ML51DC2AE [NUVOTON]

1T 8051 8-bit Microcontroller;
ML51DC2AE
型号: ML51DC2AE
厂家: NUVOTON    NUVOTON
描述:

1T 8051 8-bit Microcontroller

微控制器
文件: 总164页 (文件大小:3068K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ML51/ML54/ML56  
1T 8051  
8-bit Microcontroller  
NuMicro® Family  
ML51/ML54/ML56 Series  
Datasheet  
The information described in this document is the exclusive intellectual property of  
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.  
Nuvoton is providing this document only for reference purposes of NuMicro® microcontroller based  
system design. Nuvoton assumes no responsibility for errors or omissions.  
All data and specifications are subject to change without notice.  
For additional information or questions, please contact: Nuvoton Technology Corporation.  
www.nuvoton.com  
Sep. 1, 2020  
Page 1 of 164  
Rev 2.00  
ML51/ML54/ML56  
TABLE OF CONTENTS  
1
2
3
GENERAL DESCRIPTION ............................................................................10  
FEATURES....................................................................................................11  
PART INFORMATION ...................................................................................16  
3.1 ML51/ML54/ML56 Series Package Type................................................................. 16  
3.2 ML51/ML54/ML56 Series Selection Guide.............................................................. 17  
3.2.1 ML51 Series ....................................................................................................................17  
3.2.2 ML54 Series ....................................................................................................................20  
3.2.3 ML56 Series ....................................................................................................................21  
3.3 ML51/ML54/ML56 Series Selection Code............................................................... 22  
4
PIN CONFIGURATION ..................................................................................23  
4.1 Pin Configuration......................................................................................................... 23  
4.1.1 ML51/ML54/ML56 Series Pin Diagram .......................................................................23  
4.1.2 ML51/ML54/ML56 Series Multi Function Pin Diagram .............................................31  
4.2 Pin Description............................................................................................................. 71  
4.2.1 ML51/ML54/ML56 Series Pin Mapping.......................................................................71  
4.2.2 ML51/ML54/ML56 Series Pin Functional Description...............................................73  
BLOCK DIAGRAM.........................................................................................78  
5
6
5.1 ML51/ML54/ML56 Series Full Function Block ........................................................ 78  
FUNCTIONAL DESCRIPTION.......................................................................79  
6.1 Memory Organization.................................................................................................. 79  
6.2 System Manager ......................................................................................................... 80  
6.3 Flash Memory Control ................................................................................................ 81  
6.3.1 In-application-programming (IAP)................................................................................81  
6.3.2 In-Circuit-Programming (ICP).......................................................................................81  
6.3.3 On-Chip-Debugger (ICE)...............................................................................................81  
6.4 GPIO Port Structure and Operation.......................................................................... 82  
6.4.1 GPIO Mode .....................................................................................................................82  
6.5 Timer.............................................................................................................................. 83  
6.5.1 Overview..........................................................................................................................83  
6.6 Watchdog Timer (WDT).............................................................................................. 84  
6.7 Self Wake-up Timer (WKT)........................................................................................ 85  
6.7.1 Overview..........................................................................................................................85  
6.8 Pulse Width Modulated (PWM)................................................................................. 86  
6.8.1 Overview..........................................................................................................................86  
6.8.2 Features...........................................................................................................................86  
6.9 Serial Port (UART0 & UART1) .................................................................................. 87  
Sep. 1, 2020  
Page 2 of 164  
Rev 2.00  
ML51/ML54/ML56  
6.9.1 Overview..........................................................................................................................87  
6.9.2 Features...........................................................................................................................87  
6.10 Smart Card Interface (SC) ................................................................................... 88  
6.10.1Overview..........................................................................................................................88  
6.10.2Features...........................................................................................................................88  
6.11 Serial Peripheral Interface (SPI) ......................................................................... 89  
6.11.1Overview..........................................................................................................................89  
6.11.2Features...........................................................................................................................89  
6.12 Inter-Integrated Circuit (I2C)................................................................................. 90  
6.12.1Overview..........................................................................................................................90  
6.12.2Features...........................................................................................................................90  
6.13 12-bit Analog-to-digital Converter (ADC) ........................................................... 91  
6.13.1Overview..........................................................................................................................91  
6.14 Voltage Reference (VREF)................................................................................... 92  
6.15 Analog Comparator Controller (ACMP).............................................................. 93  
6.15.1Overview..........................................................................................................................93  
6.15.2Feature.............................................................................................................................93  
6.16 PDMA Controller (PDMA)..................................................................................... 94  
6.16.1Overview..........................................................................................................................94  
6.16.2Feature.............................................................................................................................94  
6.17 LCD Driver.............................................................................................................. 95  
6.17.1Overview..........................................................................................................................95  
6.17.2Features...........................................................................................................................95  
6.18 Real Time Clock (RTC)......................................................................................... 96  
6.18.1Overview..........................................................................................................................96  
6.18.2Features...........................................................................................................................96  
6.19 Touch Key (TK) ...................................................................................................... 97  
6.19.1Overview..........................................................................................................................97  
6.19.2Features...........................................................................................................................97  
6.20 Auxiliary Features.................................................................................................. 98  
6.20.1Dual DPTRs ....................................................................................................................98  
6.20.296-Bit Unique Code (UID) ...........................................................................................102  
6.21 Instruction Set ...................................................................................................... 103  
6.21.1Instruction Set And Addressing Modes .....................................................................103  
6.21.2Read-Modify-Write Instructions..................................................................................105  
6.21.3Instruction Set...............................................................................................................105  
APPLICATION CIRCUIT..............................................................................109  
7
7.1 Power Supply Scheme ............................................................................................. 109  
7.2 Peripheral Application Scheme ............................................................................... 110  
Sep. 1, 2020  
Page 3 of 164  
Rev 2.00  
ML51/ML54/ML56  
8
ELECTRICAL CHARACTERISTICS............................................................111  
8.1 General Operating Conditions................................................................................. 111  
8.1.1 ML51 32KB/16KB Flash Series..................................................................................111  
8.1.2 ML51 64KB Flash/ML54/ML56 Series ......................................................................111  
8.2 DC Electrical Characteristics................................................................................... 112  
8.2.1 Supply Current Characteristics...................................................................................112  
8.2.2 On-Chip Peripheral Current Consumption................................................................120  
8.2.3 Wakeup Time from Low-Power Modes .....................................................................122  
8.2.4 I/O DC Characteristics.................................................................................................123  
8.3 AC Electrical Characteristics ................................................................................... 125  
8.3.1 24 MHz Internal High Speed RC Oscillator (HIRC).................................................125  
8.3.2 38.4 kHz Internal Low Speed RC Oscillator (LIRC) ................................................126  
8.3.3 External 4~24 MHz High Speed Crystal/Ceramic Resonator (HXT) characteristics  
127  
8.3.4 External 4~24 MHz High Speed Clock Input Signal Characteristics ....................129  
8.3.5 External 32.768 kHz Low Speed Crystal/Ceramic Resonator (LXT) characteristics  
130  
8.3.6 I/O AC Characteristics .................................................................................................131  
8.4 Analog Characteristics.............................................................................................. 132  
8.4.1 Reset and Power Control Block Characteristics......................................................132  
8.4.2 12-bit SAR ADC............................................................................................................133  
8.4.3 Analog Comparator Controller (ACMP).....................................................................135  
8.4.4 Internal Voltage Reference .........................................................................................136  
8.4.5 Temperature Sensor ....................................................................................................137  
8.4.6 LCD Controller ..............................................................................................................138  
8.5 Flash DC Electrical Characteristics ........................................................................ 142  
8.6 Absolute Maximum Ratings..................................................................................... 143  
8.6.1 Voltage Characteristics................................................................................................143  
8.6.2 Current Characteristics................................................................................................144  
8.6.3 Thermal Characteristics...............................................................................................145  
8.6.4 EMC Characteristics ....................................................................................................146  
8.6.5 Package Moisture Sensitivity(MSL)...........................................................................148  
8.6.6 Soldering Profile ...........................................................................................................149  
9
PACKAGE DIMENSIONS............................................................................150  
9.1 LQFP 64L-pin (7.0 x 7.0 x 1.4 mm) ........................................................................ 150  
9.2 LQFP 48-pin (7.0 x 7.0 x 1.4 mm)........................................................................... 151  
9.3 LQFP 44-pin (10 x 10 x 1.4mm............................................................................... 152  
9.4 QFN 33-pin (4.0 x 4.0 x 0.8 mm) ............................................................................ 153  
9.5 LQFP 32-pin (7.0 x 7.0 x 1.4 mm)........................................................................... 154  
9.6 TSSOP 28-pin (4.4 x 9.7 x 1.0 mm) ....................................................................... 155  
Sep. 1, 2020  
Page 4 of 164  
Rev 2.00  
ML51/ML54/ML56  
9.7 SOP 28-pin (300mil).................................................................................................. 156  
9.8 TSSOP 20-pin (4.4 x 6.5 x 0.9 mm) ...................................................................... 157  
9.9 SOP 20-pin (300 mil) ................................................................................................ 158  
9.10 QFN 20-pin ( 3.0 x 3.0 x 0.8 mm ) .................................................................... 159  
9.11 TSSOP 14-pin (4.4 x 5.0 x 0.9 mm).................................................................. 160  
9.12 MSOP 10-pin (3.0 x 3.0 x 0.85 mm)................................................................. 161  
ABBREVIATIONS........................................................................................162  
10.1 Abbreviations........................................................................................................ 162  
REVISION HISTORY ...................................................................................163  
10  
11  
Sep. 1, 2020  
Page 5 of 164  
Rev 2.00  
ML51/ML54/ML56  
LIST OF FIGURES  
Figure 4.1-1 ML51SD1AE Pin Assignment.................................................................................... 23  
Figure 4.1-2 ML54SD1AE / ML56SD1AE Pin Assignment............................................................ 24  
Figure 4.1-3 ML51LD1AE Pin Assignment .................................................................................... 24  
Figure 4.1-4 ML54LD1AE / ML56LD1AE Pin Assignment............................................................. 25  
Figure 4.1-5 ML54MD1AE / ML56MD1AE Pin Assignment........................................................... 25  
Figure 4.1-6 ML51TD1AE / ML51TC0AE / ML51TB9AE Pin Assignment..................................... 26  
Figure 4.1-7 ML51PC0AE / ML51PB9AE Pin Assignment............................................................ 27  
Figure 4.1-8 ML51EC0AE / ML51EB9AE Pin Assignment............................................................ 27  
Figure 4.1-9 ML51UC0AE / ML51UB9AE Pin Assignment............................................................ 28  
Figure 4.1-10 ML51FB9AE Pin Assignment .................................................................................. 28  
Figure 4.1-11 ML51OB9AE Pin Assignment.................................................................................. 29  
Figure 4.1-12 ML51XB9AE Pin Assignment.................................................................................. 29  
Figure 4.1-13 ML51DB9AE Pin Assignment.................................................................................. 30  
Figure 4.1-14 ML51BB9AE Pin Assignment.................................................................................. 30  
Figure 4.1-15 ML51SD1AE Multi-Function Pin assignment .......................................................... 31  
Figure 4.1-16 ML54SD1AE Multi-Function Pin assignment .......................................................... 34  
Figure 4.1-17 ML56SD1AE Multi-Function Pin assignment .......................................................... 37  
Figure 4.1-18 ML51LD1AE Multi-Function Pin assignment........................................................... 40  
Figure 4.1-19 ML54LD1AE Multi-Function Pin assignment........................................................... 43  
Figure 4.1-20 ML56LD1AE Multi-Function Pin assignment........................................................... 46  
Figure 4.1-21 ML54MD1AE Multi-Function Pin assignment.......................................................... 49  
Figure 4.1-22 ML56MD1AE Multi-Function Pin assignment.......................................................... 52  
Figure 4.1-23 ML51TD1AE Multi-Function Pin assignment........................................................... 55  
Figure 4.1-24 ML51TC0AE / ML51TB9AE Multi-Function Pin Assignment.................................. 57  
Figure 4.1-25 ML51PC0AE / ML51PB9AE Multi-Function Pin Assignment .................................. 59  
Figure 4.1-26 ML51EC0AE / ML51EB9AE Multi-Function Pin Assignment ................................. 61  
Figure 4.1-27 ML51UC0AE / ML51UB9AE Multi Function Pin Assignment.................................. 63  
Figure 4.1-28 ML51FB9AE Multi Function Pin Assignment........................................................... 65  
Figure 4.1-29 ML51OB9AE Multi Function Pin Assignment.......................................................... 66  
Figure 4.1-30 ML51XB9AE Multi Function Pin Assignment .......................................................... 67  
Figure 4.1-31 ML51DB9AE Multi Function Pin Assignment .......................................................... 69  
Figure 4.1-32 ML51BB9AE Pin Assignment.................................................................................. 70  
Figure 5.1-1 Functional Block Diagram.......................................................................................... 78  
Figure 6.2-1 Clock System Block Diagram .................................................................................... 80  
Figure 7.1-1 NuMicro® ML51/ML54/ML56 Series Power supply circuit....................................... 109  
Figure 7.2-1 NuMicro® ML51/ML54/ML56 Series Peripheral interface circuit ............................. 110  
Sep. 1, 2020  
Page 6 of 164  
Rev 2.00  
ML51/ML54/ML56  
Figure 8.4-1 Typical Connection With Internal Voltage Reference.............................................. 136  
Figure 8.6-1 Soldering Profile From J-STD-020C........................................................................ 149  
Figure 9.1-1 LQFP 64L Package Dimension ............................................................................... 150  
Figure 9.2-1 LQFP-48 Package Dimension................................................................................ 151  
Figure 9.3-1 LFP44 Package Dimension.................................................................................... 152  
Figure 9.4-1 QFN-33 Package Dimension.................................................................................. 153  
Figure 9.5-1 LQFP-32 Package Dimension................................................................................. 154  
Figure 9.6-1 TSSOP-28 Package Dimension .............................................................................. 155  
Figure 9.7-1 SOP-28 Package Dimension.................................................................................. 156  
Figure 9.8-1 TSSOP-20 Package Dimension .............................................................................. 157  
Figure 9.9-1 SOP-20 Package Dimension................................................................................... 158  
Figure 9.10-1 QFN-20 Package Dimension................................................................................. 159  
Figure 9.11-1 TSSOP-14 Package Dimension ............................................................................ 160  
Figure 9.12-1 MSOP-10 Package Dimension.............................................................................. 161  
Sep. 1, 2020  
Page 7 of 164  
Rev 2.00  
ML51/ML54/ML56  
List of Tables  
Table 6.4-1 Configuration for Different I/O Modes......................................................................... 82  
Table 6.6-1 Watchdog Timer-out Interval Under Different Pre-scalars.......................................... 84  
Table 6.21-1 Instruction Set And Addressing Modes .................................................................. 103  
Table 6.21-2 Instructions Affect Flag Settings ............................................................................ 104  
Table 6.21-3 Instruction Set........................................................................................................ 108  
Table 8.1-1 ML51 32KB/16KB Flash Series General Operating Conditions ............................... 111  
Table 8.1-2 ML56/ML54/ML51 64KB Flash Series General Operating Conditions ..................... 111  
Table 8.2-1 ML51 32KB / 16KB Series Current Consumption In Normal Run Mode .................. 113  
Table 8.2-2 ML51 32KB/16KB Flash Series Current Consumption In Low Power Run Mode.... 113  
Table 8.2-3 ML51 32KB/16KB Flash Series Current Consumption In Idle Mode........................ 114  
Table 8.2-4 ML51 32KB/16KB Flash Series Current Consumption In Low Power Idle Mode..... 114  
Table 8.2-5 ML51 32KB/16KB Flash Series Chip Current Consumption in Power down mode . 115  
Table 8.2-6 ML56/ML54/ML51 64KB Flash Series Current Consumption In Normal Run Mode 117  
Table 8.2-7 ML56/ML54/ML51 64KB Flash Series Current Consumption In Low Power Run Mode  
.............................................................................................................................................. 117  
Table 8.2-8 ML56/ML54/ML51 64KB Flash Series Current Consumption In Idle Mode.............. 118  
Table 8.2-9 ML56/ML54/ML51 64KB Flash Series Current consumption in Low Power Idle mode  
.............................................................................................................................................. 118  
Table 8.2-10 ML56/ML54/ML51 64KB Flash Series Series Chip Current Consumption In Power  
Down Mode........................................................................................................................... 119  
Table 8.2-11 Peripheral Current Consumption ............................................................................ 121  
Table 8.2-12 Low-Power Mode Wakeup Timings........................................................................ 122  
Table 8.2-13I/O Input Characteristics .......................................................................................... 123  
Table 8.2-14 nRESET Input Characteristics................................................................................ 124  
Table 8.3-1 24 MHz Internal High Speed RC Oscillator(HIRC) Characteristic............................ 125  
Table 8.3-2 38.4 kHz Internal Low Speed RC Oscillator(LIRC) Characteristics.......................... 126  
Table 8.3-3 External 4~24 MHz High Speed Crystal (HXT) Oscillator ........................................ 127  
Table 8.3-4 Typical Crystal Application....................................................................................... 128  
Table 8.3-5 External 4~24 MHz High Speed Clock Input Signal ................................................. 129  
Table 8.3-6 External 32.768 kHz Low Speed Crystal (LXT) Oscillator Characteristics............... 130  
Table 8.3-7 Typical 32.768 kHz Crystal Application Circuit ......................................................... 130  
Table 8.3-8 I/O AC characteristics ............................................................................................... 131  
Table 8.4-1 Reset And Power Control Unit.................................................................................. 132  
Table 8.4-2 ADC Characteristics.................................................................................................. 133  
Table 8.4-3 ACMP Characteristics............................................................................................... 135  
Table 8.4-4 Voltage Reference Character ................................................................................... 136  
Table 8.4-5 Temperature Sensor Character................................................................................ 137  
Sep. 1, 2020  
Page 8 of 164  
Rev 2.00  
ML51/ML54/ML56  
Table 8.4-6 LCD Digital Characteristics....................................................................................... 139  
Table 8.4-7 Current Consumption In Power Down Mode With LCD Voltage Source From Internal  
Charge Pump........................................................................................................................ 140  
Table 8.4-8 Current Consumption In Power Down Mode With LCD Voltage Source From AVDD140  
Table 8.4-9 Current Consumption In Power Down Mode With LCD Voltage Source From External  
VLCD pin............................................................................................................................... 141  
Table 8.5-1 Flash Memory Characteristics .................................................................................. 142  
Table 8.6-1 ML51 32KB/16KB Flash Series Voltage Characteristics.......................................... 143  
Table 8.6-2 ML51 64KB Flash/ML54/ML56 Series Voltage Characteristics................................ 143  
Table 8.6-3 Current Characteristics ............................................................................................. 144  
Table 8.6-4 Thermal Characteristics............................................................................................ 145  
Table 8.6-5 ML51 32KB/16KB Flash Series EMC Characteristics .............................................. 146  
Table 8.6-6 ML51 64KB Flash/ML54/ML56 Series EMC Characteristics.................................... 147  
Table 8.6-7 Package Moisture Sensitivity(MSL).......................................................................... 148  
Table 8.6-8 Soldering Profile........................................................................................................ 149  
Table 10.1-1 List of Abbreviations................................................................................................ 162  
Sep. 1, 2020  
Page 9 of 164  
Rev 2.00  
ML51/ML54/ML56  
1 GENERAL DESCRIPTION  
The NuMicro® ML51/ML54/ML56 series is a Flash embedded 1T 8051-based microcontroller. The  
instruction set of the ML51 series is fully compatible with the standard 80C51 with enhanced  
performance; This series is a three-to-one single microcontrollers, intergrated with up to 14 channels  
of capacitive touch and LCD driver.  
The ML51/ML54/ML56 series is 1T 8051 core based low-power microcontrollers running at less  
80µA/MHz in normal run mode, and power down current is below 1uA. It Provides operating frequency  
up to 24 MHz. 16KB and 32KB Flash of ML51 series voltage range supports 1.8V to 5.5V, and 64KB  
Flash of ML51 series supports 1.8 to 3.6V voltage range.  
The ML51/ML54/ML56 series microcontroller provides 3 power modes to reduce power consumption  
Low power run mode, Low power Idle mode, and Power-down mode. In Low power run mode, the  
power consumption can be down to 15 uA at 38.4 kHz LIRC. In Low power idle mode, CPU  
processing is suspended by holding the Program Counter. No program code is fetched and run in low  
power idle mode if the power consumption does not exceed 13 uA. Power-down mode stops the  
whole system clock for minimum power consumption with the leakage current less than 1 uA. The  
system clock of the ML51 series can also be slowed down by software clock divider, which allows for  
flexibility between execution performance and power consumption.  
The ML51/ML54/ML56 series provides rich peripherals including 256 bytes of SRAM, 4 Kbytes of  
auxiliary RAM (XRAM), up to 56 general purpose I/O, two 16-bit Timers/Counters 0/1, one 16-bit  
Timer2 with three-channel input capture module, one Watchdog Timer (WDT), one Self Wake-up  
Timer (WKT), one 16-bit auto-reload Timer3 for general purpose or baud rate generator, two UARTs  
with frame error detection and automatic address recognition, two ISO7816 Smartcard interface, two  
SPI, two I2C, 6 enhanced PWM output channels with dead zone control, 6 PWM output channels with  
3 individual configurable period, two analog comparators, eight-channel shared pin interrupt for all I/O  
ports, and one 12-bit ADC at 500 ksps. There are a total of 31 sources with 4-level-priority interrupts  
capability.  
All series contains up to 64 Kbytes Flash, called APROM designed for programming. Flash supports  
In-Application-Programming (IAP) function, which supports on-chip firmware upgrade. Partial flash can  
be configured as Data Flash programmed by IAP and read by IAP or MOVC instruction. The  
ML51/ML54/ML56 series includes an additional configurable up to 4/3/2/1 Kbytes Flash area called  
LDROM, in which the Boot Code normally resides for carrying out the In-System-Programming (ISP).  
To facilitate mass production programming and verification, the Flash is allowed to be programmed  
and read electronically by parallel Writer/Programmer or In-Circuit-Programming (ICP) with Nu-Link.  
Once programmed and verified, the programmed code can be protected by the Flash lock mechanism  
from being read out by external programming tool.  
Through the high performance and low power features of ML51/ML54/ML56 series, this series benefits  
for low-power, battery powered devices, general purpose, home appliances, and motor control  
system.  
Series  
VDD Voltage  
1.8 ~ 5.5 V  
1.8 ~3.6 V  
1.8 ~3.6 V  
1.8 ~3.6 V  
LCD Driver  
Touch Key  
ML51 32/16KB Flash Series  
ML51 64KB Flash Series  
ML54 Series  
-
-
-
-
-
ML56 Series  
Sep. 1, 2020  
Page 10 of 164  
Rev 2.00  
ML51/ML54/ML56  
2 FEATURES  
Core and System  
Fully static design 8-bit high performance 1T 8051-based  
CMOS microcontroller.  
Instruction set fully compatible with MCS-51.  
4-priority-level interrupts capability.  
Dual Data Pointers (DPTRs).  
8051  
Power on Reset (POR)  
Brown-out Detector (BOD)  
Low Voltage Reset (LVR)  
POR with 1.55V threshold voltage level  
7-level selection, with brown-out interrupt and reset option.  
(4.4V / 3.7V / 3.0V / 2.7V / 2.4V / 2.0V / 1.8V)  
LVR with 1.63V threshold voltage level  
96-bit Unique ID (UID)  
Security  
128-bit Unique Customer ID (UCID)  
128-bytes security protection memory SPROM  
Memories  
Up to 64 KBytes of APROM for User Code.  
4/3/2/1 Kbytes of Flash for loader (LDROM) configure from  
APROM for In-System-Programmable (ISP)  
Flash Memory accumulated with pages of 128 Bytes from  
APROM by In-Application-Programmable (IAP) means  
whole APROM can be use as Data Flash  
Flash  
An additional 128 bytes security protection memory SPROM  
Code lock for security by CONFIG  
256 Bytes on-chip RAM.  
SRAM  
Additional 4 KBytes on-chip auxiliary RAM (XRAM)  
accessed by MOVX instruction.  
Three modes: peripheral-to-memory, memory-to-peripheral,  
and memory-to-memory transfer.  
Source address and destination address must be word  
alignment in all modes.  
PDMA:  
Memory-to-memory mode: transfer length must be word  
alignment.  
Clocks  
4~24 MHz High-speed external crystal oscillator (HXT) for  
precise timing operation  
External Clock Source  
Sep. 1, 2020  
Page 11 of 164  
Rev 2.00  
ML51/ML54/ML56  
32.768 kHz High-speed external crystal oscillator (LXT) for  
RTC operation  
Default 24 MHz high-speed internal oscillator (HIRC)  
trimmed to ±1% (accuracy at 25 °C, 3.3 V), ±2% in -  
20~105°C.  
Internal Clock Source  
38.4 kHz low-speed internal oscillator (LIRC) calibrating to  
±2% by software from high-speed internal oscillator  
Timers  
Two 16-bit Timers/Counters 0 and 1 compatible with  
standard 8051.  
One 16-bit Timer 2 with three-channel input capture module  
and 9 input pin can be selected.  
16-bit Timer  
One 16-bit auto-reload Timer 3, which can be the baud rate  
clock source of UARTs.  
6-bit free running up counter for WDT time-out interval.  
Selectable time-out interval is 1.66 ms ~ 3413.12 ms since  
WDT_CLK = 38.4 kHz (LIRC).  
Watchdog  
Able to wake up from Power-down or Idle mode  
Interrupt or reset selectable on watchdog time-out  
16-bit free running up counter for time-out interval.  
Clock sources from LIRC  
Wake-up Timer  
Able self Wake-up wake up from Power-down or Idle mode,  
and auto reload count value.  
Supports Interrupt  
Up To 12 output pins can be selected  
Supports maximum clock source frequency up to 24 MHz  
Supports up to Three PWM modules, each module provides  
6 output channels.  
Supports independent mode for PWM output  
Supports complementary mode for 3 complementary paired  
PWM output channels  
PWM  
Dead-time insertion with 8-bit resolution  
Supports 16-bit resolution PWM counter  
Supports mask function and tri-state enable for each PWM  
pin  
Supports brake function  
Supports trigger ADC on the following events  
Supports real time counter and calendar counter for RTC  
time and calendar check.  
RTC  
Supports alarm time and calendar settings  
Sep. 1, 2020  
Page 12 of 164  
Rev 2.00  
ML51/ML54/ML56  
Supports alarm time and calendar mask enable settings.  
Selectable 12-hour or 24-hour time scale setting.  
Supports Leap Year indication setting.  
Supports Day of the Week counter setting.  
Frequency of RTC clock source compensate by  
RTC_FREQADJ register.  
All time and calendar message expressed in BCD format.  
Supports periodic RTC Time Tick interrupt with 8 period  
interval options 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 and 1  
second.  
Supports RTC Time Tick and Alarm Match interrupt.  
Supports chip wake-up from Idle or Power-down mode while  
a RTC interrupt signal is generated.  
Support clock source selectable from LXT or LIRC.  
Analog Interfaces  
Analog input voltage range: 0 ~ AVDD.  
External or internal Voltage reference input selectable.  
12-bit resolution and 10-bit accuracy is guaranteed.  
Up to 16 single-end analog input channels  
1 internal channels, they are band-gap voltage (VBG).  
Maximum ADC peripheral clock frequency is 1 MHz.  
Up to 500 KSPS sampling rate.  
Analog-to-Digital Converter  
(ADC)  
Software Write 1 to ADCS bit to trig ADC start.  
External pin (STADC) trigger  
PWM trigger.  
Communication Interfaces  
Supports up to 2 UARTs: UART0, UART1  
Supports 2 Smart Card configuration as UART function as  
UART2 and UART3.  
UART baud rate clock from HIRC or HXT.  
Full-duplex asynchronous communications  
Programmable 9th bit.  
UART  
TXD and RXD pins of UART0 exchangeable via software.  
2 sets of I2C devices  
Master/Slave mode  
I2C  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
7-bit addressing mode  
Sep. 1, 2020  
Page 13 of 164  
Rev 2.00  
ML51/ML54/ML56  
Standard mode (100 kbps) and Fast mode (400 kbps).  
Supports 8-bit time-out counter requesting the I2C interrupt if  
the I2C bus hangs up and timer-out counter overflows  
Multiple address recognition (four slave addresses with  
mask option)  
Supports hold time programmable  
2 sets of SPI devices  
Supports Master or Slave mode operation  
Supports MSB first or LSB first transfer sequence  
Slave mode up to 12 Mhz  
SPI  
Two sets ISO 7816-3 device  
ISO 7816-3  
Supports ISO 7816-3 compliant T=0, T=1  
Supports full-duplex UART mode.  
Four I/O modes:  
Quasi-bidirectional mode  
Push-Pull Output mode  
Open-Drain Output mode  
Input only with high impendence mode  
Schmitt trigger input / TTL mode selectable.  
Each I/O pin configured as interrupt source with edge/level  
trigger setting  
̅̅̅̅̅̅̅  
̅̅̅̅̅̅̅  
Standard interrupt pins INT0 and INT1.  
GPIO  
Supports high drive and high sink current I/O  
I/O pin internal pull-up or pull-down resistor enabled in input  
mode.  
Maximum I/O Speed is 24 MHz  
Enabling the pin interrupt function will also enable the wake-  
up function  
Supports 5V-tolerance function for  
ML51 Series: ML51TD1AE/ML51LD1AE/ML51SD1AD  
ML54 Series: ML54MD1AE/ML54LD1AE/ML54SD1AE  
ML56 Series: ML56MD1AE/ML56LD1AEML56SD1AE  
Support Internal resistor bias, capacitor bias  
Support programmable internal VLCD charge pump mode  
1/2, 1/3, 1/4 bias selectable  
LCD Driver  
Touch Key  
4 COM x 32 SEG, 6 COM x 30 SEG, 8 COM x 28 SEG  
Support 2.8V to 5.5V LCD operating voltage  
Supports up to 14 touch key + 1 reference pin.  
Sep. 1, 2020  
Page 14 of 164  
Rev 2.00  
ML51/ML54/ML56  
Programmable sensitivity levels for each channel.  
Programmable scanning speed for different applications.  
Supports effect when in power down mode.  
Supports single key-scan and programmable periodic key-  
scan.  
Programmable interrupt options for key-scan complete  
with/without threshold control.  
ESD & EFT  
HBM 8 kV for ML51 32KB/16KB Flash Series pass  
ESD  
HBM 7 kV for ML51 64KB Flash/ML54/ML56 Series pass  
EFT  
> ± 4.4 kV  
150 mA for ML51 32KB/16KB Flash Series pass  
Latch-up  
200 mA for ML51 64KB Flash/ML54/ML56 Series pass  
Sep. 1, 2020  
Page 15 of 164  
Rev 2.00  
ML51/ML54/ML56  
3 PART INFORMATION  
3.1 ML51/ML54/ML56 Series Package Type  
Package  
ML51  
ML54  
ML56  
ML51xB  
ML51xC  
ML51xD  
ML54xD  
ML56xD  
MSOP10  
TSSOP14  
TSSOP20  
SOP20  
ML51BB9AE  
ML51DB9AE  
ML51FB9AE  
ML51OB9AE  
ML51XB9AE  
ML51EB9AE  
ML51UB9AE  
ML51PB9AE  
ML51TB9AE  
QFN20(3x3)  
TSSOP28  
SOP28  
ML51EC0AE  
ML51UC0AE  
ML51PC0AE  
ML51TC0AE  
LQFP32  
QFN33(4x4)  
LQFP44  
ML51TD1AE  
ML54MD1AE  
ML54LD1AE  
ML54SD1AE  
ML56MD1AE  
ML56LD1AE  
ML56SD1AE  
LQFP48  
ML51LD1AE  
ML51SD1AE  
LQFP64  
Sep. 1, 2020  
Page 16 of 164  
Rev 2.00  
ML51/ML54/ML56  
3.2 ML51/ML54/ML56 Series Selection Guide  
3.2.1 ML51 Series  
ML51 16KB Flash Series  
ML51  
Part Number  
BB9AE  
DB9AE  
FB9AE  
OB9AE  
XB9AE  
EB9AE  
UB9AE  
PB9AE  
Flash (KB)  
SRAM (KB)  
16  
1
16  
1
16  
1
16  
1
16  
1
16  
1
16  
2
16  
2
ISP ROM (KB)  
SPROM (bytes)  
System Frequency ( MHz)  
GPIO  
4
4
4
4
4
4
4
4
128  
24  
7
128  
24  
11  
4
128  
24  
16  
4
128  
24  
16  
4
128  
24  
17  
4
128  
24  
24  
4
128  
24  
24  
4
128  
24  
28  
16-bit Timer  
4
4
PWM  
5
6
6
6
6
6
6
6
Analog Comparator  
Internal Voltage Reference  
PDMA  
-
-
-
-
-
-
2
2
-
-
-
-
-
-
Y
2
Y
2
2
2
2
2
2
2
RTC  
-
-
-
-
-
-
-
-
LCD  
ISO 7816-3  
UART  
-
-
-
-
-
-
-
-
-
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
SPI  
-
1
1
1
1
1
1
1
I2C  
1
2
2
2
2
2
2
2
8
12-bit SAR ADC  
Package  
2
3
6
6
6
8
8
MSOP10 TSSOP14 TSSOP20 SOP20  
QFN20 TSSOP28 SOP28  
LQFP32  
Note:  
1. ISP ROM programmable 1K/2K/3K/4KB Flash for user program loader (LDROM) share from ARPOM.  
2. ISO 7816-3 configurable as standard UART function.  
Sep. 1, 2020  
Page 17 of 164  
Rev 2.00  
ML51/ML54/ML56  
ML51 32KB Flash Series  
ML51  
Part Number  
EC0AE  
UC0AE  
PC0AE  
TC0AE  
TC1AE  
LC1AE  
Flash (KB)  
SRAM (KB)  
32  
2
32  
32  
32  
32  
32  
2
2
2
2
2
ISP ROM (KB)  
SPROM (bytes)  
System Frequency ( MHz)  
GPIO  
4
4
4
4
4
4
128  
24  
24  
4
128  
128  
128  
128  
128  
24  
24  
24  
24  
24  
24  
28  
28  
28  
43  
16-bit Timer  
4
4
4
4
4
PWM  
6
6
6
6
6
6
Analog Comparator  
Internal Voltage Reference  
PDMA  
2
2
2
2
2
2
Y
Y
Y
Y
Y
Y
2
2
2
2
2
2
RTC  
-
-
-
-
-
-
LCD  
ISO 7816-3  
UART  
-
-
-
-
-
-
1
1
1
1
2
2
2
2
2
2
2
2
SPI  
2[3]  
2
2[3]  
2
2
2
2
2
I2C  
2
8
2
8
2
8
2
9
12-bit SAR ADC  
8
10  
Package TSSOP28  
SOP28  
LQFP32  
QFN33  
QFN33  
LQFP48  
Note:  
1. ISP ROM programmable 1K/2K/3K/4KB Flash for user program loader (LDROM) share from ARPOM.  
2. ISO 7816-3 configurable as standard UART function.  
3. SPI0 and SPI1 share with same SS pin in 28pin package.  
Sep. 1, 2020  
Page 18 of 164  
Rev 2.00  
ML51/ML54/ML56  
ML51 64KB Flash Series  
ML51  
Part Number  
TD1AE  
LD1AE  
SD1AE  
Flash (KB)  
SRAM (KB)  
64  
64  
64  
4
4
4
ISP ROM (KB)  
SPROM (bytes)  
System Frequency ( MHz)  
GPIO  
4
4
4
128  
128  
128  
24  
24  
24  
28  
43  
56  
16-bit Timer  
4
4
4
PWM  
6+2+2+2  
6+2+2+2  
6+2+2+2  
Analog Comparator  
Internal Voltage Reference  
PDMA  
2
2
2
Y
Y
Y
4
4
4
RTC  
Y
Y
Y
LCD  
-
-
-
ISO 7816-3  
2
2
2
UART  
2
2
2
SPI  
2
2
2
2
2
I2C  
12-bit SAR ADC  
Package  
2
9
10  
14  
QFN33  
LQFP48  
LQFP64  
Note:  
1. ISP ROM programmable 1K/2K/3K/4KB Flash for user program loader (LDROM) share from ARPOM.  
2. ISO 7816-3 configurable as standard UART function.  
Sep. 1, 2020  
Page 19 of 164  
Rev 2.00  
ML51/ML54/ML56  
3.2.2  
ML54 Series  
ML54  
Part Number  
MD1AE  
LD1AE  
SD1AE  
Flash (KB)  
SRAM (KB)  
64  
64  
64  
4
4
4
ISP ROM (KB)  
SPROM (bytes)  
4
4
4
128  
128  
128  
System Frequency ( MHz)  
24  
24  
24  
GPIO  
16-bit Timer  
38  
42  
55  
4
4
4
PWM  
6+2+2+2  
6+2+2+2  
6+2+2+2  
Analog Comparator  
Internal Voltage Reference  
PDMA  
2
2
2
Y
Y
Y
4
4
4
RTC  
Y
8x17  
6x19  
4x21  
2
Y
8x18  
6x20  
4x22  
2
Y
8x28  
6x30  
4x32  
2
LCD  
ISO 7816-3  
UART  
2
2
2
SPI  
2
2
2
I2C  
2
2
2
12-bit SAR ADC  
Package  
10  
10  
14  
LQFP44  
LQFP48  
LQFP64  
Note:  
1. ISP ROM programmable 1K/2K/3K/4KB Flash for user program loader (LDROM) share from ARPOM.  
2. ISO 7816-3 configurable as standard UART function.  
Sep. 1, 2020  
Page 20 of 164  
Rev 2.00  
ML51/ML54/ML56  
3.2.3  
ML56 Series  
ML56  
Part Number  
MD1AE  
LD1AE  
SD1AE  
Flash (KB)  
SRAM (KB)  
64  
64  
64  
4
4
4
ISP ROM (KB)  
SPROM (bytes)  
4
4
4
128  
128  
128  
System Frequency ( MHz)  
24  
24  
24  
GPIO  
16-bit Timer  
38  
42  
55  
4
4
4
PWM  
6+2+2+2  
6+2+2+2  
6+2+2+2  
Analog Comparator  
Internal Voltage Reference  
PDMA  
2
2
2
Y
Y
Y
4
Y
4
Y
4
Y
RTC  
8x17  
6x19  
4x21  
6+1  
2
8x18  
6x20  
4x22  
9+1  
2
8x28  
6x30  
4x32  
14+1  
2
LCD  
Touch Key  
ISO 7816-3  
UART  
2
2
2
SPI  
2
2
2
I2C  
2
2
2
12-bit SAR ADC  
Package  
10  
10  
14  
LQFP44  
LQFP48  
LQFP64  
Note:  
1. ISP ROM programmable 1K/2K/3K/4KB Flash for user program loader (LDROM) share from ARPOM.  
2. ISO 7816-3 configurable as standard UART function.  
3.Touch key should define 1 key as reference pin.  
Sep. 1, 2020  
Page 21 of 164  
Rev 2.00  
ML51/ML54/ML56  
3.3 ML51/ML54/ML56 Series Selection Code  
ML  
51  
Line  
F
B
9
A
E
Core  
Package  
Flash  
SRAM  
Reserve  
Temperature  
E:-40 ~ 105°C  
1T 8051  
51: Base  
B: MSOP10 (3x3 mm)  
D: TSSOP14 (4.4x5.0 mm)  
E: TSSOP28 (4.4x9.7 mm)  
F: TSSOP20 (4.4x6.5 mm)  
L: LQFP48 (7x7 mm)  
M: LQFP44(10x10 mm)  
O: SOP20 (300 mil)  
A: 8 KB  
0: 2 KB  
Low power 54: LCD  
56: Touch  
B: 16 KB  
C: 32 KB  
D: 64 KB  
1: 4 KB  
2: 8/12 KB  
3: 16 KB  
6: 32 KB  
8: 64 KB  
9: 1 KB  
P: LQFP32 (7x7 mm)  
S: LQFP64 (7x7 mm)  
T: QFN33 (4x4 mm)  
A: 96 KB  
U: SOP28 (300 mil)  
X: QFN20 (3x3mm)  
Sep. 1, 2020  
Page 22 of 164  
Rev 2.00  
ML51/ML54/ML56  
4 PIN CONFIGURATION  
4.1 Pin Configuration  
Users can find pin configuaration informations in chapter 4 or by using NuTool - PinConfigure. The  
NuTool - PinConfigure contains all Nuvoton NuMicro® Family chip series with all part number, and  
helps users configure GPIO multi-function correctly and handily.  
4.1.1  
ML51/ML54/ML56 Series Pin Diagram  
4.1.1.1 LQFP64 Package  
Corresponding Part Number: ML51SD1AE/ ML54SD1AE / ML56SD1AE  
ML51SD1AE  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VSS  
P4.6  
VDD  
nRESET  
P5.6  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P3.6  
VDD  
P4.7  
P3.3  
P3.2  
P3.1  
P3.0  
AVDD  
VREF  
AVSS  
P6.7  
P6.6  
P6.5  
P6.4  
P2.7  
LQFP64  
VSS  
P0.6  
P0.7  
P3.4  
P3.5  
P5.2  
Figure 4.1-1 ML51SD1AE Pin Assignment  
Sep. 1, 2020  
Page 23 of 164  
Rev 2.00  
 
ML51/ML54/ML56  
ML54SD1AE / ML56SD1AE  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VSS  
P4.6  
VDD  
P4.7  
P3.3  
P3.2  
P3.1  
P3.0  
AVDD  
VREF  
AVSS  
P6.7  
P6.6  
P6.5  
P6.4  
P2.7  
nRESET  
P5.6  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P3.6  
VDD  
VSS  
P0.6  
P0.7  
P3.4  
P3.5  
P5.2  
LQFP64  
Figure 4.1-2 ML54SD1AE / ML56SD1AE Pin Assignment  
4.1.1.2 LQFP48 Package  
Corresponding Part Number: ML51LD1AE/ ML54LD1AE / ML56LD1AE  
ML51LD1AE  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VSS  
P4.6  
VDD  
P4.7  
P3.3  
P3.2  
P3.1  
P3.0  
VREF  
AVSS  
P2.7  
P2.6  
nRESET  
P5.6  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
P5.2  
P5.3  
LQFP48  
Figure 4.1-3 ML51LD1AE Pin Assignment  
Sep. 1, 2020  
Page 24 of 164  
Rev 2.00  
ML51/ML54/ML56  
ML54LD1AE / ML56LD1AE  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VSS  
P4.6  
VDD  
P4.7  
P3.3  
P3.2  
P3.1  
P3.0  
VREF  
AVSS  
P2.7  
P2.6  
nRESET  
P5.6  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
P5.2  
P5.3  
LQFP48  
Figure 4.1-4 ML54LD1AE / ML56LD1AE Pin Assignment  
4.1.1.3 LQFP44 Package  
Corresponding Part Number: ML54MD1AE / ML56MD1AE  
ML54MD1AE / ML56MD1AE  
34  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
VSS  
P5.0  
nRESET  
P0.0  
P0.1  
P0.2  
P0.3  
P0.6  
P0.7  
P5.2  
P5.3  
P5.4  
35  
P4.6  
36  
VDD  
37  
P3.3  
38  
P3.2  
39  
P3.1  
LQFP44  
40  
P3.0  
41  
VREF  
42  
AVSS  
43  
P2.7  
44  
P2.6  
Figure 4.1-5 ML54MD1AE / ML56MD1AE Pin Assignment  
Sep. 1, 2020  
Page 25 of 164  
Rev 2.00  
ML51/ML54/ML56  
4.1.1.4 QFN33 Package  
Corresponding Part Number: ML51TD1AE / ML51TC0AE / ML51TB9AE  
ML51TD1AE / ML51TC0AE / ML51TB9AE  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
VSS  
P4.6  
VDD  
P3.3  
P3.2  
P3.1  
P3.0  
VREF  
nRESET  
P5.6  
Top transparent view  
P0.0  
P0.1  
QFN33  
P0.2  
P0.3  
P5.2  
33 VSS  
P5.3  
Figure 4.1-6 ML51TD1AE / ML51TC0AE / ML51TB9AE Pin Assignment  
Sep. 1, 2020  
Page 26 of 164  
Rev 2.00  
ML51/ML54/ML56  
4.1.1.5 LQFP32 Package  
Corresponding Part Number: ML51PC0AE / ML51PB9AE  
ML51PC0AE / ML51PB9AE  
25  
16  
15  
14  
13  
12  
11  
10  
9
VSS  
nRESET  
P5.6  
26  
P4.6  
27  
VDD  
P0.0  
28  
P3.3  
P0.1  
LQFP32  
29  
P3.2  
P0.2  
30  
P3.1  
P0.3  
31  
P3.0  
P5.2  
32  
VREF  
P5.3  
Figure 4.1-7 ML51PC0AE / ML51PB9AE Pin Assignment  
4.1.1.6 TSSOP28 Package  
Corresponding Part Number: ML51EC0AE / ML51EB9AE  
ML51EC0AE / ML51EB9AE  
1
28  
27  
26  
25  
24  
P4.0  
P1.4  
2
P4.1  
P1.5  
3
P5.1  
P1.6  
4
P5.0  
P1.7  
5
nRESET  
VSS  
6
7
23 P0.0  
22 P0.1  
21 P0.2  
P4.6  
VDD  
P3.2  
P3.1  
P3.0  
VREF  
P2.5  
P2.4  
P2.3  
8
P0.3  
P5.2  
P5.3  
P2.0  
P2.1  
P2.2  
9
20  
19  
18  
17  
16  
15  
10  
11  
12  
13  
14  
Figure 4.1-8 ML51EC0AE / ML51EB9AE Pin Assignment  
Sep. 1, 2020  
Page 27 of 164  
Rev 2.00  
ML51/ML54/ML56  
4.1.1.7 SOP28 Package  
Corresponding Part Number: ML51UC0AE / ML51UB9AE  
ML51UC0AE / ML51UB9AE  
1
28  
27  
26  
25  
24  
P4.0  
P1.4  
2
P4.1  
P1.5  
3
P5.1  
P1.6  
4
P5.0  
P1.7  
5
nRESET  
VSS  
6
7
23 P0.0  
22 P0.1  
21 P0.2  
P4.6  
VDD  
P3.2  
P3.1  
P3.0  
VREF  
P2.5  
P2.4  
P2.3  
8
P0.3  
P5.2  
P5.3  
P2.0  
P2.1  
P2.2  
9
20  
19  
18  
17  
16  
15  
10  
11  
12  
13  
14  
Figure 4.1-9 ML51UC0AE / ML51UB9AE Pin Assignment  
4.1.1.8 TSSOP20 Package  
Corresponding Part Number: ML51FB9AE  
ML51FB9AE  
1
20  
19  
18  
VSS  
P5.1  
2
3
P4.6  
VDD  
P3.2  
P3.1  
P3.0  
VREF  
P2.5  
P2.4  
P2.3  
P5.0  
nRESET  
4
17 P0.0  
16 P0.1  
15 P0.2  
5
6
P0.3  
P5.2  
P5.3  
P2.2  
7
14  
13  
12  
11  
8
9
10  
Figure 4.1-10 ML51FB9AE Pin Assignment  
Sep. 1, 2020  
Page 28 of 164  
Rev 2.00  
ML51/ML54/ML56  
4.1.1.9 SOP20 Package  
Corresponding Part Number: ML51OB9AE  
ML51OB9AE  
1
20  
19  
18  
VSS  
P5.1  
2
3
P4.6  
VDD  
P3.2  
P3.1  
P3.0  
VREF  
P2.5  
P2.4  
P2.3  
P5.0  
nRESET  
4
17 P0.0  
16 P0.1  
15 P0.2  
5
6
P0.3  
P5.2  
P5.3  
P2.2  
7
14  
13  
12  
11  
8
9
10  
Figure 4.1-11 ML51OB9AE Pin Assignment  
4.1.1.10 QFN20 Package  
Corresponding Part Number: ML51XB9AE  
ML51XB9AE  
15 14 13 12 11  
nRESET  
P0.0  
VSS 16  
10  
9
17  
18  
19  
20  
P4.6  
QFN20  
8
P0.1  
VDD  
P3.1  
P3.0  
7
P0.2  
6
NC  
P0.3  
1
2
3
4
5
Figure 4.1-12 ML51XB9AE Pin Assignment  
Sep. 1, 2020  
Page 29 of 164  
Rev 2.00  
ML51/ML54/ML56  
4.1.1.11 TSSOP14 Package  
Corresponding Part Number: ML51DB9AE  
ML51DB9AE  
1
14  
13  
12  
11  
10  
9
VSS  
P5.1  
2
P4.6  
P5.0  
3
4
5
6
7
VDD  
P3.1  
P3.0  
P2.5  
P2.4  
nRESET  
P0.2  
TSSOP14  
P0.3  
P5.2  
8
P5.3  
Figure 4.1-13 ML51DB9AE Pin Assignment  
4.1.1.12 MSOP10 Package  
Corresponding Part Number: ML51BB9AE  
ML51BB9AE  
1
10  
9
P5.0  
P5.1  
2
nRESET  
P0.0  
VSS  
3
8
MSOP10  
P4.6  
4
7
P0.1  
VDD  
5
6
P2.0  
P2.3  
Figure 4.1-14 ML51BB9AE Pin Assignment  
Sep. 1, 2020  
Page 30 of 164  
Rev 2.00  
ML51/ML54/ML56  
4.1.2  
ML51/ML54/ML56 Series Multi Function Pin Diagram  
4.1.2.1 LQFP64 Package  
Corresponding Part Number: ML51SD1AE / ML54SD1AE / ML56SD1AE  
ML51SD1AE Pin Function  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VSS  
nRESET  
INT0 / CLKO / T0 / PWM0_CH0 / P4.6  
P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO  
P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5  
P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4  
P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO  
P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1  
P0.5 / UART0_TXD / I2C0_SCL / PWM0_CH0  
P3.6 / PWM0_CH5 / INT1  
VDD  
T1 / P4.7  
PWM0_BRAKE / IC0 / PWM1_CH0 / SPI1_SS / P3.3  
CLKO / IC1 / PWM1_CH1 / UART3_RXD / SPI1_CLK / ACMP1_N1 / ADC_CH7 / P3.2  
IC2 / PWM2_CH0 / UART0_TXD / UART3_TXD / SPI1_MISO / ACMP1_P3 / ACMP0_P3 / ADC_CH6 / P3.1  
IC0 / PWM2_CH1 / UART0_RXD / SPI1_MOSI / ADC_CH10 / P3.0  
LQFP64  
AVDD  
VREF  
VDD  
AVSS  
VSS  
I2C1_SCL / ADC_CH11 / P6.7  
I2C1_SDA / ADC_CH12 / P6.6  
UART0_TXD / ADC_CH13 / P6.5  
UART0_RXD / ADC_CH14 / P6.4  
ACMP0_O / PWM3_CH0 / UART1_TXD / ADC_CH15 / P2.7  
P0.6 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0  
P0.7 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1  
P3.4 / PWM2_CH1 / T1  
P3.5 / PWM2_CH0 / T0  
P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
Figure 4.1-15 ML51SD1AE Multi-Function Pin assignment  
Pin ML51SD1AE Pin Function  
1
2
3
4
P2.6 / UART1_RXD / PWM3_CH1 / ACMP1_O  
P2.5 / ADC_CH0 / ACMP0_P0 / ACMP1_P0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0 / INT0  
P2.4 / ADC_CH1 / ACMP0_N0 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1  
P2.3 / ADC_CH2 / ACMP0_P1 / ACMP1_P1 / I2C1_SCL / UART1_TXD / PWM0_CH2 / PWM0_BRAKE  
Sep. 1, 2020  
Page 31 of 164  
Rev 2.00  
ML51/ML54/ML56  
Pin ML51SD1AE Pin Function  
5
6
P2.2 / ADC_CH3 / ACMP1_N0 / I2C1_SDA / UART1_RXD / PWM0_CH3  
P2.1 / ADC_CH4 / ACMP0_P2 / ACMP1_P2 / UART2_TXD / I2C1_SCL / PWM0_CH4 / PWM3_CH0 /  
PWM0_BRAKE  
7
8
9
P2.0 / ADC_CH5 / ACMP0_N1 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM3_CH1 / PWM0_BRAKE  
P1.3 / IC0  
P1.2 / UART3_TXD / IC1  
10 P1.1 / UART3_RXD / UART1_TXD / IC2  
11 P1.0 / UART1_RXD / IC0  
12 P3.7 / SPI1_MOSI  
13 P5.7 / PWM0_BRAKE / PWM0_CH4 / CLKO  
14 P5.5 / UART2_RXD / PWM0_CH0 / X32_IN / STADC  
15 P5.4 / UART2_TXD / PWM0_CH1 / X32_OUT  
16 P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
17 P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
18 P3.5 / PWM2_CH0 / T0  
19 P3.4 / PWM2_CH1 / T1  
20 P0.7 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1  
21 P0.6 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0  
22 VSS  
23 VDD  
24 P3.6 / PWM0_CH5 / INT1  
25 P0.5 / UART0_TXD / I2C0_SCL / PWM0_CH0  
26 P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1  
27 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO  
28 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
29 P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4  
30 P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5  
31 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO  
32 nRESET  
33 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
34 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
35 P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0  
36 P4.4 / UART2_RXD / I2C1_SDA / PWM1_CH1  
Sep. 1, 2020  
Page 32 of 164  
Rev 2.00  
ML51/ML54/ML56  
Pin ML51SD1AE Pin Function  
37 P4.3 / PWM2_CH0  
38 P4.2 / PWM2_CH1  
39 P4.1 / UART2_TXD / I2C0_SCL / PWM3_CH0 / ACMP0_O  
40 P4.0 / UART2_RXD / I2C0_SDA / PWM3_CH1 / ACMP1_O / INT1  
41 P6.3 / SPI0_SS / UART0_TXD  
42 P6.2 / UART3_TXD / SPI0_CLK / UART0_RXD  
43 P6.1 / UART3_RXD / SPI0_MISO  
44 P6.0 / SPI0_MOSI  
45 P1.4 / I2C1_SCL  
46 P1.5 / I2C1_SDA  
47 P1.6 / UART0_TXD  
48 P1.7 / UART0_RXD  
49 VSS  
50 P4.6 / PWM0_CH0 / T0 / CLKO / INT0  
51 VDD  
52 P4.7 / T1  
53 P3.3 / SPI1_SS / PWM1_CH0 / IC0 / PWM0_BRAKE  
54 P3.2 / ADC_CH7 / ACMP1_N1 / SPI1_CLK / UART3_RXD / PWM1_CH1 / IC1 / CLKO  
P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / SPI1_MISO / UART3_TXD / UART0_TXD / PWM2_CH0 /  
IC2  
55  
56 P3.0 / ADC_CH10 / SPI1_MOSI / UART0_RXD / PWM2_CH1 / IC0  
57 AVDD  
58 VREF  
59 AVSS  
60 P6.7 / ADC_CH11 / I2C1_SCL  
61 P6.6 / ADC_CH12 / I2C1_SDA  
62 P6.5 / ADC_CH13 / UART0_TXD  
63 P6.4 / ADC_CH14 / UART0_RXD  
64 P2.7 / ADC_CH15 / UART1_TXD / PWM3_CH0 / ACMP0_O  
Sep. 1, 2020  
Page 33 of 164  
Rev 2.00  
ML51/ML54/ML56  
ML54SD1AE Pin Function  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VSS  
nRESET  
INT0 / CLKO / T0 / PWM0_CH0 / LCD_SEG17 / P4.6  
P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO  
P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5  
P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4  
P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO  
P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1  
P0.5 / UART0_TXD / I2C0_SCL / PWM0_CH0  
P3.6 / PWM0_CH5 / INT1  
VDD  
T1 / LCD_COM0 / LCD_SEG16 / P4.7  
PWM0_BRAKE / IC0 / PWM1_CH0 / LCD_COM1 / SPI1_SS / LCD_SEG15 / P3.3  
CLKO / IC1 / PWM1_CH1 / UART3_RXD / SPI1_CLK / LCD_SEG14 / ACMP1_N1 / ADC_CH7 / P3.2  
IC2 / PWM2_CH0 / UART0_TXD / UART3_TXD / SPI1_MISO / LCD_SEG13 / ACMP1_P3 / ACMP0_P3 / ADC_CH6 / P3.1  
IC0 / PWM2_CH1 / UART0_RXD / SPI1_MOSI / LCD_SEG12 / ADC_CH10 / P3.0  
AVDD  
LQFP64  
VREF  
VDD  
AVSS  
VSS  
I2C1_SCL / LCD_SEG11 / ADC_CH11 / P6.7  
P0.6 / LCD_SEG0 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0  
P0.7 / LCD_SEG1 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1  
P3.4 / LCD_SEG2 / PWM2_CH1 / T1  
I2C1_SDA / LCD_V1 / LCD_SEG10 / ADC_CH12 / P6.6  
UART0_TXD / LCD_V2 / LCD_SEG9 / ADC_CH13 / P6.5  
UART0_RXD / LCD_V3 / LCD_SEG8 / ADC_CH14 / P6.4  
ACMP0_O / PWM3_CH0 / UART1_TXD / LCD_SEG7 / ADC_CH15 / P2.7  
P3.5 / LCD_SEG3 / PWM2_CH0 / T0  
P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
Figure 4.1-16 ML54SD1AE Multi-Function Pin assignment  
Pin ML54SD1AE Pin Function  
1
2
3
4
P2.6 / LCD_SEG6 / UART1_RXD / PWM3_CH1 / ACMP1_O  
P2.5 / ADC_CH0 / ACMP0_P0 / ACMP1_P0 / LCD_COM0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0  
/ INT0  
P2.4 / ADC_CH1 / ACMP0_N0 / LCD_COM1 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1  
P2.3 / ADC_CH2 / ACMP0_P1 / ACMP1_P1 / I2C1_SCL / LCD_COM2 / UART1_TXD / PWM0_CH2 /  
PWM0_BRAKE  
Sep. 1, 2020  
Page 34 of 164  
Rev 2.00  
ML51/ML54/ML56  
Pin ML54SD1AE Pin Function  
5
6
P2.2 / ADC_CH3 / ACMP1_N0 / I2C1_SDA / LCD_COM3 / UART1_RXD / PWM0_CH3  
P2.1 / ADC_CH4 / ACMP0_P2 / ACMP1_P2 / LCD_SEG5 / UART2_TXD / I2C1_SCL / PWM0_CH4 /  
PWM3_CH0 / PWM0_BRAKE  
P2.0 / ADC_CH5 / ACMP0_N1 / LCD_SEG4 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM3_CH1 /  
PWM0_BRAKE  
7
8
9
P1.3 / IC0  
P1.2 / LCD_DH2 / UART3_TXD / IC1  
10 P1.1 / LCD_DH1 / UART3_RXD / UART1_TXD / IC2  
11 P1.0 / UART1_RXD / IC0  
12 VLCD  
13 P5.7 / PWM0_BRAKE / PWM0_CH4 / CLKO  
14 P5.5 / UART2_RXD / PWM0_CH0 / X32_IN / STADC  
15 P5.4 / UART2_TXD / PWM0_CH1 / X32_OUT  
16 P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
17 P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
18 P3.5 / LCD_SEG3 / PWM2_CH0 / T0  
19 P3.4 / LCD_SEG2 / PWM2_CH1 / T1  
20 P0.7 / LCD_SEG1 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1  
21 P0.6 / LCD_SEG0 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0  
22 VSS  
23 VDD  
24 P3.6 / PWM0_CH5 / INT1  
25 P0.5 / UART0_TXD / I2C0_SCL / PWM0_CH0  
26 P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1  
27 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO  
28 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
29 P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4  
30 P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5  
31 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO  
32 nRESET  
33 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
34 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
35 P4.5 / LCD_SEG31 / LCD_COM4 / UART2_TXD / I2C1_SCL / PWM1_CH0  
Sep. 1, 2020  
Page 35 of 164  
Rev 2.00  
ML51/ML54/ML56  
Pin ML54SD1AE Pin Function  
36 P4.4 / LCD_SEG30 / LCD_COM5 / UART2_RXD / I2C1_SDA / PWM1_CH1  
37 P4.3 / LCD_SEG29 / LCD_COM6 / PWM2_CH0  
38 P4.2 / LCD_SEG28 / LCD_COM7 / PWM2_CH1  
39 P4.1 / LCD_SEG27 / LCD_COM2 / UART2_TXD / I2C0_SCL / PWM3_CH0 / ACMP0_O  
40 P4.0 / LCD_SEG26 / LCD_COM3 / UART2_RXD / I2C0_SDA / PWM3_CH1 / ACMP1_O / INT1  
41 P6.3 / LCD_SEG25 / SPI0_SS / UART0_TXD  
42 P6.2 / LCD_SEG24 / UART3_TXD / SPI0_CLK / UART0_RXD  
43 P6.1 / LCD_SEG23 / UART3_RXD / SPI0_MISO  
44 P6.0 / LCD_SEG22 / SPI0_MOSI  
45 P1.4 / LCD_SEG21 / I2C1_SCL / LCD_COM4  
46 P1.5 / LCD_SEG20 / I2C1_SDA / LCD_COM5  
47 P1.6 / LCD_SEG19 / UART0_TXD / LCD_COM6  
48 P1.7 / LCD_SEG18 / UART0_RXD / LCD_COM7  
49 VSS  
50 P4.6 / LCD_SEG17 / PWM0_CH0 / T0 / CLKO / INT0  
51 VDD  
52 P4.7 / LCD_SEG16 / LCD_COM0 / T1  
53 P3.3 / LCD_SEG15 / SPI1_SS / LCD_COM1 / PWM1_CH0 / IC0 / PWM0_BRAKE  
54 P3.2 / ADC_CH7 / ACMP1_N1 / LCD_SEG14 / SPI1_CLK / UART3_RXD / PWM1_CH1 / IC1 / CLKO  
P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / LCD_SEG13 / SPI1_MISO / UART3_TXD / UART0_TXD /  
PWM2_CH0 / IC2  
55  
56 P3.0 / ADC_CH10 / LCD_SEG12 / SPI1_MOSI / UART0_RXD / PWM2_CH1 / IC0  
57 AVDD  
58 VREF  
59 AVSS  
60 P6.7 / ADC_CH11 / LCD_SEG11 / I2C1_SCL  
61 P6.6 / ADC_CH12 / LCD_SEG10 / LCD_V1 / I2C1_SDA  
62 P6.5 / ADC_CH13 / LCD_SEG9 / LCD_V2 / UART0_TXD  
63 P6.4 / ADC_CH14 / LCD_SEG8 / LCD_V3 / UART0_RXD  
64 P2.7 / ADC_CH15 / LCD_SEG7 / UART1_TXD / PWM3_CH0 / ACMP0_O  
Sep. 1, 2020  
Page 36 of 164  
Rev 2.00  
ML51/ML54/ML56  
ML56SD1AE Pin Function  
VSS  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
nRESET  
INT0 / CLKO / T0 / PWM0_CH0 / LCD_SEG17 / P4.6  
P5.6 / TK0 / PWM0_BRAKE / PWM0_CH1 / CLKO  
P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / TK1 / PWM0_CH5  
P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / TK2 / PWM0_CH4  
P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / TK3 / PWM0_CH3  
P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / TK4 / STADC / PWM0_CH2 / CLKO  
P0.4 / UART0_RXD / I2C0_SDA / TK5 / PWM0_CH1  
P0.5 / UART0_TXD / I2C0_SCL / TK6 / PWM0_CH0  
P3.6 / TK7 / PWM0_CH5 / INT1  
VDD  
T1 / LCD_COM0 / LCD_SEG16 / P4.7  
PWM0_BRAKE / IC0 / PWM1_CH0 / LCD_COM1 / SPI1_SS / LCD_SEG15 / P3.3  
CLKO / IC1 / PWM1_CH1 / UART3_RXD / SPI1_CLK / LCD_SEG14 / ACMP1_N1 / ADC_CH7 / P3.2  
IC2 / PWM2_CH0 / UART0_TXD / UART3_TXD / SPI1_MISO / LCD_SEG13 / ACMP1_P3 / ACMP0_P3 / ADC_CH6 / P3.1  
IC0 / PWM2_CH1 / UART0_RXD / SPI1_MOSI / LCD_SEG12 / ADC_CH10 / P3.0  
AVDD  
LQFP64  
VREF  
VDD  
AVSS  
VSS  
I2C1_SCL / LCD_SEG11 / ADC_CH11 / P6.7  
P0.6 / LCD_SEG0 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0  
P0.7 / LCD_SEG1 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1  
P3.4 / LCD_SEG2 / PWM2_CH1 / T1  
I2C1_SDA / LCD_V1 / LCD_SEG10 / ADC_CH12 / P6.6  
UART0_TXD / LCD_V2 / LCD_SEG9 / ADC_CH13 / P6.5  
UART0_RXD / LCD_V3 / LCD_SEG8 / ADC_CH14 / P6.4  
ACMP0_O / PWM3_CH0 / UART1_TXD / LCD_SEG7 / ADC_CH15 / P2.7  
P3.5 / LCD_SEG3 / PWM2_CH0 / T0  
P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
Figure 4.1-17 ML56SD1AE Multi-Function Pin assignment  
Pin ML56SD1AE Pin Function  
1
2
3
4
5
6
P2.6/LCD_SEG6/UART1_RXD/PWM3_CH1/ACMP1_O  
P2.5/ADC_CH0/ACMP0_P0/ACMP1_P0/LCD_COM0/I2C0_SCL/PWM0_CH0/UART2_TXD/T0/INT0  
P2.4/ADC_CH1/ACMP0_N0/LCD_COM1/I2C0_SDA/PWM0_CH1/UART2_RXD/T1/INT1  
P2.3/ADC_CH2/ACMP0_P1/ACMP1_P1/I2C1_SCL/LCD_COM2/UART1_TXD/PWM0_CH2/PWM0_BRAKE  
P2.2/ADC_CH3/ACMP1_N0/I2C1_SDA/LCD_COM3/UART1_RXD/PWM0_CH3  
P2.1/ADC_CH4/ACMP0_P2/ACMP1_P2/LCD_SEG5/UART2_TXD/I2C1_SCL/PWM0_CH4/PWM3_CH0/PWM0_BRAK  
Sep. 1, 2020  
Page 37 of 164  
Rev 2.00  
ML51/ML54/ML56  
Pin ML56SD1AE Pin Function  
E
7
8
9
P2.0/ADC_CH5/ACMP0_N1/LCD_SEG4/UART2_RXD/I2C1_SDA/PWM0_CH5/PWM3_CH1/PWM0_BRAKE  
P1.3/IC0  
P1.2/LCD_DH2/UART3_TXD/IC1  
10 P1.1/LCD_DH1/UART3_RXD/UART1_TXD/IC2  
11 P1.0/UART1_RXD/IC0  
12 VLCD  
13 P5.7/PWM0_BRAKE/PWM0_CH4/CLKO  
14 P5.5/UART2_RXD/PWM0_CH0/X32_IN/STADC  
15 P5.4/UART2_TXD/PWM0_CH1/X32_OUT  
16 P5.3/UART0_TXD/I2C0_SCL/XT1_IN  
17 P5.2/UART0_RXD/I2C0_SDA/XT1_OUT  
18 P3.5/LCD_SEG3/PWM2_CH0/T0  
19 P3.4/LCD_SEG2/PWM2_CH1/T1  
20 P0.7/LCD_SEG1/UART0_TXD/I2C1_SCL/PWM3_CH0/INT1  
21 P0.6/LCD_SEG0/UART0_RXD/I2C1_SDA/PWM3_CH1/INT0  
22 VSS  
23 VDD  
24 P3.6/TK7/PWM0_CH5/INT1  
25 P0.5/UART0_TXD/I2C0_SCL/TK6/PWM0_CH0  
26 P0.4/UART0_RXD/I2C0_SDA/TK5/PWM0_CH1  
27 P0.3/SPI0_SS/SPI1_SS/UART1_TXD/I2C1_SCL/TK4/STADC/PWM0_CH2/CLKO  
28 P0.2/SPI0_CLK/SPI1_CLK/UART1_RXD/I2C1_SDA/TK3/PWM0_CH3  
29 P0.1/SPI0_MISO/SPI1_MISO/UART2_RXD/UART0_TXD/TK2/PWM0_CH4  
30 P0.0/SPI0_MOSI/SPI1_MOSI/UART2_TXD/UART0_RXD/TK1/PWM0_CH5  
31 P5.6/TK0/PWM0_BRAKE/PWM0_CH1/CLKO  
32 nRESET  
33 P5.0/UART1_TXD/I2C1_SCL/UART0_TXD/ICE_DAT  
34 P5.1/UART1_RXD/I2C1_SDA/UART0_RXD/ICE_CLK  
35 P4.5/LCD_SEG31/LCD_COM4/UART2_TXD/I2C1_SCL/PWM1_CH0  
36 P4.4/LCD_SEG30/LCD_COM5/UART2_RXD/I2C1_SDA/TK12/PWM1_CH1  
37 P4.3/LCD_SEG29/LCD_COM6/TK13/PWM2_CH0  
38 P4.2/LCD_SEG28/LCD_COM7/TK14/PWM2_CH1  
39 P4.1/LCD_SEG27/LCD_COM2/UART2_TXD/I2C0_SCL/PWM3_CH0/ACMP0_O  
40 P4.0/LCD_SEG26/LCD_COM3/UART2_RXD/I2C0_SDA/PWM3_CH1/ACMP1_O/INT1  
Sep. 1, 2020  
Page 38 of 164  
Rev 2.00  
ML51/ML54/ML56  
Pin ML56SD1AE Pin Function  
41 P6.3/LCD_SEG25/SPI0_SS/UART0_TXD/TK8  
42 P6.2/LCD_SEG24/UART3_TXD/SPI0_CLK/UART0_RXD/TK9  
43 P6.1/LCD_SEG23/UART3_RXD/SPI0_MISO/TK10  
44 P6.0/LCD_SEG22/SPI0_MOSI/TK11  
45 P1.4/LCD_SEG21/I2C1_SCL/LCD_COM4  
46 P1.5/LCD_SEG20/I2C1_SDA/LCD_COM5  
47 P1.6/LCD_SEG19/UART0_TXD/LCD_COM6  
48 P1.7/LCD_SEG18/UART0_RXD/LCD_COM7  
49 VSS  
50 P4.6/LCD_SEG17/PWM0_CH0/T0/CLKO/INT0  
51 VDD  
52 P4.7/LCD_SEG16/LCD_COM0/T1  
53 P3.3/LCD_SEG15/SPI1_SS/LCD_COM1/PWM1_CH0/IC0/PWM0_BRAKE  
54 P3.2/ADC_CH7/ACMP1_N1/LCD_SEG14/SPI1_CLK/UART3_RXD/PWM1_CH1/IC1/CLKO  
55 P3.1/ADC_CH6/ACMP0_P3/ACMP1_P3/LCD_SEG13/SPI1_MISO/UART3_TXD/UART0_TXD/PWM2_CH0/IC2  
56 P3.0/ADC_CH10/LCD_SEG12/SPI1_MOSI/UART0_RXD/PWM2_CH1/IC0  
57 AVDD  
58 VREF  
59 AVSS  
60 P6.7/ADC_CH11/LCD_SEG11/I2C1_SCL  
61 P6.6/ADC_CH12/LCD_SEG10/LCD_V1/I2C1_SDA  
62 P6.5/ADC_CH13/LCD_SEG9/LCD_V2/UART0_TXD  
63 P6.4/ADC_CH14/LCD_SEG8/LCD_V3/UART0_RXD  
64 P2.7/ADC_CH15/LCD_SEG7/UART1_TXD/PWM3_CH0/ACMP0_O  
Sep. 1, 2020  
Page 39 of 164  
Rev 2.00  
ML51/ML54/ML56  
4.1.2.2 LQFP48 Package  
Corresponding Part Number: ML51LD1AE  
ML51LD1AE Pin Function  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VSS  
nRESET  
INT0 / CLKO / T0 / PWM0_CH0 / P4.6  
P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO  
VDD  
P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5  
P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4  
P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO  
P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1  
T1 / P4.7  
PWM0_BRAKE / IC0 / PWM1_CH0 / SPI1_SS / P3.3  
CLKO / IC1 / PWM1_CH1 / UART3_RXD / SPI1_CLK / ACMP1_N1 / ADC_CH7 / P3.2  
IC2 / PWM2_CH0 / UART0_TXD / UART3_TXD / SPI1_MISO / ACMP1_P3 / ACMP0_P3 / ADC_CH6 / P3.1  
IC0 / PWM2_CH1 / UART0_RXD / SPI1_MOSI / ADC_CH10 / P3.0  
VREF  
LQFP48  
P0.5 / UART0_TXD / I2C0_SCL / PWM0_CH0  
P0.6 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0  
P0.7 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1  
P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
AVSS  
ACMP0_O / PWM3_CH0 / UART1_TXD / ADC_CH15 / P2.7  
ACMP1_O / PWM3_CH1 / UART1_RXD / P2.6  
P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
Figure 4.1-18 ML51LD1AE Multi-Function Pin assignment  
Pin ML51LD1AE Pin Function  
1
2
3
4
P2.5 / ADC_CH0 / ACMP0_P0 / ACMP1_P0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0 / INT0  
P2.4 / ADC_CH1 / ACMP0_N0 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1  
P2.3 / ADC_CH2 / ACMP0_P1 / ACMP1_P1 / I2C1_SCL / UART1_TXD / PWM0_CH2 / PWM0_BRAKE  
P2.2 / ADC_CH3 / ACMP1_N0 / I2C1_SDA / UART1_RXD / PWM0_CH3  
Sep. 1, 2020  
Page 40 of 164  
Rev 2.00  
ML51/ML54/ML56  
Pin ML51LD1AE Pin Function  
P2.1 / ADC_CH4 / ACMP0_P2 / ACMP1_P2 / UART2_TXD / I2C1_SCL / PWM0_CH4 / PWM3_CH0 /  
PWM0_BRAKE  
5
6
7
8
9
P2.0 / ADC_CH5 / ACMP0_N1 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM3_CH1 / PWM0_BRAKE  
P1.3 / IC0  
P1.2 / UART3_TXD / IC1  
P1.1 / UART3_RXD / UART1_TXD / IC2  
10 P1.0 / UART1_RXD / IC0  
11 P5.5 / UART2_RXD / PWM0_CH0 / X32_IN / STADC  
12 P5.4 / UART2_TXD / PWM0_CH1 / X32_OUT  
13 P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
14 P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
15 P0.7 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1  
16 P0.6 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0  
17 P0.5 / UART0_TXD / I2C0_SCL / PWM0_CH0  
18 P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1  
19 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO  
20 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
21 P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4  
22 P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5  
23 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO  
24 nRESET  
25 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
26 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
27 P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0  
28 P4.4 / UART2_RXD / I2C1_SDA / PWM1_CH1  
29 P4.3 / PWM2_CH0  
30 P4.2 / PWM2_CH1  
31 P4.1 / UART2_TXD / I2C0_SCL / PWM3_CH0 / ACMP0_O  
32 P4.0 / UART2_RXD / I2C0_SDA / PWM3_CH1 / ACMP1_O / INT1  
33 P1.4 / I2C1_SCL  
34 P1.5 / I2C1_SDA  
35 P1.6 / UART0_TXD  
36 P1.7 / UART0_RXD  
Sep. 1, 2020  
Page 41 of 164  
Rev 2.00  
ML51/ML54/ML56  
Pin ML51LD1AE Pin Function  
37 VSS  
38 P4.6 / PWM0_CH0 / T0 / CLKO / INT0  
39 VDD  
40 P4.7 / T1  
41 P3.3 / SPI1_SS / PWM1_CH0 / IC0 / PWM0_BRAKE  
42 P3.2 / ADC_CH7 / ACMP1_N1 / SPI1_CLK / UART3_RXD / PWM1_CH1 / IC1 / CLKO  
P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / SPI1_MISO / UART3_TXD / UART0_TXD / PWM2_CH0 /  
IC2  
43  
44 P3.0 / ADC_CH10 / SPI1_MOSI / UART0_RXD / PWM2_CH1 / IC0  
45 VREF  
46 AVSS  
47 P2.7 / ADC_CH15 / UART1_TXD / PWM3_CH0 / ACMP0_O  
48 P2.6 / UART1_RXD / PWM3_CH1 / ACMP1_O  
Sep. 1, 2020  
Page 42 of 164  
Rev 2.00  
ML51/ML54/ML56  
ML54LD1AE Pin Function  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VSS  
nRESET  
INT0 / CLKO / T0 / PWM0_CH0 / LCD_SEG17 / P4.6  
P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO  
VDD  
T1 / LCD_COM0 / LCD_SEG16 / P4.7  
P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5  
P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4  
P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO  
P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1  
PWM0_BRAKE / IC0 / PWM1_CH0 / LCD_COM1 / SPI1_SS / LCD_SEG15 / P3.3  
CLKO / IC1 / PWM1_CH1 / UART3_RXD / SPI1_CLK / LCD_SEG14 / ACMP1_N1 / ADC_CH7 / P3.2  
IC2 / PWM2_CH0 / UART0_TXD / UART3_TXD / SPI1_MISO / LCD_SEG13 / ACMP1_P3 / ACMP0_P3 / ADC_CH6 / P3.1  
IC0 / PWM2_CH1 / UART0_RXD / SPI1_MOSI / LCD_SEG12 / ADC_CH10 / P3.0  
VREF  
LQFP48  
P0.5 / UART0_TXD / I2C0_SCL / PWM0_CH0  
P0.6 / LCD_SEG0 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0  
P0.7 / LCD_SEG1 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1  
P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
AVSS  
ACMP0_O / PWM3_CH0 / UART1_TXD / LCD_SEG7 / ADC_CH15 / P2.7  
ACMP1_O / PWM3_CH1 / UART1_RXD / LCD_SEG6 / P2.6  
P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
Figure 4.1-19 ML54LD1AE Multi-Function Pin assignment  
Pin ML54LD1AE Pin Function  
P2.5 / ADC_CH0 / ACMP0_P0 / ACMP1_P0 / LCD_COM0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0  
/ INT0  
1
2
3
P2.4 / ADC_CH1 / ACMP0_N0 / LCD_COM1 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1  
P2.3 / ADC_CH2 / ACMP0_P1 / ACMP1_P1 / I2C1_SCL / LCD_COM2 / UART1_TXD / PWM0_CH2 /  
PWM0_BRAKE  
Sep. 1, 2020  
Page 43 of 164  
Rev 2.00  
ML51/ML54/ML56  
Pin ML54LD1AE Pin Function  
4
5
P2.2 / ADC_CH3 / ACMP1_N0 / I2C1_SDA / LCD_COM3 / UART1_RXD / PWM0_CH3  
P2.1 / ADC_CH4 / ACMP0_P2 / ACMP1_P2 / LCD_SEG5 / UART2_TXD / I2C1_SCL / PWM0_CH4 /  
PWM3_CH0 / PWM0_BRAKE  
P2.0 / ADC_CH5 / ACMP0_N1 / LCD_SEG4 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM3_CH1 /  
PWM0_BRAKE  
6
7
8
9
P1.3 / IC0  
P1.2 / LCD_DH2 / UART3_TXD / IC1  
P1.1 / LCD_DH1 / UART3_RXD / UART1_TXD / IC2  
10 VLCD  
11 P5.5 / UART2_RXD / PWM0_CH0 / X32_IN / STADC  
12 P5.4 / UART2_TXD / PWM0_CH1 / X32_OUT  
13 P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
14 P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
15 P0.7 / LCD_SEG1 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1  
16 P0.6 / LCD_SEG0 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0  
17 P0.5 / UART0_TXD / I2C0_SCL / PWM0_CH0  
18 P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1  
19 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO  
20 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
21 P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4  
22 P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5  
23 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO  
24 nRESET  
25 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
26 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
27 P4.5 / LCD_SEG31 / LCD_COM4 / UART2_TXD / I2C1_SCL / PWM1_CH0  
28 P4.4 / LCD_SEG30 / LCD_COM5 / UART2_RXD / I2C1_SDA / PWM1_CH1  
29 P4.3 / LCD_SEG29 / LCD_COM6 / PWM2_CH0  
30 P4.2 / LCD_SEG28 / LCD_COM7 / PWM2_CH1  
31 P4.1 / LCD_SEG27 / LCD_COM2 / UART2_TXD / I2C0_SCL / PWM3_CH0 / ACMP0_O  
32 P4.0 / LCD_SEG26 / LCD_COM3 / UART2_RXD / I2C0_SDA / PWM3_CH1 / ACMP1_O / INT1  
33 P1.4 / LCD_SEG21 / I2C1_SCL / LCD_COM4  
34 P1.5 / LCD_SEG20 / I2C1_SDA / LCD_COM5  
Sep. 1, 2020  
Page 44 of 164  
Rev 2.00  
ML51/ML54/ML56  
Pin ML54LD1AE Pin Function  
35 P1.6 / LCD_SEG19 / UART0_TXD / LCD_COM6  
36 P1.7 / LCD_SEG18 / UART0_RXD / LCD_COM7  
37 VSS  
38 P4.6 / LCD_SEG17 / PWM0_CH0 / T0 / CLKO / INT0  
39 VDD  
40 P4.7 / LCD_SEG16 / LCD_COM0 / T1  
41 P3.3 / LCD_SEG15 / SPI1_SS / LCD_COM1 / PWM1_CH0 / IC0 / PWM0_BRAKE  
42 P3.2 / ADC_CH7 / ACMP1_N1 / LCD_SEG14 / SPI1_CLK / UART3_RXD / PWM1_CH1 / IC1 / CLKO  
P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / LCD_SEG13 / SPI1_MISO / UART3_TXD / UART0_TXD /  
PWM2_CH0 / IC2  
43  
44 P3.0 / ADC_CH10 / LCD_SEG12 / SPI1_MOSI / UART0_RXD / PWM2_CH1 / IC0  
45 VREF  
46 AVSS  
47 P2.7 / ADC_CH15 / LCD_SEG7 / UART1_TXD / PWM3_CH0 / ACMP0_O  
48 P2.6 / LCD_SEG6 / UART1_RXD / PWM3_CH1 / ACMP1_O  
Sep. 1, 2020  
Page 45 of 164  
Rev 2.00  
ML51/ML54/ML56  
ML56LD1AE Pin Function  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VSS  
INT0 / CLKO / T0 / PWM0_CH0 / LCD_SEG17 / P4.6  
VDD  
nRESET  
P5.6 / TK0 / PWM0_BRAKE / PWM0_CH1 / CLKO  
P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / TK1 / PWM0_CH5  
P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / TK2 / PWM0_CH4  
P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / TK3 / PWM0_CH3  
P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / TK4 / STADC / PWM0_CH2 / CLKO  
P0.4 / UART0_RXD / I2C0_SDA / TK5 / PWM0_CH1  
T1 / LCD_COM0 / LCD_SEG16 / P4.7  
PWM0_BRAKE / IC0 / PWM1_CH0 / LCD_COM1 / SPI1_SS / LCD_SEG15 / P3.3  
CLKO / IC1 / PWM1_CH1 / UART3_RXD / SPI1_CLK / LCD_SEG14 / ACMP1_N1 / ADC_CH7 / P3.2  
IC2 / PWM2_CH0 / UART0_TXD / UART3_TXD / SPI1_MISO / LCD_SEG13 / ACMP1_P3 / ACMP0_P3 / ADC_CH6 / P3.1  
IC0 / PWM2_CH1 / UART0_RXD / SPI1_MOSI / LCD_SEG12 / ADC_CH10 / P3.0  
VREF  
LQFP48  
P0.5 / UART0_TXD / I2C0_SCL / TK6 / PWM0_CH0  
P0.6 / LCD_SEG0 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0  
P0.7 / LCD_SEG1 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1  
P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
AVSS  
ACMP0_O / PWM3_CH0 / UART1_TXD / LCD_SEG7 / ADC_CH15 / P2.7  
ACMP1_O / PWM3_CH1 / UART1_RXD / LCD_SEG6 / P2.6  
P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
Figure 4.1-20 ML56LD1AE Multi-Function Pin assignment  
Pin ML56LD1AE/ML56LC1AE Pin Function  
1
2
3
4
P2.5/ADC_CH0/ACMP0_P0/ACMP1_P0/LCD_COM0/I2C0_SCL/PWM0_CH0/UART2_TXD/T0/INT0  
P2.4/ADC_CH1/ACMP0_N0/LCD_COM1/I2C0_SDA/PWM0_CH1/UART2_RXD/T1/INT1  
P2.3/ADC_CH2/ACMP0_P1/ACMP1_P1/I2C1_SCL/LCD_COM2/UART1_TXD/PWM0_CH2/PWM0_BRAKE  
P2.2/ADC_CH3/ACMP1_N0/I2C1_SDA/LCD_COM3/UART1_RXD/PWM0_CH3  
P2.1/ADC_CH4/ACMP0_P2/ACMP1_P2/LCD_SEG5/UART2_TXD/I2C1_SCL/PWM0_CH4/PWM3_CH0/PWM0_BRAK  
E
5
Sep. 1, 2020  
Page 46 of 164  
Rev 2.00  
ML51/ML54/ML56  
Pin ML56LD1AE/ML56LC1AE Pin Function  
6
7
8
9
P2.0/ADC_CH5/ACMP0_N1/LCD_SEG4/UART2_RXD/I2C1_SDA/PWM0_CH5/PWM3_CH1/PWM0_BRAKE  
P1.3/IC0  
P1.2/LCD_DH2/UART3_TXD/IC1  
P1.1/LCD_DH1/UART3_RXD/UART1_TXD/IC2  
10 VLCD  
11 P5.5/UART2_RXD/PWM0_CH0/X32_IN/STADC  
12 P5.4/UART2_TXD/PWM0_CH1/X32_OUT  
13 P5.3/UART0_TXD/I2C0_SCL/XT1_IN  
14 P5.2/UART0_RXD/I2C0_SDA/XT1_OUT  
15 P0.7/LCD_SEG1/UART0_TXD/I2C1_SCL/PWM3_CH0/INT1  
16 P0.6/LCD_SEG0/UART0_RXD/I2C1_SDA/PWM3_CH1/INT0  
17 P0.5/UART0_TXD/I2C0_SCL/TK6/PWM0_CH0  
18 P0.4/UART0_RXD/I2C0_SDA/TK5/PWM0_CH1  
19 P0.3/SPI0_SS/SPI1_SS/UART1_TXD/I2C1_SCL/TK4/STADC/PWM0_CH2/CLKO  
20 P0.2/SPI0_CLK/SPI1_CLK/UART1_RXD/I2C1_SDA/TK3/PWM0_CH3  
21 P0.1/SPI0_MISO/SPI1_MISO/UART2_RXD/UART0_TXD/TK2/PWM0_CH4  
22 P0.0/SPI0_MOSI/SPI1_MOSI/UART2_TXD/UART0_RXD/TK1/PWM0_CH5  
23 P5.6/TK0/PWM0_BRAKE/PWM0_CH1/CLKO  
24 nRESET  
25 P5.0/UART1_TXD/I2C1_SCL/UART0_TXD/ICE_DAT  
26 P5.1/UART1_RXD/I2C1_SDA/UART0_RXD/ICE_CLK  
27 P4.5/LCD_SEG31/LCD_COM4/UART2_TXD/I2C1_SCL/PWM1_CH0  
28 P4.4/LCD_SEG30/LCD_COM5/UART2_RXD/I2C1_SDA/TK12/PWM1_CH1  
29 P4.3/LCD_SEG29/LCD_COM6/TK13/PWM2_CH0  
30 P4.2/LCD_SEG28/LCD_COM7/TK14/PWM2_CH1  
31 P4.1/LCD_SEG27/LCD_COM2/UART2_TXD/I2C0_SCL/PWM3_CH0/ACMP0_O  
32 P4.0/LCD_SEG26/LCD_COM3/UART2_RXD/I2C0_SDA/PWM3_CH1/ACMP1_O/INT1  
33 P1.4/LCD_SEG21/I2C1_SCL/LCD_COM4  
34 P1.5/LCD_SEG20/I2C1_SDA/LCD_COM5  
35 P1.6/LCD_SEG19/UART0_TXD/LCD_COM6  
36 P1.7/LCD_SEG18/UART0_RXD/LCD_COM7  
37 VSS  
38 P4.6/LCD_SEG17/PWM0_CH0/T0/CLKO/INT0  
39 VDD  
Sep. 1, 2020  
Page 47 of 164  
Rev 2.00  
ML51/ML54/ML56  
Pin ML56LD1AE/ML56LC1AE Pin Function  
40 P4.7/LCD_SEG16/LCD_COM0/T1  
41 P3.3/LCD_SEG15/SPI1_SS/LCD_COM1/PWM1_CH0/IC0/PWM0_BRAKE  
42 P3.2/ADC_CH7/ACMP1_N1/LCD_SEG14/SPI1_CLK/UART3_RXD/PWM1_CH1/IC1/CLKO  
43 P3.1/ADC_CH6/ACMP0_P3/ACMP1_P3/LCD_SEG13/SPI1_MISO/UART3_TXD/UART0_TXD/PWM2_CH0/IC2  
44 P3.0/ADC_CH10/LCD_SEG12/SPI1_MOSI/UART0_RXD/PWM2_CH1/IC0  
45 VREF  
46 AVSS  
47 P2.7/ADC_CH15/LCD_SEG7/UART1_TXD/PWM3_CH0/ACMP0_O  
48 P2.6/LCD_SEG6/UART1_RXD/PWM3_CH1/ACMP1_O  
Sep. 1, 2020  
Page 48 of 164  
Rev 2.00  
ML51/ML54/ML56  
4.1.2.3 LQFP44 Package  
ML54MD1AE Pin Function  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
VSS  
P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
INT0 / CLKO / T0 / PWM0_CH0 / LCD_SEG17 / P4.6  
nRESET  
VDD  
PWM0_BRAKE / IC0 / PWM1_CH0 / LCD_COM1 / SPI1_SS / LCD_SEG15 / P3.3  
CLKO / IC1 / PWM1_CH1 / UART3_RXD / SPI1_CLK / LCD_SEG14 / ACMP1_N1 / ADC_CH7 / P3.2  
IC2 / PWM2_CH0 / UART0_TXD / UART3_TXD / SPI1_MISO / LCD_SEG13 / ACMP1_P3 / ACMP0_P3 / ADC_CH6 / P3.1  
IC0 / PWM2_CH1 / UART0_RXD / SPI1_MOSI / LCD_SEG12 / ADC_CH10 / P3.0  
VREF  
P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / TK1 / PWM0_CH5  
P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / TK2 / PWM0_CH4  
P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / TK3 / PWM0_CH3  
P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / TK4 / STADC / PWM0_CH2 / CLKO  
P0.6 / LCD_SEG0 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0  
P0.7 / LCD_SEG1 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1  
P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
LQFP44  
AVSS  
ACMP0_O / PWM3_CH0 / UART1_TXD / LCD_SEG7 / ADC_CH15 / P2.7  
ACMP1_O / PWM3_CH1 / UART1_RXD / LCD_SEG6 / P2.6  
P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
P5.4 / UART2_TXD / PWM0_CH1 / X32_OUT  
Figure 4.1-21 ML54MD1AE Multi-Function Pin assignment  
Pin ML54MD1AE Pin Function  
P2.5 / ADC_CH0 / ACMP0_P0 / ACMP1_P0 / LCD_COM0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0  
/ INT0  
1
2
3
P2.4 / ADC_CH1 / ACMP0_N0 / LCD_COM1 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1  
P2.3 / ADC_CH2 / ACMP0_P1 / ACMP1_P1 / I2C1_SCL / LCD_COM2 / UART1_TXD / PWM0_CH2 /  
PWM0_BRAKE  
Sep. 1, 2020  
Page 49 of 164  
Rev 2.00  
ML51/ML54/ML56  
Pin ML54MD1AE Pin Function  
4
5
P2.2 / ADC_CH3 / ACMP1_N0 / I2C1_SDA / LCD_COM3 / UART1_RXD / PWM0_CH3  
P2.1 / ADC_CH4 / ACMP0_P2 / ACMP1_P2 / LCD_SEG5 / UART2_TXD / I2C1_SCL / PWM0_CH4 /  
PWM3_CH0 / PWM0_BRAKE  
P2.0 / ADC_CH5 / ACMP0_N1 / LCD_SEG4 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM3_CH1 /  
PWM0_BRAKE  
6
7
8
9
P1.3 / IC0  
P1.2 / LCD_DH2 / UART3_TXD / IC1  
P1.1 / LCD_DH1 / UART3_RXD / UART1_TXD / IC2  
10 VLCD  
11 P5.5 / UART2_RXD / PWM0_CH0 / X32_IN / STADC  
12 P5.4 / UART2_TXD / PWM0_CH1 / X32_OUT  
13 P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
14 P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
15 P0.7 / LCD_SEG1 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1  
16 P0.6 / LCD_SEG0 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0  
17 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO  
18 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
19 P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4  
20 P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5  
21 nRESET  
22 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
23 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
24 P4.5 / LCD_SEG31 / LCD_COM4 / UART2_TXD / I2C1_SCL / PWM1_CH0  
25 P4.4 / LCD_SEG30 / LCD_COM5 / UART2_RXD / I2C1_SDA / PWM1_CH1  
26 P4.3 / LCD_SEG29 / LCD_COM6 / PWM2_CH0  
27 P4.2 / LCD_SEG28 / LCD_COM7 / PWM2_CH1  
28 P4.1 / LCD_SEG27 / LCD_COM2 / UART2_TXD / I2C0_SCL / PWM3_CH0 / ACMP0_O  
29 P4.0 / LCD_SEG26 / LCD_COM3 / UART2_RXD / I2C0_SDA / PWM3_CH1 / ACMP1_O / INT1  
30 P1.4 / LCD_SEG21 / I2C1_SCL / LCD_COM4  
31 P1.5 / LCD_SEG20 / I2C1_SDA / LCD_COM5  
32 P1.6 / LCD_SEG19 / UART0_TXD / LCD_COM6  
33 P1.7 / LCD_SEG18 / UART0_RXD / LCD_COM7  
34 VSS  
Sep. 1, 2020  
Page 50 of 164  
Rev 2.00  
ML51/ML54/ML56  
Pin ML54MD1AE Pin Function  
35 P4.6 / LCD_SEG17 / PWM0_CH0 / T0 / CLKO / INT0  
36 VDD  
37 P3.3 / LCD_SEG15 / SPI1_SS / LCD_COM1 / PWM1_CH0 / IC0 / PWM0_BRAKE  
38 P3.2 / ADC_CH7 / ACMP1_N1 / LCD_SEG14 / SPI1_CLK / UART3_RXD / PWM1_CH1 / IC1 / CLKO  
P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / LCD_SEG13 / SPI1_MISO / UART3_TXD / UART0_TXD /  
PWM2_CH0 / IC2  
39  
40 P3.0 / ADC_CH10 / LCD_SEG12 / SPI1_MOSI / UART0_RXD / PWM2_CH1 / IC0  
41 VREF  
42 AVSS  
43 P2.7 / ADC_CH15 / LCD_SEG7 / UART1_TXD / PWM3_CH0 / ACMP0_O  
44 P2.6 / LCD_SEG6 / UART1_RXD / PWM3_CH1 / ACMP1_O  
Sep. 1, 2020  
Page 51 of 164  
Rev 2.00  
ML51/ML54/ML56  
ML56MD1AE Pin Function  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
VSS  
P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
INT0 / CLKO / T0 / PWM0_CH0 / LCD_SEG17 / P4.6  
nRESET  
VDD  
PWM0_BRAKE / IC0 / PWM1_CH0 / LCD_COM1 / SPI1_SS / LCD_SEG15 / P3.3  
CLKO / IC1 / PWM1_CH1 / UART3_RXD / SPI1_CLK / LCD_SEG14 / ACMP1_N1 / ADC_CH7 / P3.2  
IC2 / PWM2_CH0 / UART0_TXD / UART3_TXD / SPI1_MISO / LCD_SEG13 / ACMP1_P3 / ACMP0_P3 / ADC_CH6 / P3.1  
IC0 / PWM2_CH1 / UART0_RXD / SPI1_MOSI / LCD_SEG12 / ADC_CH10 / P3.0  
VREF  
P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / TK1 / PWM0_CH5  
P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / TK2 / PWM0_CH4  
P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / TK3 / PWM0_CH3  
P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / TK4 / STADC / PWM0_CH2 / CLKO  
P0.6 / LCD_SEG0 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0  
P0.7 / LCD_SEG1 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1  
P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
LQFP44  
AVSS  
ACMP0_O / PWM3_CH0 / UART1_TXD / LCD_SEG7 / ADC_CH15 / P2.7  
ACMP1_O / PWM3_CH1 / UART1_RXD / LCD_SEG6 / P2.6  
P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
P5.4 / UART2_TXD / PWM0_CH1 / X32_OUT  
Figure 4.1-22 ML56MD1AE Multi-Function Pin assignment  
Pin ML56MD1AE Pin Function  
1
2
3
4
P2.5/ADC_CH0/ACMP0_P0/ACMP1_P0/LCD_COM0/I2C0_SCL/PWM0_CH0/UART2_TXD/T0/INT0  
P2.4/ADC_CH1/ACMP0_N0/LCD_COM1/I2C0_SDA/PWM0_CH1/UART2_RXD/T1/INT1  
P2.3/ADC_CH2/ACMP0_P1/ACMP1_P1/I2C1_SCL/LCD_COM2/UART1_TXD/PWM0_CH2/PWM0_BRAKE  
P2.2/ADC_CH3/ACMP1_N0/I2C1_SDA/LCD_COM3/UART1_RXD/PWM0_CH3  
P2.1/ADC_CH4/ACMP0_P2/ACMP1_P2/LCD_SEG5/UART2_TXD/I2C1_SCL/PWM0_CH4/PWM3_CH0/PWM0_BRAK  
E
5
Sep. 1, 2020  
Page 52 of 164  
Rev 2.00  
ML51/ML54/ML56  
Pin ML56MD1AE Pin Function  
6
7
8
9
P2.0/ADC_CH5/ACMP0_N1/LCD_SEG4/UART2_RXD/I2C1_SDA/PWM0_CH5/PWM3_CH1/PWM0_BRAKE  
P1.3/IC0  
P1.2/LCD_DH2/UART3_TXD/IC1  
P1.1/LCD_DH1/UART3_RXD/UART1_TXD/IC2  
10 VLCD  
11 P5.5/UART2_RXD/PWM0_CH0/X32_IN/STADC  
12 P5.4/UART2_TXD/PWM0_CH1/X32_OUT  
13 P5.3/UART0_TXD/I2C0_SCL/XT1_IN  
14 P5.2/UART0_RXD/I2C0_SDA/XT1_OUT  
15 P0.7/LCD_SEG1/UART0_TXD/I2C1_SCL/PWM3_CH0/INT1  
16 P0.6/LCD_SEG0/UART0_RXD/I2C1_SDA/PWM3_CH1/INT0  
17 P0.3/SPI0_SS/SPI1_SS/UART1_TXD/I2C1_SCL/TK4/STADC/PWM0_CH2/CLKO  
18 P0.2/SPI0_CLK/SPI1_CLK/UART1_RXD/I2C1_SDA/TK3/PWM0_CH3  
19 P0.1/SPI0_MISO/SPI1_MISO/UART2_RXD/UART0_TXD/TK2/PWM0_CH4  
20 P0.0/SPI0_MOSI/SPI1_MOSI/UART2_TXD/UART0_RXD/TK1/PWM0_CH5  
21 nRESET  
22 P5.0/UART1_TXD/I2C1_SCL/UART0_TXD/ICE_DAT  
23 P5.1/UART1_RXD/I2C1_SDA/UART0_RXD/ICE_CLK  
24 P4.5/LCD_SEG31/LCD_COM4/UART2_TXD/I2C1_SCL/PWM1_CH0  
25 P4.4/LCD_SEG30/LCD_COM5/UART2_RXD/I2C1_SDA/TK12/PWM1_CH1  
26 P4.3/LCD_SEG29/LCD_COM6/TK13/PWM2_CH0  
27 P4.2/LCD_SEG28/LCD_COM7/TK14/PWM2_CH1  
28 P4.1/LCD_SEG27/LCD_COM2/UART2_TXD/I2C0_SCL/PWM3_CH0/ACMP0_O  
29 P4.0/LCD_SEG26/LCD_COM3/UART2_RXD/I2C0_SDA/PWM3_CH1/ACMP1_O/INT1  
30 P1.4/LCD_SEG21/I2C1_SCL/LCD_COM4  
31 P1.5/LCD_SEG20/I2C1_SDA/LCD_COM5  
32 P1.6/LCD_SEG19/UART0_TXD/LCD_COM6  
33 P1.7/LCD_SEG18/UART0_RXD/LCD_COM7  
34 VSS  
35 P4.6/LCD_SEG17/PWM0_CH0/T0/CLKO/INT0  
36 VDD  
37 P3.3/LCD_SEG15/SPI1_SS/LCD_COM1/PWM1_CH0/IC0/PWM0_BRAKE  
38 P3.2/ADC_CH7/ACMP1_N1/LCD_SEG14/SPI1_CLK/UART3_RXD/PWM1_CH1/IC1/CLKO  
39 P3.1/ADC_CH6/ACMP0_P3/ACMP1_P3/LCD_SEG13/SPI1_MISO/UART3_TXD/UART0_TXD/PWM2_CH0/IC2  
Sep. 1, 2020  
Page 53 of 164  
Rev 2.00  
ML51/ML54/ML56  
Pin ML56MD1AE Pin Function  
40 P3.0/ADC_CH10/LCD_SEG12/SPI1_MOSI/UART0_RXD/PWM2_CH1/IC0  
41 VREF  
42 AVSS  
43 P2.7/ADC_CH15/LCD_SEG7/UART1_TXD/PWM3_CH0/ACMP0_O  
44 P2.6/LCD_SEG6/UART1_RXD/PWM3_CH1/ACMP1_O  
Sep. 1, 2020  
Page 54 of 164  
Rev 2.00  
ML51/ML54/ML56  
4.1.2.4 QFN33 Package  
ML51TD1AE Pin Function  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
VSS  
INT0 / CLKO / T0 / PWM0_CH0 / P4.6  
VDD  
nRESET  
Top transparent view  
P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO  
P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5  
P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4  
P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO  
P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
PWM0_BRAKE / IC0 / PWM1_CH0 / SPI1_SS / P3.3  
CLKO / IC1 / PWM1_CH1 / UART3_RXD / SPI1_CLK / ACMP1_N1 / ADC_CH7 / P3.2  
IC2 / PWM2_CH0 / UART0_TXD / UART3_TXD / SPI1_MISO / ACMP1_P3 / ACMP0_P3 / ADC_CH6 / P3.1  
IC0 / PWM2_CH1 / UART0_RXD / SPI1_MOSI / ADC_CH10 / P3.0  
QFN33  
33 VSS  
VREF  
P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
Figure 4.1-23 ML51TD1AE Multi-Function Pin assignment  
Pin ML56TD1AE Pin Function  
1
2
3
4
P2.5/ADC_CH0/ACMP0_P0/ACMP1_P0/LCD_COM0/I2C0_SCL/PWM0_CH0/UART2_TXD/T0/INT0  
P2.4/ADC_CH1/ACMP0_N0/LCD_COM1/I2C0_SDA/PWM0_CH1/UART2_RXD/T1/INT1  
P2.3/ADC_CH2/ACMP0_P1/ACMP1_P1/I2C1_SCL/LCD_COM2/UART1_TXD/PWM0_CH2/PWM0_BRAKE  
P2.2/ADC_CH3/ACMP1_N0/I2C1_SDA/LCD_COM3/UART1_RXD/PWM0_CH3  
P2.1/ADC_CH4/ACMP0_P2/ACMP1_P2/LCD_SEG5/UART2_TXD/I2C1_SCL/PWM0_CH4/PWM3_CH0/PWM0_BRAK  
E
5
6
P2.0/ADC_CH5/ACMP0_N1/LCD_SEG4/UART2_RXD/I2C1_SDA/PWM0_CH5/PWM3_CH1/PWM0_BRAKE  
Sep. 1, 2020  
Page 55 of 164  
Rev 2.00  
ML51/ML54/ML56  
Pin ML56TD1AE Pin Function  
7
8
9
P5.5/UART2_RXD/PWM0_CH0/X32_IN/STADC  
P5.4/UART2_TXD/PWM0_CH1/X32_OUT  
P5.3/UART0_TXD/I2C0_SCL/XT1_IN  
10 P5.2/UART0_RXD/I2C0_SDA/XT1_OUT  
11 P0.3/SPI0_SS/SPI1_SS/UART1_TXD/I2C1_SCL/TK4/STADC/PWM0_CH2/CLKO  
12 P0.2/SPI0_CLK/SPI1_CLK/UART1_RXD/I2C1_SDA/TK3/PWM0_CH3  
13 P0.1/SPI0_MISO/SPI1_MISO/UART2_RXD/UART0_TXD/TK2/PWM0_CH4  
14 P0.0/SPI0_MOSI/SPI1_MOSI/UART2_TXD/UART0_RXD/TK1/PWM0_CH5  
15 P5.6/TK0/PWM0_BRAKE/PWM0_CH1/CLKO  
16 nRESET  
17 P5.0/UART1_TXD/I2C1_SCL/UART0_TXD/ICE_DAT  
18 P5.1/UART1_RXD/I2C1_SDA/UART0_RXD/ICE_CLK  
19 P4.1/LCD_SEG27/LCD_COM2/UART2_TXD/I2C0_SCL/PWM3_CH0/ACMP0_O  
20 P4.0/LCD_SEG26/LCD_COM3/UART2_RXD/I2C0_SDA/PWM3_CH1/ACMP1_O/INT1  
21 P1.4/LCD_SEG21/I2C1_SCL/LCD_COM4  
22 P1.5/LCD_SEG20/I2C1_SDA/LCD_COM5  
23 P1.6/LCD_SEG19/UART0_TXD/LCD_COM6  
24 P1.7/LCD_SEG18/UART0_RXD/LCD_COM7  
25 VSS  
26 P4.6/LCD_SEG17/PWM0_CH0/T0/CLKO/INT0  
27 VDD  
28 P3.3/LCD_SEG15/SPI1_SS/LCD_COM1/PWM1_CH0/IC0/PWM0_BRAKE  
29 P3.2/ADC_CH7/ACMP1_N1/LCD_SEG14/SPI1_CLK/UART3_RXD/PWM1_CH1/IC1/CLKO  
30 P3.1/ADC_CH6/ACMP0_P3/ACMP1_P3/LCD_SEG13/SPI1_MISO/UART3_TXD/UART0_TXD/PWM2_CH0/IC2  
31 P3.0/ADC_CH10/LCD_SEG12/SPI1_MOSI/UART0_RXD/PWM2_CH1/IC0  
32 VREF  
33 VSS  
Sep. 1, 2020  
Page 56 of 164  
Rev 2.00  
ML51/ML54/ML56  
ML51TC0AE / ML51TB9AE Pin Function  
25  
16  
15  
14  
13  
12  
11  
10  
9
VSS  
INT0 / CLKO / T0 / PWM0_CH0 / P4.6  
nRESET  
Top transparent view  
26  
27  
28  
29  
30  
31  
32  
P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO  
VDD  
P0.0 / SPI0_MOSI / SPI1_MOSI / UART0_RXD / PWM0_CH5  
P0.1 / SPI0_MISO / SPI1_MISO / UART0_TXD / PWM0_CH4  
P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2  
P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
PWM0_BRAKE / IC0 / SPI1_SS / P3.3  
CLKO / IC1 / SPI1_CLK / ACMP1_N1 / ADC_CH7 / P3.2  
IC2 / UART0_TXD / SPI1_MISO / ACMP1_P3 / ACMP0_P3 / ADC_CH6 / P3.1  
IC0 / UART0_RXD / SPI1_MOSI / P3.0  
AVDD  
QFN33  
33 VSS  
P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
Figure 4.1-24 ML51TC0AE / ML51TB9AE Multi-Function Pin Assignment  
Pin ML51TC0AE / ML51TB9AE Pin Function  
1
2
3
4
5
P2.5 / ADC_CH0 / ACMP0_P0 / ACMP1_P0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0 / INT0  
P2.4 / ADC_CH1 / ACMP0_N0 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1  
P2.3 / ADC_CH2 / ACMP0_P1 / ACMP1_P1 / I2C1_SCL / UART1_TXD / PWM0_CH2 / PWM0_BRAKE  
P2.2 / ADC_CH3 / ACMP1_N0 / I2C1_SDA / UART1_RXD / PWM0_CH3  
P2.1 / ADC_CH4 / ACMP0_P2 / ACMP1_P2 / UART2_TXD / I2C1_SCL / PWM0_CH4 / PWM0_BRAKE  
Sep. 1, 2020  
Page 57 of 164  
Rev 2.00  
ML51/ML54/ML56  
Pin ML51TC0AE / ML51TB9AE Pin Function  
6
7
8
9
P2.0 / ADC_CH5 / ACMP0_N1 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM0_BRAKE  
P5.5 / UART2_RXD / PWM0_CH0 / X32_IN / STADC  
P5.4 / UART2_TXD / PWM0_CH1 / X32_OUT  
P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
10 P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
11 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2  
12 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
13 P0.1 / SPI0_MISO / SPI1_MISO / UART0_TXD / PWM0_CH4  
14 P0.0 / SPI0_MOSI / SPI1_MOSI / UART0_RXD / PWM0_CH5  
15 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO  
16 nRESET  
17 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
18 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
19 P4.1 / UART2_TXD / I2C0_SCL / ACMP0_O  
20 P4.0 / UART2_RXD / I2C0_SDA / ACMP1_O / INT1  
21 P1.4 / I2C1_SCL  
22 P1.5 / I2C1_SDA  
23 P1.6 / UART0_TXD  
24 P1.7 / UART0_RXD  
25 VSS  
26 P4.6 / PWM0_CH0 / T0 / CLKO / INT0  
27 VDD  
28 P3.3 / SPI1_SS / IC0 / PWM0_BRAKE  
29 P3.2 / ADC_CH7 / ACMP1_N1 / SPI1_CLK / IC1 / CLKO  
30 P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / SPI1_MISO / UART0_TXD / IC2  
31 P3.0 / SPI1_MOSI / UART0_RXD / IC0  
32 AVDD  
33 VSS  
Sep. 1, 2020  
Page 58 of 164  
Rev 2.00  
ML51/ML54/ML56  
4.1.2.5 LQFP32 Package  
ML51PC0AE / ML51PB9AE Pin Function  
25  
VSS  
16  
15  
14  
13  
12  
11  
10  
9
nRESET  
26  
INT0 / CLKO / T0 / PWM0_CH0 / P4.6  
P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO  
27  
VDD  
P0.0 / SPI0_MOSI / SPI1_MOSI / UART0_RXD / PWM0_CH5  
P0.1 / SPI0_MISO / SPI1_MISO / UART0_TXD / PWM0_CH4  
P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2  
P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
28  
PWM0_BRAKE / IC0 / SPI1_SS / P3.3  
LQFP32  
29  
CLKO / IC1 / SPI1_CLK / ACMP1_N1 / ADC_CH7 / P3.2  
30  
IC2 / UART0_TXD / SPI1_MISO / ACMP1_P3 / ACMP0_P3 / ADC_CH6 / P3.1  
31  
IC0 / UART0_RXD / SPI1_MOSI / P3.0  
32  
AVDD  
P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
Figure 4.1-25 ML51PC0AE / ML51PB9AE Multi-Function Pin Assignment  
Pin ML51PC0AE Pin Function  
1
2
3
4
P2.5 / ADC_CH0 / ACMP0_P0 / ACMP1_P0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0 / INT0  
P2.4 / ADC_CH1 / ACMP0_N0 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1  
P2.3 / ADC_CH2 / ACMP0_P1 / ACMP1_P1 / I2C1_SCL / UART1_TXD / PWM0_CH2 / PWM0_BRAKE  
P2.2 / ADC_CH3 / ACMP1_N0 / I2C1_SDA / UART1_RXD / PWM0_CH3  
Sep. 1, 2020  
Page 59 of 164  
Rev 2.00  
ML51/ML54/ML56  
Pin ML51PC0AE Pin Function  
5
6
7
8
9
P2.1 / ADC_CH4 / ACMP0_P2 / ACMP1_P2 / UART2_TXD / I2C1_SCL / PWM0_CH4 / PWM0_BRAKE  
P2.0 / ADC_CH5 / ACMP0_N1 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM0_BRAKE  
P5.5 / UART2_RXD / PWM0_CH0 / X32_IN / STADC  
P5.4 / UART2_TXD / PWM0_CH1 / X32_OUT  
P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
10 P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
11 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2  
12 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
13 P0.1 / SPI0_MISO / SPI1_MISO / UART0_TXD / PWM0_CH4  
14 P0.0 / SPI0_MOSI / SPI1_MOSI / UART0_RXD / PWM0_CH5  
15 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO  
16 nRESET  
17 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
18 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
19 P4.1 / UART2_TXD / I2C0_SCL / ACMP0_O  
20 P4.0 / UART2_RXD / I2C0_SDA / ACMP1_O / INT1  
21 P1.4 / I2C1_SCL  
22 P1.5 / I2C1_SDA  
23 P1.6 / UART0_TXD  
24 P1.7 / UART0_RXD  
25 VSS  
26 P4.6 / PWM0_CH0 / T0 / CLKO / INT0  
27 VDD  
28 P3.3 / SPI1_SS / IC0 / PWM0_BRAKE  
29 P3.2 / ADC_CH7 / ACMP1_N1 / SPI1_CLK / IC1 / CLKO  
30 P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / SPI1_MISO / UART0_TXD / IC2  
31 P3.0 / SPI1_MOSI / UART0_RXD / IC0  
32 AVDD  
Sep. 1, 2020  
Page 60 of 164  
Rev 2.00  
ML51/ML54/ML56  
4.1.2.6 TSSOP28 Package  
ML51EC0AE / ML51EB9AE Pin Function  
1
2
28  
27  
26  
25  
I2C1_SCL / P1.4  
P4.0 / UART2_RXD / I2C0_SDA / ACMP1_O / INT1  
I2C1_SDA / P1.5  
P4.1 / UART2_TXD / I2C0_SCL / ACMP0_O  
3
UART0_TXD / P1.6  
P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
4
UART0_RXD / P1.7  
VSS  
INT0 / CLKO / T0 / PWM0_CH0 / P4.6  
5
24 nRESET  
6
23 P0.0 / SPI0_MOSI / SPI1_MOSI / UART0_RXD / PWM0_CH5  
22 P0.1 / SPI0_MISO / SPI1_MISO / UART0_TXD / PWM0_CH4  
21 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
20 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2  
VDD  
7
CLKO / IC1 / SPI1_CLK / ACMP1_N1 / ADC_CH7 / P3.2  
IC2 / UART0_TXD / SPI1_MISO / ACMP1_P3 / ACMP0_P3 / ADC_CH6 / P3.1  
IC0 / UART0_RXD / SPI1_MOSI / P3.0  
8
9
P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
10  
11  
12  
13  
14  
19  
18  
17  
16  
15  
AVDD  
P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
INT0 / T0 / UART2_TXD / PWM0_CH0 / I2C0_SCL / ACMP1_P0 / ACMP0_P0 / ADC_CH0 / P2.5  
INT1 / T1 / UART2_RXD / PWM0_CH1 / I2C0_SDA / ACMP0_N0 / ADC_CH1 / P2.4  
PWM0_BRAKE / PWM0_CH2 / UART1_TXD / I2C1_SCL / ACMP1_P1 / ACMP0_P1 / ADC_CH2 / P2.3  
P2.0 / ADC_CH5 / ACMP0_N1 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM0_BRAKE  
P2.1 / ADC_CH4 / ACMP0_P2 / ACMP1_P2 / UART2_TXD / I2C1_SCL / PWM0_CH4 / PWM0_BRAKE  
P2.2 / ADC_CH3 / ACMP1_N0 / I2C1_SDA / UART1_RXD / PWM0_CH3  
Figure 4.1-26 ML51EC0AE / ML51EB9AE Multi-Function Pin Assignment  
Pin ML51EC0AE / ML51EB9AE Pin Function  
1
2
3
4
5
6
7
8
9
P1.4 / I2C1_SCL  
P1.5 / I2C1_SDA  
P1.6 / UART0_TXD  
P1.7 / UART0_RXD  
VSS  
P4.6 / PWM0_CH0 / T0 / CLKO / INT0  
VDD  
P3.2 / ADC_CH7 / ACMP1_N1 / SPI1_CLK / IC1 / CLKO  
P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / SPI1_MISO / UART0_TXD / IC2  
10 P3.0 / SPI1_MOSI / UART0_RXD / IC0  
11 AVDD  
12 P2.5 / ADC_CH0 / ACMP0_P0 / ACMP1_P0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0 / INT0  
13 P2.4 / ADC_CH1 / ACMP0_N0 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1  
14 P2.3 / ADC_CH2 / ACMP0_P1 / ACMP1_P1 / I2C1_SCL / UART1_TXD / PWM0_CH2 / PWM0_BRAKE  
15 P2.2 / ADC_CH3 / ACMP1_N0 / I2C1_SDA / UART1_RXD / PWM0_CH3  
16 P2.1 / ADC_CH4 / ACMP0_P2 / ACMP1_P2 / UART2_TXD / I2C1_SCL / PWM0_CH4 / PWM0_BRAKE  
17 P2.0 / ADC_CH5 / ACMP0_N1 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM0_BRAKE  
18 P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
19 P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
20 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2  
21 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
Sep. 1, 2020  
Page 61 of 164  
Rev 2.00  
ML51/ML54/ML56  
Pin ML51EC0AE / ML51EB9AE Pin Function  
22 P0.1 / SPI0_MISO / SPI1_MISO / UART0_TXD / PWM0_CH4  
23 P0.0 / SPI0_MOSI / SPI1_MOSI / UART0_RXD / PWM0_CH5  
24 nRESET  
25 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
26 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
27 P4.1 / UART2_TXD / I2C0_SCL / ACMP0_O  
28 P4.0 / UART2_RXD / I2C0_SDA / ACMP1_O / INT1  
Sep. 1, 2020  
Page 62 of 164  
Rev 2.00  
ML51/ML54/ML56  
4.1.2.7 SOP28 Package  
Corresponding Part Number: ML51UC0AE / ML51UB9AE  
1
2
28  
27  
26  
25  
I2C1_SCL / P1.4  
P4.0 / UART2_RXD / I2C0_SDA / ACMP1_O / INT1  
I2C1_SDA / P1.5  
P4.1 / UART2_TXD / I2C0_SCL / ACMP0_O  
3
UART0_TXD / P1.6  
P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
4
UART0_RXD / P1.7  
VSS  
INT0 / CLKO / T0 / PWM0_CH0 / P4.6  
5
24 nRESET  
6
23 P0.0 / SPI0_MOSI / SPI1_MOSI / UART0_RXD / PWM0_CH5  
22 P0.1 / SPI0_MISO / SPI1_MISO / UART0_TXD / PWM0_CH4  
21 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
20 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2  
VDD  
7
CLKO / IC1 / SPI1_CLK / ACMP1_N1 / ADC_CH7 / P3.2  
IC2 / UART0_TXD / SPI1_MISO / ACMP1_P3 / ACMP0_P3 / ADC_CH6 / P3.1  
IC0 / UART0_RXD / SPI1_MOSI / P3.0  
8
9
P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
10  
11  
12  
13  
14  
19  
18  
17  
16  
15  
AVDD  
P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
INT0 / T0 / UART2_TXD / PWM0_CH0 / I2C0_SCL / ACMP1_P0 / ACMP0_P0 / ADC_CH0 / P2.5  
INT1 / T1 / UART2_RXD / PWM0_CH1 / I2C0_SDA / ACMP0_N0 / ADC_CH1 / P2.4  
PWM0_BRAKE / PWM0_CH2 / UART1_TXD / I2C1_SCL / ACMP1_P1 / ACMP0_P1 / ADC_CH2 / P2.3  
P2.0 / ADC_CH5 / ACMP0_N1 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM0_BRAKE  
P2.1 / ADC_CH4 / ACMP0_P2 / ACMP1_P2 / UART2_TXD / I2C1_SCL / PWM0_CH4 / PWM0_BRAKE  
P2.2 / ADC_CH3 / ACMP1_N0 / I2C1_SDA / UART1_RXD / PWM0_CH3  
Figure 4.1-27 ML51UC0AE / ML51UB9AE Multi Function Pin Assignment  
ML51UC0AE / ML51UB9AE Pin Function  
Pin ML51UC0AE / ML51UB9AE Pin Function  
1
2
3
4
5
6
7
8
9
P1.4 / I2C1_SCL  
P1.5 / I2C1_SDA  
P1.6 / UART0_TXD  
P1.7 / UART0_RXD  
VSS  
P4.6 / PWM0_CH0 / T0 / CLKO / INT0  
VDD  
P3.2 / ADC_CH7 / ACMP1_N1 / SPI1_CLK / IC1 / CLKO  
P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / SPI1_MISO / UART0_TXD / IC2  
10 P3.0 / SPI1_MOSI / UART0_RXD / IC0  
11 AVDD  
12 P2.5 / ADC_CH0 / ACMP0_P0 / ACMP1_P0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0 / INT0  
13 P2.4 / ADC_CH1 / ACMP0_N0 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1  
14 P2.3 / ADC_CH2 / ACMP0_P1 / ACMP1_P1 / I2C1_SCL / UART1_TXD / PWM0_CH2 / PWM0_BRAKE  
15 P2.2 / ADC_CH3 / ACMP1_N0 / I2C1_SDA / UART1_RXD / PWM0_CH3  
16 P2.1 / ADC_CH4 / ACMP0_P2 / ACMP1_P2 / UART2_TXD / I2C1_SCL / PWM0_CH4 / PWM0_BRAKE  
17 P2.0 / ADC_CH5 / ACMP0_N1 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM0_BRAKE  
18 P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
19 P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
20 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2  
Sep. 1, 2020  
Page 63 of 164  
Rev 2.00  
ML51/ML54/ML56  
Pin ML51UC0AE / ML51UB9AE Pin Function  
21 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
22 P0.1 / SPI0_MISO / SPI1_MISO / UART0_TXD / PWM0_CH4  
23 P0.0 / SPI0_MOSI / SPI1_MOSI / UART0_RXD / PWM0_CH5  
24 nRESET  
25 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
26 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
27 P4.1 / UART2_TXD / I2C0_SCL / ACMP0_O  
28 P4.0 / UART2_RXD / I2C0_SDA / ACMP1_O / INT1  
Sep. 1, 2020  
Page 64 of 164  
Rev 2.00  
ML51/ML54/ML56  
4.1.2.8 TSSOP20 Package  
ML51FB9AE Pin Function  
1
2
20  
19  
18  
VSS  
P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
INT0 / CLKO / T0 / PWM0_CH0 / P4.6  
VDD  
P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
nRESET  
3
CLKO / IC1 / SPI1_CLK / ACMP1_N1 / ADC_CH7 / P3.2  
IC2 / UART0_TXD / SPI1_MISO / ACMP1_P3 / ACMP0_P3 / ADC_CH6 / P3.1  
IC0 / UART0_RXD / SPI1_MOSI / P3.0  
4
17 P0.0 / SPI1_MOSI / UART0_RXD / PWM0_CH5  
5
16 P0.1 / SPI1_MISO / UART0_TXD / PWM0_CH4  
6
15 P0.2 / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
14 P0.3 / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2  
AVDD  
7
INT0 / T0 / UART2_TXD / PWM0_CH0 / I2C0_SCL / ADC_CH0 / P2.5  
INT1 / T1 / UART2_RXD / PWM0_CH1 / I2C0_SDA / ADC_CH1 / P2.4  
PWM0_BRAKE / PWM0_CH2 / UART1_TXD / I2C1_SCL / ADC_CH2 / P2.3  
P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
8
13  
12  
11  
9
P2.2 / ADC_CH3 / I2C1_SDA / UART1_RXD / PWM0_CH3  
10  
Figure 4.1-28 ML51FB9AE Multi Function Pin Assignment  
Pin ML51FB9AE Pin Function  
1
2
3
4
5
6
7
8
9
VSS  
P4.6 / PWM0_CH0 / T0 / CLKO / INT0  
VDD  
P3.2 / ADC_CH7 / ACMP1_N1 / SPI1_CLK / IC1 / CLKO  
P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / SPI1_MISO / UART0_TXD / IC2  
P3.0 / SPI1_MOSI / UART0_RXD / IC0  
AVDD  
P2.5 / ADC_CH0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0 / INT0  
P2.4 / ADC_CH1 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1  
10 P2.3 / ADC_CH2 / I2C1_SCL / UART1_TXD / PWM0_CH2 / PWM0_BRAKE  
11 P2.2 / ADC_CH3 / I2C1_SDA / UART1_RXD / PWM0_CH3  
12 P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
13 P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
14 P0.3 / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2  
15 P0.2 / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
16 P0.1 / SPI1_MISO / UART0_TXD / PWM0_CH4  
17 P0.0 / SPI1_MOSI / UART0_RXD / PWM0_CH5  
18 nRESET  
19 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
20 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
Sep. 1, 2020  
Page 65 of 164  
Rev 2.00  
ML51/ML54/ML56  
4.1.2.9 SOP20 Package  
ML51OB9AE Pin Function  
1
2
20  
19  
18  
VSS  
P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
INT0 / CLKO / T0 / PWM0_CH0 / P4.6  
VDD  
P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
nRESET  
3
CLKO / IC1 / SPI1_CLK / ACMP1_N1 / ADC_CH7 / P3.2  
IC2 / UART0_TXD / SPI1_MISO / ACMP1_P3 / ACMP0_P3 / ADC_CH6 / P3.1  
IC0 / UART0_RXD / SPI1_MOSI / P3.0  
4
17 P0.0 / SPI1_MOSI / UART0_RXD / PWM0_CH5  
5
16 P0.1 / SPI1_MISO / UART0_TXD / PWM0_CH4  
6
15 P0.2 / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
14 P0.3 / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2  
AVDD  
7
INT0 / T0 / UART2_TXD / PWM0_CH0 / I2C0_SCL / ADC_CH0 / P2.5  
INT1 / T1 / UART2_RXD / PWM0_CH1 / I2C0_SDA / ADC_CH1 / P2.4  
PWM0_BRAKE / PWM0_CH2 / UART1_TXD / I2C1_SCL / ADC_CH2 / P2.3  
P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
8
13  
12  
11  
9
P2.2 / ADC_CH3 / I2C1_SDA / UART1_RXD / PWM0_CH3  
10  
Figure 4.1-29 ML51OB9AE Multi Function Pin Assignment  
Pin ML51OB9AE Pin Function  
1
2
3
4
5
6
7
8
9
VSS  
P4.6 / PWM0_CH0 / T0 / CLKO / INT0  
VDD  
P3.2 / ADC_CH7 / ACMP1_N1 / SPI1_CLK / IC1 / CLKO  
P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / SPI1_MISO / UART0_TXD / IC2  
P3.0 / SPI1_MOSI / UART0_RXD / IC0  
AVDD  
P2.5 / ADC_CH0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0 / INT0  
P2.4 / ADC_CH1 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1  
10 P2.3 / ADC_CH2 / I2C1_SCL / UART1_TXD / PWM0_CH2 / PWM0_BRAKE  
11 P2.2 / ADC_CH3 / I2C1_SDA / UART1_RXD / PWM0_CH3  
12 P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
13 P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
14 P0.3 / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2  
15 P0.2 / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
16 P0.1 / SPI1_MISO / UART0_TXD / PWM0_CH4  
17 P0.0 / SPI1_MOSI / UART0_RXD / PWM0_CH5  
18 nRESET  
19 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
20 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
Sep. 1, 2020  
Page 66 of 164  
Rev 2.00  
ML51/ML54/ML56  
4.1.2.10 QFN20 Package  
ML51XB9AE Pin Function  
Top transparent view  
16  
17  
18  
19  
20  
10  
9
VSS  
INT0 / CLKO / T0 / PWM0_CH0 / P4.6  
VDD  
nRESET  
P0.0 / SPI1_MOSI / UART0_RXD / PWM0_CH5  
QFN  
20  
8
P0.1 / SPI1_MISO / UART0_TXD / PWM0_CH4  
7
IC2 / UART0_TXD / SPI1_MISO / ACMP1_P3 / ACMP0_P3 / ADC_CH6 / P3.1  
IC0 / UART0_RXD / SPI1_MOSI / P3.0  
P0.2 / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
P0.3 / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2  
N/C  
6
Figure 4.1-30 ML51XB9AE Multi Function Pin Assignment  
Pin ML51XB9AE Pin Function  
1
2
3
4
5
6
7
8
P2.5 / ADC_CH0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0 / INT0  
P2.4 / ADC_CH1 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1  
P2.3 / ADC_CH2 / I2C1_SCL / UART1_TXD / PWM0_CH2 / PWM0_BRAKE  
P2.2 / ADC_CH3 / I2C1_SDA / UART1_RXD / PWM0_CH3  
P2.1 / ADC_CH4 / UART2_TXD / I2C1_SCL / PWM0_CH4 / PWM0_BRAKE  
P0.3 / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2  
P0.2 / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
P0.1 / SPI1_MISO / UART0_TXD / PWM0_CH4  
Sep. 1, 2020  
Page 67 of 164  
Rev 2.00  
ML51/ML54/ML56  
Pin ML51XB9AE Pin Function  
P0.0 / SPI1_MOSI / UART0_RXD / PWM0_CH5  
9
10 nRESET  
11 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
12 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
13 P4.1 / UART2_TXD / I2C0_SCL / ACMP0_O  
14 P4.0 / UART2_RXD / I2C0_SDA / ACMP1_O / INT1  
15 P1.7 / UART0_RXD  
16 VSS  
17 P4.6 / PWM0_CH0 / T0 / CLKO / INT0  
18 VDD  
19 P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / SPI1_MISO / UART0_TXD / IC2  
20 P3.0 / SPI1_MOSI / UART0_RXD / IC0  
Sep. 1, 2020  
Page 68 of 164  
Rev 2.00  
ML51/ML54/ML56  
4.1.2.11 TSSOP14 Package  
ML51DB9AE Pin Function  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VSS  
P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
INT0 / CLKO / T0 / PWM0_CH0 / P4.6  
VDD  
P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
nRESET  
IC2 / UART0_TXD / SPI1_MISO / ACMP1_P3 / ACMP0_P3 / ADC_CH6 / P3.1  
IC0 / UART0_RXD / SPI1_MOSI / P3.0  
P0.2 / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
P0.3 / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2  
P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
INT0 / T0 / UART2_TXD / PWM0_CH0 / I2C0_SCL / ADC_CH0 / P2.5  
INT1 / T1 / UART2_RXD / PWM0_CH1 / I2C0_SDA / ADC_CH1 / P2.4  
8
Figure 4.1-31 ML51DB9AE Multi Function Pin Assignment  
Pin ML51DB9AE Pin Function  
1
2
3
4
5
6
7
8
9
VSS  
P4.6 / PWM0_CH0 / T0 / CLKO / INT0  
VDD  
P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / SPI1_MISO / UART0_TXD / IC2  
P3.0 / SPI1_MOSI / UART0_RXD / IC0  
P2.5 / ADC_CH0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0 / INT0  
P2.4 / ADC_CH1 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1  
P5.3 / UART0_TXD / I2C0_SCL / XT1_IN  
P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
10 P0.3 / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2  
11 P0.2 / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3  
12 nRESET  
13 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
14 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
Sep. 1, 2020  
Page 69 of 164  
Rev 2.00  
ML51/ML54/ML56  
4.1.2.12 MSOP10 Package  
ML51BB9AE Pin Function  
ICE_CLK / UART0_RXD / I2C1_SDA / UART1_RXD / P5.1  
1
2
3
4
5
10  
9
P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
VSS  
INT0 / CLKO / T0 / PWM0_CH0 / P4.6  
nRESET  
8
P0.0 / SPI1_MOSI / UART0_RXD / PWM0_CH5  
P0.1 / SPI1_MISO / UART0_TXD / PWM0_CH4  
P2.0 / ADC_CH5 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM0_BRAKE  
VDD  
7
PWM0_BRAKE / PWM0_CH2 / UART1_TXD / I2C1_SCL / ADC_CH2 / P2.3  
6
Figure 4.1-32 ML51BB9AE Pin Assignment  
Pin ML51BB9AE Pin Function  
1
2
3
4
5
6
7
8
9
P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
VSS  
P4.6 / PWM0_CH0 / T0 / CLKO / INT0  
VDD  
P2.3 / ADC_CH2 / I2C1_SCL / UART1_TXD / PWM0_CH2 / PWM0_BRAKE  
P2.0 / ADC_CH5 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM0_BRAKE  
P0.1 / SPI1_MISO / UART0_TXD / PWM0_CH4  
P0.0 / SPI1_MOSI / UART0_RXD / PWM0_CH5  
nRESET  
10 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
Sep. 1, 2020  
Page 70 of 164  
Rev 2.00  
ML51/ML54/ML56  
4.2 Pin Description  
4.2.1  
ML51/ML54/ML56 Series Pin Mapping  
ML54/ML56  
ML51  
Pin Number  
64  
48  
44  
64  
48  
33/32  
28  
20  
QFN20  
14  
10  
P2.6  
P2.5  
P2.4  
P2.3  
P2.2  
P2.1  
P2.0  
P1.3  
P1.2  
P1.1  
P1.0  
VLCD  
P3.7  
P5.7  
P5.5  
P5.4  
P5.3  
P5.2  
P3.5  
P3.4  
P0.7  
P0.6  
1
2
48  
1
2
3
4
5
6
7
8
9
44  
1
2
3
4
5
6
7
8
9
1
2
48  
1
1
2
3
4
5
6
12  
13  
14  
15  
16  
17  
8
9
1
2
3
4
5
6
7
3
3
2
4
4
3
10  
11  
5
6
5
5
4
6
6
5
7
7
6
8
8
7
9
9
8
10  
11  
12  
10  
11  
9
10  
10  
10  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
13  
14  
15  
16  
17  
18  
19  
20  
21  
11  
12  
13  
14  
11  
12  
13  
14  
11  
12  
13  
14  
7
8
9
18  
19  
12  
13  
8
9
10  
15  
16  
15  
16  
15  
16  
VSS  
VDD  
22  
23  
22  
23  
33  
P3.6  
P0.5  
24  
25  
26  
27  
28  
29  
30  
31  
32  
24  
25  
26  
27  
28  
29  
30  
31  
32  
17  
18  
19  
20  
21  
22  
23  
24  
17  
18  
19  
20  
21  
22  
23  
24  
P0.4  
P0.3  
17  
18  
19  
20  
11  
12  
13  
14  
15  
16  
20  
21  
22  
23  
14  
15  
16  
17  
6
7
8
9
10  
11  
P0.2  
P0.1  
7
8
P0.0  
P5.6  
nRESET  
21  
24  
18  
10  
12  
9
Sep. 1, 2020  
Page 71 of 164  
Rev 2.00  
ML51/ML54/ML56  
ML54/ML56  
48  
ML51  
Pin Number  
64  
44  
64  
48  
33/32  
28  
20  
QFN20  
14  
10  
P5.0  
P5.1  
P4.5  
P4.4  
P4.3  
P4.2  
P4.1  
P4.0  
P6.3  
P6.2  
P6.1  
P6.0  
P1.4  
P1.5  
P1.6  
P1.7  
VSS  
P4.6  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
25  
26  
27  
28  
29  
30  
31  
32  
22  
23  
24  
25  
26  
27  
28  
29  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
25  
26  
27  
28  
29  
30  
31  
32  
17  
18  
25  
26  
19  
20  
11  
12  
13  
14  
10  
1
19  
20  
27  
28  
13  
14  
33  
34  
35  
36  
37  
38  
30  
31  
32  
33  
34  
35  
33  
34  
35  
36  
37  
38  
21  
22  
23  
24  
25  
26  
1
2
3
4
5
6
15  
16  
17  
1
2
1
2
2
3
VDD  
51  
39  
36  
51  
39  
27  
7
3
18  
3
4
P4.7  
P3.3  
P3.2  
P3.1  
P3.0  
52  
53  
54  
55  
56  
40  
41  
42  
43  
44  
52  
53  
54  
55  
56  
40  
41  
42  
43  
44  
37  
38  
39  
40  
28  
29  
30  
31  
8
9
4
5
6
19  
20  
4
5
10  
AVDD  
VREF  
AVSS  
57  
58  
59  
39  
45  
46  
36  
41  
42  
57  
58  
59  
39  
45  
46  
27  
32  
7
11  
7
16  
P6.7  
P6.6  
P6.5  
P6.4  
P2.7  
60  
61  
62  
63  
64  
60  
61  
62  
63  
64  
47  
43  
47  
Sep. 1, 2020  
Page 72 of 164  
Rev 2.00  
ML51/ML54/ML56  
4.2.2  
ML51/ML54/ML56 Series Pin Functional Description  
As default all GPIO type is defined as input mode. User should setting the GPIO Mode by PxMx  
register.  
A: Analog suggest disable digial function O: output, I: input, I/O: bi-direction (Quasi)  
Group  
Pin Name  
ACMP0_N0  
Type  
Description  
Analog comparator 0 negative input 0 pin.  
Analog comparator 0 negative input 1 pin.  
Analog comparator 0 output pin.  
Analog comparator 0 positive input 0 pin.  
Analog comparator 0 positive input 1 pin.  
Analog comparator 0 positive input 2 pin.  
Analog comparator 0 positive input 3 pin.  
Analog comparator 1 negative input 0 pin.  
Analog comparator 1 negative input 1 pin.  
Analog comparator 1 output pin.  
Analog comparator 1 positive input 0 pin.  
Analog comparator 1 positive input 1 pin.  
Analog comparator 1 positive input 2 pin.  
Analog comparator 1 positive input 3 pin.  
ADC_ channel analog input.  
A
ACMP0_N1  
ACMP0_O  
ACMP0_P0  
ACMP0_P1  
ACMP0_P2  
ACMP0_P3  
ACMP1_N0  
ACMP1_N1  
ACMP1_O  
ACMP1_P0  
ACMP1_P1  
ACMP1_P2  
ACMP1_P3  
ADC_CH0  
ADC_CH1  
ADC_CH2  
ADC_CH3  
ADC_CH4  
ADC_CH5  
ADC_CH6  
ADC_CH7  
ADC_CH10  
ADC_CH11  
ADC_CH12  
ADC_CH13  
ADC_CH14  
ADC_CH15  
CLKO  
O
ACMP0  
A
A
O
ACMP1  
A
ADC_ channel analog input.  
ADC_ channel analog input.  
ADC_ channel analog input.  
ADC_ channel analog input.  
ADC_ channel analog input.  
ADC_ channel analog input.  
ADC  
A
ADC_ channel analog input.  
ADC_ channel analog input.  
ADC_ channel analog input.  
ADC_ channel analog input.  
ADC_ channel analog input.  
ADC_ channel analog input.  
ADC_ channel analog input.  
CLKO  
I2C0  
O
Clock Out  
I2C0_SCL  
I/O  
I2C0 clock pin.  
Sep. 1, 2020  
Page 73 of 164  
Rev 2.00  
ML51/ML54/ML56  
Group  
Pin Name  
I2C0_SDA  
Type  
I/O  
Description  
I2C0 data input/output pin.  
I2C1 clock pin.  
I2C1_SCL  
I2C1_SDA  
IC0  
I/O  
I2C1  
I/O  
I2C1 data input/output pin.  
Input Capture channel 0  
Input Capture channel 1  
Input Capture channel 2  
IC0  
IC1  
IC2  
I/O  
IC1  
I/O  
IC2  
I/O  
Serial wired debugger clock pin.  
ICE_CLK  
ICE_DAT  
I
Note: It is recommended to use 100 kΩ pull-up resistor on  
ICE_CLK pin  
ICE  
Serial wired debugger data pin.  
O
Note: It is recommended to use 100 kΩ pull-up resistor on  
ICE_DAT pin  
INT0  
INT1  
INT0  
I
External interrupt 0 input pin.  
External interrupt 1 input pin.  
LCD Common 0 output.  
LCD Common 1 output.  
LCD Common 2 output.  
LCD Common 3 output.  
LCD Common 4 output.  
LCD Common 5 output.  
LCD Common 6 output.  
LCD Common 7 output.  
LCD external capacitor pin of charge pump circuit.  
LCD external capacitor pin of charge pump circuit.  
LCD segment 0 output  
INT1  
I
LCD_COM0  
LCD_COM1  
LCD_COM2  
LCD_COM3  
LCD_COM4  
LCD_COM5  
LCD_COM6  
LCD_COM7  
LCD_DH1  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
LCD_DH2  
LCD_SEG0  
LCD_SEG1  
LCD_SEG2  
LCD_SEG3  
LCD_SEG4  
LCD_SEG5  
LCD_SEG6  
LCD_SEG7  
LCD_SEG8  
LCD_SEG9  
LCD_SEG10  
LCD_SEG11  
LCD  
LCD segment 1 output  
LCD segment 2 output  
LCD segment 3 output  
LCD segment 4 output  
LCD segment 5 output  
LCD segment 6 output  
LCD segment 7 output  
LCD segment 8 output  
LCD segment 9 output  
LCD segment 10 output  
LCD segment 11 output  
Sep. 1, 2020  
Page 74 of 164  
Rev 2.00  
ML51/ML54/ML56  
Group  
Pin Name  
LCD_SEG12  
Type  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
Description  
LCD segment 12 output  
LCD segment 13 output  
LCD segment 14 output  
LCD segment 15 output  
LCD segment 16 output  
LCD segment 17 output  
LCD segment 18 output  
LCD segment 19 output  
LCD segment 20 output  
LCD segment 21 output  
LCD segment 22 output  
LCD segment 23 output  
LCD segment 24 output  
LCD segment 25 output  
LCD segment 26 output  
LCD segment 27 output  
LCD segment 28 output  
LCD segment 29 output  
LCD segment 30 output  
LCD segment 31 output  
LCD_SEG13  
LCD_SEG14  
LCD_SEG15  
LCD_SEG16  
LCD_SEG17  
LCD_SEG18  
LCD_SEG19  
LCD_SEG20  
LCD_SEG21  
LCD_SEG22  
LCD_SEG23  
LCD_SEG24  
LCD_SEG25  
LCD_SEG26  
LCD_SEG27  
LCD_SEG28  
LCD_SEG29  
LCD_SEG30  
LCD_SEG31  
LCD_V1  
Input pin of the 1st most positive LCD level.  
Input pin of the 2nd most positive LCD level.  
Input pin of the 3rd most positive LCD level.  
LCD_V2  
I
LCD_V3  
I
External reset input: active LOW, with an internal pull-up. Set this  
pin low reset to initial state.  
nRESET  
nRESET  
I
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF  
capacitor on nRESET pin.  
PWM0_BRAKE  
PWM0_CH0  
PWM0_CH1  
PWM0_CH2  
PWM0_CH3  
PWM0_CH4  
PWM0_CH5  
PWM1_CH0  
PWM1_CH1  
I
PWM0 Brake input pin.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PWM0 channel 0 output/capture input.  
PWM0 channel 1 output/capture input.  
PWM0 channel 2 output/capture input.  
PWM0 channel 3 output/capture input.  
PWM0 channel 4 output/capture input.  
PWM0 channel 5 output/capture input.  
PWM1 channel 0 output/capture input.  
PWM1 channel 1 output/capture input.  
PWM0  
PWM1  
Sep. 1, 2020  
Page 75 of 164  
Rev 2.00  
ML51/ML54/ML56  
Group  
Pin Name  
PWM2_CH0  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Description  
PWM2 channel 0 output/capture input.  
PWM2 channel 1 output/capture input.  
PWM3 channel 0 output/capture input.  
PWM3 channel 1 output/capture input.  
SPI0 serial clock pin.  
PWM2  
PWM2_CH1  
PWM3_CH0  
PWM3_CH1  
SPI0_CLK  
SPI0_MISO  
SPI0_MOSI  
SPI0_SS  
SPI1_CLK  
SPI1_MISO  
SPI1_MOSI  
SPI1_SS  
STADC  
T0  
PWM3  
SPI0  
SPI0 MISO (Master In, Slave Out) pin.  
SPI0 MOSI (Master Out, Slave In) pin.  
SPI0 slave select pin.  
SPI1 serial clock pin.  
SPI1 MISO (Master In, Slave Out) pin.  
SPI1 MOSI (Master Out, Slave In) pin.  
SPI1 slave select pin.  
SPI1  
STADC  
T0  
ADC external trigger input.  
External count input to Timer/Counter 0 or its toggle output.  
External count input to Timer/Counter 1 or its toggle output.  
Touch Key 0.  
I/O  
I/O  
A
T1  
T1  
TK0  
TK1  
A
Touch Key 1.  
TK2  
A
Touch Key 2.  
TK3  
A
Touch Key 3.  
TK4  
A
Touch Key 4.  
TK5  
A
Touch Key 5.  
TK6  
A
Touch Key 6.  
TK  
TK7  
A
Touch Key 7.  
TK8  
A
Touch Key 8.  
TK9  
A
Touch Key 9.  
TK10  
A
Touch Key 10.  
TK11  
A
Touch Key 11.  
TK12  
A
Touch Key 12.  
TK13  
A
Touch Key 13.  
TK14  
A
Touch Key 14.  
UART0_RXD  
UART0_TXD  
UART1_RXD  
UART1_TXD  
UART2_RXD  
I
UART0 data receiver input pin.  
UART0 data transmitter output pin.  
UART1 data receiver input pin.  
UART1 data transmitter output pin.  
UART2 data receiver input pin.  
UART0  
O
I
UART1  
UART2  
O
I
Sep. 1, 2020  
Page 76 of 164  
Rev 2.00  
ML51/ML54/ML56  
Group  
Pin Name  
UART2_TXD  
Type  
Description  
UART2 data transmitter output pin.  
O
I
UART3_RXD  
UART3_TXD  
UART3 data receiver input pin.  
UART3 data transmitter output pin.  
ADC reference voltage input.  
UART3  
VREF  
O
VREF  
A
Note: This pin needs to be connected with a 1uF capacitor when  
use internal voltage reference output.  
X32_IN  
I
External 32.768 kHz crystal input pin.  
X32  
XT1  
X32_OUT  
XT1_IN  
O
I
External 32.768 kHz crystal output pin.  
External 4~24 MHz (high speed) crystal input pin.  
External 4~24 MHz (high speed) crystal output pin.  
XT1_OUT  
O
Sep. 1, 2020  
Page 77 of 164  
Rev 2.00  
ML51/ML54/ML56  
5 BLOCK DIAGRAM  
5.1 ML51/ML54/ML56 Series Full Function Block  
1T High  
Performance  
8051 Core  
Power  
Management  
VDD  
VSS  
POR / LVR / BOD  
T0  
T1  
Max. 64KB  
APROM Flash  
Memory  
Access  
Timer 0/1  
Timer 2 with  
Input Capture  
3
ICAP0~2  
Max. 4KB  
LDROM Flash  
Timer 3  
Max. Bytes  
Data Flash  
(page: 128B)  
Digital  
Peripheral  
Self Wake-up  
Timer  
256 bytes  
Internal RAM  
Watchdog Timer  
UART0_TXD  
UART0_RXD  
UART1_TXD  
UART1_RXD  
UART2_TXD  
UART2_RXD  
UART3_TXD  
UART3_RXD  
I2C0_SDA  
I2C0_SCL  
I2C1_SDA  
I2C1_SCL  
4 Kbytes XRAM  
(Auxiliary RAM)  
Serial Ports  
(UART 0/1)  
Smart Card/  
Series Ports  
(UART 2/3)  
PDMA with CRC  
8
8
P0[7:0]  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
I2C0/1  
SPI0  
SPI1  
P1[7:0]  
P2[7:0]  
SPI0_MOSI  
SPI0_MISO  
SPI0_SS  
SPI0_SCK  
SPI1_MOSI  
SPI1_MISO  
8
GPIO  
SPI1_SS  
SPI1_SCK  
8
8
P3[7:0]  
P4[7:0]  
6
PWM0CH0~5  
PWM1/2/3CH0~1  
FB0  
6
PWM0/1/2/3  
RTC  
8
8
P5[7:0]  
P6[7:0]  
15  
AIN0~7, 9~15  
STADC  
12-bit ADC  
Analog  
Peripheral  
8
Any Port  
GPIO Interrupt  
Internal VREF  
External VREF  
INT0  
INT1  
External Interrupt  
ACMP0_P  
ACMP0_N  
ACMP1_P  
ACMP1_N  
ACMP 0/1  
LCD  
4/6/8  
15  
COM  
Touch key  
32/30/28  
TK0~14  
SEG  
System Clock  
24 MHz Internal  
RC Oscillator  
(HIRC)  
4-24 MHz  
Oscillator Circuit  
(HXT)  
XIN  
XOUT  
System Clock  
Source  
Clock Divider  
38.4 kHz Internal  
RC Oscillator  
(LIRC)  
32768 Hz  
Oscillator Circuit  
(LXT)  
X32IN  
X32OUT  
Figure 5.1-1 Functional Block Diagram  
Sep. 1, 2020  
Page 78 of 164  
Rev 2.00  
ML51/ML54/ML56  
6 FUNCTIONAL DESCRIPTION  
6.1 Memory Organization  
A standard 80C51 based microcontroller divides the memory into two different sections, Program  
Memory and Data Memory. The Program Memory is used to store the instruction codes, whereas the  
Data Memory is used to store data or variations during the program execution.  
The Data Memory occupies a separate address space from Program Memory. In ML51/ML54/ML56  
Series, there are 256 bytes of internal scratch-pad RAM. For many applications those need more  
internal RAM, the ML51/ML54/ML56 Series provides another on-chip 4 Kbytes of RAM, which is called  
XRAM, accessed by MOVX instruction.  
The whole embedded Flash, functioning as Program Memory, is divided into three blocks: Application  
ROM (APROM) normally for User Code, Loader ROM (LDROM) normally for Boot Code, and CONFIG  
bytes for hardware initialization. Actually, APROM and LDROM function in the same way but have  
different size. Each block is accumulated page by page and the page size is 128 bytes. The Flash  
control unit supports Erase, Program, and Read modes. The external writer tools though specific I/O  
pins, In-Application-Programming (IAP), or In-System-Programming (ISP) can both perform these  
modes.  
Sep. 1, 2020  
Page 79 of 164  
Rev 2.00  
ML51/ML54/ML56  
6.2 System Manager  
The ML51/ML54/ML56 Series has a wide variety of clock sources and selection features that allow it  
to be used in a wide range of applications while maximizing performance and minimizing power  
consumption. The ML51/ML54/ML56 Series provides five options of the system clock sources  
including internal oscillator, crystal/resonator, or external clock from XIN pin via software. The  
ML51/ML54/ML56 Series is embedded with two internal oscillators: one 38.4 kHz low-speed and one  
24 MHz high-speed, which is factory trimmed to ±2% under all conditions. A clock divider CKDIV is  
also available on ML51/ML54/ML56 Series for adjustment of the flexibility between power  
consumption and operating performance.  
32.768 kHz  
Oscillating  
Circuit  
FLXT  
X32OUT  
X32IN  
111  
110  
FHXT  
4~24 MHz  
Oscillating  
Circuit  
Flash  
Memory  
XOUT  
XIN  
10X  
01X  
00X  
FECLK  
Clock  
Filter  
Clock  
Divider  
FOSC  
FSYS  
CPU  
FHIRC  
24 MHz Internal  
Oscillator[1]  
CKDIV  
Peripherals  
CLO  
OSC[2:0]  
(CKSWT[2:0])  
38.4 kHz  
Internal  
Oscillator  
FLIRC  
Watchdog  
Timer  
CLOEN  
(CKCON.1)  
Self  
Wake-up  
Timer  
0
1
WKTCK  
(WKCON.5)  
[1] Default system clock source after power-on  
Figure 6.2-1 Clock System Block Diagram  
Sep. 1, 2020  
Page 80 of 164  
Rev 2.00  
ML51/ML54/ML56  
6.3  
Flash Memory Control  
6.3.1  
In-application-programming (IAP)  
Unlike RAM’s real-time operation, to update Flash data often takes long time. Furthermore, it is a quite  
complex timing procedure to erase, program, or read Flash data. The ML51/ML54/ML56 Series  
carried out the Flash operation with convenient mechanism to help user re-programming the Flash  
content by In-Application-Programming (IAP). IAP is an in-circuit electrical erasure and programming  
method through software.  
After IAP enabling by setting IAPEN (CHPCON.0 with TA protected) and setting the enable bit in  
IAPUEN that allows the target block to be updated, user can easily fill the 16-bit target address in  
IAPAH and IAPAL, data in IAPFD, and command in IAPCN. Then the IAP is ready to begin by setting  
a triggering bit IAPGO (IAPTRG.0). Note that IAPTRG is also TA protected. At this moment, the CPU  
holds the Program Counter and the built-in IAP automation takes over to control the internal charge-  
pump for high voltage and the detail signal timing. The erase and program time is internally controlled  
disregard of the operating voltage and frequency. Nominally, a page-erase time is 5 ms and a byte-  
program time is 23.5 μs. After IAP action completed, the Program Counter continues to run the  
following instructions. The IAPGO bit will be automatically cleared. An IAP failure flag, IAPFF  
(CHPCON.6), can be check whether the previous IAP operation was successful or not. Through this  
progress, user can easily erase, program, and verify the Flash Memory by just taking care of pure  
software.  
6.3.2  
In-Circuit-Programming (ICP)  
The Flash Memory can be programmed by “In-Circuit-Programming” (ICP). If the product is just under  
development or the end product needs firmware updating in the hand of an end customer, the  
hardware programming mode will make repeated programming difficult and inconvenient. ICP method  
makes it easy and possible without removing the microcontroller from the system. ICP mode also  
allows customers to manufacture circuit boards with un-programmed devices. Programming can be  
done after the assembly process allowing the device to be programmed with the most recent firmware  
or a customized firmware.  
̅̅̅̅̅̅  
̅̅̅̅̅̅  
There are three signal pins, RST, ICPDA, and ICPCK, involved in ICP function. RST is used to enter  
or exit ICP mode. ICPDA is the data input and output pin. ICPCK is the clock input pin, which  
synchronizes the data shifted in to or out from MCU under programming. User should leave these  
three pins plus VDD and GND pins on the circuit board to make ICP possible.  
Nuvoton provides ICP tool for ML51/ML54/ML56 Series, which enables user to easily perform ICP  
through Nuvoton ICP programmer. The ICP programmer developed by Nuvoton has been optimized  
according to the electric characteristics of MCU. It also satisfies the stability and efficiency during  
production progress. For more details, please visit Nuvoton 8-bit Microcontroller website: Nuvoton  
80C51 Microcontroller Technical Support.  
6.3.3  
On-Chip-Debugger (ICE)  
The ML51/ML54/ML56 Series is embedded in an on-chip-debugger (OCD) providing developers with a  
low cost method for debugging user code, which is available on each package. The OCD gives debug  
capability of complete program flow control with eight hardware address breakpoints, single step, free  
running, and non-intrusive commands for memory access. The OCD system does not occupy any  
locations in the memory map and does not share any on-chip peripherals.  
Sep. 1, 2020  
Page 81 of 164  
Rev 2.00  
 
ML51/ML54/ML56  
6.4 GPIO Port Structure and Operation  
6.4.1 GPIO Mode  
The ML51/ML54/ML56 Series has a maximum of 56 general purpose I/O pins which 40 bit-  
addressable general I/O pins grouped as 5 ports, P0 to P4, and 16 general I/O pins grouped as P5  
and P6. Each port has its port control register (Px register). The writing and reading of a port control  
register have different meanings. A write to port control register sets the port output latch logic value,  
where as a read gets the port pin logic state. These four modes are quasi-bidirectional (standard 8051  
port structure), push-pull, input-only, and open-drain modes. Each port spends two special function  
registers PxM1 and PxM2 to select the I/O mode of port Px. The list below illustrates how to select the  
I/O mode of Px.n. Note that the default configuration of is input-only (high-impedance) after any reset.  
PnM1.X[1]  
PnM2.X[1]  
I/O Type  
0
0
1
0
1
0
1
Quasi-bidirectional  
Push-pull  
Input-only (high-impedance)  
Open-drain  
1
Note: N = 0~5, x = 0~7  
Table 6.4-1 Configuration for Different I/O Modes  
All I/O pins can be selected as TTL level inputs or Schmitt triggered inputs by selecting corresponding  
bit in PxS register. Schmitt triggered input has better glitch suppression capability. All I/O pins also  
have bit-controllable, slew rate select ability via software. The Register Description are PxSR. By  
default, the slew rate is slow. If user would like to increase the I/O output speed, setting the  
corresponding bit in PxSR, the slew rate is selected in a faster level.  
Sep. 1, 2020  
Page 82 of 164  
Rev 2.00  
ML51/ML54/ML56  
6.5 Timer  
6.5.1 Overview  
ML51/ML54/ML56 Series provides following 16-bit Timer. Two 16-bit Timers/Counters 0 and 1  
compatible with standard 8051. One 16-bit Timer 2 with three-channel input capture module and 9  
input pin can be selected. One 16-bit auto-reload Timer 3, which can be the baud rate clock source of  
UARTs.  
Sep. 1, 2020  
Page 83 of 164  
Rev 2.00  
ML51/ML54/ML56  
6.6 Watchdog Timer (WDT)  
The ML51/ML54/ML56 Series provides one Watchdog Timer (WDT). It can be configured as a time-  
out reset timer to reset whole device. Once the device runs in an abnormal status or hangs up by  
outward interference, a WDT reset recover the system. It provides a system monitor, which improves  
the reliability of the system. Therefore, WDT is especially useful for system that is susceptible to noise,  
power glitches, or electrostatic discharge. The WDT also can be configured as a general purpose  
timer, of which the periodic interrupt serves as an event timer or a durational system supervisor in a  
monitoring system, which is able to operate during Idle or Power-down mode. WDTEN[3:0]  
(CONFIG4[7:4]) initialize the WDT to operate as a time-out reset timer or a general purpose timer.  
1
The Watchdog time-out interval is determined by the formula  
, where  
× 64  
F
LIRC × clockdividerscalar  
FLIRC is the frequency of internal 38.4 kHz oscillator. The following table shows an example of the  
Watchdog time-out interval with different pre-scales.  
WDPS.3  
WDPS.2  
WDPS.1  
WDPS.0  
Clock Divider Scale  
WDT Time-Out Timing[1]  
1.66 ms  
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1/1  
1/4  
6.64 ms  
1/8  
13.31 ms  
1/16  
26.62 ms  
1/32  
53.25 ms  
1/64  
106.66 ms  
213.12 ms  
426.64 ms  
853.28ms  
1/128  
1/256  
1/512  
1/1024  
1/2048  
1/2048  
1706.56ms  
3413.12ms  
3413.12ms  
Others  
Note: This is an approximate value since the deviation of LIRC.  
Table 6.6-1 Watchdog Timer-out Interval Under Different Pre-scalars  
Since the limitation of the maxima vaule of WDT timer delay. To wake up ML51/ML54/ML56 Series  
from idle mode or power down mode suggest use WKT function see Chapter 6.7 .  
The WDT is implemented with a set of divider that divides the low-speed internal oscillator clock  
nominal 38.4 kHz. The divider output is selectable and determines the time-out interval. When the  
time-out interval is fulfilled, it will wake the system up from Idle or Power-down mode and an interrupt  
event will occur if WDT interrupt is enabled. If WDT is initialized as a time-out reset timer, a system  
reset will occur after a period of delay if without any software action.  
Sep. 1, 2020  
Page 84 of 164  
Rev 2.00  
ML51/ML54/ML56  
6.7 Self Wake-up Timer (WKT)  
6.7.1 Overview  
The ML51/ML54/ML56 Series has a dedicated Self Wake-up Timer (WKT), which serves for a periodic  
wake-up timer in low power mode or for general purpose timer. WKT remains counting in Idle or  
Power-down mode. When WKT is being used as a wake-up timer, a start of WKT can occur just prior  
to entering a power management mode. WKT has two clock source, internal LIRC 38.4 kHz or LXT  
32.768 kHz. Note that the system clock frequency must be twice over WKT clock. If WKT starts  
counting, the selected clock source will remain active once the device enters Idle or Power-down  
mode. Note that the selected clock source of WKT will not automatically enabled along with WKT  
configuration. User should manually enable the selected clock source and waiting for stability to  
ensure a proper operation.  
The WKT is implemented simply as a 16-bit auto-reload, up-counting timer with pre-scale 1/1 to  
1/2048 selected by WKPS[2:0] (WKCON[2:0]). User fills the reload value into RWK register to  
determine its overflow rate. The RWK can reloadable when counter is count to overflow. The CWK  
can read current count value. The WKTR (WKCON.3) can be set to start counting. When the counter  
rolls over FFH, WKTF (WKCON.4) is set as 1 and a reload is generated and causes the contents of  
the RWK register to be reloaded into the internal 8-bit counter. If EWKT (EIE1.2) is set as 1, WKT  
interrupt service routine will be served.  
Sep. 1, 2020  
Page 85 of 164  
Rev 2.00  
ML51/ML54/ML56  
6.8 Pulse Width Modulated (PWM)  
6.8.1 Overview  
The PWM (Pulse Width Modulation) signal is a useful control solution in wide application field. It can  
used on motor driving, fan control, backlight brightness tuning, LED light dimming, or simulating as a  
simple digital to analog converter output through a low pass filter circuit.  
The ML51/ML54/ML56 Series PWM0 is especially designed for motor control by providing three pairs,  
maximum 16-bit resolution of PWM0 output with programmable period and duty. The architecture  
makes user easy to drive the one-phase or three-phase brushless DC motor (BLDC), or three-phase  
AC induction motor. Each of six PWM can be configured as one of independent mode, complementary  
mode, or synchronous mode. If the complementary mode is used, a programmable dead-time  
insertion is available to protect MOS turn-on simultaneously. The PWM waveform can be edge-aligned  
or center-aligned with variable interrupt points.  
The ML51/ML54/ML56 Series PWM1/2/3 provide individual configurable period and duty. maximum  
16-bit resolution output. Each of two PWM1/2/3 can be configured as one of independent mode,  
complementary mode, or synchronous mode.The PWM1/2/3 waveform can be edge-aligned or center-  
aligned with variable interrupt points.  
6.8.2  
Features  
Up To 12 output pins can be selected  
Supports maximum clock source frequency up to 24 MHz  
Supports up to Three PWM modules, each module provides 6 output channels.  
Supports independent mode for PWM output  
Supports complementary mode for 3 complementary paired PWM output channels  
Dead-time insertion with 8-bit resolution  
Supports 16-bit resolution PWM counter  
Supports mask function and tri-state enable for each PWM pin  
Supports brake function  
Supports trigger ADC on the following events  
Sep. 1, 2020  
Page 86 of 164  
Rev 2.00  
ML51/ML54/ML56  
6.9 Serial Port (UART0 & UART1)  
6.9.1 Overview  
The ML51/ML54/ML56 Series includes two enhanced full duplex serial ports enhanced with automatic  
address recognition and framing error detection. As control bits of these two serial ports are  
implemented the same. Generally speaking, in the following contents, there will not be any reference  
to serial port 1, but only to serial port 0.  
Each serial port supports one synchronous communication mode, Mode 0, and three modes of full  
duplex UART (Universal Asynchronous Receiver and Transmitter), Mode 1, 2, and 3. This means it  
can transmit and receive simultaneously. The serial port is also receiving-buffered, meaning it can  
commence reception of a second byte before a previously received byte has been read from the  
register. The receiving and transmitting registers are both accessed at SBUF. Writing to SBUF loads  
the transmitting register, and reading SBUF accesses a physically separate receiving register. There  
are four operation modes in serial port. In all four modes, transmission initiates by any instruction that  
uses SBUF as a destination register.  
6.9.2  
Features  
Supports up to 2 UARTs: UART0, UART1  
Supports 2 Smart Card configuration as UART function as UART2 and UART3.  
UART baud rate clock from HIRC or HXT.  
Full-duplex asynchronous communications  
Programmable 9th bit.  
TXD and RXD pins of UART0 exchangeable via software.  
Sep. 1, 2020  
Page 87 of 164  
Rev 2.00  
ML51/ML54/ML56  
6.10 Smart Card Interface (SC)  
6.10.1 Overview  
The ML51/ML54/ML56 Series provides Smart Card Interface controller (SC controller) with  
asynchronous protocal based on ISO/IEC 7816-3 standard. Software controls GPIO pins as the  
smartcard reset function and card detection function. This controller also provides UART emulation for  
high precision baud rate communication.  
6.10.2 Features  
ISO 7816-3 T = 0, T = 1 compliant  
Programmable transmission clock frequency  
Programmable extra guard time selection  
Supports auto inverse convention function  
Supports UART mode  
Full duplex, asynchronous communications  
Supports programmable baud rate generator for each channel  
Programmable transmitting data delay time between the last stop bit leaving the TX-FIFO  
and the de-assertion by setting SCnEGT register  
Programmable even, odd or no parity bit generation and detection  
Programmable stop bit, 1 or 2 stop bit generation  
Sep. 1, 2020  
Page 88 of 164  
Rev 2.00  
ML51/ML54/ML56  
6.11 Serial Peripheral Interface (SPI)  
6.11.1 Overview  
The ML51/ML54/ML56 Series provides two Serial Peripheral Interface (SPI) block to support high-  
speed serial communication. SPI is a full-duplex, high-speed, synchronous communication bus  
between microcontrollers or other peripheral devices such as serial EEPROM, LCD driver, or D/A  
converter. It provides either Master or Slave mode, high-speed rate up to FSYS/4, transfer complete and  
write collision flag. For a multi-master system, SPI supports Master Mode Fault to protect a multi-  
master conflict.  
6.11.2 Features  
2 sets of SPI devices  
Supports Master or Slave mode operation  
Supports MSB first or LSB first transfer sequence  
Slave mode up to 12 Mhz  
Sep. 1, 2020  
Page 89 of 164  
Rev 2.00  
ML51/ML54/ML56  
6.12 Inter-Integrated Circuit (I2C)  
6.12.1 Overview  
The ML51/ML54/ML56 Series provides two Inter-Integrated Circuit (I2C) bus to serves as an serial  
interface between the microcontrollers and the I2C devices such as EEPROM, LCD module,  
temperature sensor, and so on. The I2C bus used two wires design (a serial data line SDA and a serial  
clock line SCL) to transfer information between devices.  
The I2C bus uses bi-directional data transfer between masters and slaves. There is no central master  
and the multi-master system is allowed by arbitration between simultaneously transmitting masters.  
The serial clock synchronization allows devices with different bit rates to communicate via one serial  
bus. The I2C bus supports four transfer modes including master transmitter, master receiver, slave  
receiver, and slave transmitter. The I2C interface only supports 7-bit addressing mode. A special mode  
General Call is also available. The I2C can meet both standard (up to 100kbps) and fast (up to 400k  
bps) speeds.  
6.12.2 Features  
2 sets of I2C devices  
Master/Slave mode  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
7-bit addressing mode  
Standard mode (100 kbps) and Fast mode (400 kbps).  
Supports 8-bit time-out counter requesting the I2C interrupt if the I2C bus hangs up and timer-out  
counter overflows  
Multiple address recognition (four slave addresses with mask option)  
Supports hold time programmable  
Sep. 1, 2020  
Page 90 of 164  
Rev 2.00  
ML51/ML54/ML56  
6.13 12-bit Analog-to-digital Converter (ADC)  
6.13.1 Overview  
The ML51/ML54/ML56 Series is embedded with a 12-bit SAR ADC. The ADC (analog-to-digital  
converter) allows conversion of an analog input signal to a 12-bit binary representation of that signal.  
The ML51/ML54/ML56 Series is selected as 8-channel inputs in single end mode. The internal band-  
gap voltage 0.814 V also can be the internal ADC input. The analog input, multiplexed into one sample  
and hold circuit, charges a sample and hold capacitor. The output of the sample and hold capacitor is  
the input into the converter. The converter then generates a digital result of this analog level via  
successive approximation and stores the result in the result registers. The ADC controller also  
supports DMA (direct memory access) function for ADC continuous conversion and storage result  
data into XRAM no need special enable PDMA module.  
Sep. 1, 2020  
Page 91 of 164  
Rev 2.00  
ML51/ML54/ML56  
6.14 Voltage Reference (VREF)  
The VREF pin is for analog multiplexer, such as ADC, ACMP. It default be used as an external  
source(set ENVRF = 0). It also could be configurable as on-chip reference voltage generator (VREF_IN  
)
by setting ENVRF = 1. The output voltage is selectable by setting VRFSEL[2:0]. The maximum load of  
the VREF_IN must be less than 200 uA to AVSS. Set pre-load is to reduce stable time of VREF_IN. At first  
enable VREF_IN and turn on pre-load at the same time, the minimum stable time of pre-load on the  
VREF_IN must be greater than 3 ms. After the VREF_IN stable, user should be turn off pre-load to avoid  
any interference on analog multiplexer. Pre-load is only for internal VREF use. For detailed electrical  
characteristics  
Sep. 1, 2020  
Page 92 of 164  
Rev 2.00  
ML51/ML54/ML56  
6.15 Analog Comparator Controller (ACMP)  
6.15.1 Overview  
The ML51/ML54/ML56 Series contains two comparators. The comparator output is logic 1 when  
positive input is greater than negative input; otherwise, the output is 0. The comparator can be  
configured to generate an interrupt when the comparator output value changes.  
6.15.2 Feature  
Analog input voltage range: 0 ~ AVDD(voltage of AVDD pin)  
Supports hysteresis function  
Supports wake-up function  
Selectable input sources of negative input  
Comparator ACMP0 supports  
4 positive source  
P2.5 (ACMPn_P0)  
P2.3 (ACMPn_P1)  
P2.1 (ACMPn_P2)  
P3.1 (ACMPn_P3)  
4 negative sources  
P2.4 (ACMP0_N0)  
Comparator Reference Voltage (CRV)  
VBG (BANDGAP voltage)  
P2.0 (ACMP0_N1)  
Comparator ACMP1 supports  
4 positive source  
P2.5 (ACMPn_P0)  
P2.3 (ACMPn_P1)  
P2.1 (ACMPn_P2)  
P3.1 (ACMPn_P3)  
4 negative sources  
P2.2 (ACMP1_N0)  
Comparator Reference Voltage (CRV)  
VBG (BANDGAP voltage)  
P3.2 (ACMP1_N1)  
Sep. 1, 2020  
Page 93 of 164  
Rev 2.00  
ML51/ML54/ML56  
6.16 PDMA Controller (PDMA)  
6.16.1 Overview  
The ML51/ML54/ML56 Series provides peripheral direct memory access (PDMA) controller. The  
PDMA controller is used to provide high-speed data transfer between memory and peripherals or  
between memory and memory. The PDMA controller can transfer data from one address to another  
without CPU intervention. This has the benefit of reducing the workload of CPU and keeps CPU  
resources free for other applications.  
6.16.2 Feature  
Supports transfer data width of 8 bits  
Supports software and SPI and SMC/UART request  
Supports source and destination address increment size can be byte  
Supports transfer done and half done interrupt  
Supports using PDMA to write data to perform CRC operation  
Sep. 1, 2020  
Page 94 of 164  
Rev 2.00  
ML51/ML54/ML56  
6.17 LCD Driver  
6.17.1 Overview  
The Liquid Crystal Displays (LCD) panel is widely used to meet the display need in applications. The  
ML54/ML56 series is equipped with LCD driver that can directly drive the LCD panel with 4 COM x 32  
SEG , 6 COM x 30 SEG or 8 COM x 28 SEG. Use the corresponding COM and SEM according to the  
definition of multiple function pin. The LCD driver supports 1/4 duty, 1/6 duty, or 1/8 duty. The driving  
voltage supports 1/2 bias, 1/3 bias or 1/4 bias with waveform type A or Type B. The source of LCD  
clock is based on the choice of LIRC or LXT. The LCD display can keep display on or off during chip in  
power-down mode. The LCD power supply VLCD source is selectable from internal charge pump,  
external VLCD pin or analog power AVDD.  
6.17.2 Features  
1.8V to 5.5V LCD operating voltage.  
Selectable LCD clock source from LIRC or LXT  
1/2, 1/3, 1/4 bias selectable  
Maximum 4 COM x 32 SEG, 6 COM x 30 SEG, 8 COM x 28 SEG  
Supports buffer mode for high current driving  
Support enhaced resistor mode for low power application  
Support external VLCD source or AVDD as LCD voltage source.  
Support programmable internal charge pump circuit for LCD voltage level is higher or lower than  
VDD application.  
Support blink function.  
Suppot display on or off during chip in power down mode  
Sep. 1, 2020  
Page 95 of 164  
Rev 2.00  
ML51/ML54/ML56  
6.18 Real Time Clock (RTC)  
6.18.1 Overview  
The Real Time Clock (RTC) controller provides the real time and calendar message. The RTC offers  
programmable time tick and alarm match interrupts. The data format of time and calendar messages  
are expressed in BCD format. A digital frequency compensation feature is available to compensate  
external crystal oscillator frequency accuracy.  
6.18.2 Features  
Supports real time counter and calendar counter for RTC time and calendar check.  
Supports alarm time and calendar settings  
Supports alarm time and calendar mask enable settings.  
Selectable 12-hour or 24-hour time scale setting.  
Supports Leap Year indication setting.  
Supports Day of the Week counter setting.  
Frequency of RTC clock source compensate by RTCFREQADJ0/1 register.  
All time and calendar message expressed in BCD format.  
Supports periodic RTC Time Tick interrupt with 8 period interval options 1/128, 1/64, 1/32,  
1/16, 1/8, 1/4, 1/2 and 1 second.  
Supports RTC Time Tick and Alarm Match interrupt.  
Supports chip wake-up from Idle or Power-down mode while a RTC interrupt signal is  
generated.  
Sep. 1, 2020  
Page 96 of 164  
Rev 2.00  
ML51/ML54/ML56  
6.19 Touch Key (TK)  
6.19.1 Overview  
The capacitive touch key sensing controller supports several programmable sensitivity levels for  
different applications to detect the finger touched or near the electrode covered by dielectric. It  
supports total 15 keys with single scan or programmable periodic key scans, and system can be  
waked up by any key for low power applications.  
6.19.2 Features  
Supports up to 14 touch keys + 1 reference  
Supports any CLKO pin as shielding and any TK pin as reference.  
Programmable sensitivity levels for each channel.  
Programmable scanning speed for different applications.  
Supports any touch key wake up for low power applications.  
Supports single key scan and programmable periodic key scan.  
Programmable interrupt options for key scan complete with/without threshold control.  
Sep. 1, 2020  
Page 97 of 164  
Rev 2.00  
ML51/ML54/ML56  
6.20 Auxiliary Features  
6.20.1 Dual DPTRs  
The original 8051 contains one DPTR (data pointer) only. With single DPTR, it is difficult to move data  
form one address to another with wasting code size and low performance. The ML51/ML54/ML56  
Series provides two data pointers. Thus, software can load both a source and a destination address  
when doing a block move. Once loading, the software simply switches between DPTR and DPTR1 by  
the active data pointer selection DPS (AUXR0.0) bit.  
An example of 64 bytes block move with dual DPTRs is illustrated below. By giving source and  
destination addresses in data pointers and activating cyclic makes block RAM data move more simple  
and efficient than only one DPTR. The INC AUXR0 instruction is the shortest (2 bytes) instruction to  
accomplish DPTR toggling rather than ORL or ANL. For AUXR0.1 contains a hard-wired 0, it allows  
toggling of the DPS bit by incrementing AUXR0 without interfering with other bits in the register.  
MOV  
MOV  
INC  
R0,#64  
;number of bytes to move  
;load destination address  
;change active DPTR  
DPTR,#D_Addr  
AUXR0  
MOV  
DPTR,#S_Addr  
;load source address  
LOOP:  
MOVX  
INC  
A,@DPTR  
AUXR0  
@DPTR,A  
DPTR  
AUXR0  
DPTR  
;read source data byte  
;change DPTR to destination  
;write data to destination  
;next destination address  
;change DPTR to source  
;next source address  
MOVX  
INC  
INC  
INC  
DJNZ  
INC  
R0,LOOP  
AUXR0  
;(optional) restore DPS  
AUXR0 also contains a general purpose flag GF2 in its bit 3 that can be set or cleared by the user via  
software.  
Sep. 1, 2020  
Page 98 of 164  
Rev 2.00  
ML51/ML54/ML56  
DPL Data Pointer Low Byte  
Register  
SFR Address  
Reset Value  
DPL  
82H, All pages  
0000_0000b  
7
6
5
4
3
2
1
0
DPTR[7:0]  
R/W  
Bit  
Name  
Description  
7:0  
DPTR[7:0] Data Pointer Low Byte  
This is the low byte of 16-bit data pointer. DPL combined with DPH serve as a 16-bit data  
pointer DPTR to access indirect addressed RAM or Program Memory. DPS (AUXR0.0) bit  
decides which data pointer, DPTR or DPTR1, is activated.  
Sep. 1, 2020  
Page 99 of 164  
Rev 2.00  
ML51/ML54/ML56  
DPH Data Pointer High Byte  
Register  
SFR Address  
Reset Value  
DPH  
83H, All pages  
0000_0000b  
7
6
5
4
3
2
1
0
DPTR[15:8]  
R/W  
Bit  
Name  
Description  
7:0  
DPTR[15:8] Data Pointer High Byte  
This is the high byte of 16-bit data pointer. DPH combined with DPL serve as a 16-bit data  
pointer DPTR to access indirect addressed RAM or Program Memory. DPS (AUXR0.0) bit  
decides which data pointer, DPTR or DPTR1, is activated.  
Sep. 1, 2020  
Page 100 of 164  
Rev 2.00  
ML51/ML54/ML56  
AUXR0 Auxiliary Register 0  
Register  
SFR Address  
Reset Value  
POR: 0000 0000b,  
Software reset: 1U00 0000b,  
nRESET pin: U100 0000b,  
Hard fault: UU10 0000b  
Others: UUU0 0000b  
AUXR0  
A2H , Page 0  
7
6
5
4
3
2
-
1
0
0
SWRF  
R/W  
RSTPINF  
R/W  
HardF  
R/W  
HardFInt  
GF2  
R/W  
DPS  
R/W  
R/W  
-
R
Bit  
Name  
GF2  
Description  
3
General Purpose Flag 2  
The general purpose flag that can be set or cleared by the user via software.  
2
1
0
-
0
Reserved  
Reserved This bit is always read as 0.  
DPS  
Data Pointer Select  
0 = Data pointer 0 (DPTR) is active by default.  
1 = Data pointer 1 (DPTR1) is active.  
After DPS switches the activated data pointer, the previous inactivated data pointer remains  
its original value unchanged.  
Sep. 1, 2020  
Page 101 of 164  
Rev 2.00  
ML51/ML54/ML56  
6.20.2 96-Bit Unique Code (UID)  
Before shipping out, each ML51/ML54/ML56 Series chip was factory pre-programmed with a 96-bit  
width serial number, which is guaranteed to be unique for each piece of ML51/ML54/ML56 Series. The  
serial number is called Unique Code or UID. The user can read the Unique Code only by IAP  
command. More details please see Chapter 6.3 Flash Memory Control  
In-application-programming (IAP).  
IAPCN  
IAPA[15:0]  
IAP Mode  
IAPFD[7:0]  
{IAPAH, IAPAL}  
IAPB [1:0]  
FOEN  
FCEN  
FCTRL [3:0]  
96-bit Unique Code read  
XX  
0
0
0100  
0000H to 000BH  
Data out  
Sep. 1, 2020  
Page 102 of 164  
Rev 2.00  
ML51/ML54/ML56  
6.21 Instruction Set  
6.21.1 Instruction Set And Addressing Modes  
The ML51/ML54/ML56 Series executes all the instructions of the standard 80C51 family fully  
compatible with MCS-51. However, the timing of each instruction is different for it uses high  
performance 1T 8051 core. The architecture eliminates redundant bus states and implements parallel  
execution of fetching, decode, and execution phases. The ML51/ML54/ML56 Series uses one clock  
per machine-cycle. It leads to performance improvement of rate 8.1 (in terms of MIPS) with respect to  
traditional 12T 80C51 device working at the same clock frequency. However, the real speed  
improvement seen in any system will depend on the instruction mix.  
All instructions are coded within an 8-bit field called an OPCODE. This single byte should be fetched  
from Program Memory. The OPCODE is decoded by the CPU. It determines what action the CPU will  
take and whether more operation data is needed from memory. If no other data is needed, then only  
one byte was required. Thus the instruction is called a one byte instruction. In some cases, more data  
is needed, which is two or three byte instructions.  
Following lists all instructions for details. The note of the instruction set and addressing modes are  
shown below.  
Rn (N = 0~7)  
Direct  
Register R0 To R7 Of The Currently Selected Register Bank.  
8-bit internal data location’s address. It could be an internal data RAM location (00H to 7FH) or an  
SFR (80H to FFH).  
@RI (I = 0, 1)  
#data  
8-bit internal data RAM location (00H to FFH) addressed indirectly through register R0 or R1.  
8-bit constant included in the instruction.  
#data16  
Addr16  
16-bit constant included in the instruction.  
16-bit destination address. Used by LCALL and LJMP. A branch can be any-where within the  
Program Memory address space.  
Addr11  
Rel  
11-bit destination address. Used by ACALL and AJMP. The branch will be within the same 2K-Byte  
page of Program Memory as the first byte of the following instruction.  
Signed (2’s complement) 8-bit offset Byte. Used by SJMP and all conditional branches. The range is  
-128 to +127 bytes relative to first byte of the following instruction.  
Bit  
Direct addressed bit in internal data RAM or SFR.  
Table 6.21-1 Instruction Set And Addressing Modes  
Sep. 1, 2020  
Page 103 of 164  
Rev 2.00  
ML51/ML54/ML56  
Instruction  
ADD  
CY  
X[1]  
X
OV  
X
AC  
X
Instruction  
CLR C  
CY  
0
OV  
AC  
ADDC  
SUBB  
MUL  
X
X
CPL C  
X
X
X
X
ANL C, bit  
ANL C, /bit  
ORL C, bit  
ORL C, /bit  
MOV C, bit  
CJNE  
X
0
X
X
DIV  
0
X
X
DA A  
X
X
RRC A  
RLC A  
SETB C  
X
X
X
X
1
Note: X indicates the modification depends on the result of the instruction.  
Table 6.21-2 Instructions Affect Flag Settings  
Sep. 1, 2020  
Page 104 of 164  
Rev 2.00  
ML51/ML54/ML56  
6.21.2 Read-Modify-Write Instructions  
Instructions that read a byte from SFR or internal RAM, modify it, and rewrite it back, are called “Read-  
Modify-Write” instructions. When the destination is an I/O port or a port bit, these instructions read the  
internal output latch rather than the external pin state. This kind of instructions read the port SFR  
value, modify it and write back to the port SFR. All “Read-Modify-Write” instructions are listed as  
follows.  
Instruction  
ANL  
Description  
Logical AND. (ANL direct, A and ANL direct, #data)  
Logical OR. (ORL direct, A and ORL direct, #data)  
ORL  
XRL  
Logical exclusive OR. (XRL direct, A and XRL direct,  
#data)  
JBC  
CPL  
INC  
DEC  
DJNZ  
MOV  
CLR  
SETB  
Jump if bit = 1 and clear it. (JBC bit, rel)  
Complement bit. (CPL bit)  
Increment. (INC direct)  
Decrement. (DEC direct)  
Decrement and jump if not zero. (DJNZ direct, rel)  
bit, C  
Move carry to bit. (MOV bit, C)  
bit Clear bit. (CLR bit)  
bit Set bit. (SETB bit)  
The last three seem not obviously “Read-Modify-Write” instructions but actually they are. They read  
the entire port latch value, modify the changed bit, and then write the new value back to the port latch.  
6.21.3 Instruction Set  
ML51/ML54/ML56 Series  
Instruction  
OPCODE  
Bytes  
Clock Cycles  
V.S. Tradition 80C51 Speed  
Ratio  
NOP  
00  
28~2F  
25  
1
1
2
1
2
1
2
1
2
1
2
1
2
1
2
3
4
2
2
3
4
2
2
3
4
2
12  
6
4
3
6
6
4
3
6
6
4
3
6
ADD  
A, Rn  
ADD  
A, direct  
A, @Ri  
A, #data  
A, Rn  
ADD  
26, 27  
24  
ADD  
ADDC  
ADDC  
ADDC  
ADDC  
SUBB  
SUBB  
SUBB  
SUBB  
38~3F  
35  
A, direct  
A, @Ri  
A, #data  
A, Rn  
36, 37  
34  
98~9F  
95  
A, direct  
A, @Ri  
A, #data  
96, 97  
94  
Sep. 1, 2020  
Page 105 of 164  
Rev 2.00  
ML51/ML54/ML56  
ML51/ML54/ML56 Series  
V.S. Tradition 80C51 Speed  
Ratio  
Instruction  
OPCODE  
Bytes  
Clock Cycles  
INC  
A
04  
08~0F  
05  
1
1
2
1
1
1
1
2
1
1
1
1
1
2
1
2
2
3
1
2
1
2
2
3
1
2
1
2
2
3
1
1
1
1
1
1
1
1
2
1
1
3
4
5
1
1
3
4
5
4
4
1
2
3
4
2
4
4
2
3
4
2
4
4
2
3
4
2
4
4
1
1
1
1
1
1
1
1
3
4
12  
4
INC  
Rn  
INC  
direct  
@Ri  
3
INC  
06, 07  
A3  
2.4  
24  
12  
4
INC  
DPTR  
A
DEC  
DEC  
DEC  
DEC  
MUL  
DIV  
14  
Rn  
18~1F  
15  
direct  
@Ri  
3
16, 17  
A4  
2.4  
12  
12  
12  
6
AB  
AB  
84  
DA  
A
D4  
ANL  
ANL  
ANL  
ANL  
ANL  
ANL  
ORL  
ORL  
ORL  
ORL  
ORL  
ORL  
XRL  
XRL  
XRL  
XRL  
XRL  
XRL  
CLR  
CPL  
RL  
A, Rn  
A, direct  
A, @Ri  
A, #data  
direct, A  
direct, #data  
A, Rn  
A, direct  
A, @Ri  
A, #data  
direct, A  
direct, #data  
A, Rn  
A, direct  
A, @Ri  
A, #data  
direct, A  
direct, #data  
A
58~5F  
55  
4
56, 57  
54  
3
6
52  
3
53  
6
48~4F  
45  
6
4
46, 47  
44  
3
6
42  
3
43  
6
68~6F  
65  
6
4
66, 67  
64  
3
6
62  
3
63  
6
E4  
12  
12  
12  
12  
12  
12  
12  
12  
4
A
F4  
A
23  
RLC  
RR  
A
33  
A
03  
RRC  
SWAP  
MOV  
MOV  
MOV  
A
13  
A
C4  
A, Rn  
A, direct  
A, @Ri  
E8~EF  
E5  
E6, E7  
3
Sep. 1, 2020  
Page 106 of 164  
Rev 2.00  
ML51/ML54/ML56  
ML51/ML54/ML56 Series  
V.S. Tradition 80C51 Speed  
Ratio  
Instruction  
OPCODE  
Bytes  
Clock Cycles  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
A, #data  
74  
F8~FF  
A8~AF  
78~7F  
F5  
2
1
2
2
2
2
3
2
3
1
2
2
3
1
1
1
1
1
1
2
2
1
2
1
1
1
2
1
2
1
2
2
2
2
2
2
2
2
1
4
2
2
3
4
5
3
3
4
3
3
4
4
5
4
6
5
4
3
2
3
4
5
1
4
1
4
1
4
3
3
3
3
3
4
6
12  
6
Rn, A  
Rn, direct  
Rn, #data  
direct, A  
6
6
direct, Rn  
direct, direct  
direct, @Ri  
direct, #data  
@Ri, A  
88~8F  
85  
8
6
86, 87  
75  
4.8  
8
F6, F7  
A6, A7  
76, 77  
90  
4
@Ri, direct  
@Ri, #data  
DPTR, #data16  
6
6
8
MOVC A, @A+DPTR  
MOVC A, @A+PC  
93  
6
83  
6
MOVX  
MOVX  
MOVX  
MOVX  
PUSH  
POP  
A, @Ri[1]  
A, @DPTR[1]  
@Ri, A[1]  
@DPTR, A[1]  
direct  
direct  
A, Rn  
A, direct  
A, @Ri  
A, @Ri  
C
E2, E3  
E0  
4.8  
6
F2, F3  
F0  
4
4.8  
6
C0  
D0  
8
XCH  
C8~CF  
C5  
6
XCH  
4
XCH  
C6, C7  
D6, D7  
C3  
3
XCHD  
CLR  
2.4  
12  
3
CLR  
bit  
C2  
SETB  
SETB  
CPL  
C
D3  
12  
3
bit  
D2  
C
B3  
12  
3
CPL  
bit  
B2  
ANL  
C, bit  
82  
8
ANL  
C, /bit  
C, bit  
B0  
8
ORL  
72  
8
ORL  
C, /bit  
C, bit  
A0  
8
MOV  
MOV  
A2  
4
bit, C  
92  
6
11, 31, 51, 71, 91, B1,  
D1, F1[2]  
ACALL addr11  
2
4
6
LCALL addr16  
RET  
12  
22  
3
1
4
5
6
4.8  
Sep. 1, 2020  
Page 107 of 164  
Rev 2.00  
ML51/ML54/ML56  
ML51/ML54/ML56 Series  
V.S. Tradition 80C51 Speed  
Ratio  
Instruction  
OPCODE  
Bytes  
Clock Cycles  
RETI  
32  
1
2
5
3
4.8  
8
AJMP  
addr11  
01, 21, 41, 61, 81, A1,  
C1, E1[3]  
LJMP  
SJMP  
JMP  
JZ  
addr16  
rel  
02  
80  
3
2
1
2
2
2
2
3
3
3
3
3
3
3
2
3
4
3
3
3
3
3
3
5
5
5
5
4
4
6
4
5
6
8
@A+DPTR  
rel  
73  
8
60  
8
JNZ  
rel  
70  
8
JC  
rel  
40  
8
JNC  
JB  
rel  
50  
8
bit, rel  
20  
4.8  
4.8  
4.8  
4.8  
6
JNB  
bit, rel  
30  
JBC  
bit, rel  
10  
CJNE  
CJNE  
CJNE  
CJNE  
DJNZ  
DJNZ  
Note:  
A, direct, rel  
A, #data, rel  
Rn, #data, rel  
@Ri, #data, rel  
Rn, rel  
B5  
B4  
B8~BF  
B6, B7  
D8~DF  
D5  
6
4
6
direct, rel  
4.8  
1. The ML51/ML54/ML56 Series does not have external memory bus. MOVX instructions are used to access internal XRAM.  
2. The most three significant bits in the 11-bit address [A10:A8] decide the ACALL hex code. The code will be [A10, A9, A8, 1,  
0, 0, 0, 1].  
3. The most three significant bits in the 11-bit address [A10:A8] decide the AJMP hex code. The code will be [A10, A9, A8, 0,  
0, 0, 0, 1].  
Table 6.21-3 Instruction Set  
Sep. 1, 2020  
Page 108 of 164  
Rev 2.00  
ML51/ML54/ML56  
7 APPLICATION CIRCUIT  
7.1 Power Supply Scheme  
EXT_PWR  
For external VREF source from  
VDD only  
Way 1  
Way 2  
as close to VREF  
as possible  
L=30S  
VREF  
1uF  
10uF+0.1uF  
For internal VREF only  
ML51  
Series  
as close to the  
EXT_PWR as  
possible  
VDD  
VSS  
EXT_VSS  
0.1uF*N  
as close to VDD as possible  
Figure 7.1-1 NuMicro® ML51/ML54/ML56 Series Power supply circuit  
Sep. 1, 2020  
Page 109 of 164  
Rev 2.00  
ML51/ML54/ML56  
7.2 Peripheral Application Scheme  
DVCC  
DVCC  
ICE / ICP  
CS  
SPI_SS  
SPI_CLK  
VDD  
SPI  
CLK  
Device  
Interface  
SPI_MISO  
SPI_MOSI  
MISO  
VSS  
MOSI  
100K 100K  
VDD  
100  
100  
ICE_CLK  
VSS  
DVCC  
DVCC  
4.7K  
4.7K  
XT1_IN  
I2C  
Device  
20pF  
CLK  
DIO  
VDD  
VSS  
I2C_SCL  
I2C_SDA  
4~24 MHz  
crystal  
20pF  
XT1_OUT  
X32_IN  
ML51 Series  
Crystal  
RS 232 Transceiver  
20pF  
20pF  
32.768 kHz  
crystal  
RIN  
UART_RXD  
UART_TXD  
ROUT  
TIN  
UART  
TOUT  
X32_OUT  
PC COM Port  
DVCC  
DH1  
VLCD  
10K  
Source  
0.1uF  
1uF  
nRST  
DH2  
Reset  
10 uF  
VLCD  
Circuit  
LCD  
Note  
1: It is recommended to use 100 kΩ pull-up resistor on both ICE_DAT and ICE_CLK pin.  
2: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
3: It is suggest add 100ohm series resistor between ICE_DAT/ICE_CLK and writer pin to filter the disturb of noise on the circuit.  
Figure 7.2-1 NuMicro® ML51/ML54/ML56 Series Peripheral interface circuit  
Sep. 1, 2020  
Page 110 of 164  
Rev 2.00  
ML51/ML54/ML56  
8 ELECTRICAL CHARACTERISTICS  
Please refer to the relative Datasheet for detailed information about the ML51/ML54/ML56 series  
electrical characteristics.  
8.1 General Operating Conditions  
(VDD-VSS = 1.8 ~ 5.5V, TA = 25C, Fsys = 24 MHz unless otherwise specified.)  
8.1.1  
ML51 32KB/16KB Flash Series  
Symbol  
Parameter  
Min  
-40  
1.8  
Typ  
Max  
105  
5.5  
Unit  
Test Conditions  
TA  
Temperature  
-
VDD  
Operation voltage  
-
V
[1]  
AVDD  
Analog operation voltage  
VDD  
Note:  
1. It is recommended to power VDD and AVDD from the same source. A maximum difference of 0.3V between VDD and AVDD  
can be tolerated during power-on and power-off operation .  
2.Based on characterization, tested in production.  
Table 8.1-1 ML51 32KB/16KB Flash Series General Operating Conditions  
8.1.2  
ML51 64KB Flash/ML54/ML56 Series  
Symbol  
Parameter  
Temperature  
Min  
-40  
1.8  
Typ  
Max  
105  
3.6  
Unit  
Test Conditions  
TA  
-
VDD  
Operation voltage  
-
V
[1]  
AVDD  
Analog operation voltage  
VDD  
Note:  
1.It is recommended to power VDD and AVDD from the same source. A maximum difference of 0.3V between VDD and  
AVDD can be tolerated during power-on and power-off operation .  
2.Based on characterization, tested in production.  
Table 8.1-2 ML56/ML54/ML51 64KB Flash Series General Operating Conditions  
Sep. 1, 2020  
Page 111 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.2 DC Electrical Characteristics  
8.2.1 Supply Current Characteristics  
The current consumption is a combination of internal and external parameters and factors such as  
operating frequencies, device software configuration, I/O pin loading, I/O pin switching rate, program  
location in memory and so on. The current consumption is measured as described in below condition  
and table to inform test characterization result.  
8.2.1.1 ML51 32KB/16KB Flash Series  
All GPIO pins are in push pull mode and output high.  
The maximum values are obtained for VDD = 1. 8V ~ 5.5 V and maximum ambient  
temperature (TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless otherwise  
specified.  
VDD = AVDD  
When the peripherals clock base is the system clock Fsys.  
Program run while (1);in flash.  
Normal Run Mode  
Typ [6]  
Max[6][7]  
Symbol  
Conditions  
Fsys  
Unit  
T
= 25 °C  
T
= 25 °C  
T
= 85 °C  
T = 105 °C  
A
A
A
A
24 MHz  
2.40  
2.64  
2.87  
2.90  
(HIRC)[1]  
24 MHz  
2.52  
1.56  
0.91  
0.22  
0.24  
3.50  
3.62  
2.26  
1.30  
0.37  
0.40  
2.97  
2.04  
1.33  
0.29  
0.30  
3.78  
4.11  
2.74  
1.74  
0.57  
0.58  
3.10  
2.13  
1.39  
0.32  
0.32  
3.86  
4.24  
2.83  
1.81  
0.59  
0.60  
3.16  
2.20  
1.43  
0.35  
0.35  
3.89  
4.31  
2.92  
1.83  
0.61  
0.62  
(HXT) [2][5]  
12 MHz  
Normal run mode, executed  
from Flash, all peripherals  
disable  
(HXT) [2][5]  
4 MHz  
(HXT) [2][5]  
38.4 kHz  
(LIRC)[3]  
32.768 kHz  
(LXT)[4]  
IDD_RUN  
mA  
24 MHz  
(HIRC)[1]  
24 MHz  
(HXT) [2][5]  
12 MHz  
Normal run mode, executed  
from Flash, all peripherals  
enable  
(HXT) [2][5]  
4 MHz  
(HXT) [2][5]  
38.4 kHz  
(LIRC)[3]  
32.768 kHz  
(LXT)[4]  
Notes:  
1. This value base on HIRC enable, HXT disable, LIRC enable, LXT enable  
2. This value base on HIRC disable, HXT enable, LIRC enable, LXT disable  
3. This value base on HIRC disable, HXT disable, LIRC enable, LXT disable  
Sep. 1, 2020  
Page 112 of 164  
Rev 2.00  
ML51/ML54/ML56  
Typ [6]  
= 25 °C  
Max[6][7]  
= 85 °C  
Symbol  
Conditions  
Fsys  
Unit  
T
T
= 25 °C  
T
T = 105 °C  
A
A
A
A
4. This value base on HIRC disable, HXT disable, LIRC enable, LXT enable  
5. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values  
6. AVDD = VDD = 3.3V, LVR17 enabled, POR enable and BOD enable.  
7. Based on characterization, not tested in production unless otherwise specified.  
Table 8.2-1 ML51 32KB / 16KB Series Current Consumption In Normal Run Mode  
Low Power Run Mode  
Typ [3]  
Max[3][4]  
Symbol  
Conditions  
Fsys  
Unit  
T
= 25 °C  
T
= 25 °C  
T
= 85 °C  
T = 105 °C  
A
A
A
A
38.4 kHz  
(LIRC)[1]  
15  
21  
42  
66  
Low power run mode, executed  
from Flash, all peripherals  
disable  
32.768 kHz  
(LXT)[2]  
19  
23  
44  
67  
IDD_LPRUN  
µA  
38.4 kHz  
(LIRC)[1]  
193  
194  
307  
308  
320  
321  
344  
345  
Low power run mode, executed  
from Flash, all peripherals  
enable  
32.768 kHz  
(LXT)[2]  
Notes:  
1. This value base on HIRC disable, HXT disable, LIRC enable, LXT disable  
2. This value base on HIRC disable, HXT disable, LIRC enable, LXT enable  
3. Based on characterization, not tested in production unless otherwise specified.  
4. AVDD = VDD = 3.3V, LVR17 enabled, POR enable and BOD disable.  
Table 8.2-2 ML51 32KB/16KB Flash Series Current Consumption In Low Power Run Mode  
Idle Mode  
Typ [6]  
Max[6][7]  
Symbol  
Conditions  
Fsys  
Unit  
T
= 25 °C  
T
= 25 °C  
T
= 85 °C  
T = 105 °C  
A
A
A
A
24 MHz  
1.43  
1.58  
1.62  
1.64  
(HIRC)[1]  
24 MHz  
1.52  
1.07  
0.76  
0.20  
0.22  
2.46  
2.55  
1.91  
1.44  
1.10  
0.30  
0.32  
2.72  
3.04  
2.00  
1.50  
1.15  
0.32  
0.34  
2.78  
3.15  
2.05  
1.56  
1.19  
0.35  
0.36  
2.80  
3.19  
(HXT) [2][5]  
12 MHz  
(HXT) [2][5]  
Idle mode, all peripherals  
disable  
4 MHz  
(HXT) [2][5]  
IDD_IDLE  
mA  
38.4 kHz  
(LIRC)[3]  
32.768 kHz  
(LXT)[4]  
24 MHz  
(HIRC)[1]  
Idle mode, all peripherals  
enable  
24 MHz  
(HXT) [2][5]  
Sep. 1, 2020  
Page 113 of 164  
Rev 2.00  
ML51/ML54/ML56  
Typ [6]  
Max[6][7]  
Symbol  
Conditions  
Fsys  
Unit  
T
= 25 °C  
T
= 25 °C  
T
= 85 °C  
T = 105 °C  
A
A
A
A
12 MHz  
1.67  
2.14  
2.22  
2.26  
(HXT) [2][5]  
4 MHz  
1.08  
0.37  
0.38  
1.51  
0.57  
0.59  
1.57  
0.60  
0.61  
1.60  
0.61  
0.62  
(HXT) [2][5]  
38.4 kHz  
(LIRC)[3]  
32.768 kHz  
(LXT)[4]  
Notes:  
1. This value base on HIRC enable, HXT disable, LIRC enable, LXT enable  
2. This value base on HIRC disable, HXT enable, LIRC enable, LXT disable  
3. This value base on HIRC disable, HXT disable, LIRC enable, LXT disable  
4. This value base on HIRC disable, HXT disable, LIRC enable, LXT enable  
5. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values  
6. Based on characterization, not tested in production unless otherwise specified.  
7. AVDD = VDD = 3.3V, LVR17 enabled, POR enable and BOD enable.  
Table 8.2-3 ML51 32KB/16KB Flash Series Current Consumption In Idle Mode  
Low Power Idle Mode  
Typ [3]  
Max[3][4]  
Symbol  
Conditions  
Fsys  
Unit  
T
= 25 °C  
T
= 25 °C  
T
= 85 °C  
T = 105 °C  
A
A
A
A
38.4 kHz  
(LIRC)[1]  
13  
19  
40  
63  
Low power idle mode, executed  
from Flash, all peripherals  
disable  
32.768 kHz  
(LXT)[2]  
15  
20  
41  
65  
IDD_LPIDLE  
µA  
38.4 kHz  
(LIRC)[1]  
173  
174  
304  
306  
317  
319  
341  
342  
Low power idle mode, executed  
from Flash, all peripherals  
enable  
32.768 kHz  
(LXT)[2]  
Notes:  
1. This value base on HIRC disable, HXT disable, LIRC enable, LXT disable  
2. This value base on HIRC disable, HXT disable, LIRC enable, LXT enable  
3. Based on characterization, not tested in production unless otherwise specified.  
4. AVDD = VDD = 3.3V , LVR17 enabled, POR enable and BOD enable.  
Table 8.2-4 ML51 32KB/16KB Flash Series Current Consumption In Low Power Idle Mode  
Sep. 1, 2020  
Page 114 of 164  
Rev 2.00  
ML51/ML54/ML56  
Power Down Mode  
Typ[1]  
Max[2][3]  
Symbol  
Test Conditions  
Unit  
T
= 25 °C  
T
= 25 °C  
T
= 85 °C  
T = 105 °C  
A
A
A
A
Power down mode, all peripherals disable@3.3V  
Power down mode, all peripherals disable@5.5V  
0.8  
1.6  
1.6[4]  
2.5  
18  
25  
34  
50  
Power down mode, LVR enable all other peripherals  
disable  
1.4  
60  
3.2  
80  
19  
70  
21  
20  
36  
100  
37  
IDD_PD Power down mode, LVR enable BOD enable all  
other peripherals disable  
µA  
Power down mode, WDT / WKT enable all use LIRC,  
BOD disable  
2.87  
2.42  
5.2  
4.2  
Power down mode, WDT use LIRC, WKT use LXT,  
BOD disable  
38  
Notes:  
1. AVDD = VDD = 3.3V unless otherwise specified, LVR17 enabled, POR disabled and BOD disabled.  
2. Based on characterization, not tested in production unless otherwise specified.  
3. When analog peripheral blocks such as ADC and ACMP are ON, an additional power consumption should be  
considered.  
4. Based on characterization, tested in production.  
Table 8.2-5 ML51 32KB/16KB Flash Series Chip Current Consumption in Power down mode  
Sep. 1, 2020  
Page 115 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.2.1.2 ML51 64KB Flash/ML54/ML56 Series  
All GPIO pins are in push pull mode and output high.  
The maximum values are obtained for VDD = 1. 8V ~ 3.6 V and maximum ambient  
temperature (TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless otherwise  
specified.  
VDD = AVDD  
When the peripherals clock base is the system clock Fsys.  
Program run while (1);in flash.  
Normal Run Mode  
Typ [6]  
Max[6][7]  
Symbol  
Conditions  
Fsys  
Unit  
T
= 25 °C  
T
= 25 °C  
T
= 85 °C  
T = 105 °C  
A
A
A
A
24 MHz  
2.86  
3.67  
3.92  
4.15  
(HIRC)[1]  
12 MHz  
1.98  
0.91  
2.94  
2.08  
0.96  
0.23  
0.25  
4.50  
2.8  
2.37  
1.14  
3.76  
2.47  
1.2  
2.6  
1.2  
2.89  
1.32  
4.23  
2.98  
1.48  
0.39  
0.42  
4.89  
3.98  
1.75  
5.89  
3.69  
1.83  
0.72  
0.73  
(HIRC)[1]  
1 MHz  
(HIRC)[1]  
24 MHz  
4.02  
2.7  
Normal run mode, executed  
from Flash, all peripherals  
disable  
(HXT) [2][5]  
12 MHz  
(HXT) [2][5]  
1 MHz  
1.3  
(HXT) [2][5]  
38.4 kHz  
(LIRC)[3]  
0.32  
0.35  
4.78  
3.4  
0.34  
0.37  
4.86  
3.6  
32.768 kHz  
(LXT)[4]  
IDD_RUN  
mA  
24 MHz  
(HIRC)[1]  
12 MHz  
(HIRC)[1]  
1 MHz  
1.17  
4.9  
1.45  
5.21  
3.12  
1.49  
0.61  
0.62  
1.6  
(HIRC)[1]  
24 MHz  
5.46  
3.33  
1.75  
0.67  
0.69  
Normal run mode, executed  
from Flash, all peripherals  
enable  
(HXT) [2][5]  
12 MHz  
2.67  
1.21  
0.41  
0.42  
(HXT) [2][5]  
1 MHz  
(HXT) [2][5]  
38.4 kHz  
(LIRC)[3]  
32.768 kHz  
(LXT)[4]  
Notes:  
1. This value base on HIRC enable, HXT disable, LIRC enable, LXT enable  
Sep. 1, 2020  
Page 116 of 164  
Rev 2.00  
ML51/ML54/ML56  
Typ [6]  
= 25 °C  
Max[6][7]  
= 85 °C  
Symbol  
Conditions  
Fsys  
Unit  
T
T
= 25 °C  
T
T = 105 °C  
A
A
A
A
2. This value base on HIRC disable, HXT enable, LIRC enable, LXT disable  
3. This value base on HIRC disable, HXT disable, LIRC enable, LXT disable  
4. This value base on HIRC disable, HXT disable, LIRC enable, LXT enable  
5. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values  
6. AVDD = VDD = 3.3V, LVR17 enabled, POR enable and BOD enable.  
7. Based on characterization, not tested in production unless otherwise specified.  
Table 8.2-6 ML56/ML54/ML51 64KB Flash Series Current Consumption In Normal Run Mode  
Low Power Run Mode  
Typ [3]  
Max[3][4]  
Symbol  
Conditions  
Fsys  
Unit  
T
= 25 °C  
19  
T
= 25 °C  
29  
T
= 85 °C  
52  
T
A
= 105 °C  
83  
A
A
A
38.4 kHz  
(LIRC)[1]  
Low power run mode, executed  
from Flash, all peripherals  
disable  
32.768 kHz  
(LXT)[2]  
21  
32  
55  
85  
IDD_LPRUN  
µA  
38.4 kHz  
(LIRC)[1]  
223  
230  
314  
326  
327  
339  
351  
362  
Low power run mode, executed  
from Flash, all peripherals  
enable  
32.768 kHz  
(LXT)[2]  
Notes:  
1. This value base on HIRC disable, HXT disable, LIRC enable, LXT disable  
2. This value base on HIRC disable, HXT disable, LIRC enable, LXT enable  
3. Based on characterization, not tested in production unless otherwise specified.  
4. AVDD = VDD = 3.3V, LVR17 enabled, POR enable and BOD disable.  
Table 8.2-7 ML56/ML54/ML51 64KB Flash Series Current Consumption In Low Power Run Mode  
Idle Mode  
Typ [6]  
Max[6][7]  
Symbol  
Conditions  
Fsys  
Unit  
T
= 25 °C  
T
= 25 °C  
T
= 85 °C  
T = 105 °C  
A
A
A
A
24 MHz  
1.8  
2.25  
2.43  
2.46  
(HIRC)[1]  
24 MHz  
1.74  
1.07  
0.97  
0.20  
0.22  
1.91  
1.44  
1.10  
0.30  
0.32  
2.00  
1.50  
1.15  
0.32  
0.34  
2.05  
1.56  
1.19  
0.35  
0.36  
(HXT) [2][5]  
12 MHz  
(HXT) [2][5]  
Idle mode, all peripherals  
disable  
IDD_IDLE  
mA  
4 MHz  
(HXT) [2][5]  
38.4 kHz  
(LIRC)[3]  
32.768 kHz  
(LXT)[4]  
Sep. 1, 2020  
Page 117 of 164  
Rev 2.00  
ML51/ML54/ML56  
Typ [6]  
Max[6][7]  
Symbol  
Conditions  
Fsys  
Unit  
T
= 25 °C  
T
= 25 °C  
T
= 85 °C  
T = 105 °C  
A
A
A
A
24 MHz  
2.46  
2.72  
2.78  
2.80  
(HIRC)[1]  
24 MHz  
2.55  
1.67  
1.08  
0.37  
0.38  
3.04  
2.14  
1.51  
0.57  
0.59  
3.15  
2.22  
1.57  
0.60  
0.61  
3.19  
2.26  
1.60  
0.61  
0.62  
(HXT) [2][5]  
12 MHz  
(HXT) [2][5]  
Idle mode, all peripherals  
enable  
4 MHz  
(HXT) [2][5]  
38.4 kHz  
(LIRC)[3]  
32.768 kHz  
(LXT)[4]  
Notes:  
1. This value base on HIRC enable, HXT disable, LIRC enable, LXT enable  
2. This value base on HIRC disable, HXT enable, LIRC enable, LXT disable  
3. This value base on HIRC disable, HXT disable, LIRC enable, LXT disable  
4. This value base on HIRC disable, HXT disable, LIRC enable, LXT enable  
5. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values  
6. Based on characterization, not tested in production unless otherwise specified.  
7. AVDD = VDD = 3.3V, LVR17 enabled, POR enable and BOD enable.  
Table 8.2-8 ML56/ML54/ML51 64KB Flash Series Current Consumption In Idle Mode  
Low Power Idle Mode  
Typ [3]  
Max[3][4]  
Symbol  
Conditions  
Fsys  
Unit  
T
= 25 °C  
T
= 25 °C  
T
= 85 °C  
T = 105 °C  
A
A
A
A
38.4 kHz  
(LIRC)[1]  
17  
27  
50  
81  
Low power idle mode, executed  
from Flash, all peripherals  
disable  
32.768 kHz  
(LXT)[2]  
22  
32  
55  
87  
IDD_LPIDLE  
µA  
38.4 kHz  
(LIRC)[1]  
213  
220  
302  
312  
317  
320  
340  
342  
Low power idle mode, executed  
from Flash, all peripherals  
enable  
32.768 kHz  
(LXT)[2]  
Notes:  
5. This value base on HIRC disable, HXT disable, LIRC enable, LXT disable  
6. This value base on HIRC disable, HXT disable, LIRC enable, LXT enable  
7. Based on characterization, not tested in production unless otherwise specified.  
8. AVDD = VDD = 3.3V , LVR17 enabled, POR enable and BOD enable.  
Table 8.2-9 ML56/ML54/ML51 64KB Flash Series Current consumption in Low Power Idle mode  
Power Down Mode  
Typ[1]  
Max[2][3]  
Symbol  
Test Conditions  
Unit  
TA = 25 °C TA = 25 °C TA = 85 °C TA = 105 °C  
Power down mode, all peripherals disable@3.3V  
Power down mode, all peripherals disable@5.5V  
1.2  
1.7  
1.6[4]  
2.6  
20  
27  
37  
47  
IDD_PD  
µA  
Sep. 1, 2020  
Page 118 of 164  
Rev 2.00  
ML51/ML54/ML56  
Typ[1]  
Max[2][3]  
Symbol  
Test Conditions  
Unit  
TA = 25 °C TA = 25 °C TA = 85 °C TA = 105 °C  
Power down mode, LVR enable all other peripherals  
disable  
1.7  
4.8  
61  
3.2  
10  
25  
52  
98  
44  
48  
32  
42  
48  
42  
69  
110  
52  
68  
49  
56  
77  
Power down mode, LVR enable, Low power BOD  
enable all other peripherals disable  
Power down mode, LVR enable BOD enable all  
other peripherals disable  
82  
Power down mode, WDT / WKT enable all use LIRC,  
BOD disable  
3
6.4  
7.2  
5.9  
6.8  
7.3  
Power down mode, WDT use LIRC, WKT use LXT,  
BOD disable  
3.5  
2.9  
3.4  
3.9  
Power-down mode, RTC use LIRC, BOD disable,  
HIRC off / HXT off / LIRC on / LXT off  
Power-down mode, RTC/TK use LIRC, BOD disable,  
HIRC off / HXT off / LIRC on / LXT off  
Power-down mode, RTC use LXT, BOD disable,  
HIRC off / HXT off / LIRC off / LXT on  
Notes:  
1. AVDD = VDD = 3.3V unless otherwise specified, LVR17 enabled, POR disabled and BOD disabled.  
2. Based on characterization, not tested in production unless otherwise specified.  
3. When analog peripheral blocks such as ADC and ACMP are ON, an additional power consumption should be considered.  
4. Based on characterization, tested in production.  
Table 8.2-10 ML56/ML54/ML51 64KB Flash Series Series Chip Current Consumption In Power Down  
Mode  
Sep. 1, 2020  
Page 119 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.2.2  
On-Chip Peripheral Current Consumption  
The typical values for TA= 25 °C and VDD = AVDD = 3.3 V unless otherwise specified.  
All GPIO pins are set as output high of push pull mode without multi-function.  
The system clock = 24 MHz.  
The result value is calculated by measuring the difference of current consumption  
between all peripherals clocked off and only one peripheral clocked on  
[1]  
Peripheral  
IDD Base  
IDD  
Unit  
ADC[2]  
ACMP0[3]  
ACMP1[3]  
PWM0  
309.2  
1.0  
1.1  
152.3  
40.2  
44.2  
SPI0  
SPI1  
UART0  
UART1  
I2C0  
1
1
1
1
98.8  
118.7  
I2C1  
SC0  
67.8  
0.2  
PIN Interrupt  
TIMER 0  
TIMER 1  
TIMER 2  
TIMER 3  
INT0  
4.1  
3.9  
4.4  
10  
145  
µA  
0.3  
0.3  
0.4  
0.7  
INT1  
WDT  
WKT  
PDMA0  
PDMA1  
PDMA2  
PDMA3  
CAPTURE0  
CAPTURE1  
CAPTURE2  
RTC  
0.5  
0.5  
0.5  
0.5  
0.5  
0.3  
0.5  
13.4  
145  
1
LCD  
23  
Sep. 1, 2020  
Page 120 of 164  
Rev 2.00  
ML51/ML54/ML56  
[1]  
Peripheral  
IDD Base  
IDD  
Unit  
Notes:  
1. Guaranteed by characterization results, not tested in production.  
2. When the ADC is turned on, add an additional power consumption per ADC for the analog part.  
3. When the ACMP is turned on, add an additional power consumption per ACMP for the analog part.  
Table 8.2-11 Peripheral Current Consumption  
Sep. 1, 2020  
Page 121 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.2.3  
Wakeup Time from Low-Power Modes  
The wakeup times given in Table 8.2-12 Low-Power Mode Wakeup Timings is measured on a wakeup  
phase with a 24 MHz HIRC oscillator.  
Symbol  
Parameter  
Typ  
5
Max  
Unit  
cycles  
µs  
tWU_IDLE  
Wakeup from IDLE mode  
6
Fsys = HIRC @5.5V  
7
20  
Fsys = HIRC @3.6V  
10  
20  
µs  
Fsys = HIRC @1.8V  
13  
20  
µs  
Fsys = HXT@24MHz @5.5V[3]  
Fsys = HXT@24MHz @3.6V[3]  
Fsys = HXT@24MHz @1.8V[3]  
Fsys = LIRC  
370  
440  
600  
938  
860  
-
µs  
Wakeup from Power  
down mode  
[1][2]  
tWU_NPD  
-
-
1500  
-
µs  
µs  
µs  
Fsys = LXT@32.768KHz[4]  
Notes:  
1. Based on test during characterization, not tested in production.  
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first  
3. Value variable based on extnerl Crystal stable time.  
4 Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values, LXT not disabled when  
ML51/ML54/ML56 Series into Power down mode.  
Table 8.2-12 Low-Power Mode Wakeup Timings  
Sep. 1, 2020  
Page 122 of 164  
Rev 2.00  
 
ML51/ML54/ML56  
8.2.4  
I/O DC Characteristics  
8.2.4.1 PIN Input Characteristics  
Symbol  
Parameter  
Input low voltage  
Min  
Typ  
Max  
Unit  
Test Conditions  
VIL  
0
-
0.3*VDD  
V
Input low voltage  
(I/O with TTL input)  
VIL1  
VIH  
VSS-0.3  
-
-
0.2VDD-0.1  
VDD+0.3  
V
V
0.2VDD+0.9  
Input high voltage  
Input high voltage  
VIH1  
0.7*VDD  
-
VDD  
V
V
(I/O with Schmitt trigger input and  
Xin)  
Hysteresis voltage of schmitt  
input  
[1]  
VHY  
-
0.2*VDD  
-
VSS < VIN < VDD  
Open-drain or input only mode  
,
-1  
1
[2]  
ILK  
Input leakage current  
A  
VDD < VIN < 5.5 V,  
Open-drain or input only mode  
-1  
1
VDD = 5.5 V, Quasi mode and Input  
mode with pull up enable  
40  
40  
40  
40  
40  
40  
-
-
-
-
-
-
60  
60  
70  
60  
60  
70  
kΩ  
VDD = 3.3 V, Quasi mode and Input  
mode with pull up enable  
[1] [3]  
RPU  
Pull up resistor  
VDD = 1.8 V, Quasi mode and Input  
mode pull up enable  
VDD = 5.5 V, Quasi mode and Input  
mode with pull up enable  
kΩ  
VDD = 3.3 V, Quasi mode and Input  
mode with pull up enable  
[1] [3]  
RPD  
Pull down resistor  
VDD = 1.8 V, Quasi mode and Input  
mode pull up enable  
Notes:  
1. Guaranteed by characterization result, not tested in production.  
2. Leakage could be higher than the maximum value, if abnormal injection happens.  
3. To sustain a voltage higher than VDD +0.3 V, the internal pull-up resistors must be disabled. Leakage could be higher than  
the maximum value, if positive current is injected on adjacent pins  
4. Test condition of VDD is base on the maximum value of VDD  
Table 8.2-13I/O Input Characteristics  
Sep. 1, 2020  
Page 123 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.2.4.2 nRESET Input Characteristics  
Symbol  
VILR  
Parameter  
Min  
Typ  
Max  
Unit  
V
Test Conditions  
Negative going threshold, nRESET  
Positive going threshold, nRESET  
-
0.7*VDD  
45  
-
0.3*VDD  
VIHR  
-
-
V
-
60  
60  
65  
-
VDD = 5.5 V  
[1]  
-
-
RRST  
Internal nRESET pull up resistor  
nRESET input response time  
45  
VDD = 3.6 V  
50  
VDD = 1.8 V  
-
1.5  
-
Normal run and Idle mode  
Power down mode  
[1]  
tFR  
µs  
10  
25  
Notes:  
1. Guaranteed by characterization result, not tested in production.  
2. It is recommended to add a 10 kΩ and 10uF capacitor at nRESET pin to keep reset signal stable.  
Table 8.2-14 nRESET Input Characteristics  
Sep. 1, 2020  
Page 124 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.3  
AC Electrical Characteristics  
The maximum values are obtained for VDD = 1.8 V ~ 5.5 V and maximum ambient temperature (TA),  
and the typical values for TA= 25 °C and VDD = 3.3 V unless otherwise specified. VDD = AVDD.  
8.3.1  
24 MHz Internal High Speed RC Oscillator (HIRC)  
The 24 MHz RC oscillator is calibrated in production.  
Symbol.  
Parameter  
Operating voltage  
Min  
Typ  
Max  
Unit  
Test Conditions  
VDD  
1.8  
-
5.5  
V
TA = 25 °C,  
VDD = 5V  
Oscillator frequnecy  
23.76  
-1[1]  
24  
-
24.24  
1[1]  
MHz  
%
TA = 25 °C,  
VDD = 3.3V  
FHRC  
TA = -20C ~ +105 °C,  
Frequency drift over temperarure and  
volatge  
-2[2]  
-
2[2]  
%
VDD = 1.8 ~ 5.5V  
TA = -40C ~ -20°C,  
-5[2]  
5[2]  
550  
5
%
µA  
µs  
VDD = 1.8 ~ 5.5V  
[2]  
IHRC  
Operating current  
Stable time  
-
-
490  
3
TA = -40C ~ +105 °C,  
[3]  
TS  
VDD = 1.8 ~ 5.5V  
Notes:  
1.  
2.  
3.  
Based on characterization, tested in production.  
Guaranteed by characterization result, not tested in production.  
Guaranteed by design.  
Table 8.3-1 24 MHz Internal High Speed RC Oscillator(HIRC) Characteristic  
Sep. 1, 2020  
Page 125 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.3.2  
38.4 kHz Internal Low Speed RC Oscillator (LIRC)  
Symbol  
Parameter  
Operating voltage  
Min  
1.8  
-
Typ  
-
Max  
5.5  
-
Unit  
V
Test Conditions  
VDD  
Oscillator frequnecy  
38.4  
kHz  
TA = 25 °C,  
VDD = 5V  
-2[1]  
-
-
2[1]  
%
%
FLRC  
Frequency drift over temperarure  
and volatge  
TA=-40~105°C  
VDD=1.8V~5.5V  
-10[2]  
10[2]  
Without software calibration  
[2]  
ILRC  
Operating current  
Stable time  
-
-
0.85  
500  
1
-
µA  
VDD = 3.3V  
TA=-40~105°C  
VDD=1.8V~5.5V  
TS  
μs  
Notes:  
1. Guaranteed by characterization, tested in production.  
2. Guaranteed by characterization, not tested in production.  
3. The 38.4 kHz low speed RC oscillator can be calibrated by user.  
4. Guaranteed by design.  
Table 8.3-2 38.4 kHz Internal Low Speed RC Oscillator(LIRC) Characteristics  
Sep. 1, 2020  
Page 126 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.3.3  
External 4~24 MHz High Speed Crystal/Ceramic Resonator (HXT) characteristics  
The high-speed external (HXT) clock can be supplied with a 4 to 24 MHz crystal/ceramic resonator  
oscillator. All the information given in this secion are based on characterization results obtained with  
typical external components. In the application, the external components have to be placed as close  
as possible to the XT1_IN and XT1_Out pins and must not be connected to any other devices in order  
to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer  
for more details on the resonator characteristics (frequency, package, accuracy).  
Symbol  
VDD  
Parameter  
Operating voltage  
Min[1]  
Typ  
-
Max[1]  
Unit  
V
Test Conditions[2]  
1.8  
5.5  
-
Rf  
Internal feedback resister  
Oscillator frequency  
-
4
-
500  
-
kΩ  
fHXT  
24  
180  
300  
500  
650  
975  
-
MHz  
80  
4 MHz, Gain = L0  
-
110  
180  
230  
360  
3500  
950  
700  
450  
400  
-
8 MHz, Gain = L1  
12 MHz, Gain = L2  
16 Mhz, Gain = L3  
24 MHz, Gain = L4  
4 MHz, Gain = L0  
8 MHz, Gain = L1  
12 MHz, Gain = L2  
16 Mhz, Gain = L3  
24 MHz, Gain = L4  
IHXT  
Current consumption  
-
µA  
-
-
-
-
-
TS  
Stable time [3]  
Duty cycle  
-
-
µs  
%
-
-
-
-
DuHXT  
40  
60  
Notes:  
1.  
2.  
3.  
Guaranteed by characterization, not tested in production.  
L0 ~ L4 defined by SFR XLTCON[6:4] HXSG  
Value variable based on extnerl Crystal stable time.  
Table 8.3-3 External 4~24 MHz High Speed Crystal (HXT) Oscillator  
Typical Crystal Application Circuits  
For C1 and C2, it is recommended to use high-quality external ceramic capacitors in 10 pF ~ 25 pF  
range, designed for high-frequency applications, and selected to match the requirements of the crystal  
or resonator. The crystal manufacturer typically specifies a load capacitance which is the series  
combination of C1 and C2. PCB and MCU pin capacitance must be included (8 pF can be used as a  
rough estimate of the combined pin and board capacitance) when sizing C1 and C2.  
CRYSTAL  
C1  
C2  
R1  
4 MHz ~ 24 MHz  
10 ~ 25 pF  
10 ~ 25 pF  
without  
Sep. 1, 2020  
Page 127 of 164  
Rev 2.00  
ML51/ML54/ML56  
XT1_OUT  
XT1_IN  
R1  
C1  
C2  
Table 8.3-4 Typical Crystal Application  
Sep. 1, 2020  
Page 128 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.3.4  
External 4~24 MHz High Speed Clock Input Signal Characteristics  
For clock input mode the HXT oscillator is switched off and XT1_IN is a standard input pin to receive  
external clock. The external clock signal has to respect the below Table. The characteristics result  
from tests performed using a wavefrom generator.  
Symbol  
Parameter  
Min[1]  
Typ  
Max[1]  
Unit  
Test Conditions  
External user clock source  
frequency  
fHXT_ext  
4
-
24  
MHz  
tCHCX  
tCLCX  
tCLCH  
Clock high time  
Clock low time  
8
8
-
-
-
-
ns  
ns  
Low (10%) to high level (90%)  
rise time  
Clock rise time  
Clock fall time  
-
-
-
-
10  
10  
ns  
ns  
High (90%) to low level (10%)  
fall time  
tCHCL  
DuE_HXT  
VIH  
Duty cycle  
40  
0.7*VDD  
VSS  
-
-
-
60  
VDD  
%
V
Input high voltage  
Input low voltage  
VIL  
0.3*VDD  
V
External  
clock source  
XT1_IN  
tCLCL  
tCLCH  
tCLCX  
90%  
10%  
VIH  
VIL  
tCHCL  
tCHCX  
Notes:  
1. Guaranteed by characterization, not tested in production.  
Table 8.3-5 External 4~24 MHz High Speed Clock Input Signal  
Sep. 1, 2020  
Page 129 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.3.5  
External 32.768 kHz Low Speed Crystal/Ceramic Resonator (LXT) characteristics  
The low-speed external (LXT) clock can be supplied with a 32.768 kHz crystal/ceramic resonator  
oscillator. All the information given in this secion are based on characterization results obtained with  
typical external components. In the application, the external components have to be placed as close  
as possible to the X32_OUT and X32_IN pins and must not be connected to any other devices in  
order to minimize output distortion and startup stabilization time. Refer to the crystal resonator  
manufacturer for more details on the resonator characteristics (frequency, package, accuracy).  
Symbol  
VDD  
Parameter  
Min[1]  
1.8  
-40  
-
Typ Max[1] Unit  
Test Conditions[2]  
Operation voltage  
-
5.5  
105  
-
V
Temperature range  
TLXT  
Rf  
-
6
C  
Internal feedback resistor  
Oscillator frequency  
MΩ  
kHz  
FLXT  
32.768  
1.3  
1.6  
2
-
-
3.7  
6
ESR=35 kΩ, Gain = L2  
ESR=70 kΩ, Gain = L3  
ILXT  
Current consumption  
A  
TsLXT Stable time [3]  
DuLXT Duty cycle  
-
-
s
30  
-
-
70  
70  
%
Rs  
Equivalnet Series Resisotr(ESR)  
35  
kΩ Crystal @32.768 kHz  
Notes:  
1. Guaranteed by characterization, not tested in production.  
2. L1 ~ L2 defined by SFR XLTCON[1:0] LXSG  
3. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values, Value variable based on extnerl  
Crystal stable time.  
Table 8.3-6 External 32.768 kHz Low Speed Crystal (LXT) Oscillator Characteristics  
Typical Crystal Application Circuits  
CRYSTAL  
C1  
C2  
R1  
32.768 kHz, ESR < 70 KΩ  
20 pF  
20 pF  
without  
X32_OUT  
X32_IN  
R1  
C1  
C2  
Table 8.3-7 Typical 32.768 kHz Crystal Application Circuit  
Sep. 1, 2020  
Page 130 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.3.6  
I/O AC Characteristics  
Symbol  
Parameter  
Typ.  
4.6  
2.9  
6.6  
4.3  
8.5  
8.0  
4.0  
2.1  
4.9  
3.0  
9.5  
5.4  
5.6  
3.4  
8.1  
5.1  
15.1  
9.6  
4.8  
2.1  
6.4  
3.0  
12.7  
5.4  
Max[1]. Unit  
Test Conditions[2]  
CL = 30 pF, VDD >= 5.5 V  
CL = 10 pF, VDD >= 5.5 V  
CL = 30 pF, VDD >= 3.3 V  
CL = 10 pF, VDD >= 3.3 V  
CL = 30 pF, VDD >= 1.8 V  
CL = 10 pF, VDD >= 1.8 V  
CL = 30 pF, VDD >= 5.5 V  
CL = 10 pF, VDD >= 5.5 V  
CL = 30 pF, VDD >= 3.3 V  
CL = 10 pF, VDD >= 3.3 V  
CL = 30 pF, VDD >= 1.8 V  
CL = 10 pF, VDD >= 1.8 V  
CL = 30 pF, VDD >= 5.5 V  
CL = 10 pF, VDD >= 5.5 V  
CL = 30 pF, VDD >= 3.3 V  
CL = 10 pF, VDD >= 3.3 V  
CL = 30 pF, VDD >= 1.8 V  
CL = 10 pF, VDD >= 1.8 V  
CL = 30 pF, VDD >= 5.5 V  
CL = 10 pF, VDD >= 5.5 V  
CL = 30 pF, VDD >= 3.3 V  
CL = 10 pF, VDD >= 3.3 V  
CL = 30 pF, VDD >= 1.8 V  
CL = 10 pF, VDD >= 1.8 V  
CL = 30 pF, VDD >= 1.8 V  
CL = 10 pF, VDD >= 1.8 V  
5.1  
3.3  
8
Normal mode[4] output high (90%) to low level (10%)  
falling time  
tf(IO)out  
tf(IO)out  
tr(IO)out  
ns  
ns  
ns  
5
12.5  
10.7  
4.3  
2.5  
5.8  
3.7  
13.8  
7.4  
6.1  
3.7  
9.4  
5.8  
20.3  
12.4  
5.2  
2.5  
7.4  
3.7  
16.9  
7.4  
High slew rate mode [5] output high (90%) to low level  
(10%) falling time  
Normal mode[4] output low (10%) to high level (90%)  
rising time  
High slew rate mode [5] output low (10%) to high level  
(90%) rising time  
tr(IO)out  
ns  
[3]  
fmax(IO)out  
I/O maximum frequency  
24  
24  
MHz  
Notes:  
1. Guaranteed by characterization result, not tested in production.  
2. CL is a external capacitive load to simulate PCB and device loading.  
3. The maximum frequency is defined by   
ꢃꢄ  
.  
ꢀꢁꢂ  
ꢆꢄꢇꢄꢈꢉ ꢋꢉ  
4. PxSR.n bit value = 0, Normal output slew rate  
5. PxSR.n bit value = 1, high speed output slew rate  
Table 8.3-8 I/O AC characteristics  
Sep. 1, 2020  
Page 131 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.4 Analog Characteristics  
8.4.1 Reset and Power Control Block Characteristics  
The maximum values are obtained for VDD = 1. 8V ~ 5.5 V and maximum ambient temperature (TA),  
and the typical values for TA= 25 °C and VDD = 3.3 V.The parameters in below table are derived from  
tests performed under ambient temperature unless otherwise specified.  
Symbol  
Parameter  
POR Operating Current  
LVR Operating Current  
Min  
Typ  
60  
Max  
100  
80  
Unit  
Test Conditions  
AVDD = 5.5V  
[1]  
IPOR  
-
-
µA  
[1]  
ILVR  
30  
AVDD = 5.5V  
LVR Low Power Run Mode  
Operating Current  
0.5  
1
AVDD = 5.5V  
[1]  
IBOD  
BOD Operating Current  
POR Reset Voltage  
-
0.5  
1.55  
1.63  
1.8  
2
2.9  
1.65  
1.70  
2
AVDD = 5.5V  
VPOR  
VLVR  
VBOD  
1.45  
1.55  
1.7  
1.9  
2.3  
2.55  
2.85  
3.55  
4.2  
-
V
-
-
LVR Reset Voltage  
BOD Brown-Out Detect Voltage  
2.2  
2.5  
2.8  
3.2  
3.9  
4.5  
2
2.4  
2.7  
3
3.7  
4.4  
1
[1]  
TLVR_SU  
LVR Startup Time  
LVR Respond Time  
µs  
-
-
-
[1]  
TLVR_RE  
-
15  
20  
LVR Low Power Run Mode  
Respond Time  
-
20  
30  
[1]  
TBOD_SU  
BOD Startup Time  
BOD Respond Time  
-
-
250  
19  
350  
30  
-
-
[1]  
TBOD_RE  
Notes:  
1. Guaranteed by characterization, not tested in production.  
2. Design for specified applcaiton.  
Table 8.4-1 Reset And Power Control Unit  
Sep. 1, 2020  
Page 132 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.4.2  
12-bit SAR ADC  
The maximum values are obtained for VDD = 1. 8V ~ 5.5 V and maximum ambient temperature (TA),  
and the typical values for TA= 25 °C and VDD = 3.3 V.The parameters in below table are derived from  
tests performed under ambient temperature unless otherwise specified.  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
TA  
Temperature  
-40  
-
105  
AV  
AVDD  
VREF  
VIN  
Analog Operating Voltage  
Reference Voltage  
1.8  
1.8  
0
-
-
-
VDD  
AVDD  
VREF  
V
V
V
VDD  
=
DD  
AVDD VREF < 1.2 V  
ADC Channel Input Voltage  
AVDD = VDD =VREF = 5 V  
FADC = 500kHz  
[1]  
IADC  
Operating Current (AVDD + VREF Current)  
-
-
360  
µA  
Bit  
NR  
Resolution  
12  
-
[1]  
FADC  
ADC Conversion Rate  
-
0.375  
0.417  
1
500  
2.12  
1.54  
128  
-
FADC ADC conversion rate  
TSMP Sampling Time [2]  
-
TSMP  
Sampling Time [2]  
-
TCONV  
TEN  
Conversion Time  
-
1/FADC  
Enable To Ready Time  
Integral Non-Linearity Error  
Differential Non-Linearity Error  
Gain Error  
20  
-
μs  
INL[1]  
DNL[1]  
-4  
-
+4  
LSB VREF = AVDD  
LSB VREF = AVDD  
LSB VREF = AVDD  
LSB VREF = AVDD  
LSB VREF = AVDD  
-2  
-
+4.5  
+0.4  
+2.5  
+7  
[1]  
EG  
-3.5  
-2  
-
[1]  
EO  
Offset Error  
-
T
[1]  
EA  
Absolute Error  
-7  
Notes:  
1.  
2.  
Guaranteed by characterization result, not tested in production.  
4 * ADCAQT 6  
ADC sampling time =.  
, FADCAQT is defined in ADCDIV (ADCCON2[3:1]). As default FADCAQT = FSYS  
F
ADCAQT  
(ADCDIV=0),  
3. Since the minima sampling time must over 370ns that means when FADCAQT = 24MHz, ADCAQT should be  
defined as 1 at least. This value is defined by software.  
Table 8.4-2 ADC Characteristics  
Sep. 1, 2020  
Page 133 of 164  
Rev 2.00  
ML51/ML54/ML56  
EF (Full scale error) = EO + EG  
Gain Error Offset Error  
EG  
EO  
4095  
4094  
4093  
4092  
Ideal transfer curve  
7
6
5
4
3
2
1
ADC  
output  
code  
Actual transfer curve  
DNL  
1 LSB  
4095  
Analog input voltage  
(LSB)  
Offset Error  
EO  
Note: The INL is the peak difference between the transition point of the steps of the calibrated transfer  
curve and the ideal transfer curve. A calibrated transfer curve means it has calibrated the offset and  
gain error from the actual transfer curve.  
Sep. 1, 2020  
Page 134 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.4.3  
Analog Comparator Controller (ACMP)  
The maximum values are obtained for VDD = 5.5 V and maximum ambient temperature (TA), and the typical  
values for TA= 25 °C and VDD = 3.3 V unless otherwise specified.  
Symbol  
AVDD  
TA  
Parameter  
Analog supply voltage  
Temperature  
Min  
1.8  
-40  
Typ  
Max  
5.5  
Unit  
V
Test Conditions  
VDD = AVDD  
-
-
105  
IDD  
Operating current  
-
2
5
A  
[2]  
VCM  
Input common mode voltage range  
Differential input voltage sensitivity  
Input offset voltage  
Hysteresis window  
0.35  
1/2 AVDD AVDD -0.3  
[2]  
VDI  
10  
-
20  
10  
10  
65  
-
-
20  
20  
75  
5
mV Hysteresis disable  
[2]  
Voffset  
mV Hysteresis disable  
[2]  
Vhys  
-
mV  
dB  
S  
S  
Av[1]  
DC voltage Gain  
45  
-
[2]  
Td  
Propagation delay  
[2]  
TStable  
Stable time  
-
-
5
[2]  
ACRV  
CRV output voltage  
Unit resistor value  
-5  
-
-
5
%
AVDD x (1/6+CRVCTL/24)  
[2]  
RCRV  
4.5  
-
kΩ  
CRV output voltage settle  
to ±5%  
[2]  
TSETUP_CRV  
Stable time  
-
-
-
2
-
µS  
[2]  
IDD_CRV  
Operating current  
2
A  
Notes:  
1. Guaranteed by design, not tested in production  
2. Guaranteed by characteristic, not tested in production. unless otherwise specified.  
Table 8.4-3 ACMP Characteristics  
Sep. 1, 2020  
Page 135 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.4.4  
Internal Voltage Reference  
The maximum values are obtained for VDD = 5.5 V and maximum ambient temperature (TA), and the  
typical values for TA= 25 °C and VDD = 3.3 V unless otherwise specified.  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
VREF_EXT  
External Analog reference voltage  
1.8  
-
AVDD  
AVDD >= 2.0 V, TA = 25°C  
1.49  
1.538  
2.048  
1.59  
Internal analog reference voltage  
VRFSEL[2:0] = 000 [2]  
AVDD >= 2.4 V, TA = 25°C  
Internal Analog reference voltage  
VRFSEL[2:0] = 001[2]  
2.018  
2.078  
Test in product.  
AVDD >= 2.9 V, TA = 25°C  
VREF_INT  
Internal reference voltage  
V
2.48  
3.042  
3.97  
2.560  
3.072  
4.096  
2.64  
3.102  
4.22  
Internal analog reference voltage  
VRFSEL[2:0] = 010 [2]  
AVDD >= 3.4 V, TA = 25°C Internal  
Analog reference voltage  
VRFSEL[2:0] = 011[2]  
Test in product.  
AVDD >= 4.5 V, TA = 25°C  
Internal analog reference voltage  
VRFSEL[2:0] = 100 [2]  
VBG  
Band-gap voltage  
Stable time  
0.793  
-
0.814  
24  
0.835  
180  
V
TA = -40°C ~105 °C, Test in product.  
CL =1 uF, VREF initial=0, Preload is  
enabled.  
mS  
Ts  
CL =1 uF, VREF initial=5.5, Preload is  
enabled.  
-
2
2.6  
mS  
IVREF_INT  
VREF_INT operating current  
-
-
-
-
1
1
mA  
mA  
IVREF  
_
LOAD  
VREF_INT output loading current  
Note:  
1. Guaranteed by characterization, not tested in production  
Table 8.4-4 Voltage Reference Character  
VREF  
1uF  
Note: VREF_INT is only supported while package includes VREF pin with external capacitor.  
Figure 8.4-1 Typical Connection With Internal Voltage Reference  
Sep. 1, 2020  
Page 136 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.4.5  
Temperature Sensor  
The maximum values are obtained for VDD = 1.8 ~ 5.5 V and maximum ambient temperature (TA), and  
the typical values for TA= 25 °C and VDD = 3.3 V unless otherwise specified.  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
[1]  
VTEMP_OS  
Tempereture sensor offset voltage  
645  
675  
705  
mV  
[1]  
TC  
Temperature Coefficient  
1.74  
-
1.83  
16  
1.9  
30  
mV/  
A  
TJ = 25 ℃  
[1]  
ITEMP  
Temperature sensor operating current  
Note:  
1. Guaranteed by characterization, not tested in production  
2. VTEMP (mV) = TC (mV/°C) x Temperature (°C) + VTEMP_OS (mV)  
Table 8.4-5 Temperature Sensor Character  
Sep. 1, 2020  
Page 137 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.4.6  
LCD Controller  
The maximum values are obtained for VDD = 3.6 V and maximum ambient temperature (TA), and the typical  
values for TA= 25 °C and VDD = 3.3 V unless otherwise specified.  
Symbol  
VDD  
Parameter  
Supply voltage  
Min  
1.8  
1.8  
0
Typ  
Max  
3.6  
5.5  
85  
Unit  
V
Test Conditions  
-
-
VLCD  
TA  
LCD external pin voltage  
Temperature  
V
-
°C  
0.1  
µF Wihtout charge pump mode  
With charge pump mode  
VLCD pin external pin  
capacitor[2]  
CLCD  
0.1  
1
1
External charge-pump  
capacitor[2]  
The capacitor between DH1 and  
DH2  
CDH1-DH2  
CVX  
10  
µF  
V1/V2/V3 external capacitance  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
N/A  
5.4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F  
VCP_SEL[5:0]=000000  
VCP_SEL[5:0]=000101  
VCP_SEL[5:0]=001010  
VCP_SEL[5:0]=001110  
VCP_SEL[5:0]=010011  
VCP_SEL[5:0]=011000  
VCP_SEL[5:0]=011101  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
LCD internal Charge Pump  
Voltage Output Value  
VLCDCP  
V
VCP_SEL[5:0]=100010  
4.0  
VCP_SEL[5:0]=100111  
VCP_SEL[5:0]=101100  
VCP_SEL[5:0]=110000  
VCP_SEL[5:0]=110101  
VCP_SEL[5:0]=111010  
VCP_SEL[5:0]=111111  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
V3/4  
V2/4  
V1/4  
V2/3  
V1/3  
COM/SEG 3/4 VLCD (1/4 Bias)  
COM/SEG 2/4 VLCD (1/4 Bias)  
COM/SEG 2/4 VLCD (1/4 Bias)  
COM/SEG 2/3 VLCD (1/3 Bias)  
COM/SEG 1/3 VLCD (1/3 Bias)  
3/4 VLCD  
2/4 VLCD  
1/4 VLCD  
2/3 VLCD  
1/3 VLCD  
V
V
V
V
V
Resistor Mode total internal  
Resistor Value  
RR_MODE  
240  
6
-
-
KΩ  
Resistor Enhance Mode total  
internal Resistor Value  
RRE_MODE  
MΩ  
VDD=1.8, VLCD=VCP=3.2, Buffer  
Mode, all LCD display on  
A  
-
18  
31  
-
Supply current from VDD with built-  
in charge pump and buffer mode  
[3]  
ILCD  
VDD=1.8, VLCD=VCP=3.2, Resistor  
Mode, all LCD display on  
Sep. 1, 2020  
Page 138 of 164  
Rev 2.00  
ML51/ML54/ML56  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
VDD=1.8, VLCD=VCP=3.2, Resistor  
Enhance Mode, all LCD display on  
-
5.5  
-
VDD=3.3, VLCD=VCP=5.4, Buffer  
Mode, all LCD display on  
-
-
-
24  
1.8  
7
-
-
-
VDD=1.8, VLCD=VCP=3.2, Buffer  
Mode, all LCD display off  
VDD=1.8, VLCD=3.3, Buffer Mode, all  
LCD display on  
VDD=1.8, VLCD=3.3, Resistor Mode,  
all LCD display on  
14  
0.8  
9.2  
7
VDD=1.8, VLCD=3.3, Resistor  
Enhance Mode, all LCD display on  
Supply current from VLCD without  
Bulit-In Charge Pump  
[3]  
IVLCD  
A  
VDD=1.8, VLCD=5.4, Buffer Mode, all  
LCD display on  
-
-
-
-
-
-
VDD=3.3, VLCD=3.3, Buffer Mode, all  
LCD display on  
VDD=1.8, VLCD=5.4, Buffer Mode, all  
LCD display off  
9
Notes:  
1. All condition not special defined is guaranteed by design, not tested in production  
2. CDH1-DH2 value should be 1/10 CLCD  
3LCD COM/SEG is set to clock source is LIRC, 1/8 duty, 1/4 bias, type B 64 Hz frame rate, all pixels active, waveform,  
without LCD panel loading.  
Table 8.4-6 LCD Digital Characteristics  
LCD Voltage Source From Internal Charge Pump  
Typ.  
Unit  
Resistor Enhance  
Buffer Mode  
Resistor Mode  
Symbol Parameter  
VDD  
VLCD  
Mode  
0
25  
85  
0
25  
85  
0
25  
85  
1.8V 3.2V  
17  
18  
24  
30  
37  
49  
1.6  
1.8  
1.8  
30  
37  
50  
31  
36  
44  
58  
5
5.1  
5.5  
6.3  
7
10  
VDD Supply  
Current in  
Power Down  
Mode with  
LCD  
On  
3.2V  
3.3V  
20  
22  
22  
24  
29  
31  
5
39  
52  
1.6  
2
6
7
6
6
5.4V  
ILCDCPPD  
LIRC,  
VLCD  
(LIRC)  
1.8V 3.2V  
1.6  
1.8  
1.8  
17  
1.6  
1.6  
1.8  
1.8  
5.5  
6
1.6  
2
5
source  
internal  
Charge  
Pump  
LCD  
Off  
3.2V  
3.3V  
2
5.7  
5.7  
25  
5.7  
5.7  
37  
45  
59  
5.7  
5.7  
11  
16  
17  
µA  
5.4V  
2
2
2
1.8V 3.2V  
18  
22  
24  
32  
40  
52  
6
VDD Supply  
Current in  
ILCDCPPD  
Power Down LCD  
3.2V  
3.3V  
21  
30  
6.5  
7.5  
Mode with  
LXT,  
On  
(LXT)  
5.4V  
22  
32  
7
VLCD  
Sep. 1, 2020  
Page 139 of 164  
Rev 2.00  
ML51/ML54/ML56  
Typ.  
Resistor Mode  
Unit  
Resistor Enhance  
Buffer Mode  
Symbol Parameter  
VDD  
VLCD  
Mode  
0
25  
85  
0
25  
85  
0
25  
85  
source  
internal  
Charge  
Pump  
1.8V 3.2V  
1.6  
1.6  
5
1.6  
1.8  
1.8  
1.6  
5
1.6  
1.6  
2
5
LCD  
Off  
3.2V  
3.3V  
1.8  
1.8  
2
2
5.7  
5.7  
2
2
5.7  
5.7  
1.8  
1.8  
5.7  
5.7  
5.4V  
2
Notes:  
1. All condition not special defined is guaranteed by design, not tested in production  
2. The values are obtained for TA= 25 °C and VDD = 3.3 V unless otherwise specified.  
3. LCD COM/SEG is set as 1/8 duty, 1/4 bias, type B 64 Hz frame rate, all pixels active, without LCD panel loading.  
Table 8.4-7 Current Consumption In Power Down Mode With LCD Voltage Source From Internal  
Charge Pump  
LCD Voltage Source From AVDD  
Typ.  
Unit  
Buffer Mode  
25  
Resistor Mode  
Resistor Enhance  
Mode  
Symbol  
Parameter  
VLCD  
0
85  
0
25  
85  
0
25  
85  
(AVDD  
)
ILCDAVDDP  
D(LIRC)  
VDD Supply  
Current in  
Power Down  
Mode with  
LIRC,  
LCD  
On  
1.8V  
3.3V  
1.8V  
3.3V  
1.8V  
3.3V  
1.8V  
3.3V  
6.2  
9
6.8  
9.5  
6
13  
15  
11  
9
16  
9.2  
16.4  
8.3  
13  
21  
2.1  
2.6  
1.2  
1.6  
2.7  
3.2  
1.2  
1.6  
2.4  
3
6
7
LCD  
Off  
5.2  
8
8
12  
1.4  
1.8  
3
5
VLCD source  
internal AVDD  
8.5  
7.5  
10  
6
13.5  
5.2  
14.2  
9.6  
16.8  
8
14.6  
10  
19  
6
µA  
ILCDAVDDP  
D(LXT)  
VDD Supply  
Current in  
Power Down  
Mode with  
LXT,  
LCD  
On  
6.6  
9
12.1  
19.2  
12  
4.8  
5.8  
5
6.2  
14.5  
8.3  
3.5  
1.4  
1.8  
LCD  
Off  
5.2  
8
11  
VLCD source  
internal AVDD  
8.5  
13.5  
14.2  
14.6  
19  
6
Notes:  
1. All condition not special defined is guaranteed by design, not tested in production  
2. The values are obtained for TA= 25 °C unless otherwise specified.  
3. LCD COM/SEG is set to 1/8 duty, 1/4 bias, 128 Hz frame rate, all pixels active, type B waveform, no LCD panel loading.  
Table 8.4-8 Current Consumption In Power Down Mode With LCD Voltage Source From AVDD  
Sep. 1, 2020  
Page 140 of 164  
Rev 2.00  
ML51/ML54/ML56  
LCD Voltage Source From External VLCD Pin  
Typ.  
Unit  
Buffer Mode  
Resistor Mode  
Resistor Enhance  
Mode  
Symbol  
Parameter  
VLCD  
0
25  
85  
0
25  
85  
0
25  
85  
ILCDVLCDP  
D(LIRC)  
VLCD Supply  
Current in  
Power Down  
Mode with  
LIRC,  
LCD  
On  
3.3  
6.5  
7
9
13.5  
14  
15  
24  
0.7  
0.8  
1.2  
5.4V  
3.3V  
5.4V  
3.3  
8.6  
6.5  
8.3  
6.5  
8.6  
6.5  
8.3  
9.2  
7
11  
8.5  
11  
9
22  
14  
23  
14  
23  
14  
23  
14  
23  
1.2  
0.5  
0.9  
0.7  
1.2  
0.5  
0.9  
1.2  
0.6  
1
2
1
LCD  
Off  
14.5  
23.5  
15  
VLCD source  
External  
VLCD pin  
9
22  
2
µA  
ILCDVLCDP  
D(LXT)  
Supply  
LCD  
On  
7
13.5  
22  
0.8  
1.2  
0.6  
1
1.2  
2
Current in  
Power Down  
Mode with  
LXT,  
5.4V  
3.3V  
5.4V  
9.2  
7
11  
8.5  
11  
24  
LCD  
Off  
14  
14.5  
23.5  
1
VLCD source  
External  
VLCD pin  
9
22  
2
Notes:  
1. All condition not special defined is guaranteed by design, not tested in production  
2. The values are obtained for TA= 25 °C and VDD = 3.3 V unless otherwise specified.  
3. LCD COM/SEG is set to 1/8 duty, 1/4 bias, 128 Hz frame rate, all pixels active, type B waveform, no LCD panel loading  
Table 8.4-9 Current Consumption In Power Down Mode With LCD Voltage Source From External  
VLCD pin  
Sep. 1, 2020  
Page 141 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.5 Flash DC Electrical Characteristics  
The devices are shipped to customers with the Flash memory erased.  
Symbol  
Parameter  
Supply voltage  
Min  
Typ  
1.8  
5
Max  
Unit  
Test Condition  
[1]  
VFLA  
1.62  
1.98  
V
TERASE  
TPROG  
IDD1  
Page erase time  
Program time  
Read current  
-
-
-
-
-
-
-
-
-
-
ms  
µs  
10  
4
TA = 25  
mA  
mA  
mA  
IDD2  
Program current  
Erase current  
4
IDD3  
12  
NENDUR  
Endurance  
100,000  
50  
-
-
-
-
cycles[2]  
year  
TJ = -40~125℃  
100 kcycle[3] TA = 55℃  
100 kcycle[3] TA = 85℃  
100 kcycle[3] TA = 105℃  
-
-
-
TRET  
Data retention  
25  
year  
10  
year  
Notes:  
1. VFLA is source from chip internal LDO output voltage.  
2. Number of program/erase cycles.  
3. Guaranteed by design.  
Table 8.5-1 Flash Memory Characteristics  
Sep. 1, 2020  
Page 142 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.6  
Absolute Maximum Ratings  
Volrage Stesses above the absolute maximum ratings may cause permanent damage to the device.  
The limiting values are stress ratings only and cannot be used to functional operation of the device.  
Exposure to the absolute maximum ratings may affect device reliability and proper operation is not  
guaranteed.  
8.6.1  
Voltage Characteristics  
8.6.1.1 ML51 32KB/16KB Flash Series  
Symbol  
Description  
Min  
Max  
6.5  
50  
Unit  
V
[1]  
VDD-VSS  
ΔVDD  
DC power supply  
-0.3  
Variations between different power pins  
Allowed voltage difference for VDD and AVDD  
Variations between different ground pins  
Allowed voltage difference for VSS and AVSS  
Input voltage on I/O  
-
mV  
mV  
mV  
mV  
V
|VDD AVDD  
|
-
50  
ΔVSS  
-
50  
|VSS - AVSS  
|
-
50  
VIN  
VSS-0.3  
6.5  
Notes:  
1. All main power (VDD, AVDD) and ground (VSS, AVSS) pins must be connected to the external power supply.  
Table 8.6-1 ML51 32KB/16KB Flash Series Voltage Characteristics  
8.6.1.2 ML51 64KB Flash/ML54/ML56 Series  
Symbol  
Description  
Min  
Max  
4.0  
50  
Unit  
V
[1]  
VDD-VSS  
DC power supply  
-0.3  
ΔVDD  
Variations between different power pins  
Allowed voltage difference for VDD and AVDD  
Variations between different ground pins  
Allowed voltage difference for VSS and AVSS  
Input voltage on I/O  
-
mV  
mV  
mV  
mV  
V
|VDD AVDD  
|
-
50  
ΔVSS  
-
50  
|VSS - AVSS  
|
-
50  
VIN  
VSS-0.3  
3.6  
Notes:  
2. All main power (VDD, AVDD) and ground (VSS, AVSS) pins must be connected to the external power supply.  
Table 8.6-2 ML51 64KB Flash/ML54/ML56 Series Voltage Characteristics  
Sep. 1, 2020  
Page 143 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.6.2  
Current Characteristics  
Symbol  
Description  
Min  
Max  
150  
150  
22  
Unit  
[1]  
ΣIDD  
Maximum current into VDD  
Maximum current out of VSS  
-
-
-
-
-
-
-
-
ΣISS  
Maximum current sunk by a I/O Pin  
Maximum current sourced by a I/O Pin  
Maximum current sunk by total I/O Pins[2]  
Maximum current sourced by total I/O Pins[2]  
Maximum injected current by a I/O Pin  
Maximum injected current by total I/O Pins  
10  
IIO  
mA  
100  
100  
±5  
[3]  
IINJ(PIN)  
[3]  
ΣIINJ(PIN)  
±25  
Note:  
1.  
Maximum allowable current is a function of device maximum power dissipation.  
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not  
be sunk/sourced between two consecutive power supply pins.  
3. A positive injection is caused by VIN>AVDD and a negative injection is caused by VIN<VSS. IINJ(PIN) must never be  
exceeded. It is recommended to connect an overvoltage protection diode between the analog input pin and the voltage  
supply pin.  
Table 8.6-3 Current Characteristics  
Sep. 1, 2020  
Page 144 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.6.3  
Thermal Characteristics  
The average junction temperature can be calculated by using the following equation:  
T
T
+ (P  
x
)
J
=
A
D
θJA  
TA = ambient temperature ()  
θJA = thermal resistance junction-ambient (/Watt)  
P
D
= sum of internal and I/O power dissipation  
Symbol  
Description  
Min  
Typ  
Max  
Unit  
T
A
-40  
Operating ambient temperature  
Operating junction temperature  
Storage temperature  
-
105  
T
J
-40  
-65  
-
-
125  
150  
T
ST  
Thermal resistance junction-ambient  
10-pin MSOP(3x3 mm)  
/Watt  
/Watt  
/Watt  
/Watt  
/Watt  
/Watt  
/Watt  
/Watt  
/Watt  
/Watt  
/Watt  
-
-
-
-
-
-
-
-
-
-
-
-
160  
100  
68  
38  
60  
30  
55  
62  
28  
49  
60  
50  
-
-
-
-
-
-
-
-
-
-
-
-
Thermal resistance junction-ambient  
14-pin TSSOP( 4.4x5 mm)  
Thermal resistance junction-ambient  
20-pin QFN(3x3 mm)  
Thermal resistance junction-ambient  
20-pin TSSOP(4.4x6.5 mm)  
Thermal resistance junction-ambient  
20-pin SOP(300mil)  
Thermal resistance junction-ambient  
28-pin TSSOP(4.4x9.7 mm)  
[1]  
θJA  
Thermal resistance junction-ambient  
28-pin SOP(300 mil)  
Thermal resistance junction-ambient  
32-pin LQFP(7x7 mm)  
Thermal resistance junction-ambient  
33-pin QFN(4x4 mm)  
Thermal resistance junction-ambient  
44-pin LQFP(10x10 mm)  
Thermal resistance junction-ambient  
48-pin LQFP(7x7 mm)  
Thermal resistance junction-ambient  
64-pin LQFP(7x7 mm)  
/Watt  
Note:  
1.  
Determined according to JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions  
Table 8.6-4 Thermal Characteristics  
Sep. 1, 2020  
Page 145 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.6.4  
EMC Characteristics  
8.6.4.1 Electrostatic discharge (ESD)  
For the Nuvoton MCU products, there are ESD protection circuits which built into chips to avoid any  
damage that can be caused by typical levels of ESD.  
8.6.4.2 Static latchup  
Two complementary static tests are required on six parts to assess the latchup  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
8.6.4.3 Electrical fast transients (EFT)  
In some application circuit compoment will produce fast and narrow high-frequency trasnients bursts  
of narrow high-frequency transients on the power distribution system..  
Inductive loads:  
Relays, switch contactors  
Heavy-duty motors when de-energized etc.  
The fast transient immunity requirements for electronic products are defined in IEC 61000-4-4 by  
International ElectrotechnicalCommission (IEC).  
8.6.4.4 EMC Character Table  
ML51 32KB/16KB Flash Series  
Symbol  
Description  
Min  
-8000  
-1000  
-150  
Typ  
Max  
+8000  
+1000  
+150  
Unit  
[1]  
VHBM  
Electrostatic discharge,human body mode  
Electrostatic discharge,charge device model  
Pin current for latch-up[3] @VDD = 5.5V  
Fast transient voltage burst  
-
-
-
-
V
[2]  
VCDM  
LU[3]  
mA  
kV  
[*4] [*5]  
VEFT  
-4.4  
+4.4  
Notes:  
1. Determined according to ANSI/ESDA/JEDEC JS-001 Standard, Electrostatic Discharge Sensitivity Testing Human  
Body Model (HBM) Component Level  
2. Determined according to ANSI/ESDA/JEDEC JS-002 standard for Electrostatic Discharge Sensitivity (ESD) Testing –  
Charged Device Model (CDM) Component Level.  
3. Determined according to JEDEC EIA/JESD78 standard.  
4. Determinded according to IEC 61000-4-4 Electrical fast transient/burst immunity test.  
5. The performace cretia class is 4A.  
Table 8.6-5 ML51 32KB/16KB Flash Series EMC Characteristics  
ML51 64KB Flash/ML54/ML56 Series  
Symbol  
Description  
Min  
-7000  
-1000  
-200  
Typ  
Max  
+7000  
+1000  
+200  
Unit  
V
[1]  
VHBM  
Electrostatic discharge,human body mode  
Electrostatic discharge,charge device model  
Pin current for latch-up[3] @VDD = 3.6V  
-
-
-
[2]  
VCDM  
LU[3]  
mA  
Sep. 1, 2020  
Page 146 of 164  
Rev 2.00  
ML51/ML54/ML56  
Symbol  
Description  
Fast transient voltage burst  
Min  
-4.4  
Typ  
Max  
Unit  
[*4] [*5]  
VEFT  
kV  
-
+4.4  
Notes:  
1.  
Determined according to ANSI/ESDA/JEDEC JS-001 Standard, Electrostatic Discharge Sensitivity Testing Human  
Body Model (HBM) Component Level  
2. Determined according to ANSI/ESDA/JEDEC JS-002 standard for Electrostatic Discharge Sensitivity (ESD) Testing –  
Charged Device Model (CDM) Component Level.  
3. Determined according to JEDEC EIA/JESD78 standard.  
4. Determinded according to IEC 61000-4-4 Electrical fast transient/burst immunity test.  
5. The performace cretia class is 4A.  
Table 8.6-6 ML51 64KB Flash/ML54/ML56 Series EMC Characteristics  
Sep. 1, 2020  
Page 147 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.6.5  
Package Moisture Sensitivity(MSL)  
The MSL rating of an IC determines its floor life before the board mounting once its dry bag has been  
opened. All Nuvoton surface mount chips have a moisture level classification. The information is also  
displayed on the bag packing.  
Pacakge  
10-pin MSOP(3x3 mm) [1]  
MSL  
MSL 3  
MSL 3  
MSL 3  
MSL 3  
MSL 3  
MSL 3  
MSL 3  
MSL 3  
MSL 3  
MSL 3  
MSL 3  
MSL 3  
14-pin TSSOP( 4.4x5 mm) [1]  
20-pin QFN(3x3 mm) [1]  
20-pin TSSOP(4.4x6.5 mm) [1]  
20-pin SOP(300mil) [1]  
28-pin TSSOP(4.4x9.7 mm) [1]  
28-pin SOP(300 mil) [1]  
32-pin LQFP(7x7 mm) [1]  
33-pin QFN(4x4 mm) [1]  
44-pin LQFP(10x10 mm)  
48-pin LQFP(7x7 mm) [1]  
64-pin LQFP(7x7 mm) [1]  
Note:  
1. Determined according to IPC/JEDEC J-STD-020  
Table 8.6-7 Package Moisture Sensitivity(MSL)  
Sep. 1, 2020  
Page 148 of 164  
Rev 2.00  
ML51/ML54/ML56  
8.6.6  
Soldering Profile  
Figure 8.6-1 Soldering Profile From J-STD-020C  
Porfile Feature  
Pb Free Package  
Average ramp-up rate (217to peak)  
Preheat temperature 150~200℃  
Temperature maintained above 217℃  
Time with 5of actual peak temperature  
Peak temperature range  
3/sec. max  
60 sec. to 120 sec.  
60 sec. to 150 sec.  
> 30 sec.  
260℃  
Ramp-down rate  
6/sec ax.  
8 min. max  
Time 25to peak temperature  
Note:  
1. Determined according to J-STD-020C  
Table 8.6-8 Soldering Profile  
Sep. 1, 2020  
Page 149 of 164  
Rev 2.00  
ML51/ML54/ML56  
9 PACKAGE DIMENSIONS  
9.1 LQFP 64L-pin (7.0 x 7.0 x 1.4 mm)  
Figure 9.1-1 LQFP 64L Package Dimension  
Sep. 1, 2020  
Page 150 of 164  
Rev 2.00  
ML51/ML54/ML56  
9.2 LQFP 48-pin (7.0 x 7.0 x 1.4 mm)  
H
36  
25  
37  
24  
H
13  
48  
12  
1
Controlling dimension  
: Millimeters  
Dimension in inch  
Dimension in mm  
Symbol  
Min Nom Max Min Nom Max  
A
1
0.002 0.004 0.006 0.05  
0.053 0.055 0.057 1.35  
0.10 0.15  
A
2
1.40  
1.45  
0.25  
0.20  
7.10  
7.10  
0.65  
9.10  
A
0.006  
0.004  
0.008 0.010 0.15 0.20  
b
c
D
0.006  
0.10 0.15  
0.008  
7.00  
7.00  
6.90  
6.90  
0.35  
0.272 0.276 0.280  
0.272 0.276 0.280  
E
0.020  
0.354  
0.354  
0.014  
0.350  
0.350  
0.018  
0.026  
0.50  
e
H
D
0.358 8.90 9.00  
0.358 8.90 9.00  
9.10  
0.60 0.75  
1.00  
E
H
L
0.024 0.030  
0.45  
0.039  
0.004  
7
1
L
Y
0.10  
7
0
0
0
Figure 9.2-1 LQFP-48 Package Dimension  
Sep. 1, 2020  
Page 151 of 164  
Rev 2.00  
ML51/ML54/ML56  
9.3 LQFP 44-pin (10 x 10 x 1.4mm  
Figure 9.3-1 LFP44 Package Dimension  
Sep. 1, 2020  
Page 152 of 164  
Rev 2.00  
ML51/ML54/ML56  
9.4 QFN 33-pin (4.0 x 4.0 x 0.8 mm)  
Figure 9.4-1 QFN-33 Package Dimension  
Sep. 1, 2020  
Page 153 of 164  
Rev 2.00  
ML51/ML54/ML56  
9.5 LQFP 32-pin (7.0 x 7.0 x 1.4 mm)  
Figure 9.5-1 LQFP-32 Package Dimension  
Sep. 1, 2020  
Page 154 of 164  
Rev 2.00  
ML51/ML54/ML56  
9.6 TSSOP 28-pin (4.4 x 9.7 x 1.0 mm)  
Figure 9.6-1 TSSOP-28 Package Dimension  
Sep. 1, 2020  
Page 155 of 164  
Rev 2.00  
ML51/ML54/ML56  
9.7 SOP 28-pin (300mil)  
15  
28  
E
1
14  
Control demensions are in milmeters .  
E
Figure 9.7-1 SOP-28 Package Dimension  
Sep. 1, 2020  
Page 156 of 164  
Rev 2.00  
ML51/ML54/ML56  
9.8 TSSOP 20-pin (4.4 x 6.5 x 0.9 mm)  
Figure 9.8-1 TSSOP-20 Package Dimension  
Sep. 1, 2020  
Page 157 of 164  
Rev 2.00  
ML51/ML54/ML56  
9.9 SOP 20-pin (300 mil)  
11  
20  
E
1
10  
Control demensions are in milmeters .  
E
Figure 9.9-1 SOP-20 Package Dimension  
Sep. 1, 2020  
Page 158 of 164  
Rev 2.00  
ML51/ML54/ML56  
9.10 QFN 20-pin ( 3.0 x 3.0 x 0.8 mm )  
Figure 9.10-1 QFN-20 Package Dimension  
Sep. 1, 2020  
Page 159 of 164  
Rev 2.00  
ML51/ML54/ML56  
9.11 TSSOP 14-pin (4.4 x 5.0 x 0.9 mm)  
Figure 9.11-1 TSSOP-14 Package Dimension  
Sep. 1, 2020  
Page 160 of 164  
Rev 2.00  
ML51/ML54/ML56  
9.12 MSOP 10-pin (3.0 x 3.0 x 0.85 mm)  
Figure 9.12-1 MSOP-10 Package Dimension  
Sep. 1, 2020  
Page 161 of 164  
Rev 2.00  
ML51/ML54/ML56  
10 ABBREVIATIONS  
10.1 Abbreviations  
Acronym  
ADC  
BOD  
GPIO  
Fsys  
HIRC  
IAP  
Description  
Analog-to-Digital Converter  
Brown-out Detection  
General-Purpose Input/Output  
Frequency of system clock  
12 MHz Internal High Speed RC Oscillator  
In Application Programming  
In Circuit Programming  
In System Programming  
Liquid Crystal Displays  
ICP  
ISP  
LCD  
LDO  
LIRC  
LVR  
Low Dropout Regulator  
10 kHz internal low speed RC oscillator (LIRC)  
Low Voltage $eset  
PDMA  
POR  
PWM  
RTC  
SPI  
Peripheral Direct Memory Access  
Power On Reset  
Pulse Width Modulation  
Real Time Clock  
Serial Peripheral Interface  
Touch Key  
TK  
UART  
UCID  
WKT  
WDT  
Universal Asynchronous Receiver/Transmitter  
Unique Customer ID  
Wakeup Timer  
Watchdog Timer  
Table 10.1-1 List of Abbreviations  
Sep. 1, 2020  
Page 162 of 164  
Rev 2.00  
ML51/ML54/ML56  
11 REVISION HISTORY  
Date  
Revision  
Description  
Initial release.  
Section 3.1  
2018.12.05  
1.00  
Added package type table.  
Section 4.2.2 Added Multi-function summary table.  
Section 6.2 Added ICP connect circuit.  
Section 7.2.4 Modified ISR value.  
2019.09.03  
1.01  
Section 7.3  
Removed 32.768kHz external clock input and deviation figure.  
Section 7.4.1 Modified POR/LVR/BOD operating current value.  
Section 7.6.1 Modified DC power supply item.  
Section 8.6  
Modified TSSOP20 package dimension in title.  
Section 37.6 Modified TSSOP20 package value.  
Section 6.2 Added note in application circuit.  
Section 7.4.2 Added RS and CIN value in table.  
2020.03.11  
1.02  
Section 7.4.4 Added section 7.4.4. Moved internal voltage character table to  
this section.  
Chapter 8.1 Modified QFN33 package L value to 0.3.  
Chapter 7.6.2 Modified Maximum current to 150mA  
Chapter 7.6.4 Modified Pin current for latch-up value to 150mA .  
Modified Fast transient voltage burst value to 4.4kV.  
2020.06.29  
2020.09.01  
1.03  
2.00  
Chapter 7.4.2 Modified ADC conversion rate and sampling timing description.  
Added ML51 64KB/ML54/ML56 Series description.  
Sep. 1, 2020  
Page 163 of 164  
Rev 2.00  
ML51/ML54/ML56  
Important Notice  
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any  
malfunction or failure of which may cause loss of human life, bodily injury or severe property  
damage. Such applications are deemed, “Insecure Usage”.  
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic  
energy control instruments, airplane or spaceship instruments, the control or operation of  
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all  
types of safety devices, and other applications intended to support or sustain life.  
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay  
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the  
damages and liabilities thus incurred by Nuvoton.  
Sep. 1, 2020  
Page 164 of 164  
Rev 2.00  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY