TE28F256P33B95A [NUMONYX]

Flash, 16MX16, 95ns, PDSO56, 14 X 20 MM, TSOP-56;
TE28F256P33B95A
型号: TE28F256P33B95A
厂家: NUMONYX B.V    NUMONYX B.V
描述:

Flash, 16MX16, 95ns, PDSO56, 14 X 20 MM, TSOP-56

光电二极管 内存集成电路
文件: 总88页 (文件大小:942K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Numonyx® AxcellTM Flash Memory (P33-  
65nm)  
256-Mbit, 512-Mbit (256M/256M)  
Datasheet  
Product Features  
„ High performance:  
„ Security:  
— 95ns initial access time for Easy BGA  
— 105ns initial access time for TSOP  
— 25ns 16-word asynchronous-page read  
mode  
— 52MHz (Easy BGA) with zero wait states,  
17ns clock-to-data output synchronous-  
burst read mode  
— 4-, 8-, 16-, and continuous-word options  
for burst mode  
— One-Time Programmable Registers:  
— 64 unique factory device identifier bits  
— 2112 user-programmable OTP bits  
— Absolute write protection: VPP = VSS  
— Power-transition erase/program lockout  
— Individual zero-latency block locking  
— Individual block lock-down capability  
— Password Access feature  
„ Software:  
— Buffered Enhanced Factory Programming at  
2.0MByte/s (typ) using 512-word buffer  
— 3.0V buffered programming at 1.14 MByte/  
s (Typ) using 512-word buffer  
— 25µs (Typ) program suspend  
— 25µs (Typ) erase suspend  
— Numonyx™ Flash Data Integrator optimized  
— Basic Command Set and Extended Function  
Interface Command Set compatible  
— Common Flash Interface capable  
„ Architecture:  
— Multi-Level Cell Technology: Highest  
Density at Lowest Cost  
— Asymmetrically-blocked architecture  
— Four 32-KByte parameter blocks: top or  
bottom configuration  
— 128-KByte main blocks  
— Blank Check to verify an erase block  
„ Density and Packaging  
— 56-Lead TSOP package (256-Mbit only)  
— 64-Ball Easy BGA package (256, 512-Mbit)  
— 16-bit wide data bus  
„ Quality and Reliability  
„ Voltage and Power:  
— JESD47E Compliant  
— VCC (core) voltage: 2.3 V – 3.6 V  
— VCCQ (I/O) voltage: 2.3 V – 3.6 V  
— Standby current: 65uA (Typ) for 256-Mbit  
— Continuous synchronous read current: 21  
mA (Typ)/24 mA (Max) at 52 MHz  
— Operating temperature: –40 °C to +85 °C  
— Minimum 100,000 erase cycles per block  
— 65nm ETOX™ X process technology  
Datasheet  
1
Mar 2010  
Order Number: 320003-09  
Legal Lines and Disclaimers  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR  
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN NUMONYX'S TERMS AND  
CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY, RELATING TO SALE AND/OR USE OF NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A  
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Numonyx  
products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.  
Numonyx may make changes to specifications and product descriptions at any time, without notice.  
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the  
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel  
or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.Numonyx reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by visiting  
Numonyx's website at http://www.numonyx.com.  
Numonyx, the Numonyx logo, and Axcell are trademarks or registered trademarks of Numonyx, B.V. or its subsidiaries in other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2010, Numonyx, B.V., All Rights Reserved.  
Datasheet  
2
Mar 2010  
Order Number: 320003-09  
P33-65nm  
Contents  
1.0 Functional Description...............................................................................................5  
1.1  
1.2  
1.3  
1.4  
Introduction .......................................................................................................5  
Overview ...........................................................................................................5  
Virtual Chip Enable Description..............................................................................6  
Memory Maps .....................................................................................................7  
2.0 Package Information.................................................................................................8  
2.1  
2.2  
56-Lead TSOP.....................................................................................................8  
64-Ball Easy BGA Package....................................................................................9  
3.0 Ballouts................................................................................................................... 11  
4.0 Signals .................................................................................................................... 13  
4.1  
Dual-Die Configurations ..................................................................................... 14  
5.0 Bus Operations........................................................................................................ 15  
5.1  
5.2  
5.3  
5.4  
5.5  
Read ............................................................................................................... 15  
Write............................................................................................................... 15  
Output Disable.................................................................................................. 15  
Standby........................................................................................................... 16  
Reset............................................................................................................... 16  
6.0 Command Set .......................................................................................................... 17  
6.1  
6.2  
Device Command Codes..................................................................................... 17  
Device Command Bus Cycles .............................................................................. 18  
7.0 Read Operation........................................................................................................ 21  
7.1  
7.2  
7.3  
7.4  
Asynchronous Page-Mode Read........................................................................... 21  
Synchronous Burst-Mode Read............................................................................ 21  
Read Device Identifier........................................................................................ 22  
Read CFI.......................................................................................................... 22  
8.0 Program Operation.................................................................................................. 23  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
Word Programming ........................................................................................... 23  
Buffered Programming....................................................................................... 23  
Buffered Enhanced Factory Programming.............................................................. 24  
Program Suspend.............................................................................................. 26  
Program Resume............................................................................................... 27  
Program Protection............................................................................................ 27  
9.0 Erase Operation....................................................................................................... 28  
9.1  
9.2  
9.3  
9.4  
9.5  
Block Erase ...................................................................................................... 28  
Blank Check ..................................................................................................... 28  
Erase Suspend.................................................................................................. 29  
Erase Resume................................................................................................... 29  
Erase Protection................................................................................................ 29  
10.0 Security................................................................................................................... 30  
10.1 Block Locking.................................................................................................... 30  
10.2 Selectable OTP Blocks........................................................................................ 32  
10.3 Password Access ............................................................................................... 32  
11.0 Status Register........................................................................................................ 33  
11.1 Read Configuration Register................................................................................ 34  
11.2 One-Time Programmable (OTP) Registers............................................................. 40  
12.0 Power and Reset Specifications............................................................................... 43  
Datasheet  
3
Mar 2010  
Order Number: 320003-09  
P33-65nm  
12.1 Power-Up and Power-Down.................................................................................43  
12.2 Reset Specifications ...........................................................................................43  
12.3 Power Supply Decoupling....................................................................................44  
13.0 Maximum Ratings and Operating Conditions ............................................................45  
13.1 Absolute Maximum Ratings .................................................................................45  
13.2 Operating Conditions..........................................................................................45  
14.0 Electrical Specifications ...........................................................................................46  
14.1 DC Current Characteristics..................................................................................46  
14.2 DC Voltage Characteristics..................................................................................47  
15.0 AC Characteristics....................................................................................................48  
15.1 AC Test Conditions.............................................................................................48  
15.2 Capacitance ......................................................................................................49  
15.3 AC Read Specifications .......................................................................................49  
15.4 AC Write Specifications.......................................................................................54  
15.5 Program and Erase Characteristics .......................................................................58  
16.0 Ordering Information...............................................................................................59  
16.1 Discrete Products...............................................................................................59  
16.2 SCSP Products...................................................................................................60  
A
Supplemental Reference Information.......................................................................61  
A.1  
A.2  
A.3  
Common Flash Interface.....................................................................................61  
Flowcharts........................................................................................................72  
Write State Machine...........................................................................................81  
B
C
Conventions - Additional Documentation .................................................................87  
B.1  
B.2  
Acronyms .........................................................................................................87  
Definitions and Terms ........................................................................................87  
Revision History.......................................................................................................89  
Datasheet  
4
Mar 2010  
Order Number: 320003-09  
P33-65nm  
1.0  
Functional Description  
1.1  
Introduction  
This document provides information about the Numonyx® Axcell™ Flash Memory (P33-  
65nm) device and describes its features, operations, and specifications.  
P33-65nm is the latest generation of Numonyx® Axcell™ Flash Memory (P33-65nm)  
devices. P33-65nm device will be offered in 64-Mbit up through 2-Gbit densities. This  
document covers specifically 256-Mbit and 512-Mbit (256M/256M) product information.  
Benefits include more density in less space, high-speed interface NOR device, and  
support for code and data storage. Features include high-performance synchronous-  
burst read mode, fast asynchronous access times, low power, flexible security options,  
and two industry-standard package choices.  
P33-65nm is manufactured using Numonyx™ 65nm process technology.  
1.2  
Overview  
This family of devices provides high performance at low voltage on a 16-bit data bus.  
Individually erasable memory blocks are sized for optimum code and data storage.  
Upon initial power-up or return from reset, the device defaults to asynchronous page-  
mode read. Configuring the RCR enables synchronous burst-mode reads. In  
synchronous burst mode, output data is synchronized with a user-supplied clock signal.  
A WAIT signal provides an easy CPU-to-flash memory synchronization.  
In addition to the enhanced architecture and interface, the device incorporates  
technology that enables fast factory program and erase operations. Designed for low-  
voltage systems, the P33 Family Flash memory supports read operations with VCC at  
3.0V, and erase and program operations with VPP at 3.0V or 9.0V. Buffered Enhanced  
Factory Programming provides the fastest flash array programming performance with  
VPP at 9.0V, which increases factory throughput. With VPP at 3.0V, VCC and VPP can be  
tied together for a simple, ultra low power design. In addition to voltage flexibility, a  
dedicated VPP connection provides complete data protection when VPP VPPLK  
.
The Command User Interface is the interface between the system processor and all  
internal operations of the device. An internal Write State Machine automatically  
executes the algorithms and timings necessary for block erase and program. A Status  
Register indicates erase or program completion and any errors that may have occurred.  
An industry-standard command sequence invokes program and erase automation. Each  
erase operation erases one block. The Erase Suspend feature allows system software to  
pause an erase cycle to read or program data in another block. Program Suspend  
allows system software to pause programming to read other locations. Data is  
programmed in word increments (16 bits).  
The P33 Family Flash memory one-time-programmable (OTP) register allows unique  
flash device identification that can be used to increase system security. The individual  
Block Lock feature provides zero-latency block locking and unlocking. The P33-65nm  
device adds enhanced protection via Password Access Mode which allows user to  
protect write and/or read access to the defined blocks. In addition, the P33 Family  
Flash memory may also provide the OTP permanent lock feature backward compatible  
to the P33-130nm device.  
Datasheet  
5
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
1.3  
Virtual Chip Enable Description  
The 512-Mbit P33 Family Flash memory employs a Virtual Chip Enable which combines  
two 256-Mbit die with a common chip enable, CE# for Easy BGA packages. Address  
A25 is then used to select between the die pair with CE# asserted, depending upon the  
package option used. When chip enable is asserted and A25 is low (VIL), The lower  
parameter die is selected; when chip enable is asserted and A25 is high (VIH), the  
upper parameter die is selected.  
Table 1:  
Flash Die Virtual Chip Enable Truth Table for 512 Mbit Easy BGA Package  
Die Selected  
CE#  
A25  
Lower Param Die  
Upper Param Die  
L
L
L
H
Datasheet  
6
Mar 2010  
Order Number: 320003-09  
P33-65nm  
1.4  
Memory Maps  
Figure 1: P33-65nm Memory Map  
A<24:1> 256 Mbit  
:
A<24:1> 256 Mbit  
16- Kword Block 258  
FFC 000– FFFFFF  
FF 8000– FFBFFF  
FF 4000– FF7 FFF  
FF 0000– FF3 FFF  
FF 0000 - FFFFFF  
64- Kword Block  
258  
16- Kword Block  
16- Kword Block  
257  
256  
16- Kword Block 255  
64- Kword Block 254  
FE 0000– FEFFFF  
64- Kword Block 130  
64- Kword Block 66  
7F 0000 - 7FFFFF  
3 F0000 - 3FFFFF  
020000 – 02 FFFF  
010000 – 01 FFFF  
64- Kword Block  
64- Kword Block  
5
4
3
00C000 – 00 FFFF  
16- Kword Block  
16- Kword Block  
16- Kword Block  
16- Kword Block  
00800000 BFFF  
004000 – 007FFF  
2
1
64- Kword Block  
64- Kword Block  
1
0
010000 – 01 FFFF  
000000 – 00 FFFF  
0
000000 – 003FFF  
Bottom Boot 256 Mbit  
Word Wide (x16) Mode  
Top Boot 256 Mbit  
Word Wide (x16) Mode  
A<25:1> 512 Mbit (256/256)  
1FFC000 - 1FFFFFF  
16- Kword Block 517  
516  
16- Kword Block  
1FF8000 - 1FFBFFF  
1FF4000 - 1FF7FFF  
1FF0000 - 1FF3FFF  
16- Kword Block 515  
16- Kword Block 514  
1FE0000 - 1FEFFFF  
1FD0000 - 1FDFFFF  
64- Kword Block 513  
512  
64- Kword Block  
0020000 - 002FFFF  
0010000 - 001FFFF  
64- Kword Block  
64- Kword Block  
5
4
000C000 - 000FFFF  
0008000 - 000BFFF  
0004000 - 0007FFF  
0000000 - 0003FFF  
16- Kword Block  
16- Kword Block  
16- Kword Block  
16- Kword Block  
3
2
1
0
512 Mbit (256/256)  
Word Wide (x16) Mode  
Datasheet  
7
Mar 2010  
OrderNumber:320003-09  
 
P33-65nm  
2.0  
Package Information  
2.1  
56-Lead TSOP  
Figure 2: TSOP Mechanical Specifications (256-Mbit)  
Z
A
2
See Note 2  
See Notes 1 and 3  
Pin 1  
e
See Detail B  
E
Y
D
1
A
1
D
Seating  
Plane  
See Detail A  
A
Detail A  
Detail B  
C
0
b
L
Table 2:  
TSOP Package Dimensions (Sheet 1 of 2)  
Millimeters  
Inches  
Nom  
Product Information  
Symbol  
Note  
Min  
Nom  
Max  
Min  
Max  
Package Height  
Standoff  
A
-
-
1.200  
-
-
-
0.047  
-
A
A
0.050  
0.965  
0.100  
0.100  
18.200  
13.800  
-
-
0.002  
0.038  
0.004  
0.004  
0.717  
0.543  
-
-
1
2
Package Body Thickness  
Lead Width  
0.995  
0.150  
0.150  
18.400  
14.000  
0.500  
20.00  
0.600  
1.025  
0.200  
0.200  
18.600  
14.200  
-
0.039  
0.006  
0.006  
0.724  
0.551  
0.0197  
0.787  
0.024  
0.040  
0.008  
0.008  
0.732  
0.559  
-
b
Lead Thickness  
Package Body Length  
Package Body Width  
Lead Pitch  
c
D
Note  
Note  
1
E
e
Terminal Dimension  
Lead Tip Length  
D
L
19.800  
0.500  
20.200  
0.700  
0.780  
0.020  
0.795  
0.028  
Datasheet  
8
Mar 2010  
Order Number: 320003-09  
P33-65nm  
Table 2:  
TSOP Package Dimensions (Sheet 2 of 2)  
Millimeters  
Inches  
Nom  
Product Information  
Symbol  
Note  
Min  
Nom  
Max  
Min  
Max  
Lead Count  
N
θ
-
0°  
56  
3°  
-
-
0°  
56  
3°  
-
Lead Tip Angle  
5°  
5°  
Seating Plane Coplanarity  
Lead to Package Offset  
Notes:  
Y
Z
-
-
0.100  
0.350  
-
-
0.004  
0.014  
0.150  
0.250  
0.006  
0.010  
1.  
2.  
3.  
One dimple on package denotes Pin 1.  
If two dimples, then the larger dimple denotes Pin 1.  
Pin 1 will always be in the upper left corner of the package, in reference to the product mark.  
2.2  
64-Ball Easy BGA Package  
Figure 3: Easy BGA Mechanical Specifications (256-Mbit, 512-Mbit)  
Ball A1  
Ball A1  
Corner  
Corner  
D
S1  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
S2  
A
B
C
D
E
F
A
B
C
D
E
F
b
e
E
G
H
G
H
Top View - Ball side down  
A1  
Bottom View - Ball Side Up  
A2  
A
Seating  
Plane  
Y
Note: Drawing not to scale  
Datasheet  
9
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
Table 3:  
Easy BGA Package Dimensions  
Millimeters  
Nom  
Inches  
Nom  
Product Information  
Symbol  
Notes  
Min  
Max  
Min  
Max  
Package Height  
A
A1  
A2  
b
-
0.250  
-
-
1.200  
-
-
-
0.0472  
-
Ball Height  
-
0.0098  
-
-
Package Body Thickness  
Ball (Lead) Width  
0.780  
0.430  
10.000  
13.000  
1.000  
64  
-
0.0307  
0.0169  
0.3937  
0.5118  
0.0394  
64  
-
0.330  
9.900  
12.900  
-
0.530  
10.100  
13.100  
-
0.0130  
0.3898  
0.5079  
-
0.0209  
0.3976  
0.5157  
-
Package Body Width  
Package Body Length  
Pitch  
D
Note  
Note  
E
[e]  
N
Ball (Lead) Count  
-
-
-
-
Seating Plane Coplanarity  
Corner to Ball A1 Distance Along D  
Corner to Ball A1 Distance Along E  
Y
-
-
0.100  
1.600  
3.100  
-
-
0.0039  
0.0630  
0.1220  
S1  
S2  
1.400  
2.900  
1.500  
3.000  
0.0551  
0.1142  
0.0591  
0.1181  
Note  
Note  
Note: Daisy Chain Evaluation Unit information is at Numonyx™ Flash Memory Packaging Technology http://  
developer.numonyx.com/design/flash/packtech.  
Datasheet  
10  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
3.0  
Ballouts  
Figure 4: 56-Lead TSOP Pinout (256-Mbit)  
WAIT  
A17  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
1
2
3
4
5
6
7
8
A16  
A15  
DQ15  
DQ7  
DQ14  
DQ6  
DQ13  
DQ5  
DQ12  
DQ4  
ADV#  
CLK  
RST#  
VPP  
DQ11  
DQ3  
DQ10  
DQ2  
VCCQ  
DQ9  
DQ1  
DQ8  
DQ0  
VCC  
OE#  
A14  
A13  
A12  
A11  
A10  
A9  
A23  
A22  
A21  
VSS  
VCC  
WE#  
WP#  
A20  
A19  
A18  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A24  
RFU  
VSS  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Numonyx®  
AxcellFlash Memory (P33)  
56-Lead TSOP Pinout  
14 mm x 20 mm  
Top View  
VSS  
CE#  
A1  
Notes:  
1.  
2.  
3.  
4.  
A1 is the least significant address bit.  
A24 is valid for 256-Mbit densities; otherwise, it is a no connect (NC).  
No Internal Connection on VCC Pin 13; it may be driven or floated. For legacy designs, pin can be tied to Vcc.  
One dimple on package denotes Pin 1, which will always be in the upper left corner of the package, in reference to the  
product mark.  
Datasheet  
11  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
Figure 5: 64-Ball Easy BGA Ballout (256-Mbit, 512-Mbit)  
5
8
8
5
1
2
3
4
6
7
7
6
4
3
2
1
A
A
B
C
D
E
A1  
A2  
A3  
A4  
A6  
VSS  
A7  
A8  
VPP A13 VCC A18 A22  
A22 A18 VCC A13  
VPP  
A8  
A9  
A6  
VSS  
A7  
A1  
A2  
B
C
D
A9 CE# A14 A25 A19 RFU  
A10 A12 A15 WP# A20 A21  
A11 RST# VCCQ VCCQ A16 A17  
RFU A19 A25 A14 CE#  
A21 A20 WP# A15 A12 A10  
A17 A16 VCCQ VCCQ RST# A11  
A3  
A5  
A5  
A4  
E
F
DQ8 DQ1 DQ9 DQ3 DQ4 CLK DQ15 RFU  
RFU DQ0 DQ10 DQ11 DQ12 ADV# WAIT OE#  
A23 RFU DQ2 VCCQ DQ5 DQ6 DQ14 WE#  
RFU DQ15 CLK DQ4 DQ3 DQ9 DQ1  
DQ8  
F
OE# WAIT ADV# DQ12 DQ11 DQ10 DQ0 RFU  
WE# DQ14 DQ6 DQ5 VCCQ DQ2 RFU A23  
G
G
H
H
RFU VSS VCC VSS DQ13 VSS DQ7 A24  
A24 DQ7 VSS DQ13 VSS VCC VSS RFU  
Easy BGA  
Easy BGA  
Top View- Ball side down  
Bottom View- Ball side up  
Notes:  
1.  
2.  
3.  
4.  
A1 is the least significant address bit.  
A24 is valid for 256-Mbit densities and above; otherwise, it is a no connect.  
A25 is valid for 512-Mbit densities; otherwise, it is a no connect.  
One dimple on package denotes A1 Pin, which will always be in the upper left corner of the package, in reference to the  
product mark.  
Datasheet  
12  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
4.0  
Signals  
Table 4:  
TSOP and Easy BGA Signal Descriptions (Sheet 1 of 2)  
Symbol  
Type  
Name and Function  
ADDRESS INPUTS: Device address inputs. 256-Mbit: A[24:1]; 512-Mbit: A[25:1]. Note: The  
A[MAX:1]  
DQ[15:0]  
Input  
virtual selection of the 256-Mbit “Top parameter” die in the dual-die 512-Mbit configuration is  
accomplished by setting A25 high (V ).  
IH  
DATA INPUT/OUTPUTS: Inputs data and commands during write cycles; outputs data during  
reads of memory, status register, OTP register, and read configuration register. Data balls float when  
the CE# or OE# are deasserted. Data is internally latched during writes.  
Input/  
Output  
ADDRESS VALID: Active low input. During synchronous read operations, addresses are latched on  
the rising edge of ADV#, or on the next valid CLK edge with ADV# low, whichever occurs first.  
ADV#  
Input  
In asynchronous mode, the address is latched when ADV# going high or continuously flows through  
if ADV# is held low.  
WARNING: Designs not using ADV# must tie it to VSS to allow addresses to flow through.  
CHIP ENABLE: Active low input. CE# low selects the associated flash memory die. When asserted,  
flash internal control logic, input buffers, decoders, and sense amplifiers are active. When  
deasserted, the associated flash die is deselected, power is reduced to standby levels, data and  
WAIT outputs are placed in high-Z state.  
CE#  
CLK  
Input  
Input  
WARNING: All chip enables must be high when device is not in use.  
CLOCK: Synchronizes the device with the system’s bus frequency in synchronous-read mode.  
During synchronous read operations, addresses are latched on the rising edge of ADV#, or on the  
next valid CLK edge with ADV# low, whichever occurs first.  
WARNING: Designs not using CLK for synchronous read mode must tie it to VCCQ or VSS.  
OUTPUT ENABLE: Active low input. OE# low enables the device’s output data buffers during read  
OE#  
Input  
Input  
cycles. OE# high places the data outputs and WAIT in High-Z.  
RESET: Active low input. RST# resets internal automation and inhibits write operations. This  
provides data protection during power transitions. RST# high enables normal operation. Exit from  
reset places the device in asynchronous read array mode.  
RST#  
WAIT: Indicates data valid in synchronous array or non-array burst reads. RCR[10], (WT)  
determines its polarity when asserted. WAIT’s active output is V or V  
when CE# and OE# are  
OL  
OH  
V . WAIT is high-Z if CE# or OE# is V  
.
IL  
IH  
WAIT  
Output  
In synchronous array or non-array read modes, WAIT indicates invalid data when asserted and  
valid data when deasserted.  
In asynchronous page mode, and all write modes, WAIT is deasserted.  
WRITE ENABLE: Active low input. WE# controls writes to the device. Address and data are latched  
on the rising edge of WE#.  
WE#  
WP#  
Input  
Input  
WRITE PROTECT: Active low input. WP# low enables the lock-down mechanism. Blocks in lock-  
down cannot be unlocked with the Unlock command. WP# high overrides the lock-down function  
enabling blocks to be erased or programmed using software commands.  
ERASE AND PROGRAM POWER: A valid voltage on this pin allows erasing or programming.  
Memory contents cannot be altered when VPP V  
voltages should not be attempted.  
. Block erase and program at invalid VPP  
PPLK  
Set VPP = V  
for in-system program and erase operations. To accommodate resistor or diode drops  
PPL  
Power/  
Input  
VPP  
from the system supply, the V level of VPP can be as low as V  
min. VPP must remain above V  
IH  
PPL PPL  
min to perform in-system flash modification. VPP may be 0 V during read operations.  
V
can be applied to main blocks for 1000 cycles maximum and to parameter blocks for 2500  
PPH  
cycles. VPP can be connected to 9 V for a cumulative total not to exceed 80 hours. Extended use of  
this pin at 9 V may reduce block cycling capability.  
DEVICE CORE POWER SUPPLY: Core (logic) source voltage. Writes to the flash array are inhibited  
VCC  
Power  
when VCC V  
. Operations at invalid VCC voltages should not be attempted.  
LKO  
VCCQ  
VSS  
Power  
Power  
OUTPUT POWER SUPPLY: Output-driver source voltage.  
GROUND: Connect to system ground. Do not float any VSS connection.  
Datasheet  
13  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
Table 4:  
TSOP and Easy BGA Signal Descriptions (Sheet 2 of 2)  
Symbol  
Type  
Name and Function  
RESERVED FOR FUTURE USE: Reserved by Numonyx for future device functionality and  
enhancement. These should be treated in the same way as a Don’t Use (DU) signal.  
RFU  
DU  
NC  
DON’T USE: Do not connect to any other signal, or power supply; must be left floating.  
NO CONNECT: No internal connection; can be driven or floated.  
4.1  
Dual-Die Configurations  
Figure 6: 512-Mbit Easy BGA Block Diagram  
Easy BGA 512-Mbit (Dual-Die) Configuration  
CE#  
Top Param Die  
(256-Mbit)  
RST#  
VCC  
VPP  
WP#  
OE#  
WE#  
VCCQ  
VSS  
CLK  
ADV#  
Bottom Param Die  
(256-Mbit)  
DQ[15:0]  
WAIT  
A[MAX:1]  
Note:  
Amax = VIH selects the Top parameter Die; Amax = VIL selects the Bottom Parameter  
Die.  
Datasheet  
14  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
5.0  
Bus Operations  
CE# low and RST# high enable device read operations. The device internally decodes  
upper address inputs to determine the accessed block. ADV# low opens the internal  
address latches. OE# low activates the outputs and gates selected data onto the I/O  
bus.  
In asynchronous mode, the address is latched when ADV# goes high or continuously  
flows through if ADV# is held low. In synchronous mode, the address is latched by the  
first of either the rising ADV# edge or the next valid CLK edge with ADV# low (WE#  
and RST# must be VIH; CE# must be VIL).  
Bus cycles to/from the P33-65nm device conform to standard microprocessor bus  
operations. Table 5, “Bus Operations Summary”summarizes the bus operations and the  
logic levels that must be applied to the device control signal inputs.  
Table 5:  
Bus Operations Summary  
Bus Operation  
RST#  
CLK  
ADV#  
CE#  
OE#  
WE#  
WAIT  
DQ[15:0] Notes  
Asynchronous  
Synchronous  
V
V
V
V
V
X
L
L
L
L
L
L
H
H
L
Output  
Output  
IH  
Deasserted  
Driven  
Read  
Write  
Running  
IH  
IH  
IH  
IH  
X
X
X
X
L
L
H
H
X
X
High-Z  
High-Z  
High-Z  
High-Z  
Input  
High-Z  
High-Z  
High-Z  
1
2
Output Disable  
Standby  
Reset  
X
X
X
L
H
X
X
H
X
2
V
2,3  
IL  
Notes:  
1.  
Refer to the Table 7, “Command Bus Cycles” on page 19 for valid DQ[15:0] during a write  
operation.  
2.  
3.  
X = Don’t Care (H or L).  
RST# must be at V ± 0.2 V to meet the maximum specified power-down current.  
SS  
5.1  
5.2  
Read  
To perform a read operation, RST# and WE# must be deasserted while CE# and OE#  
are asserted. CE# is the device-select control. When asserted, it enables the flash  
memory device. OE# is the data-output control. When asserted, the addressed flash  
memory data is driven onto the I/O bus.  
Write  
To perform a write operation, both CE# and WE# are asserted while RST# and OE# are  
deasserted. During a write operation, address and data are latched on the rising edge  
of WE# or CE#, whichever occurs first. Table 7, “Command Bus Cycles” on page 19  
shows the bus cycle sequence for each of the supported device commands, while  
Table 6, “Command Codes and Definitions” on page 17 describes each command. See  
Section 15.0, “AC Characteristics” on page 48 for signal-timing details.  
Note:  
Write operations with invalid VCC and/or VPP voltages can produce spurious results and  
should not be attempted.  
5.3  
Output Disable  
When OE# is deasserted, device outputs DQ[15:0] are disabled and placed in a high-  
impedance (High-Z) state, WAIT is also placed in High-Z.  
Datasheet  
15  
Mar 2010  
OrderNumber:320003-09  
 
P33-65nm  
5.4  
5.5  
Standby  
When CE# is deasserted the device is deselected and placed in standby, substantially  
reducing power consumption. In standby, the data outputs are placed in High-Z,  
independent of the level placed on OE#. Standby current, ICCS, is the average current  
measured over any 5 ms time interval, 5 μs after CE# is deasserted. During standby,  
average current is measured over the same time interval 5 μs after CE# is deasserted.  
When the device is deselected (while CE# is deasserted) during a program or erase  
operation, it continues to consume active power until the program or erase operation is  
completed.  
Reset  
As with any automated device, it is important to assert RST# when the system is reset.  
When the system comes out of reset, the system processor attempts to read from the  
flash memory if it is the system boot device. If a CPU reset occurs with no flash  
memory reset, improper CPU initialization may occur because the flash memory may  
be providing status information rather than array data. Flash memory devices from  
Numonyx allow proper CPU initialization following a system reset through the use of the  
RST# input. RST# should be controlled by the same low-true reset signal that resets  
the system CPU.  
After initial power-up or reset, the device defaults to asynchronous Read Array mode,  
and the Status Register is set to 0x80. Asserting RST# de-energizes all internal  
circuits, and places the output drivers in High-Z. When RST# is asserted, the device  
shuts down the operation in progress, a process which takes a minimum amount of  
time to complete. When RST# has been deasserted, the device is reset to  
asynchronous Read Array state.  
Note:  
If RST# is asserted during a program or erase operation, the operation is terminated  
and the memory contents at the aborted location (for a program) or block (for an  
erase) are no longer valid, because the data may have been only partially written or  
erased.  
When returning from a reset (RST# deasserted), a minimum wait is required before the  
initial read access outputs valid data. Also, a minimum delay is required after a reset  
before a write cycle can be initiated. After this wake-up interval passes, normal  
operation is restored. See Section 15.0, “AC Characteristics” on page 48 for details  
about signal-timing.  
Datasheet  
16  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
6.0  
Command Set  
6.1  
Device Command Codes  
The system Central Processing Unit provides control of all in-system read, write, and  
erase operations of the device via the system bus. The on-chip WSM manages all block-  
erase and word-program algorithms.  
Device commands are written to the CUI to control all flash memory device operations.  
The CUI does not occupy an addressable memory location; it is the mechanism through  
which the flash device is controlled. Table 6 shows valid device command codes and  
descriptions.  
Table 6:  
Command Codes and Definitions (Sheet 1 of 2)  
Mode  
Code  
Device Mode  
Read Array  
Description  
0xFF  
Places the device in Read Array mode. Array data is output on DQ[15:0].  
Read Status  
Register  
Places the device in Read Status Register mode. The device enters this mode  
after a program or erase command is issued. SR data is output on DQ[7:0].  
0x70  
0x90  
Read Device ID  
or Configuration  
Register  
Places device in Read Device Identifier mode. Subsequent reads output  
manufacturer/device codes, Configuration Register data, Block Lock status,  
or OTP register data on DQ[15:0].  
Read  
Places the device in Read Query mode. Subsequent reads output Common  
Flash Interface information on DQ[7:0].  
0x98  
0x50  
Read Query  
Clear Status  
Register  
The WSM can only set SR error bits. The Clear Status Register command is  
used to clear the SR error bits.  
First cycle of a 2-cycle programming command; prepares the CUI for a write  
operation. On the next write cycle, the address and data are latched and the  
WSM executes the programming algorithm at the addressed location. During  
program operations, the device responds only to Read Status Register and  
Program Suspend commands. CE# or OE# must be toggled to update the  
Status Register in asynchronous read. CE# or ADV# must be toggled to  
update the SR Data for synchronous Non-array reads. The Read Array  
command must be issued to read array data after programming has finished.  
Word Program  
Setup  
0x40  
This command loads a variable number of words up to the buffer size of 512  
words onto the program buffer.  
0xE8  
0xD0  
Buffered Program  
Write  
The confirm command is Issued after the data streaming for writing into the  
buffer is done. This instructs the WSM to perform the Buffered Program  
algorithm, writing the data from the buffer to the flash memory array.  
Buffered Program  
Confirm  
First cycle of a 2-cycle command; initiates the BEFP mode. The CUI then  
waits for the BEFP Confirm command, 0xD0, that initiates the BEFP  
algorithm. All other commands are ignored when BEFP mode begins.  
0x80  
0xD0  
BEFP Setup  
If the previous command was BEFP Setup (0x80), the CUI latches the  
address and data, and prepares the device for BEFP mode.  
BEFP Confirm  
First cycle of a 2-cycle command; prepares the CUI for a block-erase  
operation. The WSM performs the erase algorithm on the block addressed by  
the Erase Confirm command. If the next command is not the Erase Confirm  
(0xD0) command, the CUI sets Status Register bits SR [5,4], and places the  
device in Read Status Register mode.  
0x20  
0xD0  
Block Erase Setup  
Erase  
If the first command was Block Erase Setup (0x20), the CUI latches the  
address and data, and the WSM erases the addressed block. During block-  
erase operations, the device responds only to Read Status Register and Erase  
Suspend commands. CE# or OE# must be toggled to update the Status  
Register in asynchronous read. CE# or ADV# must be toggled to update the  
SR Data for synchronous Non-array reads.  
Block Erase Confirm  
Datasheet  
17  
Mar 2010  
OrderNumber:320003-09  
 
P33-65nm  
Table 6:  
Command Codes and Definitions (Sheet 2 of 2)  
Mode  
Code  
Device Mode  
Description  
This command issued to any device address initiates a suspend of the  
currently-executing program or block erase operation. The Status Register  
indicates successful suspend operation by setting either SR.2 (program  
suspended) or SR 6 (erase suspended), along with SR.7 (ready). The WSM  
remains in the suspend mode regardless of control signal states (except for  
RST# asserted).  
Program or Erase  
Suspend  
0xB0  
Suspend  
This command issued to any device address resumes the suspended program  
or block-erase operation.  
0xD0  
0x60  
Suspend Resume  
Block lock Setup  
First cycle of a 2-cycle command; prepares the CUI for block lock  
configuration changes. If the next command is not Block Lock (0x01), Block  
Unlock (0xD0), or Block Lock-Down (0x2F), the CUI sets SR.5 and SR.4,  
indicating a command sequence error.  
If the previous command was Block Lock Setup (0x60), the addressed block  
is locked.  
0x01  
0xD0  
0x2F  
Block lock  
If the previous command was Block Lock Setup (0x60), the addressed block  
is unlocked. If the addressed block is in a lock-down state, the operation has  
no effect.  
Protection  
Unlock Block  
Lock-Down Block  
If the previous command was Block Lock Setup (0x60), the addressed block  
is locked down.  
First cycle of a 2-cycle command; prepares the device for a OTP register or  
Lock Register program operation. The second cycle latches the register  
address and data, and starts the programming algorithm to program data the  
the OTP array.  
Protection program  
setup  
0xC0  
0x60  
0x03  
First cycle of a 2-cycle command; prepares the CUI for device read  
configuration. If the Set Read Configuration Register command (0x03) is not  
the next command, the CUI sets Status Register bits SR.5 and SR.4,  
indicating a command sequence error.  
Read Configuration  
Register Setup  
Configuration  
If the previous command was Read Configuration Register Setup (0x60), the  
CUI latches the address and writes A[15:0]to the Read Configuration  
Register. Following a Configure RCR command, subsequent read operations  
access array data.  
Read Configuration  
Register  
First cycle of a 2-cycle command; initiates the Blank Check operation on a  
main block.  
0xBC  
0xD0  
Blank Check  
blank check  
other  
Blank Check  
Confirm  
Second cycle of blank check command sequence; it latches the block address  
and executes blank check on the main array block.  
This command is used in extended function interface. first cycle of a multiple-  
cycle command second cycle is a Sub-Op-Code, the data written on third  
cycle is one less than the word count; the allowable value on this cycle are 0  
through 511. The subsequent cycles load data words into the program buffer  
at a specified address until word count is achieved.  
Extended Function  
Interface command  
0xEB  
6.2  
Device Command Bus Cycles  
Device operations are initiated by writing specific device commands to the CUI. See  
Table 7, “Command Bus Cycles” on page 19. Several commands are used to modify  
array data including Word Program and Block Erase commands. Writing either  
command to the CUI initiates a sequence of internally-timed functions that culminate in  
the completion of the requested task. However, the operation can be aborted by either  
asserting RST# or by issuing an appropriate suspend command.  
Datasheet  
18  
Mar 2010  
Order Number: 320003-09  
 
P33-65nm  
Table 7:  
Command Bus Cycles (Sheet 1 of 2)  
First Bus Cycle  
Second Bus Cycle  
(1)  
Bus  
Cycles  
Mode  
Command  
(1)  
(2)  
(2)  
Oper  
Addr  
Data  
Oper  
Addr  
Data  
Read Array  
1
Write  
DnA  
DnA  
0xFF  
-
-
-
Read Device  
Identifier  
2  
Write  
0x90  
Read  
DBA + IA  
ID  
Read  
Read CFI  
2  
2
Write  
Write  
Write  
Write  
Write  
DnA  
DnA  
DnA  
WA  
0x98  
0x70  
0x50  
0x40  
0xE8  
Read  
Read  
-
DBA + CFI-A  
CFI-D  
SRD  
-
Read Status Register  
Clear Status Register  
Word Program  
DnA  
-
1
2
Write  
Write  
WA  
WA  
WD  
(3)  
Buffered Program  
> 2  
WA  
N - 1  
Program  
Buffered Enhanced  
Factory Program  
> 2  
Write  
WA  
0x80  
Write  
WA  
0xD0  
(4)  
(BEFP)  
Erase  
Block Erase  
2
1
Write  
Write  
BA  
0x20  
0xB0  
Write  
-
BA  
-
0xD0  
-
Program/Erase  
Suspend  
DnA  
Suspend  
Program/Erase  
Resume  
1
Write  
DnA  
0xD0  
-
-
-
Lock Block  
2
2
2
2
Write  
Write  
Write  
Write  
BA  
BA  
0x60  
0x60  
0x60  
0xC0  
Write  
Write  
Write  
Write  
BA  
BA  
0x01  
0xD0  
0x2F  
Unlock Block  
Lock-down Block  
Program OTP register  
BA  
BA  
Protection  
PRA  
OTP-RA  
OTP-D  
Program Lock  
Register  
2
2
Write  
Write  
LRA  
0xC0  
0x60  
Write  
Write  
LRA  
LRD  
Program Read  
Configuration Configuration  
RCD  
RCD  
0x03  
Register  
Datasheet  
19  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
Table 7:  
Command Bus Cycles (Sheet 2 of 2)  
First Bus Cycle  
Second Bus Cycle  
Bus  
Mode  
Command  
Cycles  
(1)  
(2)  
(1)  
(2)  
Oper  
Addr  
Data  
Oper  
Addr  
Data  
Blank Check  
2
Write  
BA  
0xBC  
Write  
BA  
D0  
Extended Function  
Interface  
Others  
Sub-Op  
code  
>2  
Write  
WA  
0xEB  
Write  
WA  
(5)  
command  
Notes:  
1.  
First command cycle address should be the same as the operation’s target address.  
DBA = Device Base Address (NOTE: needed for dual-die 512Mbit device)  
DnA = Address within the device.  
IA = Identification code address offset.  
CFI-A = Read CFI address offset.  
WA = Word address of memory location to be written.  
BA = Address within the block.  
OTP-RA = OTP register address.  
LRA = Lock Register address.  
RCD = Read Configuration Register data on A[16:1].  
ID = Identifier data.  
2.  
3.  
CFI-D = CFI data on DQ[15:0].  
SRD = Status Register data.  
WD = Word data.  
N = Word count of data to be loaded into the write buffer.  
OTP-D = OTP register data.  
LRD = Lock Register data.  
The second cycle of the Buffered Program Command is the word count of the data to be loaded into the write buffer. This  
is followed by up to 512 words of data.Then the confirm command (0xD0) is issued, triggering the array programming  
operation.  
4.  
5.  
The confirm command (0xD0) is followed by the buffer data.  
The second cycle is a Sub-Op-Code, the data written on third cycle is N-1; 1=< N <=512. The subsequent cycles load  
data words into the program buffer at a specified address until word count is achieved, after the data words are loaded,  
the final cycle is the confirm cycle 0xD0)  
Datasheet  
20  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
7.0  
Read Operation  
The device can be in any of four read states: Read Array, Read Identifier, Read Status  
or Read Query. Upon power-up, or after a reset, the device defaults to Read Array  
mode. To change the read state, the appropriate read command must be written to the  
device (see Section 6.2, “Device Command Bus Cycles” on page 18). The following  
sections describe read-mode operations in detail.  
The device supports two read modes: asynchronous page mode and synchronous burst  
mode. Asynchronous page mode is the default read mode after device power-up or a  
reset. The RCR must be configured to enable synchronous burst reads of the flash  
memory array (see Section 11.1, “Read Configuration Register” on page 34).  
7.1  
Asynchronous Page-Mode Read  
Following a device power-up or reset, asynchronous page mode is the default read  
mode and the device is set to Read Array mode. However, to perform array reads after  
any other device operation (e.g. write operation), the Read Array command must be  
issued in order to read from the flash memory array.  
Note:  
Asynchronous page-mode reads can only be performed when RCR.15 is set  
The Clear Status Register command clears the status register. It functions independent  
of VPP. The WSM sets and clears SR[7,6,2], but it sets bits SR[5,3,1] without clearing  
them. The Status Register should be cleared before starting a command sequence to  
avoid any ambiguity. A device reset also clears the Status Register.  
To perform an asynchronous page-mode read, an address is driven onto the address  
bus, and CE# and ADV# are asserted. WE# and RST# must already have been  
deasserted. WAIT is deasserted during asynchronous page mode. ADV# can be driven  
high to latch the address, or it must be held low throughout the read cycle. CLK is not  
used for asynchronous page-mode reads, and is ignored. If only asynchronous reads  
are to be performed, CLK should be tied to a valid VIH level, WAIT signal can be floated  
and ADV# must be tied to ground. Array data is driven onto DQ[15:0] after an initial  
access time tAVQV delay. (see Section 15.0, “AC Characteristics” on page 48).  
In asynchronous page mode, sixteen data words are “sensed” simultaneously from the  
flash memory array and loaded into an internal page buffer. The buffer word  
corresponding to the initial address on the Address bus is driven onto DQ[15:0] after  
the initial access delay. The lowest four address bits determine which word of the  
16-word page is output from the data buffer at any given time.  
7.2  
Synchronous Burst-Mode Read  
To perform a synchronous burst-read, an initial address is driven onto the address bus,  
and CE# and ADV# are asserted. WE# and RST# must already have been deasserted.  
ADV# is asserted, and then deasserted to latch the address. Alternately, ADV# can  
remain asserted throughout the burst access, in which case the address is latched on  
the next valid CLK edge while ADV# is asserted.  
During synchronous array and non-array read modes, the first word is output from the  
data buffer on the next valid CLK edge after the initial access latency delay (see Section  
11.1.2, “Latency Count” on page 35). Subsequent data is output on valid CLK edges  
following a minimum delay. However, for a synchronous non-array read, the same word  
of data will be output on successive clock edges until the burst length requirements are  
satisfied. Refer to the following waveforms for more detailed information:  
Figure 20, “Synchronous Single-Word Array or Non-array Read Timing” on page 53  
Datasheet  
21  
Mar 2010  
OrderNumber:320003-09  
 
P33-65nm  
Figure 21, “Continuous Burst Read, showing an Output Delay Timing” on page 53  
Figure 22, “Synchronous Burst-Mode Four-Word Read Timing” on page 54  
7.3  
Read Device Identifier  
The Read Device Identifier command instructs the device to output manufacturer code,  
device identifier code, block-lock status, OTP register data, or configuration register  
data (see Section 6.2, “Device Command Bus Cycles” on page 18 for details on issuing  
the Read Device Identifier command). Table 8, “Device Identifier Information” on  
page 22 and Table 9, “Device ID codes” on page 22 show the address offsets and data  
values for this device.  
Table 8:  
Device Identifier Information  
(1,2)  
Item  
Address  
Data  
Manufacturer Code  
0x00  
0x01  
0x89h  
ID (see Table 9)  
Lock Bit:  
Device ID Code  
Block Lock Configuration:  
Block Is Unlocked  
DQ0 = 0b0  
Block Is Locked  
BBA + 0x02  
DQ0 = 0b1  
Block Is not Locked-Down  
Block Is Locked-Down  
Read Configuration Register  
DQ1 = 0b0  
DQ1 = 0b1  
0x05  
DBA + 0x07  
0x80  
RCR Contents  
(3)  
General Purpose Register  
Lock Register 0  
general data  
PR-LK0  
64-bit Factory-Programmed OTP register  
64-bit User-Programmable OTP Register  
Lock Register 1  
0x81–0x84  
0x85–0x88  
0x89  
Factory OTP register data  
User OTP register data  
OTP register lock data  
User OTP register data  
128-bit User-Programmable OTP registers  
Notes:  
0x8A–0x109  
1.  
2.  
3.  
BBA = Block Base Address.  
DBA = Device base Address, Numonyx reserves other configuration address locations  
In P33-65nm, the GPR is used as read out register for Extended Functional interface command.  
Table 9:  
Device ID codes  
Device Identifier Codes  
ID Code Type  
Device Density  
–T  
–B  
(Top Parameter)  
(Bottom Parameter)  
Device Code  
256-Mbit  
891F  
8922  
Note: The 512-Mbit devices do not have a Device ID associated with them. Each die within the stack can be identified by either  
of the 256-Mbit Device ID codes depending on its parameter option.  
7.4  
Read CFI  
The Read CFI command instructs the device to output Common Flash Interface data  
when read.  
Datasheet  
22  
Mar 2010  
Order Number: 320003-09  
 
 
 
P33-65nm  
8.0  
Program Operation  
The device supports three programming methods: Word Programming (40h or 10h),  
Buffered Programming (E8h, D0h), and Buffered Enhanced Factory Programming (80h,  
D0h). The following sections describe device programming in detail.  
Successful programming requires the addressed block to be unlocked. If the block is  
locked down, WP# must be deasserted and the block must be unlocked before  
attempting to program the block. Attempting to program a locked block causes a  
program error (SR.4 and SR.1 set) and termination of the operation. See Section 10.0,  
“Security” on page 30 for details on locking and unlocking blocks.  
8.1  
Word Programming  
Word programming operations are initiated by writing the Word Program Setup  
command to the device. This is followed by a second write to the device with the  
address and data to be programmed. The device outputs Status Register data when  
read. See Figure 31, “Word Program Flowchart” on page 72. VPP must be above VPPLK  
,
and within the specified VPPL min/max values.  
During programming, the WSM executes a sequence of internally-timed events that  
program the desired data bits at the addressed location, and verifies that the bits are  
sufficiently programmed. Programming the flash memory array changes “ones” to  
“zeros. Memory array bits that are zeros can be changed to ones only by erasing the  
block.  
The Status Register can be examined for programming progress and errors by reading  
at any address. The device remains in the Read Status Register state until another  
command is written to the device.  
Status Register bit SR.7 indicates the programming status while the sequence  
executes. Commands that can be issued to the device during programming are  
Program Suspend, Read Status Register, Read Device Identifier, Read CFI, and Read  
Array (this returns unknown data).  
When programming has finished, Status Register bit SR.4 (when set) indicates a  
programming failure. If SR.3 is set, the WSM could not perform the word programming  
operation because VPP was outside of its acceptable limits. If SR.1 is set, the word  
programming operation attempted to program a locked block, causing the operation to  
abort.  
Before issuing a new command, the Status Register contents should be examined and  
then cleared using the Clear Status Register command. Any valid command can follow,  
when word programming has completed.  
8.2  
Buffered Programming  
The device features a 512-word buffer to enable optimum programming performance.  
For Buffered Programming, data is first written to an on-chip write buffer. Then the  
buffer data is programmed into the flash memory array in buffer-size increments. This  
can improve system programming performance significantly over non-buffered  
programming. (see Figure 33, “Buffer Program Flowchart” on page 74).  
When the Buffered Programming Setup command is issued, Status Register information  
is updated and reflects the availability of the buffer. SR.7 indicates buffer availability: if  
set, the buffer is available; if cleared, the buffer is not available.  
Note:  
The device default state is to output SR data after the Buffer Programming Setup  
Command. CE# and OE# toggle drive device to update Status Register. It is not  
Datasheet  
23  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
allowed to issue 70h to read SR data after E8h command otherwise 70h would be  
counted as Word Count.  
On the next write, a word count is written to the device at the buffer address. This tells  
the device how many data words will be written to the buffer, up to the maximum size  
of the buffer.  
On the next write, a device start address is given along with the first data to be written  
to the flash memory array. Subsequent writes provide additional device addresses and  
data. All data addresses must lie within the start address plus the word count.  
Optimum programming performance and lower power usage are obtained by aligning  
the starting address at the beginning of a 512-word boundary (A[9:1] = 0x00). The  
maximum buffer size would be 256-word if the misaligned address range is crossing a  
512-word boundary during programming.  
After the last data is written to the buffer, the Buffered Programming Confirm command  
must be issued to the original block address. The WSM begins to program buffer  
contents to the flash memory array. If a command other than the Buffered  
Programming Confirm command is written to the device, a command sequence error  
occurs and SR[7,5,4] are set. If an error occurs while writing to the array, the device  
stops programming, and SR[7,4] are set, indicating a programming failure.  
When Buffered Programming has completed, additional buffer writes can be initiated by  
issuing another Buffered Programming Setup command and repeating the buffered  
program sequence. Buffered programming may be performed with VPP = VPPL or VPPH  
(see Section 13.2, “Operating Conditions” on page 45 for limitations when operating  
the device with VPP = VPPH).  
If an attempt is made to program past an erase-block boundary using the Buffered  
Program command, the device aborts the operation. This generates a command  
sequence error, and SR[5,4] are set.  
If Buffered programming is attempted while VPP is below VPPLK, SR[4,3] are set. If any  
errors are detected that have set Status Register bits, the Status Register should be  
cleared using the Clear Status Register command.  
8.3  
Buffered Enhanced Factory Programming  
Buffered Enhanced Factory Programing (BEFP) speeds up Multi-Level Cell (MLC) flash  
programming. The enhanced programming algorithm used in BEFP eliminates  
traditional programming elements that drive up overhead in device programmer  
systems. (see Figure 34, “BEFP Flowchart” on page 75).  
BEFP consists of three phases: Setup, Program/Verify, and Exit It uses a write buffer to  
spread MLC program performance across 512 data words. Verification occurs in the  
same phase as programming to accurately program the flash memory cell to the  
correct bit state.  
A single two-cycle command sequence programs the entire block of data. This  
enhancement eliminates three write cycles per buffer: two commands and the word  
count for each set of 512 data words. Host programmer bus cycles fill the device’s write  
buffer followed by a status check. SR.0 indicates when data from the buffer has been  
programmed into sequential flash memory array locations.  
Following the buffer-to-flash array programming sequence, the Write State Machine  
(WSM) increments internal addressing to automatically select the next 512-word array  
boundary. This aspect of BEFP saves host programming equipment the address-bus  
setup overhead.  
Datasheet  
24  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
With adequate continuity testing, programming equipment can rely on the WSM’s  
internal verification to ensure that the device has programmed properly. This eliminates  
the external post-program verification and its associated overhead.  
8.3.1  
BEFP Requirements and Considerations  
BEFP requirements:  
• Case temperature: TC = 30 °C ± 10 °C  
• Nominal VCC  
• VPP driven to VPPH  
Target block must be unlocked before issuing the BEFP Setup and Confirm  
commands  
• The first-word address for the block to be programmed must be held constant from  
the setup phase through all data streaming into the target block, until transition to  
the exit phase is desired.  
• The first-word address must align with the start of an array buffer boundary. Word  
buffer boundaries in the array are determined by A[8:0] (0x000 through 01FF); the  
alignment start point is A[8:0] = 0x000.  
BEFP considerations:  
• For optimum performance, cycling must be limited below 50 erase cycles per block.  
Some degradation in performance may occur is this limit is exceeded, but the  
internal algorithm continues to work properly.  
• BEFP programs one block at a time; all buffer data must fall within a single block. If  
the internal address counter increments beyond the block’s maximum address,  
addressing wraps around to the beginning of the block.  
• BEFP cannot be suspended  
• Programming to the flash memory array can occur only when the buffer is full. If  
the number of words is less than 512, remaining locations must be filled with  
0xFFFF.  
8.3.2  
BEFP Setup Phase  
After receiving the BEFP Setup and Confirm command sequence, Status Register bit  
SR.7 (Ready) is cleared, indicating that the WSM is busy with BEFP algorithm startup. A  
delay before checking SR.7 is required to allow the WSM enough time to perform all of  
its setups and checks (Block-Lock status, VPP level, etc.). If an error is detected, SR.4  
is set and BEFP operation terminates. If the block was found to be locked, SR.1 is also  
set. SR.3 is set if the error occurred due to an incorrect VPP level.  
Note:  
Reading from the device after the BEFP Setup and Confirm command sequence outputs  
Status Register data. Do not issue the Read Status Register command; it will be  
interpreted as data to be loaded into the buffer.  
8.3.3  
BEFP Program/Verify Phase  
After the BEFP Setup Phase has completed, the host programming system must check  
SR[7,0] to determine the availability of the write buffer for data streaming. SR.7  
cleared indicates the device is busy and the BEFP program/verify phase is activated.  
SR.0 indicates the write buffer is available.  
Two basic sequences repeat in this phase: loading of the write buffer, followed by buffer  
data programming to the array. For BEFP, the count value for buffer loading is always  
the maximum buffer size of 512 words. During the buffer-loading sequence, data is  
Datasheet  
25  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
stored to sequential buffer locations starting at address 0x00. Programming of the  
buffer contents to the flash memory array starts as soon as the buffer is full. If the  
number of words is less than 512, the remaining buffer locations must be filled with  
0xFFFF.  
Caution:  
The buffer must be completely filled for programming to occur. Supplying an  
address outside of the current block's range during a buffer-fill sequence  
causes the algorithm to exit immediately. Any data previously loaded into the  
buffer during the fill cycle is not programmed into the array.  
The starting address for data entry must be buffer size aligned, if not the BEFP  
algorithm will be aborted and the program fails and (SR.4) flag will be set.  
Data words from the write buffer are directed to sequential memory locations in the  
flash memory array; programming continues from where the previous buffer sequence  
ended. The host programming system must poll SR.0 to determine when the buffer  
program sequence completes. SR.0 cleared indicates that all buffer data has been  
transferred to the flash array; SR.0 set indicates that the buffer is not available yet for  
the next fill cycle. The host system may check full status for errors at any time, but it is  
only necessary on a block basis after BEFP exit. After the buffer fill cycle, no write  
cycles should be issued to the device until SR.0 = 0 and the device is ready for the next  
buffer fill.  
Note:  
Any spurious writes are ignored after a buffer fill operation and when internal program  
is proceeding.  
The host programming system continues the BEFP algorithm by providing the next  
group of data words to be written to the buffer. Alternatively, it can terminate this  
phase by changing the block address to one outside of the current block’s range.  
The Program/Verify phase concludes when the programmer writes to a different block  
address; data supplied must be 0xFFFF. Upon Program/Verify phase completion, the  
device enters the BEFP Exit phase.  
8.3.4  
8.4  
BEFP Exit Phase  
When SR.7 is set, the device has returned to normal operating conditions. A full status  
check should be performed at this time to ensure the entire block programmed  
successfully. When exiting the BEFP algorithm with a block address change, the read  
mode will not change. After BEFP exit, any valid command can be issued to the device.  
Program Suspend  
Issuing the Program Suspend command while programming suspends the  
programming operation. This allows data to be accessed from the device other than the  
one being programmed. The Program Suspend command can be issued to any device  
address. A program operation can be suspended to perform reads only. Additionally, a  
program operation that is running during an erase suspend can be suspended to  
perform a read operation (see Figure 32, “Program Suspend/Resume Flowchart” on  
page 73).  
When a programming operation is executing, issuing the Program Suspend command  
requests the WSM to suspend the programming algorithm at predetermined points. The  
device continues to output Status Register data after the Program Suspend command is  
issued. Programming is suspended when Status Register bits SR[7,2] are set. Suspend  
latency is specified in Section 15.5, “Program and Erase Characteristics” on page 58.  
Datasheet  
26  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
To read data from the device, the Read Array command must be issued. Read Array,  
Read Status Register, Read Device Identifier, Read CFI, and Program Resume are valid  
commands during a program suspend.  
During a program suspend, deasserting CE# places the device in standby, reducing  
active current. VPP must remain at its programming level, and WP# must remain  
unchanged while in program suspend. If RST# is asserted, the device is reset.  
8.5  
8.6  
Program Resume  
The Resume command instructs the device to continue programming, and  
automatically clears Status Register bits SR[7,2]. This command can be written to any  
address. If error bits are set, the Status Register should be cleared before issuing the  
next instruction. RST# must remain deasserted (see Figure 32, “Program Suspend/  
Resume Flowchart” on page 73).  
Program Protection  
When VPP = VIL, absolute hardware write protection is provided for all device blocks. If  
VPP is at or below VPPLK, programming operations halt and SR.3 is set indicating a VPP-  
level error. Block lock registers are not affected by the voltage level on VPP; they may  
still be programmed and read, even if VPP is less than VPPLK  
.
Figure 7: Example VPP Supply Connections  
VCC  
VCC  
VPP  
VCC  
VPP  
VCC  
VPP  
PROT #  
10K Ω  
Low-voltage Programming only  
Logic Control of Device Protection  
Factory Programming with VPP = VPPH  
Complete write/Erase Protection when VPP VPPLK  
VCC  
VCC  
VCC  
VCC  
VPP  
VPP=VPPH  
VPP  
Low Voltage Programming Only  
Full Device Protection Unavailable  
Low Voltage and Factory Programming  
Datasheet  
27  
Mar 2010  
OrderNumber:320003-09  
 
P33-65nm  
9.0  
Erase Operation  
Flash erasing is performed on a block basis. An entire block is erased each time an  
erase command sequence is issued, and only one block is erased at a time. When a  
block is erased, all bits within that block read as logical ones. The following sections  
describe block erase operations in detail.  
9.1  
Block Erase  
Block erase operations are initiated by writing the Block Erase Setup command to the  
address of the block to be erased (see Section 6.2, “Device Command Bus Cycles” on  
page 18). Next, the Block Erase Confirm command is written to the address of the  
block to be erased. If the device is placed in standby (CE# deasserted) during an erase  
operation, the device completes the erase operation before entering standby. VPP must  
be above VPPLK and the block must be unlocked (see Figure 35, “Block Erase Flowchart”  
on page 76).  
During a block erase, the WSM executes a sequence of internally-timed events that  
conditions, erases, and verifies all bits within the block. Erasing the flash memory array  
changes “zeros” to “ones. Memory array bits that are ones can be changed to zeros  
only by programming the block.  
The Status Register can be examined for block erase progress and errors by reading  
any address. The device remains in the Read Status Register state until another  
command is written. SR.0 indicates whether the addressed block is erasing. Status  
Register bit SR.7 is set upon erase completion.  
Status Register bit SR.7 indicates block erase status while the sequence executes.  
When the erase operation has finished, Status Register bit SR.5 indicates an erase  
failure if set. SR.3 set would indicate that the WSM could not perform the erase  
operation because VPP was outside of its acceptable limits. SR.1 set indicates that the  
erase operation attempted to erase a locked block, causing the operation to abort.  
Before issuing a new command, the Status Register contents should be examined and  
then cleared using the Clear Status Register command. Any valid command can follow  
once the block erase operation has completed.  
9.2  
Blank Check  
The Blank Check operation determines whether a specified main block is blank (i.e.  
completely erased). Without Blank Check, Block Erase would be the only other way to  
ensure a block is completely erased. so Blank Check can be used to determine whether  
or not a prior erase operation was successful; this includes erase operations that may  
have been interrupted by power loss.  
Blank check can apply to only one block at a time, and no operations other than Status  
Register Reads are allowed during Blank Check (e.g. reading array data, program,  
erase etc). Suspend and resume operations are not supported during Blank Check, nor  
is Blank Check supported during any suspended operations.  
Blank Check operations are initiated by writing the Blank Check Setup command to the  
block address. Next, the Check Confirm command is issued along with the same block  
address. When a successful command sequence is entered, the device automatically  
enters the Read Status State. The WSM then reads the entire specified block, and  
determines whether any bit in the block is programmed or over-erased.  
Datasheet  
28  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
The status register can be examined for Blank Check progress and errors by reading  
any address within the block being accessed. During a blank check operation, the  
Status Register indicates a busy status (SR.7 = 0). Upon completion, the Status  
Register indicates a ready status (SR.7 = 1). The Status Register should be checked for  
any errors, and then cleared. If the Blank Check operation fails, which means the block  
is not completely erased, the Status  
9.3  
Erase Suspend  
Issuing the Erase Suspend command while erasing suspends the block erase operation.  
This allows data to be accessed from memory locations other than the one being  
erased. The Erase Suspend command can be issued to any device address. A block  
erase operation can be suspended to perform a word or buffer program operation, or a  
read operation within any block except the block that is erase suspended (see  
Figure 37, “Erase Suspend/Resume Flowchart” on page 78).  
When a block erase operation is executing, issuing the Erase Suspend command  
requests the WSM to suspend the erase algorithm at predetermined points. The device  
continues to output Status Register data after the Erase Suspend command is issued.  
Block erase is suspended when Status Register bits SR[7,6] are set. Suspend latency is  
specified in Section 15.5, “Program and Erase Characteristics” on page 58.  
To read data from the device (other than an erase-suspended block), the Read Array  
command must be issued. During Erase Suspend, a Program command can be issued  
to any block other than the erase-suspended block. Block erase cannot resume until  
program operations initiated during erase suspend complete. Read Array, Read Status  
Register, Read Device Identifier, Read CFI, and Erase Resume are valid commands  
during Erase Suspend. Additionally, Clear Status Register, Program, Program Suspend,  
Block Lock, Block Unlock, and Block Lock-Down are valid commands during Erase  
Suspend.  
During an erase suspend, deasserting CE# places the device in standby, reducing  
active current. VPP must remain at a valid level, and WP# must remain unchanged  
while in erase suspend. If RST# is asserted, the device is reset.  
9.4  
9.5  
Erase Resume  
The Erase Resume command instructs the device to continue erasing, and  
automatically clears SR[7,6]. This command can be written to any address. If status  
register error bits are set, the Status Register should be cleared before issuing the next  
instruction. RST# must remain deasserted.  
Erase Protection  
When VPP = VIL, absolute hardware erase protection is provided for all device blocks. If  
VPP is at or below VPPLK, erase operations halt and SR.3 is set indicating a VPP-level  
error.  
Datasheet  
29  
Mar 2010  
OrderNumber:320003-09  
 
P33-65nm  
10.0  
Security  
The device features security modes used to protect the information stored in the flash  
memory array. The following sections describe each security mode in detail.  
10.1  
Block Locking  
Individual instant block locking is used to protect user code and/or data within the flash  
memory array. All blocks power up in a locked state to protect array data from being  
altered during power transitions. Any block can be locked or unlocked with no latency.  
Locked blocks cannot be programmed or erased; they can only be read.  
Software-controlled security is implemented using the Block Lock and Block Unlock  
commands. Hardware-controlled security can be implemented using the Block Lock-  
Down command along with asserting WP#. Also, VPP data security can be used to  
inhibit program and erase operations (see Section 8.6, “Program Protection” on  
page 27 and Section 9.5, “Erase Protection” on page 29).  
The P33-65nm device also offers four pre-defined areas in the main array that can be  
configured as One-Time Programmable (OTP) for the highest level of security. These  
include the four 32 KB parameter blocks together as one and the three adjacent 128 KB  
main blocks. This is available for top or bottom parameter devices.  
10.1.1  
Lock Block  
To lock a block, issue the Lock Block Setup command. The next command must be the  
Lock Block command issued to the desired block’s address (see Section 6.2, “Device  
Command Bus Cycles” on page 18 and Figure 36, “Block Lock Operations Flowchart” on  
page 77). If the Set Read Configuration Register command is issued after the Block  
Lock Setup command, the device configures the RCR instead.  
Block lock and unlock operations are not affected by the voltage level on VPP. The block  
lock bits may be modified and/or read even if VPP is at or below VPPLK  
.
10.1.2  
10.1.3  
Unlock Block  
The Unlock Block command is used to unlock blocks (see Section 6.2, “Device  
Command Bus Cycles” on page 18). Unlocked blocks can be read, programmed, and  
erased. Unlocked blocks return to a locked state when the device is reset or powered  
down. If a block is in a lock-down state, WP# must be deasserted before it can be  
unlocked (see Figure 8, “Block Locking State Diagram” on page 31).  
Lock-Down Block  
A locked or unlocked block can be locked-down by writing the Lock-Down Block  
command sequence (see Section 6.2, “Device Command Bus Cycles” on page 18).  
Blocks in a lock-down state cannot be programmed or erased; they can only be read.  
However, unlike locked blocks, their locked state cannot be changed by software  
commands alone. A locked-down block can only be unlocked by issuing the Unlock  
Block command with WP# deasserted. To return an unlocked block to locked-down  
state, a Lock-Down command must be issued prior to changing WP# to VIL. Locked-  
down blocks revert to the locked state upon reset or power up the device (see Figure 8,  
“Block Locking State Diagram” on page 31).  
Datasheet  
30  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
10.1.4  
Block Lock Status  
The Read Device Identifier command is used to determine a block’s lock status (see  
Section 7.3, “Read Device Identifier” on page 22). Data bits DQ[1:0] display the  
addressed block’s lock status; DQ0 is the addressed block’s lock bit, while DQ1 is the  
addressed block’s lock-down bit.  
Figure 8: Block Locking State Diagram  
P G M /E R A S E  
A L L O W E D  
P G M /E R A S E  
P R E V E N T E D  
L K /  
D 0 h  
L K /  
0 1 h  
[0 0 0 ]  
[0 0 1 ]  
P o w e r-U p /  
R e s e t D e fa u lt  
L K /  
2 F h  
W P # = V IL = 0  
[0 1 1 ]  
V irtu a l lo c k -  
d o w n  
[0 1 0 ]  
L o c k e d -d o w n  
A n y L o c k  
c o m m a n d s  
W P # to g g le  
L K /  
D 0 h  
L K /  
0 1 h o r 2 F h  
L o c k e d -d o w n  
is d is a b le d b y  
W P # = V IH  
[1 1 0 ]  
[1 1 1 ]  
W P # = V IH = 1  
L K /  
2 F h  
L K /  
2 F h  
P o w e r-U p /  
R e s e t D e fa u lt  
L K /  
D 0 h  
L K /  
0 1 h  
[1 0 0 ]  
[1 0 1 ]  
Note: LK: Lock Setup Command, 60h; LK/D0h: Unlock Command; LK/01h: Lock Command; LK/2Fh: Lock-Down Command.  
10.1.5  
Block Locking During Suspend  
Block lock and unlock changes can be performed during an erase suspend. To change  
block locking during an erase operation, first issue the Erase Suspend command.  
Monitor the Status Register until SR.7 and SR.6 are set, indicating the device is  
suspended and ready to accept another command.  
Next, write the desired lock command sequence to a block, which changes the lock  
state of that block. After completing block lock or unlock operations, resume the erase  
operation using the Erase Resume command.  
Note:  
A Lock Block Setup command followed by any command other than Lock Block, Unlock  
Block, or Lock-Down Block produces a command sequence error and set Status  
Register bits SR.4 and SR.5. If a command sequence error occurs during an erase  
suspend, SR.4 and SR.5 remains set, even after the erase operation is resumed. Unless  
the Status Register is cleared using the Clear Status Register command before  
resuming the erase operation, possible erase errors may be masked by the command  
sequence error.  
Datasheet  
31  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
If a block is locked or locked-down during an erase suspend of the same block, the lock  
status bits change immediately. However, the erase operation completes when it is  
resumed. Block lock operations cannot occur during a program suspend. See Appendix  
A, “Write State Machine” on page 81, which shows valid commands during an erase  
suspend.  
10.2  
10.3  
Selectable OTP Blocks  
Blocks from the main array may be optionally configured as OTP. Ask your local  
Numonyx representative for details about any of these selectable OTP implementations.  
Password Access  
Password Access is a security enhancement offered on the P33-65nm device. This  
feature protects information stored in main-array memory blocks by preventing content  
alteration or reads until a valid 64-bit password is received. Password Access may be  
combined with Non-Volatile Protection and/or Volatile Protection to create a multi-  
tiered solution. Please contact your Numonyx Sales for further details concerning  
Password Access.  
Datasheet  
32  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
11.0  
Status Register  
To read the Status Register, issue the Read Status Register command at any address.  
Status Register information is available to which the Read Status Register, Word  
Program, or Block Erase command was issued. SRD is automatically made available  
following a Word Program, Block Erase, or Block Lock command sequence. Reads from  
the device after any of these command sequences outputs the device’s status until  
another valid command is written (e.g. the Read Array command).  
The Status Register is read using single asynchronous-mode or synchronous burst  
mode reads. SRD is output on DQ[7:0], while 0x00 is output on DQ[15:8]. In  
asynchronous mode the falling edge of OE#, or CE# (whichever occurs first) updates  
and latches the Status Register contents. However, when reading the Status Register in  
synchronous burst mode, CE# or ADV# must be toggled to update SRD.  
The Device Write Status bit (SR.7) provides overall status of the device. SR[6:1]  
present status and error information about the program, erase, suspend, VPP, and  
block-locked operations.  
Table 10: Status Register Description  
Status Register (SR)  
Default Value = 0x80  
Erase  
Suspend  
Status  
Program  
Suspend  
Status  
BEFP  
Device Write  
Status  
Program  
Status  
Block-Locked  
Erase Status  
VPP Status  
Write  
Status  
Status  
DWS  
7
ESS  
6
ES  
5
PS  
4
VPPS  
3
PSS  
2
BLS  
1
BWS  
0
Bit  
Name  
Description  
0 = Device is busy; program or erase cycle in progress; SR.0 valid.  
1 = Device is ready; SR[6:1] are valid.  
7
6
5
Device Write Status (DWS)  
Erase Suspend Status (ESS)  
0 = Erase suspend not in effect.  
1 = Erase suspend in effect.  
Erase Status  
(ES)  
SR.5  
SR.4  
Description  
Command  
Sequence  
Error  
0
0
1
1
0
1
0
1
Program or Erase operation successful.  
Program error - operation aborted.  
Erase error - operation aborted.  
Program  
Status (PS)  
4
Command sequence error - command aborted.  
0 = VPP within acceptable limits during program or erase operation.  
1 = VPP < V during program or erase operation.  
3
2
1
VPP Status (VPPS)  
PPLK  
0 = Program suspend not in effect.  
1 = Program suspend in effect.  
Program Suspend Status  
(PSS)  
0 = Block not locked during program or erase.  
1 = Block locked during program or erase; operation aborted.  
Block-Locked Status (BLS)  
After Buffered Enhanced Factory Programming (BEFP) data is loaded into the  
buffer:  
0 = BEFP complete.  
0
BEFP Write Status (BWS)  
1 = BEFP in-progress.  
Notes:  
1.  
Always clear the Status Register prior to resuming erase operations. It avoids Status Register ambiguity when issuing  
commands during Erase Suspend. If a command sequence error occurs during an erase-suspend state, the Status Register  
contains the command sequence error status (SR[7,5,4] set). When the erase operation resumes and finishes, possible  
errors during the erase operation cannot be detected via the Status Register because it contains the previous error status  
BEFP mode is only valid in main array.  
2.  
Datasheet  
33  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
11.0.1  
11.1  
Clear Status Register  
The Clear Status Register command clears the status register. It functions independent  
of VPP. The WSM sets and clears SR[7,6,2], but it sets bits SR[5:3,1] without clearing  
them. The Status Register should be cleared before starting a command sequence to  
avoid any ambiguity. A device reset also clears the Status Register.  
Read Configuration Register  
The RCR is used to select the read mode (synchronous or asynchronous), and it defines  
the synchronous burst characteristics of the device. To modify RCR settings, use the  
Configure Read Configuration Register command (see Section 6.2, “Device Command  
Bus Cycles” on page 18).  
RCR contents can be examined using the Read Device Identifier command, and then  
reading from offset 0x05 (see Section 7.3, “Read Device Identifier” on page 22).  
The RCR is shown in Table 11. The following sections describe each RCR bit.  
Table 11: Read Configuration Register Description (Sheet 1 of 2)  
Read Configuration Register (RCR)  
WAIT  
Delay  
Burst  
Wrap  
Read  
Mode  
WAIT  
Burst  
Seq  
CLK  
Latency Count  
LC[3:0]  
RES  
RES  
RES  
Burst Length  
Polarity  
Edge  
RM  
15  
Bit  
WP  
10  
R
9
WD  
8
BS  
7
CE  
6
R
5
R
4
BW  
3
BL[2:0]  
1
14  
13  
12  
11  
2
0
Name  
Description  
0 = Synchronous burst-mode read  
1 = Asynchronous page-mode read (default)  
15  
Read Mode (RM)  
0010 =Code 2  
0011 =Code 3  
0100 =Code 4  
0101 =Code 5  
0110 =Code 6  
0111 =Code 7  
1000 =Code 8  
14:11  
Latency Count (LC[3:0])  
1001 =Code 9  
1010 =Code 10  
1011 =Code 11  
1100 =Code 12  
1101 =Code 13  
1110 =Code 14  
1111 =Code 15 (default)  
(Other bit settings are reserved)  
0 =WAIT signal is active low (default)  
1 =WAIT signal is active high  
WAIT Polarity (WP)  
10  
9
Reserved (R)  
Default “0, Non-changeable  
0 =WAIT deasserted with valid data  
8
WAIT Delay (WD)  
Burst Sequence (BS)  
1 =WAIT deasserted one data cycle before valid data (default)  
7
Default “0, Non-changeable  
Clock Edge (CE)  
Reserved (R)  
0 = Falling edge  
6
1 = Rising edge (default)  
5:4  
Default “0, Non-changeable  
Datasheet  
34  
Mar 2010  
Order Number: 320003-09  
 
P33-65nm  
Table 11: Read Configuration Register Description (Sheet 2 of 2)  
Burst Wrap (BW)  
0 =Wrap; Burst accesses wrap within burst length set by BL[2:0]  
1 =No Wrap; Burst accesses do not wrap within burst length (default)  
3
001 =4-word burst  
010 =8-word burst  
011 =16-word burst  
111 =Continuous-word burst (default)  
2:0  
Burst Length (BL[2:0])  
(Other bit settings are reserved)  
11.1.1  
11.1.2  
Read Mode  
The Read Mode (RM) bit selects synchronous burst-mode or asynchronous page-mode  
operation for the device. When the RM bit is set, asynchronous page mode is selected  
(default). When RM is cleared, synchronous burst mode is selected.  
Latency Count  
The Latency Count (LC) bits tell the device how many clock cycles must elapse from the  
rising edge of ADV# (or from the first valid clock edge after ADV# is asserted) until the  
first valid data word is driven onto DQ[15:0]. The input clock frequency is used to  
determine this value and Figure 9 shows the data output latency for the different  
settings of LC. The maximum Latency Count for P33 would be Code 4 based on the Max  
clock frequency specification of 52 MHz, and there will be zero WAIT States when  
bursting within the word line. Please also refer to Section 11.1.3, “End of Word Line  
(EOWL) Considerations” on page 37 for more information on EOWL.  
Refer to Table 12, “LC and Frequency Support” on page 36 for Latency Code Settings.  
Datasheet  
35  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
Figure 9: First-Access Latency Count  
CLK [C]  
Valid  
Address  
Address [A]  
ADV#[V]  
Code 0 (Reserved)  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ15-0 [D/Q]  
DQ15-0 [D/Q]  
DQ15-0 [D/Q]  
DQ15-0 [D/Q]  
DQ15-0 [D/Q]  
DQ15-0 [D/Q]  
DQ15-0 [D/Q]  
DQ15-0 [D/Q]  
Code 1  
(Reserved  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Code 2  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Code 3  
Code 4  
Code 5  
Code 6  
Code 7  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Table 12: LC and Frequency Support  
Latency Count Settings  
Frequency Support (MHz)  
5 (TSOP); 4 (Easy BGA)  
5 (Easy BGA)  
40  
52  
Datasheet  
36  
Mar 2010  
Order Number: 320003-09  
 
P33-65nm  
Figure 10: Example Latency Count Setting Using Code 3  
tData  
0
1
2
3
4
CLK  
CE#  
ADV#  
Address  
A[MAX:1]  
Code 3  
High-Z  
Data  
D[15:0]  
R103  
11.1.3  
End of Word Line (EOWL) Considerations  
End of Wordline (EOWL) WAIT states can result when the starting address of the burst  
operation is not aligned to a 16-word boundary; that is, A[3:0] of start address does  
not equal 0x0. Figure 11, “End of Wordline Timing Diagram” on page 37 illustrates the  
end of wordline WAIT state(s), which occur after the first 16-word boundary is reached.  
The number of data words and the number of WAIT states is summarized in Table 13,  
“End of Wordline Data and WAIT state Comparison” on page 38for both P33-130nm  
and P33-65nm devices.  
Figure 11: End of Wordline Timing Diagram  
Latency Count  
CLK  
A[Max:1]  
DQ[15:0]  
Address  
Data  
Data  
Data  
ADV#  
OE#  
WAIT  
EOWL  
Datasheet  
37  
Mar 2010  
OrderNumber:320003-09  
 
 
P33-65nm  
Table 13: End of Wordline Data and WAIT state Comparison  
P33-130nm  
P33-65nm  
Latency Count  
Data States  
WAIT States  
Data States  
WAIT States  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Not Supported  
Not Supported  
0 to 1  
Not Supported  
Not Supported  
Not Supported  
Not Supported  
0 to 2  
4
4
4
4
4
4
0 to 2  
0 to 3  
0 to 4  
0 to 5  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
0 to 3  
0 to 4  
0 to 5  
0 to 6  
0 to 7  
0 to 8  
0 to 9  
0 to 10  
0 to 11  
0 to 12  
0 to 13  
0 to 14  
0 to 6  
Not Supported  
Not Supported  
11.1.4  
WAIT Polarity  
The WAIT Polarity bit (WP), RCR.10 determines the asserted level (VOH or VOL) of WAIT.  
When WP is set, WAIT is asserted high. When WP is cleared, WAIT is asserted low  
(default). WAIT changes state on valid clock edges during active bus cycles (CE#  
asserted, OE# asserted, RST# deasserted).  
11.1.5  
WAIT Signal Function  
The WAIT signal indicates data valid when the device is operating in synchronous mode  
(RCR.15=0). The WAIT signal is only “deasserted” when data is valid on the bus.  
When the device is operating in synchronous non-array read mode, such as read  
status, read ID, or read query. The WAIT signal is also “deasserted” when data is valid  
on the bus.  
WAIT behavior during synchronous non-array reads at the end of word line works  
correctly only on the first data access.  
When the device is operating in asynchronous page mode, asynchronous single word  
read mode, and all write operations, WAIT is set to a deasserted state as determined  
by RCR.10. See Figure 18, “Asynchronous Single-Word Read (ADV# Latch)” on  
page 52, and Figure 19, “Asynchronous Page-Mode Read Timing” on page 52.  
Datasheet  
38  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
Table 14: WAIT Functionality Table  
Condition  
WAIT  
Notes  
CE# = ‘1, OE# = ‘X’ or CE# = ‘0, OE# = ‘1’  
CE# =’0, OE# = ‘0’  
High-Z  
Active  
1
1
Synchronous Array Reads  
Synchronous Non-Array Reads  
All Asynchronous Reads  
All Writes  
Active  
1
Active  
1
Deasserted  
High-Z  
1
1,2  
Notes:  
1.  
2.  
Active: WAIT is asserted until data becomes valid, then deasserts.  
When OE# = V during writes, WAIT = High-Z.  
IH  
11.1.6  
11.1.7  
WAIT Delay  
The WAIT Delay (WD) bit controls the WAIT assertion-delay behavior during  
synchronous burst reads. WAIT can be asserted either during or one data cycle before  
valid data is output on DQ[15:0]. When WD is set, WAIT is deasserted one data cycle  
before valid data (default). When WD is cleared, WAIT is deasserted during valid data.  
Burst Sequence  
The Burst Sequence (BS) bit selects linear-burst sequence (default). Only linear-burst  
sequence is supported. Table 15 shows the synchronous burst sequence for all burst  
lengths, as well as the effect of the Burst Wrap (BW) setting.  
Table 15: Burst Sequence Word Ordering (Sheet 1 of 2)  
Burst Addressing Sequence (DEC)  
Start  
Addr.  
(DEC)  
Burst  
Wrap  
(RCR.3)  
4-Word Burst  
(BL[2:0] = 0b001)  
8-Word Burst  
16-Word Burst  
(BL[2:0] = 0b011)  
Continuous Burst  
(BL[2:0] = 0b111)  
(BL[2:0] = 0b010)  
0
1
2
3
4
0
0
0
0
0
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
0-1-2-3-4…14-15  
1-2-3-4-5…15-0  
0-1-2-3-4-5-6-…  
1-2-3-4-5-6-7-…  
2-3-4-5-6-7-8-…  
3-4-5-6-7-8-9-…  
4-5-6-7-8-9-10…  
2-3-4-5-6…15-0-1  
3-4-5-6-7…15-0-1-2  
4-5-6-7-8…15-0-1-2-3  
5-6-7-8-9…15-0-1-2-3-  
4
5
6
7
0
0
0
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
5-6-7-8-9-10-11…  
6-7-8-9-10-11-12-…  
7-8-9-10-11-12-13…  
6-7-8-9-10…15-0-1-2-  
3-4-5  
7-8-9-10…15-0-1-2-3-  
4-5-6  
14-15-16-17-18-19-20-  
14  
15  
0
0
14-15-0-1-2…12-13  
15-0-1-2-3…13-14  
15-16-17-18-19-20-21-  
Datasheet  
39  
Mar 2010  
OrderNumber:320003-09  
 
P33-65nm  
Table 15: Burst Sequence Word Ordering (Sheet 2 of 2)  
0
1
2
3
4
5
6
7
1
1
1
1
1
1
1
1
0-1-2-3  
1-2-3-4  
2-3-4-5  
3-4-5-6  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-8  
0-1-2-3-4…14-15  
1-2-3-4-5…15-16  
2-3-4-5-6…16-17  
3-4-5-6-7…17-18  
4-5-6-7-8…18-19  
5-6-7-8-9…19-20  
6-7-8-9-10…20-21  
7-8-9-10-11…21-22  
0-1-2-3-4-5-6-…  
1-2-3-4-5-6-7-…  
2-3-4-5-6-7-8-…  
2-3-4-5-6-7-8-9  
3-4-5-6-7-8-9-10  
4-5-6-7-8-9-10-11  
5-6-7-8-9-10-11-12  
6-7-8-9-10-11-12-13  
7-8-9-10-11-12-13-14  
3-4-5-6-7-8-9-…  
4-5-6-7-8-9-10…  
5-6-7-8-9-10-11…  
6-7-8-9-10-11-12-…  
7-8-9-10-11-12-13…  
14-15-16-17-18-19-20-  
14  
15  
1
1
14-15-16-17-18…28-29  
15-16-17-18-19…29-30  
15-16-17-18-19-20-21-  
11.1.8  
11.1.9  
Clock Edge  
The Clock Edge (CE) bit selects either a rising (default) or falling clock edge for CLK.  
This clock edge is used at the start of a burst cycle, to output synchronous data, and to  
assert/deassert WAIT.  
Burst Wrap  
The Burst Wrap (BW) bit determines whether 4, 8, or 16-word burst length accesses  
wrap within the selected word-length boundaries or cross word-length boundaries.  
When BW is set, burst wrapping does not occur (default). When BW is cleared, burst  
wrapping occurs.  
11.1.10  
Burst Length  
The Burst Length bits (BL[2:0]) selects the linear burst length for all synchronous burst  
reads of the flash memory array. The burst lengths are 4-word, 8-word, 16-word, and  
continuous word.  
Continuous burst accesses are linear only, and do not wrap within any word length  
boundaries (see Table 15, “Burst Sequence Word Ordering” on page 39). When a burst  
cycle begins, the device outputs synchronous burst data until it reaches the end of the  
“burstable” address space.  
11.2  
One-Time Programmable (OTP) Registers  
The device contains 17 one-time programmable (OTP) registers that can be used to  
implement system security measures and/or device identification. Each OTP register  
can be individually locked.  
The first 128-bit OTP Register is comprised of two 64-bit (8-word) segments. The lower  
64-bit segment is pre-programmed at the Numonyx factory with a unique 64-bit  
number. The other 64-bit segment, as well as the other sixteen 128-bit OTP Registers,  
are blank. Users can program these registers as needed. Once programmed, users can  
then lock the OTP Register(s) to prevent additional bit programming (see Figure 12,  
“OTP Register Map” on page 41).  
Datasheet  
40  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
The OTP Registers contain OTP bits; when programmed, PR bits cannot be erased. Each  
OTP Register can be accessed multiple times to program individual bits, as long as the  
register remains unlocked.  
Each OTP Register has an associated Lock Register bit. When a Lock Register bit is  
programmed, the associated OTP Register can only be read; it can no longer be  
programmed. Additionally, because the Lock Register bits themselves are OTP, when  
programmed, Lock Register bits cannot be erased. Therefore, when a OTP Register is  
locked, it cannot be unlocked.  
.
Figure 12: OTP Register Map  
0x109  
128-bit Protection Register 16  
(User-Programmable)  
0x102  
0x91  
128-bit Protection Register 1  
(User-Programmable)  
0x8A  
0x89  
Lock Register 1  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0x88  
64-bit Segment  
(User-Programmable)  
0x85  
0x84  
128-Bit Protection Register 0  
64-bit Segment  
(Factory-Programmed)  
0x81  
0x80  
Lock Register 0  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
11.2.1  
Reading the OTP Registers  
The OTP Registers can be read from any address. To read the OTP Register, first issue  
the Read Device Identifier command at any address to place the device in the Read  
Device Identifier state (see Section 6.2, “Device Command Bus Cycles” on page 18).  
Next, perform a read operation using the address offset corresponding to the register  
to be read. Table 8, “Device Identifier Information” on page 22 shows the address  
offsets of the OTP Registers and Lock Registers. PR data is read 16 bits at a time.  
Datasheet  
41  
Mar 2010  
OrderNumber:320003-09  
 
P33-65nm  
11.2.2  
Programming the OTP Registers  
To program any of the OTP Registers, first issue the Program OTP Register command at  
the parameter’s base address plus the offset to the desired OTP Register (see Section  
6.2, “Device Command Bus Cycles” on page 18). Next, write the desired OTP Register  
data to the same OTP Register address (see Figure 12, “OTP Register Map” on  
page 41).  
The device programs the 64-bit and 128-bit user-programmable OTP Register data 16  
bits at a time (see Figure 38, “OTP Register Programming Flowchart” on page 79).  
Issuing the Program OTP Register command outside of the OTP Register’s address  
space causes a program error (SR.4 set). Attempting to program a locked OTP Register  
causes a program error (SR.4 set) and a lock error (SR.1 set).  
Note:  
When programming the OTP bits in the OTP registers for a Top Parameter Device,  
the following upper address bits must also be driven properly: A[Max:17] driven high  
(VIH).  
11.2.3  
Locking the OTP Registers  
Each OTP Register can be locked by programming its respective lock bit in the Lock  
Register. To lock a OTP Register, program the corresponding bit in the Lock Register by  
issuing the Program Lock Register command, followed by the desired Lock Register  
data (see Section 6.2, “Device Command Bus Cycles” on page 18). The physical  
addresses of the Lock Registers are 0x80 for register 0 and 0x89 for register 1. These  
addresses are used when programming the lock registers (see Table 8, “Device  
Identifier Information” on page 22).  
Bit 0 of Lock Register 0 is already programmed during the manufacturing process at the  
“factory, locking the lower, pre-programmed 64-bit region of the first 128-bit OTP  
Register containing the unique identification number of the device. Bit 1 of Lock  
Register 0 can be programmed by the user to lock the user-programmable, 64-bit  
region of the first 128-bit OTP Register. When programming Bit 1 of Lock Register 0, all  
other bits need to be left as ‘1’ such that the data programmed is 0xFFFD.  
Lock Register 1 controls the locking of the upper sixteen 128-bit OTP Registers. Each of  
the 16 bits of Lock Register 1 correspond to each of the upper sixteen 128-bit OTP  
Registers. Programming a bit in Lock Register 1 locks the corresponding 128-bit OTP  
Register.  
Caution:  
After being locked, the OTP Registers cannot be unlocked.  
Datasheet  
42  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
12.0  
Power and Reset Specifications  
12.1  
Power-Up and Power-Down  
Power supply sequencing is not required if VPP is connected to VCC or VCCQ. Otherwise  
VCC and VCCQ should attain their minimum operating voltage before applying VPP.  
Power supply transitions should only occur when RST# is low. This protects the device  
from accidental programming or erasure during power transitions.  
12.2  
Reset Specifications  
Asserting RST# during a system reset is important with automated program/erase  
devices because systems typically expect to read from flash memory when coming out  
of reset. If a CPU reset occurs without a flash memory reset, proper CPU initialization  
may not occur. This is because the flash memory may be providing status information,  
instead of array data as expected. Connect RST# to the same active low reset signal  
used for CPU initialization.  
Also, because the device is disabled when RST# is asserted, it ignores its control inputs  
during power-up/down. Invalid bus conditions are masked, providing a level of memory  
protection.  
Table 16: Power and Reset  
Num  
Symbol  
Parameter  
RST# pulse width low  
Min  
Max  
Unit  
Notes  
P1  
t
100  
-
-
ns  
1,2,3,4  
1,3,4,7  
1,3,4,7  
1,4,5,6  
PLPH  
RST# low to device reset during erase  
RST# low to device reset during program  
VCC Power valid to RST# de-assertion (high)  
25  
25  
-
P2  
t
t
PLRH  
VCCPH  
-
µs  
P3  
300  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
These specifications are valid for all device versions (packages and speeds).  
The device may reset if t is < t Min, but this is not guaranteed.  
PLPH  
PLPH  
Not applicable if RST# is tied to VCC.  
Sampled, but not 100% tested.  
When RST# is tied to the VCC supply, device will not be ready until t  
after VCC V  
VCCPH  
.
VCCPH  
CCMIN  
When RST# is tied to the VCCQ supply, device will not be ready until t  
Reset completes within t  
after VCC V  
.
CCMIN  
if RST# is asserted while no erase or program operation is executing.  
PLPH  
Datasheet  
43  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
Figure 13: Reset Operation Waveforms  
P1  
P2  
P2  
P3  
R5  
VIH  
VIL  
(
A) Reset during  
read mode  
RST# [P]  
RST# [P]  
RST# [P]  
VCC  
Abort  
Complete  
R5  
(B) Reset during  
VIH  
VIL  
program or block erase  
P1  
P2  
Abort  
Complete  
R5  
(C) Reset during  
VIH  
VIL  
program or block erase  
P1  
P2  
VCC  
0V  
(D) VCC Power-up to  
RST# high  
12.3  
Power Supply Decoupling  
Flash memory devices require careful power supply de-coupling. Three basic power  
supply current considerations are: 1) standby current levels; 2) active current levels;  
and 3) transient peaks produced when CE# and OE# are asserted and deasserted.  
When the device is accessed, many internal conditions change. Circuits within the  
device enable charge-pumps, and internal logic states change at high speed. All of  
these internal activities produce transient signals. Transient current magnitudes depend  
on the device outputs’ capacitive and inductive loading. Two-line control and correct  
de-coupling capacitor selection suppress transient voltage peaks.  
Because Numonyx MLC flash memory devices draw their power from VCC, VPP, and  
VCCQ, each power connection should have a 0.1 µF ceramic capacitor to ground. High-  
frequency, inherently low-inductance capacitors should be placed as close as possible  
to package leads.  
Additionally, for every eight devices used in the system, a 4.7 µF electrolytic capacitor  
should be placed between power and ground close to the devices. The bulk capacitor is  
meant to overcome voltage droop caused by PCB trace inductance.  
Datasheet  
44  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
13.0  
Maximum Ratings and Operating Conditions  
13.1  
Absolute Maximum Ratings  
Warning:  
Stressing the device beyond the Absolute Maximum Ratings may cause permanent  
damage. These are stress ratings only.  
Table 17: Absolute Maximum Ratings  
Parameter  
Maximum Rating  
Notes  
Temperature under bias  
Storage temperature  
Voltage on any signal (except VCC, VPP and VCCQ)  
VPP voltage  
–40 °C to +85 °C  
–65 °C to +125 °C  
–0.5 V to +4.1 V  
–0.2 V to +10 V  
–0.2 V to +4.1 V  
–0.2 V to +4.1 V  
100 mA  
-
-
1
1,2,3  
1
VCC voltage  
VCCQ voltage  
1
Output short circuit current  
Notes:  
4
1.  
Voltages shown are specified with respect to V . Minimum DC voltage is –0.5 V on input/output signals and –0.2 V on  
VCC, VCCQ, and VPP. During transitions, this level may undershoot to –2.0 V for periods less than 20 ns. Maximum DC  
SS  
voltage on VCC is VCC + 0.5 V, which, during transitions, may overshoot to VCC + 2.0 V for periods less than 20 ns.  
Maximum DC voltage on input/output signals and VCCQ is VCCQ + 0.5 V, which, during transitions, may overshoot to  
VCCQ + 2.0 V for periods less than 20 ns.  
2.  
3.  
Maximum DC voltage on VPP may overshoot to +11.5 V for periods less than 20 ns.  
Program/erase voltage is typically 2.3 V – 3.6 V. 9.0 V can be applied for 80 hours maximum total, to any blocks for  
1000 cycles maximum. 9.0 V program/erase voltage may reduce block cycling capability.  
Output shorted for no more than one second. No more than one output shorted at a time.  
4.  
13.2  
Operating Conditions  
Note:  
Operation beyond the Operating Conditions is not recommended and extended  
exposure beyond the Operating Conditions may affect device reliability.  
Table 18: Operating Conditions  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
T
Operating Temperature  
VCC Supply Voltage  
–40  
2.3  
+85  
3.6  
3.6  
3.6  
3.6  
9.5  
80  
-
°C  
1
-
C
VCC  
CMOS inputs  
TTL inputs  
2.3  
VCCQ  
I/O Supply Voltage  
-
2.4  
V
V
V
Voltage Supply (Logic Level)  
PP  
1.5  
PPL  
PPH  
PPH  
V
Buffered Enhanced Factory Programming V  
8.5  
PP  
t
Maximum V Hours  
PP  
VPP = V  
-
Hours  
Cycles  
PPH  
2
Main and Parameter Blocks  
Main Blocks  
VPP = V  
100,000  
100,000  
100,000  
PPL  
Block  
Erase  
Cycles  
VPP = V  
VPP = V  
-
PPH  
PPH  
Parameter Blocks  
-
Notes:  
1.  
2.  
T = Case Temperature.  
C
In typical operation VPP program voltage is V  
.
PPL  
Datasheet  
45  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
14.0  
Electrical Specifications  
14.1  
DC Current Characteristics  
Table 19: DC Current Characteristics (Sheet 1 of 2)  
CMOS  
TTL Inputs  
Inputs  
(VCCQ =  
(VCCQ =  
2.4 V - 3.6  
2.3 V - 3.6  
V)  
Sym  
Parameter  
Unit  
Test Conditions  
Notes  
V)  
Typ  
Max  
Typ  
Max  
VCC = VCC Max  
VCCQ = VCCQ Max  
= VCCQ or V  
I
Input Load Current  
-
±1  
-
±2  
µA  
µA  
LI  
V
IN  
SS  
1,6  
1,2  
Output  
Leakage  
Current  
VCC = VCC Max  
VCCQ = VCCQ Max  
= VCCQ or V  
I
DQ[15:0], WAIT  
-
±1  
-
±10  
210  
LO  
V
IN  
SS  
256-Mbit  
512-Mbit  
65  
210  
65  
VCC = VCC Max  
VCCQ = VCC Max  
CE# =VCCQ  
I
I
,
VCC Standby,  
Power-Down  
CCS  
RST# = VCCQ (for I  
)
µA  
CCS  
)
CCD  
130  
420  
130  
420  
RST# = V (for I  
SS  
CCD  
WP# = V  
IH  
Asynchronous Single-  
Word f = 5 MHz (1 CLK)  
16-Word  
Read  
26  
31  
26  
31  
mA  
mA  
Page-Mode Read  
f = 13 MHz (17 CLK)  
16-Word  
Read  
VCC = VCC  
12  
19  
16  
16  
22  
18  
12  
19  
16  
16  
22  
18  
Max  
Average  
VCC  
CE# = V  
IL  
I
mA 8-Word Read  
1
OE# = V  
CCR  
IH  
Read  
Inputs: V or  
Current  
IL  
16-Word  
Read  
Synchronous Burst  
f = 52 MHz, LC=4  
mA  
V
IH  
Continuous  
Read  
21  
24  
21  
24  
mA  
35  
35  
65  
50  
50  
35  
35  
65  
50  
50  
VPP = V , Pgm/Ers in progress  
1,3,5  
1,3,5  
PPL  
I
I
VCC Program Current,  
VCC Erase Current  
CCW,  
mA  
µA  
CCE  
VPP = V  
, Pgm/Ers in progress  
PPH  
VCC Program  
Suspend Current,  
VCC Erase  
Suspend Current  
256-Mbit  
512-Mbit  
210  
210  
I
CE# = VCCQ; suspend in  
progress  
CCWS,  
1,3,4  
I
CCES  
70  
225  
5
70  
225  
5
I
VPP Standby Current,  
VPP Program Suspend Current,  
VPP Erase Suspend Current  
PPS,  
I
0.2  
0.2  
µA  
VPP = V , suspend in progress  
PPL  
1,3,7  
PPWS,  
IPPES  
I
VPP Read  
2
15  
2
15  
µA  
VPP = V  
VPP = V  
VPP = V  
VPP = V  
VPP = V  
1,3  
3
PPR  
PPL  
0.05  
0.05  
0.05  
0.05  
0.10  
0.10  
0.10  
0.10  
0.05  
0.05  
0.05  
0.05  
0.10  
0.10  
0.10  
0.10  
program in progress  
program in progress  
erase in progress  
erase in progress  
PPL,  
PPH,  
PPL,  
PPH,  
I
VPP Program Current  
mA  
PPW  
I
V
Erase Current  
PP  
mA  
3
PPE  
Datasheet  
46  
Mar 2010  
Order Number: 320003-09  
 
P33-65nm  
Table 19: DC Current Characteristics (Sheet 2 of 2)  
CMOS  
TTL Inputs  
Inputs  
(VCCQ =  
(VCCQ =  
2.4 V - 3.6  
2.3 V - 3.6  
V)  
Sym  
Parameter  
Unit  
Test Conditions  
Notes  
V)  
Typ  
Max  
Typ  
Max  
0.05  
0.05  
0.10  
0.10  
0.05  
0.05  
0.10  
0.10  
VPP = V  
erase in progress  
PPL,  
I
VPP Blank Check  
mA  
3
PPBC  
VPP = V  
erase in progress  
PPH,  
Notes:  
1.  
2.  
3.  
4.  
5.  
All currents are RMS unless noted. Typical values at typical VCC, T = +25 °C.  
C
I
is the average current measured over any 5 ms time interval 5 µs after CE# is deasserted.  
CCS  
Sampled, not 100% tested.  
I
I
is specified with the device deselected. If device is read while in erase suspend, current is I  
CCW CCE  
plus I  
.
CCR  
CCES  
, I  
measured over typical or max times specified in Section 15.5, “Program and ECrCaEsSe  
Characteristics” on page 58.  
6.  
7.  
if V > VCC the input load current increases to 10uA max.  
IN  
the I  
I
I
Will increase to 200uA when VPP/WP# is at V  
.
PPS, PPWS, PPES  
PPH  
14.2  
DC Voltage Characteristics  
Table 20: DC Voltage Characteristics  
(1)  
CMOS Inputs  
(VCCQ = 2.3 V – 3.6 V)  
TTL Inputs  
(VCCQ = 2.4 V – 3.6 V)  
Sym  
Parameter  
Unit  
Test Conditions  
Notes  
Min  
Max  
Min  
Max  
V
Input Low Voltage  
Input High Voltage  
-0.5  
0.4  
-0.5  
2.0  
0.6  
V
V
IL  
2
-
V
VCCQ – 0.4  
VCCQ + 0.5  
VCCQ + 0.5  
IH  
VCC = VCC Min  
V
Output Low Voltage  
Output High Voltage  
-
0.2  
-
-
0.2  
-
V
V
VCCQ = VCCQ Min  
OL  
I
= 100 µA  
OL  
VCC = VCC Min  
V
VCCQ – 0.2  
VCCQ – 0.2  
VCCQ = VCCQ Min  
-
OH  
I
= –100 µA  
OH  
V
VPP Lock-Out Voltage  
VCC Lock Voltage  
-
0.4  
-
0.4  
V
V
V
3
-
PPLK  
V
1.5  
0.9  
-
-
1.5  
0.9  
-
-
LKO  
V
VCCQ Lock Voltage  
-
LKOQ  
VPP Voltage Supply  
(Logic Level)  
V
1.5  
8.5  
3.6  
9.5  
1.5  
8.5  
3.6  
9.5  
V
V
PPL  
Buffered Enhanced  
Factory Programming  
VPP  
V
PPH  
Notes:  
1.  
2.  
Synchronous read mode is not supported with TTL inputs.  
can undershoot to –1.0 V for duration of 2ns or less and V can overshoot to V  
CCQ  
V
less.  
+ 1.0 V for durations of 2ns or  
.
IL  
IH  
3.  
VPP V  
inhibits erase and program operations. Do not use V  
and V  
PPLK  
PPL PPH  
outside their valid ranges  
Datasheet  
47  
Mar 2010  
OrderNumber:320003-09  
 
P33-65nm  
15.0  
AC Characteristics  
15.1  
AC Test Conditions  
Figure 14: AC Input/Output Reference Waveform  
VCCQ  
Input VCCQ/2  
Test Points  
VCCQ/2 Output  
0V  
IO_REF.WMF  
Note: AC test inputs are driven at VCCQ for Logic "1" and 0 V for Logic "0." Input/output timing begins/ends at VCCQ/2. Input  
rise and fall times (10% to 90%) < 5 ns. Worst-case speed occurs at VCC = VCCMin.  
Figure 15: Transient Equivalent Testing Load Circuit  
Device  
Out  
Under Test  
CL  
Notes:  
1.  
2.  
See the following table for component values.  
Test configuration component value for worst case speed conditions.  
3.  
C includes jig capacitance  
L
.
Table 21: Test Configuration Component Value for Worst Case Speed Conditions  
Test Configuration  
VCCQ Min Standard Test  
C
(pF)  
L
30  
Figure 16: Clock Input AC Waveform  
R201  
VIH  
CLK [C]  
VIL  
R202  
R203  
Datasheet  
48  
Mar 2010  
Order Number: 320003-09  
 
P33-65nm  
15.2  
Capacitance  
Table 22: Capacitance  
Symbol  
Signal  
Min  
3
Typ  
7
Max  
8
Unit  
Condition  
Note  
Input  
Capacita  
nce  
Address, Data, CE#,  
WE#, OE#, RST#,  
CLK, ADV#, WP#  
256-Mbit  
256-Mbit/256Mbit  
256-Mbit  
Typ temp = 25 °C,  
Max temp = 85 °C,  
= (0 V - 2.0 V),  
= (0 V - 3.6 V),  
Discrete silicon die  
6
14  
5
16  
7
pF  
V
1
CC  
Output  
Capacita  
nce  
3
V
CCQ  
Data, WAIT  
256-Mbit/256Mbit  
6
10  
14  
Notes:  
1.  
Sampled, not 100% tested.  
15.3  
AC Read Specifications  
Table 23: AC Read Specifications - (Sheet 1 of 3)  
Num  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
Asynchronous Specifications  
Easy BGA  
TSOP  
95  
105  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
R1  
R2  
R3  
t
Read cycle time  
AVAV  
-
Easy BGA  
TSOP  
95  
105  
95  
105  
25  
150  
-
-
-
t
Address to output valid  
AVQV  
Easy BGA  
TSOP  
-
-
t
CE# low to output valid  
OE# low to output valid  
ELQV  
-
R4  
R5  
R6  
R7  
R8  
R9  
t
t
-
-
1,2  
1
GLQV  
RST# high to output valid  
CE# low to output in low-Z  
OE# low to output in low-Z  
CE# high to output in high-Z  
OE# high to output in high-Z  
PHQV  
t
0
0
-
1,3  
1,2,3  
ELQX  
GLQX  
EHQZ  
GHQZ  
t
t
-
20  
15  
t
-
1,3  
Output hold from first occurring address, CE#, or OE#  
change  
R10  
t
0
-
ns  
OH  
R11  
R12  
R13  
R15  
R16  
R17  
t
CE# pulse width high  
17  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
EHEL  
1
t
CE# low to WAIT valid  
CE# high to WAIT high-Z  
OE# low to WAIT valid  
OE# low to WAIT in low-Z  
OE# high to WAIT in high-Z  
17  
20  
17  
-
ELTV  
t
-
1,3  
1
EHTZ  
t
t
-
GLTV  
GLTX  
0
-
1,3  
t
20  
GHTZ  
Latching Specifications  
Datasheet  
49  
Mar 2010  
OrderNumber:320003-09  
 
 
P33-65nm  
Table 23: AC Read Specifications - (Sheet 2 of 3)  
Num  
Symbol  
Parameter  
Address setup to ADV# high  
Min  
Max  
Unit  
Notes  
R101  
R102  
t
10  
10  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVVH  
t
CE# low to ADV# high  
ELVH  
Easy BGA  
TSOP  
95  
105  
-
R103  
t
ADV# low to output valid  
1
VLQV  
R104  
R105  
R106  
R108  
R111  
t
ADV# pulse width low  
ADV# pulse width high  
Address hold from ADV# high  
Page address access  
10  
10  
9
VLVH  
VHVL  
VHAX  
t
-
t
-
1,4  
1
t
-
25  
-
APA  
t
RST# high to ADV# high  
30  
phvh  
Clock Specifications  
-
-
-
52  
40  
MHz  
MHz  
R200  
R201  
fCLK  
CLK frequency  
CLK period  
TSOP  
-
19.2  
25  
5
tCLK  
-
ns  
TSOP  
-
1,3,5,6  
R202  
R203  
tCH/CL  
CLK high/low time  
CLK fall/rise time  
-
ns  
ns  
TSOP  
9
tFCLK/RCLK  
0.3  
3
Datasheet  
50  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
Table 23: AC Read Specifications - (Sheet 3 of 3)  
Num  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
(5)  
Synchronous Specifications  
R301  
R302  
R303  
t
Address setup to CLK  
ADV# low setup to CLK  
CE# low setup to CLK  
9
9
9
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVCH/L  
t
VLCH/L  
1,6  
t
-
ELCH/L  
-
17  
20  
-
R304  
t
CLK to output valid  
CHQV / tCLQV  
TSOP  
-
R305  
R306  
t
Output hold from CLK  
Address hold from CLK  
3
10  
-
1,6  
1,4,6  
1,6  
1,6  
1
CHQX  
t
-
CHAX  
17  
20  
-
R307  
t
CLK to WAIT valid  
CHTV  
TSOP  
-
R311  
R312  
t
CLK Valid to ADV# Setup  
WAIT Hold from CLK  
3
3
CHVL  
t
-
1,6  
CHTX  
Notes:  
1.  
See Figure 14, “AC Input/Output Reference Waveform” on page 48 for timing measurements and max  
allowable input slew rate.  
2.  
3.  
4.  
5.  
6.  
OE# may be delayed by up to t  
Sampled, not 100% tested.  
Address hold in synchronous burst read mode is t  
– t  
after CE#’s falling edge without impact to t  
ELQV  
GLQV ELQV.  
or t  
, whichever timing specification is satisfied first.  
VHAX  
CHAX  
Synchronous burst read mode is not supported with TTL level inputs.  
Applies only to subsequent synchronous reads.  
Figure 17: Asynchronous Single-Word Read (ADV# Low)  
R1  
R2  
Address [A]  
ADV#  
R3  
R8  
CE# [E}  
R4  
R9  
OE# [G]  
R15  
R17  
WAIT [T]  
R7  
R6  
Data [D/Q]  
R5  
RST# [P]  
Note: WAIT shown deasserted during asynchronous read mode (RCR.10=0, WAIT asserted low).  
Datasheet  
51  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
Figure 18: Asynchronous Single-Word Read (ADV# Latch)  
R1  
R2  
Address [A]  
A[1:0][A]  
R101  
R105  
R106  
ADV#  
CE# [E}  
OE# [G]  
WAIT [T]  
R3  
R8  
R4  
R9  
R15  
R17  
R7  
R6  
R10  
Data [D/Q]  
Note: WAIT shown deasserted during asynchronous read mode (RCR.10=0, WAIT asserted low)  
Figure 19: Asynchronous Page-Mode Read Timing  
R2  
A[Max:4] [A]  
A[3:0]  
Valid Addres s  
R10  
R10  
R10  
R10  
0
1
2
F
R101  
R105  
R106  
ADV#  
R3  
R8  
CE# [E]  
R4  
R9  
OE# [G]  
WAIT [T]  
R6  
R13  
R108  
Q2  
R108  
Q3  
R108  
Q16  
DATA [D/Q]  
Q1  
Note: WAIT shown deasserted during asynchronous read mode (RCR.10=0, WAIT asserted low).  
Datasheet  
52  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
.
Figure 20: Synchronous Single-Word Array or Non-array Read Timing  
R301  
R306  
CLK [C]  
R2  
Address [A]  
R101  
R104  
R106  
R105  
ADV# [V]  
R303  
R102  
R3  
R8  
CE# [E]  
OE# [G]  
WAIT [T]  
R7  
R9  
R15  
R307  
R304  
R17  
R312  
R4  
R305  
Data [D/Q]  
Notes:  
1.  
WAIT is driven per OE# assertion during synchronous array or non-array read, and can be configured to assert either  
during or one data cycle before valid data.  
This diagram illustrates the case in which an n-word burst is initiated to the flash memory array and it is terminated by  
CE# deassertion after the first word in the burst.  
2.  
Figure 21: Continuous Burst Read, showing an Output Delay Timing  
R301  
R302  
R306  
R304  
R304  
R304  
CLK [C]  
Address [A]  
ADV# [V]  
R2  
R101  
R106  
R105  
R303  
R102  
R3  
CE# [E]  
OE# [G]  
R15  
R307  
R304  
R312  
WAIT [T]  
R4  
R7  
R305  
R305  
R305  
R305  
Data [D/Q]  
Notes:  
1.  
WAIT is driven per OE# assertion during synchronous array or non-array read, and can be configured to assert either  
during or one data cycle before valid data.  
2.  
At the end of Word Line; the delay incurred when a burst access crosses a 16-word boundary and the starting address is  
not 4-word boundary aligned. See Section 11.1.3, “End of Word Line (EOWL) Considerations” on  
page 37 for more information  
Datasheet  
53  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
Figure 22: Synchronous Burst-Mode Four-Word Read Timing  
R302  
R301  
R306  
CLK [C]  
Address [A]  
ADV# [V]  
R2  
R101  
A
R105  
R102  
R106  
R303  
R3  
R8  
CE# [E]  
OE# [G]  
WAIT [T]  
R9  
R15  
R307  
R17  
R4  
R304  
R305  
Q0  
R7  
R304  
R10  
Data [D/Q]  
Q1  
Q2  
Q3  
Note: WAIT is driven per OE# assertion during synchronous array or non-array read. WAIT asserted during initial latency and  
deasserted during valid data (RCR.10=0, WAIT asserted low).  
15.4  
AC Write Specifications  
Table 24: AC Write Specifications (Sheet 1 of 2)  
Num  
W1  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
RST# high recovery to WE# low  
CE# setup to WE# low  
150  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1,2,3  
1,2,3  
PHWL  
ELWL  
W2  
W3  
WE# write pulse width low  
Data setup to WE# high  
Address setup to WE# high  
CE# hold from WE# high  
Data hold from WE# high  
Address hold from WE# high  
WE# pulse width high  
50  
50  
50  
0
1,2,4  
WLWH  
DVWH  
AVWH  
WHEH  
WHDX  
WHAX  
WHWL  
VPWH  
QVVL  
W4  
1, 2, 12  
W5  
W6  
1,2  
W7  
0
W8  
0
W9  
20  
200  
0
1,2,5  
W10  
W11  
W12  
W13  
W14  
W16  
VPP setup to WE# high  
VPP hold from Status read  
WP# hold from Status read  
WP# setup to WE# high  
WE# high to OE# low  
1,2,3,7  
0
QVBL  
1,2,3,7  
200  
0
BHWH  
WHGL  
WHQV  
1,2,9  
WE# high to read valid  
t
+ 35  
1,2,3,6,10  
AVQV  
Write to Asynchronous Read Specifications  
W18  
t
WE# high to Address valid  
0
-
ns  
1,2,3,6,8  
WHAV  
Datasheet  
54  
Mar 2010  
Order Number: 320003-09  
 
P33-65nm  
Table 24: AC Write Specifications (Sheet 2 of 2)  
Num  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
Write to Synchronous Read Specifications  
W19  
W20  
W28  
t
t
t
WE# high to Clock valid  
19  
19  
7
-
-
-
ns  
ns  
ns  
WHCH/L  
WHVH  
WHVL  
WE# high to ADV# high  
WE# high to ADV# low  
1,2,3,6,10  
Write Specifications with Clock Active  
W21  
W22  
t
t
ADV# high to WE# low  
Clock high to WE# low  
-
-
20  
20  
ns  
ns  
VHWL  
CHWL  
1,2,3,11  
Notes:  
1.  
2.  
3.  
4.  
Write timing characteristics during erase suspend are the same as write-only operations.  
A write operation can be terminated with either CE# or WE#.  
Sampled, not 100% tested.  
Write pulse width low (t  
or t  
) is defined from CE# or WE# low (whichever occurs last) to CE# or WE# high  
WLWH  
ELEH  
WLWH  
(whichever occurs first). Hence, t  
= t  
= t  
= t  
.
ELWH  
ELEH  
WLEH  
5.  
Write pulse width high (t  
or t  
) is defined from CE# or WE# high (whichever occurs first) to CE# or WE# low  
WHWL  
EHEL  
(whichever occurs last). Hence, t  
= t  
= t  
= t  
).  
EHWL  
WHWL  
EHEL  
WHEL  
6.  
7.  
8.  
t
or t  
must be met when transiting from a write cycle to a synchronous burst read.  
WHVH  
WHCH/L  
VPP and WP# should be at a valid level until erase or program success is determined.  
This specification is only applicable when transiting from a write cycle to an asynchronous read. See spec W19 and W20  
for synchronous read.  
9.  
10.  
When doing a Read Status operation following any command that alters the Status Register, W14 is 20 ns.  
Add 10 ns if the write operations results in a RCR or block lock status change, for the subsequent read operation to  
reflect this change.  
11.  
12.  
These specs are required only when the device is in a synchronous mode and clock is active during address setup phase.  
This specification must be complied with by customer’s writing timing. The result would be unpredictable if any violation  
to this timing specification.  
Figure 23: Write-to-Write Timing  
W5  
W8  
W5  
W8  
Address [A]  
W2  
W6  
W2  
W6  
CE# [E}  
W3  
W9  
W3  
WE# [W]  
OE# [G]  
W4  
W7  
W4  
W7  
Data [D/Q]  
W1  
RST# [P]  
Datasheet  
55  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
Figure 24: Asynchronous Read-to-Write Timing  
R1  
R2  
W5  
W8  
Address [A]  
R3  
R8  
R9  
CE# [E}  
R4  
OE# [G]  
W2  
W3  
W6  
WE# [W]  
R15  
R17  
R10  
WAIT [T]  
R7  
R6  
W7  
W4  
Data [D/Q]  
RST# [P]  
Q
D
R5  
Note: WAIT deasserted during asynchronous read and during write. WAIT High-Z during write per OE# deasserted.  
Figure 25: Write-to-Asynchronous Read Timing  
W5  
W8  
R1  
Address [A]  
ADV# [V]  
W2  
W6  
R10  
CE# [E}  
WE# [W]  
OE# [G]  
WAIT [T]  
W3  
W18  
W14  
R15  
R17  
R4  
R2  
R3  
R8  
R9  
W4  
W7  
Data [D/Q]  
RST# [P]  
D
Q
W1  
Datasheet  
56  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
Figure 26: Synchronous Read-to-Write Timing  
Latency Count  
R301  
R302  
R306  
CLK [C]  
R2  
W5  
R101  
W18  
Address [A]  
R105  
R102  
R106  
R104  
ADV# [V]  
R303  
R11  
R13  
R3  
W6  
CE# [E]  
OE# [G]  
R4  
R8  
W21  
W22  
W21  
W22  
W2  
W8  
W15  
W3  
W9  
WE#  
R16  
R307  
R304  
R312  
WAIT [T]  
R7  
R305  
W7  
Q
D
D
Data [D/Q]  
Note: WAIT shown deasserted and High-Z per OE# deassertion during write operation (RCR 10=0, WAIT asserted low). Clock is  
ignored during write operation.  
Figure 27: Write-to-Synchronous Read Timing  
R302  
R301  
R2  
CLK  
W5  
W8  
R306  
R106  
Address [A]  
ADV#  
R104  
R303  
W6  
W2  
R11  
CE# [E}  
W18  
W19  
W20  
W3  
WE# [W]  
OE# [G]  
WAIT [T]  
R4  
R15  
R3  
R307  
W7  
R304  
R305  
R304  
W4  
D
Q
Q
Data [D/Q]  
RST# [P]  
W1  
Note: WAIT shown deasserted and High-Z per OE# deassertion during write operation (RCR.10=0, WAIT asserted low).  
Datasheet  
57  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
15.5  
Program and Erase Characteristics  
Table 25: Program and Erase Specifications  
V
V
PPH  
PPL  
Num  
Symbol  
Parameter  
Unit  
Note  
Min  
Conventional Word Programming  
Single word 270  
Buffered Programming  
Typ  
Max  
Min  
Typ  
Max  
Program  
Time  
W200  
t
-
456  
-
270  
456  
µs  
1
PROG/W  
Aligned 32-Wd, BP time  
(32 Words)  
-
-
-
-
-
310  
310  
375  
505  
900  
716  
900  
-
-
-
-
-
310  
310  
375  
505  
900  
716  
900  
Aligned 64-Wd, BP time  
(64 Word)  
Program  
Time  
Aligned 128-Wd, BP time  
(128 Words)  
W250  
t
1140  
1690  
3016  
1140  
1690  
3016  
µs  
1
PROG  
Aligned 256-Wd, BP time  
(256 Words)  
one full buffer (512  
Words)  
Buffered Enhanced Factory Programming  
W451  
W452  
t
t
Single byte  
BEFP Setup  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
-
0.5  
-
-
-
1,2  
1
BEFP/B  
Program  
µs  
5
BEFP/Setup  
Erase and Suspend  
W500  
W501  
W600  
W601  
W602  
t
t
t
t
t
32-KByte Parameter  
128-KByte Main  
Program suspend  
Erase suspend  
-
0.8  
0.8  
25  
4.0  
4.0  
30  
30  
-
-
-
-
-
-
0.8  
0.8  
25  
4.0  
4.0  
30  
30  
-
ERS/PB  
ERS/MB  
SUSP/P  
SUSP/E  
ERS/SUSP  
Erase Time  
s
-
1
-
Suspend  
Latency  
-
25  
25  
µs  
Erase to Suspend  
-
blank check  
-
500  
500  
1,3  
W702  
t
blank check Main Array Block  
3.2  
-
-
3.2  
-
ms  
BC/MB  
Notes:  
1.  
Typical values measured at T = +25 °C and nominal voltages. Performance numbers are valid for all speed versions.  
C
Excludes system overhead. Sampled, but not 100% tested.  
2.  
3.  
Averaged over entire device.  
W602 is the typical time between an initial block erase or erase resume command and the a subsequent erase suspend  
command. Violating the specification repeatedly during any particular block erase may cause erase failures.  
Datasheet  
58  
Mar 2010  
Order Number: 320003-09  
 
P33-65nm  
16.0  
Ordering Information  
16.1  
Discrete Products  
Figure 28: Decoder for Discrete Products  
J S 2 8 F 2 5 6 P 3 3 B F  
*
Device Features*  
Package Designator  
TE=56 -Lead TSOP, leaded  
JS =56-Lead TSOP, lead-free  
RC =64-Ball Easy BGA, leaded  
PC =64-Ball Easy BGA, lead-free  
Device Details  
65nm lithography  
Parameter Location  
B = Bottom Parameter  
T = Top Parameter  
Product Line Designator  
28F =Numonyx™ Flash Memory  
Product Family  
Device Density  
256=256-Mbit  
P33 =Numonyx® Axcell™ Flash Memory (P33)  
VCC =2. 3 – 3. 6 V  
VCCQ =2. 3– 3. 6V  
Note: The last digit is randomly assigned to cover packing media and/or features or other specific configuration.  
Table 26: Valid Combinations for Discrete Products  
256-Mbit  
RC28F256P33TF*  
RC28F256P33BF*  
PC28F256P33TF*  
PC28F256P33BF*  
JS28F256P33TF*  
JS28F256P33BF*  
Datasheet  
59  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
16.2  
SCSP Products  
Figure 29: Decoder for SCSP Devices  
P C 4 8 F 4 4 0 0 P 0 T B 0 E  
*
Package Designator  
RC =64- Ball Easy BGA, leaded  
PC=64- Ball Easy BGA, lead-free  
Device Features*  
Device Details  
E = 65nm lithography  
Product Designator  
48F = NumonyxFlash Memory Only  
Ballout Descriptor  
0 = Discrete ballout  
Device Density  
0 = No die  
4 =256-Mbit  
Parameter Location  
B = Bottom Parameter  
T = Top Parameter  
Product Family  
Numonyx® Axcell™ Flash Memory (P33)  
I/ O Voltage, CE# Configuration  
P =  
0 = No die  
X =Individual Chip Enable(s)  
T =Virtual Chip Enable(s)  
VCC =2. 3 to 3.6 V  
3. 6V  
VCCQ =2. 3to  
Table 27: Valid Combinations for Dual- Die Products  
*
512-Mbit  
RC48F4400P0TB0E*  
PC48F4400P0TB0E*  
Notes:  
1.  
2.  
The “B” parameter is used for Top(Die1)/Bot(Die2) stack option in the 512-Mbit density.  
The last digit is randomly assigned to cover packing media and/or features or other specific configuration.  
Datasheet  
60  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
Appendix A Supplemental Reference Information  
A.1  
Common Flash Interface  
The Common Flash Interface (CFI) is part of an overall specification for multiple  
command-set and control-interface descriptions. This appendix describes the database  
structure containing the data returned by a read operation after issuing the Read CFI  
command (see Section 6.2, “Device Command Bus Cycles” on page 18). System  
software can parse this database structure to obtain information about the flash device,  
such as block size, density, bus width, and electrical specifications. The system  
software will then know which command set(s) to use to properly perform flash writes,  
block erases, reads and otherwise control the flash device.  
A.1.1  
Query Structure Output  
The Query database allows system software to obtain information for controlling the  
flash device. This section describes the device’s CFI-compliant interface that allows  
access to Query data.  
Query data are presented on the lowest-order data outputs (DQ7-0) only. The numerical  
offset value is the address relative to the maximum bus width supported by the device.  
On this family of devices, the Query table device starting address is a 10h, which is a  
word address for x16 devices.  
For a word-wide (x16) device, the first two Query-structure bytes, ASCII “Q” and “R,”  
appear on the low byte at word addresses 10h and 11h. This CFI-compliant device  
outputs 00h data on upper bytes. The device outputs ASCII “Q” in the low byte (DQ7-0  
)
and 00h in the high byte (DQ15-8).  
At Query addresses containing two or more bytes of information, the least significant  
data byte is presented at the lower address, and the most significant data byte is  
presented at the higher address.  
In all of the following tables, addresses and data are represented in hexadecimal  
notation, so the “h” suffix has been dropped. In addition, since the upper byte of word-  
wide devices is always “00h,the leading “00” has been dropped from the table  
notation and only the lower byte value is shown. Any x16 device outputs have 00h on  
the upper byte in this mode.  
Table 28: Summary of Query Structure Output as a Function of Device and Mode  
Hex  
Hex  
Code  
51  
52  
59  
ASCII  
Value  
"Q"  
"R"  
"Y"  
Device  
Offset  
00010:  
00011:  
00012:  
Device Addresses  
Datasheet  
61  
Mar 2010  
OrderNumber:320003-09  
 
P33-65nm  
Table 29: Example of Query Structure Output of x16 Devices  
Offset  
A -A  
Hex Code  
Value  
D
-D  
0
X
1
15  
00010h  
00011h  
00012h  
00013h  
00014h  
00015h  
00016h  
00017h  
00018h  
...  
0051  
0052  
0059  
“Q”  
“R”  
“Y”  
P_ID  
LO  
PrVendor ID#  
P_ID  
HI  
P
LO  
PrVendor TblAdr  
P
HI  
A_ID  
LO  
AltVendor ID#  
...  
A_ID  
...  
HI  
A.1.2  
Query Structure Overview  
The Query command causes the flash component to display the Common Flash Interface (CFI)  
Query structure or database. Table 30 summarizes the structure sub-sections and address  
locations.  
Table 30: Query Structure  
00001-Fh Reserved  
Reserved for vendor-specific information  
Command set ID and vendor data offset  
Device timing & voltage information  
Flash device layout  
00010h  
CFI query identification string  
0001Bh System interface information  
00027h  
Device geometry definition  
Vendor-defined additional information specific  
to the Primary Vendor Algorithm  
P(3)  
Primary Numonyx-specific Extended Query  
Note:  
1.  
Refer to the Query Structure Output section and offset 28h for the detailed definition of offset address as a function of  
device bus width and mode.  
2.  
3.  
BA = Block Address beginning location (i.e., 08000h is block 1’s beginning location when the block size is 32-KWord).  
Offset 15 defines “P” which points to the Primary Numonyx-specific Extended Query Table.  
A.1.3  
Read CFI Identification String  
The Identification String provides verification that the component supports the  
Common Flash Interface specification. It also indicates the specification version and  
supported vendor-specified command set(s).  
Datasheet  
62  
Mar 2010  
Order Number: 320003-09  
 
 
P33-65nm  
Table 31: CFI Identification  
Hex  
Code  
Offset  
Length  
Description  
Add.  
Value  
10:  
11:  
12:  
--51  
--52  
--59  
“Q”  
“R”  
“Y”  
10h  
3
Query-unique ASCII string “QRY.  
Primary Vendor command set and control interface ID code.  
16-bit ID code for Vendor-specified algorithms.  
13:  
14:  
--01  
--00  
13h  
15h  
17h  
19h  
2
2
2
2
15:  
16:  
--0A  
--01  
Extended Query Table primay algorithm address.  
Alernate vendor command set and control interface ID code.  
0000h means no second vendor-specified alorithm exists.  
17:  
18:  
--00  
--00  
Secondary algorithm Extended Query Table address.  
0000h means none exists.  
19:  
1A:  
--00  
--00  
Table 32: System Interface Information  
Hex  
Code  
Offset  
Length  
Description  
Add  
Value  
VCC logic supply minimum program/erase voltage  
bits 0-3 BCD 100 mV  
1Bh  
1
1B:  
--23  
--36  
2.3V  
bits 4-7 BCD volts  
VCC logic supply maximum program/erase voltage  
bits 0-3 BCD 100 mV  
bits 4-7 BCD volts  
1Ch  
1Dh  
1Eh  
1
1
1
1C:  
1D:  
1E:  
3.6V  
8.5V  
9.5V  
VPP [programming] supply minimum program/erase voltage  
bits 0-3 BCD 100 mV  
bits 4-7 HEX volts  
--85  
--95  
VPP [programming] supply maximum program/erase voltage  
bits 0-3 BCD 100 mV  
bits 4-7 HEX volts  
n
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
1
1
1
1
1
1
1
1
“n” such that typical single word program time-out = 2 µ-sec  
1F:  
20:  
21:  
22:  
23:  
24:  
25:  
26:  
--09  
--0A  
--0A  
--00  
--01  
--02  
--02  
--00  
512µs  
1024µs  
1s  
n
“n” such that typical full buffer write time-out = 2 µ-sec  
n
“n” such that typical block erase time-out = 2 m-sec  
n
“n” such that typical full chip erase time-out = 2 m-sec  
NA  
n
“n” such that maximum word program time-out = 2 times typical  
1024µs  
4096µs  
4s  
n
“n” such that maximum buffer write time-out = 2 times typical  
n
“n” such that maximum block erase time-out = 2 times typical  
n
“n” such that maximum chip erase time-out = 2 times typical  
NA  
Datasheet  
63  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
A.1.4  
Device Geometry Definition  
Table 33: Device Geometry Definition  
Hex  
Code  
Offset  
Length  
Description  
Add  
Value  
n
27h  
1
“n” such that device size = 2 in number of bytes  
27:  
See Table Below  
Flash device interface code assignment:  
"n" such that n+1 specifies the bit field that represents the flash device width  
capabilities as described in the table:  
7
_
6
_
5
_
4
_
3
x64  
11  
_
2
x32  
10  
_
1
x16  
9
0
x8  
8
28h  
2
28:  
29:  
--01  
--00  
x16  
15  
_
14  
_
13  
_
12  
_
_
_
2A:  
2B:  
--0A  
--00  
1024  
n
2Ah  
2Ch  
2
1
“n” such that maximum number of bytes in write buffer = 2  
Number of erase block regions (x) within device:  
1. x = 0 means no erase blocking; the device erases in bulk  
2. x specifies the number of device regions with one or more contiguous  
same-size erase blocks.  
2C:  
See Table Below  
See Table Below  
3. Symmetrically blocked partitions have one blocking region  
2D:  
2E:  
2F:  
30:  
31:  
32:  
33:  
34:  
35:  
36:  
37:  
38:  
Erase Block Region 1 Information  
2D  
31h  
35h  
4
4
4
bits 0-15 = y, y+1 = number of identical-size erase blocks  
bits 16-31 = z, region erase block(s) size are z x 256 bytes  
Erase Block Region 2 Information  
bits 0-15 = y, y+1 = number of identical-size erase blocks  
bits 16-31 = z, region erase block(s) size are z x 256 bytes  
See Table Below  
See Table Below  
Reserved for future erase block region information  
256-Mbit  
-B  
256-Mbit  
-B  
256-Mbit  
Address  
Address  
Address  
-T  
-T  
-B  
-T  
27:  
28:  
29:  
2A:  
2B:  
2C:  
--19  
--01  
--00  
--0A  
--00  
--02  
--19  
--01  
--00  
--0A  
--00  
--02  
2D:  
2E:  
2F:  
30:  
31:  
32:  
--03  
--00  
--80  
--00  
--FE  
--00  
--FE  
--00  
--00  
--02  
--03  
--00  
33:  
34:  
35:  
36:  
37:  
38:  
--00  
--02  
--00  
--00  
--00  
--00  
--80  
--00  
--00  
--00  
--00  
--00  
Datasheet  
64  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
A.1.5  
Numonyx-Specific Extended Query Table  
Table 34: Primary Vendor-Specific Extended Query  
Offset(1) Length  
P = 10Ah  
Description  
(Optional flash features and commands)  
Hex  
Add. Code Value  
(P+0)h  
(P+1)h  
(P+2)h  
(P+3)h  
(P+4)h  
(P+5)h  
(P+6)h  
(P+7)h  
(P+8)h  
3
Primary extended query table  
10A  
10B:  
10C:  
10D:  
10E:  
10F:  
110:  
111:  
112:  
--50  
--52  
--49  
--31  
--35  
--E6  
--09  
--00  
--40  
"P"  
"R"  
"I"  
"1"  
"5"  
Unique ASCII string “PRI“  
1
1
4
Major version number, ASCII  
Minor version number, ASCII  
Optional feature and command support (1=yes, 0=no)  
bits 10–31 are reserved; undefined bits are “0.” If bit 31 is  
“1” then another 31 bit field of Optional features follows at  
the end of the bit–30 field.  
bit 0 Chip erase supported  
bit 1 Suspend erase supported  
bit 2 Suspend program supported  
bit 3 Legacy lock/unlock supported  
bit 4 Queued erase supported  
bit 5 Instant individual block locking supported  
bit 6 Protection bits supported  
bit 7 Pagemode read supported  
bit 8 Synchronous read supported  
bit 9 Simultaneous operations supported  
bit 10 Extended Flash Array Blocks supported  
bit 11 Permanent Block Locking of up to Full Main Array supported  
bit 12 Permanent Block Locking of up to Partial Main Array supported  
bit 30 CFI Link(s) to follow  
bit 0 = 0  
No  
Yes  
Yes  
No  
bit 1 = 1  
bit 2 = 1  
bit 3 = 0  
bit 4 = 0  
bit 5 = 1  
bit 6 = 1  
bit 7 = 1  
bit 8 = 1  
bit 9 = 0  
bit 10 = 0  
bit 11 = 1  
bit 12 = 0  
bit 30 = 1  
bit 31 = 0  
No  
Yes  
Yes  
Yes  
Yes  
No  
No  
Yes  
No  
Yes  
No  
bit 31 Another "Optional Features" field to follow  
Supported functions after suspend: read Array, Status, Query  
Other supported operations are:  
(P+9)h  
1
2
113:  
--01  
bits 1–7 reserved; undefined bits are “0”  
bit 0 Program supported after erase suspend  
Block status register mask  
bit 0 = 1  
Yes  
(P+A)h  
(P+B)h  
114:  
115:  
--03  
--00  
bits 2–15 are Reserved; undefined bits are “0”  
bit 0 Block Lock-Bit Status register active  
bit 1 Block Lock-Dow n Bit Status active  
bit 4 EFA Block Lock-Bit Status register active  
bit 5 EFA Block Lock-Dow n Bit Status active  
bit 0 = 1  
Yes  
Yes  
No  
bit 1 = 1  
bit 4 = 0  
bit 5 = 0  
No  
(P+C)h  
(P+D)h  
1
1
V
V
CC logic supply highest performance program/erase voltage  
bits 0–3 BCD value in 100 mV  
bits 4–7 BCD value in volts  
116:  
--18  
1.8V  
PP optimum program/erase supply voltage  
bits 0–3 BCD value in 100 mV  
bits 4–7 HEX value in volts  
117:  
--90  
9.0V  
Address  
112:  
Discrete  
512-Mbit  
–B  
–T  
–-  
–B  
–T  
–-  
die 1 (B)  
--40  
die 2 (T)  
--00  
die 1 (T)  
--40  
die 2 (B)  
--00  
--00  
--00  
Datasheet  
65  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
Table 35: OTP Register Information  
Offset(1) Length  
Description  
Hex  
P = 10Ah  
(P+E)h  
(Optional flash features and commands)  
Number of Protection register fields in JEDEC ID space.  
“00h,” indicates that 256 protection fields are available  
Add. Code Value  
1
4
118: --02  
2
(P+F)h  
(P+10)h  
(P+11)h  
(P+12)h  
Protection Field 1: Protection Description  
119: --80  
11A: --00  
80h  
00h  
This field describes user-available One Time Programmable  
(OTP) Protection register bytes. Some are pre-programmed  
w ith device-unique serial numbers. Others are user  
programmable. Bits 0–15 point to the Protection register Lock  
byte, the section’s first byte. The follow ing bytes are factory  
pre-programmed and user-programmable.  
11B: --03 8 byte  
11C: --03 8 byte  
bits 0–7 = Lock/bytes Jedec-plane physical low address  
bits 8–15 = Lock/bytes Jedec-plane physical high address  
bits 16–23 = “n” such that 2n = factory pre-programmed bytes  
bits 24–31 = “n” such that 2n = user programmable bytes  
(P+13)h  
(P+14)h  
(P+15)h  
(P+16)h  
(P+17)h  
(P+18)h  
(P+19)h  
(P+1A)h  
(P+1B)h  
(P+1C)h  
10  
Protection Field 2: Protection Description  
Bits 0–31 point to the Protection register physical Lock-w ord  
address in the Jedec-plane.  
11D: --89  
11E: --00  
11F: --00  
120: --00  
121: --00  
122: --00  
123: --00  
124: --10  
125: --00  
89h  
00h  
00h  
00h  
0
Follow ing bytes are factory or user-programmable.  
bits 32–39 = “n” such that n = factory pgm'd groups (low byte)  
bits 40–47 = “n” such that n = factory pgm'd groups (high byte)  
bits 48–55 = “n” \ 2n = factory programmable bytes/group  
bits 56–63 = “n” such that n = user pgm'd groups (low byte)  
0
0
16  
0
16  
bits 64–71 = “n” such that n = user pgm'd groups (high byte)  
bits 72–79 = “n” such that 2n = user programmable bytes/group  
126:  
--04  
Datasheet  
66  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
Figure 30: Burst Read Information  
Offset(1) Length  
P = 10Ah  
Description  
(Optional flash features and commands)  
Page Mode Read capability  
Hex  
Add. Code Value  
(P+1D)h  
1
127:  
--05 32 byte  
bits 0–7 = “n” such that 2n HEX value represents the number of  
read-page bytes. See offset 28h for device w ord w idth to  
determine page-mode data output w idth. 00h indicates no  
read page buffer.  
(P+1E)h  
(P+1F)h  
1
1
Number of synchronous mode read configuration fields that follow . 00h  
indicates no burst capability.  
128:  
129:  
--04  
--01  
4
4
Synchronous mode read capability configuration 1  
Bits 3–7 = Reserved  
Bits 0–2 “n” such that 2n+1 HEX value represents the maximum number of  
continuous synchronous reads w hen the device is configured for its maximum  
w ord w idth. A value of 07h indicates that the device is capable of continuous  
linear bursts that w ill output data until the internal burst counter reaches the end  
of the device’s burstable address space. This field’s 3-bit value can be w ritten  
directly to the Read Configuration Register bits 0–2 if the device is configured  
for its maximum w ord w idth. See offset 28h for w ord w idth to determine the  
burst data output w idth.  
(P+20)h  
(P+21)h  
(P+22)h  
1
1
1
Synchronous mode read capability configuration 2  
Synchronous mode read capability configuration 3  
Synchronous mode read capability configuration 4  
12A:  
12B:  
12C:  
--02  
--03  
--07  
8
16  
Cont  
Table 36: Partition and Erase Block Region Information  
Offset(1)  
P = 10Ah  
Bottom Top  
See table below  
Address  
Description  
(Optional flash features and commands)  
Bot  
Top  
Len  
Number of device hardw are-partition regions w ithin the device.  
x = 0: a single hardw are partition device (no fields follow ).  
x specifies the number of device partition regions containing  
one or more contiguous erase block regions.  
1
12D:  
12D:  
(P+23)h (P+23)h  
Datasheet  
67  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
Table 37: Partition Region 1 Information (Sheet 1 of 2)  
Offset(1)  
See table below  
Address  
P = 10Ah  
Bottom Top  
Description  
(Optional flash features and commands)  
Bot  
Top  
12E  
12F  
130:  
131:  
132:  
Len  
(P+24)h (P+24)h Data size of this Parition Region Information field  
(P+25)h (P+25)h (# addressable locations, including this field)  
(P+26)h (P+26)h Number of identical partitions w ithin the partition region  
(P+27)h (P+27)h  
2
12E:  
12F  
130:  
131:  
132:  
2
1
(P+28)h (P+28)h Number of programor erase operations allow ed in a partition  
bits 0–3 = number of simultaneous Programoperations  
bits 4–7 = number of simultaneous Erase operations  
(P+29)h (P+29)h Simultaneous programor erase operations allow ed in other partitions w hile a  
partition in this region is in Program mode  
1
1
1
133:  
134:  
135:  
133:  
134:  
135:  
bits 0–3 = number of simultaneous Programoperations  
bits 4–7 = number of simultaneous Erase operations  
(P+2A)h (P+2A)h Simultaneous programor erase operations allow ed in other partitions w hile a  
partition in this region is in Erase mode  
bits 0–3 = number of simultaneous Programoperations  
bits 4–7 = number of simultaneous Erase operations  
(P+2B)h (P+2B)h Types of erase block regions in this Partition Region.  
x = 0 = no erase blocking; the Partition Region erases in bulk  
x = number of erase block regions w / contiguous same-size  
erase blocks. Symmetrically blocked partitions have one  
blocking region. Partition size = (Type 1 blocks)x(Type 1  
block sizes) + (Type 2 blocks)x(Type 2 block sizes) +…+  
(Type n blocks)x(Type n block sizes)  
Datasheet  
68  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
Table 38: Partition Region 1 Information (Sheet 2 of 2)  
Offset(1)  
See table below  
Address  
P = 10Ah  
Bottom Top  
Description  
(Optional flash features and commands)  
Bot  
Top  
136:  
137:  
138:  
139:  
13A:  
13B:  
13C:  
Len  
(P+2C)h (P+2C)h Partition Region 1 Erase Block Type 1 Information  
4
136:  
137:  
138:  
139:  
13A:  
13B:  
13C:  
(P+2D)h (P+2D)h  
(P+2E)h (P+2E)h  
(P+2F)h (P+2F)h  
(P+30)h (P+30)h Partition 1 (Erase Block Type 1)  
(P+31)h (P+31)h Block erase cycles x 1000  
bits 0–15 = y, y+1 = # identical-size erase blks in a partition  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
2
1
(P+32)h (P+32)h Partition 1 (erase block Type 1) bits per cell; internal EDAC  
bits 0–3 = bits per cell in erase region  
bit 4 = internal EDAC used (1=yes, 0=no)  
bits 5–7 = reserve for future use  
(P+33)h (P+33)h Partition 1 (erase block Type 1) page mode and synchronous mode capabilities  
defined in Table 10.  
1
6
13D:  
13D:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host w rites permitted (1=yes, 0=no)  
bits 3–7 = reserved for future use  
Partition Region 1 (Erase Block Type 1) Programming Region Information  
(P+34)h (P+34)h  
(P+35)h (P+35)h  
(P+36)h (P+36)h  
(P+37)h (P+37)h  
(P+38)h (P+38)h  
(P+39)h (P+39)h  
bits 0–7 = x, 2^x = Programming Region aligned size (  
)
13E:  
13F:  
140:  
141:  
142:  
143:  
144:  
145:  
146:  
147:  
148:  
149:  
14A:  
bytes  
13E:  
13F:  
140:  
141:  
142:  
143:  
144:  
145:  
146:  
147:  
148:  
149:  
14A:  
bits 8–14 = Reserved; bit 15 = Legacy flash operation (ignore 0:7)  
bits 16–23 = y = Control Mode  
bits 24-31 = Reserved  
size in bytes  
valid  
bits 32-39 = z = Control Mode  
size in bytes  
invalid  
bits 40-46 = Reserved; bit 47 = Legacy flash operation (ignore 23:16 & 39:32)  
(P+3A)h (P+3A)h Partition Region 1 Erase Block Type 2 Information  
4
(P+3B)h (P+3B)h  
(P+3C)h (P+3C)h  
(P+3D)h (P+3D)h  
(P+3E)h (P+3E)h Partition 1 (Erase Block Type 2)  
(P+3F)h (P+3F)h Block erase cycles x 1000  
bits 0–15 = y, y+1 = # identical-size erase blks in a partition  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
2
1
(P+40)h (P+40)h Partition 1 (erase block Type 2) bits per cell; internal EDAC  
bits 0–3 = bits per cell in erase region  
bit 4 = internal EDAC used (1=yes, 0=no)  
bits 5–7 = reserve for future use  
(P+41)h (P+41)h Partition 1 (erase block Type 2) page mode and synchronous mode capabilities  
defined in Table 10.  
1
6
14B:  
14B:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host w rites permitte  
Partition Region 1 (Erase Block Type 2) Programming Region Information  
(P+42)h (P+42)h  
(P+43)h (P+43)h  
(P+44)h (P+44)h  
(P+45)h (P+45)h  
(P+46)h (P+46)h  
(P+47)h (P+47)h  
bits 0–7 = x, 2^x = Programming Region aligned size (  
)
14C:  
14D:  
14E:  
14F:  
150:  
151:  
bytes  
14C:  
14D:  
14E:  
14F:  
150:  
151:  
bits 8–14 = Reserved; bit 15 = Legacy flash operation (ignore 0:7)  
bits 16–23 = y = Control Mode  
bits 24-31 = Reserved  
size in bytes  
valid  
bits 32-39 = z = Control Mode  
size in bytes  
invalid  
bits 40-46 = Reserved; bit 47 = Legacy flash operation (ignore 23:16 & 39:32)  
Datasheet  
69  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
Table 39: Partition and Erase Block Region Information  
Address 256-Mbit  
12D:  
–B  
–T  
--01  
--24  
--00  
--01  
--00  
--11  
--00  
--00  
--02  
--03  
--00  
--80  
--00  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--FE  
--00  
--00  
--02  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--01  
--24  
--00  
--01  
--00  
--11  
--00  
--00  
--02  
--FE  
--00  
--00  
--02  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--03  
--00  
--80  
--00  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
12E:  
12F:  
130:  
131:  
132:  
133:  
134:  
135:  
136:  
137:  
138:  
139:  
13A  
13B:  
13C:  
13D:  
13E:  
13F:  
140:  
141:  
142:  
143:  
144:  
145:  
146:  
147:  
148:  
149:  
14A  
14B:  
14C:  
14D:  
14E:  
14F:  
150:  
151:  
Datasheet  
70  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
Table 40: CFI Link Information  
Length  
Description  
(Optional flash features and commands)  
CFI Link Field bit definitions  
Hex  
Code  
Add.  
152:  
153:  
154:  
155:  
Value  
4
Bits 0–9 = Address offset (w ithin 32Mbit segment) of referenced CFI table  
Bits 10–27 = nth 32Mbit segment of referenced CFI table  
Bits 28–30 = Memory Type  
See table below  
See table below  
Bit 31 = Another CFI Link field immediately follow s  
CFI Link Field Quantity Subfield definitions  
Bits 0–3 = Quantity field (n such that n+1 equals quantity)  
Bit 4 = Table & Die relative location  
1
156:  
Bit 5 = Link Field & Table relative location  
Bits 6–7 = Reserved  
Address  
Discrete  
512-Mbit  
–B  
–-  
–T  
–-  
–B  
die 1 (B) die 2 (T)  
–T  
die 1 (T)  
--10  
--20  
--00  
--00  
die 2 (B)  
--FF  
--FF  
--FF  
--FF  
152:  
153:  
154:  
155:  
156:  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--10  
--20  
--00  
--00  
--10  
--FF  
--FF  
--FF  
--FF  
--FF  
--10  
--FF  
Datasheet  
71  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
A.2  
Flowcharts  
Figure 31: Word Program Flowchart  
Start  
Command Cycle  
- Issue Program Command  
- Address = location to program  
- Data = 0x40  
Data Cycle  
- Address = location to program  
- Data = Data to program  
Check Ready Status  
- Read Status Register Command not required  
- Perform read operation  
- Read Ready Status on signal D7  
No  
No  
Program Suspend  
See Suspend/  
Resume Flowchart  
No  
D7 = '1'  
?
Suspend  
?
Errors  
?
Yes  
Yes  
Yes  
Read Status Register  
- Toggle CE# or OE# to update Status Register  
- See Status Register Flowchart  
Error-Handler  
User Defined Routine  
End  
Datasheet  
72  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
Figure 32: Program Suspend/Resume Flowchart  
PROGRAM SUSPEND/ RESUME PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Read Status  
Read  
Data= 70h  
Write  
Write  
Status Addr= Block to suspend (BA)  
Write70h  
Any Address  
Program Data= B0h  
Suspend Addr= X  
Program Suspend  
Write B0h  
Any Address  
Status register data  
Initiate a read cycle to update Status  
register  
Read  
Read Status  
Register  
Addr= Suspended block (BA)  
Check SR.7  
Standby  
Standby  
1= WSM ready  
0= WSM busy  
0
0
SR.7=  
1
Check SR.2  
1= Program suspended  
0= Program completed  
Program  
Completed  
SR.2 =  
1
Read  
Array  
Data= FFh  
Addr= Block address to read(BA)  
Write  
Read  
Write  
Read Array  
Write FFh  
Any Address  
Read array data from block other than  
the one being programmed  
Read Array  
Data  
Program Data= D0h  
Resume Addr= Suspended block (BA)  
Done  
No  
Reading  
Yes  
Program Resume  
Read Array  
Write FFh  
Write D0h  
Any Address  
Program  
Resumed  
Read Array  
Data  
Read Status  
Write70h  
Any Address  
PGM_SUS. WMF  
Datasheet  
73  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
Figure 33: Buffer Program Flowchart  
Bus  
Operation  
Command  
Comments  
Data =E8H  
Write to  
Buffer  
Write  
Addr = Block Address  
Start  
SR. 7 = Valid  
Addr = Block Address  
Read  
(Note 7)  
Device  
Supports Buffer  
Writes?  
Check SR.7  
1 = Device WSM is Busy  
0 = Device WSM is Ready  
Use Single Word  
Programming  
No  
Standby  
Yes  
Data =N-1 = Word Count  
N = 0 corresponds to count=1  
Addr = Block Address  
Write  
( Notes1, 2)  
Set Timeout or  
Loop Counter  
Write  
( Notes3, 4)  
Data = Write Buffer Data  
Addr = Start Address  
Get Next  
Target Address  
Write  
( Notes5, 6)  
Data = Write Buffer Data  
Addr = Block Address  
Issue Write to Buffer  
Command E8h and  
Block Address  
Program  
Confirm  
Data =D0H  
Addr = Block Address  
Write  
Read  
Status register Data  
CE # and OE# low updates SR  
Addr = Block Address  
Read Status Register  
Block Address  
(note 7)  
Check SR.7  
1 = WSM Ready  
0 = WSM Busy  
No  
Standby  
Timeout  
or Count  
Expired?  
0 = No  
Is WSM Ready?  
SR. 7=  
Notes:  
Yes  
.
1. Word count values on DQ0-DQ15 are loaded into the Count  
register. Count ranges for this device are N=0000h to 00FFh.  
1 = Yes  
2. The device outputs the status register when read.  
Write Word Count  
Block Address  
3. Write Buffer contents will be programmed at the device start  
address or destination flash address.  
Write Buffer Data  
Start Address  
X = X + 1  
4. Align the start address on a Write Buffer boundary for maximum  
programming performance (i.e., A8-A1 of the start address =0).  
.
Write Buffer Data  
Block Address  
5. The device aborts the Buffered Program command if the  
X =0  
current address is outside the original block address .  
No  
.
6. The Status register indicates an “improper command  
Sequence” if the Buffered Program command is aborted. Follow  
this with a Clear Status Register command .  
No  
Abort Bufferred  
Program?  
X =N?  
Yes  
7. The device default state is to output SR data after the Buffered  
Programming Setup Command (E8h).CE# and OE low drive the  
device to update Status Register . It is not allowed to issue 70h to  
read SR data after E8h command otherwise 70h would be  
counted as Word count.  
Yes  
Write Confirm D0h  
and Block Address  
Write to another  
Block Address  
Buffered Program  
Aborted  
8. Full status check can be done after all erase and write  
sequences complete . Write FFh after the last operation to reset  
the device to read array mode.  
Read Status Register  
No  
Suspend  
Program  
Loop  
Yes  
Suspend  
Program  
0
SR. 7=?  
1
Full Status  
Check if Desired  
Yes  
Another Buffered  
Programming?  
No  
Program Complete  
Datasheet  
74  
Mar 2010  
Order Number: 320003-09  
 
P33-65nm  
Figure 34: BEFP Flowchart  
Setup Phase  
Start  
Program/Verify Phase  
Exit Phase  
Read Status  
Register  
Read Status  
Register  
A
B
Issue BEFP Setup Cmd  
(Data = 0x80)  
No (SR.0=1)  
Buffer Ready ?  
No (SR.7=0)  
BEFP Exited ?  
Issue BEFP Confirm Cmd  
(Data = 00D0h)  
Yes (SR.0=0)  
Write Data Word to Buffer  
Yes (SR.7=1)  
BEFP  
Setup  
Delay  
Full Status  
Register check for  
errors  
No  
Buffer Full ?  
Yes  
Read Status  
Register  
Finish  
Read Status  
Register  
Yes (SR.7=0)  
BEFP Setup  
Done ?  
A
No (SR.0=1)  
No (SR.7=1)  
Program  
Done ?  
SR Error Handler  
(User-Defined)  
Yes (SR.0=0)  
Exit  
Program  
Yes  
More Data ?  
No  
Write 0xFFFFh outside Block  
B
Datasheet  
75  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
Figure 35: Block Erase Flowchart  
Start  
Command Cycle  
- Issue Erase command  
- Address = Block to be erased  
- Data = 0x20  
Confirm Cycle  
- Issue Confirm command  
- Address = Block to be erased  
- Data = Erase confirm (0xD0)  
Check Ready Status  
- Read Status Register Command not required  
- Perform read operation  
- Read Ready Status on signal SR.7  
No  
No  
Erase Suspend  
See Suspend/  
Resume Flowchart  
Yes  
No  
SR.7 = '1'  
?
Suspend  
?
Errors  
?
Yes  
Yes  
Error-Handler  
User Defined Routine  
Read Status Register  
- Toggle CE# or OE# to update Status Register  
- See Status Register Flowchart  
End  
Datasheet  
76  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
Figure 36: Block Lock Operations Flowchart  
LOCKING OPERATIONS PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Lock Setup  
Write 60h  
Block Address  
Lock  
Setup  
Data = 60h  
Addr = Block to lock/unlock/lock-down (BA)  
Write  
Write  
Lock,  
Unlock, or  
Lockdown  
Data = 01h (Lock block)  
D0h (Unlock block)  
Lock Confirm  
Write 01,D0,2Fh  
Block Address  
2Fh (Lockdown block)  
Confirm Addr = Block to lock/unlock/lock-down (BA)  
Read ID Plane  
Write 90h  
Write  
(Optional)  
Read ID Data = 90h  
Plane  
Addr = Block address offset+2 (BA+2)  
Read  
(Optional)  
Block Lock Block Lock status data  
Status Addr = Block address offset+2 (BA+2)  
Read Block Lock  
Status  
Confirm locking change on DQ , DQ0.  
(See Block Locking State Transitions Table  
for valid combinations.)  
1
Standby  
(Optional)  
Locking  
No  
Change?  
Yes  
Read  
Array  
Data = FFh  
Addr = Block address (BA)  
Write  
Read Array  
Write FFh  
Any Address  
Lock Change  
Complete  
LOCK_OP.WMF  
Datasheet  
77  
Mar 2010  
OrderNumber:320003-09  
 
P33-65nm  
Figure 37: Erase Suspend/Resume Flowchart  
ERASE SUSPEND / RESUME PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Read Status  
Write 70h  
Any Address  
Read  
Data = 70h  
Write  
Write  
Status Addr = Any device address  
Data = B0h  
Addr = Same partition address as  
Erase  
Suspend  
above  
Erase Suspend  
Write B0h  
Any Address  
Status register data. Toggle CE# or  
OE# to update Status register  
Addr =X  
Read  
Read Status  
Register  
Check SR.7  
Standby  
1 = WSM ready  
0 = WSM busy  
0
0
SR.7 =  
1
Check SR.6  
1 = Erase suspended  
0 = Erase completed  
Standby  
Write  
Erase  
Completed  
SR.6 =  
1
Read Array Data = FFh or 40h  
or Program Addr = Block to program or read  
Read or  
Write  
Read array or program data from/to  
block other than the one being erased  
Read  
Program  
Read or  
Program?  
Read Array  
Data  
Program  
Loop  
Program Data = D0h  
Resume Addr = Any address  
No  
Write  
Done?  
Yes  
Erase Resume  
Read Array  
Write D0h  
Write FFh  
Any Address  
Any Addres  
Erase  
Resumed  
Read Array  
Data  
Read Status  
Write 70h  
Any Address  
ERAS_SUS.WMF  
Datasheet  
78  
Mar 2010  
Order Number: 320003-09  
 
P33-65nm  
Figure 38: OTP Register Programming Flowchart  
Start  
OTP Program Setup  
- Write 0xC0  
- OTP Address  
Confirm Data  
- Write OTP Address and Data  
Check Ready Status  
- Read Status Register Command not required  
- Perform read operation  
- Read Ready Status on signal SR.7  
No  
SR.7 = '1'  
?
Yes  
Read Status Register  
- Toggle CE# or OE# to update Status Register  
- See Status Register Flowchart  
End  
Datasheet  
79  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
Figure 39: Status Register Flowchart  
Start  
Command Cycle  
- Issue Status Register Command  
- Address = any device address  
- Data = 0x70  
Data Cycle  
- Read Status Register SR[7:0]  
No  
SR7 = '1'  
Yes  
Yes  
- Set/Reset  
by WSM  
Erase Suspend  
See Suspend/Resume Flowchart  
SR6 = '1'  
No  
Yes  
Program Suspend  
See Suspend/Resume Flowchart  
SR2 = '1'  
No  
Error  
Command Sequence  
Yes  
Yes  
SR5 = '1'  
SR4 = '1'  
No  
No  
Error  
Erase Failure  
Yes  
Error  
Program Failure  
SR4 = '1'  
No  
- Set by WSM  
- Reset by user  
- See Clear Status  
Register Command  
Yes  
Error  
< VPENLK/PPLK  
SR3 = '1'  
VPEN/PP  
No  
Yes  
Error  
Block Locked  
SR1 = '1'  
No  
End  
Datasheet  
80  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
A.3  
Write State Machine  
Show here are the command state transitions (Next State Table) based on incoming  
commands. Only one partition can be actively programming or erasing at a time. Each  
partition stays in its last read state (Read Array, Read Device ID, Read CFI or Read  
Status Register) until a new command changes it. The next WSM state does not depend  
on the partition’s output state.  
Note:  
IS refers to Illegal State in the Next State Tables.  
Table 41: Next State Table for P3x-65nm (Sheet 1 of 3)  
(1)  
Command Input and Resulting Chip Next State  
Current Chip State  
(90h,  
98h)  
(03h,  
04h)  
(FFh) (40h) (E8h) (EBh) (20h) (80h) (D0h) (B0) (70h) (50h)  
(60h) (BCh) (C0h) (01h) (2Fh)  
other  
N/A  
N/A  
N/A  
Ready  
Ready  
Ready  
Ready  
(Lock  
Error  
[Botc  
h])  
Ready  
Ready  
(Lock  
Block  
)
(Lock Ready  
Ready (Lock  
Error [Botch])  
Ready (Lock Error  
[Botch])  
down (Set N/A  
Lock/RCR/ECR Setup  
Ready (Lock Error [Botch])  
Block CR)  
)
Setup  
OTP Busy  
IS in  
OTP Busy  
N/A  
OTP Busy  
OTP Busy  
N/A  
Ready  
N/A  
OTP  
IS in OTP  
Busy  
Illegal State in OTP  
Busy  
Busy  
OTP  
OTP Busy  
OTP Busy  
OTP Busy  
N/A  
OTP  
Busy  
Busy  
OTP Busy  
IS in OTP Busy  
Setup  
OTP Busy  
Word Program Busy  
N/A  
N/A  
Pgm Busy  
Pgm Busy  
IS in  
Pgm  
Busy  
IS in Pgm  
Busy  
Pgm Pgm  
IS in Word Pgm  
Busy  
Busy  
Pgm  
Pgm Busy  
Word Pgm Busy  
Word Pgm Busy  
Busy Susp  
Ready  
Busy  
IS in Pgm Busy  
Word Pgm Busy  
Pgm  
Word  
Program  
IS in  
Pgm  
Susp  
Susp Word  
Pgm  
Susp  
Pgm  
Suspend  
IS in Pgm  
Susp  
Pgm  
Busy  
Illegal State in Pgm  
Suspend  
Word Program  
Suspend  
Suspend  
Pgm Susp  
(Er  
Pgm  
N/A  
Word Pgm Susp  
bits Susp  
clear)  
N/A  
N/A  
IS in Pgm  
Suspend  
EFI Setup  
Sub-function  
Setup  
Sub-op-code  
Load 1  
Word Program Suspend  
Sub-function Setup  
Sub-op-code Load 1  
Sub-function Load 2 if word count >0, else Sub-function confirm  
Sub-function  
Load 2  
Sub-function  
Confirm  
Sub-function Confirm if data load in program buffer is complete, ELSE Sub-function Load 2  
S-fn  
Ready (Error [Botch])  
Ready (Error [Botch])  
Busy  
EFI  
IS in  
S-fn  
Busy  
Sub-function  
S-fn  
Illegal State S-fn S-fn  
in S-fn Busy Busy Susp  
S-fn Busy  
S-fn Busy  
IS in S-fn Busy  
S-fn Busy  
S-fn Busy  
S-fn Susp  
Busy  
Busy  
Ready  
N/A  
IS in Sub-  
function Busy  
Sub-function Busy  
S-fn  
IS in  
Susp  
Sub-function  
Susp  
S-fn  
Susp  
Illegal State S-fn  
in S-fn Busy Busy  
S-fn  
Suspend  
S-fn  
Susp  
S-fn Sub-function  
Susp  
(Er  
bits  
IS in S-fn Susp  
S-fn Suspend  
N/A  
clear)  
IS in S-fn Susp  
Sub-function Suspend  
Datasheet  
81  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
Table 41: Next State Table for P3x-65nm (Sheet 2 of 3)  
(1)  
Command Input and Resulting Chip Next State  
Current Chip State  
(90h,  
98h)  
(03h,  
04h)  
(FFh) (40h) (E8h) (EBh) (20h) (80h) (D0h) (B0) (70h) (50h)  
(60h) (BCh) (C0h) (01h) (2Fh)  
other  
Setup  
BP Load 1 (8)  
BP Load 1  
BP Load 2 if word count >0, else BP confirm  
BP Confirm if data  
load in program  
buffer is  
complete, else BP  
load 2  
Ready  
(Error  
[Botc  
h])  
N/A  
BP Load 2 (8)  
BP Confirm if data load in program buffer is complete, ELSE BP load 2  
BP  
BP Confirm  
Ready (Error [Botch])  
Ready (Error [Botch])  
Buffer  
Busy  
Pgm  
IS in  
BP  
Busy  
BP  
Busy  
Illegal State  
BP  
BP  
BP Busy  
BP Busy  
BP Busy  
BP Busy  
IS in BP Busy  
BP Busy  
BP Busy  
BP Susp  
(BP)  
in BP Busy Busy Susp  
Ready  
N/A  
IS in BP Busy  
BP Susp  
BP  
Susp  
(Er  
IS in  
BP  
Susp  
BP  
Susp  
Illegal State  
in BP Busy Busy  
BP  
BP  
Susp  
BP Suspend  
BP Suspend  
IS in BP Susp  
BP Suspend  
N/A  
bits  
clear)  
IS in BP Susp  
Setup  
BP Suspend  
Erase  
Ready (Err  
Botch0])  
Ready (Error [Botch])  
Ready (Error [Botch])  
N/A  
N/A  
Busy  
N/A  
IS in  
Erase Erase Busy  
Busy  
Erase  
Busy  
IS in Erase Erase Erase  
Busy Busy Susp  
Busy  
Erase Busy  
IS in Erase Busy  
Erase Busy  
Ers Busy  
IS in Erase Busy  
Erase Busy  
Ready  
Lock/  
RCR/  
ECR  
Erase  
Word  
Pgm  
EFI  
Setup  
in  
BP  
Setup  
in  
Erase  
Susp  
IS in  
Erase  
Susp  
Erase Setup  
IS in Erase Erase  
Erase  
Erase  
Susp  
Erase  
Susp  
Suspend  
(Er  
bits  
Setup  
in  
Erase Suspend  
N/A  
N/A  
Erase Susp  
Susp  
in  
Erase  
Susp  
Erase  
Susp  
Suspend  
Busy  
Suspend  
N/A  
N/A  
Erase  
Susp  
clear)  
Erase  
Susp  
Erase Suspend  
IS in Erase Susp  
Setup  
Word Pgm busy in Erase Suspend  
Word  
Pgm  
busy  
in  
Erase  
Susp  
Word  
Word  
Pgm  
Pgm  
IS in  
Pgm  
busy  
Word Pgm  
busy in  
IS in Word  
Pgm busy in  
Ers Susp  
busy  
in  
Word Pgm busy in  
Erase Susp  
IS in Word Pgm  
busy in Ers Susp  
Word Pgm busy in  
Erase Susp  
Erase  
Susp  
Busy  
Susp  
in Ers  
Susp  
in Ers Erase Susp  
Susp  
Erase  
Susp  
Illegal state(IS)  
IS in  
Ers  
Susp  
Word Pgm Busy in  
Ers Suspend  
in Pgm busy in  
Word Pgm busy in Erase Suspend  
Word  
Erase Suspend  
Pgm in  
Erase  
Suspend  
Suspend  
Word  
Word  
Pgm  
Susp  
in Ers  
Susp  
(Er  
Word iS in  
Pgm pgm  
Word Word  
Pgm Pgm  
susp susp  
in Ers in Ers  
susp susp  
Word  
Pgm  
susp  
in Ers  
susp  
Pgm  
busy  
in  
Word Pgm  
iS in pgm  
susp in Ers  
Susp  
iS in Word Pgm  
susp in Ers Susp  
Word Pgm susp in  
Ers susp  
susp susp susp in Ers  
N/A  
in Ers in Ers  
susp Susp  
susp  
Erase  
Susp  
N/A  
bits  
clear)  
Illegal State in  
Word Program  
Suspend in Erase  
Suspend  
Word Pgm busy in Erase Suspend  
Setup  
BP Load 1 (8)  
BP Load 1 in Erase Suspend  
BP Load 2 in Erase Suspend if word count >0, else BP confirm  
Ers  
Susp  
(Error  
[Botc  
h])  
BP Confirm in  
Erase Suspend  
when count=0,  
ELSE BP load 2  
N/A  
BP Load 2 (8)  
BP Confirm  
BP Confirming Erase Suspend if data load in program buffer is complete, ELSE BP load 2 in Erase Suspend  
Erase Suspend (Error [BotchBP])  
IS in  
Erase Susp (Error [Botch BP])  
IS in BP Busy in  
BP Busy in Ers Susp N/A  
BP  
BP  
BP  
Busy  
in Ers  
Susp  
BP  
Illegal State  
in BP Busy in  
Ers Susp  
Busy  
in Ers  
Susp  
BP Busy in  
Erase Susp  
Susp  
in Ers  
Susp  
BP Busy in Ers  
Susp  
Erase  
Susp  
BP in  
Erase  
BP Busy  
Busy  
in Ers  
Susp  
BP Busy in Ers Susp  
Erase Suspend  
Suspend  
IS in  
Ers  
IS in BP Busy  
BP Busy in Erase Suspend  
BP  
Susp  
IS in  
BP  
Susp  
in Ers  
Susp  
Susp  
BP  
BP  
BP  
BP Suspend Illegal State  
in Ers  
Susp  
in Ers  
Susp  
Busy BP Susp in  
Susp  
in Ers  
Susp  
IS in BP Busy in  
Erase Suspend  
BP Susp in Ers  
Susp  
BP Susp  
in Erase  
Suspend  
in BP Busy in  
Ers Susp  
Susp  
(Er  
BP Susp in Ers Susp N/A  
in Ers  
Susp  
Ers Susp  
N/A  
bits  
clear)  
IS in BP Suspend  
BP Suspend in Erase Suspend  
Datasheet  
82  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
Table 41: Next State Table for P3x-65nm (Sheet 3 of 3)  
(1)  
Command Input and Resulting Chip Next State  
Current Chip State  
(90h,  
98h)  
(03h,  
04h)  
(FFh) (40h) (E8h) (EBh) (20h) (80h) (D0h) (B0) (70h) (50h)  
(60h) (BCh) (C0h) (01h) (2Fh)  
other  
EFI Setup  
Sub-function  
Setup  
Sub-function Setup in Erase Suspend  
Sub-op-code Load 1 in Erase Suspend  
Sub-op-code  
Load 1  
Sub-function Load 2 in Erase Suspend if word count >0, else Sub-function confirm in Erase Suspend  
Sub-function  
Ers  
Confirm if data  
N/A  
Susp load in program  
Sub-function  
Load 2  
Sub-function Confirm in Erase Suspend if data load in program buffer is complete, ELSE Sub-function Load 2  
(Error  
buffer is  
[Botc complete, ELSE  
h])  
Sub-function  
Load 2  
Sub-function  
Erase Suspend (Error [Botch])  
IS in  
Erase Suspend (Error [Botch])  
Confirm  
EFI in  
S-fn  
Busy  
in Ers  
Susp  
S-fn  
Busy  
in Ers  
Susp  
S-fn  
Susp  
in Ers  
Susp  
Erase  
Suspend  
S-fn  
Busy  
in Ers  
Susp  
Illegal State  
Sub-function  
S-fn Busy in  
Ers Suspend  
S-fn Busy in Ers  
Susp  
IS in S-fn Busy in  
Ers Susp  
S-fn Busy in Ers  
S-fn Busy in Ers Erase  
in S-fn Busy  
in Ers Susp  
N/A  
Busy  
Susp  
Susp  
Susp  
IS in  
Ers  
IS in Sub-  
Sub-function Busy in Ers Susp  
S-fn  
function Busy  
Susp  
IS in  
S-fn  
Susp  
S-fn  
in Ers  
Susp IS in S-fn Susp in S-fn Suspend in Ers  
S-fn  
Susp  
in Ers  
Susp  
S-fn  
Busy  
in Ers  
Susp  
S-fn  
Illegal State  
S-fn  
Sub-function  
Susp  
S-fn Susp in Ers  
Susp  
Susp Suspend in in S-fn Busy  
Suspend in Susp  
N/A  
in Ers  
Susp  
Ers Susp  
Susp  
in Ers  
Susp  
Ers Susp  
in Ers Susp  
Ers Susp  
(Er  
bits  
N/A  
clear)  
IS in Phase-1  
Susp  
Sub-Function Suspend in Erase Suspend  
Ers  
Susp  
(Un-  
lock  
Block  
)
Ers  
Ers  
Susp  
Blk  
Ers  
Susp  
Blk  
Ers  
Susp  
CR  
Lock/RCR/ECR/Lock  
EFA Block Setup in  
Erase Suspend  
Susp  
(Error  
[Botc  
h])  
Erase Suspend (Lock Error  
[Botch])  
Ers Susp (Error  
[Botch])  
Ers Susp (Lock Error [Botch])  
N/A  
N/A  
N/A  
Lk-  
Lock  
Set  
Down  
BC  
Busy  
Ready (Error  
[Botch])  
Setup  
Ready (Error [Botch])  
IS in BC Busy  
N/A  
Ready (Error [Botch])  
IS in  
Blank  
BC  
IS in BC  
Busy  
Blank Check Busy  
Check  
BC  
BC Busy  
Blank Check Busy  
BP Busy  
BC Busy  
Busy  
Busy  
BC Busy  
Ready  
IS in Blank Check  
Busy  
BEFP  
Load  
Data  
Setup  
Ready (Error [Botch])  
Ready (Error [Botch])  
N/A  
BEFP  
BEFP Program and Verify Busy (if Block Address given matches address given on BEFP Setup command). Commands  
treated as data. (7)  
BEFP Busy  
Ready  
BEFP Busy  
Ready  
Datasheet  
83  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
Table 42: Output Next State Table for P3x-65nm  
(1)  
Command Input to Chip and Resulting Output MUX Next State  
Current Chip State  
(90h,  
98h)  
(03h,  
04h)  
(FFh) (40h) (E8h) (EBh) (20h) (80h) (D0h) (B0) (70h) (50h)  
(60h) (BCh) (C0h) (01h) (2Fh)  
other  
BEFPSetup,  
BEFP Pgm & Verify Busy,  
Erase Setup,  
OTP Setup,  
BP Setup, Load 1, Load 2  
BP Setup, Load1, Load 2 - in  
Erase Susp.  
BP Confirm  
EFI Sub-function Confirm  
Status Read  
WordPgmSetup,  
Word Pgm Setup in Erase  
Susp,  
BP Confirm in Erase Suspend,  
EFI S-fn Confirm in Ers Susp,  
Blank Check Setup,  
Blank Check Busy  
Lock/RCR/ECR Setup,  
Lock/RCR/ECR Setup in Erase  
Susp  
Status Read  
EFI S-fn Setup, Ld 1, Ld 2  
EFI S-fn Setup, Ld1, Ld 2 - in  
Erase Susp.  
Output MUX will not change  
BP Busy  
BP Busy in Erase Suspend  
EFI Sub-function Busy  
EFI Sub-fn Busy in Ers Susp  
Word Program Busy,  
Word Pgm Busy in Erase  
Suspend,  
OTP Busy  
Erase Busy  
Status  
Read  
Status  
Read  
Output MUX does  
not Change  
Status Read  
Ready,  
Word Pgm Suspend,  
BP Suspend,  
Phase-1 BP Suspend,  
Erase Suspend,  
BP Suspend in Erase Suspend  
Phase-1 BP Susp in Ers Susp  
Notes:  
1.  
2.  
3.  
4.  
IS refers to Illegal State in the Next State Table.  
“Illegal commands” include commands outside of the allowed command set.  
The device defaults to "Read Array" on powerup.  
If a “Read Array” is attempted when the device is busy, the result will be “garbage” data (we should not tell the user that  
it will actually be Status Register data). The key point is that the output mux will be pointing to the “array, but garbage  
data will be output. “Read ID” and "Read Query" commands do the exact same thing in the device. The ID and Query data  
are located at different locations in the address map.  
The Clear Status command only clears the error bits in the status register if the device is not in the following modes:1.  
WSM running (Pgm Busy, Erase Busy, Pgm Busy In Erase Suspend, OTP Busy, BEFP modes) 2. Suspend states (Erase  
Suspend, Pgm Suspend, Pgm Suspend In Erase Suspend).  
5.  
6.  
7.  
BEFP writes are only allowed when the status register bit #0 = 0 or else the data is ignored.  
Confirm commands (Lock Block, Unlock Block, Lock-Down Block, Configuration Register and Blank Check) perform the  
operation and then move to the Ready State.  
8.  
9.  
Buffered programming will botch when a different block address (as compared to the address given on the first data write  
cycle) is written during the BP Load1 and BP Load2 states.  
All two cycle commands will be considered as a contiguous whole during device suspend states. Individual commands will  
not be parsed separately. (I.e. If an erase set-up command is issued followed by a D0h command, the D0h command will  
not resume the program operation. Issuing the erase set-up places the CUI in an “illegal state. A subsequent command  
will clear the “illegal state, but the command will be otherwise ignored.  
Datasheet  
84  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
Appendix B Conventions - Additional Documentation  
B.1  
Acronyms  
BEFP:  
CUI :  
MLC :  
OTP :  
PLR :  
PR :  
Buffered Enhanced Factory Programming  
Command User Interface  
Multi-Level Cell  
One-Time Programmable  
one-time programmable Lock Register  
one-time programmable Register  
Read Configuration Register  
Reserved for Future Use  
Status Register  
RCR :  
RFU :  
SR :  
SRD  
Status Register Data  
WSM  
Write State Machine  
B.2  
Definitions and Terms  
VCC :  
Signal or voltage connection  
V
:
Signal or voltage level  
CC  
h :  
Hexadecimal number suffix  
0b :  
0x :  
Binary number prefix  
hexadecimal number prefix  
SR.4 :  
Denotes an individual register bit.  
Denotes a group of similarly named signals, such as address or data bus.  
A[15:0] :  
Denotes one element of a signal group membership, such as an individual address  
bit.  
A5 :  
Bit :  
Single Binary unit  
Eight bits  
Byte :  
Word :  
Kbit :  
KByte :  
KWord :  
Mbit :  
MByte :  
MWord :  
K
Two bytes, or sixteen bits  
1024 bits  
1024 bytes  
1024 words  
1,048,576 bits  
1,048,576 bytes  
1,048,576 words  
1,000  
M
1,000,000  
3.0 V :  
9.0 V :  
V
(core) and V  
(I/O) voltage range of 2.3 V – 3.6 V  
CC  
CCQ  
VPP voltage range of 8.5 V – 9.5 V  
A group of bits, bytes, or words within the flash memory array that erase  
simultaneously. The P33-65nm has two block sizes: 32 KByte and 128 KByte.  
Block :  
Datasheet  
85  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
An array block that is usually used to store code and/or data. Main blocks are larger  
than parameter blocks.  
Main block :  
An array block that may be used to store frequently changing data or small system  
parameters that traditionally would be stored in EEPROM.  
Parameter block :  
A device with its parameter blocks located at the highest physical address of its  
memory map.  
Top parameter device :  
Bottom parameter device :  
A device with its parameter blocks located at the lowest physical address of its  
memory map.  
Datasheet  
86  
Mar 2010  
Order Number: 320003-09  
P33-65nm  
Appendix C Revision History  
Date  
Revision Description  
Program performance update in front page, Section 25, “Program and Erase  
Specifications” and CFI.  
specification comments, Table 24, “AC Write Specifications” on page 54.  
t
DVWH  
Erase/program suspend latency specification update, Table 25, “Program and Erase  
Specifications” on page 58.  
Leaded TSOP part EOL.  
Mar 2010  
09  
Burst latency update and 40MHz spec update, Table 12, “LC and Frequency Support”  
on page 36.  
Clarify the capacitance, Table 22, “Capacitance” on page 49.  
Ordering Information update.  
Update the Block lock Operations, Program Suspend/Resume, Erase Suspend/Resume flowcharts in  
Figure 36, Figure 37, Figure 37, backward compatible with 130nm.  
Align the sequence error description in Table 11.  
Add TSOP 40Mhz Burst Spec, f  
, t  
, t  
, t  
, Table 23, “AC Read Specifications -”  
CLK CLK CHQV CHTV  
Aug 2009  
08  
on page 49.  
Add note 7 in buffer program flowchart Figure 33.  
Update V undershoot and overshoot of Note 2 in Table 20.  
IL  
Update CFI 0x2A data in Section A.1, “Common Flash Interface” .  
Add 512 Mbit (256/256) memory map in Figure 1, “P33-65nm Memory Map” on  
page 7  
Correct RCR.4, RCR.5, RCR.7 and RCR.9 definitions in Table 11, “Read Configuration  
Register Description” on page 34  
Apr 2009  
Dec 2008  
07  
06  
Correct A to A signal naming and remove invalid x8 information in Table 29, “Example of  
0
1
Query Structure Output of x16 Devices” on page 62  
Correct Page buffer address bits to Four on Section 7.1, “Asynchronous Page-Mode  
Read” on page 21.  
Correct VHH to V  
on Table 19, “DC Current Characteristics” on page 46 note.  
PPH  
Update the Buffer program flowchart to reflect the read status register;  
minor wording modification;  
Return to StrataFlash;  
Nov 2008  
05  
Update the buffer program comments for cross 512-Word boundary;  
Remove 128M related contents from this document;  
Correct A24 to A25 for virtual CE description in section 1.3;  
Remove Numonyx Confidential;  
TM  
Updated Axcell  
trademark;  
Sep 2008  
July 2008  
04  
03  
Remove 64M related content;  
Added W28 AC specification;  
Fixed Buffered Program Command error in figure 38;  
Updated block locking state diagram;  
Updated Address range in Memory Map figure;  
Changed LSB Address from A0 to A1 in figure7 under dual die configurations section;  
Changed LSB Address in ballout and pinout description from A0 back to A1 to match P33 130nm.  
June 2008  
May 2008  
02  
01  
Corrected SCSP order information  
Initial release  
Datasheet  
87  
Mar 2010  
OrderNumber:320003-09  
P33-65nm  
Datasheet  
88  
Mar 2010  
Order Number: 320003-09  

相关型号:

TE28F256P33B95B

Flash, 16MX16, 95ns, PDSO56, 14 X 20 MM, TSOP-56
NUMONYX

TE28F256P33T95

Flash, 16MX16, 95ns, PDSO56, 14 X 20 MM, TSOP-56
INTEL

TE28F256P33T95A

Flash, 16MX16, 95ns, PDSO56, 14 X 20 MM, TSOP-56
NUMONYX

TE28F256P33T95B

Flash, 16MX16, 95ns, PDSO56, 14 X 20 MM, TSOP-56
NUMONYX

TE28F320

3 Volt Advanced Boot Block Flash Memory
INTEL

TE28F320B3

SMART 3 ADVANCED BOOT BLOCK 4-, 8-, 16-, 32-MBIT FLASH MEMORY FAMILY
INTEL

TE28F320B3B110

SMART 3 ADVANCED BOOT BLOCK 4-, 8-, 16-, 32-MBIT FLASH MEMORY FAMILY
INTEL

TE28F320B3B90

SMART 3 ADVANCED BOOT BLOCK 4-, 8-, 16-, 32-MBIT FLASH MEMORY FAMILY
INTEL

TE28F320B3BA100

3 Volt Advanced Boot Block Flash Memory
INTEL

TE28F320B3BA110

SMART 3 ADVANCED BOOT BLOCK 4-, 8-, 16-, 32-MBIT FLASH MEMORY FAMILY
INTEL

TE28F320B3BA90

SMART 3 ADVANCED BOOT BLOCK 4-, 8-, 16-, 32-MBIT FLASH MEMORY FAMILY
INTEL

TE28F320B3BC70

3 Volt Advanced Boot Block Flash Memory
INTEL