RD48F3000L0YCQ0 [NUMONYX]

Flash, 8MX16, 85ns, PBGA88,;
RD48F3000L0YCQ0
型号: RD48F3000L0YCQ0
厂家: NUMONYX B.V    NUMONYX B.V
描述:

Flash, 8MX16, 85ns, PBGA88,

文件: 总98页 (文件大小:1152K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
Numonyx™ StrataFlash Wireless Memory  
(L18) with AD-Multiplexed I/O  
Datasheet  
Product Features  
„ High performance Read-While-Write/Erase  
„ Power  
— 1.7 V to 2.0 V VCC operation  
— 85 ns initial access  
— 54MHz with zero wait state, 14 ns clock-to-  
data output synchronous-burst mode  
— I/O voltage: 1.35 V – 2.0 V, 1.7 V– 2.0 V  
— Standby current: 25 µA (Typ) for 256-Mbit  
— 4-, 8-, 16-, and continuous-word burst  
mode  
— Burst suspend  
— 4-Word synchronous read current: 15 mA  
(Typ) @ 54 MHz  
— Automatic Power Savings (APS) mode  
— Programmable WAIT configuration  
„ Security  
— Buffered Enhanced Factory Programming  
(Buffered EFP): 5 µs/byte (Typ)  
— 1.8 V low-power buffered and non-buffered  
programming @ 7 µs/byte (Typ)  
— OTP space:  
• 64 unique device identifier bits  
• 64 user-programmable OTP bits  
• Additional 2048 user-programmable OTP  
bits  
„ Architecture  
— Absolute write protection: VPP = GND  
— Power-transition erase/program lockout  
— Individual zero-latency block locking  
— Individual block lock-down  
— Asymmetrically-blocked architecture  
— Multiple 8-Mbit partitions: 64Mb and 128Mb  
devices  
— Multiple 16-Mbit partitions: 256Mb devices  
— Four 16-KWord parameter blocks: top  
configuration  
— 64-KWord main blocks  
„ Software  
— 20 µs (Typ) program suspend  
— 20 µs (Typ) erase suspend  
— Dual-operation: Read-While-Write (RWW)  
or Read-While-Erase (RWE)  
— Intel® Flash Data Integrator (FDI)  
optimized  
— Status register for partition and device  
status  
„ Density and Packaging  
— Basic Command Set (BCS) and Extended  
Command Set (ECS) compatible  
— Common Flash Interface (CFI) capable  
„ Quality and Reliability  
— 64-, 128-, and 256 Mbit density in VF BGA  
package  
— 16-bit wide data bus  
— Expanded temperature: –25° C to +85° C  
— Minimum 100,000 erase cycles per block  
— Intel ETOX* VIII process technology (0.13  
µm)  
313295-04  
November 2007  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR  
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN NUMONYX'S TERMS AND  
CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY, RELATING TO SALE AND/OR USE OF NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A  
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Numonyx  
products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.  
Numonyx B.V. may make changes to specifications and product descriptions at any time, without notice.  
Numonyx B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented  
subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or  
otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.Numonyx reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by visiting  
Numonyx's website at http://www.numonyx.com.  
Numonyx, the Numonyx logo, and StrataFlash are trademarks or registered trademarks of Numonyx B.V. or its subsidiaries in other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2007, Numonyx B.V., All Rights Reserved.  
Datasheet  
2
November 2007  
313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Contents  
1.0 Introduction..............................................................................................................7  
1.1  
1.2  
1.3  
Nomenclature.....................................................................................................7  
Acronyms...........................................................................................................7  
Conventions .......................................................................................................8  
2.0 Functional Overview..................................................................................................9  
3.0 Package Information...............................................................................................10  
4.0 Ballout and Signal Descriptions ...............................................................................12  
4.1  
4.2  
Signal Descriptions............................................................................................ 13  
Memory Map..................................................................................................... 15  
5.0 Maximum Ratings and Operating Conditions............................................................ 17  
5.1  
5.2  
Absolute Maximum Ratings.................................................................................17  
Operating Conditions .........................................................................................17  
6.0 Electrical Specifications........................................................................................... 18  
6.1  
6.2  
DC Current Characteristics.................................................................................. 18  
DC Voltage Characteristics.................................................................................. 19  
7.0 AC Characteristics ................................................................................................... 20  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
AC Test Conditions ............................................................................................ 20  
Capacitance......................................................................................................21  
AC Read Specifications (VCCQ = 1.35 V – 2.0 V) ...................................................21  
AC Read Specifications: 64- and 128-Mb Densities.................................................22  
AC Read Specifications for 256-Mb Density ...........................................................23  
AC Write Specifications ...................................................................................... 30  
Program and Erase Characteristics....................................................................... 32  
8.0 Power and Reset Specifications...............................................................................33  
8.1  
8.2  
8.3  
8.4  
Power Up and Down .......................................................................................... 33  
Reset...............................................................................................................33  
Power Supply Decoupling ................................................................................... 34  
Automatic Power Saving (APS)............................................................................ 35  
9.0 Device Operations ................................................................................................... 36  
9.1  
Bus Operations .................................................................................................36  
9.1.1 Reads................................................................................................... 36  
9.1.2 Writes................................................................................................... 36  
9.1.3 Output Disable.......................................................................................36  
9.1.4 Standby................................................................................................37  
9.1.5 Reset.................................................................................................... 37  
Device Commands............................................................................................. 37  
Command Definitions.........................................................................................38  
9.2  
9.3  
10.0 Read Operations......................................................................................................41  
10.1 Asynchronous Read Mode................................................................................... 41  
10.2 Synchronous Burst-Mode Read............................................................................ 41  
10.2.1 Burst Suspend .......................................................................................42  
10.3 Read Configuration Register (RCR) ...................................................................... 42  
10.3.1 Read Mode ............................................................................................ 43  
10.3.2 Latency Count........................................................................................43  
10.3.3 WAIT Polarity.........................................................................................45  
10.3.3.1 WAIT Signal Function ................................................................45  
10.3.4 Data Hold.............................................................................................. 46  
November 2007  
313295-04  
Datasheet  
3
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
10.3.5 WAIT Delay............................................................................................46  
10.3.6 Burst Sequence......................................................................................47  
10.3.7 Clock Edge.............................................................................................47  
10.3.8 Burst Wrap ............................................................................................48  
10.3.9 Burst Length..........................................................................................48  
11.0 Programming Operations.........................................................................................49  
11.1 Word Programming............................................................................................49  
11.1.1 Factory Word Programming......................................................................50  
11.2 Buffered Programming .......................................................................................50  
11.3 Buffered Enhanced Factory Programming..............................................................51  
11.3.1 Buffered EFP Requirements and Considerations...........................................51  
11.3.2 Buffered EFP Setup Phase........................................................................52  
11.3.3 Buffered EFP Program/Verify Phase...........................................................52  
11.3.4 Buffered EFP Exit Phase...........................................................................53  
11.4 Program Suspend ..............................................................................................53  
11.5 Program Resume ...............................................................................................53  
11.6 Program Protection ............................................................................................53  
12.0 Erase Operations......................................................................................................55  
12.1 Block Erase.......................................................................................................55  
12.2 Erase Suspend ..................................................................................................55  
12.3 Erase Resume ...................................................................................................56  
12.4 Erase Protection ................................................................................................56  
13.0 Security Modes ........................................................................................................57  
13.1 Block Locking....................................................................................................57  
13.1.1 Lock Block .............................................................................................57  
13.1.2 Unlock Block ..........................................................................................57  
13.1.3 Lock-Down Block ....................................................................................57  
13.1.4 Block Lock Status ...................................................................................58  
13.1.5 Block Locking During Suspend..................................................................58  
13.2 Protection Registers ...........................................................................................59  
13.2.1 Reading the Protection Registers...............................................................60  
13.2.2 Programming the Protection Registers .......................................................61  
13.2.3 Locking the Protection Registers ...............................................................61  
14.0 Dual-Operation Considerations ................................................................................62  
14.1 Memory Partitioning...........................................................................................62  
14.2 Read-While-Write Command Sequences................................................................62  
14.2.1 Simultaneous Operation Details................................................................63  
14.2.2 Synchronous and Asynchronous Read-While-Write Characteristics and  
Waveforms ............................................................................................63  
14.2.2.1 Write operation to asynchronous read transition............................63  
14.2.2.2 Write to synchronous read operation transition..............................63  
14.2.2.3 Write Operation with Clock Active................................................64  
14.2.3 Read Operation During Buffered Programming Flowchart..............................64  
14.2.4 Simultaneous Operation Restrictions .........................................................64  
15.0 Special Read States..................................................................................................66  
15.1 Read Status Register..........................................................................................66  
15.1.1 Clear Status Register ..............................................................................67  
15.2 Read Device Identifier ........................................................................................67  
15.3 CFI Query.........................................................................................................68  
A
B
Write State Machine.................................................................................................69  
Flowcharts...............................................................................................................76  
Datasheet  
4
November 2007  
313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
B.1  
B.2  
B.3  
B.4  
B.5  
B.6  
Common Flash Interface (CFI) ............................................................................ 83  
Query Structure Output...................................................................................... 84  
Query Structure Overview .................................................................................. 84  
CFI Query Identification String............................................................................ 85  
Device Geometry Definition ................................................................................87  
Intel-Specific Extended Query Table..................................................................... 88  
C
Ordering Information .............................................................................................. 96  
November 2007  
313295-04  
Datasheet  
5
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Revision History  
Date  
Revision Description  
May 2006  
July 2006  
001  
002  
003  
04  
Initial Release  
Removed Intel Confidential status.  
Updated ordering information  
Applied Numonyx branding.  
August 2007  
November 2007  
Datasheet  
6
November 2007  
313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
1.0  
Introduction  
This document provides information about the Numonyx™ StrataFlash® Wireless  
Memory (L18) with AD-Multiplexed I/O device. This document describes device  
features, operation, and specifications.  
The Numonyx™ StrataFlash® Wireless Memory (L18) with AD-Multiplexed I/O product  
is the latest generation of Intel StrataFlash® memory featuring flexible, multiple-  
partition, dual operation. It provides high performance asynchronous read mode and  
synchronous-burst read mode using 1.8 V low-voltage, multi-level cell (MLC)  
technology.  
The multiple-partition architecture enables background programming or erasing to  
occur in one partition while code execution or data reads take place in another  
partition. This dual-operation architecture also allows two processors to interleave code  
operations while program and erase operations take place in the background. 8-Mbit  
partitions allow system designers to choose the size of the code and data segments.  
The Numonyx™ StrataFlash® Wireless Memory (L18) with AD-Multiplexed I/O device is  
manufactured using Intel 0.13 µm ETOX™ VIII process technology, available in  
industry-standard chip scale packaging.  
1.1  
Nomenclature  
1.8 V  
Vcc voltage range of 1.7 V – 2.0 V (except where noted)  
1.8 V Extended Range  
VPP = 9.0 V  
Vccq voltage range of 1.35 V – 2.0 V  
VPP voltage range of 8.5 V – 9.5 V  
A group of bits, bytes or words within the flash memory array that erase simultaneously when the  
Erase command is issued to the device. The device has two block sizes: 16K-Word and 64K-Word.  
Block  
An array block that is usually used to store code and/or data. Main blocks are larger than parameter  
blocks.  
Main block  
Parameter block  
An array block that is usually used to store frequently changing data or small system parameters  
that traditionally would be stored in EEPROM.  
Previously referred to as a top-boot device, a device with its parameter partition located at the  
highest physical address of its memory map. Parameter blocks within a parameter partition are  
located at the highest physical address of the parameter partition.  
Top parameter device  
Partition  
A group of blocks that share common program/erase circuitry. Blocks within a partition also share a  
common status register. If any block within a partition is being programmed or erased, only status  
register data (rather than array data) is available when any address within that partition is read.  
Main partition  
A partition containing only main blocks.  
Parameter partition  
A partition containing parameter blocks and main blocks.  
1.2  
Acronyms  
CUI  
MLC  
OTP  
PLR  
PR  
Command User Interface  
Multi-Level Cell  
One-Time Programmable  
Protection Lock Register  
Protection Register  
November 2007  
Order Number: 313295-04  
Datasheet  
7
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
RCR  
SR  
Read Configuration Register  
Status Register  
WSM  
Write State Machine  
1.3  
Conventions  
VCC  
VCC  
Signal or voltage connection  
Signal or voltage level  
0x  
0b  
Hexadecimal number prefix  
Binary number prefix  
SR[4]  
A[15:0]  
A5  
Denotes an individual register bit  
Denotes a group of similarly named signals, such as address or data bus  
bit  
Binary unit  
byte  
word  
Eight bits  
Two bytes, or sixteen bits  
Kbit  
1024 bits  
KByte  
KWord  
Mbit  
1024 bytes  
1024 words  
1,048,576 bits  
1,048,576 bytes  
1,048,576 words  
MByte  
MWord  
Datasheet  
8
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
2.0  
Functional Overview  
The Numonyx™ StrataFlash® Wireless Memory (L18) with AD-Multiplexed I/O device  
provides read-while-write and read-while-erase capability with density upgrades  
through 256-Mbit. This device provides high performance at low voltage on a 16-bit  
data bus. Individually erasable memory blocks are sized for optimum code and data  
storage.  
Each device density contains one parameter partition and several main partitions. The  
flash memory array is grouped into multiple 8-Mbit partitions for the 64-Mbit and  
128-Mbit devices, and into multiple 16-Mbit partitions for the 256-Mbit device. By  
dividing the flash memory into partitions, program or erase operations can take place  
at the same time as read operations.  
Although each partition has write, erase and burst read capabilities, simultaneous  
operation is limited to write or erase in one partition while other partitions are in read  
mode. The device allows burst reads that cross partition boundaries. User application  
code is responsible for ensuring that burst reads don’t cross into a partition that is  
programming or erasing.  
Upon initial power up or return from reset, the device defaults to asynchronous read  
mode. Configuring the Read Configuration Register enables synchronous burst-mode  
reads. In synchronous burst mode, output data is synchronized with a user-supplied  
clock signal. A WAIT signal provides easy CPU-to-flash memory synchronization.  
In addition to the enhanced architecture and interface, the device incorporates  
technology that enables fast factory program and erase operations. Designed for low-  
voltage systems, it supports read operations with VCC at 1.8 V, and erase and program  
operations with VPP at 1.8 V or 9.0 V. Buffered Enhanced Factory Programming  
(Buffered EFP) provides the fastest flash array programming performance with VPP at  
9.0 V, which increases factory throughput. With VPP at 1.8 V, VCC and VPP can be tied  
together for a simple, ultra low power design. In addition to voltage flexibility, a  
dedicated VPP connection provides complete data protection when VPP is less than  
VPPLK  
.
A Command User Interface (CUI) is the interface between the system processor and all  
internal operations of the device. An internal Write State Machine (WSM) automatically  
executes the algorithms and timings necessary for block erase and program. A Status  
Register indicates erase or program completion and any errors that may have occurred.  
An industry-standard command sequence invokes program and erase automation. Each  
erase operation erases one block. The Erase Suspend feature allows system software to  
pause an erase cycle to read or program data in another block. Program Suspend  
allows system software to pause programming to read other locations. Data is  
programmed in word increments (x16).  
The Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux) device offers power  
savings through Automatic Power Savings (APS) mode and standby mode. The device  
automatically enters APS following read-cycle completion. Standby is initiated when the  
system deselects the device by deasserting CE# or by asserting RST#. Combined,  
these features can significantly reduce power consumption.  
The device’s protection register allows unique flash device identification that can be  
used to increase system security. Also, the individual Block Lock feature provides zero-  
latency block locking and unlocking.  
November 2007  
Order Number: 313295-04  
Datasheet  
9
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
3.0  
Package Information  
Figure 1: 64- and 128-Mbit, 88-ball (80-active ball) (8x10x1.2 mm)  
A 1 I n d e x  
M a rk  
S 1  
8
7
6
5
4
3
2
1
2
3
4
5
6
7
8
1
S
2
A
A
B
C
B
C
D
D
E
E
F
F
D
e
G
G
H
H
J
J
K
K
L
L
M
M
b
E
B o t t o m V ie w  
Up  
-
B a ll  
T o p V ie w  
-
B a ll  
D
o w n  
A
2
A
1
A
Y
D r a w in g n o t to s c a le .  
M il li m e te r s  
N o m  
I nc h e s  
D i m e n s io n s  
S y m bo l  
M i n  
M a x  
N o t e s  
M in  
N o m  
M a x  
Pa c k a g e H e ig h t  
A
1 .2 0 0  
0 . 0 4 7 2  
B a ll H e ig h t  
A 1  
A 2  
0 .2 0 0  
0 .0 0 7 9  
Pa c k a g e B o d y T h ic k n e s s  
B a ll (L e a d ) id th  
Pa c k a g e B o d y L e n g th  
0 . 8 6 0  
0 .0 3 3 9  
W
b
0 .3 2 5  
9 .9 0 0  
7 .9 0 0  
0 . 3 7 5  
1 0 .0 0 0  
8 . 0 0 0  
0 .4 2 5  
0 .0 1 2 8  
0 .3 8 9 8  
0 .3 1 1 0  
0 .0 1 4 8  
0 .3 9 3 7  
0 .3 1 5 0  
0 . 0 1 6 7  
0 . 3 9 7 6  
0 . 3 1 8 9  
D
E
1 0 .1 0 0  
8 .1 0 0  
Pa c k a g e B o d y  
Pitc h  
W id th  
e
0 . 8 0 0  
8 8  
0 .0 3 1 5  
8 8  
B a ll (L e a d ) C o u n t  
Se a tin g P la n e C o p la n a rity  
N
Y
0 .1 0 0  
1 .3 0 0  
0 .7 0 0  
0 . 0 0 3 9  
0 . 0 5 1 2  
0 . 0 2 7 6  
C o r n e r t o B a ll A 1 D is ta n c e A lo n g  
C o r n e r t o B a ll A 1 D is ta n c e A lo n g  
E
S 1  
S 2  
1 .1 0 0  
0 .5 0 0  
1 . 2 0 0  
0 . 6 0 0  
0 .0 4 3 3  
0 .0 1 9 7  
0 .0 4 7 2  
0 .0 2 3 6  
D
Datasheet  
10  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 2: 256-Mbit, 88-ball (80-active ball) (8x11x1.0 mm)  
A
1
M
I n d e x  
a r k  
S
1
8
7
6
5
4
3
2
1
2
3
4
5
6
7
8
1
S
2
A
A
B
C
B
C
D
D
E
F
E
F
D
e
G
G
H
H
J
J
K
K
L
L
M
M
b
E
T
o p  
V
ie  
w
-
B
a ll  
D
o w  
n
B
o t t o  
m
V
i e w  
-
B
A
a
ll  
U
p
A
2
A
1
Y
D
r a w i n g n o t t o s c a l e .  
N o t e : D im e n s io n s A 1 , A 2 , a n d  
b
a r e p r e lim in a r y  
M
i l l i m e t e r s  
N o m  
In c h e s  
D
i m e n s i o n s  
S
y m b o l  
M
i n  
M
a x  
N
o te s  
M
i n  
N
o m  
M
a x  
P a c k a g e  
H
e ig h t  
A
1 . 0 0  
0 . 0 3 9 4  
B a ll  
H
e ig h t  
A
A
1
2
0 . 1 1 7  
0 . 0 0 4 6  
P a c k a g e B o d y T h ic k n e s s  
0 .7 4 0  
0 .3 5 0  
1 1 . 0 0  
8 . 0 0  
0 . 8 0  
8 8  
0 . 0 2 9 1  
0 . 0 1 3 8  
0 . 4 3 3 1  
0 . 3 1 5 0  
0 . 0 3 1 5  
8 8  
B a ll ( L e a d )  
W
id t h  
b
0 . 3 0 0  
1 0 . 9 0 0  
7 . 9 0 0  
0 . 4 0 0  
1 1 . 1 0 0  
8 . 1 0 0  
0 . 0 1 1 8  
0 . 4 2 9 1  
0 . 3 1 1 0  
0 . 0 1 5 7  
0 . 4 3 7 0  
0 . 3 1 8 9  
P a c k a g e B o d y L e n g t h  
D
E
e
P a c k a g e B o d y  
P it c h  
W
id t h  
B a ll ( L e a d ) C o u n t  
N
Y
S e a t in g P la n e C o p la n a r it y  
0 . 1 0 0  
1 . 3 0 0  
1 . 2 0 0  
0 . 0 0 3 9  
0 . 0 5 1 2  
0 . 0 4 7 2  
C o r n e r t o B a ll  
C o r n e r t o B a ll  
A
A
1
1
D is t a n c e  
D is t a n c e  
A
A
lo n g  
lo n g  
E
S 1  
S 2  
1 . 1 0 0  
1 . 0 0 0  
1 .2 0 0  
1 .1 0 0  
0 . 0 4 3 3  
0 . 0 3 9 4  
0 . 0 4 7 2  
0 . 0 4 3 3  
D
November 2007  
Order Number: 313295-04  
Datasheet  
11  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
4.0  
Ballout and Signal Descriptions  
Table 1:  
QUAD+ Ballout  
Pin 1  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
DU  
A4  
DU  
DU  
DU  
A
B
C
D
E
F
A18  
R-LB#  
A17  
A19  
A23  
VSS  
VSS  
F1-VCC  
S-CS2  
R-WE#  
ADV#  
F-WE#  
DQ5  
F2-VCC  
CLK  
A21  
A22  
A11  
A12  
A5  
A3  
A24  
F-VPP  
F-WP#  
F-RST#  
DQ10  
DQ3  
P1-CS#  
A20  
A9  
A13  
A2  
A7  
A25  
A10  
A15  
A1  
A6  
R-UB#  
DQ2  
A8  
A14  
A16  
G
H
J
A0  
DQ8  
DQ13  
DQ14  
DQ6  
WAIT  
DQ7  
DQ15  
VCCQ  
VSS  
F2-CE#  
F2-OE#  
VCCQ  
G
H
J
R-OE#  
S-CS1#  
F1-CE#  
VSS  
DQ0  
DQ1  
DQ12  
DQ4  
F1-OE#  
P2-CS#  
VSS  
DQ9  
DQ11  
S-VCC  
F1-VCC  
P-Mode# /  
P-CRE  
F3-CE#  
VCCQ  
P-VCC  
VSS  
F2-VCC  
VSS  
K
L
K
L
VSS  
DU  
DU  
DU  
DU  
M
M
1
2
3
4
5
6
7
8
Top View - Ball Side Down  
Legend:  
Active Signals  
De-Populated Balls  
Do Not Use  
Datasheet  
12  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
4.1  
Signal Descriptions  
Table 2:  
Signal Descriptions (Sheet 1 of 3)  
Note  
s
Symbol  
Type  
Signal Descriptions  
Address and Data Signals, AD-Mux  
ADDRESS: Global device signals.  
Shared address inputs for all memory die during Read and Write operations.  
256-Mbit: AMAX = A23  
128-Mbit: AMAX = A22  
64-Mbit: AMAX = A21  
A[MAX:16  
]
Input  
A0 is the lowest-order word address.  
Unused address inputs should be treated as RFU.  
ADDRESS-DATA MULTIPLEXED INPUTS/ OUTPUTS: AD-Mux I/O flash signals.  
During AD-Mux Read cycles, DQ[15:0] are used to input the lower address followed by read-data  
output. During AD-Mux Write cycles, DQ[15:0] are used to input the lower address followed by  
commands or data.  
Input /  
Output  
DQ[15:0]  
1
DQ[15:0] are High-Z when the device is deselected or its output is disabled.  
DQ[15:0] is only used with AD-Mux I/O flash device.  
Control Signals  
ADDRESS VALID: Flash- and Synchronous PSRAM-specific signal; low-true input.  
During a synchronous flash Read operation, the address is latched on the rising edge of ADV#  
or the first active CLK edge whichever occurs first. In an asynchronous flash Read operation,  
the address is latched on the rising edge of ADV# or continuously flows through while ADV#  
is low.  
ADV#  
Input  
During synchronous PSRAM read and synchronous write modes, the address is either latched  
on the first rising clock edge after ADV# assertion or on the rising edge of ADV# whichever  
edge comes first. In asynchronous read and asynchronous write modes, ADV# can be used to  
latch the address, but can be held low for the entire operation as well.  
Note: During A/D-Mux I/O operation, ADV# must remain deasserted during the data phase.  
FLASH CHIP ENABLE: Flash-specific signal; low-true input.  
When low, F-CE# selects the associated flash memory die. When high, F-CE# deselects the  
associated flash die. Flash die power is reduced to standby levels, and its data and F-WAIT outputs  
are placed in a High-Z state.  
F[3:1]-  
CE#  
Input  
F1-CE# is dedicated to flash die #1.  
F[3:2]-CE# are dedicated to flash die #3 through #2, respectively, if present. Otherwise, any  
unused flash chip enable should be treated as RFU.  
CLOCK: Flash- and Synchronous PSRAM-specific input signal.  
CLK  
Input  
Input  
CLK synchronizes the flash and/or synchronous PSRAM with the system clock during synchronous  
operations.  
FLASH OUTPUT ENABLE: Flash-specific signal; low-true input.  
When low, F-OE# enables the output drivers of the selected flash die. When high, F-OE# disables  
the output drivers of the selected flash die and places the output drivers in High-Z.  
F[2:1]-  
OE#  
F2-OE# common to all other flash dies, if present. Otherwise it is an RFU, however, it is highly  
recommended to always common F1-OE# and F2-OE# on the PCB.  
RAM OUTPUT ENABLE: PSRAM- and SRAM-specific signal; low-true input.  
When low, R-OE# enables the output drivers of the selected memory die. When high, R-OE#  
disables the output drivers of the selected memory die and places the output drivers in High-Z. If  
device not present, treat as RFU.  
R-OE#  
Input  
Input  
2
FLASH RESET: Flash-specific signal; low-true input.  
F-RST#  
When low, F-RST# resets internal operations and inhibits writes. When high, F-RST# enables  
normal operation.  
November 2007  
Order Number: 313295-04  
Datasheet  
13  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 2:  
Signal Descriptions (Sheet 2 of 3)  
Note  
Symbol  
Type  
Signal Descriptions  
s
WAIT: Flash -and Synchronous PSRAM-specific signal; configurable true-level output.  
When asserted, WAIT indicates invalid output data. When deasserted, WAIT indicates valid output  
data.  
WAIT  
Output  
WAIT is driven whenever the flash or the synchronous PSRAM is selected and its output  
enable is low.  
WAIT is High-Z whenever flash or the synchronous PSRAM is deselected, or its output enable  
is high.  
FLASH WRITE ENABLE: Flash-specific signal; low-true input.  
F-WE#  
R-WE#  
Input  
Input  
When low, F-WE# enables Write operations for the enabled flash die. Address and data are latched  
on the rising edge of F-WE#.  
RAM WRITE ENABLE: PSRAM- and SRAM-specific signal; low-true input.  
2
When low, R-WE# enables Write operations for the selected memory die. Data is latched on the  
rising edge of R-WE#. If device not present, treat as RFU.  
FLASH WRITE PROTECT: Flash-specific signals; low-true inputs.  
When low, F-WP# enables the Lock-Down mechanism. When high, F-WP# overrides the Lock-  
Down function, enabling locked-down blocks to be unlocked with the Unlock command.  
F-WP#  
Input  
F-WP1# is dedicated to flash die #1.  
F-WP2# is common to all other flash dies, if present. Otherwise it is an RFU.  
PSRAM CONTROL REGISTER ENABLE: Synchronous PSRAM-specific signal; high-true input.  
When high, P-CRE enables access to the Refresh Control Register (P-RCR) or Bus Control  
Register (P-BCR). When low, P-CRE enables normal Read or Write operations. If PSRAM not  
present, treat as RFU.  
P-CRE  
Input  
Input  
3
3
PSRAM MODE#: Asynchronous only PSRAM-specific signal; low-true input.  
When low, P-MODE# enables access to the configuration register, and to enter or exit Low-Power  
mode. When high, P-MODE# enables normal Read or Write operations. If PSRAM not present,  
treat as RFU.  
P-MODE#  
PSRAM CHIP SELECT: PSRAM-specific signal; low-true input.  
When low, P-CS# selects the associated PSRAM memory die. When high, P-CS# deselects the  
associated PSRAM die. PSRAM die power is reduced to standby levels, and its data and WAIT  
outputs are placed in a High-Z state.  
P[2:1]-  
CS#  
Input  
P1-CS# is dedicated to PSRAM die #1. If PSRAM not present, treat as RFU.  
P2-CS# is dedicated to PSRAM die #2. If PSRAM not present, treat as RFU.  
SRAM CHIP SELECTS: SRAM-specific signals; S-CS1# low-true input, S-CS2 high-true input.  
S-CS1#  
S-CS2  
When both S-CS1# and S-CS2 are asserted, the SRAM die is selected. When either S-CS1# or  
S-CS2 is deasserted, the SRAM die is deselected.  
Input  
Input  
2
2
S-CS1# and S-CS2 are dedicated to SRAM when present. If SRAM not present, treat as RFU.  
RAM UPPER/LOWER BYTE ENABLES: PSRAM- and SRAM-specific signals; low-true inputs.  
R-UB#  
R-LB#  
When low, R-UB# enables DQ[15:8] and R-LB# enables DQ[7:0] during PSRAM or SRAM Read  
and Write cycles. When high, R-UB# masks DQ[15:8] and R-LB# masks DQ[7:0]. If device not  
present, treat as RFU./  
Power Signals  
FLASH PROGRAM/ERASE VOLTAGE: Flash specific.  
F-VPP supplies program or erase power to the flash die.  
F-VPP  
Power  
FLASH CORE POWER SUPPLY: Flash specific.  
Power F[2:1]-VCC supplies the core power to the flash die.  
F2-VCC is recommended to be tied to F1-VCC, else it is an RFU.  
F[2:1]-  
VCC  
I/O POWER SUPPLY: Global device I/O power.  
Power  
VCCQ  
P-VCC  
S-VCC  
VCCQ supplies the device input/output driver voltage.  
PSRAM CORE POWER SUPPLY: PSRAM specific.  
P-VCC supplies the core power to the PSRAM die. If PSRAM not present, treat as RFU.  
Power  
2
2
SRAM POWER SUPPLY: SRAM specific.  
Power  
S-VCC supplies the core power to the SRAM die. If SRAM not present, treat as RFU.  
Datasheet  
14  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 2:  
Signal Descriptions (Sheet 3 of 3)  
Note  
s
Symbol  
Type  
Signal Descriptions  
DEVICE GROUND: Global ground reference for all signals and power supplies.  
Connect all VSS balls to system ground. Do not float any VSS connections.  
Groun  
d
VSS  
DU  
DO NOT USE:  
This ball should not be connected to any power supplies, signals, or other balls. This ball can be  
left floating.  
RESERVED for FUTURE USE:  
RFU  
Reserved by Intel for future device functionality and enhancement. This ball must be left floating.  
Notes:  
1.  
2.  
3.  
Only used when AD-Mux I/O flash is present.  
Only available on stacked device combinations with PSRAM, and/or SRAM die. Otherwise treated as RFU.  
P-CRE and P-MODE# share the same package ball at location K8. Only one signal function is available, depending on the  
stacked device combination.  
4.2  
Memory Map  
The 64Mb and 128Mb memory array is divided into multiple 8-Mbit partitions. Each  
device density contains one parameter partition and several main partitions. The 8-Mbit  
top parameter partition contains four 16K-Word blocks and seven 64K-Word blocks.  
There are multiple 8-Mbit main partitions. The 8-Mbit main partitions each contains  
eight 64K-Word blocks.  
The device multi-partition architecture is divided as follow:  
The 64-Mbit device contains eight partitions: one 8-Mbit parameter partition,  
seven 8-Mbit main partitions.  
The 128-Mbit device contains sixteen partitions: one 8-Mbit parameter partition,  
fifteen 8-Mbit main partitions.  
The 256Mb memory array is divided into multiple 16-Mbit partitions. Each device  
contains one parameter partition and fifteen main partitions. The 16-Mbit top  
parameter partition contains four 16K-Word blocks and fifteen 64K-Word blocks. There  
are fifteen 16-Mbit main partitions. The 16-Mbit main partitions each contains sixteen  
64K-Word blocks.  
Table 3:  
Top Parameter Memory Map, 128-Mbit (Sheet 1 of 2)  
Size (KW)  
Blk  
43  
64-Mbit  
Size (KW)  
Blk  
128-Mbit  
16  
66  
65  
64  
63  
62  
3FC000-3FFFFF  
3F8000-3FBFFF  
3F4000-3F7FFF  
3F0000-3F3FFF  
3E0000-3EFFFF  
16  
16  
16  
16  
64  
130  
129  
128  
127  
126  
7FC000-7FFFFF  
7F8000-7FBFFF  
7F4000-7F7FFF  
7F0000-7F3FFF  
7E0000-7EFFFF  
16  
16  
16  
64  
64  
56  
380000-38FFFF  
64  
120  
780000-78FFFF  
November 2007  
Order Number: 313295-04  
Datasheet  
15  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 3:  
Top Parameter Memory Map, 128-Mbit (Sheet 2 of 2)  
Size (KW)  
Blk  
64-Mbit  
Size (KW)  
Blk  
128-Mbit  
43  
64  
64  
55  
370000-37FFFF  
000000-00FFFF  
64  
119  
0
770000-77FFFF  
000000-00FFFF  
0
64  
64  
64  
Table 4:  
Top Parameter Memory Map, 256-Mbit  
Size (KW)  
Blk  
256-Mbit  
16  
16  
16  
16  
64  
258  
257  
256  
253  
254  
FFC000-FFFFFF  
FF8000-FFBFFF  
FF4000-FF7FFF  
FF0000-FF3FFF  
FE0000-FEFFFF  
64  
64  
240  
239  
F00000-FFFFFF  
EF0000-EFFFFF  
64  
64  
128  
127  
800000-80FFFF  
7F0000-7FFFFF  
64  
0
000000-00FFFF  
Datasheet  
16  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
5.0  
Maximum Ratings and Operating Conditions  
5.1  
Absolute Maximum Ratings  
Warning:  
Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent  
damage. These are stress ratings only.  
Table 5:  
Absolute Maximum Ratings Table  
Parameter  
Maximum Rating  
Notes  
Temperature under bias  
Storage temperature  
–25 °C to +85 °C  
–65 °C to +125 °C  
–0.5 V to +2.5 V  
–0.2 V to +10 V  
–0.2 V to +2.5 V  
–0.2 V to +2.5 V  
100 mA  
Voltage on any signal (except VCC, VPP)  
VPP voltage  
1
1,2,3  
VCC voltage  
1
1
4
VCCQ voltage  
Output short circuit current  
Notes:  
1.  
Voltages shown are specified with respect to VSS. Minimum DC voltage is –0.5 V on input/output signals and –0.2 V on  
VCC, VCCQ, and VPP. During transitions, this level may undershoot to –2.0 V for periods <20 ns. Maximum DC voltage on  
VCC is VCC +0.5 V, which, during transitions, may overshoot to VCC +2.0 V for periods <20 ns. Maximum DC voltage on  
input/output signals and VCCQ is VCCQ +0.5 V, which, during transitions, may overshoot to VCCQ +2.0 V for periods <20  
ns.  
2.  
3.  
Maximum DC voltage on VPP may overshoot to +10.0 V for periods <20 ns.  
Program/erase voltage is typically 1.7 V to 2.0 V. 9 V can be applied for 80 hours maximum total, to any blocks for 1000  
cycles maximum. 9 V program/erase voltage may reduce block cycling capability.  
4.  
Output shorted for no more than one second. No more than one output shorted at a time.  
5.2  
Operating Conditions  
Warning:  
Operation beyond the “Operating Conditions” is not recommended and extended  
exposure beyond the “Operating Conditions” may affect device reliability.  
Table 6:  
Operating Conditions Table  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
TC  
Operating Temperature  
VCC Supply Voltage  
–25  
1.7  
+85  
2.0  
2.0  
2.0  
2.0  
9.5  
80  
°C  
V
VCC  
1.8 V Range  
1.7  
V
VCCQ  
I/O Supply Voltage  
1.8 V Extended Range  
1.35  
0.9  
V
VPPL  
VPPH  
tPPH  
VPP Voltage Supply (Logic Level)  
Factory programming VPP  
Maximum VPP Hours  
V
8.5  
VPP = VPPH  
VPP = VCC  
Hours  
Main and Parameter Blocks  
Main Blocks  
100,000  
Block  
Erase  
Cycles  
1
VPP = VPPH  
VPP = VPPH  
1000  
2500  
Cycles  
Parameter Blocks  
Notes:  
1.  
2.  
TC = Case Temperature  
In typical operation, the VPP program voltage is VPPL. VPP can be connected to 8.5 V – 9.5 V for 1000 cycles on main  
blocks, and 2500 cycles on parameter blocks.  
November 2007  
Order Number: 313295-04  
Datasheet  
17  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
6.0  
Electrical Specifications  
6.1  
DC Current Characteristics  
Table 7:  
DC Current Characteristics (Sheet 1 of 2)  
VCC  
1.7 V – 2.0 V  
1.7 V – 2.0 V  
1.35 V – 2.0 V  
Sym  
Parameter  
VCCQ  
Unit  
Test Conditions  
Notes  
Typ  
Max  
VCC = VCC MAX  
VCCQ = VCCQ Max  
VIN = VCCQ or GND  
ILI  
Input Load Current  
Output  
±1  
µA  
µA  
1
VCC = VCC MAX  
VCCQ = VCCQ Max  
VIN = VCCQ or GND  
ILO  
Leakage  
Current  
AD[15:0], WAIT  
±1  
64 Mbit  
15  
20  
30  
70  
VCC = VCCMax  
VCCQ = VCCQMax  
CE# = VCCQ  
RST# = VCCQ (for ICCS  
RST# = GND (for ICCD  
WP# = VIH  
128  
Mbit  
ICCS  
ICCD  
VCC Standby,  
Power Down  
µA  
1,2  
)
)
256  
Mbit  
25  
15  
20  
110  
30  
64 Mbit  
VCC = VCC MAX  
VCCQ = VCCQ Max  
CE# = VSSQ  
128  
Mbit  
70  
ICCAPS APS  
µA  
RST# = VCCQ  
All inputs are at rail to rail (VCCQ or  
VSSQ).  
256  
25  
13  
110  
15  
Mbit  
Asynchronous Single-Word  
f = 5MHz (1 CLK)  
mA  
12  
14  
16  
16  
18  
20  
mA Burst length=4  
mA Burst length=8  
mA Burst length=16  
1
Synchronous Burst Read  
f = 40MHz, LC = 3  
VCC = VCCMAX  
CE# = VIL  
OE# = VIH  
Average  
VCC Read  
Current  
Burst length =  
mA  
ICCR  
20  
25  
Continuous  
Inputs: VIL or VIH  
15  
18  
21  
18  
22  
25  
mA Burst length=4  
mA Burst length=8  
mA Burst length=16  
Synchronous Burst Read  
f = 54MHz, LC = 4  
Burst Length =  
mA  
22  
27  
Continuous  
35  
25  
15  
50  
32  
30  
mA VPP = VPPL, program/erase in progress  
mA VPP = VPPH, program/erase in progress  
1,3,4,7  
1,3,5,7  
VCC Program Current,  
VCC Erase Current  
ICCW,  
ICCE  
64 Mbit  
VCC Program Suspend  
Current,  
128  
ICCWS,  
ICCES  
20  
25  
70  
Mbit  
µA  
µA  
CE# = VCCQ; suspend in progress  
VPP = VPPL, suspend in progress  
1,6,3  
1,3  
VCC Erase Suspend Current  
256  
Mbit  
110  
IPPS,  
VPP Standby Current,  
IPPWS, VPP Program Suspend Current,  
0.2  
5
VPP Erase Suspend Current  
IPPES  
Datasheet  
18  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 7:  
DC Current Characteristics (Sheet 2 of 2)  
VCC  
1.7 V – 2.0 V  
1.7 V – 2.0 V  
1.35 V – 2.0 V  
Sym  
Parameter  
VCCQ  
Unit  
Test Conditions  
Notes  
Typ  
Max  
IPPR  
VPP Read  
2
0.05  
8
15  
0.10  
22  
µA  
VPP VCC  
VPP = VPPL, program in progress  
VPP = VPPH, program in progress  
IPPW  
VPP Program Current  
VPP Erase Current  
mA  
1,3  
0.05  
8
0.10  
22  
V
PP = VPPL, erase in progress  
IPPE  
mA  
VPP = VPPH, erase in progress  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
All currents are RMS unless noted. Typical values at typical VCC, TC = +25°C.  
ICCS is the average current measured over any 5 ms time interval 5 µs after CE# is deasserted.  
Sampled, not 100% tested.  
V
CC read + program current is the sum of VCC read and VCC program currents.  
VCC read + erase current is the sum of VCC read and VCC erase currents.  
ICCES is specified with the device deselected. If device is read while in erase suspend, current is ICCES plus ICCR  
ICCW, ICCE measured over typical or max times specified in Section 7.7, “Program and Erase  
Characteristics” on page 32.  
6.2  
DC Voltage Characteristics  
Table 8:  
DC Voltage Characteristics  
VCC  
Q
1.35 V – 2.0 V  
1.7 V – 2.0 V  
Sym  
Parameter  
Unit  
Test Condition  
Notes  
Min  
Max  
Min  
Max  
VIL  
Input Low Voltage  
Input High Voltage  
0
0.2  
0
0.4  
V
V
1
VCCQ  
–0.2  
VCCQ  
–0.4  
VIH  
VCCQ  
0.1  
VCCQ  
0.1  
V
CC = VCCMIN  
VOL  
Output Low Voltage  
Output High Voltage  
V
V
VCCQ = VCCQMIN  
IOL = 100 µA  
V
CC = VCCMIN  
VCCQ  
–0.1  
VCCQ  
–0.1  
VOH  
VCCQ = VCCQMIN  
IOH = –100 µA  
VPPLK VPP Lock-Out Voltage  
VLKO VCC Lock Voltage  
0.4  
0.4  
V
V
V
2
1.0  
0.9  
1.0  
0.9  
VLKOQ VCCQ Lock Voltage  
Notes:  
1.  
2.  
VIL can undershoot to –0.4V and VIH can overshoot to VCCQ+0.4V for durations of 20 ns or less.  
VPP < VPPLK inhibits erase and program operations. Do not use VPPL and VPPH outside their valid ranges.  
November 2007  
Order Number: 313295-04  
Datasheet  
19  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
7.0  
AC Characteristics  
7.1  
AC Test Conditions  
Figure 3: AC Input/Output Reference Waveform  
VCCQ  
Input VCCQ/2  
Test Points  
VCCQ/2 Output  
0V  
Note: AC test inputs are driven at VCCQ for Logic “1” and 0.0 V for Logic “0.” Input/output timing begins/ends at VCCQ/2. Input  
rise and fall times (10% to 90%) < 5 ns. Worst case speed occurs at VCC = VCCMin.  
Figure 4: Transient Equivalent Testing Load Circuit  
Device  
Out  
Under Test  
CL  
Notes:  
1.  
2.  
3.  
See the following table for component values.  
Test configuration component value for worst case speed conditions.  
CL includes jig capacitance.  
Table 9:  
Test Configuration  
Test Configuration  
CL (pF)  
VCCQ Min Standard Test  
30  
Figure 5: Clock Input AC Waveform  
R201  
VIH  
CLK [C]  
VIL  
R202  
R203  
Datasheet  
20  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
7.2  
Capacitance  
Table 10: Capacitance  
Symbol  
Parameter  
Signals  
Min  
Typ  
Max  
Unit  
Condition  
Note  
Address, CE#, WE#,  
OE#, RST#, CLK,  
ADV#, WP#  
Typ temp= 25 °C, Max  
temp = 85 °C,  
VCC=VCCQ=(0-1.95)  
V, Silicon die  
CIN  
Input Capacitance  
Output Capacitance  
2
2
6
4
7
5
pF  
pF  
1,2  
COUT  
Data, WAIT  
Notes:  
1.  
2.  
Sampled, not 100% tested.  
Silicon die capacitance only, add 1 pF for discrete packages.  
7.3  
AC Read Specifications (VCCQ = 1.35 V – 2.0 V)  
Table 11: AC Read Specifications (VCCQ = 1.35 V – 2.0 V) (Sheet 1 of 2)  
-90  
All Densities  
Num  
Symbol  
Parameter  
Units  
Notes  
Speed  
Min  
Max  
Asynchronous Specifications  
R1  
tAVAV  
tAVQV  
tELQV  
tGLQV  
tPHQV  
tELQX  
tGLQX  
tEHQZ  
tGHQZ  
tOH  
Read cycle time  
90  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
R2  
Address to output valid  
90  
90  
1,6  
R3  
CE# low to output valid  
R4  
OE# low to output valid  
RST# high to output valid  
CE# low to output in low-Z  
OE# low to output in low-Z  
CE# high to output in high-Z  
OE# high to output in high-Z  
25  
1,2  
1
R5  
150  
R6  
0
0
1,3  
1,2,3  
R7  
R8  
20  
20  
R9  
1,3  
R10  
R11  
R12  
R13  
R14  
R15  
Output hold from first occurring address, CE#, or OE# change  
CE# pulse width high  
0
tEHEL  
tELTV  
tEHTZ  
tGHTV  
tGLTV  
17  
1
1
CE# low to WAIT valid  
17  
17  
17  
17  
CE# high to WAIT high Z  
OE# high to WAIT Valid  
1,3  
OE# low to WAIT Valid  
Latching Specifications  
R101  
R102  
R103  
R104  
R105  
R106  
R107  
R111  
tAVVH  
tELVH  
tVLQV  
tVLVH  
tVHVL  
tVHAX  
tVHGL  
tPHVH  
Address setup to ADV# high  
CE# low to ADV# high  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
ADV# low to output valid  
ADV# pulse width low  
90  
1
7
7
ADV# pulse width high  
Address hold from ADV# high  
ADV# high to OE# low  
RST# high to ADV# high  
7
1,4  
1
7
30  
1
Clock Specifications  
November 2007  
Order Number: 313295-04  
Datasheet  
21  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 11: AC Read Specifications (VCCQ = 1.35 V – 2.0 V) (Sheet 2 of 2)  
-90  
All Densities  
Speed  
Num  
Symbol  
Parameter  
Units  
Notes  
Min  
Max  
R200  
R201  
R202  
R203  
fCLK  
CLK frequency  
CLK period  
47  
MHz  
ns  
tCLK  
21.3  
4.5  
1,3  
tCH/CL  
CLK high/low time  
CLK fall/rise time  
ns  
tFCLK/RCLK  
3
ns  
Synchronous Specifications  
R301  
R302  
R303  
R304  
R305  
R306  
R307  
R311  
R312  
tAVCH/L  
tVLCH/L  
tELCH/L  
tCHQV / tCLQV  
tCHQX  
Address setup to CLK  
7
7
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ADV# low setup to CLK  
CE# low setup to CLK  
CLK to output valid  
1
17  
17  
Output hold from CLK  
Address hold from CLK  
CLK to WAIT valid  
3
7
1,5  
1,4,5  
1,5  
1
tCHAX  
tCHTV  
tCHVL  
CLK Valid to ADV# Setup  
WAIT Hold from CLK  
0
3
tCHTX  
1,5  
7.4  
AC Read Specifications: 64- and 128-Mb Densities  
Table 12: AC Read Specifications (VCCQ = 1.7 V – 2.0 V) (Sheet 1 of 2)  
-85  
All Densities  
Num  
Symbol  
Parameter  
Units  
Notes  
Speed  
Min  
Max  
Asynchronous Specifications  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
tAVAV  
tAVQV  
tELQV  
tGLQV  
tPHQV  
tELQX  
tGLQX  
tEHQZ  
tGHQZ  
Read cycle time  
85  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address to output valid  
85  
85  
1,6  
CE# low to output valid  
OE# low to output valid  
RST# high to output valid  
CE# low to output in low-Z  
OE# low to output in low-Z  
CE# high to output in high-Z  
OE# high to output in high-Z  
20  
1,2  
1
150  
0
0
1,3  
1,2,3  
17  
17  
1,3  
Output hold from first occurring address, CE#, or  
OE# change  
R10  
tOH  
0
ns  
R11  
R12  
R13  
R14  
R15  
tEHEL  
tELTV  
tEHTZ  
tGHTV  
tGLTV  
CE# pulse width high  
CE# low to WAIT valid  
CE# high to WAIT high Z  
OE# high to WAIT Valid  
OE# low to WAIT Valid  
14  
ns  
ns  
ns  
ns  
ns  
1
1,3  
1
14  
14  
14  
14  
Latching Specifications  
Datasheet  
22  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 12: AC Read Specifications (VCCQ = 1.7 V – 2.0 V) (Sheet 2 of 2)  
-85  
All Densities  
Num  
Symbol  
Parameter  
Units  
Notes  
Speed  
Min  
Max  
R101  
tAVVH  
Address setup to ADV# high  
CE# low to ADV# high  
ADV# low to output valid  
ADV# pulse width low  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
R102  
R103  
R104  
R105  
R106  
R107  
R111  
tELVH  
tVLQV  
tVLVH  
tVHVL  
tVHAX  
tVHGL  
tphvh  
10  
85  
1
7
7
ADV# pulse width high  
Address hold from ADV# high  
ADV# high to OE# low  
RST# high to ADV# high  
7
1,4  
1
7
30  
1
Clock Specifications  
R200  
R201  
R202  
R203  
fCLK  
CLK frequency  
CLK period  
54  
3
MHz  
ns  
tCLK  
18.5  
3.5  
1,3  
tCH/CL  
tFCLK/RCLK  
CLK high/low time  
CLK fall/rise time  
ns  
ns  
Synchronous Specifications  
R301  
R302  
R303  
R304  
R305  
R306  
R307  
R311  
R312  
tAVCH/L  
tVLCH/L  
tELCH/L  
tCHQV / tCLQV  
tCHQX  
Address setup to CLK  
ADV# low setup to CLK  
CE# low setup to CLK  
CLK to output valid  
7
7
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
14  
14  
Output hold from CLK  
Address hold from CLK  
CLK to WAIT valid  
3
7
1,5  
1,4,5  
1,5  
1
tCHAX  
tCHTV  
tCHVL  
CLK Valid to ADV# Setup  
WAIT Hold from CLK  
0
3
tCHTX  
1,5  
Notes:  
1.  
See Figure 3, “AC Input/Output Reference Waveform” on page 20 for timing measurements and max  
allowable input slew rate.  
2.  
3.  
4.  
5.  
6.  
OE# may be delayed by up to tELQV – tGLQV after CE#’s falling edge without impact to tELQV.  
Sampled, not 100% tested.  
Address hold in synchronous burst mode is tCHAX or tVHAX, whichever timing specification is satisfied first.  
Applies only to subsequent synchronous reads.  
The specifications in Table 11 will only be used by customers (1) who desire a 1.35 to 2.0 VCCQ operating range OR  
(2) who desire to transition their host controller from a 1.7 V to 2.0 V VCCQ voltage now to a lower range in the future.  
7.5  
AC Read Specifications for 256-Mb Density  
Table 13: AC Read Specifications (Sheet 1 of 3)  
-90  
Num  
Symbol  
Parameter  
All Densities Speed  
Units  
Notes  
Min  
Max  
Asynchronous Specifications  
November 2007  
Order Number: 313295-04  
Datasheet  
23  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 13: AC Read Specifications (Sheet 2 of 3)  
-90  
Num  
Symbol  
Parameter  
All Densities Speed  
Units  
Notes  
Min  
Max  
VCC = VCCQ = 1.8 V – 2.0  
85  
88  
R1  
tAVAV  
Read cycle time  
ns  
ns  
ns  
VCC = VCCQ = 1.7 V – 2.0  
VCC = VCCQ = 1.8 V – 2.0  
VCC = VCCQ = 1.7 V – 2.0  
85  
88  
1,6  
R2  
R3  
tAVQV  
Address to output valid  
CE# low to output valid  
VCC = VCCQ = 1.8 V – 2.0  
CC = VCCQ = 1.7 V – 2.0  
85  
tELQV  
V
88  
R4  
tGLQV  
tPHQV  
tELQX  
tGLQX  
tEHQZ  
tGHQZ  
tOH  
OE# low to output valid  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1,2  
1
R5  
RST# high to output valid  
CE# low to output in low-Z  
OE# low to output in low-Z  
CE# high to output in high-Z  
OE# high to output in high-Z  
150  
R6  
0
0
1,3  
1,2,3  
R7  
R8  
17  
17  
R9  
1,3  
R10  
R11  
R12  
R13  
R14  
R15  
Output hold from first occurring address, CE#, or OE# change  
CE# pulse width high  
0
tEHEL  
tELTV  
tEHTZ  
tGHTV  
tGLTV  
14  
1
1,3  
1
CE# low to WAIT valid  
14  
14  
14  
14  
CE# high to WAIT high Z  
OE# high to WAIT Valid  
OE# low to WAIT Valid  
Latching Specifications  
R101  
R102  
tAVVH  
tELVH  
Address setup to ADV# high  
CE# low to ADV# high  
7
ns  
ns  
10  
V
CC = VCCQ = 1.8 V – 2.0  
CC = VCCQ = 1.7 V – 2.0  
85  
88  
R103  
tVLQV  
ADV# low to output valid  
ns  
1
V
R104  
R105  
R106  
R107  
R111  
tVLVH  
tVHVL  
tVHAX  
tVHGL  
tphvh  
ADV# pulse width low  
7
7
ns  
ns  
ns  
ns  
ns  
ADV# pulse width high  
Address hold from ADV# high  
ADV# high to OE# low  
RST# high to ADV# high  
7
1,4  
1
7
30  
1
Clock Specifications  
R200  
R201  
R202  
R203  
fCLK  
CLK frequency  
CLK period  
54  
3
MHz  
ns  
tCLK  
18.5  
3.5  
1,3  
tCH/CL  
tFCLK/RCLK  
CLK high/low time  
CLK fall/rise time  
ns  
ns  
Synchronous Specifications  
R301  
R302  
R303  
R304  
tAVCH/L  
Address setup to CLK  
ADV# low setup to CLK  
CE# low setup to CLK  
CLK to output valid  
7
7
7
ns  
ns  
ns  
ns  
tVLCH/L  
1
tELCH/L  
tCHQV / tCLQV  
14  
Datasheet  
24  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 13: AC Read Specifications (Sheet 3 of 3)  
-90  
Num  
Symbol  
Parameter  
All Densities Speed  
Units  
Notes  
Min  
Max  
R305  
R306  
R307  
R311  
R312  
tCHQX  
Output hold from CLK  
Address hold from CLK  
CLK to WAIT valid  
3
7
ns  
ns  
ns  
ns  
ns  
1,5  
1,4,5  
1,5  
1
tCHAX  
tCHTV  
tCHVL  
tCHTX  
14  
CLK Valid to ADV# Setup  
WAIT Hold from CLK  
0
3
1,5  
Figure 6: Asynchronous Single-Word Read Timing  
R2  
A[Max:16] [A]  
R3  
R4  
A/DQ[15:0]  
A
Q
R106  
R101  
ADV# [V]  
CE#[E]  
R8  
R7  
R107  
R9  
OE# [G]  
R12  
R13  
WAIT [T]  
Note: WAIT is deasserted (CR [10] = 0) during asynchronous read mode.  
November 2007  
Order Number: 313295-04  
Datasheet  
25  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 7: Synchronous Array Read with Flow-through Feature Timing  
First Access Latency  
CLK [C]  
A[max:16] [A}  
A
A
R304  
R304  
R3  
R8  
A/DQ[15:0]  
ADV# [V]  
Q0  
Q1  
Q2  
Q3  
R106  
R102  
R303  
CE# [E]  
OE# [G]  
R4  
R107  
R9  
R13  
R14  
R12  
R15  
R307  
R307  
WAIT [T]  
Notes:  
1.  
2.  
3.  
WAIT active low (asserted) during initial access and deasserted during valid read array data  
WAIT deasserted during OE# = Vih.  
Flow through feature as shown during the first data word.  
Figure 8: Synchronous Non-Array Read with Flow-through Feature Timing  
Latency Count  
CLK [C]  
A[Max:16] [A]  
A/DQ[15:0]  
ADV# [V]  
A
A
R304  
R304  
R3  
R8  
Q0  
Q0  
Q0  
Q0  
R106  
R102  
R303  
CE# [E]  
OE# [G]  
R4  
R107  
R9  
R13  
R14  
R12  
R15  
R307  
R307  
WAIT [T]  
Notes:  
1.  
2.  
3.  
WAIT active low (asserted) during initial access and deasserted during valid read non-array data  
WAIT deasserted during OE# = Vih  
Flow through feature as shown during the first data word.  
Datasheet  
26  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 9: Burst Suspend Timing  
Latenc  
Count  
CLK [C]  
Note 1  
R7  
ADQ [ADQ]  
A
Q0  
Q1  
Q1  
R101  
R105  
R106  
ADV# [V]  
CE# [E]  
R107  
R9  
R4  
OE# [G]  
R12  
R15  
R307  
WAIT [T]  
WE# [W]  
Notes:  
1.  
2.  
During burst suspend Clock signal can be held high or low  
WAIT asserted low (CR[10] = 0).  
Figure 10: Asynchronous Read to Write Timing  
R2  
A[Max:16][A]  
A/DQ [15:0]  
A
R3  
W5  
R7  
W4  
A
Q
A
D
A
D
R106  
R101  
R104  
R106  
R101  
R104  
R101  
R104  
W20  
R106  
ADV#[V]  
CE# [E]  
OE# [G]  
R11  
R4  
R12  
R12  
R13  
WAIT [T]  
WE# [W]  
W7  
W15  
W2  
W3  
W9  
Note: WAIT deasserted (CR[10] = 0) during asynchronous operations.  
November 2007  
Order Number: 313295-04  
Datasheet  
27  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 11: Write to Asynchronous Read Timing  
A[Max:16][A]  
W5  
W7  
W4  
D
W8  
A/DQ [15:0]  
A
A
D
A
Q
R106  
W15  
R106  
R2  
R106  
R101  
R104  
R104  
R101  
R104  
R101  
ADV#[V]  
CE# [E]  
WE# [W]  
R11  
W2  
W2  
W6  
R3  
R8  
W18  
W3  
W9  
W3  
R7  
R4  
R107  
W14  
R12  
R9  
OE# [G]  
WAIT [T]  
RST#[P]  
R12  
R13  
W1  
Note: WAIT deasserted (CR[10] = 0) during asynchronous operations.  
Datasheet  
28  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 12: Synchronous Read to Write Timing  
R306  
CLK  
R301  
R2  
A[Max:16] [A]  
A/DQ[15:0]  
A
A
R3  
W5  
R7  
W4  
Q
Q
A
D
A
D
R106  
R104  
R101  
R106  
R104  
R106  
R104  
R101  
R101  
ADV# [V]  
CE# [E]  
R11  
R4  
OE# [G]  
WAIT [T]  
R12  
R12  
R15  
R13  
W15  
W7  
W2  
W3  
W9  
WE#  
Note: WAIT shown deasserted (CR[10] = 0) during write operation.  
November 2007  
Order Number: 313295-04  
Datasheet  
29  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 13: Write to Synchronous Read  
CLK [C]  
A[Max:16] [A]  
W5  
W7  
W4  
W8  
R304  
A/DQ[15:0]  
A
D
A
D
A
Q
Q
R106  
R101  
R104  
W15  
R106  
R104  
R101  
R106  
R104  
R101  
ADV# [V]  
CE# [E]  
WE#  
R11  
W20  
W2  
W6  
W18  
W9  
W19  
W3  
W3  
R107  
W14  
OE# [G]  
WAIT [T]  
R12  
R12  
R15  
R307  
Note: WAIT shown deasserted (CR[10] = 0) during write operation.  
7.6  
AC Write Specifications  
Table 14: AC Write Specifications (Sheet 1 of 2)  
Num  
W1  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
tPHWL  
tELWL  
RST# high recovery to WE# low  
CE# setup to WE# low  
150  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1,2,3  
1,2,3  
1,2,4  
W2  
W3  
tWLWH  
tDVWH  
tAVWH  
tWHEH  
tWHDX  
tWHAX  
tWHWL  
tVPWH  
tQVVL  
WE# write pulse width low  
Data setup to WE# high  
Address setup to WE# high  
CE# hold from WE# high  
Data hold from WE# high  
Address hold from WE# high  
WE# pulse width high  
50  
50  
50  
0
W4  
W5  
W6  
1,2  
W7  
0
W8  
0
W9  
20  
200  
0
1,2,5  
W10  
W11  
W12  
W13  
W14  
VPP setup to WE# high  
1,2,3,7  
VPP hold from Status read  
WP# hold from Status read  
WP# setup to WE# high  
WE# high to OE# low  
tQVBL  
tBHWH  
tWHGL  
0
1,2,3,7  
1,2,9  
200  
0
Datasheet  
30  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 14: AC Write Specifications (Sheet 2 of 2)  
Num  
W15  
W16  
Symbol  
Parameter  
ADV# low to WE# high  
WE# high to read valid  
Min  
Max  
Units  
Notes  
tVLWH  
69  
ns  
1,2  
1,2,3,6,  
10  
tWHQV  
tAVQV+35  
ns  
ns  
Write to Asynchronous Read Specification  
W18 tWHAV WE# high to Address valid  
Write to Synchronous Read Specification  
1,2,3,6,  
10  
0
W19  
W20  
tWHCH/L  
tWHVH  
WE# high to Clock valid  
WE# high to ADV# high  
19  
19  
ns  
ns  
1,2,3,6, 10  
1,2,3,11  
Write Specifications with Clock Active  
W21  
W22  
tVHWL  
tCHWL  
ADV# high to WE# low  
Clock high to WE# low  
20  
20  
ns  
ns  
Notes:  
1.  
2.  
3.  
4.  
Write timing characteristics during erase suspend are the same as write-only operations.  
A write operation can be terminated with either CE# or WE#.  
Sampled, not 100% tested.  
Write pulse width low (tWLWH or tELEH) is defined from CE# or WE# low (whichever occurs last) to CE# or WE# high  
(whichever occurs first). Hence, tWLWH = tELEH = tWLEH = tELWH  
.
5.  
Write pulse width high (tWHWL or tEHEL) is defined from CE# or WE# high (whichever occurs first) to CE# or WE# low  
(whichever occurs last). Hence, tWHWL = tEHEL = tWHEL = tEHW).  
6.  
7.  
8.  
tWHVH or tWHCH/L must be met when transitioning from a write cycle to a synchronous burst read.  
VPP should be at a valid level until erase or program success is determined.  
This specification is only applicable when transitioning from a write cycle to an asynchronous read. See specs W19 and  
W20 for synchronous read.  
9.  
When doing a Read Status operation following any command that alters the Status Register, W14 is 20 ns.  
Add 10ns if the write operation results in a RCR or block lock status change, for the subsequent read operation to reflect  
this change.  
10.  
11.  
These specs are required only when the device is in a synchronous mode and clock is active during address setup phase.  
Figure 14: Write Timing  
A[Max-16] [A]  
W5  
W7  
W4  
W8  
A/DQ[15-0]  
A
D
A
D
R104  
R101  
R104  
R101  
W20  
R106  
W15  
R106  
ADV# [v]  
CE# [E]  
W2  
W6  
W2  
W6  
W18  
W21  
W3  
W9  
W3  
WE# [W]  
OE# [G]  
W1  
RST# [P]  
November 2007  
Order Number: 313295-04  
Datasheet  
31  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
7.7  
Program and Erase Characteristics  
Table 15: Program and Erase Characteristics  
VPPL  
Typ  
VPPH  
Typ  
Unit  
s
Num  
Symbol  
Parameter  
Notes  
Min  
Max  
Min  
Max  
Word Programming  
Single word  
Single cell  
90  
30  
180  
60  
85  
30  
170  
60  
Program  
Time  
W200  
tPROG/W  
µs  
µs  
1
Buffered Programming  
W200  
W201  
tPROG/W  
tPROG/PB  
Single word  
90  
180  
880  
85  
170  
680  
Program  
Time  
1,2  
One Buffer (32 words)  
Buffered EFP  
440  
340  
W400  
W452  
tBEFP/W  
Single word  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
5
10  
N/A  
N/A  
µs  
µs  
1,2  
1,2  
Program  
tBEFP/  
SETUP  
Buffered EFP Setup  
N/A  
Erasing and Suspending  
16-KWord Parameter  
W500  
W501  
W600  
W601  
tERS/PB  
tERS/MB  
tSUSP/P  
tSUSP/E  
0.4  
1.2  
20  
2.5  
4
0.4  
1.0  
20  
2.5  
4
Erase Time  
s
64-KWord Main  
Program suspend  
Erase suspend  
1
25  
25  
25  
25  
Suspend  
Latency  
µs  
20  
20  
Notes:  
1.  
Typical values measured at TC = +25 °C and nominal voltages. Performance numbers are valid for all speed versions. Excludes system  
overhead. Sampled, but not 100% tested.  
2.  
Averaged over entire device.  
Datasheet  
32  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
8.0  
Power and Reset Specifications  
8.1  
Power Up and Down  
Power supply sequencing is not required if VCC, VCCQ, and VPP are connected  
together. If VCCQ and/or VPP are not connected to the VCC supply, then VCC should  
attain VCCMIN before applying VCCQ and VPP. Device inputs should not be driven before  
supply voltage equals VCCMIN.  
Power supply transitions should only occur when RST# is low. This protects the device from  
accidental programming or erasure during power transitions.  
8.2  
Reset  
Asserting RST# during a system reset is important with automated program/erase  
devices because systems typically expect to read from flash memory when coming out  
of reset. If a CPU reset occurs without a flash memory reset, proper CPU initialization  
may not occur. This is because the flash memory may be providing status information,  
instead of array data as expected. Connect RST# to the same active-low reset signal  
used for CPU initialization.  
Also, because the device is disabled when RST# is asserted, it ignores its control inputs  
during power-up/down. Invalid bus conditions are masked, providing a level of memory  
protection.  
System designers should guard against spurious writes when VCC voltages are above  
VLKO. Because both WE# and CE# must be asserted for a write operation, deasserting  
either signal inhibits writes to the device.  
The Command User Interface (CUI) architecture provides additional protection because  
alteration of memory contents can only occur after successful completion of a two-step  
command sequence (see Section 9.2, “Device Commands” on page 37).  
November 2007  
Order Number: 313295-04  
Datasheet  
33  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 15: Reset Operation Waveforms  
P1  
P2  
P2  
P3  
R5  
VIH  
VIL  
(
A) Reset during  
read mode  
RST# [P]  
RST# [P]  
RST# [P]  
VCC  
Abort  
Complete  
R5  
(B) Reset during  
VIH  
VIL  
program or block erase  
P1  
P2  
Abort  
Complete  
R5  
(C) Reset during  
VIH  
VIL  
program or block erase  
P1  
P2  
VCC  
0V  
(D) VCC Power-up to  
RST# high  
Table 16: Reset Specifications  
Num  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
P1  
tPLPH  
RST# pulse width low  
RST# low to device reset during erase  
100  
ns  
1,2,3,4  
1,3,4,7  
1,3,4,7  
1,4,5,6  
25  
25  
P2  
tPLRH  
RST# low to device reset during program  
VCC Power valid to RST# deassertion (high)  
µs  
P3  
tVCCPH  
60  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
These specifications are valid for all device versions (packages and speeds).  
The device may reset if tPLPH is <tPLPH MIN, but this is not guaranteed.  
Not applicable if RST# is tied to Vcc.  
Sampled, but not 100% tested.  
If RST# is tied to the VCC supply, device will not be ready until tVCCPH after VCC >= VCC min.  
If RST# is tied to any supply/signal with VCCQ voltage levels, the RST# input voltage must not exceed VCC until VCC >=  
VCC(min).  
7.  
Reset completes within tPLPH if RST# is asserted while no erase or program operation is executing.  
8.3  
Power Supply Decoupling  
Flash memory devices require careful power supply decoupling. Three basic power  
supply current considerations are as follows:  
1. Standby current levels  
2. Active current levels  
3. Transient peaks produced when CE# and OE# are asserted and deasserted.  
Datasheet  
34  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
When the device is accessed, many internal conditions change. Circuits within the  
device enable charge-pumps, and internal logic states change at high speed. All of  
these internal activities produce transient signals. Transient current magnitudes depend  
on the device outputs’ capacitive and inductive loading. Two-line control and correct  
decoupling capacitor selection suppress transient voltage peaks.  
Because Intel® Multi-Level Cell (MLC) flash memory devices draw their power from  
VCC, VPP, and VCCQ, each power connection should have a 0.1 µF ceramic capacitor  
connected to a corresponding ground connection (e.g.VCCQ to VSSQ). High-frequency,  
inherently low-inductance capacitors should be placed as close as possible to package  
leads.  
Additionally, for every eight devices used in the system, a 4.7 µF electrolytic capacitor  
should be placed between power and ground close to the devices. The bulk capacitor is  
meant to overcome voltage droop caused by PCB trace inductance.  
8.4  
Automatic Power Saving (APS)  
Automatic Power Saving (APS) provides low power operation during a read’s active  
state. ICCAPS is the average current measured over any 5 ms time interval, 5 μs after  
CE# is deasserted. During APS, average current is measured over the same time  
interval 5 μs after the following events happen: (1) there is no internal read, program  
or erase operations cease; (2) CE# is asserted; (3) the address lines are quiescent and  
at VSSQ or VCCQ. OE# may also be driven during APS.  
November 2007  
Order Number: 313295-04  
Datasheet  
35  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
9.0  
Device Operations  
This section provides an overview of device operations. The system CPU provides  
control of all in-system read, write, and erase operations of the device via the system  
bus. The on-chip Write State Machine (WSM) manages all block-erase and word-  
program algorithms.  
Device commands are written to the Command User Interface (CUI) to control all flash  
memory device operations. The CUI does not occupy an addressable memory location;  
it is the mechanism through which the flash device is controlled.  
9.1  
Bus Operations  
CE#-low and RST# high enable device read operations. The device internally decodes  
upper address inputs to determine the accessed partition. ADV#-low opens the internal  
address latches. OE#-low activates the outputs and gates selected data onto the I/O  
bus.  
In asynchronous mode, the address is latched when ADV# goes high. In synchronous  
mode, the address is latched by the first of either the rising ADV# edge or the next  
valid CLK edge with ADV# low (WE# and RST# must be VIH; CE# must be VIL).  
9.1.1  
Reads  
To perform a read operation, RST# and WE# must be deasserted while CE# and OE#  
are asserted. CE# is the device-select control. When asserted, it enables the flash  
memory device. OE# is the data-output control. When asserted, the addressed flash  
memory data is driven onto the I/O bus. See Section 10.0, “Read Operations” on  
page 41 for details on the available read modes, and see Section 15.0, “Special Read  
States” on page 66 for details regarding the available read states.  
The Automatic Power Savings (APS) feature provides low power operation following  
reads during active mode. After data is read from the memory array and the address  
lines are quiescent, APS automatically places the device into standby. In APS, device  
current is reduced to ICCAPS (see Section 6.1, “DC Current Characteristics” on page 18).  
9.1.2  
Writes  
To perform a write operation, both CE# and WE# are asserted while RST# and OE# are  
deasserted. All device write operations are asynchronous, with CLK being ignored.  
During a write operation, address and data are latched on the rising edge of WE# or  
CE#, whichever occurs first. Table 17, “Command Bus Cycles” on page 38 shows the  
bus cycle sequence for each of the supported device commands, while Table 18,  
“Command Codes and Definitions” on page 39 describes each command. See Section  
7.0, “AC Characteristics” on page 20 for signal-timing details.  
Note:  
Write operations with invalid VCC and/or VPP voltages can produce spurious results and  
should not be attempted.  
9.1.3  
Output Disable  
When OE# is deasserted, device outputs AD[15:0] are disabled and placed in a high-  
impedance (High-Z) state.  
Datasheet  
36  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
9.1.4  
Standby  
When CE# is deasserted the device is deselected and placed in standby, substantially  
reducing power consumption. In standby, the data outputs are placed in High-Z,  
independent of the level placed on OE#. Standby current, ICCS, is the average current  
measured over any 5 ms time interval, 5 μs after CE# is deasserted. During standby,  
average current is measured over the same time interval 5 μs after CE# is deasserted.  
When the device is deselected (while CE# is deasserted) during a program or erase  
operation, it continues to consume active power until the program or erase operation is  
completed.  
9.1.5  
Reset  
As with any automated device, it is important to assert RST# when the system is reset.  
When the system comes out of reset, the system processor attempts to read from the  
flash memory if it is the system boot device. If a CPU reset occurs with no flash  
memory reset, improper CPU initialization may occur because the flash memory may  
be providing status information rather than array data. Intel® flash memories allow  
proper CPU initialization following a system reset through the use of the RST# input.  
RST# should be controlled by the same low-true reset signal that resets the system  
CPU.  
After initial power-up or reset, the device defaults to asynchronous Read Array, and the  
Status Register is set to 0x80. Asserting RST# de-energizes all internal circuits, and  
places the output drivers in High-Z. When RST# is asserted, the device shuts down the  
operation in progress, a process which takes a minimum amount of time to complete.  
When RST# has been deasserted, the device is reset to asynchronous Read Array  
state.  
Note:  
If RST# is asserted during a program or erase operation, the operation is terminated  
and the memory contents at the aborted location (for a program) or block (for an  
erase) are no longer valid, because the data may have been only partially written or  
erased.  
When returning from a reset (RST# deasserted), a minimum wait is required before the  
initial read access outputs valid data. Also, a minimum delay is required after a reset  
before a write cycle can be initiated. After this wake-up interval passes, normal  
operation is restored. See Section 7.0, “AC Characteristics” on page 20 for details  
about signal-timing.  
9.2  
Device Commands  
Device operations are initiated by writing specific device commands to the Command  
User Interface (CUI). See Table 17, “Command Bus Cycles” on page 38.  
Several commands are used to modify array data including Word Program and Block  
Erase commands. Writing either command to the CUI initiates a sequence of internally-  
timed functions that culminate in the completion of the requested task. However, the  
operation can be aborted by either asserting RST# or by issuing an appropriate  
suspend command.  
November 2007  
Order Number: 313295-04  
Datasheet  
37  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 17: Command Bus Cycles  
First Bus Cycle  
Second Bus Cycle  
Bus  
Cycles  
Note  
s
Mode  
Command  
Oper  
Addr  
Data  
Oper  
Addr  
Data  
Read Array  
1
2  
2  
2
Write  
Write  
Write  
Write  
Write  
PnA  
PnA  
PnA  
PnA  
X
0xFF  
0x90  
0x98  
0x70  
0x50  
Read Device Identifier  
CFI Query  
Read  
Read  
Read  
PBA+IA  
PnA+QA  
PnA  
ID  
QD  
Read  
1,2  
Read Status Register  
Clear Status Register  
SRD  
1
0x40/  
0x10  
Word Program  
2
Write  
Write  
Write  
WA  
WA  
WA  
Write  
Write  
Write  
WA  
WA  
WA  
WD  
Program  
Buffered Program  
> 2  
> 2  
0xE8  
0x80  
N - 1  
0xD0  
1,2,3  
1,2,4  
Buffered Enhanced Factory Program  
(Buffered EFP)  
Erase  
Block Erase  
2
Write  
BA  
0x20  
Write  
BA  
0xD0  
Program/Erase Suspend  
Program/Erase Resume  
Lock Block  
1
1
2
2
2
2
2
Write  
Write  
Write  
Write  
Write  
Write  
Write  
X
X
0xB0  
0xD0  
0x60  
0x60  
0x60  
0xC0  
0xC0  
Suspend  
BA  
Write  
Write  
Write  
BA  
BA  
BA  
0x01  
0xD0  
0x2F  
Block  
Locking/  
Unlocking  
Unlock Block  
BA  
1,2  
Lock-down Block  
BA  
Program Protection Register  
Program Lock Register  
PRA  
LRA  
Write PRA  
Write LRA  
PD  
LRD  
Protection  
Configuration Program Read Configuration Register  
2
Write  
RCD  
0x60  
Write  
RCD  
0x03  
Notes:  
1.  
First command cycle address should be the same as the operation’s target address.  
PnA = Address within the partition.  
PBA = Partition base address.  
IA = Identification code address offset.  
QA = CFI Query address offset.  
BA = Address within the block.  
WA = Word address of memory location to be written.  
PRA = Protection Register address.  
LRA = Lock Register address.  
X = Any valid address within the device.  
ID = Identifier data.  
2.  
QD = Query data on AD[15:0].  
SRD = Status Register data.  
WD = Word data.  
N = Word count of data to be loaded into the write buffer.  
PD = Protection Register data.  
PD = Protection Register data.  
LRD = Lock Register data.  
RCD = Read Configuration Register data on A[15:0]. A[MAX:16] can select any partition.  
3.  
4.  
The second cycle of the Write-to-Buffer command is the word count of the data to be loaded into the write buffer. This is  
followed by up to 32 words of data.Then the confirm command (0xD0) is issued, triggering the array programming  
operation.  
The confirm command (0xD0) is followed by the buffer data.  
9.3  
Command Definitions  
Table 18 shows valid device command codes and descriptions.  
Datasheet  
38  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 18: Command Codes and Definitions (Sheet 1 of 2)  
Mode  
Code  
Device Mode  
Description  
Places the addressed partition in Read Array mode. Array data is output on  
AD[15:0].  
0xFF  
Read Array  
Places the addressed partition in Read Status Register mode. The partition enters  
this mode after a program or erase command is issued. Status Register data is  
output on AD[7:0].  
Read Status  
Register  
0x70  
0x90  
Places the addressed partition in Read Device Identifier mode. Subsequent reads  
from addresses within the partition outputs manufacturer/device codes,  
Configuration Register data, Block Lock status, or Protection Register data on  
AD[15:0].  
Read Device ID  
or Configuration  
Register  
Read  
Places the addressed partition in Read Query mode. Subsequent reads from the  
partition addresses output Common Flash Interface information on AD[7:0].  
0x98  
0x50  
Read Query  
Clear Status  
Register  
The WSM can only set Status Register error bits. The Clear Status Register  
command is used to clear the SR error bits.  
First cycle of a 2-cycle programming command; prepares the CUI for a write  
operation. On the next write cycle, the address and data are latched and the WSM  
executes the programming algorithm at the addressed location. During program  
operations, the partition responds only to Read Status Register and Program  
Suspend commands. In asynchronous mode the falling edge of OE#, or CE#  
(whichever occurs first) updates and latches the Status Register contents.  
However, reading the Status Register in synchronous burst mode, CE# or ADV#  
must be toggled to update status data. The Read Array command must be issued  
to read array data after programming has finished.  
Word Program  
Setup  
0x40  
Alternate Word  
Program Setup  
0x10  
0xE8  
Equivalent to the Word Program Setup command, 0x40.  
First cycle of a 2-cycle command; prepares the device to receive a variable  
number of bytes up to the write buffer size of 32 words. The second cycle  
contains the number of bytes to be transferred.  
Buffered  
Program Setup  
Write  
Issued after writing all data to the write buffer; instructs the WSM to perform its  
Buffered Programming algorithm, writing the data from the write buffer to the  
flash memory array.  
Buffered  
Program Confirm  
0xD0  
Buffered  
Enhanced  
Factory  
Programming  
Setup  
First cycle of a 2-cycle command; initiates Buffered Enhanced Factory Program  
mode (Buffered EFP). The CUI then waits for the Buffered EFP Confirm command,  
0xD0, that initiates the Buffered EFP algorithm. All other commands are ignored  
when Buffered EFP mode begins.  
0x80  
0xD0  
0x20  
Buffered EFP  
Confirm  
If the previous command was Buffered EFP Setup (0x80), the CUI latches the  
address and data, and prepares the device for Buffered EFP mode.  
First cycle of a 2-cycle command; prepares the CUI for a block-erase operation.  
The WSM performs the erase algorithm on the block addressed by the Erase  
Confirm command. If the next command is not the Erase Confirm (0xD0)  
command, the CUI sets Status Register bits SR[4] and SR[5], and places the  
addressed partition in read status register mode.  
Block Erase  
Setup  
Erase  
If the first command was Block Erase Setup (0x20), the CUI latches the address  
and data, and the WSM erases the addressed block. During block-erase  
operations, the partition responds only to Read Status Register and Erase  
Suspend commands.  
Block Erase  
Confirm  
0xD0  
This command issued to any device address initiates a suspend of the currently-  
executing program or block erase operation. The Status Register indicates  
successful suspend operation by setting either SR[2] (program suspended) or  
SR[6] (erase suspended), along with SR[7] (ready). The Write State Machine  
remains in the suspend mode regardless of control signal states (except for RST#  
asserted).  
Program or  
0xB0  
0xD0  
Erase Suspend  
Suspend  
Suspend  
Resume  
This command issued to any device address resumes the suspended program or  
block-erase operation.  
November 2007  
Order Number: 313295-04  
Datasheet  
39  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 18: Command Codes and Definitions (Sheet 2 of 2)  
Mode  
Code  
Device Mode  
Description  
First cycle of a 2-cycle command; prepares the CUI for block lock configuration  
changes. If the next command is not Block Lock (0x01), Block Unlock (0xD0), or  
Block Lock-Down (0x2F), the CUI sets Status Register bits SR[4] and SR[5],  
indicating a command sequence error.  
0x60  
Lock Block Setup  
If the previous command was Block Lock Setup (0x60), the addressed block is  
locked.  
0x01  
0xD0  
0x2F  
Lock Block  
Block Locking/  
Unlocking  
If the previous command was Block Lock Setup (0x60), the addressed block is  
unlocked. If the addressed block is in a lock-down state, the operation has no  
effect.  
Unlock Block  
Lock-Down Block  
If the previous command was Block Lock Setup (0x60), the addressed block is  
locked down.  
First cycle of a 2-cycle command; prepares the device for a Protection Register or  
Lock Register program operation. The second cycle latches the register address  
and data, and starts the programming algorithm. The Read Array command must  
be issued to read array data after programming has finished.  
Program  
Protection  
Register Setup  
Protection  
0xC0  
0x60  
0x03  
First cycle of a 2-cycle command; prepares the CUI for a Read Configuration  
Register program operation. If the Configure Read Configuration Register  
command (0x03) is not the next command, the CUI sets Status Register bits  
SR[4] and SR[5], indicating a command sequence error.  
Configure Read  
Configuration  
Register Setup  
Configuration  
If the previous command was Configure Read Configuration Register Setup  
(0x60), the CUI latches the address and writes A[15:0] to the Read Configuration  
Register. Following a Configure Read Configuration Register command,  
subsequent read operations access array data.  
Configure Read  
Configuration  
Register  
Datasheet  
40  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
10.0  
Read Operations  
The device supports two read modes: asynchronous read mode and synchronous burst  
mode. Asynchronous array read mode is the default read mode after device power-up  
or a reset. The Read Configuration Register (RCR) must be set before synchronous  
burst operation can be performed (see Section 10.3, “Read Configuration Register  
(RCR)” on page 42).  
Each partition of the device can be in any of four read states: Read Array, Read  
Identifier, Read Status or Read Query. To change a partition’s read state, the  
appropriate read command must be written to the device (see Section 9.2, “Device  
Commands” on page 37). See Section 15.0, “Special Read States” on page 66 for  
details regarding Read Status, Read ID, and CFI Query modes.  
If the Read Array command is written to a partition that is performing a program or  
erase operation, invalid data is read until the program or erase operation completes.  
Subsequent reads produce array data. If a Program Suspend or Erase Suspend  
command is issued during a program or erase operation, a subsequent Read Array  
command puts the addressed partition into Read Array. The Read Array command  
functions independent of VPP.  
The following sections describe read-mode operations in detail.  
10.1  
Asynchronous Read Mode  
Following a device power-up or reset, asynchronous array read is the default read  
mode and all partitions are set to Read Array. However, to perform array reads after  
any other device operation (e.g. write operations, reads Status, Query, ID, etc.), the  
Read Array command must be issued in order to read from the flash memory array.  
Each asynchronous read retrieves one data word. Asynchronous reads are permitted in  
all blocks.  
Note:  
Asynchronous reads can only be performed when Read Configuration Register bit  
RCR[15] is set (see Section 10.3, “Read Configuration Register (RCR)” on page 42).  
To perform an asynchronous array or non-array read, an address is driven onto  
A[MAX:16] and AD[15:0], and ADV# and CE# are asserted. WE# and RST# must  
already have been deasserted. WAIT is deasserted during asynchronous read mode.  
ADV# is driven high to latch the address information. CLK is not used during  
asynchronous reads, and is ignored. A valid data is driven onto AD[15:0] after an initial  
access delay (see Section 7.0, “AC Characteristics” on page 20).  
10.2  
Synchronous Burst-Mode Read  
Synchronous burst mode outputs 4-, 8-, 16-, or a continuous number of contiguous  
words after the device latches one address. Read Configuration register bits CR[15:0]  
must be set before synchronous burst operation can be performed. (See Section 10.3,  
“Read Configuration Register (RCR)” on page 42 for details). To perform a synchronous  
burst read, an initial address is driven onto A[MAX:16] and AD[15:0], and ADV# and  
CE# are asserted. WE# and RST# must already have been deasserted.  
During synchronous array and non-array read modes, the first valid data is driven onto  
AD[15:0], with respect to a valid clock edge after the asynchronous access time  
(tAVQV) has been met, regardless of the latency setting. As shown in Figure 17,  
“Example Latency Count Setting with Flow- through feature” on page 45, with a latency  
setting of 4 clocks, data is driven after the third clock since the tAVQV requirement has  
been met. That data continues to be available on the data bus until the first access  
latency period is over, as described in Section 10.3.2, “Latency Count” on page 43. This  
November 2007  
Order Number: 313295-04  
Datasheet  
41  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
“flow through” behavior only applies to the first access of any synchronous read bus  
cycle. All subsequent data is driven on valid clock edges following the first access  
latency; however, for a synchronous non-array read, the same word of data will be  
output on successive clock edges until the burst length requirements are satisfied.  
During synchronous read operations, after OE# is driven low WAIT indicates invalid  
data on subsequent clock edges when asserted, and valid data when de-asserted with  
respect to a valid clock edge. See Figure 7, “Synchronous Array Read with Flow-  
through Feature Timing” on page 26 and Figure 9, “Burst Suspend Timing” on page 27  
for additional details. Synchronous burst reads are permitted in all blocks.  
10.2.1  
Burst Suspend  
The Burst Suspend feature of the device can reduce or eliminate the initial access  
latency incurred when system software needs to suspend a burst sequence that is in  
progress in order to retrieve data from another device on the same system bus. The  
system processor can resume the burst sequence later. Burst suspend provides  
maximum benefit in non-cache systems.  
Burst accesses can be suspended during the initial access latency (before data is  
received) or after the device has output data. When a burst access is suspended,  
internal array sensing continues and any previously latched internal data is retained. A  
burst sequence can be suspended and resumed without limit as long as device  
operation conditions are met.  
Burst Suspend occurs when CE# is asserted, the current address has been latched  
(either ADV# rising edge or valid CLK edge), CLK is halted, and OE# is deasserted. CLK  
can be halted when it is at VIH or VIL.  
To resume the burst access, OE# is reasserted and CLK is restarted. Subsequent CLK  
edges resume the burst sequence. See Figure 9, “Burst Suspend Timing” on page 27.  
10.3  
Read Configuration Register (RCR)  
The RCR is used to select the read mode (synchronous or asynchronous), and it defines  
the synchronous burst characteristics of the device. To modify RCR settings, use the  
Configure Read Configuration Register command (see Section 9.2, “Device Commands”  
on page 37).  
RCR contents can be examined using the Read Device Identifier command, and then  
reading from <partition base address> + 0x05 (see Section 15.2, “Read Device  
Identifier” on page 67).  
The RCR is shown in Table 19. The following sections describe each RCR bit  
.
Table 19: Read Configuration Register Description (Sheet 1 of 2)  
Read Configuration Register (RCR)  
Read  
Mode  
WAIT  
Polarity  
Data  
Hold  
WAIT  
Delay  
Burst  
Seq  
CLK  
Edge  
Burst  
Wrap  
RES  
Latency Count  
LC[2:0]  
RES  
RES  
Burst Length  
RM  
15  
Bit  
R
WP  
10  
DH  
9
WD  
8
BS  
7
CE  
6
R
5
R
4
BW  
3
BL[2:0]  
1
14  
13  
12  
11  
2
0
Name  
Description  
0 = Synchronous burst-mode read  
1 = Asynchronous read (default)  
15  
Read Mode (RM)  
Reserved (R)  
14  
Reserved bits should be cleared (0)  
Datasheet  
42  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 19: Read Configuration Register Description (Sheet 2 of 2)  
010 =Code 2  
011 =Code 3  
100 =Code 4  
13:11  
Latency Count (LC[2:0])  
Wait Polarity (WP)  
101 =Code 5  
110 =Code 6  
111 =Code 7(default)  
(Other bit settings are reserved)  
0 =WAIT signal is active low  
1 =WAIT signal is active high (default)  
10  
0 =Data held for a 1-clock data cycle  
1 =Data held for a 2-clock data cycle (default)  
9
8
7
Data Hold (DH)  
0 =WAIT de-asserted with valid data  
1 =WAIT de-asserted one data cycle before valid data (default)  
Wait Delay (WD)  
Burst Sequence (BS)  
0 =Reserved  
1 =Linear (default)  
0 = Falling edge  
6
Clock Edge (CE)  
Reserved (R)  
1 = Rising edge (default)  
5:4  
3
Reserved bits should be cleared (0)  
0 =Wrap; Burst accesses wrap within burst length set by BL[2:0]  
1 =No Wrap; Burst accesses do not wrap within burst length (default)  
Burst Wrap (BW)  
001 =4-word burst  
010 =8-word burst  
011 =16-word burst  
111 =Continuous-word burst (default)  
2:0  
Burst Length (BL[2:0])  
(Other bit settings are reserved)  
10.3.1  
Read Mode  
The Read Mode (RM) bit selects synchronous burst-mode or asynchronous read-mode  
operation for the device. When the RM bit is set, asynchronous read mode is selected  
(default). When RM is cleared, synchronous burst mode is selected.  
10.3.2  
Latency Count  
The Latency Count bits, LC[2:0], tell the device how many clock cycles must elapse  
from the rising edge of ADV# or from the first valid clock edge after ADV# is asserted  
before the WAIT signal indicates valid data is present on the device data signals  
AD[15:0]. The input clock frequency determines this value. Figure 16 shows the data  
output latency from ADV#-asserted for different settings of LC[2:0]. The Latency Count  
does not affect when data becomes available on the data signals. Valid data is driven  
onto the data bus, with respect to a valid clock edge, as soon as possible after the  
asynchronous access time is satisfied (or another word after it is sensed). In this way,  
the data “flows-through” on the first access, with respect to an active clock edge. The  
data continues to be available on the data bus until the latency period is over. The flow-  
through behavior only applies to the first access of any bus cycle. All subsequent data  
is driven on valid clock edges following the first access latency period.  
During synchronous burst a Latency Count setting of Code 5 will cause 1 WAIT state  
(Code 6 will cause 2 WAIT states, and Code 7 will cause 3 WAIT states) after every four  
words, regardless of whether a 16-word boundary is crossed. If CR.[9] (Data Hold) bit  
is set (data hold of two clocks) this WAIT condition will not occur because enough  
clocks elapse during each burst cycle to eliminate subsequent WAIT states.  
November 2007  
Order Number: 313295-04  
Datasheet  
43  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 16: First-Access Latency Count  
CLK  
Valid  
Address  
Address  
ADV#  
Code 2  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
AD[15:0]  
Code 3  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
AD[15:0]  
Code 4  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
AD[15:0]  
Code 5  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
AD[15:0]  
Code 6  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
AD[15:0]  
Code 7  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
AD[15:0]  
Table 20: LC and Frequency Support (tAVQV/tCHQV = 85 ns / 14 ns)  
VCCQ = 1.7 V to 2.0 V  
Latency Count Settings  
Frequency Support (MHz)  
2
£ 28  
£ 40  
£ 54  
3
4, 5, 6 or 7  
Table 21: LC and Frequency Support (tAVQV/tCHQV = 90 ns / 17 ns)  
VCCQ = 1.35 V to 2.0 V  
Latency Count Settings  
Frequency Support (MHz)  
2
£ 27  
£ 40  
3, 4, 5, 6 or 7  
See Figure 17, “Example Latency Count Setting with Flow- through feature” on  
page 45.  
Datasheet  
44  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 17: Example Latency Count Setting with Flow- through feature  
tADD  
tDATA  
3rd  
2nd  
4th  
1st  
6th  
5th  
CLK  
CE#  
ADV#  
tCHQV  
AMAX-16  
Code 4  
Valid  
Output  
Valid  
Output  
High Z  
A/DQ15-0  
Valid Address  
R2  
Note: The waveform above illustrates the Latency Count of 4 with Flow-through feature. The Flow-through feature will be shown  
only when the initial access time is one clock less than the LC setting.  
10.3.3  
WAIT Polarity  
The WAIT Polarity bit (WP), RCR[10] determines the asserted level (VOH or VOL) of  
WAIT. When WP is set, WAIT is asserted-high (default). When WP is cleared, WAIT is  
asserted-low. WAIT changes state on valid clock edges during active bus cycles (CE#  
asserted, OE# asserted and RST# deasserted).  
10.3.3.1  
WAIT Signal Function  
The WAIT signal indicates data valid when the device is operating in synchronous mode  
(CR[15]=0). The WAIT signal is only “deasserted” when data is valid on the bus.  
WAIT behavior during synchronous non-array reads at the end of word line works  
correctly only on the first data access.  
When the device is operating in asynchronous single word read mode, WAIT is set to an  
“de-asserted” state as determined by CR[10]. See Table 22, “WAIT Summary Table” on  
page 45, and Figure 6, “Asynchronous Single-Word Read Timing” on page 25.  
Table 22: WAIT Summary Table  
CONDITION  
WAIT  
CE# = VIH  
CE# = VIL  
High-Z  
Driven  
OE# = VIH  
OE# = VIL  
De-asserted  
Active  
Synchronous Array and Non-array Reads  
All Asynchronous Read and all Write  
Active  
De-asserted  
November 2007  
Order Number: 313295-04  
Datasheet  
45  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Note: Active: WAIT is asserted until data becomes valid, then de-asserts. WAIT is asserted during the initial access (latency) and  
at the end of the burst cycle with OE# low.  
10.3.4  
Data Hold  
For burst read operations, the Data Hold (DH) bit determines whether the data output  
remains valid on AD[15:0] for one or two clock cycles. This period of time is called the  
data cycle. When DH is set, output data is held for two clocks (default). When DH is  
cleared, output data is held for one clock (see Figure 18). The processor’s data setup  
time and the flash memory’s clock-to-data output delay should be considered when  
determining whether to hold output data for one or two clocks.  
A method for determining the Data Hold configuration is shown below:  
To set the device at one clock data hold for subsequent reads, the following condition  
must be satisfied:  
t
CHQV (ns) + tDATA (ns) One CLK Period (ns)  
t
DATA = Data set up to Clock (defined by CPU)  
For example, with a clock frequency of 54 MHz, the clock period is 18.5 ns. Assuming  
tCHQV = 14ns and tDATA = 4ns. Applying these values to the formula above:  
14 ns + 4 ns 18.5 ns  
The equation is satisfied and data will be available at every clock period with data hold  
setting at one clock.  
If tCHQV (ns) + DATA  
t
(ns) > One CLK Period (ns), data hold setting of 2 clock periods  
must be used.  
Figure 18: Data Hold Timing  
CLK [C]  
1 CLK  
Valid  
Output  
Valid  
Output  
Valid  
Output  
AD[15:0] [Q]  
Data Hold  
2 CLK  
Valid  
Output  
Valid  
Output  
AD[15:0] [Q]  
Data Hold  
10.3.5  
WAIT Delay  
The WAIT Delay (WD) bit controls the WAIT assertion-delay behavior during  
synchronous burst reads. WAIT can be asserted either during or one data cycle before  
valid data is output on AD[15:0]. When WD is set, WAIT is de-asserted one data cycle  
before valid data (default). When WD is cleared, WAIT is de-asserted during valid data.  
Datasheet  
46  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
10.3.6  
Burst Sequence  
The Burst Sequence (BS) bit selects linear-burst sequence (default). Only linear-burst  
sequence is supported. Table 23 shows the synchronous burst sequence for all burst  
lengths, as well as the effect of the Burst Wrap (BW) setting.  
Table 23: Burst Sequence Word Ordering  
Burst Addressing Sequence (DEC)  
Start  
Addr.  
(DEC)  
Burst  
Wrap  
(RCR[3])  
4-Word Burst  
(BL[2:0] =  
0b001)  
8-Word Burst  
(BL[2:0] = 0b010)  
16-Word Burst  
(BL[2:0] = 0b011)  
Continuous Burst  
(BL[2:0] = 0b111)  
0
1
2
3
4
5
0
0
0
0
0
0
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
0-1-2-3-4…14-15  
1-2-3-4-5…15-0  
0-1-2-3-4-5-6-…  
1-2-3-4-5-6-7-…  
2-3-4-5-6-7-8-…  
3-4-5-6-7-8-9-…  
4-5-6-7-8-9-10…  
5-6-7-8-9-10-11…  
2-3-4-5-6…15-0-1  
3-4-5-6-7…15-0-1-2  
4-5-6-7-8…15-0-1-2-3  
5-6-7-8-9…15-0-1-2-3-4  
6-7-8-9-10…15-0-1-2-3-  
4-5  
6
7
0
0
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
6-7-8-9-10-11-12-…  
7-8-9-10-11-12-13…  
7-8-9-10…15-0-1-2-3-4-  
5-6  
14  
15  
0
0
14-15-0-1-2…12-13  
15-0-1-2-3…13-14  
14-15-16-17-18-19-20-…  
15-16-17-18-19-20-21-…  
0
1
2
3
4
5
6
1
1
1
1
1
1
1
0-1-2-3  
1-2-3-4  
2-3-4-5  
3-4-5-6  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-8  
0-1-2-3-4…14-15  
1-2-3-4-5…15-16  
2-3-4-5-6…16-17  
3-4-5-6-7…17-18  
4-5-6-7-8…18-19  
5-6-7-8-9…19-20  
6-7-8-9-10…20-21  
0-1-2-3-4-5-6-…  
1-2-3-4-5-6-7-…  
2-3-4-5-6-7-8-…  
3-4-5-6-7-8-9-…  
4-5-6-7-8-9-10…  
5-6-7-8-9-10-11…  
6-7-8-9-10-11-12-…  
2-3-4-5-6-7-8-9  
3-4-5-6-7-8-9-10  
4-5-6-7-8-9-10-11  
5-6-7-8-9-10-11-12  
6-7-8-9-10-11-12-13  
7-8-9-10-11-12-13-  
14  
7
1
7-8-9-10-11…21-22  
7-8-9-10-11-12-13…  
14  
15  
1
1
14-15-16-17-18…28-29  
15-16-17-18-19…29-30  
14-15-16-17-18-19-20-…  
15-16-17-18-19-20-21-…  
10.3.7  
Clock Edge  
The Clock Edge (CE) bit selects either a rising (default) or falling clock edge for CLK.  
This clock edge is used at the start of a burst cycle, to output synchronous data, and to  
assert/deassert WAIT.  
November 2007  
Order Number: 313295-04  
Datasheet  
47  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
10.3.8  
Burst Wrap  
The Burst Wrap (BW) bit determines whether 4-word, 8-word, or 16-word burst length  
accesses wrap within the selected word-length boundaries or cross over to the next  
burst-length segment. When BW is set, burst wrapping does not occur (default). When  
BW is cleared, burst wrapping occurs.  
When performing synchronous burst reads with BW set (no wrap), an output delay may  
occur when the burst sequence crosses its first device-row (16-word) boundary. If the  
burst sequence’s start address is 4-word aligned, then no delay occurs. If the start  
address is at the end of a 4-word boundary, the worst case output delay is one clock  
cycle less than the first access Latency Count. This delay can take place only once, and  
doesn’t occur if the burst sequence does not cross a device-row boundary. WAIT  
informs the system of this delay when it occurs.  
10.3.9  
Burst Length  
The Burst Length bit (BL[2:0]) selects the linear burst length for all synchronous burst  
reads of the flash memory array. The burst lengths are 4-word, 8-word, 16-word, and  
continuous word.  
Continuous-burst accesses are linear only, and do not wrap within any word length  
boundaries (see Table 23, “Burst Sequence Word Ordering” on page 47). When a burst  
cycle begins, the device outputs synchronous burst data until it reaches the end of the  
“burstable” address space.  
Datasheet  
48  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
11.0  
Programming Operations  
The device supports three programming methods: word programming, buffered  
programming, and Buffered Enhanced Factory Programming (Buffered EFP). See  
Section 9.0, “Device Operations” on page 36 for details on the various programming  
commands issued to the device.  
Successful programming requires the addressed block to be unlocked. If the block is  
locked down, WP# must be deasserted and the block unlocked before attempting to  
program the block. Attempting to program a locked block causes a program error  
(SR[4] and SR[1] set) and termination of the operation. See Section 13.0, “Security  
Modes” on page 57 for details on locking and unlocking blocks.  
The following sections describe device programming in detail.  
11.1  
Word Programming  
Word programming operations are initiated by writing the Word Program Setup  
command to the device (see Section 9.0, “Device Operations” on page 36). This is  
followed by a second write to the device with the address and data to be programmed.  
The partition accessed during both write cycles outputs Status Register data when  
read. The partition accessed during the second cycle (the data cycle) of the program  
command sequence is the location where the data is written. See Figure 31, “Word  
Program Flowchart” on page 76.  
Programming can occur in only one partition at a time; all other partitions must be in a  
read state or in erase suspend. VPP must be above VPPLK, and within the specified VPPL  
min/max values (nominally 1.8 V).  
During programming, the Write State Machine (WSM) executes a sequence of  
internally-timed events that program the desired data bits at the addressed location,  
and verifies that the bits are sufficiently programmed. Programming the flash memory  
array changes “ones” to “zeros.Memory array bits that are zeros can be changed to  
ones only by erasing the block (see Section 12.0, “Erase Operations” on page 55).  
The Status Register can be examined for programming progress and errors by reading  
any address within the partition that is being programmed. The partition remains in the  
Read Status Register state until another command is written to that partition. Issuing  
the Read Status Register command to another partition address sets that partition to  
the Read Status Register state, allowing programming progress to be monitored at that  
partition’s address.  
Status Register bit SR[7] indicates the programming status while the sequence  
executes. Commands that can be issued to the programming partition during  
programming are Program Suspend, Read Status Register, Read Device Identifier, CFI  
Query, and Read Array (this returns unknown data). In asynchronous mode the falling  
edge of OE#, or CE# (whichever occurs first) updates and latches the Status Register  
contents. However, reading the Status Register in synchronous burst mode, CE# or  
ADV# must be toggled to update status data.  
When programming has finished, Status Register bit SR[4] (when set) indicates a  
programming failure. If SR[3] is set, the WSM could not perform the word  
programming operation because VPP was outside of its acceptable limits. If SR[1] is set,  
the word programming operation attempted to program a locked block, causing the  
operation to abort.  
Before issuing a new command, the Status Register contents should be examined and  
then cleared using the Clear Status Register command. Any valid command can follow,  
when word programming has completed.  
November 2007  
Order Number: 313295-04  
Datasheet  
49  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
11.1.1  
Factory Word Programming  
Factory word programming is similar to word programming in that it uses the same  
commands and programming algorithms. However, factory word programming  
enhances the programming performance with VPP = VPPH. This can enable faster  
programming times during OEM manufacturing processes. Factory word programming  
is not intended for extended use. See Section 5.2, “Operating Conditions” on page 17  
for limitations when VPP = VPPH  
.
Note:  
When VPP = VPPL, the device draws programming current from the VCC supply. If VPP is  
driven by a logic signal, VPPL must remain above VPPL MIN to program the device. When  
VPP = VPPH, the device draws programming current from the VPP supply. Figure 19,  
“Example VPP Supply Connections” on page 54 shows examples of device power supply  
configurations.  
11.2  
Buffered Programming  
The device features a 32-word buffer to enable optimum programming performance.  
For buffered programming, data is first written to an on-chip write buffer. Then the  
buffer data is programmed into the flash memory array in buffer-size increments. This  
can improve system programming performance significantly over non-buffered  
programming.  
When the Buffered Programming Setup command is issued (see Section 9.2, “Device  
Commands” on page 37), Status Register information is updated and reflects the  
availability of the write buffer. SR[7] indicates buffer availability: if set, the buffer is  
available; if cleared, the write buffer is not available. To retry, issue the Buffered  
Programming Setup command again, and re-check SR[7]. When SR[7] is set, the  
buffer is ready for loading. (see Figure 33, “Buffer Program Flowchart” on page 78).  
On the next write, a word count is written to the device at the buffer address. This tells  
the device how many data words will be written to the buffer, up to the maximum size  
of the buffer.  
On the next write, a device start address is given along with the first data to be written  
to the flash memory array. Subsequent writes provide additional device addresses and  
data. All data addresses must lie within the start address plus the word count.  
Optimum programming performance and lower power usage are obtained by aligning  
the starting address at the beginning of a 32-word boundary (A[4:0] = 0x00). Crossing  
a 32-word boundary during programming will double the total programming time.  
After the last data is written to the buffer, the Buffered Programming Confirm command  
is issued to the original block address. The WSM begins to program buffer contents to  
the flash memory array. If a command other than the Buffered Programming Confirm  
command is written to the device, a command sequence error occurs and Status  
Register bits SR[7,5,4] are set. If an error occurs while writing to the array, the device  
stops programming, and Status Register bits SR[7,4] are set, indicating a programming  
failure.  
Reading from another partition is allowed while data is being programmed into the  
array from the write buffer (see Section 14.0, “Dual-Operation Considerations” on  
page 62).  
Additional buffer writes can be initiated by issuing another Buffered Programming  
Setup command and repeating the buffered program sequence. Buffered programming  
may be performed with VPP = VPPL or VPPH (see Section 5.2, “Operating Conditions” on  
page 17 for limitations when operating the device with VPP = VPPH).  
Datasheet  
50  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
If an attempt is made to program past an erase-block boundary using the Buffered  
Program command, the device aborts the operation. This generates a command  
sequence error, and Status Register bits SR[5,4] are set.  
If Buffered programming is attempted while VPP is below VPPLK, Status Register bits  
SR[4,3] are set. If any errors are detected that have set Status Register bits, the  
Status Register should be cleared using the Clear Status Register command.  
11.3  
Buffered Enhanced Factory Programming  
Buffered Enhanced Factory Programing (Buffered EFP) speeds up Multi-Level Cell (MLC)  
flash programming for today's beat-rate-sensitive manufacturing environments. The  
enhanced programming algorithm used in Buffered EFP eliminates traditional  
programming elements that drive up overhead in device programmer systems.  
Buffered EFP consists of three phases: Setup, Program/Verify, and Exit (see Figure 34,  
“Buffered EFP Flowchart” on page 79). It uses a write buffer to spread MLC program  
performance across 32 data words. Verification occurs in the same phase as  
programming to accurately program the flash memory cell to the correct bit state.  
A single command sequence is used to program a block of data. This enhancement  
eliminates three write cycles per buffer: two commands and the word count for each  
set of 32 data words. Host programmer bus cycles fill the device’s write buffer followed  
by a status check. SR[0] indicates when data from the buffer has been programmed  
into sequential flash memory array locations.  
Following the buffer-to-flash array programming sequence, the Write State Machine  
(WSM) increments internal addressing to automatically select the next 32-word array  
boundary. This aspect of Buffered EFP saves host programming equipment the address-  
bus setup overhead.  
With adequate continuity testing, programming equipment can rely on the WSM’s  
internal verification to ensure that the device has programmed properly. This eliminates  
the external post-program verification and its associated overhead.  
11.3.1  
Buffered EFP Requirements and Considerations  
Buffered EFP requirements:  
• Ambient temperature: TC = 25°C, ±5°C  
• VCC within specified operating range.  
• VPP driven to VPPH  
.
Target block unlocked before issuing the Buffered EFP Setup and Confirm  
commands.  
• The first-word address (WA0) for the block to be programmed must be held  
constant from the setup phase through all data streaming into the target block,  
until transition to the exit phase is desired.  
• WA0 must align with the start of an array buffer boundary1.  
Buffered EFP considerations:  
• For optimum performance, cycling must be limited below 100 erase cycles per  
block2.  
• Buffered EFP programs one block at a time; all buffer data must fall within a single  
block3.  
• Buffered EFP cannot be suspended.  
• Programming to the flash memory array can occur only when the buffer is full4.  
November 2007  
Order Number: 313295-04  
Datasheet  
51  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
• Read operation while performing Buffered EFP is not supported.  
Notes:  
1.  
Word buffer boundaries in the array are determined by A[4:0] (0x00 through 0x1F). The alignment start point is A[4:0] =  
0x00.  
2.  
3.  
4.  
Some degradation in performance may occur if this limit is exceeded, but the internal algorithm continues to work  
properly.  
If the internal address counter increments beyond the block's maximum address, addressing wraps around to the  
beginning of the block.  
If the number of words is less than 32, remaining locations must be filled with 0xFFFF.  
11.3.2  
Buffered EFP Setup Phase  
After receiving the Buffered EFP Setup and Confirm command sequence, Status  
Register bit SR[7] (Ready) is cleared, indicating that the WSM is busy with Buffered EFP  
algorithm startup. A delay before checking SR[7] is required to allow the WSM enough  
time to perform all of its setups and checks (Block-Lock status, VPP level, etc.). If an  
error is detected, SR[4] is set and Buffered EFP operation terminates. If the block was  
found to be locked, SR[1] is also set. SR[3] is set if the error occurred due to an  
incorrect VPP level.  
Note:  
Reading from the device after the Buffered EFP Setup and Confirm command sequence  
outputs Status Register data. Do not issue the Read Status Register command; it will  
be interpreted as data to be loaded into the buffer.  
11.3.3  
Buffered EFP Program/Verify Phase  
After the Buffered EFP Setup Phase has completed, the host programming system must  
check SR[7,0] to determine the availability of the write buffer for data streaming.  
SR[7] cleared indicates the device is busy and the Buffered EFP program/verify phase  
is activated. SR[0] indicates the write buffer is available.  
Two basic sequences repeat in this phase: loading of the write buffer, followed by buffer  
data programming to the array. For Buffered EFP, the count value for buffer loading is  
always the maximum buffer size of 32 words. During the buffer-loading sequence, data  
is stored to sequential buffer locations starting at address 0x00. Programming of the  
buffer contents to the flash memory array starts as soon as the buffer is full. If the  
number of words is less than 32, the remaining buffer locations must be filled with 0xFFFF.  
Caution:  
The buffer must be completely filled for programming to occur. Supplying an  
address outside of the current block's range during a buffer-fill sequence  
causes the algorithm to exit immediately. Any data previously loaded into the  
buffer during the fill cycle is not programmed into the array.  
The starting address for data entry must be buffer size aligned, if not the Buffered EFP  
algorithm will be aborted and the program fail (SR[4]) flag will be set.  
Data words from the write buffer are directed to sequential memory locations in the  
flash memory array; programming continues from where the previous buffer sequence  
ended. The host programming system must poll SR[0] to determine when the buffer  
program sequence completes. SR[0] cleared indicates that all buffer data has been  
transferred to the flash array; SR[0] set indicates that the buffer is not available yet for  
the next fill cycle. The host system may check full status for errors at any time, but it is  
only necessary on a block basis after Buffered EFP exit.  
The host programming system continues the Buffered EFP algorithm by providing the  
next group of data words to be written to the buffer. Alternatively, it can terminate this  
phase by changing the block address to one outside of the current block’s range.  
The Program/Verify phase concludes when the programmer writes to a different block  
address; data supplied must be 0xFFFF. Upon Program/Verify phase completion, the  
device enters the Buffered EFP Exit phase.  
Datasheet  
52  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
11.3.4  
11.4  
Buffered EFP Exit Phase  
When SR[7] is set, the device has returned to normal operating conditions. A full status  
check should be performed at this time to ensure the entire block programmed  
successfully. After Buffered EFP exit, any valid command can be issued to the device.  
Program Suspend  
Issuing the Program Suspend command while programming suspends the  
programming operation. This allows data to be accessed from memory locations other  
than the one being programmed. The Program Suspend command can be issued to any  
device address; the corresponding partition is not affected. A program operation can be  
suspended to perform reads only. Additionally, a program operation that is running  
during an erase suspend can be suspended to perform a read operation (see Figure 32,  
“Program Suspend/Resume Flowchart” on page 77).  
When a programming operation is executing, issuing the Program Suspend command  
requests the WSM to suspend the programming algorithm at predetermined points. The  
partition that is suspended continues to output Status Register data after the Program  
Suspend command is issued. Programming is suspended when Status Register bits  
SR[7,2] are set. Suspend latency is specified in Section 7.7, “Program and Erase  
Characteristics” on page 32.  
To read data from blocks within the suspended partition, the Read Array command  
must be issued to that partition. Read Array, Read Status Register, Read Device  
Identifier, CFI Query, program RCR and Program Resume are valid commands during a  
program suspend.  
A program operation does not need to be suspended in order to read data from a block  
in another partition that is not programming. If the other partition is already in a Read  
Array, Read Device Identifier, or CFI Query state, issuing a valid address returns  
corresponding read data. If the other partition is not in a read mode, one of the read  
commands must be issued to the partition before data can be read.  
During a program suspend, deasserting CE# places the device in standby, reducing  
active current. VPP must remain at its programming level, and WP# must remain  
unchanged while in program suspend. If RST# is asserted, the device is reset.  
11.5  
11.6  
Program Resume  
The Resume command instructs the device to continue programming, and  
automatically clears Status Register bits SR[7,2]. This command can be written to any  
partition. When read at the partition that’s programming, the device outputs data  
corresponding to the partition’s last state. If error bits are set, the Status Register  
should be cleared before issuing the next instruction. RST# must remain deasserted  
(see Figure 32, “Program Suspend/Resume Flowchart” on page 77).  
Program Protection  
When VPP = VIL, absolute hardware write protection is provided for all device blocks. If  
VPP is below VPPLK, programming operations halt and SR[3] is set indicating a VPP-level  
error. Block lock registers are not affected by the voltage level on VPP; they may still be  
programmed and read, even if VPP is less than VPPLK  
.
November 2007  
Order Number: 313295-04  
Datasheet  
53  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 19: Example VPP Supply Connections  
VCC  
VCC  
VPP  
VCC  
VPP  
VCC  
PROT #  
VPP  
10K Ω  
Low-voltage Programming only  
Logic Control of Device Protection  
Factory Programming with VPP = VPPH  
Complete write/Erase Protection when VPP VPPLK  
VCC  
VCC  
VCC  
VCC  
VPP=VPPH  
VPP  
VPP  
Low Voltage Programming Only  
Full Device Protection Unavailable  
Low Voltage and Factory Programming  
Datasheet  
54  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
12.0  
Erase Operations  
Flash erasing is performed on a block basis. An entire block is erased each time an  
erase command sequence is issued, and only one block is erased at a time. When a  
block is erased, all bits within that block read as logical ones. The following sections  
describe block erase operations in detail.  
12.1  
Block Erase  
Block erase operations are initiated by writing the Block Erase Setup command to the address of the block to  
be erased (see Section 9.2, “Device Commands” on page 37). Next, the Block Erase Confirm  
command is written to the address of the block to be erased. Erasing can occur in only one partition at a time;  
all other partitions must be in a read state. If the device is placed in standby (CE# deasserted)  
during an erase operation, the device completes the erase operation before entering  
standby.VPP must be above VPPLK and the block must be unlocked (see Figure 35, “Block Erase  
Flowchart” on page 80).  
During a block erase, the Write State Machine (WSM) executes a sequence of  
internally-timed events that conditions, erases, and verifies all bits within the block.  
Erasing the flash memory array changes “zeros” to “ones.Memory array bits that are  
ones can be changed to zeros only by programming the block (see Section 11.0,  
“Programming Operations” on page 49).  
The Status Register can be examined for block erase progress and errors by reading  
any address within the partition that is being erased. The partition remains in the Read  
Status Register state until another command is written to that partition. Issuing the  
Read Status Register command to another partition address sets that partition to the  
Read Status Register state, allowing erase progress to be monitored at that partition’s  
address. SR[0] indicates whether the addressed partition or another partition is  
erasing. The partition’s Status Register bit SR[7] is set upon erase completion.  
Status Register bit SR[7] indicates block erase status while the sequence executes.  
When the erase operation has finished, Status Register bit SR[5] indicates an erase  
failure if set. SR[3] set would indicate that the WSM could not perform the erase  
operation because VPP was outside of its acceptable limits. SR[1] set indicates that the  
erase operation attempted to erase a locked block, causing the operation to abort. CE#  
or OE# must be toggled to update Status Register contents.  
Before issuing a new command, the Status Register contents should be examined and  
then cleared using the Clear Status Register command. Any valid command can follow  
once the block erase operation has completed.  
12.2  
Erase Suspend  
Issuing the Erase Suspend command while erasing suspends the block erase operation.  
This allows data to be accessed from memory locations other than the one being  
erased. The Erase Suspend command can be issued to any device address; the  
corresponding partition is not affected. A block erase operation can be suspended to  
perform a word or write-buffer program operation, or a read operation within any block  
except the block that is erase suspended (see Figure 32, “Program Suspend/Resume  
Flowchart” on page 77).  
When a block erase operation is executing, issuing the Erase Suspend command  
requests the WSM to suspend the erase algorithm at predetermined points. The  
partition that is suspended continues to output Status Register data after the Erase  
Suspend command is issued. Block erase is suspended when Status Register bits  
SR[7,6] are set. Suspend latency is specified in Section 7.7, “Program and Erase  
Characteristics” on page 32.  
November 2007  
Order Number: 313295-04  
Datasheet  
55  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
To read data from blocks within the suspended partition (other than an erase-  
suspended block), the Read Array command must be issued to that partition first.  
During Erase Suspend, a Program command can be issued to any block other than the  
erase-suspended block. Block erase cannot resume until program operations initiated  
during erase suspend complete. Read Array, Read Status Register, Read Device  
Identifier, CFI Query, and Erase Resume are valid commands during Erase Suspend.  
Additionally, Clear Status Register, Program, Program Suspend, Block Lock, Block  
Unlock, and Block Lock-Down are valid commands during Erase Suspend.  
To read data from a block in a partition that is not erasing, the erase operation does not  
need to be suspended. If the other partition is already in Read Array, Read Device  
Identifier, or CFI Query, issuing a valid address returns corresponding data. If the other  
partition is not in a read state, one of the read commands must be issued to the  
partition before data can be read.  
During an erase suspend, deasserting CE# places the device in standby, reducing  
active current. VPP must remain at a valid level, and WP# must remain unchanged  
while in erase suspend. If RST# is asserted, the device is reset.  
12.3  
12.4  
Erase Resume  
The Erase Resume command instructs the device to continue erasing, and  
automatically clears status register bits SR[7,6]. This command can be written to any  
partition. When read at the partition that’s erasing, the device outputs data  
corresponding to the partition’s last state. If status register error bits are set, the  
Status Register should be cleared before issuing the next instruction. RST# must  
remain deasserted (see Figure 32, “Program Suspend/Resume Flowchart” on page 77).  
Erase Protection  
When VPP = VIL, absolute hardware erase protection is provided for all device blocks. If  
VPP is below VPPLK, erase operations halt and SR[3] is set indicating a VPP-level error.  
Datasheet  
56  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
13.0  
Security Modes  
The device features security modes used to protect the information stored in the flash  
memory array. The following sections describe each security mode in detail.  
13.1  
Block Locking  
Individual instant block locking is used to protect user code and/or data within the flash  
memory array. All blocks power up in a locked state to protect array data from being  
altered during power transitions. Any block can be locked or unlocked with no latency.  
Locked blocks cannot be programmed or erased; they can only be read.  
Software-controlled security is implemented using the Block Lock and Block Unlock  
commands. Hardware-controlled security can be implemented using the Block Lock-  
Down command along with asserting WP#. Also, VPP data security can be used to  
inhibit program and erase operations (see Section 11.6, “Program Protection” on  
page 53 and Section 12.4, “Erase Protection” on page 56).  
13.1.1  
Lock Block  
To lock a block, issue the Lock Block Setup command. The next command must be the Lock Block command  
issued to the desired block’s address (see Section 9.2, “Device Commands” on page 37 and  
Figure 37, “Block Lock Operations Flowchart” on page 82). If the Set Read Configuration  
Register command is issued after the Block Lock Setup command, the device  
configures the RCR instead.  
Block lock and unlock operations are not affected by the voltage level on VPP. The block  
lock bits may be modified and/or read even if VPP is below VPPLK  
.
Table 24: Block Locking  
VPP  
WP#  
RST#  
Block Write Protection  
Block Lock Bits  
X
X
VIL  
All blocks write/erase protected  
Block lock bits may not be changed  
Lock-Down block states may not be  
changed  
VPPLK  
VPPLK  
> VPPLK  
> VPPLK  
VIL  
VIH  
VIL  
VIH  
VIH  
VIH  
VIH  
VIH  
All blocks write/erase protected  
All blocks write/erase protected  
All Lock-Down block states may be  
changed  
All Lock-Down and Locked blocks write/  
erase protected  
Lock-Down block states may not be  
changed  
All Lock-Down and Locked blocks write/  
erase protected  
All Lock-Down block states may be  
changed  
13.1.2  
Unlock Block  
The Unlock Block command is used to unlock blocks (see Section 9.2, “Device  
Commands” on page 37). Unlocked blocks can be read, programmed, and erased.  
Unlocked blocks return to a locked state when the device is reset or powered down. If a  
block is in a lock-down state, WP# must be deasserted before it can be unlocked (see  
Figure 20, “Block Locking State Diagram” on page 58).  
13.1.3  
Lock-Down Block  
A locked or unlocked block can be locked-down by writing the Lock-Down Block  
command sequence (see Section 9.2, “Device Commands” on page 37). Blocks in a  
lock-down state cannot be programmed or erased; they can only be read. However,  
unlike locked blocks, their locked state cannot be changed by software commands  
November 2007  
Order Number: 313295-04  
Datasheet  
57  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
alone. A locked-down block can only be unlocked by issuing the Unlock Block command  
with WP# deasserted. To return an unlocked block to locked-down state, a Lock  
command (60h/01h) must be issued prior to changing WP# to VIL. A locked or  
unlocked block can be locked-down by writing the Lock-Down Block command  
sequence. Locked-down blocks revert to the locked state upon reset or power up the  
device (see Figure 20, “Block Locking State Diagram” on page 58).  
13.1.4  
Block Lock Status  
The Read Device Identifier command is used to determine a block’s lock status (see  
Section 15.2, “Read Device Identifier” on page 67). Data bits AD[1:0] display the  
addressed block’s lock status; AD0 is the addressed block’s lock bit, while AD1 is the  
addressed block’s lock-down bit.  
Figure 20: Block Locking State Diagram  
Unlocked  
Locked  
Unlock  
Cmd  
Lock  
Cmd  
Unlocked  
[000]  
Locked  
[001]  
Power-Up/  
Reset  
Default  
Lock-Down Cmd  
Lock-Down Cmd  
WP# Asserted  
Locked  
-Down  
[011]  
Lock-Down  
Cmd  
Unlock  
Cmd  
Unlocked  
[110]  
Locked  
[111]  
WP# De-Asserted  
WP# A/DQ1 A/DQ0 Block Status  
Lock-Down Cmd  
x
x
0
1
1
0
0
1
1
1
0
1
1
0
1
Unlocked  
Locked  
Locked-Down  
Unlocked  
Locked  
Power-Up/  
Reset  
Lock-Down Cmd  
Default  
Unlock  
Cmd  
Lock  
Cmd  
Unlocked  
[100]  
Locked  
[101]  
13.1.5  
Block Locking During Suspend  
Block lock and unlock changes can be performed during an erase suspend. To change  
block locking during an erase operation, first issue the Erase Suspend command.  
Monitor the Status Register until SR[7] and SR[6] are set, indicating the device is  
suspended and ready to accept another command.  
Next, write the desired lock command sequence to a block, which changes the lock  
state of that block. After completing block lock or unlock operations, resume the erase  
operation using the Erase Resume command.  
Datasheet  
58  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Note:  
A Lock Block Setup command followed by any command other than Lock Block, Unlock  
Block, or Lock-Down Block produces a command sequence error and set Status  
Register bits SR[4] and SR[5]. If a command sequence error occurs during an erase  
suspend, SR[4] and SR[5] remains set, even after the erase operation is resumed.  
Unless the Status Register is cleared using the Clear Status Register command before  
resuming the erase operation, possible erase errors may be masked by the command  
sequence error.  
If a block is locked or locked-down during an erase suspend of the same block, the lock  
status bits change immediately. However, the erase operation completes when it is  
resumed. Block lock operations cannot occur during a program suspend. See Appendix  
A, “Write State Machine” on page 69, which shows valid commands during an erase  
suspend.  
13.2  
Protection Registers  
The device contains 17 Protection Registers (PRs) that can be used to implement  
system security measures and/or device identification. Each Protection Register can be  
individually locked.  
The first 128-bit Protection Register is comprised of two 64-bit (8-word) segments. The  
lower 64-bit segment is pre-programmed at the factory with a unique 64-bit number.  
The other 64-bit segment, as well as the other sixteen 128-bit Protection Registers, are  
blank. Users can program these registers as needed. When programmed, users can  
then lock the Protection Register(s) to prevent additional bit programming (see  
Figure 21, “Protection Register Map” on page 60).  
The user-programmable Protection Registers contain one-time programmable (OTP)  
bits; when programmed, register bits cannot be erased. Each Protection Register can  
be accessed multiple times to program individual bits, as long as the register remains  
unlocked.  
Each Protection Register has an associated Lock Register bit. When a Lock Register bit  
is programmed, the associated Protection Register can only be read; it can no longer be  
programmed. Additionally, because the Lock Register bits themselves are OTP, when  
programmed, Lock Register bits cannot be erased. Therefore, when a Protection  
Register is locked, it cannot be unlocked.  
November 2007  
Order Number: 313295-04  
Datasheet  
59  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 21: Protection Register Map  
0x109  
128-bit Protection Register 16  
(User-Programmable)  
0x102  
0x91  
128-bit Protection Register 1  
(User-Programmable)  
0x8A  
0x89  
Lock Register 1  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0x88  
64-bit Segment  
(User-Programmable)  
0x85  
0x84  
128-Bit Protection Register 0  
64-bit Segment  
(Factory-Programmed)  
0x81  
0x80  
Lock Register 0  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
.
13.2.1  
Reading the Protection Registers  
The Protection Registers can be read from within any partition’s address space. To read  
the Protection Register, first issue the Read Device Identifier command at any  
partitions’ address to place that partition in the Read Device Identifier state (see  
Section 9.2, “Device Commands” on page 37). Next, perform a read operation at that  
partition’s base address plus the address offset corresponding to the register to be  
read. Table 27, “Device Identifier Information” on page 67 shows the address offsets of  
the Protection Registers and Lock Registers. Register data is read 16 bits at a time.  
Note:  
If a program or erase operation occurs within the device while it is reading a Protection  
Register, certain restrictions may apply. See Table 25, “Simultaneous Operation  
Restrictions” on page 65 for details.  
Datasheet  
60  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
13.2.2  
Programming the Protection Registers  
To program any of the Protection Registers, first issue the Program Protection Register  
command at the parameter partition’s base address plus the offset to the desired  
Protection Register (see Section 9.2, “Device Commands” on page 37). Next, write the  
desired Protection Register data to the same Protection Register address (see  
Figure 21, “Protection Register Map” on page 60).  
The device programs the 64-bit and 128-bit user-programmable Protection Register  
data 16 bits at a time (see Figure 38, “Protection Register Programming Flowchart” on  
page 83). Issuing the Program Protection Register command outside of the Protection  
Register’s address space causes a program error (SR[4] set). Attempting to program a  
locked Protection Register causes a program error (SR[4] set) and a lock error (SR[1]  
set).  
Note:  
If a program or erase operation occurs when programming a Protection Register,  
certain restrictions may apply. See Table 25, “Simultaneous Operation Restrictions” on  
page 65 for details.  
13.2.3  
Locking the Protection Registers  
Each Protection Register can be locked by programming its respective lock bit in the  
Lock Register. To lock a Protection Register, program the corresponding bit in the Lock  
Register by issuing the Program Lock Register command, followed by the desired Lock  
Register data (see Section 9.2, “Device Commands” on page 37). The physical  
addresses of the Lock Registers are 0x80 for register 0 and 0x89 for register 1. These  
addresses are used when programming the lock registers (see Table 27, “Device  
Identifier Information” on page 67).  
Bit 0 of Lock Register 0 is already programmed at the factory, locking the lower, pre-  
programmed 64-bit region of the first 128-bit Protection Register containing the unique  
identification number of the device. Bit 1 of Lock Register 0 can be programmed by the  
user to lock the user-programmable, 64-bit region of the first 128-bit Protection  
Register. The other bits in Lock Register 0 are not used.  
Lock Register 1 controls the locking of the upper sixteen 128-bit Protection Registers.  
Each of the 16 bits of Lock Register 1 correspond to each of the upper sixteen 128-bit  
Protection Registers. Programming a bit in Lock Register 1 locks the corresponding  
128-bit Protection Register.  
Caution:  
After being locked, the Protection Registers cannot be unlocked.  
November 2007  
Order Number: 313295-04  
Datasheet  
61  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
14.0  
Dual-Operation Considerations  
The multi-partition architecture of the device allows background programming (or  
erasing) to occur in one partition while data reads (or code execution) take place in  
another partition.  
14.1  
Memory Partitioning  
The flash memory array is divided into multiple 8-Mbit partitions, which allows  
simultaneous read-while-write operations. Simultaneous program and erase is not  
allowed. Only one partition at a time can be in program or erase mode.  
The flash device supports read-while-write operations with bus cycle granularity and  
not command granularity. In other words, it is not assumed that both bus cycles of a  
two cycle command (an erase command for example) will always occur as back to back  
bus cycles to the flash device. In practice, code fetches (reads) may be interspersed  
between write cycles to the flash device, and they will likely be directed to a different  
partition than the one being written. This is especially true when a processor is  
executing code from one partition that instructs the processor to program or erase in  
another partition.  
14.2  
Read-While-Write Command Sequences  
When issuing commands to the device, a read operation can occur between 2-cycle  
Write command’s (Figure 22, and Figure 23). However, a write operation issued  
between a 2-cycle commands write sequence causes a command sequence error. (See  
Figure 24)  
When reading from the same partition after issuing a Setup command, Status Register  
data is returned, regardless of the read mode of the partition prior to issuing the Setup  
command.  
Figure 22: Operating Mode with Correct Command Sequence Example  
Address/Data [A/D]  
ADV#  
Partition A  
Data: 0x20  
Partition A  
Data: 0xD0  
Partition B  
Data: 0xFF  
CE#  
WE# [W]  
OE# [G]  
Datasheet  
62  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 23: Operating Mode with Correct Command Sequence Example  
Addr/Data [A/D]  
ADV#  
Partition A  
Data: 0x20  
Partition B  
Array Data  
Partition A  
Data: 0xD0  
CE#  
WE# [W]  
OE# [G]  
Figure 24: Operating Mode with Illegal Command Sequence Example  
Addr/Data [A/D]  
ADV#  
Part.  
A
Data: 0x20  
Part.  
B
Data: 0xFF  
Part.  
A
Data: 0xD0  
Part.  
A
Data: SR  
CE#  
WE# [W]  
OE# [G]  
14.2.1  
Simultaneous Operation Details  
The L18 device supports simultaneous read from one partition while programming or  
erasing in any other partition. Certain features like the Protection Registers and CFI  
Query data have special requirements with respect to simultaneous operation  
capability. (Table 25 provides details on restrictions during simultaneous operations.)  
14.2.2  
Synchronous and Asynchronous Read-While-Write  
Characteristics and Waveforms  
This section describes the transitions of write operation to asynchronous read, write to  
synchronous read, and write operation with clock active.  
14.2.2.1  
Write operation to asynchronous read transition  
W18 - tWHAV  
The AC parameter W18 (tWHAV-WE# High to Address Valid) is required when  
transitioning from a write cycle (WE# going high) to perform an asynchronous read  
(only address valid is required).  
14.2.2.2  
Write to synchronous read operation transition  
W19 and W20 - tWHCV and tWHVH  
The AC parameters W19 or W20 (tWHCV-WE# High to Clock Valid, and tWHVH - WE#  
High to ADV# High) is required when transitioning from a write cycle (WE# going high)  
to perform a synchronous burst read. A delay from WE# going high to a valid clock  
edge or ADV# going high to latch a new address must be met.  
November 2007  
Order Number: 313295-04  
Datasheet  
63  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
14.2.2.3  
Write Operation with Clock Active  
W21 - tVHWL  
W22 - tCHWL  
The AC parameters W21 (tVHWL- ADV# High to WE# Low) and W22 (tCHWL -Clock high  
to WE# low) are required when the device is in a synchronous mode and clock is active.  
A write bus cycle consists of two parts:  
• the host provides an address to the flash device; and  
• the host then provides data to the flash device.  
The flash device in turn binds the received data with the received address. When  
operating synchronously (RCR.15 = 0), the address of a write cycle may be provided to  
the flash by the first active clock edge with ADV# low, or rising edge of ADV# as long  
as the applicable cycle separation conditions are met between each cycle.  
If neither a clock edge nor a rising ADV# edge is used to provide a new address at the  
beginning of a write cycle (the clock is stopped and ADV# is low), the address may also  
be provided to the flash device by holding the address bus stable for the required  
amount of time (W5, tAVWH) before the rising WE# edge.  
Alternatively, the host may choose not to provide an address to the flash device during  
subsequent write cycles (if ADV# is high and only CE# or WE# is toggled to separate  
the prior cycle from the current write cycle). In this case, the flash device will use the  
most recently provided address from the host.  
Refer to Figure 11, “Write to Asynchronous Read Timing” on page 28, Figure 12,  
“Synchronous Read to Write Timing” on page 29, and Figure 13, “Write to Synchronous  
Read” on page 30, for representation of these timings.  
14.2.3  
Read Operation During Buffered Programming Flowchart  
The multi-partition architecture of the device allows background programming (or  
erasing) to occur in one partition while data reads (or code execution) take place in  
another partition.  
To perform a read while buffered programming operation, first issue a Buffered  
Program set up command in a partition. When a read operation occurs in the same  
partition after issuing a setup command, Status Register data will be returned,  
regardless of the read mode of the partition prior to issuing the setup command.  
To read data from a block in other partition and the other partition already in read array  
mode, a new block address must be issued. However, if the other partition is not  
already in read array mode, issuing a read array command will cause the buffered  
program operation to abort and a command sequence error would be posted in the  
Status Register. See Figure 33, “Buffer Program Flowchart” on page 78 for more  
details.  
Note:  
Simultaneous read-while-Buffered EFP is not supported.  
14.2.4  
Simultaneous Operation Restrictions  
The Protection Registers share some of the same internal flash resources as the  
parameter partition. Therefore, simultaneous read-while-write is only allowed between  
the protection register and main partitions. Table 25 describes the operation allowed  
using read-while-write/erase with the protection register.  
Datasheet  
64  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 25: Simultaneous Operation Restrictions  
Protection  
Register or  
CFI data  
Parameter  
Partition  
Array Data  
Other  
Partitions  
Notes  
While programming or erasing in a main partition, the Protection Register or  
CFI data may be read from any other partition.  
Read  
(See Notes)  
Read  
Write/Erase  
Write/Erase  
Write/Erase  
Reading the parameter partition array data is not allowed if the Protection  
Register or Query data is being read from addresses within the parameter  
partition.  
While programming or erasing in a main partition, read operations are allowed  
in the parameter partition.  
(See Notes)  
Accessing the Protection Registers or CFI data from parameter partition  
addresses is not allowed when reading array data from the parameter  
partition.  
While programming or erasing in a main partition, read operations are allowed  
in the parameter partition.  
Accessing the Protection Registers or CFI data in a partition that is different  
from the one being programed/erased, and also different from the parameter  
partition is allowed.  
Read  
Read  
While programming the Protection Register, reads are only allowed in the other  
main partitions.  
No Access  
Allowed  
Write  
Read  
Read  
Access to array data in the parameter partition is not allowed. Programming of  
the Protection Register can only occur in the parameter partition, which means  
this partition is in Read Status.  
While programming or erasing the parameter partition, reads of the Protection  
No Access  
Allowed  
Registers or CFI data are not allowed in any partition.  
Write/Erase  
Reads in partitions other than the parameter partition are supported.  
November 2007  
Order Number: 313295-04  
Datasheet  
65  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
15.0  
Special Read States  
The following sections describe non-array read states. Non-array reads can be  
performed in asynchronous read or synchronous burst mode. A non-array read  
operation is exactly the same as an array read. However, when using synchronous  
burst mode for non-array reads, the same word of data requested will be output on  
successive clock edges until the burst length requirements are satisfied. The “flow-  
through” feature also applies to synchronous non-array reads. Refer to Section 10.3.1,  
“Read Mode” on page 43 for details.  
15.1  
Read Status Register  
The status of any partition is determined by reading the Status Register from the  
address of that particular partition. To read the Status Register, issue the Read Status  
Register command within the desired partition’s address range. Status Register  
information is available at the partition address to which the Read Status Register,  
Word Program, or Block Erase command was issued. Status Register data is  
automatically made available following a Word Program, Block Erase, or Block Lock  
command sequence. Reads from a partition after any of these command sequences  
outputs that partition’s status until another valid command is written to that partition  
(e.g. Read Array command).  
Status Register data is output on AD[7:0], while 0x00 is output on AD[15:8]. In  
asynchronous mode the falling edge of OE#, or CE# (whichever occurs first) updates  
and latches the Status Register contents. However, reading the Status Register in  
synchronous burst mode, CE# or ADV# must be toggled to update status data. Status  
Register read operations do not affect the read state of the other partitions.  
The Device Write Status bit (SR[7]) provides overall status of the device. The Partition  
Status bit (SR[0]) indicates whether the addressed partition or some other partition is  
actively programming or erasing. Status register bits SR[6:1] present status and error  
information about the program, erase, suspend, VPP, and block-locked operations.  
Table 26: Status Register Description (Sheet 1 of 2)  
Status Register (SR)  
Default Value = 0x80  
Erase  
Suspend  
Status  
Program  
Suspend  
Status  
Device Write  
Status  
Program  
Status  
Block-Locked  
Partition  
Status  
Erase Status  
VPP Status  
Status  
DWS  
7
ESS  
6
ES  
5
PS  
4
VPPS  
3
PSS  
2
BLS  
1
PWS  
0
Bit  
Name  
Description  
0 = Device is busy; program or erase cycle in progress; SR[0] valid.  
1 = Device is ready; SR[6:1] are valid.  
7
6
5
4
3
Device Write Status (DWS)  
Erase Suspend Status (ESS)  
Erase Status (ES)  
0 = Erase suspend not in effect.  
1 = Erase suspend in effect.  
0 = Erase successful.  
1 = Erase fail or program sequence error when set with SR[4,7].  
0 = Program successful.  
1 = Program fail or program sequence error when set with SR[5,7].  
Program Status (PS)  
VPP Status (VPPS)  
0 = VPP within acceptable limits during program or erase operation.  
1 = VPP < VPPLK during program or erase operation.  
Datasheet  
66  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 26: Status Register Description (Sheet 2 of 2)  
Status Register (SR)  
Default Value = 0x80  
0 = Program suspend not in effect.  
1 = Program suspend in effect.  
Program Suspend Status  
(PSS)  
2
1
0 = Block not locked during program or erase.  
1 = Block locked during program or erase; operation aborted.  
Block-Locked Status (BLS)  
Partition Write Status (PWS)  
DWS PWS  
0 0 = Program or erase operation in addressed partition.  
0 1 = Program or erase operation in other partition.  
1 0 = No active program or erase operations.  
1 1 = Reserved.  
0
(Non-buffered EFP operation. For Buffered EFP operation, see Section 11.3,  
“Buffered Enhanced Factory Programming” on page 51).  
Always clear the Status Register prior to resuming erase operations. Avoid Status  
Register ambiguity when issuing commands during Erase Suspend. If a command  
sequence error occurs during an erase-suspend state, the Status Register contains the  
command sequence error status (SR[7,5,4] set). When the erase operation resumes  
and finishes, possible errors during the erase operation cannot be detected via the  
Status Register because it contains the previous error status.  
15.1.1  
15.2  
Clear Status Register  
The Clear Status Register command clears the status register, leaving all partition read  
states unchanged. It functions independent of VPP. The Write State Machine (WSM) sets  
and clears SR[7,6,2,0], but it sets bits SR[5:3,1] without clearing them. The Status  
Register should be cleared before starting a command sequence to avoid any  
ambiguity. A device reset also clears the Status Register.  
Read Device Identifier  
The Read Device Identifier command instructs the addressed partition to output  
manufacturer code, device identifier code, block-lock status, protection register data,  
or configuration register data when that partition’s addresses are read (see Section 9.2,  
“Device Commands” on page 37 for details on issuing the Read Device Identifier  
command). Table 27, “Device Identifier Information” on page 67 and Table 28, “Device  
ID codes” on page 68 show the address offsets and data values for this device.  
Issuing a Read Device Identifier command to a partition that is programming or erasing  
places that partition in the Read Identifier state while the partition continues to  
program or erase in the background.  
Table 27: Device Identifier Information (Sheet 1 of 2)  
Item  
Address(1,2)  
Data  
Manufacturer Code  
Device ID Code  
PBA + 0x00  
PBA + 0x01  
0089h  
ID (see Table 28)  
Lock Bit:  
Block Lock Configuration:  
Block Is Unlocked  
Block Is Locked  
AD0 = 0b0  
BBA + 0x02  
PBA + 0x05  
AD0 = 0b1  
Block Is not Locked-Down  
Block Is Locked-Down  
Configuration Register  
AD1 = 0b0  
AD1 = 0b1  
Configuration Register Data  
November 2007  
Order Number: 313295-04  
Datasheet  
67  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 27: Device Identifier Information (Sheet 2 of 2)  
Item  
Address(1,2)  
Data  
Lock Register 0  
PBA + 0x80  
PBA + 0x81–0x84  
PBA + 0x85–0x88  
PBA + 0x89  
Protection Register Lock Bits  
Factory Protection Register Data  
User Protection Register Data  
Protection Register Lock Bits  
User Protection Register Data  
64-bit Factory-Programmed Protection Register  
64-bit User-Programmable Protection Register  
Lock Register 1  
128-bit User-Programmable Protection Registers  
Notes:  
PBA + 0x8A–0x109  
1.  
2.  
PBA = Partition Base Address.  
BBA = Block Base Address.  
Table 28: Device ID codes  
Device Identifier Codes  
ID Code Type  
Device Density  
–T  
–B  
(Top Parameter)  
(Bottom Parameter)  
64 Mbit  
128 Mbit  
256 Mbit  
8808  
8809  
880A  
8834  
8835  
8836  
Device Code  
15.3  
CFI Query  
The CFI Query command instructs the device to output Common Flash Interface (CFI)  
data when partition addresses are read. See Section 9.2, “Device Commands” on  
page 37 for details on issuing the CFI Query command. Appendix B, “Common Flash  
Interface (CFI)” on page 83 shows CFI information and address offsets within the CFI  
database.  
Issuing the CFI Query command to a partition that is programming or erasing places  
that partition’s outputs in the CFI Query state, while the partition continues to program  
or erase in the background.  
The CFI Query command is subject to read restrictions dependent on parameter  
partition availability, as described in Table 25.  
Datasheet  
68  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Appendix A Write State Machine  
Figure 25 through Figure 30 show the command state transitions (Next State Table)  
based on incoming commands. Only one partition can be actively programming or  
erasing at a time. Each partition stays in its last read state (Read Array, Read Device  
ID, CFI Query or Read Status Register) until a new command changes it. The next WSM  
state does not depend on the partition’s output state.  
Figure 25: Write State Machine—Next State Table (Sheet 1 of 6)  
Command Input to Chip and resulting Chip Next State  
BE Confirm,  
Buffered  
Enhanced  
Factory Pgm  
Setup (3, 4)  
P/E  
Resume,  
ULB,  
Confirm (8)  
Clear  
Status  
Register (5)  
Lock, Unlock,  
Lock-down,  
CR setup (4)  
Buffered  
Program  
(BP)  
BP / Prg /  
Erase  
Suspend  
Read  
Word  
Program (3,4)  
Erase  
Setup (3,4)  
Read  
Status  
Read  
ID/Query  
(2)  
Current Chip  
State (7)  
Array  
(FFH)  
(10H/40H)  
(E8H)  
(20H)  
(80H)  
(D0H)  
(B0H)  
(70H)  
(50H)  
(90H, 98H)  
(60H)  
Program  
Setup  
Erase  
Setup  
Lock/CR  
Setup  
Ready  
Ready  
Ready  
BP Setup  
BEFP Setup  
Ready  
(Unlock  
Block)  
Lock/CR Setup  
Ready (Lock Error)  
Ready (Lock Error)  
Setup  
OTP  
Busy  
OTP Busy  
Word Program Busy  
Word  
Setup  
Program Busy  
Word Program Busy  
Busy  
Program  
Suspend  
Word  
Program  
Word  
Program  
Busy  
Word Program Suspend  
Word Program Suspend  
Suspend  
BP Load 1  
BP Load 2  
Setup  
BP Load 1  
BP Confirm if Data load into Program Buffer is complete; Else BP Load 2  
BP Load 2  
BP  
BP  
Confirm  
Ready (Error)  
Ready (Error)  
BP Busy  
BP Busy  
BP Busy  
BP Suspend  
Ready (Error)  
Erase Busy  
BP Busy  
BP Suspend  
BP  
Suspend  
BP Suspend  
Ready (Error)  
BP Busy  
Setup  
Erase Busy  
Erase  
Suspend  
Erase Busy  
Busy  
Erase  
Word  
Program  
Setup in  
Erase  
Lock/CR  
Setup in  
Erase  
BP Setup in  
Erase  
Suspend  
Erase  
Suspend  
Erase Suspend  
Erase Suspend  
Suspend  
Erase Busy  
Suspend  
Suspend  
November 2007  
Order Number: 313295-04  
Datasheet  
69  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 26: Write State Machine—Next State Table (Sheet 2 of 6)  
Chip  
Command Input to Chip and resulting  
Next State  
BE Confirm,  
Buffered  
Enhanced  
Factory Pgm  
Setup (3, 4)  
P/E  
Resume,  
ULB,  
Confirm (8)  
Clear  
Status  
Register (5)  
Lock, Unlock,  
Lock-down,  
CR setup (4)  
Buffered  
Program  
(BP)  
BP / Prg /  
Erase  
Suspend  
Read  
Word  
Program (3,4)  
Erase  
Setup (3,4)  
Read  
Status  
Read  
ID/Query  
(2)  
Current Chip  
State (7)  
Array  
(FFH)  
(10H/40H)  
(E8H)  
(20H)  
(80H)  
(D0H)  
(B0H)  
(70H)  
(50H)  
(90H, 98H)  
(60H)  
Word Program Busy in Erase Suspend  
Setup  
Word  
Program  
Word Program Busy in Erase Suspend  
Word Program Busy in Erase Suspend Busy  
Word Program Suspend in Erase Suspend  
Busy  
Suspend in  
Erase  
Suspend  
Word  
Program in  
Erase  
Word  
Program  
Busy in  
Erase  
Suspend  
Word Program Suspend in Erase Suspend  
Suspend  
Suspend  
BP Load 1  
BP Load 2  
Setup  
BP Load 1  
BP Confirm if Data load into Program Buffer is complete; Else BP Load 2  
BP Load 2  
BP Busy in  
Erase  
Suspend  
BP in Erase  
Suspend  
BP  
Confirm  
Erase Suspend (Error)  
Ready (Error in Erase Suspend)  
BP Suspend  
in Erase  
BP Busy in Erase Suspend  
BP Busy in Erase Suspend  
BP Busy  
Suspend  
BP Busy in  
Erase  
Suspend  
BP  
Suspend  
BP Suspend in Erase Suspend  
BP Suspend in Erase Suspend  
Erase  
Suspend  
(Unlock  
Block)  
Lock/CR Setup in Erase  
Suspend  
Erase Suspend (Lock Error)  
Ready (Error)  
Erase Suspend (Lock Error [Botch])  
Ready (Error)  
BEFP  
Loading  
Buffered  
Setup  
Enhanced  
Data (X=32)  
Factory  
Program  
BEFP  
Mode  
BEFP Program and Verify Busy (if Block Address given matches address given on BEFP Setup command). Commands treated as data. (7)  
Busy  
Datasheet  
70  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 27: Write State Machine—Next State Table (Sheet 3 of 6)  
Chip  
Command Input to Chip and resulting  
Next State  
Lock  
Block  
Confirm (8) Confirm  
Lock-Down  
OTP  
Setup (4)  
Write RCR  
Block Address  
Illegal Cmds or  
BEFP Data (1)  
Block  
WSM  
Operation  
Completes  
(8)  
9
Current Chip  
State (7)  
Confirm  
(?WA0)  
(8)  
(C0H)  
(01H)  
(2FH)  
(03H)  
(XXXXH)  
(all other codes)  
OTP  
Setup  
Ready  
Ready  
Ready  
(Lock  
Error)  
Ready  
(Lock  
Block)  
Ready  
(Lock Down  
Blk)  
Ready  
(Set CR)  
N/A  
Ready (Lock Error)  
Lock/CR Setup  
Setup  
OTP Busy  
OTP  
Busy  
Ready  
N/A  
Word Program Busy  
Word Program Busy  
Setup  
Ready  
Busy  
Word  
Program  
Word Program Suspend  
BP Load 1  
Suspend  
Setup  
BP Load 2  
Ready (BP Load 2 BP Load 2  
BP Load 1  
BP Confirm if  
Data load into  
Program Buffer is  
complete; ELSE  
BP Load 2  
N/A  
BP Confirm if Data load into Program Buffer is  
complete; ELSE BP load 2  
Ready  
BP Load 2  
BP  
Ready (Error)  
(Proceed if  
unlocked or lock  
error)  
BP  
Confirm  
Ready (Error)  
Ready (Error)  
BP Busy  
BP Busy  
BP Suspend  
Ready (Error)  
Erase Busy  
Ready  
N/A  
BP  
Suspend  
Setup  
Busy  
Ready  
Erase  
Suspend  
Erase Suspend  
N/A  
November 2007  
Order Number: 313295-04  
Datasheet  
71  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 28: Write State Machine—Next State Table (Sheet 4 of 6)  
Chip  
Command Input to Chip and resulting  
Next State  
Lock  
Block  
Confirm (8) Confirm  
Lock-Down  
OTP  
Setup (4)  
Write RCR  
Block Address  
Illegal Cmds or  
BEFP Data (1)  
Block  
WSM  
Operation  
Completes  
(8)  
9
Current Chip  
State (7)  
Confirm  
(?WA0)  
(8)  
(C0H)  
(01H)  
(2FH)  
(03H)  
(XXXXH)  
(all other codes)  
Word Program Busy in Erase Suspend  
Setup  
NA  
Word Program Busy in Erase Suspend Busy  
Busy  
Erase Suspend  
Word  
Program in  
Erase  
Suspend  
Word Program Suspend in Erase Suspend  
BP Load 1  
Suspend  
N/A  
Setup  
BP Load 2  
Ready (BP Load 2 BP Load 2  
BP Load 1  
BP Confirm if  
Data load into  
Program Buffer is  
complete; Else  
BP Load 2  
BP Confirm if Data load into Program Buffer is  
complete; Else BP Load 2  
N/A  
Ready  
BP Load 2  
BP in Erase  
Suspend  
BP  
Ready (Error)  
(Proceed if  
unlocked or lock  
error)  
Ready (Error in Erase Suspend)  
Ready (Error)  
Confirm  
BP Busy in Erase Suspend  
Erase Suspend  
BP Busy  
BP  
Suspend  
BP Suspend in Erase Suspend  
Erase  
Suspend Suspend  
(Lock  
Error)  
Erase  
Erase  
Erase  
Suspend  
Lock/CR Setup in Erase  
Suspend  
Erase Suspend (Lock Error)  
Suspend  
(Set CR)  
N/A  
(Lock  
Block)  
(Lock Down  
Block)  
Ready (BEFP  
Ready (Error)  
Loading Data)  
Ready (Error)  
Buffered  
Enhanced  
Factory  
Program  
Mode  
Setup  
BEFP Program and Verify Busy (if Block Address  
given matches address given on BEFP Setup  
command). Commands treated as data. (7)  
BEFP  
Busy  
Ready  
Ready  
BEFP Busy  
Datasheet  
72  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 29: Write State Machine—Next State Table (Sheet 5 of 6)  
Output Next State Table  
Output  
Command Input to Chip and resulting  
Mux Next State  
BE Confirm,  
Buffered  
P/E  
Clear  
Status  
Register (5)  
Lock, Unlock,  
Lock-down,  
Word  
Program  
Setup (3,4)  
Program/  
Erase  
Suspend  
Read  
Erase  
Enhanced  
Factory Pgm  
Setup (3, 4)  
Read  
Status  
Read  
ID/Query  
Resume,  
BP Setup  
(E8H)  
(2)  
Array  
Setup (3,4)  
Current chip state  
CR setup (4)  
ULB Confirm  
(8)  
(FFH)  
(10H/40H)  
(20H)  
(30H)  
(D0H)  
(B0H)  
(70H)  
(50H)  
(90H, 98H)  
(60H)  
BEFP Setup,  
BEFP Pgm & Verify  
Busy,  
Erase Setup,  
OTP Setup,  
BP: Setup, Load 1,  
Load 2, Confirm,  
Word Pgm Setup,  
Word Pgm Setup in  
Erase Susp,  
Status Read  
BP Setup, Load1,  
Load 2, Confirm in  
Erase Suspend  
Lock/CR Setup,  
Lock/CR Setup in  
Erase Susp  
Status Read  
Status  
Read  
OTP Busy  
Ready,  
Erase Suspend,  
BP Suspend  
BP Busy,  
Word Program  
Busy,  
Erase Busy,  
BP Busy  
Output mux  
does not  
change.  
Read Array  
Status Read  
Output does not change.  
Status Read  
Status Read  
ID Read  
BP Busy in Erase  
Suspend  
Word Pgm  
Suspend,  
Word Pgm Busy in  
Erase Suspend,  
Pgm Suspend In  
Erase Suspend  
November 2007  
Order Number: 313295-04  
Datasheet  
73  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 30: Write State Machine—Next State Table (Sheet 6 of 6)  
Output Next State Table  
Output  
Command Input to Chip and resulting  
Mux Next State  
Lock  
Block  
Confirm (8) Confirm  
Lock-Down  
OTP  
Setup (4)  
Write CR  
Illegal Cmds or  
BEFP Data (1)  
Block Address  
(?WA0)  
Block  
WSM  
(8)  
Confirm  
(8)  
Operation  
Completes  
Current chip state  
(C0H)  
(01H)  
(2FH)  
(03H)  
(FFFFH)  
(all other codes)  
BEFP Setup,  
BEFP Pgm & Verify  
Busy,  
Erase Setup,  
OTP Setup,  
BP: Setup, Load 1,  
Load 2, Confirm,  
Word Pgm Setup,  
Word Pgm Setup in  
Erase Susp,  
Status Read  
BP Setup, Load1,  
Load 2, Confirm in  
Erase Suspend  
Lock/CR Setup,  
Lock/CR Setup in  
Erase Susp  
Array  
Read  
Status Read  
Status Read  
Output does  
not change.  
OTP Busy  
Ready,  
Erase Suspend,  
BP Suspend  
BP Busy,  
Word Program  
Busy,  
Erase Busy,  
BP Busy  
Status  
Read  
Output does not  
change.  
Output does not change.  
Array Read  
BP Busy in Erase  
Suspend  
Word Pgm  
Suspend,  
Word Pgm Busy in  
Erase Suspend,  
Pgm Suspend In  
Erase Suspend  
Notes:  
1.  
2.  
3.  
4.  
"Illegal commands" include commands outside of the allowed command set (allowed commands: 40H [pgm], 20H [erase],  
etc.)  
If a "Read Array" is attempted from a busy partition, the result will be invalid data. The ID and Query data are located at  
different locations in the address map.  
1st and 2nd cycles of "2 cycles write commands" must be given to the same partition address, or unexpected results will  
occur.  
To protect memory contents against erroneous command sequences, there are specific instances in a multi-cycle  
command sequence in which the second cycle will be ignored. For example, when the device is program suspended and an  
erase setup command (0x20) is given followed by a confirm/resume command (0xD0), the second command will be  
ignored because it is unclear whether the user intends to erase the block or resume the program operation.  
The Clear Status command only clears the error bits in the status register if the device is not in the following modes: WSM  
running (Pgm Busy, Erase Busy, Pgm Busy In Erase Suspend, OTP Busy, BEFP modes).  
5.  
Datasheet  
74  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
6.  
7.  
BEFP writes are only allowed when the status register bit #0 = 0, or else the data is ignored.  
The "current state" is that of the "chip" and not of the "partition"; Each partition "remembers" which output (Array, ID/CFI  
or Status) it was last pointed to on the last instruction to the "chip", but the next state of the chip does not depend on  
where the partition's output mux is presently pointing to.  
8.  
9.  
Confirm commands (Lock Block, Unlock Block, Lock-Down Block, Configuration Register) perform the operation and then  
move to the Ready State.  
WA0 refers to the block address latched during the first write cycle of the current operation.  
November 2007  
Order Number: 313295-04  
Datasheet  
75  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Appendix B Flowcharts  
Figure 31: Word Program Flowchart  
WORD PROGRAM PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Program Data = 0x40  
Setup Addr = Location to program  
Write  
Write  
Read  
Write 0x40,  
(Setup)  
Word Address  
Data = Data to program  
Data  
Addr = Location to program  
Write Data,  
(Confirm)  
Word Address  
None  
None  
Status register data  
Program  
Suspend  
Loop  
Read Status  
Register  
Check SR[7]  
1 = WSM Ready  
0 = WSM Busy  
Idle  
No  
Yes  
0
SR[7] =  
1
Suspend?  
Repeat for subsequent Word Program operations.  
Full Status Register check can be done after each program, or  
after a sequence of program operations.  
Full Status  
Check  
(if desired)  
Write 0xFF after the last operation to set to the Read Array  
state.  
Program  
Complete  
FULL STATUS CHECK PROCEDURE  
Read Status  
Register  
Bus  
Command  
Operation  
Comments  
Check SR[3]:  
1 = VPP Error  
Idle  
Idle  
None  
None  
1
1
1
VPP Range  
Error  
SR[3] =  
0
Check SR[4]:  
1 = Data Program Error  
Program  
Error  
Check SR[1]:  
1 = Block locked; operation aborted  
SR[4] =  
0
Idle  
None  
If an error is detected, clear the Status Register before  
continuing operations - only the Clear Staus Register  
command clears the Status Register error bits.  
Device  
Protect Error  
SR[1] =  
0
Program  
Successful  
Datasheet  
76  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 32: Program Suspend/Resume Flowchart  
PROGRAM SUSPEND / RESUME PROCEDURE  
Start  
Bus  
Operation  
Program Suspend  
Write B0h  
Command  
Comments  
Any Address  
Program Data = B0h  
Suspend Addr = Block to suspend (BA)  
Write  
Write  
Read  
Read Status  
Write 70h  
Same Partition  
Read  
Status  
Data = 70h  
Addr = Same partition  
Read Status  
Register  
Status register data  
Addr = Suspended block (BA)  
Check SR.7  
Standby  
Standby  
1 = WSM ready  
0 = WSM busy  
0
0
SR.7 =  
1
Check SR.2  
1 = Program suspended  
0 = Program completed  
Program  
Completed  
SR.2 =  
Data = FFh  
Addr = Any address within the  
suspended partition  
1
Read  
Array  
Write  
Read  
Write  
Read Array  
Write FFh  
Susp Partition  
Read array data from block other than  
the one being programmed  
Read Array  
Data  
Program Data = D0h  
Resume Addr = Suspended block (BA)  
If the suspended partition was placed in Read Array mode:  
Done  
No  
Reading  
Return partition to Status mode:  
Read  
Write  
Data = 70h  
Yes  
Status  
Addr = Same partition  
Program Resume  
Read Array  
Write FFh  
Write D0h  
Any Address  
Pgm'd Partition  
Program  
Resumed  
Read Array  
Data  
Read Status  
Write 70h  
Same Partition  
PGM_SUS.WMF  
November 2007  
Order Number: 313295-04  
Datasheet  
77  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 33: Buffer Program Flowchart  
Buffer Programming Procedure  
Start  
Bus  
Operation  
Command  
Comments  
Device  
Supports Buffer  
Writes?  
Use Single Word  
Programming  
Buffer Prog. Data = 0xE8  
Write  
Read  
No  
Setup  
None  
Addr = Word Address  
SR[7] = Valid  
Addr = Word Address  
Yes  
Set Timeout or  
Loop Counter  
Check SR[7]:  
1 = Write Buffer available  
0 = No Write Buffer available  
Idle  
None  
None  
Get Next  
Target Address  
Data = N-1 = Word Count  
N = 0 corresponds to count = 1  
Addr = Word Address  
Write  
(Notes 1, 2)  
Issue Buffer Prog. Cmd.  
0xE8,  
Write  
(Notes 3, 4)  
Data = Write Buffer Data  
Addr = Start Word Address  
None  
None  
Word Address  
Write  
(Note 3)  
Data = Write Buffer Data  
Addr = Word Address  
Read Status Register  
at Word Address  
Write  
Buffer Prog. Data = 0xD0  
(Notes 5, 6)  
Conf.  
Addr = Original Word Address  
No  
Status register Data  
Addr = Note 7  
Read  
Idle  
None  
Timeout  
or Count  
Expired?  
Write Buffer  
Available?  
SR[7] =  
0 = No  
Yes  
Check SR[7]:  
1 = WSM Ready  
0 = WSM Busy  
None  
1 = Yes  
Write Word Count,  
Word Address  
1. Word count value on D[7:0] is loaded into the word count  
register. Count ranges for this device are N = 0x00 to 0x1F.  
2. The device outputs the Status Register when read.  
3. Write Buffer contents will be programmed at the issued word  
address.  
4. Align the start address on a Write Buffer boundary for  
maximum programming performance (i.e., A[4:0] of the Start  
Word Address = 0x00).  
5. The Buffered Programming Confirm command must be  
issued to an address in the same block, for example, the  
original Start Word Address, or the last address used during the  
loop that loaded the buffer data.  
Buffer Program Data,  
Start Word Address  
X = X + 1  
Write Buffer Data,  
Word Address  
X = 0  
No  
No  
6. The Status Register indicates an improper command  
sequence if the Buffer Program command is aborted; use the  
Clear Status Register command to clear error bits.  
7. The Status Register can be read from any addresses within  
the programming partition.  
Abort Buffer  
Program?  
X = N?  
Yes  
Yes  
Write to another  
Block Address  
Write Confirm 0xD0  
and Word Address  
(Note 5)  
Full status check can be done after all erase and write  
sequences complete. Write 0xFF after the last operation to  
place the partition in the Read Array state.  
Issue Read  
Status Register  
Command  
Buffer Program Aborted  
Read Status Register  
(Note 7)  
Suspend  
Program  
Loop  
No  
0=No  
Yes  
Suspend  
Program?  
Is BP finished?  
SR[7] =  
1=Yes  
Full Status  
Check if Desired  
Program Complete  
Datasheet  
78  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 34: Buffered EFP Flowchart  
BUFFERED ENHANCED FACTORY PROGRAMMING (Buffered-EFP) PROCEDURE  
Setup Phase  
Program & Verify Phase  
Exit Phase  
Start  
Read Status Reg.  
Read Status Reg.  
VPP applied,  
Block unlocked  
No (SR[0]=1)  
No (SR[7]=0)  
BEFP  
Exited?  
Data Stream  
Ready?  
Yes (SR[7]=1)  
Yes (SR[0]=0)  
Write 0x80 @  
1ST Word Address  
Initialize Count:  
X = 0  
Full Status Check  
Procedure  
Write 0xD0 @  
1STWord Address  
Write Data @ 1ST  
Word Address  
Program  
Complete  
BEFP setup delay  
Read Status Reg.  
Increment Count:  
X = X+1  
N
X = 32?  
Yes (SR[7]=0)  
BEFP Setup  
Done?  
Y
Read Status Reg.  
No (SR[7]=1)  
No (SR[0]=1)  
Check VPP, Lock  
Errors (SR[3,1])  
Program  
Done?  
Exit  
Yes (SR[0]=0)  
N
Last  
Data?  
Y
Write 0xFFFF,  
Address Not within  
Current Block  
BEFP Setup  
BEFP Program & Verify  
BEFP Exit  
Bus  
State  
Bus  
State  
Operation  
Comments  
Bus State Operation  
Comments  
Operation  
Status  
Comments  
Data = Status Reg. Data  
Unlock  
Block  
Status  
Read  
Data = Status Register Data  
Address = 1ST Word Addr.  
Write  
VPPHapplied to VPP  
Read  
Register  
Register Address = 1ST Word Addr  
Write  
(Note 1)  
BEFP  
Setup  
Data = 0x80 @ 1ST Word  
Address  
Check SR[0]:  
0 = Ready for Data  
1 = Not Ready for Data  
Check SR[7]:  
Check Exit  
Data Stream  
Standby  
Standby  
0 = Exit Not Completed  
Status  
Ready?  
1 = Exit Completed  
ST Word  
Data = 0xD0 @  
BEFP  
Confirm Address  
Write  
Read  
1
Initialize  
Standby  
Repeat for subsequent blocks;  
X = 0  
Count  
Status  
Data = Status Reg. Data  
After BEFP exit, a full Status Register check can  
determine if any program error occurred;  
Register Address = 1STWord Addr  
Write  
Load  
Data = Data to Program  
Address = 1ST Word Addr.  
(Note 2)  
Buffer  
BEFP  
Setup  
Done?  
Check SR[7]:  
0 = BEFP Ready  
1 = BEFP Not Ready  
See full Status Register check procedure in the  
Word Program flowchart.  
Standby  
Increment  
Count  
Standby  
Standby  
Read  
X = X+1  
Write 0xFF to enter Read Array state.  
X = 32?  
Yes = Read SR[0]  
No = Load Next Data Word  
Error  
If SR[7] is set, check:  
Buffer  
Full?  
Standby Condition SR[3] set = VPP Error  
Check SR[1] set = Locked Block  
Status  
Register  
Data = Status Reg. data  
Address = 1ST Word Addr.  
Check SR[0]:  
0 = Program Done  
1 = Program in Progress  
Program  
Done?  
Standby  
Last  
Data?  
No = Fill buffer again  
Yes = Exit  
Standby  
Write  
Exit Prog & Data = 0xFFFF @ address not in  
Verify Phase current block  
NOTES:  
1. First-word address to be programmed within the target blockmust be aligned on a write-buffer boundary.  
2. Write-buffer contents are programmed sequentially to the flash array starting at the first word addresWs;SM internally increments addressing.  
November 2007  
Order Number: 313295-04  
Datasheet  
79  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 35: Block Erase Flowchart  
BLOCK ERASE PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Block  
Erase  
Setup  
Data = 0x20  
Addr = Block to be erased (BA)  
Write  
Write  
Read  
Write 0x20,  
(Block Erase)  
Block Address  
Erase Data = 0xD0  
Confirm Addr = Block to be erased (BA)  
Write 0xD0,  
(Erase Confirm)  
Block Address  
None  
None  
Status Register data.  
Suspend  
Erase  
Loop  
Read Status  
Register  
Check SR[7]:  
1 = WSM ready  
0 = WSM busy  
Idle  
No  
Suspend  
Erase  
0
Yes  
SR[7] =  
1
Repeat for subsequent block erasures.  
Full Status register check can be done after each block erase  
or after a sequence of block erasures.  
Full Erase  
Status Check  
(if desired)  
Write 0xFF after the last operation to enter read array mode.  
Block Erase  
Complete  
FULL ERASE STATUS CHECK PROCEDURE  
Read Status  
Register  
Bus  
Command  
Operation  
Comments  
Check SR[3]:  
1 = VPP Range Error  
Idle  
Idle  
Idle  
None  
None  
None  
1
VPP Range  
Error  
SR[3] =  
0
Check SR[4,5]:  
Both 1 = Command Sequence Error  
1,1  
1
Command  
Sequence Error  
Check SR[5]:  
1 = Block Erase Error  
SR[4,5] =  
0
Check SR[1]:  
1 = Attempted erase of locked block;  
erase aborted.  
Block Erase  
Error  
Idle  
None  
SR[5] =  
0
Only the Clear Status Register command clears SR[1, 3, 4, 5].  
If an error is detected, clear the Status register before  
attempting an erase retry or other error recovery.  
1
Block Locked  
Error  
SR[1] =  
0
Block Erase  
Successful  
Datasheet  
80  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 36: Erase Suspend/Resume Flowchart  
ERASE SUSPEND / RESUME PROCEDURE  
Start  
Bus  
Command  
Comments  
Operation  
Write 0x70,  
Same Partition  
Read  
Status  
Data = 0x70  
Addr = Any partition address  
(Read Status)  
Write  
Write  
Read  
Data = 0xB0  
Addr = Same partition address as  
above  
Erase  
Suspend  
Write 0xB0,  
Any Address  
(Erase Suspend)  
Status Register data.  
Addr = Same partition  
None  
None  
Read Status  
Register  
Check SR[7]:  
1 = WSM ready  
0 = WSM busy  
Idle  
0
SR[7] =  
1
Check SR[6]:  
1 = Erase suspended  
Idle  
None  
0 = Erase completed  
0
Erase  
Completed  
SR[6] =  
1
Data = 0xFF or 0x40  
Addr = Any address within the  
suspended partition  
Read Array  
or Program  
Write  
Read or  
Write  
Read array or program data from/to  
block other than the one being erased  
Read  
Program  
Read or  
Program?  
None  
Read Array  
Data  
Program  
Loop  
Program Data = 0xD0  
Resume Addr = Any address  
No  
Write  
Done  
If the suspended partition was placed in  
Read Array mode or a Program Loop:  
Read  
Status  
Return partition to Status mode:  
Data = 0x70  
Write 0xD0,  
Any Address  
Write  
(Erase Resume)  
Register Addr = Same partition  
Erase  
Resumed  
Write 0xFF,  
Erased Partition  
(Read Array)  
Write 0x70,  
Same Partition  
Read Array  
Data  
(Read Status)  
November 2007  
Order Number: 313295-04  
Datasheet  
81  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 37: Block Lock Operations Flowchart  
LOCKING OPERATIONS PROCEDURE  
Start  
Bus  
Command  
Comments  
Operation  
Write 0x60,  
Block Address  
Lock  
Setup  
Data = 0x60  
Addr = Block to lock/unlock/lock-down  
(Lock Setup)  
Write  
Lock,  
Unlock, or  
Lock-Down  
Data = 0x01 (Block Lock)  
0xD0 (Block Unlock)  
Write either  
0x01/0xD0/0x2F,  
Block Address  
(Lock Confirm)  
(Read Device ID)  
Write  
Write  
0x2F (Lock-Down Block)  
Confirm Addr = Block to lock/unlock/lock-down  
Read Data = 0x90  
(Optional) Device ID Addr = Block address + offset 2  
Write 0x90  
Read  
(Optional)  
Block Lock Block Lock status data  
Status Addr = Block address + offset 2  
Read Block  
Lock Status  
Idle  
None  
Confirm locking change on D[1,0].  
Locking  
No  
Change?  
Yes  
Read  
Array  
Data = 0xFF  
Addr = Block address  
Write  
Write 0xFF  
Partition Address  
(Read Array)  
Lock Change  
Complete  
Datasheet  
82  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Figure 38: Protection Register Programming Flowchart  
PROTECTION REGISTER PROGRAMMING PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Program Data = 0xC0  
PR Setup Addr = First Location to Program  
Write  
Write  
Read  
Write 0xC0,  
PR Address  
(Program Setup)  
(Confirm Data)  
Protection Data = Data to Program  
Program Addr = Location to Program  
Write PR  
Address & Data  
None  
None  
Status Register Data.  
Read Status  
Register  
Check SR[7]:  
1 = WSM Ready  
0 = WSM Busy  
Idle  
Program Protection Register operation addresses must be  
within the Protection Register address space. Addresses  
outside this space will return an error.  
0
SR[7] =  
1
Repeat for subsequent programming operations.  
Full Status  
Check  
(if desired)  
Full Status Register check can be done after each program, or  
after a sequence of program operations.  
Write 0xFF after the last operation to set Read Array state.  
Program  
Complete  
FULL STATUS CHECK PROCEDURE  
Read Status  
Register Data  
Bus  
Operation  
Command  
Comments  
Check SR[3]:  
1 =VPP Range Error  
Idle  
Idle  
Idle  
None  
1
1
SR[3] =  
0
VPP Range Error  
Check SR[4]:  
1 =Programming Error  
None  
None  
Check SR[1]:  
1 =Block locked; operation aborted  
SR[4] =  
0
Program Error  
Only the Clear Staus Register command clears SR[1, 3, 4].  
If an error is detected, clear the Status register before  
attempting a program retry or other error recovery.  
1
Register Locked;  
Program Aborted  
SR[1] =  
0
Program  
Successful  
B.1  
Common Flash Interface (CFI)  
Common Flash Interface (CFI) is part of an overall specification for multiple command-  
set and control-interface descriptions. This appendix describes the database structure  
containing the data returned by a read operation after issuing the CFI Query command  
(see Section 9.2, “Device Commands” on page 37). System software can parse this  
November 2007  
Order Number: 313295-04  
Datasheet  
83  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
database structure to obtain information about the flash device, such as block size,  
density, bus width, and electrical specifications. The system software will then know  
which command set(s) to use to properly perform flash writes, block erases, reads and  
otherwise control the flash device.  
B.2  
Query Structure Output  
The Query database allows system software to obtain information for controlling the  
flash device. This section describes the device’s CFI-compliant interface that allows  
access to Query data.  
Query data are presented on the lowest-order data outputs (DQ7-0) only. The numerical  
offset value is the address relative to the maximum bus width supported by the device.  
On this family of devices, the Query table device starting address is a 10h, which is a  
word address for x16 devices.  
For a word-wide (x16) device, the first two Query-structure bytes, ASCII “Q” and “R,”  
appear on the low byte at word addresses 10h and 11h. This CFI-compliant device  
outputs 00h data on upper bytes. The device outputs ASCII “Q” in the low byte (DQ7-0  
and 00h in the high byte (DQ15-8).  
)
At Query addresses containing two or more bytes of information, the least significant  
data byte is presented at the lower address, and the most significant data byte is  
presented at the higher address.  
Table 29: Summary of Query Structure Output as a Function of Device and Mode  
Device  
Hex Offset  
00010  
Hex Code  
ASCII Value  
51  
52  
59  
“Q”  
“R”  
“Y”  
Device Addresses  
00011  
00012  
Table 30: Example of Query Structure Output of x16- Devices  
Word Addressing:  
Byte Addressing:  
Offset  
AX–A0  
Hex Code  
Value  
Offset  
AX–A0  
Hex Code  
Value  
D15–D0  
D7–D0  
00010h  
00011h  
00012h  
00013h  
00014h  
00015h  
00016h  
00017h  
00018h  
...  
0051  
0052  
0059  
P_IDLO  
P_IDHI  
PLO  
"Q"  
"R"  
"Y"  
00010h  
00011h  
00012h  
00013h  
00014h  
00015h  
00016h  
00017h  
00018h  
...  
51  
52  
59  
P_IDLO  
P_IDLO  
P_IDHI  
...  
"Q"  
"R"  
"Y"  
PrVendor  
ID #  
PrVendor  
TblAdr  
AltVendor  
ID #  
PrVendor  
ID #  
ID #  
PHI  
...  
A_IDLO  
A_IDHI  
...  
...  
B.3  
Query Structure Overview  
The Query command causes the flash component to display the Common Flash  
Interface (CFI) Query structure or “database.The structure sub-sections and address  
locations are summarized below.  
Datasheet  
84  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 31: Query Structure  
Description(1)  
Reserved for vendor-specific information  
Command set ID and vendor data offset  
Device timing & voltage information  
Flash device layout  
Offset  
00001-Fh Reserved  
00010h  
0001Bh  
00027h  
P(3)  
Sub-Section Name  
CFI query identification string  
System interface information  
Device geometry definition  
Primary Intel-specific Extended Query Table  
Vendor-defined additional information specific  
Notes:  
1.  
Refer to the Query Structure Output section and offset 28h for the detailed definition of offset address as a function of  
device bus width and mode.  
2.  
3.  
BA = Block Address beginning location (i.e., 08000h is block 1’s beginning location when the block size is 16K-word).  
Offset 15 defines “P” which points to the Primary Intel-specific Extended Query Table.  
B.4  
CFI Query Identification String  
The Identification String provides verification that the component supports the  
Common Flash Interface specification. It also indicates the specification version and  
supported vendor-specified command set(s).  
Table 32: CFI Identification  
Hex  
Code  
--51  
--52  
--59  
--01  
--00  
--0A  
--01  
--00  
--00  
--00  
--00  
Offset  
Length  
Description  
Query-unique ASCII string “QRY“  
Add.  
10:  
11:  
12:  
13:  
14:  
15:  
16:  
17:  
18:  
19:  
1A:  
Value  
"Q"  
"R"  
3
10h  
"Y"  
2
2
2
2
Primary vendor command set and control interface ID code.  
16-bit ID code for vendor-specified algorithms  
Extended Query Table primary algorithm address  
13h  
15h  
17h  
19h  
Alternate vendor command set and control interface ID code.  
0000h means no second vendor-specified algorithm exists  
Secondary algorithm Extended Query Table address.  
0000h means none exists  
November 2007  
Order Number: 313295-04  
Datasheet  
85  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 33: System Interface Information  
Hex  
Code  
Offset  
Length  
Description  
Add.  
Value  
1Bh  
1
V
CC logic supply minimum program/erase voltage  
bits 0–3 BCD 100 mV  
1B:  
--17  
1.7V  
bits 4–7 BCD volts  
1Ch  
1Dh  
1Eh  
1
1
1
VCC logic supply maximum program/erase voltage  
1C:  
1D:  
1E:  
--20  
--85  
--95  
2.0V  
8.5V  
9.5V  
bits 0–3 BCD 100 mV  
bits 4–7 BCD volts  
VPP [programming] supply minimum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 HEX volts  
VPP [programming] supply maximum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 HEX volts  
“n” such that typical single word program time-out = 2n μ-sec  
“n” such that typical max. buffer write time-out = 2n μ-sec  
“n” such that typical block erase time-out = 2n m-sec  
“n” such that typical full chip erase time-out = 2n m-sec  
“n” such that maximum word program time-out = 2n times typical  
“n” such that maximum buffer write time-out = 2n times typical  
“n” such that maximum block erase time-out = 2n times typical  
“n” such that maximum chip erase time-out = 2n times typical  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
1
1
1
1
1
1
1
1
1F:  
20:  
21:  
22:  
23:  
24:  
25:  
26:  
--08 256μs  
--09 512μs  
--0A  
--00  
1s  
NA  
--01 512μs  
--01 1024μs  
--02  
--00  
4s  
NA  
Datasheet  
86  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
B.5  
Device Geometry Definition  
Table 34: Device Geometry Definition  
Offset  
27h  
Length  
Description  
Code  
See table below  
“n” such that device size = 2n in number of bytes  
Flash device interface code assignment:  
1
27:  
28:  
"n" such that n+1 specifies the bit field that represents the flash  
device width capabilities as described in the table:  
7
6
5
4
3
2
1
x16  
9
0
x8  
8
28h  
2
15  
14  
13  
12  
x64  
11  
x32  
10  
--01  
x16  
64  
29:  
2A:  
2B:  
2C:  
--00  
--06  
--00  
“n” such that maximum number of bytes in write buffer = 2n  
2
1
2Ah  
2Ch  
Number of erase block regions (x) within device:  
1. x = 0 means no erase blocking; the device erases in bulk  
2. x specifies the number of device regions with one or  
more contiguous same-size erase blocks.  
See table below  
3. Symmetrically blocked partitions have one blocking region  
Erase Block Region 1 Information  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
4
4
4
2Dh  
31h  
35h  
2D:  
2E:  
2F:  
30:  
31:  
32:  
33:  
34:  
35:  
36:  
37:  
38:  
See table below  
See table below  
See table below  
Erase Block Region 2 Information  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
Reserved for future erase block region information  
64 Mbit  
128 Mbit  
–B  
256 Mbit  
–B  
Address  
–B  
–T  
–T  
–T  
27:  
28:  
29:  
2A:  
2B:  
2C:  
2D:  
2E:  
2F:  
30:  
31:  
32:  
33:  
34:  
35:  
36:  
37:  
38:  
--17  
--01  
--00  
--06  
--00  
--02  
--03  
--00  
--80  
--00  
--3E  
--00  
--00  
--02  
--00  
--00  
--00  
--00  
--17  
--01  
--00  
--06  
--00  
--02  
--3E  
--00  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--00  
--00  
--18  
--01  
--00  
--06  
--00  
--02  
--03  
--00  
--80  
--00  
--7E  
--00  
--00  
--02  
--00  
--00  
--00  
--00  
--18  
--01  
--00  
--06  
--00  
--02  
--7E  
--00  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--00  
--00  
--19  
--01  
--00  
--06  
--00  
--02  
--03  
--00  
--80  
--00  
--FE  
--00  
--00  
--02  
--00  
--00  
--00  
--00  
--19  
--01  
--00  
--06  
--00  
--02  
--FE  
--00  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--00  
--00  
November 2007  
Order Number: 313295-04  
Datasheet  
87  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
B.6  
Intel-Specific Extended Query Table  
Table 35: Primary Vendor-Specific Extended Query  
Offset(1)  
P= 10Ah  
Hex  
Length  
Description  
(Optional flash features and commands)  
Primary extended query table  
Add. Code Value  
(P+0)h  
(P+1)h  
(P+2)h  
(P+3)h  
(P+4)h  
(P+5)h  
(P+6)h  
(P+7)h  
(P+8)h  
3
10A  
--50  
"P"  
"R"  
"I"  
"1"  
"3"  
Unique ASCII string “PRI“  
10B: --52  
10C: --49  
10D: --31  
10E: --33  
1
1
4
Major version number, ASCII  
Minor version number, ASCII  
Optional feature and command support (1=yes, 0=no)  
bits 10–31 are reserved; undefined bits are “0.” If bit 31 is  
“1” then another 31 bit field of Optional features follows at  
the end of the bit–30 field.  
bit 0 Chip erase supported  
bit 1 Suspend erase supported  
bit 2 Suspend program supported  
bit 3 Legacy lock/unlock supported  
bit 4 Queued erase supported  
bit 5 Instant individual block locking supported  
bit 6 Protection bits supported  
bit 7 Pagemode read supported  
bit 8 Synchronous read supported  
bit 9 Simultaneous operations supported  
bit 10 Reserved  
--E6  
10F:  
110: --03  
111: --00  
112: --00  
bit 0 = 0  
bit 1 = 1  
bit 2 = 1  
bit 3 = 0  
bit 4 = 0  
bit 5 = 1  
bit 6 = 1  
bit 7 = 1  
bit 8 = 1  
bit 9 = 1  
bit 10 = 0  
bit 30 = 0  
bit 31 = 0  
113: --01  
No  
Yes  
Yes  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
bit 30 CFI Link(s) to follow  
No  
No  
bit 31 Another "Optional Features" field to follow  
Supported functions after suspend: read Array, Status, Query  
Other supported operations are:  
bits 1–7 reserved; undefined bits are “0”  
bit 0 Program supported after erase suspend  
Block status register mask  
bits 2–15 are Reserved; undefined bits are “0”  
bit 0 Block Lock-Bit Status register active  
bit 1 Block Lock-Down Bit Status active  
(P+9)h  
1
2
bit 0 = 1  
114: --03  
115: --00  
bit 0 = 1  
Yes  
(P+A)h  
(P+B)h  
Yes  
Yes  
bit 1 = 1  
(P+C)h  
(P+D)h  
1
1
V
CC logic supply highest performance program/erase voltage  
bits 0–3 BCD value in 100 mV  
bits 4–7 BCD value in volts  
116: --18  
1.8V  
VPP optimum program/erase supply voltage  
bits 0–3 BCD value in 100 mV  
bits 4–7 HEX value in volts  
117: --90  
9.0V  
Datasheet  
88  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 36: Protection Register Information  
Offset(1)  
Length  
Hex  
Description  
P= 10Ah  
(P+E)h  
(Optional flash features and commands)  
Number of Protection register fields in JEDEC ID space.  
“00h,” indicates that 256 protection fields are available  
Protection Field 1: Protection Description  
This field describes user-available One Time Programmable  
(OTP) Protection register bytes. Some are pre-programmed  
with device-unique serial numbers. Others are user  
programmable. Bits 0–15 point to the Protection register Lock  
byte, the section’s first byte. The following bytes are factory  
pre-programmed and user-programmable.  
Add. Code Value  
1
4
118: --02  
2
(P+F)h  
(P+10)h  
(P+11)h  
(P+12)h  
119: --80  
11A: --00  
80h  
00h  
11B: --03 8 byte  
11C: --03 8 byte  
bits 0–7 = Lock/bytes Jedec-plane physical low address  
bits 8–15 = Lock/bytes Jedec-plane physical high address  
bits 16–23 = “n” such that 2n = factory pre-programmed bytes  
bits 24–31 = “n” such that 2n = user programmable bytes  
(P+13)h  
(P+14)h  
(P+15)h  
(P+16)h  
(P+17)h  
(P+18)h  
(P+19)h  
(P+1A)h  
(P+1B)h  
(P+1C)h  
10  
Protection Field 2: Protection Description  
Bits 0–31 point to the Protection register physical Lock-word  
address in the Jedec-plane.  
Following bytes are factory or user-programmable.  
bits 32–39 = “n” n = factory pgm'd groups (low byte)  
bits 40–47 = “n” n = factory pgm'd groups (high byte)  
bits 48–55 = “n” \ 2n = user programmable bytes/group  
bits 56–63 = “n” n = user pgm'd groups (low byte)  
11D: --89  
11E: --00  
11F: --00  
120: --00  
89h  
00h  
00h  
00h  
0
0
0
16  
0
16  
--00  
--00  
--00  
121:  
122:  
123:  
124: --10  
--00  
125:  
126:  
bits 64–71 = “n” n = user pgm'd groups (high byte)  
n
bits 72–79 = “n” 2 = user programmable bytes/group  
--04  
November 2007  
Order Number: 313295-04  
Datasheet  
89  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 37: Burst Read Information  
Offset(1)  
Length  
Hex  
Description  
P= 10Ah  
(P+1D)h  
(Optional flash features and commands)  
Page Mode Read capability  
Add. Code Value  
127: --00 0 byte  
1
bits 0–7 = “n” such that 2n HEX value represents the number of  
read-page bytes. See offset 28h for device word width to  
determine page-mode data output width. 00h indicates no  
read page buffer.  
Number of synchronous mode read configuration fields that  
follow. 00h indicates no burst capability.  
Synchronous mode read capability configuration 1  
Bits 3–7 = Reserved  
(P+1E)h  
(P+1F)h  
1
1
128: --04  
129: --01  
4
4
bits 0–2 “n” such that 2n+1 HEX value represents the  
maximum number of continuous synchronous reads when  
the device is configured for its maximum word width. A value  
of 07h indicates that the device is capable of continuous  
linear bursts that will output data until the internal burst  
counter reaches the end of the device’s burstable address  
space. This field’s 3-bit value can be written directly to the  
Read Configuration Register bits 0–2 if the device is  
configured for its maximum word width. See offset 28h for  
word width to determine the burst data output width.  
Synchronous mode read capability configuration 2  
Synchronous mode read capability configuration 3  
Synchronous mode read capability configuration 4  
(P+20)h  
(P+21)h  
(P+22)h  
1
1
1
12A: --02  
12B: --03  
12C: --07  
8
16  
Cont  
Table 38: Partition and Erase-block Region Information  
Offset(1)  
P= 10Ah  
See table below  
Address  
Description  
Bot  
Top  
Bottom  
Top  
(Optional flash features and commands)  
Len  
(P+23)h (P+23)h Number of device hardware-partition regions within the device.  
x = 0: a single hardware partition device (no fields follow).  
x specifies the number of device partition regions containing  
one or more contiguous erase block regions.  
1
12D:  
12D:  
Datasheet  
90  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 39: Partition Region 1 Information  
Offset(1)  
P= 10Ah  
See table below  
Address  
Description  
Bot  
Top  
12E:  
12F:  
130:  
Bottom  
(P+24)h (P+24)h  
(P+25)h (P+25)h  
Top  
(Optional flash features and commands)  
Number of identical partitions within the partition region  
Len  
2
12E:  
12F:  
130:  
(P+26)h (P+26)h Number of program or erase operations allowed in a partition  
bits 0–3 = number of simultaneous Program operations  
1
1
bits 4–7 = number of simultaneous Erase operations  
(P+27)h (P+27)h Simultaneous program or erase operations allowed in other  
partitions while a partition in this region is in Program mode  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+28)h (P+28)h Simultaneous program or erase operations allowed in other  
partitions while a partition in this region is in Erase mode  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+29)h (P+29)h Types of erase block regions in this Partition Region.  
x = 0 = no erase blocking; the Partition Region erases in bulk  
x = number of erase block regions w/ contiguous same-size  
erase blocks. Symmetrically blocked partitions have one  
blocking region. Partition size = (Type 1 blocks)x(Type 1  
block sizes) + (Type 2 blocks)x(Type 2 block sizes) +…+  
(Type n blocks)x(Type n block sizes)  
131:  
132:  
133:  
131:  
132:  
133:  
1
1
(P+2A)h (P+2A)h Partition Region 1 Erase Block Type 1 Information  
(P+2B)h (P+2B)h bits 0–15 = y, y+1 = # identical-size erase blks in a partition  
(P+2C)h (P+2C)h bits 16–31 = z, region erase block(s) size are z x 256 bytes  
(P+2D)h (P+2D)h  
4
134:  
135:  
136:  
137:  
138:  
139:  
13A:  
134:  
135:  
136:  
137:  
138:  
139:  
13A:  
Partition 1 (Erase Block Type 1)  
Minimum block erase cycles x 1000  
(P+2E)h (P+2E)h  
(P+2F)h (P+2F)h  
2
1
(P+30)h (P+30)h Partition 1 (erase block Type 1) bits per cell; internal ECC  
bits 0–3 = bits per cell in erase region  
bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
bits 5–7 = reserve for future use  
(P+31)h (P+31)h Partition 1 (erase block Type 1) page mode and synchronous  
mode capabilities defined in Table 10.  
1
4
13B:  
13B:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host writes permitted (1=yes, 0=no)  
bits 3–7 = reserved for future use  
(P+32)h  
(P+33)h  
(P+34)h  
(P+35)h  
(P+36)h  
(P+37)h  
Partition Region 1 Erase Block Type 2 Information  
bits 0–15 = y, y+1 = # identical-size erase blks in a partition  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
(bottom parameter device only)  
13C:  
13D:  
13E:  
13F:  
140:  
141:  
Partition 1 (Erase block Type 2)  
2
1
Minimum block erase cycles x 1000  
(P+38)h  
Partition 1 (Erase block Type 2) bits per cell  
bits 0–3 = bits per cell in erase region  
142:  
bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
bits 5–7 = reserve for future use  
(P+39)h  
Partition 1 (Erase block Type 2) pagemode and synchronous  
mode capabilities defined in Table 10  
1
143:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host writes permitted (1=yes, 0=no)  
bits 3–7 = reserved for future use  
November 2007  
Order Number: 313295-04  
Datasheet  
91  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 40: Partition Region 2 Information  
Offset(1)  
See table below  
P= 10Ah  
Description  
(Optional flash features and commands)  
Address  
Bot  
Top  
13C:  
13D:  
13E:  
Bottom  
Top  
Len  
2
(P+3A)h (P+32)h Number of identical partitions within the partition region  
(P+3B)h (P+33)h  
(P+3C)h (P+34)h Number of program or erase operations allowed in a partition  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
144:  
145:  
146:  
1
1
1
1
(P+3D)h (P+35)h Simultaneous program or erase operations allowed in other  
partitions while a partition in this region is in Program mode  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+3E)h (P+36)h Simultaneous program or erase operations allowed in other  
partitions while a partition in this region is in Erase mode  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+3F)h (P+37)h Types of erase block regions in this Partition Region.  
x = 0 = no erase blocking; the Partition Region erases in bulk  
x = number of erase block regions w/ contiguous same-size  
erase blocks. Symmetrically blocked partitions have one  
blocking region. Partition size = (Type 1 blocks)x(Type 1  
block sizes) + (Type 2 blocks)x(Type 2 block sizes) +…+  
(Type n blocks)x(Type n block sizes)  
147:  
148:  
149:  
13F:  
140:  
141:  
(P+40)h (P+38)h Partition Region 2 Erase Block Type 1 Information  
4
14A:  
14B:  
14C:  
14D:  
14E:  
14F:  
150:  
142:  
143:  
144:  
145:  
146:  
147:  
148:  
(P+41)h (P+39)h  
(P+42)h (P+3A)h  
(P+43)h (P+3B)h  
bits 0–15 = y, y+1 = # identical-size erase blks in a partition  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
(P+44)h (P+3C)h Partition 2 (Erase block Type 1)  
(P+45)h (P+3D)h Minimum block erase cycles x 1000  
(P+46)h (P+3E)h Partition 2 (Erase block Type 1) bits per cell  
bits 0–3 = bits per cell in erase region  
2
1
bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
bits 5–7 = reserve for future use  
(P+47)h (P+3F)h Partition 2 (erase block Type 1) pagemode and synchronous  
mode capabilities as defined in Table 10.  
1
4
151:  
149:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host writes permitted (1=yes, 0=no)  
bits 3–7 = reserved for future use  
(P+40)h Partition Region 2 Erase Block Type 2 Information  
14A:  
14B:  
14C:  
14D:  
14E:  
14F:  
150:  
(P+41)h  
(P+42)h  
(P+43)h  
bits 0–15 = y, y+1 = # identical-size erase blks in a partition  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
(P+44)h Partition 2 (Erase block Type 2)  
(P+45)h Minimum block erase cycles x 1000  
(P+46)h Partition 2 (Erase block Type 2) bits per cell  
bits 0–3 = bits per cell in erase region  
2
1
bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
bits 5–7 = reserve for future use  
(P+47)h Partition 2 (erase block Type 2) pagemode and synchronous  
mode capabilities as defined in Table 10.  
1
151:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host writes permitted (1=yes, 0=no)  
bits 3–7 = reserved for future use  
Datasheet  
92  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 41: Partition and Erase Block Information  
Address  
64 Mbit  
128 Mbit  
256 Mbit  
–B  
–T  
–B  
–T  
–B  
–T  
12D:  
12E:  
12F:  
130:  
131:  
132:  
133:  
134:  
135:  
136:  
137:  
138:  
139:  
13A:  
13B:  
--02  
--01  
--00  
--11  
--00  
--00  
--02  
--03  
--00  
--80  
--00  
--64  
--00  
--02  
--02  
--02  
--07  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--02  
--64  
--00  
--02  
--02  
--02  
--01  
--00  
--11  
--00  
--00  
--02  
--03  
--00  
--80  
--00  
--64  
--00  
--02  
--02  
--02  
--0F  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--02  
--64  
--00  
--02  
--02  
--02  
--01  
--00  
--11  
--00  
--00  
--02  
--03  
--00  
--80  
--00  
--64  
--00  
--02  
--02  
--02  
--0F  
--00  
--11  
--00  
--00  
--01  
--0F  
--00  
--00  
--02  
--64  
--00  
--02  
--02  
13C:  
13D:  
13E:  
13F:  
140:  
141:  
142:  
143:  
144:  
145:  
146:  
147:  
148:  
149:  
14A:  
14B:  
14C:  
14D:  
14E:  
14F:  
150:  
151:  
--06  
--00  
--00  
--02  
--64  
--00  
--02  
--02  
--07  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--02  
--64  
--00  
--02  
--02  
--01  
--00  
--11  
--00  
--00  
--02  
--06  
--00  
--00  
--02  
--64  
--00  
--02  
--02  
--03  
--00  
--80  
--00  
--64  
--00  
--02  
--02  
--06  
--00  
--00  
--02  
--64  
--00  
--02  
--02  
--0F  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--02  
--64  
--00  
--02  
--02  
--01  
--00  
--11  
--00  
--00  
--02  
--06  
--00  
--00  
--02  
--64  
--00  
--02  
--02  
--03  
--00  
--80  
--00  
--64  
--00  
--02  
--02  
--0E  
--00  
--00  
--02  
--64  
--00  
--02  
--02  
--0F  
--00  
--11  
--00  
--00  
--01  
--0F  
--00  
--00  
--02  
--64  
--00  
--02  
--02  
--01  
--00  
--11  
--00  
--00  
--02  
--0E  
--00  
--00  
--02  
--64  
--00  
--02  
--02  
--03  
--00  
--80  
--00  
--64  
--00  
--02  
--02  
November 2007  
Order Number: 313295-04  
Datasheet  
93  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 42: Electrical Traceability  
76h 76h  
Bits 0 – 2: Stepping (See Table 3 and 4)  
Bit 3: Production Bit (See Table 3 and 4)  
Bits 4 – 7: Memory clock rate 0000 = 40MHz 0001 = 54MHz  
0010 = 66MHz 1XXX = DDR  
1
76h  
76h  
Bits 8 – 9: Process  
Bit 10: Mass memory 0 = No 1 = Yes  
Bits 11 - 12: Ram Type 00 = No 01 = SRAM 10 = PSRAM 11  
= DRAM  
Bits 13 – 15: RAM density 000 = no SRAM 001 = 4 Mb 010 =  
8 Mb 011 = 16 Mb 100 = 32 Mb…  
Reserved for future use  
(P+48)h (P+48)h  
Resv'd 152:  
152:  
Table 43: CFI Revision History for Engineering Sample at Address 76h  
Density  
CFI Field Data  
xxxxh  
Revision  
Comments  
000 00 0 00 0001 1100  
001Ch  
Revision 2  
A2 Silicon (128Mb A2 Silicon)  
OMPU 64 Mbit - Bin  
1
OMPU 64 Mbit - Bin  
1
000 00 0 00 0001 1011  
001Bh  
Revision 3  
A3 Silicon (128Mb A3 Silicon)  
64 Mbit - Bin 1  
64 Mbit - Bin 1  
128 Mbit - Bin 1  
128 Mbit - Bin 1  
128 Mbit - Bin 1  
128 Mbit - Bin 1  
128 Mbit - Bin 2  
128 Mbit - Bin 2  
128 Mbit - Bin 2  
128 Mbit - Bin 2  
256 Mbit - Bin 1  
256 Mbit - Bin 1  
256 Mbit - Bin 2  
256 Mbit - Bin 2  
000 00 0 00 0001 1110  
000 00 0 00 0001 1101  
000 00 0 00 0001 1110  
000 00 0 00 0001 1101  
000 00 0 00 0001 1100  
000 00 0 00 0001 1011  
000 00 0 00 0000 1110  
000 00 0 00 0000 1101  
000 00 0 00 0000 1100  
000 00 0 00 0000 1011  
000 00 0 00 0001 1110  
000 00 0 00 0001 1101  
000 00 0 00 0000 1110  
000 00 0 00 0000 1101  
001Eh  
001Dh  
001Eh  
001Dh  
001Ch  
001Bh  
000Eh  
000Dh  
000Ch  
000Bh  
001Eh  
001Dh  
000Eh  
000Dh  
Revision 0  
Revision 1  
Revision 0  
Revision 1  
Revision 2  
Revision 3  
Revision 0  
Revision 1  
Revision 2  
Revision 3  
Revision 0  
Revision 1  
Revision 0  
Revision 1  
A0 Silicon  
A1 Silicon  
A0 Silicon  
A1 Silicon  
A2 Silicon  
A3 Silicon  
A0 Silicon  
A1 Silicon  
A2 Silicon  
A3 Silicon  
A0 Silicon  
A1 Silicon  
A0 Silicon  
A1 Silicon  
Datasheet  
94  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 44: CFI Revision History for Production Materials at Address 76h  
Density  
CFI Field Data  
xxxxh  
Revision  
Comments  
Production Silicon (128Mb Prod Silicon  
Rev)  
000 00 0 00 0001 0001  
0011h  
Revision 1  
OMPU 64 Mbit - Bin 1  
OMPU 64 Mbit - Bin 1  
64 Mbit - Bin 1  
000 00 0 00 0001 0010  
000 00 0 00 0001 0001  
000 00 0 00 0001 0010  
000 00 0 00 0001 0011  
000 00 0 00 0001 0001  
000 00 0 00 0001 0010  
000 00 0 00 0001 0011  
000 00 0 00 0000 0001  
000 00 0 00 0000 0010  
000 00 0 00 0000 0011  
000 00 0 00 0001 0001  
000 00 0 00 0001 0010  
000 00 0 00 0001 0011  
000 00 0 00 0000 0001  
000 00 0 00 0000 0010  
000 00 0 00 0000 0011  
0012h  
0011h  
0012h  
0013h  
0011h  
0012h  
0013h  
0001h  
0002h  
0003h  
0011h  
0012h  
0013h  
0001h  
0002h  
0003h  
Revision 2  
Revision 1  
Revision 2  
Revision 3  
Revision 1  
Revision 2  
Revision 3  
Revision 1  
Revision 2  
Revision 3  
Revision 1  
Revision 2  
Revision 3  
Revision 1  
Revision 2  
Revision 3  
Rev 2 If Errata  
Production Silicon  
Rev 2 If Errata  
Rev 3 If Errata  
Production Silicon  
Rev 2 If Errata  
Rev 3 If Errata  
Production Silicon  
Rev 2 If Errata  
Rev 3 If Errata  
Production Silicon  
Rev 2 If Errata  
Rev 3 If Errata  
Production Silicon  
Rev 2 If Errata  
Rev 3 If Errata  
64 Mbit - Bin 1  
64 Mbit - Bin 1  
128 Mbit - Bin 1  
128 Mbit - Bin 1  
128 Mbit - Bin 1  
128 Mbit - Bin 2  
128 Mbit - Bin 2  
128 Mbit - Bin 2  
256 Mbit - Bin 1  
256 Mbit - Bin 1  
256 Mbit - Bin 1  
256 Mbit - Bin 2  
256 Mbit - Bin 2  
256 Mbit - Bin 2  
November 2007  
Order Number: 313295-04  
Datasheet  
95  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Appendix C Ordering Information  
To order samples, obtain datasheets or inquire about any stack combination, please  
contact your local Intel representative.  
Table 45: 38F Type Stacked Components  
PF  
38F  
5070  
M0  
Y
0
B
0
Product Die/  
Density  
Configuration  
Voltage/NOR  
Flash CE#  
Configuration  
Parameter /  
Mux  
Configuration  
Package  
Designator  
Product Line  
Designator  
NOR Flash Product  
Family  
Ballout  
Identifier  
Device  
Details  
Char 1 = Flash  
die #1  
V =  
0 =  
First character  
applies to Flash  
die #1  
1.8 V Core  
and I/O;  
Separate Chip  
Enable per die  
Char 2 = Flash  
die #2  
No parameter  
blocks; Non-  
Mux I/O  
B =  
x16D  
Ballout  
interface  
Char 3 =  
RAM die #1  
0 =  
PF =  
Second character  
applies to Flash  
die #2  
Original  
released  
version of  
this  
SCSP, RoHS  
(See  
(See  
(See  
Table 49,  
“Voltage /  
NOR Flash  
CE#  
Table 51  
StackedNOR  
Table 50,  
“Parameter  
/ Mux  
,
Flash + RAM Char 4 =  
RD =  
“Ballout  
Decoder  
” on  
(See Table 48,  
“NOR Flash  
Family  
RAM die #2  
SCSP, Leaded  
product  
Configurati  
on  
Configurati  
on  
(See  
page 98  
for details)  
Decoder” on  
page 97 for  
details)  
Decoder”  
on page 98  
for details)  
Table 47,  
“38F / 48F  
Density  
Decoder”  
onpage 97  
for details)  
Decoder”  
on page 97  
for details)  
Table 46: 48F Type Stacked Components  
PC  
48F  
4400  
P0  
V
B
0
0
Product Die/  
Density  
Configuration  
Voltage/NOR  
Flash CE#  
Configuration  
Parameter /  
Mux  
Configuration  
Package  
Designator  
Product Line  
Designator  
NOR Flash Product  
Family  
Ballout  
Identifier  
Device  
Details  
PC =  
Easy BGA,  
RoHS  
Char 1 = Flash  
die #1  
V =  
B =  
First character  
applies to Flash  
dies #1 and #2  
1.8 V Core  
and 3 V I/O;  
Virtual Chip  
Enable  
Char 2 = Flash  
die #2  
Bottom  
0 =  
RC =  
parameter;  
Non-Mux I/O  
interface  
Discrete  
Ballout  
Easy BGA,  
Leaded  
0 =  
Char 3 = Flash  
die #3  
Second character  
applies to Flash  
dies #3 and #4  
Original  
released  
version of  
this  
(See  
(See  
JS =  
TSOP, RoHS  
(See  
Stacked  
NOR Flash  
only  
Table 49,  
“Voltage /  
NOR Flash  
CE#  
Table 51  
Table 50,  
“Parameter  
/ Mux  
Char 4 = Flash  
die #4  
,
“Ballout  
Decoder  
” on  
(See Table 48,  
“NOR Flash  
Family  
product  
TE =  
TSOP, Leaded  
Configurati  
on  
Configurati  
on  
(See  
page 98  
for details)  
Table 47,  
“38F / 48F  
Density  
Decoder” on  
page 97 for  
details)  
Decoder”  
on page 98  
for details)  
Decoder”  
on page 97  
for details)  
PF =  
SCSP, RoHS  
Decoderon  
page 97 for  
details)  
RD =  
SCSP, Leaded  
Datasheet  
96  
November 2007  
Order Number: 313295-04  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 47: 38F / 48F Density Decoder  
Code  
Flash Density  
RAM Density  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
No Die  
No Die  
32-Mbit  
64-Mbit  
128-Mbit  
256-Mbit  
512-Mbit  
1-Gbit  
4-Mbit  
8-Mbit  
16-Mbit  
32-Mbit  
64-Mbit  
128-Mbit  
256-Mbit  
512-Mbit  
1-Gbit  
2-Gbit  
4-Gbit  
8-Gbit  
16-Gbit  
32-Gbit  
64-Gbit  
128-Gbit  
256-Gbit  
512-Gbit  
2-Gbit  
4-Gbit  
8-Gbit  
16-Gbit  
32-Gbit  
64-Gbit  
Table 48: NOR Flash Family Decoder  
Code  
Family  
Marketing Name  
C
C3  
Intel Advanced+ Boot Block Flash Memory  
Intel Embedded Flash Memory  
Intel StrataFlash® Wireless Memory  
Intel StrataFlash® Cellular Memory  
Intel StrataFalsh® Embedded Memory  
Intel Wireless Flash Memory  
J3v.D  
J
L
L18 / L30  
M18  
M
P
P30 / P33  
W18 / W30  
-
W
0(zero)  
No Die  
Table 49: Voltage / NOR Flash CE# Configuration Decoder (Sheet 1 of 2)  
I/O Voltage  
Code  
Core Voltage (Volt)  
CE# Configuration  
Seperate Chip Enable per die  
(Volt)  
Z
3.0  
1.8  
3.0  
3.0  
1.8  
3.0  
1.8  
1.8  
3.0  
1.8  
1.8  
3.0  
Seperate Chip Enable per die  
Seperate Chip Enable per die  
Virtual Chip Enable  
Y
X
V
U
T
Virtual Chip Enable  
Virtual Chip Enable  
November 2007  
Order Number: 313295-04  
Datasheet  
97  
Numonyx™ StrataFlash® Wireless Memory (L18 AD-Mux)  
Table 49: Voltage / NOR Flash CE# Configuration Decoder (Sheet 2 of 2)  
I/O Voltage  
(Volt)  
Code  
Core Voltage (Volt)  
CE# Configuration  
R
Q
P
3.0  
1.8  
1.8  
3.0  
Virtual Address  
Virtual Address  
Virtual Address  
1.8  
3.0  
Table 50: Parameter / Mux Configuration Decoder  
Code, Mux  
Identification  
Number of Flash Die  
Bus Width  
Flash Die 1  
Flash Die 2  
Flash Die 3  
Flash Die 4  
0 = Non Mux  
1 = AD Mux1  
2= AAD Mux  
Any  
NA  
Notation used for stacks that contain no parameter blocks  
3 =Full" AD  
Mux2  
1
2
3
4
2
4
1
2
3
4
2
4
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
Top  
-
-
-
Top  
-
-
B = Non Mux  
C = AD Mux  
F = "Full" Ad  
Mux  
X16  
X32  
X16  
X32  
Bottom  
Top  
Top  
-
Bottom  
Top  
Bottom  
Bottom  
-
-
-
Top  
Top  
-
-
Top  
Bottom  
Top  
-
-
T = Non Mux  
U = AD Mux  
W = "Full" Ad  
Mux  
Top  
Bottom  
Top  
-
Top  
Bottom  
Top  
Bottom  
-
Top  
-
Top  
Top  
Bottom  
Bottom  
1. Only Flash is Muxed and RAM is non-Muxed  
2. Both Flash and RAM are AD-Muxed  
Table 51: Ballout Decoder  
Code  
Ballout Definition  
0 (Zero)  
SDiscrete ballout (Easay BGA and TSOP)  
B
x16D ballout, 105 ball (x16 NOR + NAND + DRAM Share Bus)  
x16C ballout, 107 ball (x16 NOR + NAND + PSRAM Share Bus)  
QUAD/+ ballout, 88 ball (x16 NOR + PSRAM Share Bus)  
x32SH ballout, 106 ball (x32 NOR only Share Bus)  
C
Q
U
V
x16SB ballout, 165 ball (x16 NOR / NAND + x16 DRAM Split Bus  
x48D ballout, 165 ball (x16/x32 NOR + NAND + DRAM Split Bus  
W
Datasheet  
98  
November 2007  
Order Number: 313295-04  

相关型号:

RD48F3000L0YUQ0

Flash, 8MX16, 85ns, PBGA88,
NUMONYX

RD48F3000L0ZBQ0

1.8 Volt Intel StrataFlash㈢ Wireless Memory with 3.0-Volt I/O (L30)
INTEL

RD48F3000L0ZTQ0

1.8 Volt Intel StrataFlash㈢ Wireless Memory with 3.0-Volt I/O (L30)
INTEL

RD48F3000M0YBB0

Flash, 8MX16, 96ns, PBGA105,
NUMONYX

RD48F3000M0YBC0

Flash, 8MX16, 96ns, PBGA107,
NUMONYX

RD48F3000M0YCC0

Flash, 8MX16, 96ns, PBGA107,
NUMONYX

RD48F3000M0YFB0

Flash, 8MX16, 96ns, PBGA105,
NUMONYX

RD48F3000M0YFC0

Flash, 8MX16, 96ns, PBGA107,
NUMONYX

RD48F3000M0YTB0

Flash, 8MX16, 96ns, PBGA105,
NUMONYX

RD48F3000M0YTC0

Flash, 8MX16, 96ns, PBGA107,
NUMONYX

RD48F3000M0YUC0

Flash, 8MX16, 96ns, PBGA107,
NUMONYX

RD48F3000P0XBQ0

Flash, 8MX16, 85ns, PBGA80, 8 X 10 MM, 1.20 MM HEIGHT, SCSP-88/80
INTEL