NAU88L21IG [NUVOTON]

Ultra-Low Power Audio CODEC Ground-Referenced Headphone Amplifier;
NAU88L21IG
型号: NAU88L21IG
厂家: NUVOTON    NUVOTON
描述:

Ultra-Low Power Audio CODEC Ground-Referenced Headphone Amplifier

文件: 总69页 (文件大小:1602K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NAU88L21  
Ultra-Low Power Audio CODEC Ground-Referenced Headphone Amplifier  
GENERAL DESCRIPTION  
The NAU88L21 is an ultra-low power high performance audio codec that supports both analog and digital audio functions. It includes  
one I2S/PCM interface, one digital microphone interface, one digital mixer, two high quality DACs and ADC’s, and one stereo class  
G headphone amplifier. The advanced on-chip signal processing engine that includes dynamic range compressor (DRC),  
programmable biquad filter, as well as an integrated frequency locked loop (FLL) to support various input clocks.  
FEATURES  
Class G Headphone Amplifier (28mW @ 32Ω, 1%  
THD+N)  
DAC: 105dB SNR, (A-weighted) @ 0dB gain, 1.8V and -  
80dB THD @ 20mW and RL= 32Ω, DAC playback to  
headphone output mode  
ADC: 103dB SNR (A-weighted) @ 0dB MIC gain, 1.8V, Fs  
= 48kHz and -93dB THD, 1.8V, MIC gain 0dB, OSR 256x  
1 Digital I2S/PCM I/O port  
Two mono differential or one stereo differential analog  
microphone inputs, two single-ended microphone inputs or  
one stereo digital microphone input  
Cap-free Low noise Microphone bias with 7uVrms noise  
between 20Hz-20kHz, internal pull high resistor for  
microphone.  
Sampling rate from 8k to 192 kHz  
Dynamic Range Compressor (DRC)Programmable Biquad  
filter Integrated DSP with specific functions:Input  
automatic level control (ALC/AGC)/limiter  
Output dynamic-range-compressor/limiter  
Package: 32 Pin QFN package  
Applications  
Gaming controller  
Wireless Headset  
Smart Remote Controller  
NAU88L21 Datasheet Rev1.7  
Page 1 of 69  
Feb, 2020  
Block Diagram : QFN32  
BIAS  
VREF  
MICL+  
MICL -  
ADC  
DAC Effect  
Digital Audio  
Effects  
HPL  
HPR  
ADC Effect  
DAC  
DAC  
DMIC I/F  
Volume  
DRC  
Programmable  
BiQuad  
Volume  
DRC  
Programmable  
BiQuad  
Mixers  
Sidetone  
MICR+  
MICR-  
ADC  
MICBIAS  
MICDET  
MICBIAS  
MICDET  
CPOUTP  
VSSCP  
CPOUTN  
Charge  
Pump  
FLL  
I2 C Slave  
& Registers  
I2S/PCM  
Interface  
& MUX  
CPCB  
CPCA  
MUX  
NAU88L21 Datasheet Rev1.7  
Page 2 of 69  
Feb, 2020  
 
Table of Contents  
BLOCK DIAGRAM : QFN32...................................................................... 2  
PIN DIAGRAM :......................................................................................... 5  
PIN DESCRIPTION.................................................................................... 6  
ELECTRICAL CHARACTERISTICS.......................................................... 7  
1. GENERAL DESCRIPTION................................................................ 10  
1.1 Inputs............................................................................................................... 10  
1.2 Outputs............................................................................................................ 10  
1.3 ADC, DAC and Digital Signal Processing........................................................ 10  
1.4 Digital Interfaces.............................................................................................. 10  
2. POWER SUPPLY ............................................................................. 11  
2.1 Power on and off reset..................................................................................... 11  
3. INPUT PATH DETAILED DESCRIPTIONS....................................... 12  
3.1 Analog Microphone Inputs............................................................................... 12  
3.2 Digital Microphone Input.................................................................................. 13  
3.3 VREF............................................................................................................... 13  
3.4 MIC Bias.......................................................................................................... 14  
3.5 MIC detect ....................................................................................................... 14  
3.5.1  
Key Release .......................................................................................................................................16  
4. ADC DIGITAL BLOCK...................................................................... 17  
4.1 ADC Dynamic Range Compressors (DRC) ..................................................... 17  
4.1.1  
Level Estimation .................................................................................................................................17  
4.1.2  
Static Curve ........................................................................................................................................18  
4.2 ADC Digital Volume Control ............................................................................ 19  
4.3 ADC Programmable Biquad Filter ................................................................... 19  
4.4 Companding .................................................................................................... 20  
4.5 Additional ADC Application Notes ................................................................... 20  
5. DAC DIGITAL BLOCK...................................................................... 21  
5.1 DAC Dynamic Range Control (DRC)............................................................... 21  
5.1.1  
Level Estimation .................................................................................................................................21  
5.1.2  
Static Curve ........................................................................................................................................22  
5.2 DAC Digital Volume Control, Mute and Channel selection.............................. 23  
5.3 DAC Soft Mute................................................................................................. 23  
5.4 DAC Auto Attenuate ........................................................................................ 23  
5.5 DAC Path Digital Mixer with Side tone............................................................. 23  
5.6 Companding .................................................................................................... 25  
5.6.1  
µ-law...................................................................................................................................................25  
5.6.2  
A-law...................................................................................................................................................25  
NAU88L21 Datasheet Rev1.7  
Page 3 of 69  
Feb, 2020  
6. CLOCKING AND SAMPLE RATES.................................................. 26  
6.1 I2S/PCM Clock Generation.............................................................................. 27  
6.2 Frequency Locked Loop(FLL).......................................................................... 29  
7. CONTROL INTERFACES................................................................. 32  
7.1 2-Wire-Serial Control Mode (I2C Style Interface) ............................................. 32  
7.2 2-Wire Protocol Convention............................................................................. 32  
7.3 2-Wire Write Operation.................................................................................... 33  
7.4 2-Wire Read Operation.................................................................................... 34  
7.5 Digital Serial Interface Timing.......................................................................... 35  
7.6 Software Reset................................................................................................ 36  
8. DIGITAL AUDIO INTERFACES........................................................ 37  
8.1 Right-Justified Audio Data ............................................................................... 37  
8.2 Left-Justified Audio Data.................................................................................. 37  
8.3 I2S Audio Data ................................................................................................ 37  
8.4 PCMA Audio Data ........................................................................................... 38  
8.5 PCMB Audio Data ........................................................................................... 38  
8.6 PCM Time Slot Audio Data.............................................................................. 38  
8.7 TDM I2S Audio Data........................................................................................ 39  
8.8 TDM PCMA Audio Data................................................................................... 39  
8.9 TDM PCMB Audio Data................................................................................... 40  
8.10 TDM PCM Offset Audio Data........................................................................... 40  
9. OUTPUTS ......................................................................................... 42  
9.1 Class G Headphone Driver and Charge Pump................................................ 42  
10. CONTROL AND STATUS REGISTERS ........................................... 43  
11. TYPICAL APPLICATION DIAGRAM................................................ 64  
12. PACKAGE INFORMATION .............................................................. 65  
13. ORDERING INFORMATION............................................................. 67  
REVISION HISTORY ............................................................................... 68  
IMPORTANT NOTICE............................................................................ 69  
NAU88L21 Datasheet Rev1.7  
Page 4 of 69  
Feb, 2020  
Pin Diagram :  
MICDET  
MICBIAS  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
FS  
BITCLK  
MCLK  
VDDMIC  
VREF  
VDDA  
VSSD  
QFN 32-pin  
VSSA  
VDDA  
CPOUTP  
VSSCP  
VDDB  
SCLK  
SDIO  
NAU88L21 Datasheet Rev1.7  
Page 5 of 69  
Feb, 2020  
 
Pin Description  
Pin #  
Name  
MICDET  
MICBIAS  
VDDMIC  
VREF  
Type  
Analog IO  
Functionality  
1
Microphone/button detect, 2kOhm between Mic and Mic Bias  
Microphone Bias Output  
2
Analog Output  
Supply  
3
Microphone supply  
4
Analog I/O  
Ground  
Internal DAC & ADC voltage reference decoupling I/O  
Analog Ground  
5
VSSA  
6
VDDA  
Supply  
Analog Supply  
7
CPOUTP  
VSSCP  
CPOUTN  
CPCB  
Analog I/O  
Ground  
Charge Pump positive voltage  
Charge Pump Supply ground  
Charge Pump negative voltage  
Charge Pump switching capacitor node B  
Charge Pump switching capacitor node A  
Jack Tip; Headphone left channel output  
Jack Ring1; Headphone right channel output  
Headphone Ground  
8
9
Analog I/O  
Analog I/O  
Analog I/O  
Analog Output  
Analog Output  
Ground  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
CPCA  
JKTIP(HPL)  
JKR1(HPR)  
HPFB  
IRQ  
Digital I/O  
IRQ  
GPIO1/CSB  
SDIO  
Digital I/O  
General Purpose IO/CSB  
Digital I/O  
Serial Data for I2C  
SCLK  
Digital Input  
Supply  
Serial Data Clock for I2C  
VDDB  
Digital IO Supply  
VSSD  
Ground  
Digital IO ground  
VDDA  
Supply  
Digital core supply  
MCLK  
Digital Input  
Digital I/O  
CODEC Master clock input  
BCLK  
Serial data bit clock input or output for I2S or PCM data  
Frame Sync input or output for I2S or PCM data  
Serial Audio data input for I2S or PCM data  
Serial Audio data Output for I2S or PCM data  
Jack detect input  
FS  
Digital I/O  
DACIN  
Digital Input  
Digital Output  
Analog Input  
Analog Input  
Analog/Digital Output  
Analog Input/Digital Input  
Analog Input  
Supply  
ADCOUT  
JKDET  
MICR+  
PGA MICR+ Analog Input  
MICR-/DMCLK  
MICL-/DMDATA  
MICL+  
PGA MICR- Analog Input / Digital Microphone Clk output  
PGA MICL- Analog Input / Digital Microphone Data input  
PGA MICL+ Analog Input  
VDDA  
Analog Supply  
NAU88L21 Datasheet Rev1.7  
Page 6 of 69  
Feb, 2020  
 
Electrical Characteristics  
Conditions: VDDA = VDDB = 1.8V; VDDMIC= 3.6V.  
RL(Headphone) = 32 Ω, f = 1kHz, MCLK=12.88MHz, unless otherwise specified. Limits apply for TA = 25°C  
Symbol  
Parameter  
Conditions  
Typical  
Limit  
Units  
VDD  
A
B
2
6
ISD  
Shutdown Current  
µA  
VDD  
VDDMIC  
0.2  
0.2  
1
1
Headset Detection Standby  
MCLK off, Jack Insertion, IRQ enabled  
5
5
µA  
Mode  
IDD  
Active Current Normal Playback  
Mode  
fS = 48kHz, Stereo HP DAC On, HP  
mA  
On, POUT = 0mW. RL(HP) = 32Ω  
Headphone Amplifier  
Stereo RL = 32Ω, DAC Input, CPVVDD  
1.8V, f=1020Hz, 22kHz BW,  
=
=
28  
mW  
THD+N = 1% (QFN package),  
PO  
Output Power  
Stereo RL = 16Ω, DAC Input, CPVVDD  
1.8V, f=1020Hz, 22kHz BW,  
33  
mW  
dB  
THD+N = 1% (QFN Package)  
Total Harmonic Distortion +  
Noise  
THD+N  
RL = 32Ω, f=1020Hz, PO = 20mW  
-80  
VOUT = 1VRMS, DAC Input,  
DAC_Gain = 0dB, HP_Gain = 0dB,  
Digital Zero Input, f=1020Hz, A-  
Weighted)  
105  
108  
90  
dB  
dB  
dB  
SNR  
Signal to Noise Ratio  
VOUT = 1 VRMS, DAC Input,  
DAC_Gain = 0dB, HP_Gain = 0dB,  
Digital Zero Input, f=1020Hz, A-  
Weighted, auto attenuate enabled,  
fRIPPLE = 217Hz, VRIPPLE = 200mVP_P  
Input Referred, HP_GAIN = 0dB  
DAC Input, DAC_Gain = 0dB Ripple  
Applied to VDD  
Mono_Gain = 0dB Ripple Applied to  
VDD  
Stereo Single Ended Input Terminated,  
Stereo_Gain = 0dB Ripple Applied  
A
PSRR  
Power Supply Rejection Ratio  
Channel Crosstalk  
90  
90  
dB  
dB  
A
to VDD  
A
Left Channel to Right Channel, -  
1dBFS, Gain = 0dB, f = 1020Hz  
XTALK  
70  
dB  
Interchannel Level Mismatch  
Frequency Response  
Pop up Noise  
+/- 0.1  
dB  
dB  
F = 20Hz ~ 20kHz  
TBD  
+0.1/-0.2  
1
mVrms  
DAC_Gain = 0dB, HP_Gain = 0dB,  
fS=48kHz, OSRDAC = 128, A-  
Weighted  
eOS  
Output Noise  
4.4  
uVRMS  
Out of Band Noise Level  
Output Offset Voltage  
-60dB  
±0.1  
HP_Gain = 0dB, DAC_Gain= 0dB,  
DAC Input  
VOS  
±0.5  
mV  
No Load, No Signal, Amp on  
fS = 48kHz, Stereo DAC On, Amp On,  
POUT = 0mW. RL = 32Ω  
Power Consunption MP3 Mode  
6
mW  
NAU88L21 Datasheet Rev1.7  
Page 7 of 69  
Feb, 2020  
 
Symbol  
Parameter  
Conditions  
Typical  
Limit  
Units  
+/-  
0.02%  
Fs Accuracy (44.1 / 48 kHz)  
Pop and Click Noise  
1
mVrms  
dB  
ADC  
MIC Input, MIC_GAIN = 0dB, VIN =  
0.8Vrms, f=1020Hz, fs = 48KHz,  
Mono Differential Input  
-91  
-80  
ADC Total Harmonic Distortion +  
Noise  
THD+N  
MIC Input, MIC_GAIN = 30dB, Volume  
= 0dB, Vin=28.5mVrms, f=1020Hz,  
Digital Gain = 0dB, Mono  
dB  
Differential Input  
Reference = VOUT(0dBFS), A-  
Weighted, MIC Input, MIC Gain =  
0dB,fs = 8kHz, Mono Differential  
Input  
102  
101  
dB  
dB  
SNR  
Signal to Noise Ratio  
Reference = VOUT(0dBFS), A-  
Weighted, MIC Input, MIC Gain =  
6dB,fs = 8kHz, Mono Differential  
Input  
VRIPPLE = 200mVPP applied to VDDA,  
fRIPPLE = 217Hz, Input Referred,  
MIC_GAIN = 0dB Differential Input  
PSRR  
Power Supply Rejection Ratio  
Common Mode Rejection Ratio  
90  
65  
dB  
dB  
Differential Input 100mVrms, PGA gain  
= 20dB, frequency sweep from  
20Hz to 20KHz  
CMRR  
FSADC  
ADC Full Scale Input Level  
Minimum Input Impedance  
VDDA= 1.8V  
1
VRMS  
10  
kOhm  
Frequency Response  
Pop up Noise  
f = 20Hz ~ 20kHz  
TBD  
+0.1/-0.2  
1
dB  
mVrms  
No Signal, ADC on  
fs = 44.1kHz  
Power Consumption  
5
mW  
MICBIAS  
VBIAS  
IOUT  
eos  
Output Voltage  
Output Current  
Output Noise  
Programmable 1.8V to 3.0V in 6 steps  
2.5  
V
4
mA  
Low noise mode, at 1kHz  
47  
nV/√Hz  
Digital I/O  
Parameter  
Symbol  
Comments/Conditions  
Min  
Max  
Units  
VDDB = 1.8V  
VDDB = 3.3V  
VDDB = 1.8V  
VDDB = 3.3V  
0.33*VDD  
0.37*VDD  
B
B
Input LOW level  
Input HIGH level  
Output HIGH level  
VIL  
V
0.57*VDD  
0.63*VDD  
0.9*VDDB  
B
B
VIH  
VOH  
VOL  
V
V
V
VDDB=1.8V  
VDDB = 3.3V  
ILoad= 1mA  
0.95*VDD  
B
VDDB = 1.8V  
VDDB=3.3V  
0.1*VDDB  
Output LOW level  
ILoad= 1mA  
0.05*VDD  
B
Recommended Operating Conditions  
NAU88L21 Datasheet Rev1.7  
Page 8 of 69  
Feb, 2020  
Condition  
Symbol  
Min  
Typical  
Max  
Units  
Digital I/O Supply Range  
Analog Supply Range  
Headphone Supply Range  
Microphone Bias Supply Voltage  
Temperature Range  
VDD  
VDD  
VDD  
VDDMIC  
TA  
B
A
A
1.62  
1.62  
1.62  
3.0  
3.3  
1.8  
1.8  
3.3  
3.6  
1.98  
1.98  
3.6  
V
V
V
V
°C  
-40  
+85  
Absolute Maximum Ratings  
Parameter  
Min  
Max  
Units  
Digital Supply Range  
Digital I/O Supply Range  
Analog Supply Range  
Headphone Supply Range  
Microphone Bias Supply Voltage  
Voltage Input Digital Range  
Voltage Input Analog Range  
Junction Temperature, TJ  
Storage Temperature  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
2.2  
4.0  
2.2  
2.2  
4.0  
V
V
V
V
V
V
V
°C  
°C  
DGND - 0.3  
AGND - 0.3  
-40  
VDD + 0.3  
VDD + 0.3  
+150  
-65  
+150  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods. Exposure to such conditions may adversely  
influence product reliability and result in failures not covered by warranty.  
NAU88L21 Datasheet Rev1.7  
Page 9 of 69  
Feb, 2020  
1. General Description  
NAU88L21 is an ultra-low power CODECs that has both analog and digital blocks operating at 1.8V. This CODEC  
includes DSP functions including DRCs (Dynamic Range Compression) and programmable biquad filters. Mic bias  
supply is upgraded to support voltages up to 3V.  
1.1 Inputs  
The NAU88L21 provides analog inputs to acquire and process audio signals from microphones with high fidelity and  
flexibility. There is a stereo input path that can be used to capture signals from single-ended or differential sources.  
The channel has a fully differential programmable gain amplifier (PGA). The outputs of the PGA connect to the ADC.  
The NAU88L21 also has an input for one digital microphone. The NAU88L21 provides a DMCLK, the clock signal for  
the digital microphones.  
The analog and the digital microphone inputs cannot be used simultaneously.  
1.2 Outputs  
NAU88L21 has one pair of ground-referenced Class G headphone outputs that are fed by two DACs. The headphone  
amplifier has a gain range of -9dB to 0dB.  
The Class G headphone amplifier is powered by the charge pump output voltages CPOUTP and CPOUTN. When  
there is no loading the CPOUTP is equal to VDDA, and CPOUTN is equal to –VDDA.  
This headphone output can also be used as a lineout.  
1.3 ADC, DAC and Digital Signal Processing  
The NAU88L21 has two independent high quality ADC’s and DACs. These are high performance 24-bit sigma-delta  
converters, which are suitable for a very wide range of applications.  
The ADCs and DACs have functions that individually support digital mixing and routing. The ADCs and DACs blocks  
also support advanced digital signal processing subsystems that enable a very wide range of programmable signal  
conditioning and signal optimizing functions. All digital processing is done with 24-bit precision to minimize processing  
artifacts and maximize the audio dynamic range supported by the NAU88L21.  
The ADCs and DACs digital signal process can support two-point dynamic range compressors (DRCs), programmable  
biquad filters configurable for low pass filters, high pass filters, Notch filter, Bell, low shelf, and high shelf filters with  
various gain, Q, and frequency controls. Two-point DRCs can be programmed to limit the maximum output level and/or  
boost a low output level. The biquad filters can be configured as high pass filters intended for DC-blocking or low  
frequency noise reduction, such as reducing unwanted ambient noise or “wind noise” on a microphone inputs.  
1.4 Digital Interfaces  
Command and control of the device is accomplished by using the I2C interface.  
The digital audio I/O data streams transfer separately from command and control using either I2S or PCM audio data  
protocols  
These simple but highly flexible interface protocols are compatible with most commonly used serial data protocols, host  
drivers, and industry standard I2S and PCM devices.  
NAU88L21 Datasheet Rev1.7  
Page 10 of 69  
Feb, 2020  
 
 
 
 
 
2. Power Supply  
This NAU88L21 has been designed to operate reliably using a wide range of power supply conditions and power-  
on/power-off sequences. Because of this, there are no special requirements for the sequence or rate at which the  
various power supply pins change. Any supply can rise or fall at any time without harming the device. However, pops  
and clicks may result from some sequences.  
2.1 Power on and off reset  
The NAU88L21 includes a power on reset circuit on chip. The circuit resets the internal logic control at VDDA supply  
power up and this reset function is automatically generated internally when power supplies are too low for reliable  
operation. The reset threshold is approximately 0.55Vdc and 1.0Vdc for VDDA. It should be noted that these values  
are much lower than the required voltage for normal operation of the chip.  
The reset is held on while the power levels for VDDA are below their respective thresholds. Once the power levels rise  
above their thresholds, the reset is released. Once the reset is released, the registers are ready to be written to. It is  
also important to note that all the registers should be kept in their reset state for at least 6µs.  
An additional internal RC filter based circuit is added which helps the circuit respond for fast ramp rates (~10µs) and  
generate the desired reset period width (~10µs at typical corner). This filter is also used to eliminate supply glitches  
which can generate a false reset condition, typically 50ns.  
For reliable operation, it is recommended to write any value to register upon power up. This will reset all registers to the  
known default state.  
Note that when VDDA are below the power on reset threshold, then the digital IO pins will go into a tri-state condition.  
NAU88L21 Datasheet Rev1.7  
Page 11 of 69  
Feb, 2020  
 
 
3. Input Path Detailed Descriptions  
NAU88L21 has two low noise, high common mode rejection ratio analog microphone differential input. The microphone  
inputs MICL+/- & MICR+/- which are followed by -1dB to 36dB PGA gain stages that have a fixed 12kOhm input  
impedance.  
Inputs are maintained at a DC bias of approximately ½ of the VDDA supply voltage. Connections to these inputs  
should be AC-coupled by means of external DC blocking capacitors suitable for the device application.  
The differential microphone input structure is essential in noisy digital systems where amplification of low-amplitude  
analog signals is necessary such as in portable digital media devices and cell phones. Differential inputs are also  
very useful to reduce ground noise in systems in which there are ground voltage differences between different chips  
and components. When properly implemented, the differential input architecture offers an improved power-supply  
rejection ratio (PSRR) and higher ground noise immunity.  
3.1 Analog Microphone Inputs  
The analog microphone inputs are routed to the FEPGA (Front End Programmable Gain Amplifier). The input stage  
can be configured in different modes. The FEPGA gain can be varied from -1dB to 36dB in 1dB steps. The gain stage  
has a fixed 12kOhm input impedance and can be individually enabled or disabled by using register.  
NAU88L21 Datasheet Rev1.7  
Page 12 of 69  
Feb, 2020  
 
 
FEPGA_gainL[0]  
FEPGA_modeL[0]  
-1 or 0 dB  
FEPGA_modeL[1]  
INP1L  
0 to 36 dB  
2 dB Steps  
FEPGASEL[1],ACDC_ctrl[1]  
FEPGA_gainL[5:1]  
muteL  
VREF  
VREF  
To Left  
Audio  
ADC  
AUXL-  
AUXL+  
FEPGASEL[2],ACDC_ctrl[2]  
INN1L/DMDATA  
FEPGA_gainL[0]  
FEPGA_modeL[1]  
FEPGA_gainL[5:1]  
-1 or 0 dB  
FEPGA_modeL[0]  
ADCDATA  
To decimators  
DMIC  
Interface  
DMSELECT  
FEPGA_modeR[0]  
FEPGA_gainL[0]  
FEPGA_modeR[1]  
-1 or 0 dB  
INP1R  
0 to 36 dB  
FEPGASER[1],ACDC_ctrl[1]  
2 dB Steps  
FEPGA_gainR[5:1]  
muteR  
VREF  
VREF  
AUXR-  
AUXR+  
To Right  
Audio  
ADC  
FEPGASER[2],ACDC_ctrl[2]  
INN1R/DMCLK  
FEPGA_gainR[0]  
FEPGA_modeR[1]  
FEPGA_gainR[5:1]  
-1 or 0 dB  
FEPGA_modeR[0]  
Figure 1: Microphone Input Block Diagram with Registers  
3.2 Digital Microphone Input  
The MICL- and MICR- pins can be used for the digital microphone input. MICR- is the clock for the digital microphones  
and the MICL- is the data in.  
3.3 VREF  
The NAU88L21 includes a mid-supply reference circuit that produces a voltage close to VDDA/2. This “VREF” pin  
should be decoupled to VSS through an external bypass capacitor. Because VREF is used as a reference voltage  
inside the NAU88L21, a large capacitance is required to achieve good power supply rejection at low frequency.  
Typically, a value of 4.7µF should be used. This larger capacitance may introduce longer rise time of VREF and delay  
the line output signal. However, a pre-charge circuit can be supported to help reduce the rise time. Due to the high  
impedance of the VREF pin, it is important to use a low leakage capacitor. A pre-charge circuit has been implemented  
to reduce the VREF rise time. Once charged, this can be disabled using to save power or prevent rapid changes in  
level due to fluctuations in VDDA. The below Table 1 shows the VREF tie-off resister selection.  
NAU88L21 Datasheet Rev1.7  
Page 13 of 69  
Feb, 2020  
 
 
VMIDSEL VREF Resistor Selection VREF Impedance  
00  
01  
10  
11  
Open, no resistor selected Open, no impedance installed  
50kOhm  
250kOhm  
5kOhm  
25kOhm  
125kOhm  
2.5kOhm  
Table 1: VREF Impedance Selection  
VMIDSEL  
5, 50, 250 kΩ  
VMIDEN  
VDDA Pin  
VREF Pin  
VSSA Pin  
Exterior  
Connections  
Pre-Charge  
PDVMDFST  
4.7µF  
Register: BOOST  
Register: BIAS_ADJ  
Figure 2: VREF Circuitry  
3.4 MIC Bias  
The NAU88L21 provides one MIC bias pin, which can be used to power various microphones. The output level of MIC  
Bias can be set between VDDA and 1.53 X VDDA using register settings.  
It is recommended that the microphones do not draw more than 4mA from the MICBIAS pin. There are options for  
connecting internal 2 Kohm resistor to the microphone and for low noise or low power mode. If MICBIAS is used in low  
power mode, typically 100nF or 200nF capacitor can be used along with MIC Bias level at VDDA. In the low noise  
mode, external 1uF or 4.7uF capacitor can be omitted by register settings when MIC Bias is used to power analog  
microphones.  
3.5 MIC detect  
The MIC detect block can detect whether a microphone is connected between the MICBIAS output and the MICDET  
pin. Either the internal 2kOhm resistor or an external 2kOhm resistor can be used to connect the microphone to the  
MICDET pin and MICBIAS. See Figure 3, where the internal hookup of the MICDET and MICBIAS blocks is shown.  
NAU88L21 Datasheet Rev1.7  
Page 14 of 69  
Feb, 2020  
 
 
MicBias  
MICBIAS  
MICDET  
Mic Detect  
MicDet  
Button Detect  
Figure 3. Mic Detect and MICBIAS blocks  
Application note: Adding a simple RC on the MICDET pin can help reduce noise coupling. These may be board level  
related, or component related effects.  
Figure 4. Reducing noise coupling effects  
If the optional external 2KOhm resistor is used, then the internal 2K Ohm resistor (Between MICBIAS and MICDET)  
should be disabled.  
NAU88L21 Datasheet Rev1.7  
Page 15 of 69  
Feb, 2020  
 
3.5.1 Key Release  
This feature detects the edge case where the key press interrupt is not followed by a release interrupt until later on in  
the sequence and clears the x11 register to prepare for further interrupts.  
Write Register x11  
to Clear  
Wait for  
Interrupt  
Key Release  
Figure 5. Key Release Flowchart  
NAU88L21 Datasheet Rev1.7  
Page 16 of 69  
Feb, 2020  
 
4. ADC Digital Block  
ADC Digital Path  
Volume  
Control  
-90~24dB  
Soft Mute  
Digital Audio  
Interface  
PCM  
TX CH1  
ƩΔ  
Programmable  
Biquad Filter  
Two Points  
DECM  
ADC  
DRC  
I2S  
Figure 6: ADC Digital Path  
The ADC digital block takes the output of the 24-bit Analog-to-Digital converter and performs signal processing aimed  
at producing a high quality audio sample stream to the audio path digital interface. The Figure 7 shows the various  
steps associated with the ADC digital path.  
Oversampling is used to improve noise and distortion performance; however this does not affect the final audio sample  
rate. The oversampling rate configured between 32X and 256X using register settings.  
The polarity of either ADC output signal can be changed independently on either ADC logic output as a feature  
sometimes useful in management of the audio phase. This feature can help minimize any audio processing that may  
be otherwise required as the data is passed to other stages in the system.  
The full-scale input level is proportional to VDDA. For example, with a 1.8V supply voltage, the full-scale level is  
1.0VRMS.  
4.1 ADC Dynamic Range Compressors (DRC)  
The ADC’s in the digital signal path each support a two-point dynamic range compressor (DRC) for advanced signal processing.  
Each DRC can be programmed to limit the maximum output level and/or boost a low output level signal. The DRC’s function  
consists of level estimation and static curve control.  
4.1.1 Level Estimation  
The NAU88L21 uses Peak level estimation that depends on the attack and decay time settings, which can be programmable by  
register settings as shown in the Table 2.  
NAU88L21 Datasheet Rev1.7  
Page 17 of 69  
Feb, 2020  
 
 
 
BITS DRC_PK_COEF1_ADC DRC_PK_COEF2_ADC  
0000 TS  
63*TS  
0001 3*Ts  
0010 7*Ts  
0011 15*Ts  
0100 31*Ts  
0101 63*Ts  
0110 127*Ts  
0111 255*Ts  
127*Ts  
255*Ts  
511*Ts  
1023*Ts  
2047*Ts  
4095*Ts  
8191*Ts  
Table 2: ADC Level Estimation - Attack and Decay Time Register Settings  
Please note that Ts is the sampling time given by 1/(Sampling Frequency)  
4.1.2 Static Curve  
The DRC static curve supports up to five programmable sections as shown in the Figure 6.  
Input (dB)  
Knee 4  
Knee 3  
Knee 2  
Knee 1  
0dB  
X
0dB  
Y0  
LMT  
Y1  
1
CMP  
CMP2  
Y2  
Y3  
EXP  
Y4  
NG  
y
Figure 8: DRC Static Characteristic  
Each section on the characteristic (labeled NG, EXP, CMP2, CMP1, and LMT) can be controlled by setting the slope  
and knee point values, in their respective registers. The table below provides the corresponding register locations.  
Static Curve Section  
Slope  
Knee Point  
LMT  
0, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1  
CMP1  
CMP2  
0, 1/2, 1/4, 1/8, 1/16, 1  
0, 1/2, 1/4, 1/8, 1/16, 1  
0 to -31dB with -1dB step  
0 to -63dB with -1dB step  
EXP  
NG  
1, 2, 4  
-18 to -81dB with -1dB step  
-35 to -98dB with -1dB step  
1, 2, 4, 8  
Table 3: ADC DRC Static Curve control registers  
The output Y values can be determined based on the slopes and knee points selected. Y1 is always equal to Knee 1,  
as an initial and default condition.  
Y1 = Knee 1  
Y0 = Y1 - (Knee 1) * (LMT Slope)  
Y2 = (Knee 2 - Knee 1) * (CMP1 Slope) + Y1  
Y3 = (Knee 3 - Knee 2) * (CMP2 Slope) + Y2  
Y4 = (Knee 4 - Knee 3) * (EXP Slope) + Y3  
NAU88L21 Datasheet Rev1.7  
Page 18 of 69  
Feb, 2020  
 
The attack time and decay time is programmable as shown in the Table 4. And the smooth knee filter can be also  
enabled by register setting.  
BITS  
DRC_ATK_ADC_CH##  
TS  
3*Ts  
7*Ts  
15*Ts  
DRC_DCY_ADC_CH##  
63*TS  
127*Ts  
255*Ts  
511*Ts  
1023*Ts  
2047*Ts  
4905*Ts  
8191*Ts  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
31*Ts  
63*Ts  
127*Ts  
255*Ts  
511*Ts  
1023*Ts  
2047*Ts  
4095*Ts  
8191*Ts  
16383*Ts  
32757*Ts  
65535*Ts  
Table 4: ADC Attack and Decay Time Register Settings  
4.2 ADC Digital Volume Control  
The digital volume control feature allows adjustment of the audio volume coming from ADC using a two-stage volume  
control. This allows the gain to be adjusted from -103dB to +24dB. Also included is a mute value that will reduce the  
output signal of the ADCs to zero.  
4.3 ADC Programmable Biquad Filter  
The NAU88L21 has 4 dedicated digital biquad filters. Two for the ADC path, and two for the DAC path. The biquad  
filter is a second-order recursive linear filter with two poles and two zeros. Its transfer function is the Z-domain consists  
of two quadratic functions:  
0 + 1−1 + 2−2  
1 + 1−1 + 2−2  
( )  
ꢀ ꢁ =  
The coefficients A1, A2, B0, B1, B2 are represented in the 3.16 format described below  
2-16 Bit  
2-4 Bit  
2-1 Bit  
Fraction Point  
Sign Bit  
S xx. xxxx xxxx xxxx xxxx  
Each Biquad Coefficient has 19 bits in Sxx.16 format where  
NAU88L21 Datasheet Rev1.7  
Page 19 of 69  
Feb, 2020  
 
 
S is the sign bit (1 bit),  
xx are integers ( 2bits)  
16 fractional bits (16 bits)  
2-1  
S
x
x
2-16  
1
2
16  
Fractional bits  
Sign bit Integer bits  
Figure 9: Number format description for biquad filters coefficients.  
4.4 Companding  
Companding is used in digital communication systems to optimize signal-to-noise ratios with reduced data bit rates  
using non-linear algorithms. The NAU88L21 supports the two main telecommunications companding standards on  
both transmit and receive sides: A-law and µ-law. The A-law algorithm is primarily used in European communication  
systems and the µ-law algorithm is primarily used by North America, Japan, and Australia.  
4.5 Additional ADC Application Notes  
The ADC clock polarity can be inverted if necessary by register setting. It is recommend to match ADC oversampling  
rate with ADC clock rate as shown in the Table 5.  
ADC_RATE  
00(OSR=32)  
01(OSR=64)  
10(OSR=128)  
11(OSR=256)  
CLK_ADC_SRC  
11(CODEC 1/8)  
10(CODEC1/4)  
01(CODEC 1/2)  
00(CODEC CLK)  
Table 5: ADC_RATE and CLK_ADC_SRC Pairs  
NAU88L21 Datasheet Rev1.7  
Page 20 of 69  
Feb, 2020  
 
 
5. DAC Digital Block  
DAC Digital Path  
Digital  
Audio  
Interface  
PCM  
Volume  
Control  
-90~24dB  
Soft Mute  
Auto Mute  
Program  
DAC  
Mixer  
mable  
Biquad  
Filter  
ƩΔ  
DAC  
INTP  
DRC  
(Sidetone)  
I2S  
Figure 10: DAC Digital Path  
The DAC digital block uses 24-bit signal processing to generate analog audio with a 16-bit digital sample stream input.  
This block consists of a sigma-delta modulator, digital decimator/filter, programmable biquad filter, and a DRC. The full-  
scale output level is proportional to VDDA. For example, with a 1.8V supply voltage, the full-scale level is 1.0 VRMS.  
The oversampling rate of the DAC can be changed from 32x to 256x for improved audio performance at higher power  
consumption. The DAC output signal polarity can be changed using register setting. This can help minimize any audio  
processing that may be required as the data is passed from other stages of the system.  
5.1 DAC Dynamic Range Control (DRC)  
The DAC DRC functions in the same way as the ADC DRC explained in Section 4.1. However, different control  
registers are used.  
5.1.1 Level Estimation  
The Table 6 shows the attack and decay times for the peak level estimation. And, the time constant Ts is the the  
sampling time given by 1/(Sampling Frequency).  
BITS  
DRC_PK_COEF1_ADC DRC_PK_COEF2_ADC  
0000 TS  
63*TS  
0001 3*Ts  
0010 7*Ts  
0011 15*Ts  
0100 31*Ts  
0101 63*Ts  
0110 127*Ts  
0111 255*Ts  
127*Ts  
255*Ts  
511*Ts  
1023*Ts  
2047*Ts  
4095*Ts  
8191*Ts  
Table 6: DAC Level Estimation Attack and Decay Time Register Settings  
NAU88L21 Datasheet Rev1.7  
Page 21 of 69  
Feb, 2020  
 
 
 
5.1.2 Static Curve  
The DRC static curve supports five programmable sections, and slope and knee points can be configured as shown in  
the Table 7.  
Static Curve  
Slope  
Knee Point  
Section  
LMT  
0, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1  
0, 1/2, 1/4, 1/8, 1/16, 1  
0, 1/2, 1/4, 1/8, 1/16, 1  
1, 2, 4, 8  
CMP1  
CMP2  
EXP  
0 to -31dB with -1dB step  
0 to -63dB with -1dB step  
-18 to -81dB with -1dB step  
-35 to -98dB with -1dB step  
NG  
1, 2, 4, 8  
Table 7: DAC DRC Static Curve Control Registers  
The Table 8 shows the attack and decay time for DRC. And, it needs to be carefully used combination with cross talk  
function because DRC is the last blocks in the path after mixer. Small cross-talk signal might be filtered out by DRC.  
The smooth knee function can be also enabled by register setting.  
BITS  
0000 TS  
DRC_ATK_DAC  
DRC_DCY_DAC  
63*TS  
0001 3*Ts  
127*Ts  
0010 7*Ts  
255*Ts  
0011 15*Ts  
0100 31*Ts  
0101 63*Ts  
0110 127*Ts  
0111 255*Ts  
1000 511*Ts  
1001 1023*Ts  
1010 2047*Ts  
1011 4095*Ts  
1100 8191*Ts  
511*Ts  
1023*Ts  
2047*Ts  
4095*Ts  
8191*Ts  
16383*Ts  
32757*Ts  
65535*Ts  
Table 8: DAC Static Curve Attack and Delay Time Register Settings  
NAU88L21 Datasheet Rev1.7  
Page 22 of 69  
Feb, 2020  
 
5.2 DAC Digital Volume Control, Mute and Channel selection  
DACL and DACR both have separate digital volume controls that allow the user to adjust the gain from -103dB to  
+24dB in 0.5dB steps as well as mutes. Left and Right channels can be adjusted separately and control is accessed  
through register settings.  
5.3 DAC Soft Mute  
The soft mute function ramps the DAC digital volume down to zero when enabled. When disabled, the volume  
increases to the register specified volume level for each channel. This feature provides a tool that is useful for using  
the DAC without introducing pop and click sounds.  
5.4 DAC Auto Attenuate  
Auto-attenuate can greatly increase the perceived SNR during playback of silence. The last analog output stage is  
attenuated such that the noise contribution of the preceding stages is eliminated. The use of auto-attenuate by  
attenuating the analog output on a DAC path when the digital input represents a zero signal needs to be done  
gradually in order to avoid audible pops due to sudden offset changes. It is desirable to slowly ramp down the gain of  
the analog output stage to the maximum attenuation level. This function will be referred to as auto-attenuate. The auto-  
attenuate feature is used to increase the Signal to Noise Ratio. In addition, the auto attenuate logic can be used to  
attenuate the analog output manually,saving some software routines and allowing pop-less ramp up and down of the  
analog outputs with little register writes.  
The auto-attenuate function can be enabled manually or automatically. In the automatic mode, if both the left and right  
channel receive 1024 consecutive samples of „0‟, then it will read and store the value of the headset driver volume  
control into internal temporary registers and then attenuate the headset driver output by 1dB for every 128 samples,  
until -54dB is reached (54 steps maximum). If , at any time, the I2S DACIN signal receives non-zero signal samples,  
the headset output driver gain is increased by 1dB per step and in 1, 16, 32 or 128 samples per step (programmable  
by register) until the gain will be stepped up until the original gain setting is reached. In the manual mode, once  
enabled, it will immediately start saving the volume control into temporary registers and attenuate signals by 1dB for  
every 128 samples untile -54dB is reached. If the manual attenuate is disabled, the gain will be fully recovered by 1dB  
step in 1, 16, 32, or 128 samples per step.  
5.5 DAC Path Digital Mixer with Side tone  
The NAU88L21 implements a channel based digital mixer architecture. Each DAC outputs can be selected between  
the different inputs. The ADC input channels, I2S channels are capable of being mixed into either output of the DAC.  
The figure below shows a block diagram of how the mixer works along with the related registers.  
NAU88L21 Datasheet Rev1.7  
Page 23 of 69  
Feb, 2020  
 
 
 
 
REG0X30[7]  
DAC_ST_SEL0  
REG0X30[15:12]  
ADC0_TO_DAC0_ST  
-42dB~0dB/3dB & Mute  
ADC CH 0  
ADC CH 1  
0
1
REG0X34[7:0]  
DGAINL_DAC  
-103dB~24dB/.5dB & Mute  
DAC CH L  
REG0X2F[15:8]  
DAC1_TO_DAC0_ST  
Ʃ
-96dB~24dB/.5dB & Mute  
DAC CH0  
DAC CH1  
REG0X2F[7:0]  
DAC0_TO_DAC1_ST  
-96dB~24dB/.5dB & Mute  
DAC CH R  
Ʃ
REG0X30[6]  
DAC_ST_SEL1  
REG0X34[15:8]  
DGAINR_DAC  
-103dB~24dB/.5dB & Mute  
ADC CH 1  
ADC CH 0  
0
1
DAC channel sidetone calculation:  
DAC CH0 Mixer = DAC CH0 Data * DGAINL_DAC + DAC CH1 Data * DAC1_TO_DAC0_ST +  
(ADC CH0 Data or ADC CH1 Data) * ADC0_TO_DAC0_ST  
REG0X30[11:8]  
ADC1_TO_DAC1_ST  
-42dB~0dB/3dB & Mute  
DAC CH1 Mixer = DAC CH1 Data * DGAINR_DAC + DAC CH0 Data * DAC0_TO_DAC1_ST +  
(ADC CH1 Data or ADC CH0 Data) * ADC1_TO_DAC1_ST  
Figure 11: DAC Path Digital Mixer with Side tone.  
NAU88L21 Datasheet Rev1.7  
Page 24 of 69  
Feb, 2020  
5.6 Companding  
Companding is used in digital communication systems to optimize signal-to-noise ratios with reduced data bit rates  
using non-linear algorithms. The NAU88L21 supports the two main telecommunications companding standards on  
both transmit and receive sides: A-law and μ-law. The A-law algorithm is primarily used in European communication  
systems and the μ-law algorithm is primarily used by North America, Japan, and Australia.  
Companding converts 14 bits (μ-law) or 13 bits (A-law) to 8 bits using non-linear quantization resulting in 1 sign bit, 3  
exponent bits and 4 mantissa bits. When the companding mode is enabled, 8 bit word operation must be enabled.  
Sections 5.6.1 and 5.6.2 contain the compression equations set by the ITU-T G.711 standard and implemented in the  
NAU88L21.  
5.6.1 µ-law  
( )  
ꢅ ꢆ  
1 < < 1  
= 255  
| |  
ln(1 + × )  
=
,
ln(1 + )  
5.6.2 A-law  
1
( )  
ꢅ ꢆ  
0 < <  
| |  
× ꢆ  
=
,
(
( ))  
1 + ln ꢄ  
1
( )  
ꢅ ꢆ  
≤ ꢆ ≤ 1  
| |  
(1 + ln(× )  
=
,
( )  
(1 + ln )  
= 87.6  
NAU88L21 Datasheet Rev1.7  
Page 25 of 69  
Feb, 2020  
 
 
 
6. Clocking and Sample Rates  
The internal clocks for the NAU88L21 are derived from a common internal clock source. This master system clock can  
set directly by the MCLK pin input or it can be generated from a Frequency Locked Loop (FLL) using the MCLK_PIN,  
BCLK or FS as a reference. While most of the common audio sample rates can be derived directly from typical MCLK  
frequencies, the FLL provides additional flexibility for a wide range of MCLK inputs or as a free running clock in the  
absence of an external reference.  
The figures below is a block diagram illustrating how the various register settings can be used to adjust/select the  
MCLK, BCLK, FS, and ADC_CLK clock frequency.  
SYSCLK_SRC  
MCLK_SRC  
MCLKI  
VCO/2  
0
1
MCLK=256*Fs  
÷
0
1
1
0
CLK_ADC  
÷
CLK_ADC_SRC  
CLK_CODEC_SRC  
CLK_ADC_PL  
Register: CLK_DIVIDER  
Figure 12: MCLK and ADC_CLK Frequency Selection  
Bits  
MCLK_SRC  
0000 Divide by 1  
0001 Invert  
0010 Divide by 2  
0011 Divide by 4  
0100 Divide by 8  
0101 Divide by 16  
0110 Divide by 32  
0111 Divide by 3  
1001 Invert  
1010 Divide by 6  
1011 Divide by 12  
1100 Divide by 24  
1101 Divide by 48  
1110 Divide by 96  
1111 Divide by 5  
Table 9: Register Settings  
Bits CLK_ADC_SRC  
00  
01  
10  
11  
Divide by 1  
Divide by 2  
Divide by 4  
Divide by 8  
NAU88L21 Datasheet Rev1.7  
Page 26 of 69  
Feb, 2020  
 
Table 10: Register Settings  
The internal clock frequency MCLK must be running at 256*Fs (Fs = sample rate in Hz) in order to achieve the best  
performance. For example, when targeting 48 kHz sample rate audio, the MCLK must be set to 256*48k =  
12.288MHz.  
The OSR (over sampling rate) is defined as CLK_ADC frequency divided by the audio sample rate.  
ꢌꢍꢎ_ꢄꢏꢌ  
ꢉꢊꢋ =  
ꢅꢐ  
Available over-sampling rates are 32, 64, 128 or 256 as set in the register.  
It should be noted that the OSR and Fs must be selected so that the max frequency of CLK_ADC is less than or equal  
to 6.144MHz. When CLK_ADC is determined, ADC OSR should be set to provide appropriate down sampling  
through digital filters.  
Example 1:  
To configure Fs = 48 kHz, MCLK = (256*Fs) = 12.288MHz, and CLK_ADC = 6.144MHZ  
Set:  
SYSCLK_SRC = MCLK  
CLK_ADC_SRC = 1/2  
ADC OSR = 128  
Example 2:  
To configure Fs = 16 kHz, MCLKI = 12.288MHz, and CLK_ADC = 4.096MHz  
Set:  
SYSCLK_SRC = MCLK  
MCLK_SRC = 1/3  
CLK_ADC_SRC = 1  
ADC OSR = 256  
6.1 I2S/PCM Clock Generation  
In master mode, BCLK can be derived from MCLK via a programmable divider, and the FS can be derived from BCLK  
via another programmable divider.  
To select specific Fs values, both dividers must be set according to the block diagram and the equation below.  
ꢂꢌꢍꢎ = ꢅꢐ × ꢑꢒꢓꢒ ꢔꢕꢖꢗꢓℎ × ꢘℎꢒꢖꢖꢕꢔꢐ  
NAU88L21 Datasheet Rev1.7  
Page 27 of 69  
Feb, 2020  
 
BCLK_DIV  
MCLK  
BCLK  
FS  
÷
÷
LRC_DIV  
Register: I2S_PCM_CTRL2  
Figure 13: BCLK and FS Frequency Selection  
Bits BCLK_DIV  
000  
001  
010  
011  
100  
101  
Divide by 1  
Divide by 2  
Divide by 4  
Divide by 8  
Divide by 16  
Divide by 32  
Table 11: Register Settings  
Bits  
000  
001  
010  
101  
LRC_DIV  
Divide by 256  
Divide by 128  
Divide by 64  
Divide by 32  
Table 12: Register Settings  
Example 1:  
If we want an Fs of 48 kHz and 16 bit data is to be sent to the I2S bus (2 channel)  
BCLK = 48000*16*2 = 1.536MHz and MCLK = 48000*256 = 12.288MHz  
Set BCLK_DIV = 1/8  
Set LRC_DIV = 1/32  
Or 32 bit data is to be sent  
BCLK = 48000*32*2 = 3.073MHz and MCLK = 48000*256 = 12.288MHz  
Set BCLK_DIV = 1/4  
Set LRC_DIV = 1/64  
Example 2:  
If we want an Fs of 16 kHz and 16 bit data is to be sent to the I2S bus (2 channel)  
BCLK = 16000*16*2 = 512kHz and MCLK = 16000*256 = 4.096MHz  
Set BCLK_DIV = 1/8  
Set LRC_DIV = 1/32  
32 bit data is to be sent,  
BCLK = 16000*32*2 = 1.024MHz and MCLK = 16000*256 = 4.096MHz  
Set BCLK_DIV = 1/4  
NAU88L21 Datasheet Rev1.7  
Page 28 of 69  
Feb, 2020  
Set LRC_DIV = 1/64  
Example 3:  
If we want an Fs of 16 kHz and 32 bit data is to be sent to the I2S TDM bus (4 channels)  
BCLK = 16000*32*4 = 2.048MHz and MCLK = 16000*256 = 4.096MHz  
Set BCLK_DIV = 1/2  
Set LRC_DIV = 1/128  
6.2 Frequency Locked Loop(FLL)  
FLL_CLK_REF_SRC  
FLL_CLK_REF_DIV  
MCLKI  
BCLK  
FS  
00/01  
10  
FREF  
÷
Frequency Detector  
DLF  
IDAC  
DCO  
11  
Register: FLL4  
Register: FLL3  
FLL_INTEGER  
Register: FLL3  
FLL_RATIO  
Register: FLL1  
3rd Order ƩΔ  
-1, 0, 1, 2  
÷2  
FLL_FRAC  
Register: FLL2  
0
1
MCLK_SRC  
MCLK=256*FS  
SYSCLK_SRC  
Register: CLK_DIVIDER  
Figure 14: FLL Block diagram  
The integrated FLL can be used to generate a SYSMCLK from a wide variety of reference sources such as, MCLK,  
BCLK, and FS or as a free running clock in the absence of an external reference. It can also create a stable SYSMCLK  
from less stable sources due to its tolerance of jitter.  
NAU88L21 Datasheet Rev1.7  
Page 29 of 69  
Feb, 2020  
 
The FLL output frequency is determined by the following parameters.  
FLL_RATIO based on input clock frequency  
MCLK_SRC Divider  
FLL_INTEGER: 10 bit Integer Input  
FLL_FRAC: 16 bit Fractional Input  
FLL_CLK_REF_DIV Divider  
To determine these settings, the following output frequency equations are used.  
1.  
2.  
FDCO = (FREF / FLL_CLK_REF_DIV) X FLL_INTEGER.FLL_FRAC X FLL_RATIO  
MCLK = (FDCO X MCLK_SRC) / 2  
Where FREF is the reference clock frequency for FLL, MCLK is the desired system frequency, and FDCO is the  
frequency of DCO in decimal.  
Example:  
If the reference frequency (FREF) is 12MHz, the desired sampling rate (Fs) is 48 kHz, and SYSCLK = 256Fs, what are  
the output frequency parameters?  
Using these requirements, the following can be determined.  
MCLK = 256 × 48kHz = 12.288MHz  
Using Equation 2:  
o
FDCO = 2 X MCLK / MCLK_SRC = 2 X 12.288MHz X MCLK_SRC  
For FDCO to remain between 90MHz – 100MHz, MCLK_SRC must be chosen to be  
1/4. This and other values for MCLK_SRC can be seen on the register tables.  
o
FDCO = (2 × 12.288MHz) / (1/4) = 98.304MHz  
Using Equation 1:  
o
FLL_INTEGER.FLL_FRAC = FDCO X FLL_CLK_REF_DIV / (FREF X FLL_RATIO)  
.
.
.
FDCO = 98.304MHz  
FLL_RATIO = 1 because of FREF ≥ 512 kHz.  
FLL_CLK_REF_DIV = 1 since FREF = MCLKI (12MHz)  
o
FLL_INTEGER.FLL_FRAC = 98.304MHz X 1 / (12MHz X 1) = 8.192  
Now retrieve or convert the parameter values into their corresponding HEX values  
o
o
o
o
FLL_RATIO = 1 (for input clock frequency ≥ 512Khz)  
MCLK_SRC = 1/4  
FLL_INTEGER = 8  
FLL_FRAC = 0.192 = 12583 (0.192 X 2^16) = 24’h3126  
Please Note:  
FLL_CLK_REF_DIV can be used to reduce the reference frequency for SYSMCLK by dividing the input by  
1, 2, 4, or 8. Use this to ensure the reference clock frequency is less than or equal to 13.5MHz.  
FDCO must be within the 90MHz – 100MHz or the FLL cannot be guaranteed across the full range of  
operation.  
FLL_FRAC must be set to 0 for low power mode.  
FLL6.SDM_EN REG0X09[14] to create decimal part of frequency, if (DCO frequency)/(FLL input reference  
frequency) is not a integer . If the ratio is integer, it still can be on for lower noise output but higher power  
consumption.  
When FLL uses free running mode, NAU88L25 needs to be set as a master in I2S_PCM_CTRL2.MS0  
REG0X1D[3]=1  
Set FLL6.CHB_FILTER_EN REG0X08[14] = ‘1’ to enable FLL Loop Filter. Select filter clock source by  
FLL6.CHB_FILTER¬_EN REG0X08[13]. Select DCO input by FLL6.FILTER_SW REG0X08[12].  
FLL6.CUTOFF500 REG0X09[13] & FLL6.CUTOFF600 REG0X09[12] can be used to define FLL cuttoff  
frequency at 500KHz or 600KHz. 500KHz will provide the best FLL performance but consume more power.  
NAU88L21 Datasheet Rev1.7  
Page 30 of 69  
Feb, 2020  
set FLL6.FLL_FLTR_DITHER_SEL REG0X09[7:6] = ‘01’ or ‘10’ or ‘11’ as 1LSB / 2LSB / 3LSB random bits to  
Randomize the number of Filter Output Bits to average out output noise. If ‘00’, there is no dither.  
NAU88L21 Datasheet Rev1.7  
Page 31 of 69  
Feb, 2020  
7. Control Interfaces  
The NAU88L21 includes a serial control bus that provides access to all the device control registers, it may be  
configured as a 2-wire interface that conforms to industry standard implementations of the I2C serial bus protocol.  
7.1 2-Wire-Serial Control Mode (I2C Style Interface)  
The 2-wire bus is a bidirectional serial bus protocol. This protocol defines any device that sends data onto the bus as a  
transmitter (or master), and any device receiving data as the receiver (or slave). The NAU88L21 can function only as a  
slave when in the 2-wire interface configuration.  
7.2 2-Wire Protocol Convention  
All 2-Wire interface operations must begin with a START condition, which is a HIGH-to-LOW transition of SDIO while  
SCLK is HIGH. All 2-Wire interface operations are terminated by a STOP condition, which is a LOW to HIGH transition  
of SDIO while SCLK is HIGH. A STOP condition at the end of a read or write operation places the device in a standby  
mode.  
An acknowledge (ACK), is a software convention used to indicate a successful data transfer. To allow for the ACK  
response, the transmitting device releases the SDIO bus after transmitting eight bits. During the ninth clock cycle, the  
receiver pulls the SDIO line LOW to acknowledge the reception of the eight bits of data.  
Following a START condition, the master must output a device address byte. This consists of a 7-bit device address,  
and the LSB of the device address byte is the R/W (Read/Write) control bit. When R/W=1, this indicates the master is  
initiating a read operation from the slave device, and when R/W=0, the master is initiating a write operation to the slave  
device. If the device address matches the address of the slave device, the slave will output an ACK during the period  
when the master allows for the ACK signal.  
9th  
Clock  
SCLK  
SCLK  
SDIO  
SCLK  
SDIO  
SDIO  
Receive  
ACK  
SDIO  
Transmit  
START  
Figure 15: Valid START Condition  
STOP  
Figure 16: Valid Acknowledge  
Figure 17: Valid STOP Condition  
Please Note:  
Sometimes, I2C needs to use level shifter between different supplies domains. During Acknowledge, such as  
Figure 16, receiver side (CODEC) will pull low, and transmit side (MCU) is disable and pull high by pull high  
resistor. Because NAU88L21 SDIO can sink 2mA by default setting (maximum up to 8mA,) shown as below  
Figure 18, RPU1 and RPU2 need to be select such that total current VDDB/RPU1+ VDD_MCU/RPU2 during  
Acknowledge should not be too large to exceed SDIO sinking capability.  
NAU88L21 Datasheet Rev1.7  
Page 32 of 69  
Feb, 2020  
 
 
 
 
Figure 18: Typical I2C level shifter circuit  
7.3 2-Wire Write Operation  
A Write operation consists of a three-byte instruction followed by one or more Data Bytes. A Write operation requires  
a START condition, followed by a valid device address byte with R/W=0, a valid control address byte, data byte(s), and  
a STOP condition.  
The Device Address of the NAU88L21 is either 0x1B (CSB=0) or 0x54 (CSB=1). If the Device Address matches this  
value, the NAU88L21 will respond with the expected ACK signaling as it accepts the data being transmitted to it.  
Figure 19: Slave Address Byte, Control Address Byte, and Data Byte  
NAU88L21 Datasheet Rev1.7  
Page 33 of 69  
Feb, 2020  
 
 
SCLK  
SDIO  
0
0
1
1
0
1
1
0
A6 A5 A4 A3 A2 A1 A0  
D8  
D7 D6 D5 D4 D3 D2 D1 D0  
A7  
D15 D14 D13 D12 D11 D10 D9  
A15 A14 A13 A12 A11 A10 A9 A8  
S
T
O
P
A
C
K
A
C
K
S
T
A
R
T
A
C
K
A
C
K
Device Address = 1Bh  
Control Register Address  
16-bit Data Byte  
R/W  
Figure 20:2-Wire Write Sequence  
7.4 2-Wire Read Operation  
A Read operation consists of a three-byte Write instruction followed by a Read instruction of one or more data bytes.  
The bus master initiates the operation issuing the following sequence: a START condition, device address byte with  
the R/W bit set to “0”, and a Control Register Address byte. This indicates to the slave device which of its control  
registers is to be accessed.  
If the device address matches this value, the NAU88L21 will respond with the expected ACK signaling as it accepts the  
Control Register Address being transmitted into it. After this, the master transmits a second START condition, and a  
second instantiation of the same device address, but now with R/W=1.  
After again recognizing its device address, the NAU88L21 transmits an ACK, followed by a two byte value containing  
the 16 bits of data from the selected control register inside the NAU88L21.  
During this phase, the master generates the ACK signaling with each byte transferred from the NAU85L40. If there is  
no STOP signal from the master, the NAU88L21 will internally auto-increment the target Control Register Address and  
then output the two data bytes for this next register in the sequence.  
This process will continue as long as the master continues to issue ACK signaling. If the Control Register Address  
being indexed inside the NAU88L21 reaches the value 0xFFFF (hexadecimal) and the value for this register is output,  
the index will roll over to 0x0000. The data bytes will continue to be output until the master terminates the read  
operation by issuing a STOP condition.  
NAU88L21 Datasheet Rev1.7  
Page 34 of 69  
Feb, 2020  
 
SCLK  
A7 A6 A5 A4 A3 A2 A1 A0  
0
0
1
1
0
1
1
0
A15 A14A13 A12 A11 A10 A9 A8  
Control Register Address  
A
C
K
S
T
A
R
T
A
C
K
A
C
K
Device Address = 1Bh  
R/W  
0
0
1
1
0
1
1
1
D6 D5 D4 D3 D2 D1 D0  
D7  
D15 D14 D13 D12 D11 D10 D9 D8  
16-bit Data  
S
T
A
R
T
A
C
K
A
C
K
N
S
T
O
P
A
C
K
2ND Device Address = 1Bh  
R/W  
Figure 21:2-Wire Read Sequence  
7.5 Digital Serial Interface Timing  
TSTAH  
TSDIOS  
TSDIOH  
TSTAH  
SDIO  
SCLK  
TSCKH  
TFALL  
TSCKL  
TRISE  
TSTAS  
TSTOS  
Figure 22: Two-wire Control Mode Timing  
Symbol  
Description  
min  
typ  
max  
unit  
TSTAH  
TSTAS  
TSTOS  
SDIO falling edge to SCLK falling edge hold timing in  
START / Repeat START condition  
600  
-
-
ns  
SCLK rising edge to SDIO falling edge setup timing in  
Repeat START condition  
600  
600  
-
-
-
-
ns  
ns  
SCLK rising edge to SDIO rising edge setup timing in  
STOP condition  
TSCKH  
TSCKL  
TRISE  
SCLK High Pulse Width  
600  
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Low Pulse Width  
1,300  
-
Rise Time for all 2-wire Mode Signals  
Fall Time for all 2-wire Mode Signals  
SDIO to SCLK Rising Edge DATA Setup Time  
SCLK falling Edge to SDIO DATA Hold Time  
-
-
300  
300  
-
TFALL  
TSDIOS  
TSDIOH  
100  
0
600  
NAU88L21 Datasheet Rev1.7  
Page 35 of 69  
Feb, 2020  
 
7.6 Software Reset  
The NAU88L21 and all of its control registers can be reset to “default”, initial conditions by writing any value to  
REG0X00 using the two-wire interface mode.  
NAU88L21 Datasheet Rev1.7  
Page 36 of 69  
Feb, 2020  
 
8. Digital Audio Interfaces  
The NAU88L21 can be configured as either the master or the slave, and the Slave mode is the default if this bit is not  
written. In master mode, NAU88L21 outputs both Frame Sync (FS) and the audio data bit clock (BCLK) and has full  
control of the data transfer. In the slave mode, an external controller supplies BCLK and FS. Data is latched on the  
rising edge of BCLK; SDO clocks out ADC data, while SDI clocks in data for the DACs.  
When not transmitting data, SDO pulls LOW in the default state. Depending on the application, the output can be  
configured to pull up or pull down. When the time slot function is enabled (see below), there are additional output state  
modes including controlled tristate capability.  
NAU88L21 supports six audio formats; right justified, left justified, I2S, PCMA, PCMB, and PCM Time Slot.  
8.1 Right-Justified Audio Data  
In right-justified mode, the LSB is clocked on the last BCLK rising edge before FS transitions. When FS is HIGH,  
channel_0 data is transmitted and when FS is LOW, channel_1 data is transmitted. This can be seen in the image  
below.  
FS  
BCLK  
CHANNEL 0  
CHANNEL 1  
SDI/SDO  
N-1 N-2  
MSB  
0
N-1 N-2  
MSB  
1
0
1
LSB  
LSB  
Figure 23: Right-Justified Audio Interface  
8.2 Left-Justified Audio Data  
In left-justified mode, the MSB is clocked on the first BCLK rising edge after FS transitions. When FS is HIGH,  
channel_0 data is transmitted and when FS is LOW, channel_1 data is transmitted. This can be seen in the figure  
below.  
FS  
CHANNEL 0  
CHANNEL 1  
BCLK  
1
SDI/SDO  
N-1 N-2  
MSB  
0
N-1 N-2  
MSB  
1
0
LSB  
LSB  
Figure 24: Left-Justified Audio Interface  
8.3 I2S Audio Data  
In I2S mode, the MSB is clocked on the second BCLK rising edge after FS transitions. When FS is LOW, left channel  
data is transmitted and when FS is HIGH, right channel data is transmitted. This can be seen in the figure below.  
NAU88L21 Datasheet Rev1.7  
Page 37 of 69  
Feb, 2020  
 
 
 
 
FS  
BCLK  
LEFT CHANNEL  
RIGHT CHANNEL  
1
SDI/SDO  
N-1  
0
N-1  
1
0
MSB  
LSB  
MSB  
LSB  
Figure 25: I2S Audio Interface  
8.4 PCMA Audio Data  
In the PCM A mode, channel 0 data is transmitted first followed immediately by channel 1 data. The channel 0 MSB  
is clocked on the second BCLK rising edge after the FS pulse rising edge, and channel 1 MSB is clocked on the next  
BCLK after the left channel LSB. This can be seen in the figure below.  
FS  
CHANNEL 0  
CHANNEL 1  
BCLK  
1
SDI/SDO  
N-1 N-2  
MSB  
0
N-1 N-2  
1
0
LSB MSB  
LSB  
Figure 26: PCMA Audio Interface  
8.5 PCMB Audio Data  
In the PCMB mode, channel_0 data is transmitted first followed immediately by channel_1 data. Channel 0 MSB is  
clocked on the first BCLK rising edge after the FS pulse rising edge, and channel_1 MSB is clocked on the next BCLK  
after channel_0 LSB. This can be seen in the figure below.  
FS  
BCLK  
CHANNEL 0  
CHANNEL 1  
1
SDI/SDO  
N-1 N-2  
MSB  
0
N-1 N-2  
1
0
LSB MSB  
LSB  
Figure 27: PCMB Audio Interface  
8.6 PCM Time Slot Audio Data  
The PCM time slot mode is used to allocate different time slots for ADC and DAC data. This can be useful when  
multiple NAU88L21 chips or other devices are sharing the same audio bus. This will allow each chip‟s audio to be  
delayed around each other without interference.  
Normally, the DAC and ADC data are clocked immediately after the Frame Sync (FS), however, in the PCM time slot  
mode; the audio data can be delayed by left / right channel PCM time slot start value in the registers.  
NAU88L21 Datasheet Rev1.7  
Page 38 of 69  
Feb, 2020  
 
 
 
These delays can be seen before the MSB in the figure below.  
FS  
BCLK  
CHANNEL 0  
CHANNEL 1  
SDI/SDO  
N-1 N-2  
MSB  
0
N-1 N-2  
MSB  
1
0
1
LSB  
LSB  
Figure 28: PCM Time Slot Audio Interface  
The PMC time slot mode can be also used to swap channel 0 and channel 1 audio or cause both channels to use the  
same data. When using the NAU88L25B with other driver chips, the SDO pin can be set to pull up or pull down or high  
impedance during no transmission. Tri-stating on the negative edge allows the transmission of data by multiple sources  
in adjacent timeslots with reduced risk of bus driver contention.  
8.7 TDM I2S Audio Data  
In I2S mode, the MSB is clocked on the second BCLK rising edge after FS transitions. When FS is LOW, channel_0  
then channel_2 data is transmitted and when FS is HIGH, channel_1 then channel_3 data is transmitted. This is shown  
in the figure below.  
CHANNEL 0/  
CHANNEL 2  
CHANNEL 1/  
CHANNLE 3  
FS  
BCLK  
DO34  
N-1  
1
0
N-1  
1
0
N-1  
1
0
N-1  
1
0
MSB  
LSB MSB  
LSB  
MSB  
LSB MSB  
LSB  
CH0  
CH2  
CH3  
CH1  
1 BCLK  
Figure Figure 29: TDM I2S Audio Format  
8.8 TDM PCMA Audio Data  
In the PCMA mode, channel_0 data is transmitted first followed sequentially by channel_1, 2, and 3 immediately after.  
The channel_0 MSB is clocked on the second BCLK rising edge after the FS pulse rising edge, and the subsequent  
channel’s MSB is clocked on the next BCLK after the previous channel’s LSB. This is shown in the figure below.  
NAU88L21 Datasheet Rev1.7  
Page 39 of 69  
Feb, 2020  
 
 
1 BCLK  
FS  
BCLK  
DO34  
CHANNEL1  
CHANNEL2  
CHANNEL3  
CHANNEL0  
N-1  
MSB  
1
0
N-1  
N-1  
N-1  
1
0
1
0
1
0
LSB  
LSB  
LSB  
MSB  
LSB  
MSB  
MSB  
Figure Figure 30: TDM PCMA Audio Format  
8.9 TDM PCMB Audio Data  
In TDM PCMB mode, channel_0 data is transmitted first followed immediately by channel_1 data. The channel_0  
MSB is clocked on the first BCLK rising edge after the FS pulse rising edge, and channel_1 MSB is clocked on the next  
SCLK after channel_0 LSB.  
1 BCLK  
FS  
CHANNEL 0  
CHANNEL 1  
CHANNEL 2  
CHANNEL 3  
BCLK  
DO34  
N-1  
1
0
N-1  
N-1  
N-1  
1
0
1
0
1
0
LSB  
LSB  
LSB  
LSB  
MSB  
MSB  
MSB  
MSB  
Figure 31: TDM PCMB Audio Format  
8.10TDM PCM Offset Audio Data  
The PCM offset mode is used to delay the time at which DAC data is clocked. This increases the flexibility of the  
NAU88L21 to be used in a wide range of system designs. One key application of this feature is to enable multiple  
NAU88L21 or other devices to share the audio data bus, thus enabling more than four channels of audio. This feature  
may also be used to swap channel data, or to cause multiple channels to use the same data.  
Normally, the DAC data are clocked immediately after the Frame Sync (FS). In this mode audio data is delayed by a  
delay count specified in the device control registers. The channel 0 MSB is clocked on the BCLK rising edge defined  
by the delay count set in .This can be seen in the figure below.  
NAU88L21 Datasheet Rev1.7  
Page 40 of 69  
Feb, 2020  
 
 
FS  
CHANNEL 3  
CHANNEL2  
CHANNEL 0  
CHANNEL 1  
BCLK  
N-1  
MSB  
1
0
N-1  
N-1  
1
0
1
0
1
0
N-1  
DO34  
LSB  
LSB  
LSB  
LSB  
MSB  
MSB  
MSB  
Figure  
Figure 32: TDM PCM Offset Audio Format  
NAU88L21 Datasheet Rev1.7  
Page 41 of 69  
Feb, 2020  
9. Outputs  
The NAU88L21 provides a pair of Class G ground-reference headphone outputs.  
9.1 Class G Headphone Driver and Charge Pump  
The NAU88L21 uses Class G speaker drivers powered by a charge pump for the headphones. For typical operation  
with large and small signals the charge pump provides ±1.8V and ±0.9V, respectively. These output drivers are driven  
by dedicated left and right DACs and can provide 30mW of power to a 32Ω load (in CSP package).  
Three capacitors are needed to generate the negative voltage from the positive 1.8V. Typically, 2μF ceramic  
capacitors are used.  
The Fly Back capacitor is connected between pins CPCA and CPCB.  
The Positive Output Decoupling capacitor is applied from pin CPVOUTP to ground (VSSCP).  
The Negative Output Decoupling capacitor is applied from pin CPOUTN to ground (VSSCP).  
The Class G will be turned on only if DAC signal level is bigger than the threshold in the register settings, and the peak  
output can be also configured differently by register settings.  
HSPGA0_VOL  
DACR/CH1  
HPR  
HSPGA1_VOL  
HPL  
DACL/CH0  
Figure 33: DAC to Headphone out path diagram  
NAU88L21 Datasheet Rev1.7  
Page 42 of 69  
Feb, 2020  
 
 
10. Control and Status Registers  
Bit  
R
E
G
Function  
Name  
Description  
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
SOFTWA  
RE_RST  
RESET_N_SO  
FT_PRE  
0
Reset the signal once write to the register.  
CMLCK_ENB  
PGA Common Mode Lock; ‘0’=enabled, ‘1’=disabled  
DAC clock inversion in analog domain  
1 = Enable  
0 = Disable  
CLK_DAC_IN  
V
Right Channel DAC Enable  
1 = ON  
0 = OFF  
Left Channel DAC Enable  
1 = ON  
0 = OFF  
Right Channel ADC Enable  
1 = ON  
0 = OFF  
Left Channel ADC Enable  
1 = ON  
RDACEN  
LDACEN  
RADCEN  
LADCEN  
0 = OFF  
ADC Clock Enable  
1 = ON  
0 = OFF  
DAC Clock Enable  
1 = ON  
0 = OFF  
DCLK_ADC_E  
N
ENA_CTR  
L
1
DCLK_DAC_E  
N
IMM Clock Enable  
1 = ON  
0 = OFF  
I2S Clock Enable  
1 = ON  
0 = OFF  
BIST Clock Enable  
1 = ON  
0 = OFF  
OTP Clock Enable  
1 = ON  
CLK_IMM_EN  
CLK_I2S_EN  
CLK_BIST_EN  
CLK_OTP_EN  
0 = OFF  
DRC Clock Enable  
1 = ON  
CLK_DRC_EN  
0 = OFF  
Default  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0x00ff  
Master CLOCK sources  
1 = ½ VCO_CLK  
SYSCLK_SRC  
0 = MCLK_PIN  
ADC clock and DAC clock source selection  
1 = from MCLK_PIN or ½ VCO_CLK  
0 = from internal MCLK  
CLK_CODEC_  
SRC  
Invert DAC Clock Polarity in digital domain  
CLK_DAC_PL  
CLK_ADC_PL  
1= Invert  
0= No change  
Invert ADC Clock Polarity  
1= Invert  
0= No change  
CLK_DIVI  
DER  
3
Scaling MCLK for GPIO clock divider  
00 = 1/8  
10 = 1/2  
CLK_GPIO_S  
RC  
01 = MCLK/2  
11 = 1/4  
Scaling for ADC clock from CODEC_SRC Output  
CLK_ADC_SR  
C
00 = 1  
01 = 1/2  
11 = 1/8  
10 = 1/4  
Scaling for DCA clock from CODEC_SRC Output  
CLK_DAC_SR  
C
00 = 1  
01 = 1/2  
11 = 1/8  
10 = 1/4  
Scaling for MCLK from SYSCLK_SRC Output  
0000 = 1  
0001 = Inverted  
0011 = 1/4  
0101 = 1/16  
MCLK_SRC  
0010 = 1/2  
0100 = 1/8  
0110 = 1/32  
0111 = 1/3  
NAU88L21 Datasheet Rev1.7  
Page 43 of 69  
Feb, 2020  
 
Bit  
R
E
G
Function  
Name  
Description  
1
5
1
4
1
3
1
2
1
1
1
0
9
0
8
7
0
6
1
5
0
4
1
3
0
2
0
1
0
0
0
1000 = 1  
1001 = inverted  
1011 = 1/12  
1101 = 1/48  
1010 = 1/6  
1100 = 1/24  
1110 = 1/96  
1111 = 1/5  
Default  
0
0
0
0
0
0
0
0x0050  
Recommended default 000  
FLLISELDAC  
FLL: Increase the drive strength of the FLL DAC.  
FLL Latch drive strength multiplier. This register is  
using thermometer coding.  
000 = Default  
011 = 2x  
Amp half bias-current selector. Amp bias current must  
be reduced to 50% of its nominal value  
00 = No Power Reduction  
01 = Half Bias Current on FLL_BIAS_AMP2X  
10 = Half Bias Current on FLL_BIAS_AMP  
11 = Half Current on Both Amps  
ICTRL_LATCH  
ICTRL_V2I  
001 = 1x  
111 = 3x  
4
FLL1  
Manually force FLL to lock.  
0 - Default Setting  
1 - Force Lock Enabled  
FLL_LOCK_B  
P
0000001 = for input clock frequency ≥ 512Khz,  
0000010 = for input clock frequency ≥ 256Khz  
0000100 = for input clock frequency ≥ 128Khz  
0001000 = for input clock frequency ≥ 64Khz  
0010000 = for input clock frequency ≥ 32Khz  
0100000 = for input clock frequency ≥ 8Khz  
1000000 = for input clock frequency ≥ 4Khz  
0x0000  
FLL_RATIO  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
1
0
1
0
1
0
0
0
0
DOUT2VCO_  
RSV  
Default  
Set the FLL VCO frequency in free-running  
mode.  
0x00bc  
5
FLL2  
FLL gain error  
0000 = (Rec)  
0010 = x2  
0100 = x4  
0110 = x6  
1000 = x9  
1010 = x12  
1100 = x17  
1110 = x20  
0001 = x1  
0011 = x3  
0101 = x5  
0111 = x8  
1001 = x10  
1011 = x16  
1101 = x18  
1111 = x24  
GAIN_ERR  
6
FLL3  
FLL Reference CLK Source Select  
00 & 01 = MCLK Pin  
10 = BCLK_PIN  
FLL_CLK_REF  
_SRC  
11 = LRC_PIN  
FLL_INTEGER  
FLL 10-bit integer input  
0x0008  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
HIGHBWE  
High Bandwidth enable (0-disable, 1-enable)  
FLL CLK_REF divider for accurate lock detection  
000 = 1 (Rec)  
010 = 1/4  
100 = 1/16  
FLL pre-scalar  
00 = 1  
001 = 1/2  
011 = 1/8  
101 = 1/32  
FLL_CLK_REF  
_DIV_4CHK  
7
FLL4  
FLL_CLK_REF  
_DIV  
01 = 1/2  
11 = 1/8  
10 = 1/4  
FLL_N2  
FLL 10-bit integer VCO divider for FLL Filter Clock  
Default  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0x0010  
Drive strength control block of FLL DAC enable  
1 = Enable  
0 = Disable  
PDB_DACICT  
RL  
FLL Loop Filter enable  
1 = Enable  
0 = Disable  
CHB_FILTER_  
EN  
1 = Select divided VCO clock based on register  
FLL_N2  
0 = Select REFCLK  
8
FLL5  
CLK_FILTER_  
SW  
1 = Select accumulator output  
0 = Select filter output  
FILTER_SW  
FLL_LOCK_LE  
NGTH  
Set the time that FLL must stay within the lock-in  
range before lock signal goes high  
NAU88L21 Datasheet Rev1.7  
Page 44 of 69  
Feb, 2020  
Bit  
R
E
G
Function  
Name  
Description  
1
5
0
1
4
1
1
3
0
1
2
0
1
1
0
1
0
0
9
0
8
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Default  
0
0x4000  
FLL free-running mode enable  
1 = Enable  
DCO_EN  
0 = Disable  
FLL sigma delta modulator enable  
1 = Enable  
SDM_EN  
0 = Disable  
FLL 500Khz cutoff frequency enable  
1 = Enable  
CUTOFF500  
0 = Disable  
FLL 600Khz cutoff frequency enable  
1 = Enable  
0 = Disable  
CUTOFF600  
VREFSEL  
Vref select  
00 = 1.8V, 01 = 1.56V, 10 = 1.65V, 11 = 1.75V  
0 = Disable  
1 = Enable the function to check for 256  
samples/frame sync  
CHKFS256_E  
N
9
FLL6  
0 = Total samples per 4 frame sync  
1 = Total samples per 8 frame sync  
FS8X_SEL  
Randomize the number of Filter output  
00: no dither  
FLL_FLTR_DI  
THER_SEL  
01: the LSB is a random bit  
10: two LSBs are random bits  
11: three LSBs are random bits  
Randomize the number of bits for the input of SD  
modulator  
FLL_SD_DITH  
ER_SEL  
00: no dither  
01: the LSB is a random bit  
10: two LSBs are random bits  
11: three LSBs are random bits  
FLL dynamic lock range.  
0000 = recommended  
DLR  
Default  
0
0
0
1
0
0
1
0
1
0
0
0
1
0
0
0
0
1
0
0
1
1
0
0
0
0
1
0
0
1
0
1
1
0
1
0
0
0
1
0
0
0
0
0
0
0
1
1
0x6900  
MSB potion of FLL 24-bit fractional input  
FLL_FRAC[23:16]  
0x0031  
FLL_FRAC_H  
A
B
FLL7  
FLL8  
Default  
LSB potion of FLL 24-bit fractional input  
FLL_FRAC[15:0]  
0x26e9  
FLL_FRAC_L  
Default  
MANU_SPKR_  
DWN1R  
Manual Access SPKR_DWN1R  
0 = Pull Down  
MANU_SPKR_  
DWN1L  
Manual Access SPKR_DWN1L  
0 = Pull Down  
Jack Detection Source 2 Configuration  
00 = from JKDETL  
JK_2_PL  
JK_1_PL  
01 = from Inverted JKDETL  
10 = ignore the input and set to 0  
11 = ignore the input and set to 1  
Jack Detection Source 1 Configuration  
00 = from GPIO2JD1  
01 = from Inverted GPIO2JD1  
10 = ignore the input and set to 0  
11 = ignore the input and set to 1  
Manual Restart Jack Detect de-bounce  
Toggle this bit to 1 and  
JACK_DE  
T_CTRL  
D
JD_RESTART  
then to 0 to restart the  
JACK DETECTION.  
Jack Detect de-bounce bypass  
DB_BP_MOD  
E
1=Bypass the de-bounce circuit  
0=Will enable de-bounce circuit (need to set  
REG4B[0] = 1 to enable the CLK)  
Insertion de-bounce time  
2^( INSERT_DT +2) ms  
INSERT_DT  
EJECT_DT  
Ejection de-bounce time  
2^( EJECT_DT +2) ms  
Jack Insertion/ Detection Logic polarity  
0 = Invert the JACK Detection logic before de-bounce  
circuit.  
JKDET_PL  
1 = Not inverted  
NAU88L21 Datasheet Rev1.7  
Page 45 of 69  
Feb, 2020  
 
Bit  
R
E
G
Function  
Name  
Description  
1
5
1
4
1
3
1
2
1
1
1
0
9
0
8
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Jack Detection Logic control  
JKDET_LOGI  
C
1 = AND Gate  
0 = OR Gate  
0x0000  
Default  
0
0
0
0
0
0
0
Default IRQ Logic  
1 = Active High  
0 = Active Low  
IRQ_PL  
IRQ Pin Pull select  
0 = Pull Down  
1 = Pull Up  
IRQ_PS  
IRQ Pin Pull enable  
1 = Enable  
0 = Disable  
IRQ_PE  
IRQ_DS  
IRQ_OE  
1 = High drive current  
0 = Low drive current  
IRQ Output Enable  
1 = Enable  
0 = Disable  
APR_EMRGE  
NCY_SHTDW  
N1_INTP_MA  
SK  
APR Emergency Shutdown Interrupt mask  
1 = Mask the interrupt  
0 = Unmask  
RMS Interrupt mask  
1 = Mask the interrupt  
0 = Unmask  
RMS_INTP_M  
ASK  
INTERRU  
PT_MASK  
F
KEY_RELEAS  
E_INTP_MAS  
K
Key Release Interrupt mask  
1 = Mask the interrupt  
0 = Unmask  
Key Pressed Interrupt mask  
1 = Mask the interrupt  
0 = Unmask  
KEY_INTP_M  
ASK  
Missing MCLK Detection Interrupt mask  
1 = Mask the interrupt  
0 = Unmask  
MCLKDET_IN  
TP_MASK  
MIC Detection Interrupt mask  
1 = Mask the interrupt  
0 = Unmask  
MIC_DET_INT  
P_MASK  
Jack Ejection Interrupt mask  
1 = Mask the interrupt  
0 = Unmask  
JK_EJECT_IN  
TP_MASK  
Jack Insertion Interrupt mask  
1 = Mask the interrupt  
0 = Unmask  
JK_DET_INTP  
_MASK  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x0000  
APR_EMRG_  
SHTDWN  
APR Emergency Short Circuit Shutdown IRQ  
Impedance Measurement Interrupt IRQ Status  
RMS_INT  
KEY_RELEAS  
E_INT  
KEY_INT  
MCLK_DET_I  
NT  
Key Release for Key Detection IRQ Status  
key Detection IRQ Status  
Missing MCLK Detection IRQ Status  
MIC Detection IRQ Status  
MIC_DET_INT  
Jack Ejection IRQ Status  
00 = cleared state  
01 = JACK ejection detected  
10 = a jack detected was cleared due to a jack  
insertion before write REG 11[3:2] to clear it.  
11 = undefined  
1
0
IRQ_STA  
TUS  
JACK_EJCT_I  
RQ  
Jack insertion IRQ status.  
00=cleared state  
JACK_DET_IR  
Q
01= Jack insertion detected  
10= a jack insertion interrupt was cleared due to jack  
removal detection before write REG 11[1:0] to clear it.  
11 = undefined  
Default  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Read Only  
NAU88L21 Datasheet Rev1.7  
Page 46 of 69  
Feb, 2020  
Bit  
R
E
G
Function  
Name  
Description  
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
Write Operation:  
Write bits[15:0] clear corresponding REG10 [15:0]  
Write 1s to bits that you want to reset to 0, except  
INT_CLR_KEY  
_STATUS  
INT_CLR_  
KEY_STA  
TUS  
1
1
Bit0 or Bit1 = clear Jack insertion interrupt  
Bit2 or Bit3 = clear Jack ejection interrupt  
Default  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Read/Write  
APR Emergency Short Circuit Shutdown Interrupt  
Disable Control  
1 = Disable  
0 = Enable  
APR_EMRG_  
SHTDWN  
_INT_DIS  
RMS Impedance Measurement Interrupt Disable  
control  
1 = Disable  
RMS_INT_DIS  
0 = Enable  
Key Release Interrupt Disable Control  
1 = Disable  
0 = Enable  
KEY_RELEAS  
E_INT_DIS  
Key Interrupt Disable Control  
1 = Disable  
0 = Enable  
Missing MCLK Detection Interrupt Disable Control  
1 = Disable  
0 = Enable  
INTERRU  
PT_DIS_C  
TRL  
(Write  
Mode)  
KEY_INT_DIS  
1
2
MCLKDET_IN  
T_DIS  
MIC Detection/Headset Configuration interrupt disable  
MIC_DET_INT  
_DIS  
control  
1 = Disable  
0 = Enable  
Jack Ejection Interrupt Disable Control  
1 = Disable  
0 = Enable  
JACK_EJCT_I  
NT_DIS  
Jack Insertion/Detection Interrupt Disable Control  
1 = Disable  
0 = Enable  
JACK_DET_IN  
T_DIS  
Default  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0xffff  
DMIC in Driving Select  
DMIC_DS  
1 = High drive current  
0 = Low drive current  
DMIC_SLEW  
DMMIC Pin Slew Rate Selection  
DMIC Clock Speed Selection:  
CLK_DMIC_S  
RC  
1
3
DMIC_CT  
RL  
00 = ADC Clock  
01 = ADC Clock / 2  
10 = ADC Clock / 4 11 = ADC Clock / 8  
Digital Microphone Mode Enable  
1 = Enabled  
DMICEN  
0 = Disabled  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x0000  
GPIO2OUT  
Programmable output to GPIO2  
GPIO2JD1 Pull Select  
GPIO2_PS  
GPIO2JD1 Driving Select  
1 = High drive current  
0 = Low drive current  
GPIO2JD1 Pin Pull enable  
0 = Enable  
GPIO2_DS  
1
A
GPIO12_  
CTRL  
GPIO2_PE  
GPIO2_OE  
1 = Disable  
GPIO2JD1 Output Enable  
1 = Enable  
0 = Disable  
NAU88L21 Datasheet Rev1.7  
Page 47 of 69  
Feb, 2020  
Bit  
R
E
G
Function  
Name  
Description  
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
GPIO1 polarity inversion control  
1 = Inverted logic of the CSB/GPIO1 function output  
selected by GPIO1SEL  
GPIO1POL  
0 = non inverted  
CSB/GPIO1 function select (input default)  
000 = output 0  
001 = JACK Status from the AND/OR logic  
010 = SCLK_I  
GPIO1SEL  
011 = SD_I  
100 = output divided FLL clock  
101 = FLL locked condition (logic 1 = PLL locked)  
110 = SD_O  
111 = OSC_CLK  
GPIO1CSB pull select  
GPIO1_PS  
GPIO1_DS  
1 = High drive current  
0 = Low drive current  
GPIO1CSB Pin Pull enable  
1 = Enable  
GPIO1_PE  
0 = Disable  
GPIO1CSB Output Enable  
1 = Enable  
GPIO1_OE  
0 = Disable  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x0000  
TDM Enable  
TDM  
1 = Enable  
0 = Disable  
PCM Offset Control in TDM  
1 = Enable  
0 = Disable  
PCM_OFFSET  
_MODE_CTRL  
ADC audio data left-right ordering  
0 = left ADC data in left phase of LRP  
1 = left ADC data in right phase of LRP (left-right  
reversed)  
DAC right channel audio data left-right ordering  
0 = right DAC data in right phase of LRP  
1 = right DAC data in left phase of LRP (left-right  
reversed)  
DAC left channel audio data left-right ordering  
0 = left DAC data in left phase of LRP  
1 = left DAC data in right phase of LRP (left-right  
reversed)  
ADCPHS0  
DACPHS1  
DACPHS0  
DAC left channel source under TDM mode  
I2S :  
000 : from Slot 0  
010 : from Slot 2  
100 : Reserved  
110 : Reserved  
001: from Slot 1  
011: from Slot 3  
101: Reserved  
111 : Reserved  
1
B
TDM_CTR  
L
DAC_LEFT_S  
EL  
PCM:  
000: from slot 0  
010: from slot 2  
100: from slot 4  
110: from slot 6  
001: from slot 1  
011: from slot 3  
101: from slot 5  
111: from slot 7  
DAC right channel source under TDM mode  
I2S:  
000 : from Slot 0  
010 : from Slot 2  
100 : Reserved  
110 : Reserved  
PCM:  
001: from Slot 1  
011: from Slot 3  
101: Reserved  
111 : Reserved  
DAC_RIGHT_  
SEL  
000: from slot 0  
010: from slot 2  
100: from slot 4  
110: from slot 6  
001: from slot 1  
011: from slot 3  
101: from slot 5  
111: from slot 7  
ADC left channel source under TDM mode  
00: from Slot 0  
10: from slot 4  
01: from Slot 2  
11: from slot 6  
ADC_TX_SEL  
_L  
NAU88L21 Datasheet Rev1.7  
Page 48 of 69  
Feb, 2020  
Bit  
R
E
G
Function  
Name  
Description  
1
5
1
4
1
3
1
2
1
1
1
0
9
0
8
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
ADC right channel source under TDM mode  
I2S:  
00: from Slot 1  
10: from slot 5  
01: from Slot 3  
11: from slot 7  
ADC_TX_SEL  
_R  
Default  
0
0
0
0
0
0
0
0x0000  
DAC companding mode control  
00 = Off (normal linear operation)  
01 = Reserved  
DACCM0  
10 = U-law companding  
11 = A-law companding  
ADC companding mode control  
00 = Off (normal linear operation)  
01 = Reserved  
10 = U-law companding  
11 = A-law companding  
DAC audio data input option to route directly from  
ADC data stream  
0 = No pass through, normal operation  
1 = ADC output data stream routed to DAC input data  
path  
ADCCM0  
ADDAP0  
8-bit word enable for companding mode of operation  
0 = Normal operation (no companding)  
1 = 8-bit operation for companding mode  
uLaw offset  
0 = 1’s complement  
1 = 2’s complement  
CMB8_0  
UA_OFFSET  
BCP0  
1
C
I2S_PCM_  
CTRL1  
Bit clock phase inversion option for BCLK  
0 = Normal phase  
1 = Input logic sense inverted  
PCMA and PCMB left/right word order control  
0 = Right Justified/Left Justified/I2S/PCMA mode  
1 = PCMB Mode Enable: MSB is valid on 1st rising  
edge of BCLK after rising edge of FS  
Port Word length (24-bits default) of audio data stream  
00 = 16-bit word length  
LRP0  
WLEN0  
01 = 20-bit word length  
10 = 24-bit word length  
11 = 32-bit word length  
Port Audio interface data format (default setting is I2S)  
00 = Right justified  
AIFMT0  
01 = Left justified  
10 = Standard I2S format  
11 = PCMA or PCMB audio data format option  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0x000a  
I2S tri state  
I2S_TRI  
0 = Normal mode  
1 = Output high Z  
I2S driving enable  
0 = Normal mode  
1 = Always out  
LRC divide coefficient setting  
00 = 1/256  
10 = 1/64  
I2S_DRV  
LRC_DIV  
01 = 1/128  
11 = 1/32  
0 = Only PCM_A_MODE or PCM_B_MODE  
(STEREO Only) can be used when PCM Mode is  
selected  
1 = Time slot function enable for PCM mode  
Without TDM mode  
0 = Drive the full Clock of LSB  
1 = Tri-State the 2nd half of LSB  
0 = Use I2S_PCM_CTRL.WLEN to select Word  
Length  
1 = PCM Select 8-bit word length  
Reserved to 0  
PCM_TS_EN0  
TRI0  
1
D
I2S_PCM_  
CTRL2  
PCM8BIT0  
PCM_TS_SEL  
ADCDAT0_PE  
ADCDAT IO Pull Enable  
1 = Enable  
0 = Disable  
ADCDAT IO Pull Up/Down Enable  
1 = Pull Up  
ADCDAT0_PS  
0 = Pull Down  
NAU88L21 Datasheet Rev1.7  
Page 49 of 69  
Feb, 2020  
 
 
Bit  
R
E
G
Function  
Name  
Description  
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
0 = ADCDAT is not always out (when no data out,  
ADCOUT pin becomes high)  
1 = ADCDAT always out  
Master/Slave Mode Enable  
0 = Slave Mode  
ADCDAT0_OE  
MS0  
1 = Master Mode  
BCLK DIVIDE Setting from MCLK frequency  
000 = 1  
010 = 1/4  
100 = 1/16  
0x8010  
001 = 1/2  
011 = 1/8  
101 = 1/32  
BCLKDIV  
Default  
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
Triggers short frame sync signal if frame sync is less  
than  
FS_ERR_CMP  
_SEL  
00 = 252 x MCLK  
10 = 254 x MCLK  
01 = 253 x MCLK  
11 = 255 x MCLK  
Short Gram Sync detection logic Enable  
0 = Enable  
1 = Disable  
1
E
LEFT_TIM  
E_SLOT  
DIS_FS_SHO  
RT_DET  
Left channel PCM time slot start value  
Or PCM TDM Offset Mode Slot start value  
TSLOT_L0  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x0000  
Right channel PCM time slot start value  
Or unused for PCM TDM Offset Mode  
0x0000  
TSLOT_R0  
1
F
RIGHT_TI  
ME_SLOT  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIQ0_A1_L  
Program ADC BIQ_A1 parameter Bit[15:0]  
2
1
BIQ0_  
COF1  
Default  
0x0000  
BIQ0_A1_H  
Program ADC BIQ_A1 parameter Bit[18:16]  
2
2
BIQ0_  
COF2  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x0000  
BIQ0_A2_L  
Program ADC BIQ_A2 parameter Bit[15:0]  
2
3
BIQ0_  
COF3  
Default  
0x0000  
BIQ0_A2_H  
Program ADC BIQ_A2 parameter Bit[18:16]  
2
4
BIQ0_CO  
F4  
Default  
0x0000  
BIQ0_B0_L  
Program ADC BIQ_B0 parameter Bit[15:0]  
2
5
BIQ0_  
COF5  
Default  
0x0000  
BIQ0_B0_H  
Program ADC BIQ_B0 parameter Bit[18:16]  
2
6
BIQ0_  
COF6  
Default  
0x0000  
BIQ0_B1_L  
Program ADC BIQ_B1 parameter Bit[15:0]  
2
7
BIQ0_  
COF7  
Default  
0x0000  
BIQ0_B1_H  
Program ADC BIQ_B1 parameter Bit[18:16]  
2
8
BIQ0_CO  
F8  
Default  
0x0000  
BIQ0_B2_L  
Program ADC BIQ_B2 parameter Bit[15:0]  
2
9
BIQ0_  
COF9  
Default  
0x0000  
BIQ ADC Path Enable  
1 : Enable  
BIQ0_EN  
0 : Disable  
2
A
BIQ0_CO  
F10  
BIQ0_B2_H  
Program ADC BIQ_B2 parameter Bit[18:16]  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x0000  
In Non-DMIC Mode:  
0 : Latch Left Channel Analog data input into the Left  
Channel Filter  
1: Latch Right Channel Analog data input into the  
Left Channel Filter  
In DMIC Mode:  
0 = Left Channel in Rising Edge  
1 = Left Channel in Falling Edge  
In Non-DMIC Mode:  
ADC_L_SRC  
2
B
ADC_RAT  
E
ADC_R_SRC  
0 : Latch Right Channel Analog data input into the  
Right Channel Filter  
NAU88L21 Datasheet Rev1.7  
Page 50 of 69  
Feb, 2020  
Bit  
R
E
G
Function  
Name  
Description  
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
1: Latch Left Channel Analog data input into the  
Right Channel Filter  
In DMIC Mode:  
0 = Right Channel in Falling Edge  
1 = Right Channel in Rising Edge  
Generating 2.048MKHz based on the Sample Rates  
SMPL_RATE  
GAINCMP  
000 = 48k SR(default)  
110 = 96k SR  
001 = 32k SR  
111 = 192 SR  
Reserved, always set to zero  
ADC SINC Down selection  
ADC_RATE  
00 = Down 32  
10 = Down 128  
0x0002  
01 = Down 64  
11 = Down 256  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
CICCLP_OFF  
CIC_GAIN_AD  
J
Recommended default 1  
For fine tuning the DAC output  
2
C
DAC_CTR  
L1  
DAC oversample rate selection  
DAC_RATE  
000 = 64  
010 = 128  
0x0082  
001 = 256  
100 = 32  
Default  
Reserved  
Reserved to 0  
Number of bits of dithering on SD modulator. Each  
level increments dithering by 1 bit  
0000 = No dithering  
0010 = 2  
0100 = 4  
0110 = 6  
1000 = 8  
1010 = 10  
1100 = 12  
1110 = 14  
0001 = 1  
0011 = 3  
0101 = 5  
0111 = 7  
1001 = 9  
1011 = 11  
1101 = 13  
1111 = 15  
SDMOD_DITH  
ER  
2
D
DAC_TRL  
2
Reserved  
Reserved to 0  
Reserved  
Reserved to 0  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x0000  
DAC CH1 to DAC CH0 crosstalk suppression sidetone  
selection. Step size is 0.5db  
0xff = +24dB  
0xfe = +23.5dB  
DAC1_TO_DA  
C0_ST  
0xcf = 0dB  
0x43 = -70dB  
0x42 = Reserved  
0x0f = Reserved  
0x0e = Mute  
0x00 = Mute  
2
F
DAC_DGA  
IN_CTRL  
DAC CH0 to DAC CH1 crosstalk suppression sidetone  
selection. Step size is 0.5db  
0xff = +24dB  
0xfe = +23.5dB  
0xcf = 0dB  
DAC0_TO_DA  
C1_ST  
0x43 = -70dB  
0x42 = Reserved  
0x0f = Reserved  
0x0e = Mute  
0x00 = Mute  
0x0000  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
NAU88L21 Datasheet Rev1.7  
Page 51 of 69  
Feb, 2020  
Bit  
R
E
G
Function  
Name  
Description  
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
ADC to DAC CH0 Sidetone selection. Step size is 3db  
0000 = mute  
0001 = -42db  
ADC_TO_DAC  
_ST0  
1110 = -3dB  
1111 = 0dB  
ADC to DAC CH1 Sidetone Attenuation. Step size is  
3db  
0000 = mute  
0001 = -42db  
1110 = -3dB  
1111 = 0dB  
ADC_TO_DAC  
_ST1  
3
0
ADC_DGA  
IN_CTRL  
0 = Select ADC CH0 as the side tone source of the  
DAC_ST_SEL  
0
DAC CH0  
1 = Select ADC CH1 as the side tone source of the  
DAC CH0  
0 = Select ADC CH1 as the side tone source of the  
DAC_ST_SEL  
1
DAC CH1  
1 = Select ADC CH0 as the side tone source of the  
DAC CH1  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x0000  
Analog Attn Mute Step  
00 = 128 sample  
10 = 16 sample  
PGA_SMUTE_  
STEP  
01 = 32 sample  
11 = 1 sample  
DAC Slow Soft Unmute Enable  
1 = Enable (512 MCLK per step soft unmute)  
0 = Disable (16 MCLK per step soft unmute)  
DAC Zero Crossing Enable  
1 = Enable  
0 = Disable  
DAC_SLOW_  
UM  
DAC_ZC_UP_  
EN  
Auto mute enable  
Generate null output to analog circuitry when 1024  
consecutive zeros are detected. De-assert as soon  
as first non-zero sample is detected.  
Auto mute control  
1 = Either Ch0 or Ch1 must have 1024 consecutive  
zero samples  
AMUTE_EN  
3
1
AMUTE_CTRL  
MUTE_CT  
RL  
0 = Both DAC channels must have 0 values for 1024  
samples before AMUTE turns on  
Soft mute enable  
1 = Gradually lower DAC volume to zero  
0 = Gradually increase DAC volume to volume register  
setting  
SMUTE_EN  
ADC Zero Crossing Enable  
1 = Enable  
0 = Disable  
ADC_ZC_UP_  
EN  
ADC Soft mute Enable  
1 = Enable  
0 = Disable  
ADC_SMUTE_  
EN  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x0000  
Headphone diver manual attn Enable(Enable  
HSPGA_ATTN_EN and AMUTE_EN)  
1 = Enable  
HSPGA_ATTN  
_EN  
0 = Disable  
Headphone driver Auto attn Enable(Enable  
HSPGA_ATTN_AUTO_MODE, and AMUTE_EN)  
1 = Enable  
HSPGA_ATTN  
_AUTO_MOD  
E
0 = Disable  
MUTE_HSPG  
HSPGA Right Channel Manual Mute  
1 = Mute  
HSPGA Left Channel Manual Mute  
1 = Mute  
3
2
HSVOL_C  
TRL  
A2  
MUTE_HSPG  
A1  
Left Channel Headphone driver Volume control;  
HSPGA1_VOL  
00 = 0dB  
10 = -6dB  
01 = -3dB  
11 = -9dB  
Right Channel Headphone driver Volume control;  
HSPGA2_VOL  
00 = 0dB  
10 = -6dB  
0x0000  
01 = -3dB  
11 = -9dB  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
NAU88L21 Datasheet Rev1.7  
Page 52 of 69  
Feb, 2020  
Bit  
R
E
G
Function  
Name  
Description  
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
DAC Right Volume control. Expressed as a gain or  
attenuation in 0.5db steps  
0xff = +24dB  
0xfe = +23.5dB  
0xcf = 0dB  
DGAINR_DAC  
0x43 = -70dB  
0x42 = Reserved  
0x0f = Reserved  
0x0e = Mute  
0x00 = Mute  
3
4
DACR_CT  
RL  
DAC Left Volume control. Expressed as a gain or  
attenuation in 0.5db steps  
0xff = +24dB  
0xfe = +23.5dB  
0xcf = 0dB  
DGAINL_DAC  
0x43 = -70dB  
0x42 = Reserved  
0x0f = Reserved  
0x0e = Mute  
0x00 = Mute  
Default  
1
1
0
0
1
1
1
1
1
1
0
0
1
1
1
1
0xcfcf  
ADC Right Volume control. Expressed as a gain or  
attenuation in 0.5db steps  
0xff = +24dB  
0xfe = +23.5dB  
0xcf = 0dB  
DGAINR_ADC  
0x43 = -70dB  
0x42 = Reserved  
0x0f = Reserved  
0x0e = Mute  
0x00 = Mute  
3
5
ADC_DGA  
IN_CTRL1  
ADC Left Volume control. Expressed as a gain or  
attenuation in 0.5db steps  
0xff = +24dB  
0xfe = +23.5dB  
0xcf = 0dB  
DGAINL_ADC  
0x43 = -70dB  
0x42 = Reserved  
0x0f = Reserved  
0x0e = Mute  
0x00 = Mute  
Default  
1
1
0
0
1
1
1
1
1
1
0
0
1
1
1
1
0xcfcf  
ADC channel DRC enable  
1 = Enable  
0 = Disable  
DRC_ENA_AD  
C
ADC DRC Knee point 2 setting, increments in  
-1dB steps  
0x00 = 0dB  
0x01 = -1dB  
DRC_KNEE2_  
IP_ADC  
0x3E = -62dB  
0x3F = -63dB  
ADC_DRC  
_KNEE_IP  
12  
3
6
DRC_SMTH_E  
NA_ADC  
1= ADC Smooth filter enable  
ADC DRC Knee point 1 setting, increments in  
-1dB steps  
0x00 = 0dB  
0x01 = ꢀ1dB  
DRC_KNEE1_  
IP_ADC  
0x1E = -30dB  
0x1F = -31dB  
NAU88L21 Datasheet Rev1.7  
Page 53 of 69  
Feb, 2020  
Bit  
R
E
G
Function  
Name  
Description  
1
5
0
1
4
0
1
3
0
1
2
1
1
1
0
1
0
1
9
0
8
7
1
6
0
5
0
4
0
3
0
2
1
1
1
0
0
Default  
0
0x1486  
ADC DRC Knee point 4 setting, increments in  
-1dB steps  
0x00 = -35dB  
0x01 = -36dB  
DRC_KNEE4_  
IP_ADC  
0x3E = -97dB  
0x3F = -98dB  
ADC DRC Knee point 3 setting, increments in  
-1dB steps  
0x00 = -18dB  
0x01 = -19dB  
ADC_DRC  
_KNEE_IP  
34  
3
7
DRC_KNEE3_  
IP_ADC  
0x3E = -80dB  
0x3F = -81dB  
0x0F12  
Default  
0
0
0
0
1
1
1
1
0
0
0
1
0
0
1
0
ADC DRC Noise Gate Slope  
DRC_NG_SLP  
_ADC  
00 = 1:1  
01 = 2:1  
11 = 8:1  
10 = 4:1 (default)  
ADC DRC Expansion Slope  
DRC_EXP_SL  
P_ADC  
00 = 1:1  
01 = 2:1  
11 = Reserved  
10 = 4:1 (default)  
ADC DRC Compressor Slope (lower region)  
000 = 0  
010 = 1:4  
100 = 1:16  
111 = 1 (default)  
001 = 1:2  
011 = 1:8  
101-110 = Reserved  
DRC_CMP2_S  
LP_ADC  
3
8
ADC_DRC  
_SLOPES  
ADC DRC Compressor Slope (higher region)  
000 = 0  
010 = 1:4  
100 = 1:16  
111 = 1 (default)  
ADC DRC Limiter Slope  
000 = 0  
001 = 1:2  
011 = 1:8  
101-110 = Reserved  
DRC_CMP1_S  
LP_ADC  
001 = 1:2  
011 = 1:8  
101 = 1:32  
111 = 1 (default)  
DRC_LMT_SL  
P_ADC  
010 = 1:4  
100 = 1:16  
110 = 1:64  
0x25FF  
Default  
0
0
1
0
0
1
0
1
1
1
1
1
1
1
1
1
ADC DRC Peak detection attack time  
Ts = 1/SMPL_RATE  
0000 = Ts  
0001 = 3*Ts  
DRC_PK_COE  
F1_ADC  
0010 = 7*Ts  
0100 = 31*Ts  
0110 = 127*Ts  
1xxx reserved  
0011 = 15*Ts  
0101 = 63*Ts  
0111 = 255*Ts  
ADC DRC Peak detection release time  
Ts = 1/ SMPL_RATE  
0000 = 63*Ts  
0010 = 255*Ts  
0100 = 1023*Ts  
0110 = 4095*Ts  
1xxx reserved  
0001 = 127*Ts  
0011 = 511*Ts  
0101 = 2047*Ts  
0111 = 8191*Ts  
DRC_PK_COE  
F2_ADC  
ADC DRC Attack time  
Ts = 1 SMPL_RATE  
0000 = Ts  
3
9
ADC_DRC  
_ATKDCY  
0001 = 3*Ts  
0010 = 7*Ts  
0100 = 31*Ts  
0011 = 15*Ts  
0101 = 63*Ts  
0111 = 255*Ts  
1001 = 1023*Ts  
1011 = 4095*Ts  
DRC_ATK_AD  
C
0110 = 127*Ts  
1000 = 511*Ts  
1010 = 2047*Ts  
1100 = 8191*Ts  
ADC DRC Decay time  
Ts = 1/Error! Reference source not found.  
0000 = 63*Ts  
0010 = 255*Ts  
0100 = 1023*Ts  
0110 =4095*Ts  
1000 = 16383*Ts  
1010 = 65535*Ts  
0x3457  
0001 = 127*Ts  
0011 = 511*Ts  
0101 = 2047*Ts  
0111 = 8191*Ts  
1001 = 32757*Ts  
DRC_DCY_AD  
C
Default  
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
1
3
A
DRC_ENA_DA  
C
DAC channel DRC enable  
1 = Enable. 0 = Disable  
NAU88L21 Datasheet Rev1.7  
Page 54 of 69  
Feb, 2020  
Bit  
R
E
G
Function  
Name  
Description  
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
DRC DAC Knee point 2 setting, increments in  
-1dB/step  
0x00 = 0dB  
0x01 = -1dB  
DRC_KNEE2_  
IP_DAC  
0x3E = -62dB  
0x3F = -63dB  
DRC_SMTH_E  
NA_DAC  
DRC DAC Smooth filter enable  
1 = Enable. 0 = Disable  
DRC DAC Knee point 1 setting, increments in  
-1dB steps  
DAC_DRC  
_KNEE_IP  
12  
0x00 = 0dB  
0x01 = -1dB  
DRC_KNEE1_  
IP_DAC  
0x1E = -30dB  
0x1F = -31dB  
Default  
0
0
0
1
0
1
0
0
1
0
0
0
0
1
1
0
0x1486  
DRC DAC Knee point 4 setting, increments in  
-1dB steps  
0x00 = -35dB  
0x01 = -36dB  
DRC_KNEE4_  
IP_DAC  
0x3E = -97dB  
0x3F = -98dB  
DRC DAC Knee point 3 setting, increments in  
-1dB steps  
0x00 = -18dB  
0x01 = -19dB  
DAC_DRC  
_KNEE_IP  
34  
3
B
DRC_KNEE3_  
IP_DAC  
0x3E = -80dB  
0x3F = -ꢀ1dB  
0x0F12  
Default  
0
0
0
0
1
1
1
1
0
0
0
1
0
0
1
0
DAC Noise Gate Slope  
00 =ꢀ1:1  
10 = 4:1 (default)  
DRC_NG_SLP  
_DAC  
01 = 2:1  
11 = 8:1  
DAC DRC Expansion Slope  
DRC_EXP_SL  
P_DAC  
00 = 1:1  
01 = 2:1  
11 = 8:1  
10 = 4:1 (default)  
DAC Compressor Slope (lower region)  
000 = 0  
010 = 1:4  
100 = 1:16  
111 = 1 (default)  
001 = 1:2  
011 = 1:8  
101-110 = Reserved  
DRC_CMP2_S  
LP_DAC  
3
C
DAC_DRC  
_SLOPES  
DAC Compressor Slope (higher region)  
000 = 0  
010 = 1:4  
100 = 1:16  
111 = 1 (default)  
DAC Limiter Slope  
000 = 0  
001 = 1:2  
011 = 1:8  
101-110 = Reserved  
DRC_CMP1_S  
LP_DAC  
001 = 1:2 (default)  
011 = 1:8  
101 = 1:32  
111 = 1  
DRC_LMT_SL  
P_DAC  
010 = 1:4  
100 = 1:16  
110 = 1:64  
0x25F9  
Default  
0
0
1
0
0
1
0
1
1
1
1
1
1
0
0
1
DAC Peak detection attack time  
Ts = 1/ SMPL_RATE  
0000 = Ts  
0001 = 3*Ts  
DRC_PK_COE  
F1_DAC  
0010 = 7*Ts  
0100 = 31*Ts  
0110 = 127*Ts  
1xxx reserved  
0011 = 15*Ts  
0101 = 63*Ts  
0111 = 255*Ts  
3
D
DAC_DRC  
_ATKDCY  
DAC Peak detection release time  
Ts = 1/ SMPL_RATE  
0000 = 63*Ts  
0001 = 127*Ts  
DRC_PK_COE  
F2_DAC  
0010 = 255*Ts  
0100 = 1023*Ts  
0110 = 4095*Ts  
1xxx reserved  
0011 = 511*Ts  
0101 = 2047*Ts  
0111 = 8191*Ts  
NAU88L21 Datasheet Rev1.7  
Page 55 of 69  
Feb, 2020  
Bit  
R
E
G
Function  
Name  
Description  
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
DAC Attack time  
Ts = 1/ SMPL_RATE  
0000 = Ts  
0001 = 3*Ts  
0010 = 7*Ts  
0100 = 31*Ts  
0110 = 127*Ts  
1000 = 511*Ts  
1010 = 2047*Ts  
1100 = 8191*Ts  
0011 = 15*Ts  
0101 = 63*Ts  
0111 = 255*Ts  
1001 = 1023*Ts  
1011 = 4095*Ts  
DRC_ATK_DA  
C
DAC Decay time  
Ts = 1/ SMPL_RATE  
0000 = 63*Ts  
0001 = 127*Ts  
0011 = 511*Ts  
0101 = 2047*Ts  
0111 = 8191*Ts  
1001 =32757*Ts  
DRC_DCY_DA  
C
0010 = 255*Ts  
0100 = 1023*Ts  
0110 = 4095*Ts  
1000 = 16383*Ts  
1010 = 65535*Ts  
Default  
BIQ1_A1_L  
Default  
0
0
0
0
1
0
1
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
1
0
1
0
0x3457  
Program DAC BIQ_A1 parameter Bit[15:0]  
4
1
BIQ1_  
COF1  
0x0000  
BIQ1_A1_H  
Program DAC BIQ_A1 parameter Bit[18:16]  
4
2
BIQ1_  
COF2  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x0000  
BIQ1_A2_L  
Program DAC BIQ_A2 parameter Bit[15:0]  
4
3
BIQ1_  
COF3  
Default  
0x0000  
BIQ1_A2_H  
Program DAC BIQ_A2 parameter Bit[18:16]  
4
4
BIQ1_CO  
F4  
Default  
0x0000  
BIQ1_B0_L  
Program DAC BIQ_B0 parameter Bit[15:0]  
4
5
BIQ1_  
COF5  
Default  
0x0000  
BIQ1_B0_H  
Program DAC BIQ_B0 parameter Bit[18:16]  
4
6
BIQ1_  
COF6  
Default  
0x0000  
BIQ1_B1_L  
Program DAC BIQ_B1 parameter Bit[15:0]  
4
7
BIQ1_  
COF7  
Default  
0x0000  
BIQ1_B1_H  
Program DAC BIQ_B1 parameter Bit[18:16]  
4
8
BIQ1_CO  
F8  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x0000  
BIQ1_B2_L  
Program DAC BIQ_B2 parameter Bit[15:0]  
4
9
BIQ1_  
COF9  
Default  
0x0000  
BIQ DAC Path Enable  
1 : Enable  
0 : Disable  
BIQ1_EN  
4
A
BIQ1_CO  
F10  
BIQ1_B2_H  
Program DAC BIQ_B2 parameter Bit[18:16]  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x0000  
NAU88L21 Datasheet Rev1.7  
Page 56 of 69  
Feb, 2020  
Bit  
R
E
G
Function  
Name  
Description  
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
Class G function clock divider  
CLASSG_CLK  
_SRC  
00 = Clock 2Mhz  
10 = MCLK  
01 = 1/3 MCLK  
11 = Disable CLK  
Define the number of milliseconds when a Class G  
mode signal to go low after it has been below the  
threshold  
CLASSG_TIM  
ER  
000001 = 1ms  
000100 = 8ms  
010000 = 32ms  
000010 = 2ms  
001000 = 16ms  
100000 = 64ms  
Threshold for DAC signal level comparison to  
generate the Class G mode signal  
4
B
CLASSG_  
CTRL  
CLASSG_THR  
SLD  
00 = 1/16 Full  
Scale  
01 = 1/8 Full Scale  
10 = 3/16 Full  
Scale  
11 = 1/4 Full Scale  
Class G Compare path Enable bit. Each Bit enables  
according DAC path  
Bit 0 = Left DAC  
CLASSG_CM  
P_EN  
Bit 1 = Right DAC  
Class G function enable  
1 = Enable  
CLASSG_EN  
0 = Disable  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x0000  
Reserved  
Reserved to zero  
Impedance measurement threshold to avoid false  
detection. Each increase raises the floor of the ADC  
requiring higher signal levels before activation.  
0x00 = [23:0] Full  
Range  
0x01 = [23:1]  
IMM_THRESH  
OLD  
0x14 = [23:20]  
0x15 = [23:21]  
Signal level of the 23Hz sine wave generation  
for impedance measurement.  
IMM_GEN_VO  
L
00 = 1/2 Full Scale  
10 = 1/8 Full Scale  
01 = 1/4 Full Scale  
11 = 1/16 Full Scale  
4
C
IMM_MOD  
E_CTRL  
Number of MCLK used to calculate  
the impedance  
IMM_CYCLE_  
CNT  
00 = 1024  
10 = 4096  
01 = 2048  
11 = 8192  
Impedance measurement mode enable  
1 = Enable. 0 = Disable  
IMM_MODE  
DAC Filter Input Source Selection  
IMM_MODE Enabled, from Built-in Sin Generator  
00: from DRC DAC Output  
01: from DAC Mixer Output  
10: from u/A-law decode output  
11: 0  
DACIN_SRC  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x0000  
Left Headset speaker Impedance readout. It is  
recommended to characterize this before use with  
known Impedance values  
4
D
IMM_RMS  
_L  
Default  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Read Only  
OTPDOUT_L  
OTP read out data Low 16 bits  
5
3
OTPDOU  
T_1  
Default  
Read Only  
OTPDOUT_H  
OTP read out data High two bits  
5
4
OTPDOU  
T_2  
Default  
Read Only  
3-wire Mode Control  
1 = Enable  
0 = Disable  
Ram Test Control  
1 = Enable  
SPI 3-WIRE  
ENA  
5
5
MISC_CT  
RL  
RAM_TEST_S  
TART  
NAU88L21 Datasheet Rev1.7  
Page 57 of 69  
Feb, 2020  
Bit  
R
E
G
Function  
Name  
Description  
1
5
1
4
1
3
1
2
1
1
1
0
9
0
8
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
0 = Disable  
1: Use DAC Left Filter Input as ADC decimation filter  
output  
0x0000  
D2A_LOOP  
Default  
0
0
0
0
0
0
0
I2C_DEVICE_I  
D[6:1]  
I2C Device ID read in  
MICDET  
KEYDET  
MICDETECT Status Bit  
Key Detect Status Bit  
5
8
I2C_DEVI  
CE_ID  
Silicon  
Silicon revision bits  
Revision ID  
Software ID  
Default  
Software ID 00=NAU88L21  
Read Only  
X
0
0
1
1
0
1
X
0
0
1
0
0
0
0
0
RATM_TEST_  
FINISH  
RAM_TEST_F  
AIL  
1 = Test is finished  
0 = Test is not complete  
1 = Test is failed  
0 = Test is passed  
Analog mute enable  
1 = Enable  
SARDOU  
T_RAM_S  
TATUS  
5
9
ANALOG_MU  
TE  
0 = Disable  
Default  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Read Only  
Enable Headphone Impedance  
Test/ IMM_MODE  
1 = Enable  
TESTRL  
0 = Disable  
Mute Left PGA  
1 = Enable  
0 = Disable  
Mute Right PGA  
1 = Enable  
MUTEL  
MUTER  
0 = Disable  
TESTDAC  
Reserved  
DAC Right, Left Test only  
Reserved to 0  
VMID enable  
1 = Enable  
0 = Disable  
6
6
BIAS_ADJ  
VMIDEN  
VMID tie-off selection options  
00 = Open  
(default)  
01 = 25k Ohm  
VMIDSEL  
10 = 125k Ohm  
11 = 2.5k Ohm  
Reserved  
Reserved  
PGA Master bias current power options  
00 = normal operation (default)  
01 = 9% reduced bias current from default  
10 = 17% reduced bias current from default  
11 = 11% increased bias current from default  
0x0000  
BIASADJ  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TESTDACIN  
DAC Test signal;‘00’ & ‘11’=gnd;‘01’,‘10’ high and low  
GPIO3JD2 Pull Up select; ‘0’=1MOhm, ‘1’=100kOhm  
Pullup_GPIO3  
GPIO3 JKDET2 Threshold Low select  
00 = 0.22 x VDDA  
10 = 0.40 x VDDA  
GPIO3THL[1:0  
]
11 = 0.5 x VDDA  
GPIO3 JKDET2 Threshold High select  
00 = 0.85 x VDDA  
ANALOG_  
CONTRO  
L_1  
6
9
GPIO3THH[1:0  
]
10 = 0.78 x VDDA  
11 = 0.6 x VDDA  
Pullup_GPIO2  
GPIO2JD1 Pull Up select; ‘0’=1MOhm, ‘1’=100kOhm  
GPIO2 JKDET1 Threshold Low select  
00 = 0.22 x VDDA  
10 = 0.40 x VDDA  
GPIO2THL[1:0  
]
11 = 0.5 x VDDA  
NAU88L21 Datasheet Rev1.7  
Page 58 of 69  
Feb, 2020  
Bit  
R
E
G
Function  
Name  
Description  
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
GPIO2 JKDET1 Threshold High select  
00 = 0.85 x VDDA  
10 = 0.78 x VDDA  
GPIO2THH[1:0  
]
11 = 0.6 x VDDA  
Reserved  
JD1POL  
JKDETL JD1 Polarity; ‘0’=default, ‘1’=inverted  
JKDETL Output Polarity; ‘0’=default, ‘1’=inverted  
JKDETLPOL  
ENJKDETL  
Enable Jack Tip insertion detection circuit  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x0000  
Headphone driver Class AB bias current adjust  
ANALOG_CO  
NTROL2  
in non-Class-G mode  
0 = Default  
1 = 2x  
Headphone driver bias current adjust in  
ANALOG_CO  
NTROL2  
class-G mode  
0 = Default  
1 = 0.5x  
Headphone driver bias current adjust in  
ANALOG_CO  
NTROL2  
non-Class-G mode  
0 = Default  
1 = 2.5x  
Headphone Out Boost Driver Bias current  
ANALOG_CO  
NTROL2  
adjust2 in Class-G mode  
0 = Default  
1 = Low  
Headphone Out Boost Driver Bias current adjust1 in  
ANALOG_CO  
NTROL2  
Class-G mode  
0 = Default  
1 = Low  
ANALOG_  
CONTRO  
L_2  
6
A
Headphone Driver Class-AB adjust; ‘0’=default, ‘1’ is  
increased bias  
AB_ADJ  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CAP[1]  
DAC Reference Decoupling Capacitor enable msb  
CAP[0]  
DAC Reference Decoupling Capacitor enable lsb  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x0000  
MUTENL  
MUTENR  
MUTEPL  
MUTEPR  
MUTE MICLN Input to PGA when set to ‘1’  
MUTE MICRN Input to PGA when set to ‘1’  
MUTE MICLP Input to PGA when set to ‘1’  
MUTE MICRP Input to PGA when set to ‘1’  
Reserved ‘0’  
6
B
TEST_ANALO  
G
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0x0000  
Reserved  
7
1
ANALOG_  
ADC_1  
0 = power on mic detection  
1 = power down mic detect  
0x0011  
pdmicdet  
Default  
Reserved  
Reserved  
7
2
ANALOG_  
ADC_2  
NAU88L21 Datasheet Rev1.7  
Page 59 of 69  
Feb, 2020  
Bit  
R
E
G
Function  
Name  
Description  
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
Left channel PGA bias current increase enable for  
driving the ADC at high sample rates  
1 = Enable  
ADC_UPL  
ADC_UPR  
0 = Disable  
Right channel PGA bias current increase enable for  
driving the ADC at high sample rates  
1 = Enable  
0 = Disable  
Change bias currents in ADC  
BIAS  
00 = Nominal  
10 = Half  
01 = Double  
11 = Quarter  
VREF select in ADC  
00 = Analog  
supply  
01 = VMID  
VREFSEL  
10 = VMID +  
0.5dB  
11 = VMID + 1dB  
Reserved  
PDNOTL  
PDNOTR  
Default  
Reserved ‘0’  
1 = Power on signal left ADC  
1 = Power on signal right ADC  
0x0020  
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
DAC enable  
Bit 1 = Right DAC  
Bit 0 = Left DAC  
1 = Enable  
DAC_EN  
0 = Disable  
DAC CLOCK enable  
Bit 1 = Right DAC  
Bit 0 = Left DAC  
1 = Enable  
0 = Disable  
DAC Smoothing Filter on HS Output enable  
1 = Enable  
CLK_DAC_EN  
FC_CTR  
7
3
RDAC  
0 = Disable  
CLK_DAC_DE  
LAY  
DAC clock delay setting  
DAC Reference voltage setting  
(default:1.6V)  
DACVREFSEL  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0x0008  
MICBIAS1 internal 2k Ohm resistor for MCGND2  
enable  
1 = Enable  
0 = Disable  
INT2KA  
0 = Low power mode  
1 = Low noise mode  
0 = Power down MICBIAS1  
1 = Power on MICBIAS1  
Set output level for MICBIAS1  
LOWNOISE  
POWERUP  
7
4
MIC_BIAS  
000 = VDDA  
010 = 1.1x  
100 = 1.3x  
110 = 1.53x  
0x0006  
001 = 1x  
MICBIASLVL1  
011 = 1.2x  
101 = 1.4x  
111 = 1.53x  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
CLR_APR_EM  
RGENCY_SH  
TDWN  
Clear Headset short circuit shut down IRQ  
1 = Reset (momentary)  
0 = Default  
PGA in class A mode of operation enable instead of  
class AB (default)  
1 = Enable  
STG2_SEL  
0 = Disable  
VMID Pre-charge disable  
1 = Disable  
0 = Enable  
Global Analog Bias enable  
7
6
BOOST  
PDVMDFST  
BIASEN  
1 = Enable  
0 = Disable  
Charges inputs selected by Error! Reference source  
not found.  
1 = Enable  
0 = Disable  
DISCHRG  
NAU88L21 Datasheet Rev1.7  
Page 60 of 69  
Feb, 2020  
Bit  
R
E
G
Function  
Name  
Description  
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
Bypass PGA current control enable  
1 = Enable  
0 = Disable  
BYPS_IBCTR  
BOOSTDIS  
Disable HP boost driver  
1 = Disable  
0 = Enable  
Disable HP boost driver in Class-G mode  
1 = Disable  
BOOSTGDIS  
0 = Enable  
Short Circuit Shut Down Digital Part Enable  
1 = Enable  
0 = Disable  
SHRT_SHTD  
WN_DIG_EN  
Enable Automatic Short-circuit Shutdown  
1:headset driver power down immediately when short  
detected. No interrupt will be generated.  
0&[8]=0: driver shut down after 16.3 usec debounce  
when short detected. interrupt generated and  
‘apr_emrgncy_shtdwn’ cleared if the interrupt  
cleared.  
EN_SHRT_SH  
TDWN  
0&[8]=1: same as 0&[8]=0, plus apr_emrgncy_shtdwn  
cleared 1630 usec after short removed, but interrupt  
remains to be cleared by the user  
Headset Short Circuit protection limit  
00= at 115mA at +FS(Default)  
11= 155mA at +FS  
HS_SHRT_TH  
RESHLD[1:0]  
Adjust HS boost p-driver bias current  
11 = Decrease current  
00 = Default  
PAMP_THRS  
HLD  
Adjust HS boost n-driver bias current  
11 = Decrease current  
00 = Default  
NAMP_THRS  
HLD  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x0000  
DC state control for Input pins. Action takes effect  
when DISCHRG=1  
ACDC_CTRL[0] charges MICP to VREF  
ACDC_CTRL[1] charges MICN to VREF  
1 = Enable  
ACDC_CTRL  
0 = Disable  
PGA Common mode Threshold lock adjust. It is  
recommended to leave this in default.  
CMLCK_ADJ  
Reserved  
Reserved  
Reserved  
Reserved  
Left PGA mode selection;  
MODE[0] = Anti-aliasing filter adjust  
MODE[1] = Disconnects MICP & MICN  
MODE[2] = No function  
MODE[3] = Shorts the inputs and terminates with  
12kOhm differentially  
7
7
FEPGA  
FEPGA_MOD  
EL  
1 = Enable  
0 = Disable  
Right PGA mode selection;  
MODE[0] = Anti-aliasing filter adjust  
MODE[1] = Disconnects MICP & MICN  
MODE[2] = No function  
MODE[3] = Shorts the inputs and terminates with  
12kOhm differentially  
FEPGA_MOD  
ER  
1 = Enable  
0 = Disable  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x0000  
Left PGA gain, increments in 1dB steps  
000000 = -1dB  
000001 = 0dB  
7
E
PGA_GAI  
N
PGA_GAIN_L  
100100 = 35dB  
100101 = 36dB  
NAU88L21 Datasheet Rev1.7  
Page 61 of 69  
Feb, 2020  
Bit  
R
E
G
Function  
Name  
Description  
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
Right PGA gain, increments in 1dB steps  
000000 = -1dB  
000001 = 0dB  
PGA_GAIN_R  
100100 = 35dB  
100101 = 36dB  
Default  
PUPGA  
PUPR  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x0000  
Power Up Left PGA  
1 = Enable  
0 = Disable  
Power Up Right PGA  
1 = Enable  
0 = Disable  
Power Up Output driver  
1 = Power up  
PUP_INTEG  
0 = Power down  
Bit 0 = Left HP driver  
Bit 1 = Right HP driver  
Power Up Output driver  
1 = Power up  
0 = Power down  
Bit 0 = Left HP driver  
Bit 1 = Right HP driver  
Power Up main driver  
1 = Power up  
POWER_  
UP_CONT  
ROL  
7
F
PUP_DRV_IN  
STG  
PUP_MAIN_D  
RV  
0 = Power down  
Bit 0 = Left HP driver  
Bit 1 = Right HP driver  
0x0000  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reserved  
Reserved  
BCLK IO Drive Strength  
1 = Stronger  
0 = Default  
FS IO Drive Strength  
1 = Stronger  
BCLK_DS  
FS_DS  
0 = Default  
ADCDAT IO Drive Strength  
1 = Stronger  
0 = Default  
SDA IO Drive Strength  
1 = Stronger  
ADCDAT_DS  
SDA_DS  
0 = Default  
JAMNODCLO  
W
Reserved  
DAC Right, Left Power Down Bar enable  
PDB_DAC  
11 = Enable  
00 = Disable  
CHARGE_  
PUMP_AN  
D_POWE  
R_DOWN  
_CONTR  
OL  
Register output forces the charge pump clock to not  
slow  
1 = Enable  
0 = Disable  
8
0
JAMFORCE2  
Register output forces the charge pump clock to not  
slow down  
1 = Enable  
JAMFORCE1  
0 = Disable  
Charge Pump enable  
1 = Enable  
RNIN  
0 = Disable  
VPOS Pre-charge enable for faster startup  
1 = Enable  
PRECHARGE  
0 = Disable  
VEE pad discharge enable  
1 = Enable  
0 = Disable  
DISCHARGEV  
EE  
VPOS pad discharge enable  
1 = Enable  
0 = Disable  
DISCHARGEV  
POS  
NAU88L21 Datasheet Rev1.7  
Page 62 of 69  
Feb, 2020  
Bit  
R
E
G
Function  
Name  
Description  
1
5
1
4
1
3
1
2
1
1
1
0
9
0
8
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Charge up current limit  
0 = Default low  
1 = High  
Charge up current limit  
0 = Default low  
1 = High  
SHCIRSEL2  
SHCIRSEL1  
Default  
0
0
0
0
0
0
0
0x0000  
APR_EMRGN  
CY_SHTDWN  
1
APR emergency short circuit shutdown IRQ  
MODE1BUF  
Monitors the MODE1 state of Charge Pump block  
Monitors if the charge pump is drawing DC current  
0 = Power drawn  
NODCBUF  
1 = No power drawn  
Monitors charge pump enable status  
0 = OFF  
1 = ON  
Monitors the high voltage status of VPOS  
1 = Max output (OK)  
CHARGE_  
PUMP_IN  
PUT_REA  
D
RN2BUF  
VPOSOK  
8
1
0 = Possible short circuit  
Monitors the low voltage and low current status of the  
charge pump  
VCOMPBUF  
0 = No current  
Monitors charge pump frequency status  
1 = Max frequency  
FORCE1BUF  
Default  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Read Only  
JK_EJECT_IN  
TR  
JK_INSERT_I  
NTR  
JACK Ejection Interrupt  
JACK Insertion Interrupt  
8
2
GENERAL  
_STATUS  
JKDET_ON  
JKDETL  
FUSEBNKOU  
T
Pre-debounce JACK status  
JKDETL  
Fuse Bank Select Output  
GPIO2_IN  
GPIO1_IN  
Default  
GPIO2 Input  
GPIO1 Input  
Read Only  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
NAU88L21 Datasheet Rev1.7  
Page 63 of 69  
Feb, 2020  
11. Typical Application Diagram  
VDDA  
VDDMIC  
4u7 0u1  
4u7 0u1  
200 Ω  
OMTP  
1n  
1n  
MICDET  
MICBIAS  
FS  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
BCLK  
MCLK  
VDDC  
VDDMIC  
MIC  
4u7  
VREF  
*200R  
QFN 32-pin  
HPR  
*2kΩ  
VSSA  
10kΩ  
VSSD  
VDDB  
4k7 Ω  
VDDA  
CPOUTP  
VSSCP  
*10u  
1 n  
HPL  
SCLK  
SDIO  
10nF  
10nF  
2u2  
33R  
Zobel  
Network  
Zobel  
Network  
33R  
VDDB  
VDDC  
4u7 0u1  
4u7 0u1  
2u2  
2u2  
Note: * indicates optional components for improved noise reduction (refer to section 3.5)  
NAU88L21 Datasheet Rev1.7  
Page 64 of 69  
Feb, 2020  
 
12.Package Information  
32-lead plastic QFN 32L; 5X5mm2, 0.8mm thickness, 0.5mm lead pitch  
(Saw Type) EP SIZE 3.5X3.5 mm  
32  
25  
1
24  
8
17  
16  
9
32  
25  
24  
1
17  
8
16  
9
NAU88L21 Datasheet Rev1.7  
Page 65 of 69  
Feb, 2020  
 
32-lead plastic QFN 32L; 4X4mm2, 0.8mm(Max) thickness, 0.4mm lead pitch  
(Saw Type) EP SIZE 3.5X3.5 mm  
NAU88L21 Datasheet Rev1.7  
Page 66 of 69  
Feb, 2020  
13.Ordering Information  
Part Number  
Dimension  
Package  
Package  
Material  
Green  
NAU88L21YG  
NAU88L21IG  
5x5 mm  
4x4 mm  
QFN-32  
QFN-32  
Green  
NAU88L21 _ _  
Package Material:  
Pb-free Package  
G
=
Package Type:  
Y
I
=
=
32-Pin QFN Package  
32-Pin QFN Package  
NAU88L21 Datasheet Rev1.7  
Page 67 of 69  
Feb, 2020  
 
Revision History  
Version  
Date  
February 18, 2019  
DESCRIPTION  
Page(s)  
All  
#
1.0  
1.1  
1.2  
1.3  
1.4  
initial version  
March 8, 2019  
Front page  
Add Cap-free and internal Resistor in MICBIAS  
Add Zebol Network in Application circuit.  
Added RC for MICDET – noise coupling.  
June, 12, 2019  
64  
15  
September, 22, 2019  
October, 17, 2019  
34  
Modified Figure 34:2-Wire Read Sequence.  
Add QFN4x4mm2 IC package  
1.5  
November, 8, 2019  
66, 67  
1.6  
1.7  
January 17, 2020  
Febuary 24, 2020  
30,31  
Enhance FLL application note  
Changed VDDC to VDDA  
2,5,6,7,9,64  
NAU88L21 Datasheet Rev1.7  
Page 68 of 69  
Feb, 2020  
 
Important Notice  
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which  
may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, “Insecure Usage”.  
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments,  
airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use,  
traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.  
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to Nuvoton as a result of  
customer’s Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.  
NAU88L21 Datasheet Rev1.7  
Page 69 of 69  
Feb, 2020  
 

相关型号:

NAU88L21YG

Ultra-Low Power Audio CODEC Ground-Referenced Headphone Amplifier
NUVOTON

NAU88L25

Ultra-Low Power Audio CODEC for Headphone/Headsets Application With 124dB Class G Headphone Drive and Advanced Headset Features
NUVOTON

NAU88L25B

Ultra-Low Power Audio CODEC for Headphone/Headsets Application With 124dB Class G Headphone Drive and Advanced Headset Features
NUVOTON

NAU88L25VGB

Ultra-Low Power Audio CODEC for Headphone/Headsets Application With 124dB Class G Headphone Drive and Advanced Headset Features
NUVOTON

NAU88L25YG

Ultra-Low Power Audio CODEC for Headphone/Headsets Application With 124dB Class G Headphone Drive and Advanced Headset Features
NUVOTON

NAU88L25YGB

Ultra-Low Power Audio CODEC for Headphone/Headsets Application With 124dB Class G Headphone Drive and Advanced Headset Features
NUVOTON

NAVZ220M50V6.3X8.7LBF

Surface Mount Aluminum Electrolytic Capacitors
NIC

NAVZ220M50V63X87LBF

Surface Mount Aluminum Electrolytic Capacitors
NIC

NAVZ330M50V8X10.5LBF

Surface Mount Aluminum Electrolytic Capacitors
NIC

NAVZ330M50V8X105LBF

Surface Mount Aluminum Electrolytic Capacitors
NIC

NAWE

Surface Mount Aluminum Electrolytic Capacitors
NIC

NAWE100M16V4X5.5NBF

Surface Mount Aluminum Electrolytic Capacitors
NIC