are one or two address cycles.  
In bus cycles, the external signal that distinguishes the upper address from the lower  
address is OE#. When OE# is at VIH, a lower address is captured; when OE# is at VIL,  
an upper address is captured.  
When the bus cycle has only one address cycle, the timing waveform is similar to A/D  
MUX mode. The lower address is latched when OE# is at VIH, and data is subsequently  
outputted after the falling edge of OE#.  
Note:  
When the device initially enters AADM mode, the upper address is internally latched as  
all 0’s.  
A.3.1  
WAIT Behavior  
The WAIT behavior in AADM mode functions the same as the legacy M18 non-MUX  
WAIT behavior (ADMux WAIT behavior is unique). In other words, WAIT will always be  
driven whenever DQ[15:0] is driven, and WAIT will tri-state whenever DQ[15:0] tri-  
state. In asynchronous mode (RCR[15] = ‘1b), WAIT always indicates “valid data”  
when driven. In synchronous mode (RCR[15] = ‘0b), WAIT indicates “valid data” only  
after the latency count has lapsed and the data output data is truly valid.  
A.3.2  
Asynchronous Read and Write Cycles  
For asynchronous read and write cycles, ADV# must be toggled high-low-high a  
minimum of one time and a maximum of two times during a bus cycle. If ADV# is  
toggled low twice during a bus cycle, OE# must be held low for the first ADV# rising  
edge and OE# must be held high for the second ADV# rising edge. The first ADV#  
rising edge (with OE# low) captures A[MAX:16]. The second ADV# rising edge (with  
OE# high) captures A[15:0]. Each bus cycle must toggle ADV# high-low-high at least  
one time in order to capture A[15:0]. For asynchronous reads, sensing begins when the  
lower address is latched.  
During asynchronous cycles, it is optional to capture A[MAX:16]. If these addresses are  
not captured, then the previously captured A[MAX:16] contents will be used.  
A.3.2.1  
Asynchronous Read Cycles  
For asynchronous read and latching specifications, refer to Table 63, “AADM  
Aynchronous and Latching Timings” on page 130. For asynchronous read timing  
diagrams, refer to Figure 61, “AADM Asynchronous Read Cycle (Latching A[MAX:0])”  
on page 130 and Figure 62, “AADM Asynchronous Read Cycle (Latching A[15:0] only)”  
on page 131. For AADM, note that asynchronous read access is from the rising edge of  
ADV# rather than the falling edge. (i.e. TVHQV rather than TVLQV)  
April 2008  
309823-10  
Datasheet  
129  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 63: AADM Aynchronous and Latching Timings  
Num  
Sym  
Min (nS)  
Max (nS)  
Num  
Sym  
Min (nS)  
Max (nS)  
R4  
R5  
tGLQV  
tPHQV  
tELQX  
tGLQX  
tEHQZ  
tGHQZ  
tOH  
20  
R17  
tGHTZ  
tAVVH  
tELVH  
tVLVH  
tVHVL  
tVHAX  
tVHGL  
9
150  
R101  
R102  
R104  
R105  
R106  
R107  
R109  
R111  
R127  
R128  
R129  
5
9
7
7
5
3
R6  
0
0
R7  
R8  
9
9
R9  
R10  
R11  
R12  
R13  
R15  
R16  
0
7
(1)  
tEHEL  
tELTV  
tEHTZ  
tGLTV  
tGLTX  
tVHQV  
96  
11  
9
tPHVH  
tGHVH  
tGLVH  
tVHGH  
30  
3
7
3
0
3
Notes:  
1.  
2.  
TVHQV applies to asynchronous read access time.  
A read cycle may be restarted prior to completing a pending read operation, but this may occur only once before the sense  
operation is allowed to complete.  
Figure 61: AADM Asynchronous Read Cycle (Latching A[MAX:0])  
A/DQ[15:0]  
A[MAX:16]  
A[15:0]  
DQ[15:0]  
R101  
R106  
R106  
R105  
R101  
R104  
R104  
R109  
ADV#  
CE#  
OE#  
R8  
R11  
R102  
R128  
R7  
R9  
R129  
R127  
R107  
R4  
R127+R107  
R15  
R16  
R17  
R13  
WAIT  
Notes:  
1.  
Diagram shows WAIT as active low (RCR.10=0)  
Datasheet  
130  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
1
Figure 62: AADM Asynchronous Read Cycle (Latching A[15:0] only)  
A/DQ[15:0]  
A[15:0]  
DQ[15:0]  
R101  
R106  
R104  
R109  
ADV#  
CE#  
OE#  
R8  
R11  
R102  
R7  
R9  
R107  
R4  
R127+R107  
R15  
R17  
R13  
R16  
WAIT  
Notes:  
1.  
2.  
Diagram shows WAIT as active low (RCR.10=0).  
Without latching A[MAX:16] in the Asynchronous Read Cycle, the previously latched A[MAX:16] applies.  
A.3.2.2  
Asynchronous Write Cycles  
For asynchronous write specifications, refer to Table 64, “AADM Write Timings” on  
page 132. For asynchronous write timing diagrams, refer to Figure 63, “AADM  
Asynchronous Write Cycle (Latching A[MAX:0])” on page 132 and Figure 64, “AADM  
Asynchronous Write Cycle (Latching A[15:0] only)” on page 132.  
April 2008  
309823-10  
Datasheet  
131  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 64: AADM Write Timings  
Num  
Symbol  
Min(nS)  
Num  
Symbol  
Min(nS)  
W1  
W2  
W3  
W4  
W6  
W7  
tPHWL  
tELWL  
150  
0
W9  
tWHWL  
tVPWH  
tWVVL  
tBHWH  
tWHGL  
tGHWL  
20  
200  
0
W10  
W11  
W13  
W14  
W23  
tWLWH  
tDVWH  
tWHEH  
tWHDX  
40  
40  
0
200  
0
0
0
Figure 63: AADM Asynchronous Write Cycle (Latching A[MAX:0])  
W7  
A/DQ[15:0]  
ADV#  
A[MAX:16]  
A[15:0]  
DQ[15:0]  
W6  
CE#  
OE#  
W14  
W2  
W23  
W4  
W2  
W3  
W9  
WE#  
WP#  
W13  
W1  
RST#  
Figure 64: AADM Asynchronous Write Cycle (Latching A[15:0] only)  
W7  
A/DQ[15:0]  
ADV#  
A[15:0]  
DQ[15:0]  
W6  
CE#  
OE#  
W14  
W4  
W2  
W2  
W3  
W9  
WE#  
WP#  
W13  
W1  
RST#  
Datasheet  
132  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
A.3.3  
Synchronous Read and Write Cycles  
Just as asynchronous bus cycles, synchronous bus cycles (RCR[15] = ‘0b) can have  
one or two address cycles. If the are two address cycles, the upper address must be  
latched first with OE# at VIL followed by the lower address with OE# at VIH. If there is  
only one address cycle, only the lower address will be latched and the previously  
latched upper address applies. For reads, sensing begins when the lower address is  
latched, but for synchronous reads, addresses are latched on a rising clock CLK instead  
of a rising ADV# edge.  
For synchronous bus cycles with two address cycles, it is not necessary to de-assert  
ADV# between the two address cycles. This allows both the upper and lower address to  
be latched in only two clock periods.  
A.3.3.1  
Synchronous Read Cycles  
For synchronous read specifications, refer to Table 65, “AADM Synchronous Timings” on  
page 133. For synchronous read timing diagrams, refer to the following:  
Figure 65, “AADM Sync Burst Read Cycle (ADV# De-asserted between Address  
Cycles)” on page 134  
Figure 66, “AADM Sync Burst Read Cycle (ADV# Not De-asserted between Address  
Cycles)” on page 134  
Figure 67, “AADM Sync Burst Read Cycle (Latching A[15:0] only)” on page 135  
Table 65: AADM Synchronous Timings  
Target (104 MHz)  
Target (104 MHz)  
(108MHz)  
Notes  
(3)  
Notes  
(3)  
(108MHz)  
Num  
Sym  
Num  
Sym  
Min (nS)  
Max (nS)  
Min (nS)  
Max (nS)  
R201  
R203  
R301  
R302  
R303  
R304  
R305  
R306  
R307  
tCLK  
tRISE/FALL  
tAVCH  
9
See note  
1.5  
1
5
R311  
R312  
R313  
R314  
R316  
R317  
R318  
R319  
R320  
tCHVL  
tCHTX  
tCHVH  
tCHGL  
tVLVH  
tVHCH  
tCHGH  
tGHCH  
tGLCH  
2.5  
2
3
3
2
2
4
tVLCH  
2
2.5  
tCLK  
3
tELCH  
3.5  
2*tCLK  
tCHQV  
tCHQX  
tCHAX  
7
7
2
5
2
4
3
tCHTV  
3
Notes:  
1.  
2.  
The device must operate down to 9.6MHz in synchronous burst mode.  
During the address capture phase of a read burst bus cycle, OE# timings relative to CLK shall be identical to those of  
ADV# relative to CLK.  
3.  
4.  
In synchronous burst read cycles, the asynchronous OE# to ADV# setup and hold times must also be met (Tghvh & Tvhgl)  
to signify that the address capture phase of the bus cycle is complete.  
To prevent A/D bus contention between the host and the memory device, OE# may only be asserted low after the host has  
satisfied the ADDR hold spec, Tchax.  
5.  
6.  
Rise and fall time specified between Vil & Vih  
A read cycle may only be terminated (prior to the completion of sensing data) one time before a full bus cycle must be  
allowed to complete.  
April 2008  
309823-10  
Datasheet  
133  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 65: AADM Sync Burst Read Cycle (ADV# De-asserted between Address Cycles)  
A/DQ[15:0]  
CLK  
A[MAX:16]  
R306  
A[15:0]  
DQ[15:0]  
DQ[15:0]  
A
R306  
R315  
R305  
R301  
R301  
R304  
R302  
R317  
R313  
R302  
R317  
R313  
R311  
R311  
R316  
R316  
ADV#  
CE#  
R303  
R318  
R314  
R320  
R319  
OE#  
WE#  
R307  
R312  
WAIT  
Notes:  
1.  
2.  
Diagram shows WAIT as active low (RCR.10=0) and asserted with Data (RCR.8=0).  
For no-wrap bursts, end-of-wordline WAIT states could occur (not shown in timing diagram).  
Figure 66: AADM Sync Burst Read Cycle (ADV# Not De-asserted between Address Cycles)  
A/DQ[15:0]  
CLK  
A[MAX:16]  
R306  
A[15:0]  
R306  
DQ[15:0]  
DQ[15:0]  
A
R305  
R315  
R301  
R301  
R304  
R302  
R317  
R313  
R311  
ADV#  
CE#  
R303  
R318  
R314  
R320  
R319  
OE#  
WE#  
R307  
R312  
WAIT  
Notes:  
1.  
Diagram shows WAIT as active low (RCR.10=0) and asserted with Data (RCR.8=0)  
Datasheet  
134  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Figure 67: AADM Sync Burst Read Cycle (Latching A[15:0] only)  
A/DQ[15:0]  
CLK  
A[15:0]  
R306  
DQ[15:0]  
DQ[15:0]  
A
R305  
R315  
R301  
R302  
R304  
R317  
R313  
R311  
ADV#  
CE#  
R303  
R314  
OE#  
WE#  
R307  
R312  
WAIT  
Notes:  
1.  
2.  
3.  
Diagram shows WAIT as active low (RCR.10=0) and asserted with Data (RCR.8=0).  
For no-wrap bursts, end-of-wordline WAIT states could occur (not shown in timing diagram)  
Without latching A[MAX:16] in the Sync Read Cycle, the previously latched A[MAX:16] applies.  
A.3.4  
Synchronous Write Cycles  
For synchronous writes, only the address latching cycle(s) are synchronous.  
Synchronous address latching is depicted in the timing diagrams for synchronous read  
cycles:  
Figure 65, “AADM Sync Burst Read Cycle (ADV# De-asserted between Address  
Cycles)” on page 134  
Figure 66, “AADM Sync Burst Read Cycle (ADV# Not De-asserted between Address  
Cycles)” on page 134  
Figure 67, “AADM Sync Burst Read Cycle (Latching A[15:0] only)” on page 135  
The actual write operation (rising WE# edge) is asynchronous and is independent of  
CLK. Asynchronous writes are depicted in the timing diagrams for asynchronous write  
cycles:  
Figure 63, “AADM Asynchronous Write Cycle (Latching A[MAX:0])” on page 132  
Figure 64, “AADM Asynchronous Write Cycle (Latching A[15:0] only)” on page 132  
A.3.5  
System Boot  
Systems that use the AADM mode will boot from the bottom 128k Bytes of device  
memory because A[MAX:16] are expected to be grounded in-system. The 128k Byte  
boot region is sufficient to perform required boot activities before setting RCR[4] to  
enable AADM mode.  
April 2008  
309823-10  
Datasheet  
135  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Appendix B Additional Information  
Order Number  
Document/Tool  
Numonyx™ StrataFlash® Cellular Memory (M18) Developer’s Manual  
315567  
Numonyx™ StrataFlash® Cellular Memory (M18 SCSP); 2048-Mbit M18 (Non-Mux and AD-Mux I/O)  
Family with Synchronous PSRAM Datasheet  
307654  
310048  
309311  
®
®
Designing with Numonyx™ StrataFlash Wireless Memory and Pre-enabling Numonyx™ StrataFlash  
Cellular Memory, Application Note 822  
®
®
Numonyx™ StrataFlash Cellular Memory (M18 SCSP) to ARM PrimeCellTM Design Guide, Application  
Note 841  
®
Migration Guide for Numonyx™ StrataFlash Cellular Memory (M18) 90 nm to 65 nm, Application Note  
860  
315651  
310058  
Effect of Program Buffer Size on System Interrupt Latency, Application Note 816  
Notes:  
4.  
Visit Numonyx’s World Wide Web home page at http://www.numonyx.com for technical documentation and tools or for  
the most current information on Numonyx flash products.  
Appendix C Ordering Information  
To order samples, obtain datasheets or inquire about any stack combination, please  
contact your local Numonyx representative.  
Table 66: 38F Type Stacked Components  
PF  
38F  
5070  
M0  
Y
0
B
0
Product Die/  
Density  
Configuration  
Voltage/NOR  
Flash CE#  
Configuration  
Parameter /  
Mux  
Configuration  
Package  
Designator  
Product Line  
Designator  
NOR Flash Prodcut  
Family  
Ballout  
Identifier  
Device  
Details  
Char 1 = Flash  
die #1  
V =  
1.8 V Core  
0 =  
Char 2 = Flash  
die #2  
First character  
applies to Flash  
die #1  
No parameter  
blocks; Non-  
Mux I/O  
B =  
x16D  
Ballout  
and I/O;  
Separate Chip  
Enable per die  
Char 3 =  
interface  
0 =  
PF =  
SCSP, RoHS  
RAM die #1  
Second character  
applies to Flash  
die #2  
(See  
(See  
Original  
released  
version of  
this  
(See  
Table 70,  
“Voltage /  
NOR Flash  
CE#  
Table 72  
Table 71,  
“Parameter  
/ Mux  
Char 4 =  
RAM die #2  
StackedNOR  
Flash + RAM  
,
RD =  
“Ballout  
Decoder  
” on  
(See Table 69,  
“NOR Flash  
Family  
SCSP, Leaded  
product  
Configurati  
on  
Configurati  
on  
(See  
page 13  
9 for  
Table 68,  
“38F / 48F  
Density  
Decoder”  
on  
Decoder”  
on  
Decoder” on  
page 138 for  
details)  
Decoder”  
on  
details)  
page 138  
for details)  
page 138  
for details)  
page 137 for  
details)  
Datasheet  
136  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 67: 48F Type Stacked Components  
PC  
48F  
4400  
P0  
V
B
0
0
Product Die/  
Density  
Configuration  
Voltage/NOR  
Flash CE#  
Configuration  
Parameter /  
Mux  
Configuration  
Package  
Designator  
Product Line  
Designator  
NOR Flash Prodcut  
Family  
Ballout  
Identifier  
Device  
Details  
PC =  
Char 1 = Flash  
die #1  
Easy BGA,  
RoHS  
V =  
B =  
Bottom  
parameter;  
Non-Mux I/O  
interface  
1.8 V Core  
and 3 V I/O;  
Virtual Chip  
Enable  
First character  
applies to Flash  
dies #1 and #2  
Char 2 = Flash  
die #2  
0 =  
Discrete  
Ballout  
RC =  
Easy BGA,  
Leaded  
0 =  
Char 3 = Flash  
die #3  
Second character  
applies to Flash  
dies #3 and #4  
Original  
released  
version of  
this  
(See  
(See  
JS =  
(See  
Table 70,  
“Voltage /  
NOR Flash  
CE#  
Table 72  
Stacked  
NOR Flash  
only  
TSOP, RoHS  
Table 71,  
“Parameter  
/ Mux  
,
Char 4 = Flash  
die #4  
“Ballout  
Decoder  
” on  
(See Table 69,  
“NOR Flash  
Family  
product  
TE =  
Configurati  
on  
Configurati  
on  
TSOP, Leaded  
(See  
page 13  
9 for  
Decoder”  
on  
Table 68,  
“38F / 48F  
Density  
Decoder” on  
page 138 for  
details)  
Decoder”  
on  
PF =  
SCSP, RoHS  
details)  
page 138  
for details)  
page 138  
for details)  
Decoderon  
page 137 for  
details)  
RD =  
SCSP, Leaded  
Table 68: 38F / 48F Density Decoder  
Code  
Flash Density  
RAM Density  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
No Die  
No Die  
32-Mbit  
64-Mbit  
128-Mbit  
256-Mbit  
512-Mbit  
1-Gbit  
4-Mbit  
8-Mbit  
16-Mbit  
32-Mbit  
64-Mbit  
128-Mbit  
256-Mbit  
512-Mbit  
1-Gbit  
2-Gbit  
4-Gbit  
8-Gbit  
16-Gbit  
32-Gbit  
64-Gbit  
128-Gbit  
256-Gbit  
512-Gbit  
2-Gbit  
4-Gbit  
8-Gbit  
16-Gbit  
32-Gbit  
64-Gbit  
April 2008  
309823-10  
Datasheet  
137  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 69: NOR Flash Family Decoder  
Code  
Family  
Marketing Name  
C
C3  
Numonyx™ Advanced+ Boot Block Flash Memory  
J3v.D  
Numonyx™ Embedded Flash Memory  
Numonyx™ StrataFlash® Wireless Memory  
Numonyx™ StrataFlash® Cellular Memory  
Numonyx™ StrataFalsh® Embedded Memory  
Numonyx™ Wireless Flash Memory  
No Die  
J
L
L18 / L30  
M18  
M
P
P30 / P33  
W18 / W30  
-
W
0(zero)  
Table 70: Voltage / NOR Flash CE# Configuration Decoder  
I/O Voltage  
Code  
Core Voltage (Volt)  
CE# Configuration  
Seperate Chip Enable per die  
(Volt)  
Z
3.0  
1.8  
3.0  
3.0  
1.8  
3.0  
3.0  
1.8  
3.0  
1.8  
1.8  
3.0  
1.8  
1.8  
1.8  
1.8  
1.8  
3.0  
Seperate Chip Enable per die  
Seperate Chip Enable per die  
Virtual Chip Enable  
Virtual Chip Enable  
Virtual Chip Enable  
Virtual Address  
Y
X
V
U
T
R
Q
P
Virtual Address  
Virtual Address  
Table 71: Parameter / Mux Configuration Decoder (Sheet 1 of 2)  
Code, Mux  
Identification  
Number of Flash Die  
Bus Width  
Flash Die 1  
Flash Die 2  
Flash Die 3  
Flash Die 4  
0 = Non Mux  
1 = AD Mux  
Any  
NA  
Notation used for stacks that contain no parameter blocks  
3 = "Full" AD  
Mux  
1
2
3
4
2
4
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
-
-
-
Top  
-
-
B = Non Mux  
C = AD Mux  
X16  
X32  
Bottom  
Top  
Top  
Bottom  
-
-
F = "Full" Ad  
Mux  
Top  
-
Bottom  
Bottom  
Top  
Top  
Datasheet  
138  
April 2008  
309823-10  
Numonyx™ StrataFlash® Cellular Memory (M18)  
Table 71: Parameter / Mux Configuration Decoder (Sheet 2 of 2)  
Code, Mux  
Identification  
Number of Flash Die  
Bus Width  
Flash Die 1  
Flash Die 2  
Flash Die 3  
Flash Die 4  
1
2
3
4
2
4
Top  
-
-
-
-
-
-
Top  
Top  
Top  
Top  
Top  
Bottom  
Top  
T = Non Mux  
U = AD Mux  
X16  
Bottom  
Top  
W = "Full" Ad  
Mux  
Bottom  
Top  
Bottom  
-
-
X32  
Top  
Bottom  
Bottom  
Table 72: Ballout Decoder  
Code  
Ballout Definition  
0 (Zero)  
SDiscrete ballout (Easay BGA and TSOP)  
B
x16D ballout, 105 ball (x16 NOR + NAND + DRAM Share Bus)  
x16C ballout, 107 ball (x16 NOR + NAND + PSRAM Share Bus)  
QUAD/+ ballout, 88 ball (x16 NOR + PSRAM Share Bus)  
x32SH ballout, 106 ball (x32 NOR only Share Bus)  
C
Q
U
V
x16SB ballout, 165 ball (x16 NOR / NAND + x16 DRAM Split Bus  
x48D ballout, 165 ball (x16/x32 NOR + NAND + DRAM Split Bus  
W
April 2008  
309823-10  
Datasheet  
139  

相关型号:

PF38F5070M0R0Q0

StrataFlash㈢ Cellular Memory
NUMONYX

PF38F5070M0R0V0

StrataFlash㈢ Cellular Memory
NUMONYX

PF38F5070M0R0W0

StrataFlash㈢ Cellular Memory
NUMONYX

PF38F5070M0R1B0

StrataFlash㈢ Cellular Memory
NUMONYX

PF38F5070M0R1C0

StrataFlash㈢ Cellular Memory
NUMONYX

PF38F5070M0R1Q0

StrataFlash㈢ Cellular Memory
NUMONYX

PF38F5070M0R1V0

StrataFlash㈢ Cellular Memory
NUMONYX

PF38F5070M0R1W0

StrataFlash㈢ Cellular Memory
NUMONYX

PF38F5070M0R3B0

StrataFlash㈢ Cellular Memory
NUMONYX

PF38F5070M0R3C0

StrataFlash㈢ Cellular Memory
NUMONYX

PF38F5070M0R3Q0

StrataFlash㈢ Cellular Memory
NUMONYX

PF38F5070M0R3V0

StrataFlash㈢ Cellular Memory
NUMONYX