M0519LE3AE [NUVOTON]

ARM® Cortex®-M0 32-bit Microcontroller;
M0519LE3AE
型号: M0519LE3AE
厂家: NUVOTON    NUVOTON
描述:

ARM® Cortex®-M0 32-bit Microcontroller

微控制器
文件: 总69页 (文件大小:1522K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M0519  
ARM® Cortex® -M0  
32-bit Microcontroller  
NuMicro® Family  
M0519 Series  
Datasheet  
The information described in this document is the exclusive intellectual property of  
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.  
Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based  
system design. Nuvoton assumes no responsibility for errors or omissions.  
All data and specifications are subject to change without notice.  
For additional information or questions, please contact: Nuvoton Technology Corporation.  
www.nuvoton.com  
Nov. 02, 2016  
Page 1 of 69  
Rev 1.02  
M0519  
Table of Contents  
1
2
3
4
GENERAL DESCRIPTION .......................................................................6  
FEATURES .........................................................................................7  
ABBREVIATIONS................................................................................10  
PARTS INFORMATION LIST AND PIN CONFIGURATION ..............................12  
NuMicro® M0519 Selection Guide..................................................................12  
Pin Configuration......................................................................................13  
Pin Description ........................................................................................16  
BLOCK DIAGRAM ...............................................................................23  
FUNCTIONAL DESCRIPTION.................................................................24  
ARM® Cortex® -M0 Core..............................................................................24  
System Manager......................................................................................26  
Clock Controller .......................................................................................35  
Flash Memory Controller (FMC)....................................................................38  
General Purpose I/O (GPIO)........................................................................39  
Timer Controller (TIMER)............................................................................40  
Basic PWM Generator and Capture Timer (BPWM) ............................................41  
Enhanced PWM Generator (EPWM) ..............................................................42  
Enhanced Input Capture Timer (ECAP)...........................................................43  
4.1  
4.2  
4.3  
5
6
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
6.9  
6.10  
6.11  
6.12  
6.13  
6.14  
6.15  
6.16  
6.17  
6.18  
Watchdog Timer (WDT)..............................................................................44  
Window Watchdog Timer (WWDT) ................................................................45  
Universal Asynchronous Receiver Transmitter (UART) ........................................46  
I2C Serial Interface Controller (I²C) ................................................................47  
Serial Peripheral Interface (SPI)....................................................................48  
Hardware Divider (HDIV) ............................................................................49  
Enhanced Analog-to-Digital Converter (EADC)..................................................50  
Analog Comparator (ACMP) ........................................................................51  
OP Amplifier (OPA)...................................................................................52  
7
ELECTRICAL CHARACTERISTICS ..........................................................53  
Absolute Maximum Ratings .........................................................................53  
DC Electrical Characteristics........................................................................54  
AC Electrical Characteristics........................................................................58  
Analog Characteristics ...............................................................................60  
7.1  
7.2  
7.3  
7.4  
Nov. 02, 2016  
Page 2 of 69  
Rev 1.02  
M0519  
7.5  
Flash DC Electrical Characteristics ................................................................64  
PACKAGE DIMENSIONS ......................................................................65  
LQFP 100V (14x14x1.4 mm footprint 2.0mm) ...................................................65  
LQFP 64S (7x7x1.4 mm footprint 2.0 mm) .......................................................66  
LQFP 48L (7x7x1.4mm footprint 2.0mm) .........................................................67  
REVISION HISTORY............................................................................68  
8
9
8.1  
8.2  
8.3  
Nov. 02, 2016  
Page 3 of 69  
Rev 1.02  
M0519  
List of Figures  
Figure 4-1 NuMicro® M0519 Selection Code........................................................................ 12  
Figure 4-2 NuMicro® M0519VxxAE Series LQFP-100 Pin Diagram ..................................... 13  
Figure 4-3 NuMicro® M0519SxxAE Series LQFP-64 Pin Diagram ....................................... 14  
Figure 4-4 NuMicro® M0519LxxAE Series LQFP-48 Pin Diagram........................................ 15  
Figure 5-1 NuMicro® M0519 Series Block Diagram.............................................................. 23  
Figure 6-1 Functional Controller Diagram ............................................................................ 24  
Figure 6-2 NuMicro® M0519 Series Power Distribution Diagram.......................................... 27  
Figure 6-3 Clock Generator Block Diagram ......................................................................... 36  
Figure 6-4 Clock Generator Global View Diagram ............................................................... 37  
Figure 71 Typical Crystal Application Circuit...................................................................... 58  
Nov. 02, 2016  
Page 4 of 69  
Rev 1.02  
M0519  
List of Tables  
Table 6-1 Address Space Assignments for On-Chip Controllers.......................................... 29  
Table 6-2 Exception Model .................................................................................................. 32  
Table 6-3 System Interrupt Map Vector Table...................................................................... 33  
Table 6-4 Vector Table ........................................................................................................ 34  
Table 6-5 Clock Stable Count Value Table .......................................................................... 35  
Nov. 02, 2016  
Page 5 of 69  
Rev 1.02  
M0519  
1
GENERAL DESCRIPTION  
The NuMicro® M0519 Series 32-bit microcontroller is embedded with the newest ARM® Cortex® -  
M0 core at a cost equivalent to traditional 8-bit microcontroller for industrial control and  
applications which need high performance.  
The NuMicro® M0519 Series embedded with the Cortex® -M0 core runs up to 72 MHz and  
supports a variety of industrial control and applications which need high CPU performance. The  
NuMicro® M0519 Series provides 128K/64K bytes embedded flash, 4 Kbytes data flash, 8 Kbytes  
flash for the ISP, and 16K bytes embedded SRAM. This MCU includes advanced PWM function  
and input capture timer which are specially designed for motor driving application. It is also  
equipped with plenty of peripheral devices, such as Timers, Watchdog Timer, UART, SPI, I2C,  
PWM Timer, GPIO, 12-bit ADC, Low Voltage Detector and Brown-out detector. These useful  
functions make the NuMicro® M0519 Series powerful for a wide range of applications.  
In addition, the NuMicro® M0519 Series is equipped with ISP (In-System Programming), ICP (In-  
Circuit Programming) functions and IAP (In-Application Programming) which allow user to update  
the program memory without removing the chip from the actual end product.  
Nov. 02, 2016  
Page 6 of 69  
Rev 1.02  
M0519  
2
FEATURES  
Core  
ARM® Cortex® -M0 core running up to 72 MHz  
One 24-bit system timer  
Supports Low Power Sleep mode by WFI instructions  
Single-cycle 32-bit hardware multiplier  
Supports programmable 4 level priorities of Nested Vectored Interrupt Controller  
(NVIC)  
Supports Serial Wire Debug (SWD) support with two watchpoints and four breakpoints  
Built-in LDO for wide operating voltage ranged from 2.5V to 5.5V  
Memory  
128K/64K bytes Flash for program memory (APROM)  
4KB Flash for data memory (Data Flash)  
8KB Flash for loader (LDROM)  
Supports In-system program (ISP) and In-application program (IAP) application code  
update  
Supports 2-wired ICP update through SWD/ICE interface  
Supports fast parallel programming mode by external programmer  
16K bytes embedded SRAM  
Clock Control  
Built-in 22.1184 MHz internal high speed RC oscillator (HIRC) for system operation  
(variation < 2% at -40˚C ~ +105˚C)  
Built-in 10 kHz internal low speed RC oscillator (LIRC) for Watchdog Timer and wake-  
up operation  
Built-in 4~24 MHz external high speed crystal oscillator (HXT) for precise timing  
operation  
Supports one PLL up to 72 MHz for high performance system operation, sourced from  
HIRC and HXT  
Supports clock output  
Hardware divider  
Supports signed 32-bit dividend, 16-bit divisor operation  
GPIO port  
Four I/O modes:  
TTL/Schmitt trigger input selectable  
Bit control available  
I/O pin configured as interrupt source with edge/level trigger setting  
Supports high driver and high sink current I/O (up to 16 mA at 5V)  
INT0 and INT1 pins with individual interrupt vectors  
Supports up to 82/51/38 GPIOs for LQFP100/64/48 respectively  
Timers  
Supports 4 sets of 32-bit timers with 24-bit up-timer and one 8-bit prescale counter  
Provides One-shot, Periodic, Toggle and Continuous Counting operation modes  
Supports event counting function to count the event from external pin  
Watchdog Timer  
Supports multiple clock sources from LIRC(default selection) and HCLK/2048  
8 selectable time-out period from 1.6ms ~ 26.0sec (depending on clock source)  
Able to wake up from Power-down or Idle mode  
Interrupt or reset selectable on watchdog time-out  
Time-out reset delay period time can be selected  
Window Watchdog Timer  
Nov. 02, 2016  
Page 7 of 69  
Rev 1.02  
M0519  
Supports multiple clock sources from HCLK/2048 (default selection) and LIRC  
Window set by 6-bit counter with 11-bit prescale  
Able to wake up from Power-down or Idle mode  
Basic PWM  
1 unit of 16-bit basic PWM, up to 2ch output  
Alternative function as input capture timer  
Enhanced PWM  
2 units of 16-bit enhanced PWM, up to 6ch output with dead-zone control, brake and  
polarity control for motor drive  
Default tri-state during any reset  
Enhanced Input Capture  
Up to 2 units of 24-bit input capture  
Each unit has 3 inputs: ECAPx_IC0, ECAPx_IC1 and ECAPx_IC2  
UART  
Up to two 16550 compatible UART devices  
Programmable baud-rate generator  
Buffered receiving and transmitting, each with 16 bytes FIFO  
Supports flow control (TX, RX, CTS and RTS)  
Supports IrDA(SIR) function  
Supports RS-485  
SPI  
Up to three sets of SPI device  
Supports SPI master/slave mode  
Full duplex synchronous serial data transfer  
Variable length of transfer data from 8 to 32 bits  
MSB or LSB first data transfer  
Rx and Tx on both rising or falling edge of serial clock independently  
Supports Byte Suspend mode in 32-bit transmission  
I2C  
Master/Slave up to 1 Mbit/s  
Bi-directional data transfer between masters and slaves  
Multi-master bus (no central master)  
Arbitration between simultaneously transmitting masters  
Programmable clocks allow versatile rate control  
Multiple address recognition (four slave address with mask option)  
ADC  
Two A/D converters  
Each ADC with up to 8 channel, 12-bit resolution with 10-bit accuracy  
16 result registers  
Sampling rate up to 800ksps  
Two operating modes:  
Single Sampling mode: Only one specified channel can be sampled at one time.  
Simultaneous Sampling mode: Allowing two ADC channels to be sampled  
simultaneously.  
Two converting result digital comparators  
Conversion start by software, external pins, or linked with Timer 0~3 or PWM module  
Up to three Analog Comparators  
Up to two OPA (operational amplifier)  
Nov. 02, 2016  
Page 8 of 69  
Rev 1.02  
M0519  
Brown-out detector  
4 levels: 4.4V/3.7V/2.7V/2.2V  
Optional brown-out interrupt or reset  
Built-in LDO for Wide Operating Voltage Range: 2.5V to 5.5V  
Low Voltage Reset  
96-bit unique ID  
Operating Temperature: -40~105℃  
Develop tools: parallel writer or In-Circuit Programming (ICP) writer  
Packages:  
All Green package (RoHS)  
LQFP 100/64/48-pin  
Nov. 02, 2016  
Page 9 of 69  
Rev 1.02  
M0519  
3
ABBREVIATIONS  
Acronym  
Description  
ACMP  
ADC  
AES  
APB  
AHB  
BOD  
CAN  
DAP  
DES  
EBI  
Analog Comparator Controller  
Analog-to-Digital Converter  
Advanced Encryption Standard  
Advanced Peripheral Bus  
Advanced High-Performance Bus  
Brown-out Detection  
Controller Area Network  
Debug Access Port  
Data Encryption Standard  
External Bus Interface  
EPWM  
FIFO  
FMC  
FPU  
GPIO  
HCLK  
HIRC  
HXT  
IAP  
Enhanced Pulse Width Modulation  
First In, First Out  
Flash Memory Controller  
Floating-point Unit  
General-Purpose Input/Output  
The Clock of Advanced High-Performance Bus  
22.1184 MHz Internal High Speed RC Oscillator  
4~24 MHz External High Speed Crystal Oscillator  
In Application Programming  
In Circuit Programming  
ICP  
ISP  
In System Programming  
LDO  
LIN  
Low Dropout Regulator  
Local Interconnect Network  
10 kHz internal low speed RC oscillator (LIRC)  
Memory Protection Unit  
LIRC  
MPU  
NVIC  
PCLK  
PDMA  
PLL  
Nested Vectored Interrupt Controller  
The Clock of Advanced Peripheral Bus  
Peripheral Direct Memory Access  
Phase-Locked Loop  
PWM  
QEI  
Pulse Width Modulation  
Quadrature Encoder Interface  
Secure Digital Input/Output  
Serial Peripheral Interface  
SDIO  
SPI  
Nov. 02, 2016  
Page 10 of 69  
Rev 1.02  
M0519  
SPS  
Samples per Second  
TDES  
TMR  
Triple Data Encryption Standard  
Timer Controller  
UART  
UCID  
USB  
Universal Asynchronous Receiver/Transmitter  
Unique Customer ID  
Universal Serial Bus  
WDT  
WWDT  
Watchdog Timer  
Window Watchdog Timer  
Nov. 02, 2016  
Page 11 of 69  
Rev 1.02  
M0519  
4
PARTS INFORMATION LIST AND PIN CONFIGURATION  
4.1 NuMicro® M0519 Selection Guide  
4.1.1 NuMicro® M0519 Selection Guide  
Connectivity  
x2,  
M0519LD3AE  
M0519LE3AE  
M0519SD3AE  
M0519SE3AE  
M0519VE3AE  
64  
128  
64  
16  
16  
16  
16  
16  
4
8
8
8
8
8
38  
38  
51  
51  
82  
4
4
4
4
4
2
2
2
2
2
1
1
2
2
3
1
1
1
1
1
2
2
2
2
2
-
-
6
2
2
2
2
2
2
2
2
2
3
v
v
v
v
v
LQFP48  
LQFP48  
LQFP64  
LQFP64  
LQFP100  
16-ch  
x2,  
Config.  
4
6
16-ch  
x2,  
-
10  
10  
14  
16-ch  
x2,  
128  
128  
Config.  
Config.  
-
16-ch  
x2,  
6
16-ch  
4.1.2 NuMicro® M0519 Naming Rule  
- X X  
M0519  
X E  
X
CPU core  
ARM Cortex M0  
Temperature  
E: - 40~ +105℃  
Package Type  
Version  
A: Version  
L: LQFP 48 (7x7)  
S: LQFP 64 (7x7)  
V: LQFP 100 (14x14)  
SRAM Size  
Flash ROM  
3: 16KB SRAM  
D: 64 KB Flash ROM  
E: 128 KB Flash ROM  
Figure 4-1 NuMicro® M0519 Selection Code  
Nov. 02, 2016  
Page 12 of 69  
Rev 1.02  
M0519  
4.2 Pin Configuration  
4.2.1 LQFP 100-pin  
ADC1_CH7/P7.7  
ADC1_CH6/P7.6  
ACMP2_P/ADC1_CH5/P7.5  
ACMP2_N/ADC1_CH4/P7.4  
ADC1_CH3/P7.3  
ADC1_CH2/P7.2  
ADC1_CH1/P7.1  
ADC1_CH0/P7.0  
ACMP0_P/P8.4  
ACMP0_N/P8.3  
OP1_O/P9.0  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
P5.2/SPI2_MISO/ACMP1_O  
P2.0/SPI2_MOSI/ACMP2_O  
P2.1/ECAP0_IC2  
P2.2/ECAP0_IC1  
P2.3/ECAP0_IC0  
P0.4/EPWM0_CH4  
P0.5/EPWM0_CH5  
P0.6/EPWM0_BRAKE1  
P0.7/STADC  
P2.4  
P2.5  
OP1_N/P9.1  
P2.6/SPI0_SS/UART1_nCTS  
P2.7/SPI0_CLK/UART1_nRTS  
P5.1/SPI0_MISO/UART0_nCTS/I2C_SDA  
P5.0/SPI0_MOSI/UART0_nRTS/I2C_SCL  
VSS  
M0519VxxAE  
LQFP 100-pin  
OP1_P/P9.2  
VDD  
VSS  
P8.5  
EPWM1_BRAKE1/P9.3  
nRESET  
VDD  
P4.7/TM3  
XT1_OUT  
P3.1/UART0_TXD/ACMP0_O  
P3.0/UART0_RXD/CLKO  
P1.0/EPWM1_CH0  
P1.1/EPWM1_CH1  
P4.6/TM2  
XT1_IN  
ICE_DAT  
ICE_CLK  
SPI1_CLK/P9.4  
SPI1_MISO/P9.5  
SPI1_MOSI/P9.6  
P3.3/INT1  
P4.3  
Figure 4-2 NuMicro® M0519VxxAE Series LQFP-100 Pin Diagram  
Nov. 02, 2016  
Page 13 of 69  
Rev 1.02  
M0519  
4.2.2 LQFP 64-pin  
ADC1_CH7/P7.7  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
P5.2/SPI2_MISO/ACMP1_O  
P2.0/SPI2_MOSI/ACMP2_O  
P0.4/EPWM0_CH4  
P0.5/EPWM0_CH5  
P2.4  
ADC1_CH6/P7.6  
ACMP2_P/ADC1_CH5/P7.5  
ACMP2_N/ADC1_CH4/P7.4  
ADC1_CH3/P7.3  
ADC1_CH2/P7.2  
ADC1_CH1/P7.1  
ADC1_CH0/P7.0  
OP1_O/P9.0  
P2.5  
P2.6/SPI0_SS/UART1_nCTS  
P2.7/SPI0_CLK/UART1_nRTS  
M0519SxxAE  
LQFP 64-pin  
P5.1/SPI0_MISO/UART0_nCTS/I2C_SDA  
P5.0/SPI0_MOSI/UART0_nRTS/I2C_SCL  
VSS  
OP1_N/P9.1  
OP1_P/P9.2  
nRESET  
VDD  
XT1_OUT  
P3.1/UART0_TXD  
XT1_IN  
P3.0/UART0_RXD/CLKO  
P1.0/EPWM1_CH0  
ICE_DAT  
ICE_CLK  
P1.1/EPWM1_CH1  
Figure 4-3 NuMicro® M0519SxxAE Series LQFP-64 Pin Diagram  
Nov. 02, 2016  
Page 14 of 69  
Rev 1.02  
M0519  
4.2.3 LQFP 48-pin  
ADC1_CH7/P7.7  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
P6.7/ADC0_CH7  
ADC1_CH6/P7.6  
ACMP2_P/ADC1_CH5/P7.5  
ACMP2_N/ADC1_CH4/P7.4  
ADC1_CH3/P7.3  
ADC1_CH2/P7.2  
ADC1_CH1/P7.1  
ADC1_CH0/P7.0  
OP1_O/P9.0  
P0.7/STADC  
P2.6/SPI0_SS/UART1_nCTS  
P2.7/SPI0_CLK/UART1_nRTS  
P5.1/SPI0_MISO/UART0_nCTS/I2C_SDA  
P5.0/SPI0_MOSI/UART0_nRTS/I2C_SCL  
P3.1/UART0_TXD/ACMP0_O  
P3.0/UART0_RXD/CLKO  
P1.5/EPWM1_CH5  
M0519LxxAE  
LQFP 48-pin  
OP1_N/P9.1  
P1.4/EPWM1_CH4  
OP1_P/P9.2  
P1.3/EPWM1_CH3  
nRESET  
P1.2/EPWM1_CH2  
Figure 4-4 NuMicro® M0519LxxAE Series LQFP-48 Pin Diagram  
Nov. 02, 2016  
Page 15 of 69  
Rev 1.02  
M0519  
4.3 Pin Description  
Pin Number  
Pin  
Pin Name  
Description  
Type[1]  
100- pin 64-pin 48-pin  
10  
6
34  
7
VDD  
P
P
POWER SUPPLY: Supply voltage Digital VDD for operation.  
61  
89  
11  
35  
60  
90  
21  
7
8
6
VSS  
GROUND: Digital Ground potential.  
22  
5
LDO: LDO output pin  
9
LDO_CAP  
P
P
Note: It needs to be connected with a 1uF capacitor.  
1
-
-
PVSS  
AVDD  
AVSS  
PLL GROUND: PLL Ground potential.  
74  
73  
47  
46  
36  
35  
AP Power supply for internal analog circuit  
AP Ground Pin for analog circuit  
Voltage reference input for ADC  
75  
48  
-
VREF  
AP  
Note: It needs to be connected with a 1uF capacitor.  
RESET: nRESET pin is a Schmitt trigger input pin for hardware device  
reset. A Low” on this pin for 768 clock counter of Internal RC 22.1184  
MHz while the system clock is running will reset the device. nRESET  
pin has an internal pull-up resistor allowing power-on reset by simply  
I
93  
60  
48  
nRESET  
(ST)  
connecting an external capacitor to GND.  
CRYSTAL OUT: This is the output pin from the internal inverting  
amplifier. It emits the inverted signal of XT1_IN.  
94  
95  
61  
62  
4
3
XT1_OUT  
XT1_IN  
O
CRYSTAL IN: This is the input pin to the internal inverting amplifier.  
The system clock is from external crystal or resonator when FOSC[1:0]  
(CONFIG3[1:0]) are both logic 1 by default.  
I
(ST)  
96  
97  
63  
64  
2
1
ICE_DAT  
ICE_CLK  
P0.0  
I/O Serial Wired Debugger Data pin  
I
Serial Wired Debugger Clock pin  
I/O General purpose digital I/O pin  
57  
-
-
PWM0_CH0  
ECAP1_IC0  
P0.1  
O
I
PWM0 output of PWM Unit 0  
Input 0 of Enhanced Input Capture Unit 1  
I/O General purpose digital I/O pin  
56  
55  
-
-
-
-
PWM0_CH1  
ECAP1_IC1  
P0.2  
O
I
PWM1 output of PWM Unit 0  
Input 1 of Enhanced Input Capture Unit 1  
I/O General purpose digital I/O pin  
PWM0_CH2  
O
PWM2 output of PWM Unit 0  
Nov. 02, 2016  
Page 16 of 69  
Rev 1.02  
M0519  
Pin Number  
Pin  
Pin Name  
Description  
Type[1]  
100- pin 64-pin 48-pin  
ECAP1_IC2  
P0.3  
I
Input 2 of Enhanced Input Capture Unit 1  
I/O General purpose digital I/O pin  
54  
45  
-
-
-
PWM0_CH3  
STADC  
O
I
PWM3 output of PWM Unit 0  
ADC external trigger input  
P0.4  
I/O General purpose digital I/O pin  
PWM4 output of PWM Unit 0  
I/O General purpose digital I/O pin  
PWM5 output of PWM Unit 0  
I/O General purpose digital I/O pin  
Brake input pin 1 of PWM Unit 0  
I/O General purpose digital I/O pin  
ADC external trigger input  
I/O General purpose digital I/O pin  
PWM0 output of PWM Unit 1  
I/O General purpose digital I/O pin  
PWM1 output of PWM Unit 1  
I/O General purpose digital I/O pin  
PWM2 output of PWM Unit 1  
I/O General purpose digital I/O pin  
PWM3 output of PWM Unit 1  
I/O General purpose digital I/O pin  
PWM4 output of PWM Unit 1  
I/O General purpose digital I/O pin  
PWM5 output of PWM Unit 1  
I/O General purpose digital I/O pin  
Brake input pin 0 of PWM Unit 0  
I/O General purpose digital I/O pin  
Brake input pin0 of PWM Unit 1  
30  
PWM0_CH4  
P0.5  
O
44  
43  
42  
30  
29  
20  
19  
18  
17  
16  
8
29  
-
-
-
PWM0_CH5  
P0.6  
O
PWM0_BRAKE1  
P0.7  
I
-
23  
-
STADC  
I
P1.0  
18  
17  
16  
15  
14  
13  
12  
4
PWM1_CH0  
P1.1  
O
-
PWM1_CH1  
P1.2  
O
13  
14  
15  
16  
-
PWM1_CH2  
P1.3  
O
PWM1_CH3  
P1.4  
O
PWM1_CH4  
P1.5  
O
PWM1_CH5  
P1.6  
O
PWM0_BRAKE0  
P1.7  
I
5
PWM1_BRAKE0  
P2.0  
I
I/O General purpose digital I/O pin  
I/O SPI2 MOSI (Master Out, Slave In) pin  
AO Analog comparator 2 output pin  
I/O General purpose digital I/O pin  
49  
48  
31  
-
-
-
SPI2_MOSI  
ACMP2_O  
P2.1  
ECAP0_IC2  
I
Input 2 of Enhanced Input Capture Unit 0  
Nov. 02, 2016  
Page 17 of 69  
Rev 1.02  
M0519  
Pin Number  
Pin  
Pin Name  
Description  
Type[1]  
100- pin 64-pin 48-pin  
P2.2  
I/O General purpose digital I/O pin  
47  
46  
-
-
-
-
ECAP0_IC1  
P2.3  
I
Input 1 of Enhanced Input Capture Unit 0  
I/O General purpose digital I/O pin  
Input 0 of Enhanced Input Capture Unit 0  
ECAP0_IC0  
P2.4  
I
41  
40  
28  
27  
-
-
I/O General purpose digital I/O pin  
I/O General purpose digital I/O pin  
I/O General purpose digital I/O pin  
I/O SPI0 slave select pin  
P2.5  
P2.6  
39  
26  
22  
SPI0_SS  
UART1_nCTS  
P2.7  
I
UART1 CTS pin  
I/O General purpose digital I/O pin  
I/O SPI0 serial clock pin  
38  
31  
25  
19  
21  
17  
SPI0_CLK  
UART1_nRTS  
P3.0  
O
UART1 RTS pin  
I/O General purpose digital I/O pin  
Data Receiver input pin for UART0  
I/O General purpose digital I/O pin  
Data transmitter output pin for UART0  
UART0_RXD  
I
P3.1  
32  
20  
18  
UART0_TXD  
ACMP0_O  
P3.2  
O
AO Analog comparator 0 output  
I/O General purpose digital I/O pin  
7
3
-
-
-
INT0  
I
External Interrupt 0 input pin  
I/O General purpose digital I/O pin  
External Interrupt 1 input pin  
P3.3  
27  
INT1  
I
P3.4  
I/O General purpose digital I/O pin  
I/O Timer0 external clock  
6
5
2
1
-
-
TM0  
I2C0_SDA  
P3.5  
I/O I2C0 data input/output pin  
I/O General purpose digital I/O pin  
I/O Timer1 external clock  
TM1  
I2C0_SCL  
P3.6  
I/O I2C0 clock output pin  
4
3
-
-
-
-
I/O General purpose digital I/O pin  
I/O General purpose digital I/O pin  
I/O General purpose digital I/O pin  
P3.7  
P4.0  
23  
24  
-
-
-
-
ECAP1_IC0  
P4.1  
I
Input 0 of Enhanced Input Capture Unit 1  
I/O General purpose digital I/O pin  
ECAP1_IC1  
I
Input 1 of Enhanced Input Capture Unit 1  
Nov. 02, 2016  
Page 18 of 69  
Rev 1.02  
M0519  
Pin Number  
Pin  
Pin Name  
Description  
Type[1]  
100- pin 64-pin 48-pin  
P4.2  
I/O General purpose digital I/O pin  
25  
-
-
ECAP1_IC2  
P4.3  
I
Input 2 of Enhanced Input Capture Unit 1  
26  
21  
22  
-
-
-
-
-
-
I/O General purpose digital I/O pin  
I/O General purpose digital I/O pin  
I/O General purpose digital I/O pin  
I/O General purpose digital I/O pin  
I/O Timer2 external clock  
P4.4  
P4.5  
P4.6  
28  
33  
-
-
-
-
TM2  
P4.7  
I/O General purpose digital I/O pin  
I/O Timer3 external clock  
TM3  
P5.0  
I/O General purpose digital I/O pin  
I/O SPI0 MOSI (Master Out, Slave In) pin  
36  
37  
23  
24  
19  
20  
SPI0_MOSI  
UART0_nRTS  
P5.1  
O
UART0 RTS pin  
I/O General purpose digital I/O pin  
SPI0_MISO  
UART0_nCTS  
I/O SPI0 MISO (Master In, Slave Out) pin  
I
UART0 CTS pin  
P5.2  
I/O General purpose digital I/O pin  
50  
32  
-
SPI2_MISO  
ACMP1_O  
P5.3  
I/O SPI2 MISO (Master In, Slave Out) pin  
AO Analog comparator 1 output pin  
I/O General purpose digital I/O pin  
I/O SPI2 serial clock pin  
51  
52  
33  
34  
-
-
SPI2_CLK  
P5.4  
I/O General purpose digital I/O pin  
SPI2_SS  
P5.5  
I/O SPI2 slave select pin  
I/O General purpose digital I/O pin  
53  
15  
14  
69  
-
-
CLKO  
O
Frequency Divider output pin  
P5.6  
I/O General purpose digital I/O pin  
I/O PWM0 output of PWM unit 2  
11  
10  
42  
12  
11  
31  
PWM2_CH0  
P5.7  
I/O General purpose digital I/O pin  
I/O PWM1 output of PWM unit 2  
PWM2_CH1  
P6.0  
I/O General purpose digital I/O pin  
AI ADC analog input 0 for sample-and-hold A  
I/O General purpose digital I/O pin  
AI ADC analog input 1 for sample-and-hold A  
I/O General purpose digital I/O pin  
ADC0_CH0  
P6.1  
68  
67  
41  
40  
30  
29  
ADC0_CH1  
P6.2  
Nov. 02, 2016  
Page 19 of 69  
Rev 1.02  
M0519  
Pin Number  
Pin  
Pin Name  
Description  
Type[1]  
100- pin 64-pin 48-pin  
ADC0_CH2  
P6.3  
AI ADC analog input 2 for sample-and-hold A  
I/O General purpose digital I/O pin  
66  
65  
39  
38  
28  
27  
ADC0_CH3  
P6.4  
AI ADC analog input 3 for sample-and-hold A  
I/O General purpose digital I/O pin  
ADC0_CH4  
ACMP1_N  
P6.5  
AI ADC analog input 4 for sample-and-hold A  
AI Analog comparator 1 negative input  
I/O General purpose digital I/O pin  
64  
37  
26  
ADC0_CH5  
ACMP1_P  
P6.6  
AI ADC analog input 5 for sample-and-hold A  
AI Analog comparator 1 positive input  
I/O General purpose digital I/O pin  
63  
62  
83  
82  
81  
80  
36  
35  
56  
55  
54  
53  
25  
24  
44  
43  
42  
41  
ADC0_CH6  
P6.7  
AI ADC analog input 6 for sample-and-hold A  
I/O General purpose digital I/O pin  
ADC0_CH7  
P7.0  
AI ADC analog input 7 for sample-and-hold A  
I/O General purpose digital I/O pin  
ADC1_CH0  
P7.1  
AI ADC analog input 0 for sample-and-hold B  
I/O General purpose digital I/O pin  
ADC1_CH1  
P7.2  
AI ADC analog input 1 for sample-and-hold B  
I/O General purpose digital I/O pin  
ADC1_CH2  
P7.3  
AI ADC analog input 2 for sample-and-hold B  
I/O General purpose digital I/O pin  
ADC1_CH3  
P7.4  
AI ADC analog input 3 for sample-and-hold B  
I/O General purpose digital I/O pin  
79  
78  
52  
51  
40  
39  
ADC1_CH4  
ACMP2_N  
P7.5  
AI ADC analog input 4 for sample-and-hold B  
AI Analog comparator 2 negative input  
I/O General purpose digital I/O pin  
ADC1_CH5  
ACMP2_P  
P7.6  
AI ADC analog input 5 for sample-and-hold B  
AI Analog comparator 2 positive input  
I/O General purpose digital I/O pin  
77  
76  
72  
50  
49  
45  
38  
37  
34  
ADC1_CH6  
P7.7  
AI ADC analog input 6 for sample-and-hold B  
I/O General purpose digital I/O pin  
ADC1_CH7  
P8.0  
AI ADC analog input 7 for sample-and-hold B  
I/O General purpose digital I/O pin  
OP0_P  
AI OP Amplifier 0 positive input  
Nov. 02, 2016  
Page 20 of 69  
Rev 1.02  
M0519  
Pin Number  
Pin  
Pin Name  
Description  
Type[1]  
100- pin 64-pin 48-pin  
P8.1  
I/O General purpose digital I/O pin  
71  
70  
85  
84  
44  
43  
-
33  
32  
-
OP0_N  
P8.2  
AI OP Amplifier 0 negative input  
I/O General purpose digital I/O pin  
AO OP Amplifier 0 output  
OP0_O  
P8.3  
I/O General purpose digital I/O pin  
AI Analog comparator negative input pin  
I/O General purpose digital I/O pin  
AI Analog comparator positive input pin  
I/O General purpose digital I/O pin  
I/O General purpose digital I/O pin  
I/O General purpose digital I/O pin  
ACMP0_N  
P8.4  
-
-
ACMP0_P  
P8.5  
91  
59  
-
-
-
-
P8.6  
P8.7  
58  
86  
87  
88  
92  
98  
99  
100  
2
-
57  
58  
59  
-
-
45  
46  
47  
-
ACMP0_O  
P9.0  
O
Analog comparator output pin  
I/O General purpose digital I/O pin  
AO OP Amplifier 1 output  
OP1_O  
P9.1  
I/O General purpose digital I/O pin  
AI OP Amplifier 1 negative input  
I/O General purpose digital I/O pin  
AI OP Amplifier 1 positive input  
I/O General purpose digital I/O pin  
OP1_N  
P9.2  
OP1_P  
P9.3  
PWM1_BRAKE1  
P9.4  
I
Brake input pin 1 of PWM Unit 1  
I/O General purpose digital I/O pin  
I/O SPI1 serial clock pin  
-
-
SPI1_CLK  
P9.5  
I/O General purpose digital I/O pin  
I/O SPI1 MISO (Master In, Slave Out) pin  
I/O General purpose digital I/O pin  
I/O SPI1 MOSI (Master Out, Slave In) pin  
I/O General purpose digital I/O pin  
I/O SPI1 slave select pin  
-
-
SPI1_MISO  
P9.6  
-
-
SPI1_MOSI  
P9.7  
-
-
SPI1_SS  
PA.0  
I/O General purpose digital I/O pin  
13  
12  
9
8
10  
9
UART1_TXD  
I2C0_SDA  
PA.1  
O
Data transmitter output pin for UART1  
I/O I2C0 data input/output pin  
I/O General purpose digital I/O pin  
UART1_RXD  
I
Data Receiver input pin for UART1  
Nov. 02, 2016  
Page 21 of 69  
Rev 1.02  
M0519  
Pin Number  
Pin  
Pin Name  
Description  
Type[1]  
100- pin 64-pin 48-pin  
I2C0_SCL  
I/O I2C0 clock output pin  
Note: Pin Type I = Digital Input, O = Digital Output; AI = Analog Input; P = Power Pin; AP = Analog Power  
Nov. 02, 2016  
Page 22 of 69  
Rev 1.02  
M0519  
5
BLOCK DIAGRAM  
Timer / PWM  
Analog Interface  
Memory  
32-bit  
Timer x 4  
EPWM  
Timer x 12  
2 sets of 12-bit  
ADC x 8  
APROM 128/64 KB  
LDROM 8 KB  
ARM®  
Cortex® -M0  
72 MHz  
Watchdog  
Timers  
ICAP  
Timer x 2  
Operating Amp. x 2  
Comparators x 3  
Data Flash 4 KB  
SRAM 16 KB  
BPWM Timer x 2  
Bridge  
AHB Bus  
APB Bus  
Power Control  
Clock Control  
GPIO  
Connectivity  
LDO  
PLL  
General Purpose I/O  
UART x 2  
Power-on Reset  
LVR  
HS Osc.  
22.1184 MHz  
HS Ext. Crystal  
Osc. 4~24 MHz  
Reset Pin  
SPI x 3  
I²C  
LS Osc.  
10 kHz  
External Interrupt  
Brown-out Detection  
Figure 5-1 NuMicro® M0519 Series Block Diagram  
Nov. 02, 2016  
Page 23 of 69  
Rev 1.02  
M0519  
6
FUNCTIONAL DESCRIPTION  
6.1 ARM® Cortex® -M0 Core  
The Cortex® -M0 processor is a configurable, multistage, 32-bit RISC processor, which has an  
AMBA AHB-Lite interface and includes an NVIC component. It also has optional hardware debug  
functionality. The processor can execute Thumb code and is compatible with other Cortex® -M  
profile processor. The profile supports two modes -Thread mode and Handler mode. Handler  
mode is entered as a result of an exception. An exception return can only be issued in Handler  
mode. Thread mode is entered on Reset, and can be entered as a result of an exception return.  
Figure 6-1 shows the functional controller of processor.  
CortexTM-M0 Components  
CortexTM-M0 processor  
Debug  
Nested  
Vectored  
Interrupt  
Controller  
(NVIC)  
Interrupts  
Breakpoint  
and  
Watchpoint  
Unit  
CortexTM-M0  
Processor  
Core  
Debug  
Access  
Port  
Wakeup  
Interrupt  
Controller  
(WIC)  
Debugger  
Interface  
Bus Matrix  
(DAP)  
AHB-Lite  
Interface  
Serial Wire or  
JTAG Debug Port  
Figure 6-1 Functional Controller Diagram  
The implemented device provides the following components and features:  
A low gate count processor:  
-
-
-
-
-
-
-
ARMv6-M Thumb® instruction set  
Thumb-2 technology  
ARMv6-M compliant 24-bit SysTick timer  
A 32-bit hardware multiplier  
System interface supported with little-endian data accesses  
Ability to have deterministic, fixed-latency, interrupt handling  
Load/store-multiples and multicycle-multiplies that can be abandoned and  
restarted to facilitate rapid interrupt handling  
-
-
C Application Binary Interface compliant exception model. This is the ARMv6-M,  
C Application Binary Interface (C-ABI) compliant exception model that enables  
the use of pure C functions as interrupt handlers  
Low Power Sleep mode entry using Wait For Interrupt (WFI), Wait For Event  
(WFE) instructions, or the return from interrupt sleep-on-exit feature  
NVIC:  
Nov. 02, 2016  
Page 24 of 69  
Rev 1.02  
 
M0519  
-
-
-
-
32 external interrupt inputs, each with four levels of priority  
Dedicated Non-maskable Interrupt (NMI) input  
Supports for both level-sensitive and pulse-sensitive interrupt lines  
Supports Wake-up Interrupt Controller (WIC) and, providing Ultra-low Power  
Sleep mode  
Debug support  
-
-
-
-
Four hardware breakpoints  
Two watchpoints  
Program Counter Sampling Register (PCSR) for non-intrusive code profiling  
Single step and vector catch capabilities  
Bus interfaces:  
-
Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration  
to all system peripherals and memory  
-
Single 32-bit slave port that supports the DAP (Debug Access Port)  
Nov. 02, 2016  
Page 25 of 69  
Rev 1.02  
M0519  
6.2 System Manager  
6.2.1 Overview  
System management includes the following sections:  
System Resets  
System Power Distribution  
System Memory Map  
System management registers for Part Number ID, chip reset and on-chip controllers  
reset , multi-functional pin control  
System Timer (SysTick)  
Nested Vectored Interrupt Controller (NVIC)  
System Control registers  
6.2.2 System Reset  
The system reset can be issued by one of the following listed events. For these reset event flags  
can be read by RSTSRC register.  
Hardware Reset  
Power-on Reset (POR)  
Low level on the Reset pin (nRESET)  
Watchdog Time-out Reset (WDT)  
Low Voltage Reset (LVR)  
Brown-out Detector Reset (BOD)  
Software Reset  
SYS Reset - SYSRESETREQ (AIRCR[2])  
Cortex® -M0 Core One-shot Reset - CPU_RST (IPRSTC1[1])  
Chip One-shot Reset - CHIP_RST (IPRSTC1[0])  
Power-on Reset or CHIP_RST (IPRST1[0]) reset the whole chip including all peripherals,  
external crystal circuit and BS (ISPCON[1]) bit.  
SYSRESETREQ (AIRCR[2]) reset the whole chip including all peripherals, but does not reset  
external crystal circuit and BS (ISPCON[1]) bit.  
Nov. 02, 2016  
Page 26 of 69  
Rev 1.02  
M0519  
6.2.3 System Power Distribution  
In this chip, the power distribution is divided into two segments.  
Analog power from AVDD and AVSS provides the power for analog components  
operation.  
Digital power from VDD and VSS supplies the power to the I/O pins and internal  
regulator which provides a fixed 1.8V power for digital operation.  
The output of internal voltage regulators, LDO_CAP, requires an external capacitor which should  
be located close to the corresponding pin. Analog power (AVDD) should be the same voltage level  
of the digital power (VDD).  
AVDD  
Brown-  
out  
Detector  
Low  
Voltage  
Reset  
12-bit  
SAR-ADC  
Analog  
Comparator  
OPA  
AVSS  
Internal  
22.1184 MHz & 10 kHz  
Oscillator  
Temperature  
Seneor  
FLASH  
Digital Logic  
LDO_CAP  
1uF  
1.8V  
POR18  
POR50  
XT1_IN  
4~24MHz  
Crystal  
PLL  
LDO  
IO cell  
GPIO  
XT1_OUT  
Figure 6-2 NuMicro® M0519 Series Power Distribution Diagram  
Nov. 02, 2016  
Page 27 of 69  
Rev 1.02  
M0519  
6.2.4 System Memory Map  
The NuMicro® M0519 Series provides 4G-byte addressing space. The memory locations assigned  
to each on-chip controllers are shown in Table 6-1. The detailed register definition, memory  
space, and programming detailed will be described in the following sections for each on-chip  
peripheral. The NuMicro® M0519 Series only supports little-endian data format.  
Address Space  
Token  
Controllers  
Flash and SRAM Memory Space  
0x0000_0000 0x0001_FFFF  
0x2000_0000 0x2000_3FFF  
FLASH_BA  
SRAM_BA  
FLASH Memory Space (128 KB)  
SRAM Memory Space (16 KB)  
AHB Controllers Space (0x5000_0000 0x501F_FFFF)  
0x5000_0000 0x5000_01FF  
0x5000_0200 0x5000_02FF  
0x5000_0300 0x5000_03FF  
0x5000_4000 0x5000_7FFF  
0x5000_C000 0x5000_FFFF  
0x5001_4000 0x5001_7FFF  
GCR_BA  
CLK_BA  
INT_BA  
System Global Control Registers  
Clock Control Registers  
Interrupt Multiplexer Control Registers  
GPIO Control Registers  
GPIO_BA  
FMC_BA  
HDIV_BA  
Flash Memory Control Registers  
Hardware Divider Register  
APB1 Controllers Space (0x4000_0000 ~ 0x400F_FFFF)  
0x4000_4000 0x4000_7FFF  
0x4000_4100 0x4000_7FFF  
0x4001_0000 0x4001_3FFF  
0x4002_0000 0x4002_3FFF  
0x4003_0000 0x4003_3FFF  
0x4003_4000 0x4003_7FFF  
0x4004_0000 0x4004_3FFF  
0x4005_0000 0x4005_3FFF  
0x400D_0000 0x400D_3FFF  
0x400E_0000 0x400E_3FFF  
0x400F_0000 0x400F_3FFF  
WDT_BA  
Watchdog Timer Control Registers  
WWDT_BA  
TMR01_BA  
I2C0_BA  
Window Watchdog Timer Control Registers  
Timer0/Timer1 Control Registers  
I2C0 Interface Control Registers  
SPI0_BA  
SPI0 with master/slave function Control Registers  
SPI1 with master/slave function Control Registers  
Basic PWM0 Control Registers  
SPI1_BA  
BPWM0_BA  
UART0_BA  
ACMP_BA  
EADC_BA  
OPA_BA  
UART0 Control Registers  
Analog Comparator Control Registers  
Enhanced Analog-Digital-Converter (EADC) Control Registers  
Operation Amplifier Control Registers  
APB2 Controllers Space (0x4010_0000 ~ 0x401F_FFFF)  
0x4011_0000 0x4011_3FFF  
0x4013_0000 0x4013_3FFF  
0x4015_0000 0x4015_3FFF  
Reserved  
TMR23_BA  
SPI2_BA  
Timer2/Timer3 Control Registers  
SPI2 with master/slave function Control Registers  
UART1 Control Registers  
UART1_BA  
Reserved  
Reserved  
0x4019_0000 0x4019_3FFF  
0x4019_4000 0x4019_7FFF  
EPWM0_BA  
EPWM1_BA  
Enhanced PWM0 Control Registers  
Enhanced PWM1 Control Registers  
Nov. 02, 2016  
Page 28 of 69  
Rev 1.02  
M0519  
Address Space  
0x401B_0000 0x401B_3FFF  
0x401B_4000 0x401B_7FFF  
Reserved  
Token  
Controllers  
ECAP0_BA  
ECAP1_BA  
Reserved  
Reserved  
Reserved  
Enhanced Input Capture 0 Control Registers  
Enhanced Input Capture 1 Control Registers  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
System Controllers Space (0xE000_E000 ~ 0xE000_EFFF)  
0xE000_E010 0xE000_E01F  
0xE000_E100 0xE000_E4EF  
0xE000_ED00 0xE000_ED3F  
SYST_BA  
NVIC_BA  
SCS_BA  
System Timer Control Registers  
External Interrupt Controller Control Registers  
System Control Registers  
Table 6-1 Address Space Assignments for On-Chip Controllers  
Nov. 02, 2016  
Page 29 of 69  
Rev 1.02  
M0519  
6.2.5 System Timer (SysTick)  
The Cortex® -M0 includes an integrated system timer, SysTick, which provides a simple, 24-bit  
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The  
counter can be used as a Real Time Operating System (RTOS) tick timer or as a simple counter.  
When system timer is enabled, it will count down from the value in the SysTick Current Value  
Register (SYST_CVR) to 0, and reload (wrap) to the value in the SysTick Reload Value Register  
(SYST_RVR) on the next clock cycle, then decrement on subsequent clocks. When the counter  
transitions to 0, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.  
The SYST_CVR value is UNKNOWN on reset. Software should write to the register to clear it to 0  
before enabling the feature. This ensures the timer will count from the SYST_RVR value rather  
than an arbitrary value when it is enabled.  
If the SYST_RVR is 0, the timer will be maintained with a current value of 0 after it is reloaded  
with this value. This mechanism can be used to disable the feature independently from the timer  
enable bit.  
For more detailed information, please refer to the “ARM® Cortex® -M0 Technical Reference  
Manual” and “ARM® v6-M Architecture Reference Manual”.  
Nov. 02, 2016  
Page 30 of 69  
Rev 1.02  
M0519  
6.2.6 Nested Vectored Interrupt Controller (NVIC)  
The Cortex® -M0 provides an interrupt controller as an integral part of the exception mode, named  
as “Nested Vectored Interrupt Controller (NVIC)”, which is closely coupled to the processor core  
and provides following features:  
Nested and Vectored interrupt support  
Automatic processor state saving and restoration  
Reduced and deterministic interrupt latency  
The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in “Handler  
Mode”. This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority.  
All of the interrupts and most of the system exceptions can be configured to different priority  
levels. When an interrupt occurs, the NVIC will compare the priority of the new interrupt to the  
current running one’s priority. If the priority of the new interrupt is higher than the current one, the  
new interrupt handler will override the current handler.  
When an interrupt is accepted, the starting address of the interrupt service routine (ISR) is fetched  
from a vector table in memory. There is no need to determine which interrupt is accepted and  
branch to the starting address of the correlated ISR by software. While the starting address is  
fetched, NVIC will also automatically save processor state including the registers “PC, PSR, LR,  
R0~R3, R12” to the stack. At the end of the ISR, the NVIC will restore the mentioned registers  
from stack and resume the normal execution. Thus it will take less and deterministic time to  
process the interrupt request.  
The NVIC supports “Tail Chaining” which handles back-to-back interrupts efficiently without the  
overhead of states saving and restoration and therefore reduces delay time in switching to  
pending ISR at the end of current ISR. The NVIC also supports “Late Arrival” which improves the  
efficiency of concurrent ISRs. When a higher priority interrupt request occurs before the current  
ISR starts to execute (at the stage of state saving and starting address fetching), the NVIC will  
give priority to the higher one without delay penalty. Thus it advances the real-time capability.  
For more detailed information, please refer to the “ARM® Cortex® -M0 Technical Reference  
Manual” and “ARM® v6-M Architecture Reference Manual”.  
Nov. 02, 2016  
Page 31 of 69  
Rev 1.02  
M0519  
6.2.6.1  
Exception Model and System Interrupt Map  
Table 6-2 lists the exception model supported by the NuMicro® M0519 Series. Software can set  
four levels of priority on some of these exceptions as well as on all interrupts. The highest user-  
configurable priority is denoted as “0” and the lowest priority is denoted as “3”. The default priority  
of all the user-configurable interrupts is “0”. Note that priority “0” is treated as the fourth priority on  
the system, after three system exceptions “Reset”, “NMI” and “Hard Fault”.  
Exception Name  
Reset  
Vector Number  
Priority  
-3  
1
NMI  
2
-2  
Hard Fault  
Reserved  
3
-1  
4 ~ 10  
Reserved  
Configurable  
Reserved  
Configurable  
Configurable  
Configurable  
SVCall  
11  
Reserved  
12 ~ 13  
PendSV  
14  
SysTick  
15  
16 ~ 47  
Interrupt (IRQ0 ~ IRQ31)  
Table 6-2 Exception Model  
Interrupt Number  
(Bit In Interrupt  
Registers)  
Power  
Down  
Wake-Up  
Exception Vector  
Interrupt  
Name  
Source  
Module  
Exception Description  
Number  
1 ~ 15  
16  
Address  
-
-
-
System exceptions  
-
Brown-out low voltage detected  
interrupt  
0x40  
0
BOD_INT  
Brown-out  
Yes  
17  
18  
19  
0x44  
0x48  
0x4C  
1
2
3
WDT_INT  
EINT0_INT  
EINT1_INT  
WDT  
P3.2  
P3.3  
Watchdog Timer interrupt  
Yes  
Yes  
Yes  
External signal interrupt from P3.2 pin  
External signal interrupt from P3.3 pin  
P0~P4 except External interrupt from GPIO group 0  
P3.2 and P3.3 (P0~P4) except P3.2 and P3.3  
20  
21  
0x50  
0x54  
4
5
GPG0_INT  
GPG1_INT  
Yes  
Yes  
External interrupt from GPIO group 1  
P5~PA  
(P5~PA)  
22  
23  
24  
25  
26  
27  
28  
0x58  
0x5C  
0x60  
0x64  
0x68  
0x6C  
0x70  
6
7
BPWM0_INT  
EADC0_INT  
TMR0_INT  
TMR1_INT  
TMR2_INT  
TMR3_INT  
UART0_INT  
BPWM0  
EADC0  
TMR0  
Basic PWM0 interrupt  
EADC0 interrupt  
Timer 0 interrupt  
Timer 1 interrupt  
Timer 2 interrupt  
Timer 3 interrupt  
UART0 interrupt  
No  
No  
No  
No  
No  
No  
Yes  
8
9
TMR1  
10  
11  
12  
TMR2  
TMR3  
UART0  
Nov. 02, 2016  
Page 32 of 69  
Rev 1.02  
 
M0519  
Interrupt Number  
(Bit In Interrupt  
Registers)  
Power  
Down  
Wake-Up  
Exception Vector  
Interrupt  
Name  
Source  
Module  
Exception Description  
Number  
Address  
29  
30  
31  
32  
33  
33  
34  
35  
36  
36  
37  
38  
39  
40  
0x74  
0x78  
0x7C  
0x80  
0x84  
0x84  
0x88  
0x8C  
0x90  
0x90  
0x94  
0x98  
0x9C  
0xA0  
13  
14  
15  
16  
17  
17  
18  
19  
20  
20  
21  
22  
23  
24  
UART1_INT  
SPI0_INT  
UART1  
SPI0  
UART1 interrupt  
Yes  
No  
No  
No  
-
SPI0 interrupt  
SPI1 interrupt  
SPI2 interrupt  
SPI1_INT  
SPI1  
SPI2_INT  
SPI2  
Reserved  
Reserved  
I2C0_INT  
Reserved Reserved  
Reserved Reserved  
No  
Yes  
No  
-
I2C0 interrupt  
CKD interrupt  
I2C0  
CKD_INT  
CKD  
Reserved  
Reserved  
EPWM0_INT  
EPWM1_INT  
ECAP0_INT  
ECAP1_INT  
Reserved Reserved  
Reserved Reserved  
-
EPWM0  
EPWM1  
ECAP0  
ECAP1  
Enhanced PWM0 interrupt  
No  
No  
No  
No  
Enhanced PWM1 interrupt  
Enhanced input capture 0 interrupt  
Enhanced input capture 1 interrupt  
Yes (only  
by analog  
comparator)  
Analog Comparator 0 or 1, or OP  
Amplifier digital output interrupt  
41  
0xA4  
25  
ACMP_INT  
ACMP  
42  
43  
42  
43  
0xA8  
0xAC  
0xA8  
0xAC  
26  
27  
26  
27  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved Reserved  
Reserved Reserved  
Reserved Reserved  
Reserved Reserved  
-
-
-
-
Clock controller interrupt for chip wake  
up from power-down state  
44  
0xB0  
28  
PWRWU_INT  
CLKC  
-
45  
46  
47  
0xB4  
0xB8  
0xBC  
29  
30  
31  
EADC1_INT  
EADC2_INT  
EADC3_INT  
EADC1  
EADC2  
EADC3  
EADC1 interrupt  
No  
No  
No  
EADC2 interrupt  
EADC3 interrupt  
Table 6-3 System Interrupt Map Vector Table  
Nov. 02, 2016  
Page 33 of 69  
Rev 1.02  
M0519  
6.2.6.2  
Vector Table  
When an interrupt is accepted, the processor will automatically fetch the starting address of the  
interrupt service routine (ISR) from a vector table in memory. For ARMv6-M, the vector table base  
address is fixed at 0x00000000. The vector table contains the initialization value for the stack  
pointer on reset, and the entry point addresses for all exception handlers. The vector number on  
previous page defines the order of entries in the vector table associated with exception handler  
entry as illustrated in previous section.  
Vector Table Word Offset (Bytes)  
Description  
0
SP_main The Main stack pointer  
Exception Entry Pointer using that Vector Number  
Table 6-4 Vector Table  
Vector Number  
6.2.6.3  
Operation Description  
NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-  
Enable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-  
1-to-clear policy, both registers reading back the current enabled state of the corresponding  
interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become  
Pending, however, the interrupt will not be activated. If an interrupt is Active when it is disabled, it  
remains in its Active state until cleared by reset or an exception return. Clearing the enable bit  
prevents new activations of the associated interrupt.  
NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used  
to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register  
respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers  
reading back the current pended state of the corresponding interrupts. The Clear-Pending  
Register has no effect on the execution status of an Active interrupt.  
NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register  
supporting four interrupts).  
The general registers associated with the NVIC are all accessible from a block of memory in the  
System Control Space and will be described in next section.  
Nov. 02, 2016  
Page 34 of 69  
Rev 1.02  
M0519  
6.3 Clock Controller  
6.3.1 Overview  
The clock controller generates the clocks for the whole chip, including system clocks and all  
peripheral clocks. The clock controller also implements the power control function with the  
individually clock ON/OFF control, clock source selection and clock divider. The chip enters  
Power-down mode when Cortex® -M0 core executes the WFI instruction only if the SLEEPDEEP  
(SCR[2]) bit is set to 1. After that, chip enters Power-down mode and wait for wake-up interrupt  
source triggered to leave Power-down mode. In the Power-down mode, the clock controller turns  
off the 4~24 MHz external high speed crystal oscillator and 22.1184 MHz internal high speed RC  
oscillator to reduce the overall system power consumption. Figure 6-3 shows the clock generator  
and the overview of the clock source control.  
The clock generator consists of 4 clock sources as listed below:  
4~24 MHz external high speed crystal oscillator (HXT)  
Programmable PLL output clock frequency (PLL_FOUT), PLL source can be selected  
from 4~24 MHz external high speed crystal oscillator (HXT) or 22.1184 MHz internal  
high speed RC oscillator (HIRC)  
22.1184 MHz internal high speed RC oscillator (HIRC)  
10 kHz internal low speed RC oscillator (LIRC)  
Each of these clock sources has certain stable time to wait for clock operating at stable  
frequency. When clock source is enabled, a stable counter start counting and correlated clock  
stable  
index  
(OSC22M_STB(CLKSTATUS[4]),  
OSC10K_STB(CLKSTATUS[3]),  
PLL_STB(CLKSTATUS[2]) and XTL12M_STB(CLKSTATUS[0])) are set to 1 after stable counter  
value reach a define value as Table 6-5. System and peripheral can use these clock as its  
operating clock only when correlate clock stable index is set to 1. The clock stable index will auto  
clear  
when  
user  
disables  
the  
clock  
source  
(OSC10K_EN(PWRCON[3]),  
OSC22M_EN(PWRCON[2]), XTL12M_EN(PWRCON[0]) and PD(PLLCON[16])). Besides, the  
clock stable index of HXT, HIRC and PLL will auto clear when chip enter power-down and clock  
stable counter will re-counting after chip wake-up if correlate clock is enabled.  
Clock Source  
Clock Stable Count Value  
HXT  
PLL  
4096 HXT clock  
6144 PLL source  
(PLL source is HXT if PLL_SRC(PLLCON[19]) = 0, or HIRC if PLL_SRC(PLLCON[19]) = 1)  
HIRC  
LIRC  
256 HIRC clock  
1 LIRC  
Table 6-5 Clock Stable Count Value Table  
Nov. 02, 2016  
Page 35 of 69  
Rev 1.02  
 
M0519  
XTL12M_EN (PWRCON[0])  
HXT  
XT1_OUT  
XT1_IN  
4~24 MHz  
HXT  
PLL_SRC (PLLCON[19])  
PLL  
0
1
PLL FOUT  
OSC22M_EN (PWRCON[2])  
22.1184 MHz  
HIRC  
HIRC  
LIRC  
OSC10K_EN (PWRCON[3])  
10 kHz  
LIRC  
Legend:  
HXT = 4~24 MHz external high speed crystal oscillator  
HIRC = 22.1184 MHz internal high speed RC oscillator  
LIRC = 10 kHz internal low speed RC oscillator  
Figure 6-3 Clock Generator Block Diagram  
Nov. 02, 2016  
Page 36 of 69  
Rev 1.02  
M0519  
22.1184  
MHz  
22.1184 MHz  
10 kHz  
111  
011  
010  
001  
000  
CPUCLK  
HCLK  
CPU  
4~12  
MHz  
PLLFOUT  
Reserved  
4~24 MHz  
ACMP  
I2C  
1/(HCLK_N+1)  
TMR0  
TMR1  
TMR2  
TMR3  
BPWM0  
EPWM0  
EPWM1  
ECAP0  
ECAP1  
OPA  
10 kHz  
PCLK  
CLKSEL0[2:0]  
22.1184 MHz  
4~24 MHz  
1
PLLFOUT  
0
PLLCON[19]  
QEI0  
QEI1  
22.1184 MHz  
HCLK  
MDU  
11  
10  
01  
00  
FRQDIV  
SysTick  
Reserved  
4~24 MHz  
CPUCLK  
22.1184 MHz  
HCLK  
1
0
CLKSEL2[3:2]  
1/2  
1/2  
1/2  
111  
011  
010  
001  
000  
SYST_CSR[2]  
4~24 MHz  
Reserved  
4~24 MHz  
CLKSEL2[17:16]  
10 kHz  
11  
10  
WWDT  
CLKSEL0[5:3]  
10 kHz  
11  
10  
01  
00  
HCLK  
HCLK  
HCLK  
1/2048  
1/512  
1/128  
WDT  
BOD  
FMC  
10 kHz  
22.1184 MHz  
22.1184 MHz  
11  
01  
00  
CLKSEL1[1:0]  
HCLK  
PLLFOUT  
4~24 MHz  
1
0
SPI0  
SPI1  
SPI2  
PLLFOUT  
CLKSEL1[4]  
CLKSEL1[5]  
CLKSEL1[6]  
CLKSEL1[25:24]  
1/(UART_N+1)  
1/(EADC_N+1)  
UART0-1  
EADC  
PCLK  
Note: Before clock switching, both the pre-selected and newly selected clock sources must  
be turned on and stable.  
Figure 6-4 Clock Generator Global View Diagram  
Nov. 02, 2016  
Page 37 of 69  
Rev 1.02  
M0519  
6.4 Flash Memory Controller (FMC)  
6.4.1 Overview  
The NuMicro® M0519 Series is equipped with 128/64 KB on-chip embedded flash for application  
program memory (APROM) and data flash, and with 8K bytes for ISP loader program memory  
(LDROM) that could be programmed boot loader to update APROM and data flash through In  
System Programming (ISP) procedure. ISP function enables user to update embedded flash  
when chip is soldered on PCB. After chip is powered on, Cortex® -M0 CPU fetches code from  
APROM or LDROM decided by boot select CBS (Config0[7:6]). By the way, the NuMicro® M0519  
Series also provides data flash for user to store some application dependent data before chip  
power off. For 128 KB APROM device, the data flash is shared with original 128 KB program  
memory and its start address is configurable in Config1. For 64 KB APROM device, the data flash  
is fixed at 4K bytes.  
6.4.2 Features  
Runs up to 72 MHz and optional up to 50 MHz with zero wait state for continuous address  
read access  
Supports 512 bytes page erase for all embedded flash  
Supports 128/64 Kbytes application program ROM (APROM)  
Supports 8 KB loader ROM (LDROM)  
Supports 4KB data flash for 64 Kbytes APROM device  
Supports configurable data flash size for 128KB APROM device  
Supports 8 bytes User Configuration block to control system initiation  
Support In-System-Programming (ISP) / In-Application-Programming (IAP) to update  
embedded flash memory  
Nov. 02, 2016  
Page 38 of 69  
Rev 1.02  
M0519  
6.5 General Purpose I/O (GPIO)  
6.5.1 Overview  
The NuMicro® M0519 Series has up to 82 General Purpose I/O pins to be shared with other  
function pins depending on the chip configuration. These 82 pins are arranged in 10 ports named  
as P0, P1, P2, P3, P4, P5, P6, P7, P8, P9 and PA. The P0/1/2/3/4/5/6/7/8/9 port has the  
maximum of 8 pins and PA port has the maximum of 2 pins. Each of the 82 pins is independent  
and has the corresponding register bits to control the pin mode function and data.  
The I/O type of each of I/O pins can be configured by software individually as input, output, open-  
drain or Quasi-bidirectional mode. After reset, the I/O mode of all pins are stay at input mode. In  
Quasi-bidirectional mode, I/O pin has a very weak individual pull-up resistor which is about  
110~300 Kfor VDD is from 5.0 V to 2.5 V.  
6.5.2 Features  
Four I/O modes:  
Quasi-bidirectional  
Push-Pull output  
Open-Drain output  
Input only with high impendence  
TTL/Schmitt trigger input selectable by Px_TYPE[7:0] in Px_MFP[23:16]  
I/O pin configured as interrupt source with edge/level setting  
I/O pin internal pull-up resistor enabled only in Quasi-bidirectional I/O mode  
Enabling pin interrupt function will also enable the pin wake-up function  
Nov. 02, 2016  
Page 39 of 69  
Rev 1.02  
M0519  
6.6 Timer Controller (TIMER)  
6.6.1 Overview  
The Timer controller includes four 32-bit timers, Timer0 ~ Timer3, allowing user to easily  
implement a timer control for applications. The timer can perform functions, such as frequency  
measurement, delay timing, clock generation, and event counting by external input pins, and  
interval measurement by external capture pins.  
6.6.2 Features  
Four sets of 32-bit timers with 24-bit up counter and one 8-bit prescale counter  
Independent clock source for each timer  
Provides one-shot, periodic, toggle-output and continuous counting operation modes  
24-bit up counter value is readable through TDR (TDR[23:0])  
Supports event counting function  
Supports external capture pin event for interval measurement  
Supports external capture pin event to reset 24-bit up counter  
Nov. 02, 2016  
Page 40 of 69  
Rev 1.02  
M0519  
6.7 Basic PWM Generator and Capture Timer (BPWM)  
6.7.1 Overview  
The NuMicro® M0519 series has 1 set of BPWM group (BPWM0), supporting 1 set of BPWM  
generators that can be configured as 2 independent BPWM outputs, BPWM0_CH0 and  
BPWM0_CH1, or as 1 complementary BPWM pairs, (BPWM0_CH0, BPWM0_CH1) with  
programmable dead-zone generator.  
The BPWM generator has one 8-bit prescaler, one clock divider with 5 divided frequencies (1, 1/2,  
1/4, 1/8, 1/16), two BPWM Timers including two clock selectors, two 16-bit BPWM down-counters  
for BPWM period control, two 16-bit comparators for BPWM duty control and one dead-zone  
generator. The BPWM generator provides two independent BPWM interrupt flags which are set  
by hardware when the corresponding BPWM period down counter reaches zero.  
Each BPWM interrupt source with its corresponding enable bit can cause CPU to request BPWM  
interrupt. The BPWM generators can be configured as one-shot mode to produce only one  
BPWM cycle signal or auto-reload mode to output BPWM waveform continuously. BPWM can be  
used to trigger EADC when operation in center-aligned mode.  
6.7.2 Features  
6.7.2.1  
BPWM Function:  
Up to 1 BPWM group to support 2 BPWM channels or 1 BPWM paired channels.  
Supports 8-bit prescaler from 1 to 255  
Up to 16-bit resolution BPWM timer  
PWM timer supports edge-aligned and center-aligned operation type  
One-shot or Auto-reload mode BPWM  
PWM Interrupt request synchronized with BPWM period or duty  
Supports dead-zone generator with 8-bit resolution for BPWM paired channels  
Supports trigger EADC  
6.7.2.2  
Capture Function:  
Supports 2 Capture input channels shared with 2 BPWM output channels  
Supports rising or falling capture condition  
Supports rising or falling capture interrupt  
Nov. 02, 2016  
Page 41 of 69  
Rev 1.02  
M0519  
6.8 Enhanced PWM Generator (EPWM)  
6.8.1 Overview  
This device has two built-in PWM units with the same architecture whose function is specially  
designed for driving motor control applications.  
6.8.2 Features  
Each unit supports the features below:  
Three independent 16-bit PWM duty control units with maximum 6 port pins:  
3 independent PWM output:  
EPWM0_CH0, EPWM0_CH2 and EPWM0_CH4 for Unit 0  
EPWM1_CH0, EPWM1_CH2 and EPWM1_CH4 for Unit 1  
3 complementary PWM pairs, with each pin in a pair mutually complement to each  
other and capable of programmable dead-time insertion:  
(EPWMx_CH0, EPWMx_CH1), (PWMx_CH2, EPWMx_CH3) and (EPWMx_CH4,  
EPWMx_CH5) where x=0~1.  
3 synchronous PWM pairs, with each pin in a pair in-phase:  
(EPWMx_CH0, EPWMx_CH1), (EPWMx_CH2, EPWMx_CH3) and (EPWMx_CH4,  
EPWMx_CH5) where x=0~1  
Group control bits:  
EPWMx_CH2 and EPWMx_CH4 are synchronized with EPWMx_CH0  
Supports Edge aligned mode and Center aligned mode  
Programmable dead-time insertion between complementary paired PWMs  
Each pin of EPWMx_CH0 to EPWMx_CH5 has independent polarity setting control  
Mask output control for Electrically Commutated Motor operation  
Tri-state output at reset and brake state  
Hardware brake protection  
Two Interrupt Sources:  
Interrupt is synchronously requested at PWM frequency when up/down counter  
comparison matched (edge and center aligned modes) or underflow (center aligned  
mode).  
Interrupt is requested when external brake pins asserted  
PWM signals before polarity control stage are defined in the view of positive logic. The PWM  
ports is active high or active low are controlled by polarity control register.  
High Source/Sink current.  
Supports trigger EADC  
Nov. 02, 2016  
Page 42 of 69  
Rev 1.02  
M0519  
6.9 Enhanced Input Capture Timer (ECAP)  
6.9.1 Overview  
This device provides up to two units of Input Capture Timer/Counter which capture function can detect  
the digital edge changed signal at channel inputs. Each unit has three input capture channels. The  
timer/counter is equipped with up counting, reload and compare-match capabilities.  
6.9.2 Features  
Up to two Input Capture Timer/Counter Units, Input Capture 0 and Input Capture 1.  
Each unit has own interrupt vector  
24-bit Input Capture up-counting timer/counter  
With noise filter in front end of input ports  
Edge detector with three options  
Rising edge detection  
Falling edge detection  
Both edge detection  
Each input channel is supported with one capture counter hold register  
Captured event reset/reload capture counter option  
Supports the compare-match function  
Nov. 02, 2016  
Page 43 of 69  
Rev 1.02  
M0519  
6.10 Watchdog Timer (WDT)  
6.10.1 Overview  
The purpose of Watchdog Timer (WDT) is to perform a system reset when system runs into an  
unknown state. This prevents system from hanging for an infinite period of time. Besides, this  
Watchdog Timer supports the function to wake-up system from Idle/Power-down mode.  
6.10.2 Features  
18-bit free running up counter for WDT time-out interval  
Selectable time-out interval (24 ~ 218) and the time-out interval is 1.6 ms ~ 26.214 s if  
WDT_CLK = 10 kHz  
System kept in reset state for a period of (1 / WDT_CLK) * 63  
Supports selectable WDT reset delay period, including 102613018 or 3 WDT_CLK reset  
delay period  
Supports to force WDT enabled after chip powered on or reset by setting CWDTEN in  
Config0 register  
Supports WDT time-out wake-up function only if WDT clock source is selected as 10 kHz  
Nov. 02, 2016  
Page 44 of 69  
Rev 1.02  
M0519  
6.11 Window Watchdog Timer (WWDT)  
6.11.1 Overview  
The Window Watchdog Timer is used to perform a system reset within a specified window period to  
prevent software from running to uncontrollable state by any unpredictable condition usually generated  
by external interferences or unexpected logical conditions.  
When the window function is used to trim the watchdog behavior to match the application perfectly,  
software must refresh the counter before time-out.  
6.11.2 Features  
6-bit down counter value WWDTCVAL (WWDTCVR[5:0]) and 6-bit compare value WINCMP  
(WWDTCR[21:16]) to make the WWDT time-out window period flexible  
Supports 4-bit value PERIODSEL (WWDTCR[11:8]) to programmable maximum 11-bit  
prescale counter period of WWDT counter  
WWDT counter suspends in Idle/Power-down mode  
Nov. 02, 2016  
Page 45 of 69  
Rev 1.02  
M0519  
6.12 Universal Asynchronous Receiver Transmitter (UART)  
6.12.1 Overview  
The NuMicro® M0519 series provides two channels of Universal Asynchronous  
Receiver/Transmitters (UART). UART Controller performs Normal Speed UART and supports  
flow control function. The UART Controller performs a serial-to-parallel conversion on data  
received from the peripheral and a parallel-to-serial conversion on data transmitted from the CPU.  
Each UART Controller channel supports seven types of interrupts. The UART controller also  
supports IrDA SIR, RS-485 and LIN.  
6.12.2 Features  
Full duplex, asynchronous communications  
Separates receive / transmit 16 bytes entry FIFO for data payloads  
Supports hardware auto-flow control/flow control function (nCTS, nRTS) and programmable  
nRTS flow control trigger level  
Programmable receiver buffer trigger level  
Supports programmable baud-rate generator for each channel individually  
Supports nCTS wake-up function  
Supports 8-bit receiver buffer time out detection function  
Programmable transmitting data delay time between the last stop and the next start bit by  
setting DLY (UA_TOR [15:8]) register  
Supports break error, frame error, parity error and receive / transmit buffer overflow detect  
function  
Fully programmable serial-interface characteristics  
Programmable data bit length, 5-, 6-, 7-, 8-bit character  
Programmable parity bit, even, odd, no parity or stick parity bit generation and  
detection  
Programmable stop bit length, 1, 1.5, or 2 stop bit generation  
IrDA SIR function mode  
Supports 3-/16-bit duration for normal mode  
LIN function mode  
Supports LIN master/slave mode  
Supports programmable break generation function for transmitter  
Supports break detect function for receiver  
RS-485 function mode  
Supports RS-485 9-bit mode  
Supports hardware or software direct enable control provided by nRTS pin  
Nov. 02, 2016  
Page 46 of 69  
Rev 1.02  
M0519  
6.13 I2C Serial Interface Controller (I²C)  
6.13.1 Overview  
I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data  
exchange between devices. The I2C standard is a true multi-master bus including collision  
detection and arbitration that prevents data corruption if two or more masters attempt to control  
the bus simultaneously. I2C controller supports Power-down wake-up function.  
6.13.2 Features  
The I2C bus uses two wires (SDA and SCL) to transfer information between devices connected to  
the bus. The main features of the bus are:  
Master/Slave mode  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption of serial data on  
the bus  
Serial clock synchronization allows devices with different bit rates to communicate via one  
serial bus  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer  
A built-in a 14-bit time out counter requested the I2C interrupt if the I2C bus hangs up and  
timer-out counter overflows.  
External pull-up resistors are needed for high output  
Programmable clocks allow versatile rate control  
Supports 7-bit addressing mode  
Supports multiple address recognition ( four slave address with mask option)  
Nov. 02, 2016  
Page 47 of 69  
Rev 1.02  
M0519  
6.14 Serial Peripheral Interface (SPI)  
6.14.1 Overview  
The Serial Peripheral Interface (SPI) is a synchronous serial data communication protocol that  
operates in full duplex mode. Devices communicate in Master/Slave mode with the 4-wire bi-  
direction interface. The NuMicro® M0519 series contains up to three sets of SPI controllers  
performing a serial-to-parallel conversion on data received from a peripheral device, and a  
parallel-to-serial conversion on data transmitted to a peripheral device. Each set of SPI controller  
can be configured as a master or a slave device.  
6.14.2 Features  
Up to three sets of SPI controllers  
Supports Master or Slave mode operation  
Configurable bit length of a transaction word from 8 to 32-bit  
Provides separate 8-layer depth transmit and receive FIFO buffers  
Supports MSB first or LSB first transfer sequence  
Supports the Byte Reorder function  
Supports 3-wire, no slave select signal, bi-direction interface  
Nov. 02, 2016  
Page 48 of 69  
Rev 1.02  
M0519  
6.15 Hardware Divider (HDIV)  
6.15.1 Overview  
The hardware divider is useful to the high performance application. The hardware divider is a  
signed, integer divider with quotient and remainder outputs.  
6.15.2 Features  
Supports Signed (two’s complement) integer calculation.  
Supports 32-bit dividend with 16-bit divisor calculation capacity.  
Supports 32-bit quotient and 16-bit remainder outputs.  
Supports divided by 0 warning flag.  
7 HCLK clocks taken for one cycle calculation.  
Software triggered with finish flag.  
Nov. 02, 2016  
Page 49 of 69  
Rev 1.02  
M0519  
6.16 Enhanced Analog-to-Digital Converter (EADC)  
6.16.1 Overview  
The NuMicro® M0519 Series contains two 12-bit successive approximation analog-to-digital converters  
(SAR A/D converter) with 16 input channels. The two A/D converters ADCA and ADCB can be  
sampled with Simultaneous or Single Sampling mode. The A/D converters can be started by software,  
PWM triggers, timer0~3 overflow pulse triggers, ADINT0, ADINT1 interrupt EOC pulse trigger and  
external STADC pin input signal.  
Note: The analog input port pins must be configured as input type before the EADC function is  
enabled.  
6.16.2 Features  
Analog input voltage range: 0~VREF(Max to 5.0V).  
12-bit resolution and 10-bit accuracy is guaranteed.  
Up to 16 single-end analog input channels.  
Two SAR ADC converters.  
Four EADC interrupts with individual interrupt vector addresses.  
Maximum EADC clock frequency: 16MHz.  
Up to 1.6M SPS conversion rate, each of ADC converter conversion time less than 1.25μs.  
Two operating modes  
Single sampling mode: two ADC converters run at normal operation.  
Simultaneous sampling mode: Allow two ADC converters can be sampled  
simultaneously.  
An A/D conversion can be started by:  
Writing 1 to ADST(ADSSTR[n]) bit ( n = 0~15) through software  
External pin STADC  
Timer0~3 overflow pulse triggers  
ADINT0, ADINT1 interrupt EOC pulse triggers  
PWM triggers  
Conversion results are held in 16 data registers with valid and overrun indicators.  
SAMPLEA0~7 ADC control logic modules, each of them is configurable for ADCA converter  
channel AINA0~7 and trigger source.  
SAMPLEB0~7 ADC control logic modules, each of them is configurable for ADCB converter  
channel AINB0~7 and trigger source.  
Channel AINA0 supports 2 input sources: external analog voltage and internal OP0 Amplifier  
output voltage.  
Channel AINB0 supports 2 input sources: external analog voltage and internal OP1 Amplifier  
output voltage.  
Channel AINA7 supports 4 input sources: external analog voltage, internal fixed band-gap  
voltage, internal temperature sensor output, and analog ground.  
Nov. 02, 2016  
Page 50 of 69  
Rev 1.02  
M0519  
6.17 Analog Comparator (ACMP)  
6.17.1 Overview  
The NuMicro® M0519 Series contains three comparators. The comparator output is logic 1 when  
positive input voltage is greater than negative input voltage; otherwise the output is logic 0. Each  
comparator can be configured to cause an interrupt when the comparator output value changes.  
The block diagram is shown in 錯誤! 找不到參照來源。.  
6.17.2 Features  
Analog input voltage range: 0~ AVDD  
Supports hysteresis function  
Supports wake-up function  
Supports comparator output inverse function  
Supports the comparator output can be the brake source for EPWM function  
ACMP0 supports  
2 positive sources: ACMP0_P and OP0_O  
2 negative sources: ACMP0_N and Internal band-gap voltage (VBG  
)
)
)
ACMP1 supports  
2 positive sources: ACMP1_P and OP1_O  
2 negative sources: ACMP1_N and Internal band-gap voltage (VBG  
ACMP2 supports  
1 positive sources: ACMP2_P  
2 negative sources: ACMP2_N and Internal band-gap voltage (VBG  
Shares one ACMP interrupt vector for all comparators  
Nov. 02, 2016  
Page 51 of 69  
Rev 1.02  
M0519  
6.18 OP Amplifier (OPA)  
6.18.1 Overview  
This device integrated two operational amplifiers. It can be enabled through OP0_EN (OPACR[0]) and  
OP1_EN (OPACR[1]) bit. User can measure the output of the OP amplifier through the integrated A/D  
converter.  
6.18.2 Features  
Analog input voltage range: 0~AVDD  
Supports two analog OP amplifiers  
Supports OP output voltage measurement by A/D converter  
Supports Schmitt trigger buffer outputs and generate interrupt  
OP amplifier 0 output can be an optional input source of integrated comparator 0 positive  
input  
OP amplifier 1 output can be an optional input source of integrated comparator 1 positive  
input  
Nov. 02, 2016  
Page 52 of 69  
Rev 1.02  
M0519  
7
ELECTRICAL CHARACTERISTICS  
7.1 Absolute Maximum Ratings  
SYMBOL  
PARAMETER  
VDDVSS  
VIN  
MIN  
-0.3  
VSS-0.3  
4
MAX  
+6.3  
VDD+0.3  
24  
UNIT  
V
DC Power Supply  
Input Voltage  
V
Oscillator Frequency  
1/tCLCL  
TA  
MHz  
C  
Operating Temperature  
-40  
105  
Storage Temperature  
TST  
-55  
+150  
120  
C  
Maximum Current into VDD  
Maximum Current out of VSS  
Maximum Current sunk by a I/O pin  
Maximum Current sourced by a I/O pin  
Maximum Current sunk by total I/O pins  
Maximum Current sourced by total I/O pins  
-
mA  
mA  
mA  
mA  
mA  
mA  
120  
35  
35  
100  
100  
Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affects the lift and  
reliability of the device.  
Nov. 02, 2016  
Page 53 of 69  
Rev 1.02  
M0519  
7.2 DC Electrical Characteristics  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Operation voltage  
VDD  
2.5  
-
5.5  
-
V
VDD =2.5V ~ 5.5V  
VSS  
/
Power Ground  
-0.3  
-
V
AVSS  
VLDO  
AVDD  
VREF  
LDO Output Voltage  
1.62  
2.5  
1.8  
1.98  
VDD  
V
V
V
VDD >= 2.5V  
Analog Operating Voltage  
Analog Reference Voltage  
-
-
1.2  
AVDD  
All digital  
module  
VDD HXT HIRC PLL  
Operating Current  
Normal Run Mode  
At 72MHz  
38.7  
IDD1  
mA  
Χ
Χ
Χ
Χ
Χ
5.5V 12MHz  
Χ
17.9  
37.2  
16.4  
32.9  
15.5  
IDD2  
IDD3  
IDD4  
IDD5  
mA 5.5V 12MHz  
mA 3.3V 12MHz  
mA 3.3V 12MHz  
mA 5.5V 12MHz  
while(1){} executed  
from flash  
VLDO =1.8V  
Χ
Operating Current  
Normal Run Mode  
At 60MHz  
Χ
Χ
Χ
IDD6  
mA 5.5V 12MHz  
mA 3.3V 12MHz  
31.4  
14.0  
while(1){} executed  
from flash  
IDD7  
VLDO =1.8V  
Χ
Χ
IDD8  
mA 3.3V 12MHz  
29.1  
14.5  
Χ
Χ
IDD9  
mA 5.5V 12MHz  
mA 5.5V 12MHz  
Operating Current  
Normal Run Mode  
At 50MHz  
Χ
IDD10  
while(1){} executed  
from flash  
27.6  
Χ
IDD11  
mA 3.3V 12MHz  
VLDO =1.8V  
13.0  
28.1  
14.0  
Χ
Χ
Χ
Χ
IDD12  
IDD13  
IDD14  
mA 3.3V 12MHz  
mA 5.5V 12MHz  
mA 5.5V 12MHz  
Operating Current  
Normal Run Mode  
At 48MHz  
Χ
while(1){} executed  
from flash  
26.6  
Χ
IDD15  
mA 3.3V 12MHz  
12.5  
19.9  
10.4  
18.4  
Χ
Χ
Χ
Χ
IDD16  
IDD17  
IDD18  
mA 3.3V 12MHz  
mA 5.5V 12MHz  
mA 5.5V 12MHz  
VLDO =1.8V  
Operating Current  
Normal Run Mode  
At 32MHz  
Χ
while(1){} executed  
from flash  
Χ
Χ
IDD19  
mA 3.3V 12MHz  
mA 3.3V 12MHz  
VLDO =1.8V  
8.9  
Χ
IDD20  
Nov. 02, 2016  
Page 54 of 69  
Rev 1.02  
M0519  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
11.7  
Operating Current  
Χ
Χ
Χ
IDD21  
IDD22  
IDD23  
mA 5.5V  
mA 5.5V  
Normal Run Mode  
At 22.1184MHz  
while(1){} executed  
from flash  
5.3  
Χ
Χ
Χ
11.6  
Χ
Χ
mA 3.3V  
mA 3.3V  
VLDO =1.8V  
5.2  
Χ
Χ
IDD24  
8.6  
4.9  
Operating Current  
Normal Run Mode  
At 12MHz  
Χ
Χ
Χ
Χ
IDD25  
IDD26  
IDD27  
mA 5.5V 12MHz  
mA 5.5V 12MHz  
Χ
while(1){} executed  
from flash  
7.2  
3.4  
Χ
Χ
Χ
Χ
mA 3.3V 12MHz  
mA 3.3V 12MHz  
VLDO =1.8V  
Χ
IDD28  
HXT/  
VDD  
All digital  
module  
Operating Current  
Normal Run Mode  
At 10kHz  
LIRC  
PLL  
LXT  
0.13  
IDD29  
mA  
Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ
5.5V  
mA 5.5V  
mA 3.3V  
mA 3.3V  
10KHz  
10KHz  
10KHz  
10KHz  
Χ
while(1){} executed  
from flash  
0.12  
0.11  
0.11  
IDD30  
IDD31  
IDD32  
VLDO =1.8V  
Χ
All digital  
module  
VDD HXT HIRC PLL  
Operating Current  
Idle Mode  
30.1  
IIDLE1  
mA  
Χ
Χ
Χ
Χ
Χ
Χ
5.5V 12MHz  
At 72MHz  
9.2  
28.6  
7.7  
Χ
IIDLE2  
IIDLE3  
IIDLE4  
IIDLE5  
IIDLE6  
mA 5.5V 12MHz  
mA 3.3V 12MHz  
mA 3.3V 12MHz  
mA 5.5V 12MHz  
mA 5.5V 12MHz  
while(1){} executed  
from flash  
Χ
VLDO =1.8V  
25.7  
8.2  
Operating Current  
Idle Mode  
Χ
At 60MHz  
24.2  
6.7  
while(1){} executed  
from flash  
Χ
Χ
IIDLE7  
mA 3.3V 12MHz  
mA 3.3V 12MHz  
VLDO =1.8V  
Χ
IIDLE8  
23.0  
8.4  
Operating Current  
Idle Mode  
Χ
Χ
IIDLE9  
mA 5.5V 12MHz  
mA 5.5V 12MHz  
Χ
IIDLE10  
At 50MHz  
while(1){} executed  
from flash  
21.5  
6.9  
Χ
Χ
IIDLE11  
mA 3.3V 12MHz  
mA 3.3V 12MHz  
VLDO =1.8V  
Χ
IIDLE12  
Nov. 02, 2016  
Page 55 of 69  
Rev 1.02  
M0519  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
22.3  
Χ
Χ
IIDLE13  
IIDLE14  
mA 5.5V 12MHz  
Operating Current  
Idle Mode  
8.1  
Χ
mA 5.5V 12MHz  
mA 3.3V 12MHz  
At 48MHz  
while(1){} executed  
from flash  
20.8  
Χ
IIDLE15  
VLDO =1.8V  
6.7  
Χ
Χ
Χ
IIDLE16  
IIDLE17  
IIDLE18  
IIDLE19  
IIDLE20  
IIDLE21  
IIDLE22  
mA 3.3V 12MHz  
mA 5.5V 12MHz  
16.0  
Operating Current  
Idle Mode  
6.4  
Χ
Χ
Χ
mA 5.5V 12MHz  
At 32MHz  
while(1){} executed  
from flash  
14.5  
mA 3.3V 12MHz  
mA 3.3V 12MHz  
4.9  
8.6  
VLDO =1.8V  
Χ
Χ
Χ
Χ
Χ
mA 5.5V  
mA 5.5V  
Operating Current  
Idle Mode  
2.2  
8.6  
Χ
Χ
Χ
At 22.1184MHz  
while(1){} executed  
from flash  
Χ
Χ
IIDLE23  
IIDLE24  
IIDLE25  
mA 3.3V  
mA 3.3V  
VLDO =1.8V  
2.2  
7.2  
Χ
Χ
Χ
Χ
mA 5.5V 12MHz  
mA 5.5V 12MHz  
Operating Current  
Idle Mode  
3.4  
Χ
Χ
Χ
IIDLE26  
At 12MHz  
while(1){} executed  
from flash  
5.7  
1.9  
Χ
Χ
Χ
Χ
IIDLE27  
IIDLE28  
mA 3.3V 12MHz  
mA 3.3V 12MHz  
VLDO =1.8V  
Χ
HXT/  
VDD  
All digital  
module  
LIRC  
PLL  
LXT  
Operating Current  
Idle Mode  
0.13  
IIDLE29  
mA  
Χ
Χ
Χ
Χ
5.5V  
10KHz  
10KHz  
At 10kHz  
0.12  
Χ
IIDLE30  
IIDLE31  
IIDLE32  
mA 5.5V  
while(1){} executed  
from flash  
0.11  
0.11  
Χ
Χ
Χ
Χ
mA 3.3V  
mA 3.3V  
10KHz  
10KHz  
VLDO =1.8V  
Χ
All digital  
module  
VDD HXT HIRC LIRC  
IPWD1  
-
A  
Χ
Χ
Χ
Χ
Χ
Χ
Χ
Χ
5.5V  
5.5V  
5.5V  
3.3V  
3.3V  
Χ
Χ
Standby Current  
IPWD2  
IPWD3  
IPWD4  
IPWD5  
-
-
-
-
A  
A  
A  
A  
Power-down Mode  
Χ
Χ
Χ
Χ
Χ
Nov. 02, 2016  
Page 56 of 69  
Rev 1.02  
M0519  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Χ
Χ
Χ
IPWD6  
IIL  
-
3.3V  
A  
Logic 0 Input Current (Quasi-  
bidirectional mode)  
-
-
-
-
-75  
2
A  
A  
Input Leakage Current (input  
only)  
ILK  
Logic 1 to 0 Transition  
Current (Quasi-bidirectional  
mode)  
[3]  
ITL  
-
-
-660  
VDD = 5.5V, VIN<2.0V  
A  
Internal Pull-High Resistor of  
/RESET[1]  
RRST  
15  
-0.3  
-
-
-
kΩ  
V
Input Low Voltage (TTL  
input)  
VIL  
0.2VDD-0.1  
0.3VDD  
0.15VDD  
VDD +0.3  
VDD +0.3  
-
Input Low Voltage (Schmitt  
input)  
VIL1  
VIL2  
VIH  
-0.3  
V
Input Low Voltage (/RESET,  
XTAL in)  
-0.3  
V
Input High Voltage (TTL  
input)  
0.2VDD+0.9  
0.7VDD  
-
-
V
Input High Voltage (Schmitt  
input, /RESET, XTAL in)  
VIH1  
VHY  
-
V
Hysteresis voltage of  
(Schmitt input)  
0.2VDD  
V
-360  
-60  
-50  
-25  
-4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VDD = 4.5V, VS = 2.4V  
VDD = 2.7V, VS = 2.2V  
VDD = 2.5V, VS = 2.0V  
A  
A  
A  
Source Current (Quasi-  
bidirectional Mode)  
IOH  
IOH1  
IOL  
mA VDD = 4.5V, VS = 2.4V  
mA VDD = 2.7V, VS = 2.2V  
mA VDD = 2.5V, VS = 2.0V  
mA VDD = 4.5V, VS = 0.45V  
mA VDD = 2.7V, VS = 0.45V  
mA VDD = 2.5V, VS = 0.45V  
Source Current (Push-pull  
Mode)  
-3  
16  
10  
9
Sink Current (Quasi-  
bidirectional and Push-pull  
Mode)  
Note:  
1. /RESET pin is a Schmitt trigger input.  
2. Crystal Input is a CMOS input.  
3. I/O pin can source a transition current when they are being externally driven from 1 to 0. In the condition of VDD=5.5V,  
5he transition current reaches its maximum value when VIN approximates to 2V.  
Nov. 02, 2016  
Page 57 of 69  
Rev 1.02  
M0519  
7.3 AC Electrical Characteristics  
tCLCL  
tCLCH  
tCLCX  
90%  
10%  
0.7 VDD  
0.3 VDD  
tCHCL  
tCHCX  
Note: Duty cycle is 50%.  
SYMBOL  
tCHCX  
PARAMETER  
Clock High Time  
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
CONDITION  
MIN.  
TYP.  
MAX.  
UNIT  
nS  
10  
10  
2
-
-
-
-
-
tCLCX  
-
nS  
tCLCH  
15  
15  
nS  
tCHCL  
2
nS  
7.3.1 External 4~24MHz Crystal  
PARAMETER  
Operation Voltage VDD  
Temperature  
CONDITION  
MIN.  
TYP..  
MAX.  
5.5  
85  
UNIT  
V
-
2.5  
-40  
-
-
-
-
Operating Current  
12 MHz at VDD = 5V  
External crystal  
1
-
mA  
MHz  
Clock Frequency  
4
24  
7.3.1.1 Typical Crystal Application Circuits  
CRYSTAL  
C1  
C2  
R
4 MHz ~ 24 MHz  
10~20 pF  
10~20 pF  
without  
C1  
XTAL1  
XTAL2  
R
C2  
Figure 71 Typical Crystal Application Circuit  
Nov. 02, 2016  
Page 58 of 69  
Rev 1.02  
M0519  
7.3.2 Internal 22.1184 MHz Oscillator  
PARAMETER  
CONDITION  
MIN.  
2.5  
-
TYP.  
MAX.  
5.5  
-
UNIT  
V
Supply voltage  
-
-
-
22.1184  
-
MHz  
%
-1  
+1  
Frequency  
+25C; VDD = 5V  
(After calibration)  
-40 to +105C;  
-2  
-
-
+2  
-
%
VDD = 2.5V~5.5V  
Operation Current  
VDD =5V  
500  
uA  
7.3.3 Internal 10 kHz Oscillator  
PARAMETER  
Supply voltage  
CONDITION  
MIN.  
2.5  
-
TYP.  
MAX.  
5.5  
-
UNIT  
V
-
-
10  
-
Center Frequency  
-
kHz  
%
+25; VDD =5 V  
-30  
+30  
Calibrated Internal Oscillator Frequency  
-40~+85;  
-50  
-
+50  
%
VDD=2.5 V~5.5 V  
Nov. 02, 2016  
Page 59 of 69  
Rev 1.02  
M0519  
7.4 Analog Characteristics  
7.4.1 12-bit SARADC  
PARAMETER  
Resolution  
SYMBOL  
CONDITON  
MIN.  
TYP.  
MAX.  
12  
UNIT  
Bit  
-
-
-
-
-
-
-
Differential nonlinearity error  
Integral nonlinearity error  
Offset error  
DNL  
INL  
EO  
EG  
-
-1~2  
-1~4  
±4  
LSB  
LSB  
LSB  
LSB  
±2  
±1  
10  
Full scale error  
1
1.005  
Monotonic  
Guaranteed  
AVDD = 5V  
AVDD = 3V  
AVDD = 5V  
AVDD = 3V  
-
-
-
16  
ADC clock frequency  
Sample rate  
FADC  
MHz  
ksps  
-
8
-
-
800  
FS  
-
-
400  
Sample time  
Conversion time  
Supply voltage  
VREF voltage  
TS  
TADC  
AVDD  
VREF  
IDDA  
-
-
8
12  
-
-
Clock  
Clock  
V
-
2.5  
2.0  
-
5.5  
AVDD  
Supply current  
Reference current  
Input voltage  
1.5  
1
-
mA  
mA  
V
IREF  
-
-
VREF  
-
VIN  
CIN  
0
-
Capacitance  
-
5
pF  
7.4.2 LDO  
PARAMETER  
Input Voltage VDD  
MIN.  
TYP.  
MAX.  
5.5  
UNIT  
NOTE  
2.5  
V
V
VDD input voltage  
VDD > 2.5 V  
Output Voltage  
1.62  
1.8  
1.98  
Operating Temperature  
-40  
-
25  
1
105  
-
Cbp  
RESR = 1 Ω  
F  
Note:  
1. It is recommended that a 10 uF or higher capacitor and a 100 nF bypass capacitor are connected between VDD and the  
closest VSS pin of the device.  
2. To ensure power stability, a 1 F or higher capacitor must be connected between LDO_CAP pin and the closest VSS  
pin of the device.  
Nov. 02, 2016  
Page 60 of 69  
Rev 1.02  
M0519  
7.4.3 Low Voltage Reset  
PARAMETER  
Operation Voltage  
CONDITION  
MIN.  
0
TYP.  
MAX.  
5.5  
5
UNIT  
V
-
-
1
Quiescent Current  
AVDD=5.5 V  
-
-
A  
Operation Temperature  
-40  
25  
105  
Threshold Voltage  
Hysteresis  
-
-
1.6  
0
2.0  
0
2.4  
0
V
V
7.4.4 Brown-out Detector  
PARAMETER  
Operation Voltage  
CONDITION  
MIN.  
0
TYP.  
-
MAX.  
5.5  
UNIT  
V
-
Temperature  
-
-40  
-
25  
-
105  
125  
4.6  
μA  
V
Quiescent Current  
AVDD=5.5 V  
BOD_VL[1:0]=11  
BOD_VL [1:0]=10  
BOD_VL [1:0]=01  
BOD_VL [1:0]=00  
-
4.2  
3.5  
2.6  
2.1  
30  
4.4  
3.7  
2.7  
2.2  
-
3.9  
V
Brown-out Voltage  
2.8  
V
2.3  
V
Hysteresis  
150  
mV  
7.4.5 Power-On Reset (5V)  
PARAMETER  
Operation Temperature  
Reset Voltage  
CONDITION  
MIN.  
TYP.  
25  
2
MAX.  
UNIT  
-
V+  
-40  
105  
-
-
-
-
V
Quiescent Current  
Vin > reset voltage  
1
nA  
Nov. 02, 2016  
Page 61 of 69  
Rev 1.02  
M0519  
7.4.6 Temperature Sensor  
PARAMETER  
Operation Voltage[1]  
Operation Temperature  
Current Consumption  
Gain  
CONDITIONS  
MIN.  
2.5  
TYP.  
MAX.  
5.5  
UNIT  
V
-
-
-40  
105  
6.4  
-
10.5  
μA  
-1.76  
720  
mV/℃  
mV  
Offset Voltage  
Temp=0 ℃  
7.4.7 Comparator  
PARAMETER  
Operation Voltage AVDD  
Operation Temperature  
Operation Current  
CONDITION  
MIN.  
2.5  
-40  
-
TYP.  
MAX.  
UNIT  
V
-
5.5  
-
25  
20  
5
85  
VDD=3.0 V  
40  
μA  
mV  
V
Input Offset Voltage  
Output Swing  
-
-
15  
-
0.1  
0.1  
-
-
VDD-0.1  
Input Common Mode Range  
DC Gain  
-
-
VDD-1.2  
V
-
70  
200  
-
-
dB  
ns  
Propagation Delay  
VCM=1.2 V and VDIFF=0.1 V  
-
20 mV at VCM=1 V  
50 mV at VCM=0.1 V  
50 mV at VCM=VDD-1.2  
10 mV for non-hysteresis  
Comparison Voltage  
10  
20  
-
mV  
Hysteresis  
VCM=0.4 V ~ VDD-1.2 V  
-
-
±10  
-
-
mV  
CINP=1.3 V  
CINN=1.2 V  
Wake-up Time  
2
μs  
Nov. 02, 2016  
Page 62 of 69  
Rev 1.02  
M0519  
7.4.8 OP Amplifier  
PARAMETER  
AVDD  
CONDITION  
MIN.  
TYP.  
3.3  
2
MAX.  
UNIT  
V
-
-
3.0  
5.5  
Input offset voltage  
Input offset average drift  
Output swing  
-
5
mV  
uV/℃  
V
-
-
1
-
0.1  
-
VDD-0.1  
Input common mode range  
DC gain  
-
0.1  
-
VDD-1.2  
V
-
-
-
-
-
-
80  
-
-
5
-
dB  
MHz  
°
Unity gain freq.  
Phase margin  
PSRR+  
AVDD=5V  
50°  
90  
90  
AVDD=5V  
AVDD=5V  
-
dB  
dB  
CMRR  
-
AVDD=5V, RLOAD=33K,  
CLOAD=50p  
Slew rate  
6.0  
-
-
V/us  
Wake up time  
-
-
-
-
1
2
us  
Quiescent current  
mA  
Nov. 02, 2016  
Page 63 of 69  
Rev 1.02  
M0519  
7.5 Flash DC Electrical Characteristics  
SYMBOL  
PARAMETER  
Supply Voltage  
Endurance  
CONDITIONS  
MIN.  
1.62  
TYP.  
MAX.  
UNIT  
V[2]  
VDD  
1.8  
1.98  
NENDUR  
TRET  
TERASE  
TMER  
TPROG  
IDD1  
10000  
100  
cycles[1]  
year  
At 25℃  
Data Retention  
Page Erase Time  
Mass Erase Time  
Program Time  
20  
40  
ms  
ms  
μs  
40  
Read Current  
-
0.15  
0.5  
7
mA/MHz  
mA  
IDD2  
Program/Erase Current  
Note : This table is guaranteed by design, not test in production.  
[1] Number of program/erase cycles.  
[2] VDD is source from chip LDO output voltage.  
Nov. 02, 2016  
Page 64 of 69  
Rev 1.02  
M0519  
8
PACKAGE DIMENSIONS  
8.1 LQFP 100V (14x14x1.4 mm footprint 2.0mm)  
H
D
D
A
A2  
7
A1  
51  
7
50  
H
E E  
100  
26  
L1  
L
1
25  
c
e
b
Y
Controlling Dimension : Millimeters  
Dimension in inch  
Dimension in mm  
Symbol  
A
Min Nom  
Max  
Min Nom  
Max  
1.60  
0.063  
A1  
A
0.002  
0.05  
1.45  
0.27  
0.053 0.055 0.057  
1.35  
0.17  
0.10  
1.40  
0.22  
2
b
0.011  
0.008  
0.009  
0.006  
0.007  
0.004  
0.547  
0.547  
c
0.15  
0.20  
D
E
14.00  
0.551  
0.551  
0.020  
14.10  
13.90  
13.90  
0.556  
0.556  
14.00 14.10  
0.50  
e
H D  
16.00  
16.20  
16.20  
16.00  
15.80  
15.80  
0.45  
0.622  
0.638  
0.638  
0.030  
0.630  
H E  
L
0.622 0.630  
0.60  
1.00  
0.75  
0.024  
0.039  
0.018  
L1  
y
0.10  
7
0.004  
7
0
0
Nov. 02, 2016  
Page 65 of 69  
Rev 1.02  
M0519  
8.2 LQFP 64S (7x7x1.4 mm footprint 2.0 mm)  
Nov. 02, 2016  
Page 66 of 69  
Rev 1.02  
M0519  
8.3 LQFP 48L (7x7x1.4mm footprint 2.0mm)  
H
36  
25  
37  
24  
H
13  
48  
12  
1
Controlling dimension : Millimeters  
Dimension in inch  
Dimension in mm  
Symbol  
Nom  
Nom  
Max  
Min  
Max Min  
A
1
0.002 0.004 0.006 0.05  
0.053 0.055 0.057 1.35  
0.10 0.15  
A
2
1.45  
0.25  
0.20  
7.10  
7.10  
0.65  
9.10  
1.40  
0.20  
A
0.006  
0.004  
0.272  
0.272  
0.014  
0.350  
0.350  
0.018  
0.15  
0.008 0.010  
b
c
D
0.006  
0.276  
0.276  
0.020  
0.10 0.15  
0.008  
0.280  
0.280  
0.026  
0.358  
7.00  
7.00  
6.90  
6.90  
0.35  
8.90  
E
0.50  
9.00  
e
H
D
0.354  
0.358  
0.030  
8.90  
0.45  
9.00  
0.60  
1.00  
9.10  
0.75  
0.354  
0.024  
E
H
L
L
Y
0.039  
1
0.004  
7
0.10  
7
0
0
0
Nov. 02, 2016  
Page 67 of 69  
Rev 1.02  
M0519  
9
REVISION HISTORY  
Date  
Revision  
Description  
2015.06.11  
2016.07.31  
2016.11.02  
1.00  
1.  
1.  
1.  
Preliminary version.  
1.01  
Added “Flash DC Electrical Characteristics” in section 7.5.  
Updated OPA and ADC item in 4.1.1 selection guide.  
1.02  
Nov. 02, 2016  
Page 68 of 69  
Rev 1.02  
M0519  
Important Notice  
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any  
malfunction or failure of which may cause loss of human life, bodily injury or severe property  
damage. Such applications are deemed, “Insecure Usage”.  
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic  
energy control instruments, airplane or spaceship instruments, the control or operation of  
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all  
types of safety devices, and other applications intended to support or sustain life.  
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay  
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the  
damages and liabilities thus incurred by Nuvoton.  
Nov. 02, 2016  
Page 69 of 69  
Rev 1.02  

相关型号:

M0519SD3AE

ARM® Cortex®-M0 32-bit Microcontroller
NUVOTON

M0519SE3AE

ARM® Cortex®-M0 32-bit Microcontroller
NUVOTON

M0519VE3AE

ARM® Cortex®-M0 32-bit Microcontroller
NUVOTON

M052-LE

ARM® Cortex®-M0 32-bit Microcontroller
NUVOTON

M052-LN

ARM® Cortex®-M0 32-bit Microcontroller
NUVOTON

M052-ZE

ARM® Cortex®-M0 32-bit Microcontroller
NUVOTON

M052-ZN

ARM® Cortex®-M0 32-bit Microcontroller
NUVOTON

M052LBN

32-BIT MICROCONTROLLER
ETC

M052LDE

ARM® Cortex®-M0 32-bit Microcontroller
NUVOTON

M052LDN

ARM® Cortex®-M0 32-bit Microcontroller
NUVOTON

M052LE

ARM® Cortex®-M0 32-bit Microcontroller
NUVOTON

M052LN

ARM® Cortex®-M0 32-bit Microcontroller
NUVOTON