W78E516D [NUVOTON]

8-BIT MICROCONTROLLER;
W78E516D
型号: W78E516D
厂家: NUVOTON    NUVOTON
描述:

8-BIT MICROCONTROLLER

文件: 总90页 (文件大小:857K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W78E516D/W78E058D Data Sheet  
8-BIT MICROCONTROLLER  
Table of Contents-  
1
2
3
GENERAL DESCRIPTION ......................................................................................................... 4  
FEATURES................................................................................................................................. 5  
PARTS INFORMATION LIST ..................................................................................................... 6  
3.1  
Lead Free (RoHS) Parts information list......................................................................... 6  
4
5
6
7
PIN CONFIGURATIONS............................................................................................................. 7  
PIN DESCRIPTIONS .................................................................................................................. 9  
BLOCK DIAGRAM .................................................................................................................... 10  
FUNCTIONAL DESCRIPTION.................................................................................................. 11  
7.1  
7.2  
7.3  
7.4  
On-Chip Flash EPROM ................................................................................................ 11  
I/O Ports........................................................................................................................ 11  
Serial I/O....................................................................................................................... 11  
Timers........................................................................................................................... 11  
7.4.1 Clock ..............................................................................................................................12  
Interrupts....................................................................................................................... 12  
Data Pointers ................................................................................................................ 12  
Architecture................................................................................................................... 12  
7.7.1 ALU ................................................................................................................................12  
7.7.2 Accumulator ...................................................................................................................12  
7.7.3 B Register.......................................................................................................................12  
7.7.4 Program Status Word.....................................................................................................12  
7.7.5 Stack Pointer..................................................................................................................13  
7.7.6 Scratch-pad RAM ...........................................................................................................13  
7.7.7 AUX-RAM.......................................................................................................................13  
7.5  
7.6  
7.7  
8
9
MEMORY ORGANIZATION...................................................................................................... 14  
8.1  
8.2  
Program Memory (on-chip Flash)................................................................................. 14  
Scratch-pad RAM and Register Map............................................................................ 14  
8.2.1 Working Registers ..........................................................................................................16  
8.2.2 Bit addressable Locations ..............................................................................................16  
8.2.3 Stack ..............................................................................................................................16  
8.2.4 AUX-RAM.......................................................................................................................16  
SPECIAL FUNCTION REGISTERS ......................................................................................... 17  
9.1 SFR Detail Bit Descriptions .......................................................................................... 19  
10  
11  
12  
INSTRUCTION.......................................................................................................................... 37  
INSTRUCTION TIMING............................................................................................................ 45  
POWER MANAGEMENT.......................................................................................................... 46  
12.1 Idle Mode ...................................................................................................................... 46  
12.2 Power Down Mode ....................................................................................................... 46  
RESET CONDITIONS............................................................................................................... 47  
13  
Publication Release Date: Feb 15, 2011  
- 1 -  
Revision A09  
W78E516D/W78E058D Data Sheet  
13.1 Sources of reset............................................................................................................ 47  
13.1.1 External Reset..............................................................................................................47  
13.1.2 Watchdog Timer Reset.................................................................................................47  
13.1.3 Software Reset.............................................................................................................47  
13.1.4 RESET STATE.............................................................................................................47  
13.2 Interrupt Sources .......................................................................................................... 48  
13.3 Priority Level Structure ................................................................................................. 48  
13.4 Interrupt Response Time .............................................................................................. 50  
13.5 Interrupt Inputs.............................................................................................................. 50  
14  
PROGRAMMABLE TIMERS/COUNTERS ............................................................................... 52  
14.1 Timer/Counters 0 & 1.................................................................................................... 52  
14.2 Time-Base Selection..................................................................................................... 52  
14.2.1 Mode 0 .........................................................................................................................52  
14.2.2 Mode 1 .........................................................................................................................52  
14.2.3 Mode 2 .........................................................................................................................53  
14.2.4 Mode 3 .........................................................................................................................54  
14.3 Timer/Counter 2............................................................................................................ 54  
14.3.1 Capture Mode...............................................................................................................54  
14.3.2 Auto-Reload Mode, Counting up ..................................................................................55  
14.3.3 Baud Rate Generator Mode .........................................................................................56  
WATCHDOG TIMER................................................................................................................. 57  
15  
16  
SERIAL PORT .......................................................................................................................... 59  
16.1 MODE 0 ........................................................................................................................ 59  
16.2 MODE 1 ........................................................................................................................ 60  
16.3 MODE 2 ........................................................................................................................ 61  
F04KBOOT MODE (BOOT FROM 4K BYTES OF LDROM )................................................... 65  
ISP(IN-SYSTEM PROGRAMMING) ......................................................................................... 67  
CONFIG BITS ........................................................................................................................... 70  
TYPICAL APPLICATION CIRCUITS ........................................................................................ 72  
ELECTRICAL CHARACTERISTICS......................................................................................... 73  
17  
18  
19  
20  
21  
21.1 Absolute Maximum Ratings.......................................................................................... 73  
21.2 D.C. ELECTRICAL CHARACTERISTICS .................................................................... 74  
21.3 AC CHARACTERISTICS.............................................................................................. 75  
21.4 TIMING waveforms....................................................................................................... 77  
21.4.1 Program Fetch Cycle....................................................................................................77  
21.4.2 Data Read Cycle ..........................................................................................................78  
21.4.3 Data Write Cycle...........................................................................................................78  
21.4.4 Port Access Cycle ........................................................................................................79  
21.4.5 Reset Pin Access Cycle ...............................................................................................79  
PACKAGE DIMENSIONS......................................................................................................... 80  
22  
22.1 40-pin DIP..................................................................................................................... 80  
22.2 44-pin PLCC ................................................................................................................. 81  
22.3 44-pin PQFP ................................................................................................................. 82  
- 2 -  
W78E516D/W78E058D Data Sheet  
22.4 48-pin LQFP.................................................................................................................. 83  
REVISION HISTORY................................................................................................................ 89  
23  
Publication Release Date: Feb 15, 2011  
- 3 -  
Revision A09  
W78E516D/W78E058D Data Sheet  
1
GENERAL DESCRIPTION  
The W78E516D/W78E058D series is an 8-bit microcontroller which has an in-system programmable  
Flash EPROM for on-chip firmware updating.  
The instruction sets of the W78E516D/W78E058D are fully compatible with the standard 8052. The  
W78E516D/W78E058D series contains a 64K/32K bytes of main Flash EPROM and a 4K bytes of  
auxiliary Flash EPROM which allows the contents of the 64K/32K bytes main Flash EPROM to be up-  
dated by the loader program located in the 4K bytes Flash EPROM; a 256 bytes of SRAM; 256 bytes  
of AUXRAM; four 8-bit bi-directional and bit-addressable I/O ports; an additional 4-bit port P4; three  
16-bit timer/counters; a serial port. These peripherals are supported by an 8 sources 2-level interrupt  
capability. To facilitate programming and verification, the Flash EPROM inside the  
W78E516D/W78E058D series allows the program memory to be programmed and read electronically.  
Once the code is confirmed, the user can protect the code for security.  
The W78E516D/W78E058D series microcontroller has two power reduction modes, idle mode and  
power-down mode, both of which are software selectable. The idle mode turns off the processor clock  
but allows for continued peripheral operation. The power-down mode stops the crystal oscillator for  
minimum power consumption. The external clock can be stopped at any time and in any state without  
affecting the processor.  
- 4 -  
 
 
W78E516D/W78E058D Data Sheet  
2
FEATURES  
Fully static design 8-bit CMOS microcontroller  
Optional 12T or 6T mode  
„
„
12T Mode, 12 clocks per machine cycle operation (default), Speed up to 40 MHz/5V  
6T Mode, 6 clocks per machine cycle operation set by the writer, Speed up to 20 MHz/5V  
Wide supply voltage of 2.4 to 5.5V  
Temperature grade is (-40oC~85oC)  
64K/32K bytes of in-system programmable FLASH EPROM for Application Program (APROM)  
4K bytes of auxiliary FLASH EPROM for Loader Program (LDROM)  
Low standby current at full supply voltage  
512 bytes of on-chip RAM. (include 256 bytes of AUX-RAM, software selectable)  
64K bytes program memory address space and 64K bytes data memory address space  
One 4-bit multipurpose programmable port, additional INT2 /INT3  
Support Watch Dog Timer  
Three 16-bit timer/counters  
One full duplex serial port  
8-sources, 2-level interrupt capability  
Software Reset  
Built-in power management with idle mode and power down mode  
Code protection  
Packages:  
- Lead Free (RoHS) DIP 40:  
- Lead Free (RoHS) PLCC 44:  
- Lead Free (RoHS) PQFP 44:  
- Lead Free (RoHS) LQFP 48:  
- Lead Free (RoHS) DIP 40:  
- Lead Free (RoHS) PLCC 44:  
- Lead Free (RoHS) PQFP 44:  
- Lead Free (RoHS) LQFP 48:  
W78E516DDG  
W78E516DPG  
W78E516DFG  
W78E516DLG  
W78E058DDG  
W78E058DPG  
W78E058DFG  
W78E058DLG  
Publication Release Date: Feb 15, 2011  
Revision A09  
- 5 -  
 
 
W78E516D/W78E058D Data Sheet  
3
PARTS INFORMATION LIST  
3.1 Lead Free (RoHS) Parts information list  
Table 3-1: Lead Free (RoHS) Parts information list  
APROM  
FLASH SIZE FLASH SIZE  
LDROM  
Temperature  
grade  
PART NO.  
RAM  
PACKAGE  
W78E516DDG  
W78E516DPG  
W78E516DFG  
W78E516DLG  
W78E058DDG  
W78E058DPG  
W78E058DFG  
W78E058DLG  
512 Bytes  
512 Bytes  
512 Bytes  
512 Bytes  
512 Bytes  
512 Bytes  
512 Bytes  
512 Bytes  
DIP-40 Pin  
PLCC-44 Pin  
PQFP-44 Pin  
LQFP-48 Pin  
DIP-40 Pin  
64K Bytes  
32K Bytes  
4K Bytes  
4K Bytes  
-40oC~85oC  
-40oC~85oC  
PLCC-44 Pin  
PQFP-44 Pin  
LQFP-48 Pin  
- 6 -  
 
 
 
W78E516D/W78E058D Data Sheet  
4
PIN CONFIGURATIONS  
Publication Release Date: Feb 15, 2011  
- 7 -  
Revision A09  
 
 
W78E516D/W78E058D Data Sheet  
1
33  
P1.5  
P1.6  
P0.4, AD4  
2
32  
P0.5, AD5  
3
31  
P1.7  
P0.6, AD6  
4
30  
RST  
P0.7, AD7  
5
29  
RXD, P3.0  
INT2, P4.3  
TXD, P3.1  
INT0, P3.2  
INT1, P3.3  
T0, P3.4  
T1, P3.5  
EA  
PQFP 44-pin  
6
28  
P4.1  
7
27  
ALE  
8
26  
PSEN  
9
25  
P2.7, A15  
10  
11  
24  
P2.6, A14  
23  
P2.5, A13  
1
2
3
4
5
6
7
8
9
36  
P1.5  
P1.6  
P1.7  
RST  
P3.0  
NC  
P0.4, AD4  
P0.5, AD5  
P0.6, AD6  
P0.7, AD7  
EA  
P4.1  
ALE  
35  
34  
33  
32  
31  
INT2, P4.3  
P3.1  
LQFP 48-pin  
30  
29  
28  
27  
26  
25  
INT0, P3.2  
INT1, P3.3  
T0, P3.4  
T1, P3.5  
NC  
PSEN  
10  
11  
12  
P2.7, A15  
P2.6, A14  
P2.5, A13  
- 8 -  
W78E516D/W78E058D Data Sheet  
5
PIN DESCRIPTIONS  
SYMBOL  
EA  
TYPE  
DESCRIPTIONS  
I
EXTERNAL ACCESS ENABLE: This pin forces the processor to execute the  
external ROM. The ROM address and data will not be present on the bus if the  
EA pin is high and the program counter is within the internal ROM area. Oth-  
erwise they will be present on the bus.  
O H  
O H  
PSEN  
ALE  
PROGRAM STORE ENABLE: PSEN enables the external ROM data in the  
Port 0 address/data bus.  
When internal ROM access is performed, no PSEN strobe signal outputs ori-  
ginate from this pin.  
ADDRESS LATCH ENABLE: ALE is used to enable the address latch that  
separates the address from the data on Port 0. ALE runs at 1/6th of the oscilla-  
tor frequency. An ALE pulse is omitted during external data memory accesses.  
RESET: A high on this pin for two machine cycles while the oscillator is run-  
ning resets the device.  
RST  
I L  
I
XTAL1  
CRYSTAL 1: This is the crystal oscillator input. This pin may be driven by an  
external clock.  
XTAL2  
VSS  
O
I
CRYSTAL 2: This is the crystal oscillator output. It is the inversion of XTAL1.  
GROUND: ground potential.  
VDD  
I
POWER SUPPLY: Supply voltage for operation.  
I/O D PORT 0: Port 0 is an open-drain bi-directional I/O port. This port also pro-  
vides a multiplexed low order address/data bus during accesses to external  
memory.  
P0.0P0.7  
I/O H  
PORT 1: Port 1 is a bi-directional I/O port with internal pull-ups. The bits have  
alternate functions which are described below:  
P1.0P1.7  
T2(P1.0): Timer/Counter 2 external count input  
T2EX(P1.1): Timer/Counter 2 Reload/Capture/Direction control  
I/O H PORT 2: Port 2 is a bi-directional I/O port with internal pull-ups. This port also  
P2.0P2.7  
P3.0P3.7  
provides the upper address bits for accesses to external memory.  
I/O H  
PORT 3: Port 3 is a bi-directional I/O port with internal pull-ups. All bits have  
alternate functions, which are described below:  
RXD(P3.0): Serial Port 0 input  
TXD(P3.1): Serial Port 0 output  
INT0 (P3.2) : External Interrupt 0  
INT1 (P3.3) : External Interrupt 1  
T0(P3.4) : Timer 0 External Input  
T1(P3.5) : Timer 1 External Input  
WR  
(P3.6) : External Data Memory Write Strobe  
RD  
(P3.7) : External Data Memory Read Strobe  
I/O H PORT 4: Another bit-addressable bidirectional I/O port P4. P4.3 and P4.2 are  
P4.0P4.3  
alternative function pins. It can be used as general I/O port or external interrupt  
input sources (INT2 /INT3 ).  
* Note : TYPE I: input, O: output, I/O: bi-directional, H: pull-high, L: pull-low, D: open drain  
Publication Release Date: Feb 15, 2011  
Revision A09  
- 9 -  
 
 
W78E516D/W78E058D Data Sheet  
6
BLOCK DIAGRAM  
Figure 6- 1 W78E516D/W78E058D Block Diagram  
- 10 -  
 
 
W78E516D/W78E058D Data Sheet  
7
FUNCTIONAL DESCRIPTION  
The W78E516D/W78E058D series architecture consists of a core controller surrounded by various  
registers, four general purpose I/O ports, one special purpose programmable 4-bits I/O port, 512 bytes  
of RAM, three timer/counters, a serial port. The processor supports 111 different op-codes and refer-  
ences both a 64K program address space and a 64 K data storage space.  
7.1 On-Chip Flash EPROM  
The W78E516D/W78E058D series includes one 64K/32K bytes of main FLASH EPROM for applica-  
tion program (APROM) and one 4K bytes of FLASH EPROM for loader program (LDROM) when op-  
erating the in-system programming feature. In normal operation, the microcontroller will execute the  
code from the 64K/32K bytes of main FLASH EPROM. By setting program registers, user can force  
microcontroller to switch to the programming mode which microcontroller will execute the code (loader  
program) from the 4K bytes of auxiliary FLASH EPROM, and this loader program is going to update  
the contents of the 64K/32K bytes of main FLASH EPROM. After reset, the microcontroller executes  
the new application program in the main FLASH EPROM. This in-system programming feature makes  
the job easy and efficient in which the application needs to update firmware frequently. In some appli-  
cations, the in-system programming feature make it possible that the end-user is able to easily update  
the system firmware by the them without opening the chassis.  
7.2 I/O Ports  
The W78E516D/W78E058D series has four 8-bit ports and one extra 4-bit port. Port 0 can be used as  
an Address/Data bus when external program is running or external memory/device is accessed by  
MOVC or MOVX instruction. In these cases, it has strong pull-ups and pull-downs, and does not need  
any external pull-ups. Otherwise it can be used as a general I/O port with open-drain circuit. Port 2 is  
used chiefly as the upper 8-bits of the Address bus when port 0 is used as an address/data bus. It also  
has strong pull-ups and pull-downs when it serves as an address bus. Port1 and 3 act as I/O ports  
with alternate functions. Port 4 is only available on PLCC/QFP/LQFP package type. It serves as a  
general purpose I/O port as Port 1 and Port 3. Another bit-addressable bidirectional I/O port P4. P4.3  
and P4.2 are alternative function pins. It can be used as general I/O port or external interrupt input  
sources (INT2 /INT3 ).  
7.3 Serial I/O  
The W78E516D/W78E058D series have one serial port that is functionally similar to the serial port of  
the original 8032 family. However the serial port on the W78E516D/W78E058D series can operate in  
different modes in order to obtain timing similarity as well.  
7.4 Timers  
Timers 0, 1, and 2 each consist of two 8-bit data registers. These are called TL0 and TH0 for Timer 0,  
TL1 and TH1 for Timer 1, and TL2 and TH2 for Timer 2. The TCON and TMOD registers provide con-  
trol functions for timers 0 and 1. The T2CON register provides control functions for Timer 2. RCAP2H  
and RCAP2L are used as reload/capture registers for Timer 2.  
The operations of Timer 0 and Timer 1 are the same as in the 8051 CPU. Timer 2 is a special feature  
of the W78E516D/W78E058D series: it is a 16-bit timer/counter that is configured and controlled by  
the T2CON register. Like Timers 0 and 1, Timer 2 can operate as either an external event counter or  
Publication Release Date: Feb 15, 2011  
- 11 -  
Revision A09  
 
 
 
 
 
 
W78E516D/W78E058D Data Sheet  
as an internal timer, depending on the setting of bit C/T2 in T2CON. Timer 2 has three operating mod-  
es: capture, auto-reload, and baud rate generator. The clock speed at capture or auto-reload mode is  
the same as that of Timers 0 and 1.  
7.4.1 Clock  
The W78E516D/W78E058D series are designed to be used with either a crystal oscillator or an ex-  
ternal clock. Internally, the clock is divided by two before it is used by default. This makes the  
W78E516D/W78E058D series relatively insensitive to duty cycle variations in the clock.  
7.5 Interrupts  
The Interrupt structure in the W78E516D/W78E058D series is slightly different from that of the stan-  
dard 8052. Due to the presence of additional features and peripherals, the number of interrupt sources  
and vectors has been increased. The W78E516D/W78E058D series provides 8 interrupt resources  
with two priority level, including four external interrupt sources, three timer interrupts, serial I/O inter-  
rupts.  
7.6 Data Pointers  
The data pointer of W78E516D/W78E058D series is same as standard 8052 that have one 16-bit Da-  
ta Pointer (DPTR).  
7.7 Architecture  
The W78E516D/W78E058D series are based on the standard 8052 device. It is built around an 8-bit  
ALU that uses internal registers for temporary storage and control of the peripheral devices. It can ex-  
ecute the standard 8052 instruction set.  
7.7.1 ALU  
The ALU is the heart of the W78E516D/W78E058D series. It is responsible for the arithmetic and logi-  
cal functions. It is also used in decision making, in case of jump instructions, and is also used in calcu-  
lating jump addresses. The user cannot directly use the ALU, but the Instruction Decoder reads the  
op-code, decodes it, and sequences the data through the ALU and its associated registers to generate  
the required result. The ALU mainly uses the ACC which is a special function register (SFR) on the  
chip. Another SFR, namely B register is also used Multiply and Divide instructions. The ALU generates  
several status signals which are stored in the Program Status Word register (PSW).  
7.7.2 Accumulator  
The Accumulator (ACC) is the primary register used in arithmetic, logical and data transfer operations  
in the W78E516D/W78E058D series. Since the Accumulator is directly accessible by the CPU, most  
of the high speed instructions make use of the ACC as one argument.  
7.7.3 B Register  
This is an 8-bit register that is used as the second argument in the MUL and DIV instructions. For all  
other instructions it can be used simply as a general purpose register.  
7.7.4 Program Status Word  
This is an 8-bit SFR that is used to store the status bits of the ALU. It holds the Carry flag, the Auxiliary  
Carry flag, General purpose flags, the Register Bank Select, the Overflow flag, and the Parity flag.  
- 12 -  
 
 
 
 
 
 
 
 
 
W78E516D/W78E058D Data Sheet  
7.7.5 Stack Pointer  
The W78E516D/W78E058D series has an 8-bit Stack Pointer which points to the top of the Stack.  
This stack resides in the Scratch Pad RAM in the W78E516D/W78E058D series. Hence the size of  
the stack is limited by the size of this RAM.  
7.7.6 Scratch-pad RAM  
The W78E516D/W78E058D series has a 256 bytes on-chip scratch-pad RAM. This can be used by  
the user for temporary storage during program execution. A certain section of this RAM is bit address-  
able, and can be directly addressed for this purpose.  
7.7.7 AUX-RAM  
AUX-RAM 0H~255H is addressed indirectly as the same way to access external data memory with the  
MOVX instruction. The data memory region is from 0000H to 00FFH. Memory MAP shows the mem-  
ory map for this product series. W78E516D/W78E058D series can read/write 256 bytes AUX RAM by  
the MOVX instruction.  
Publication Release Date: Feb 15, 2011  
- 13 -  
Revision A09  
 
 
 
 
W78E516D/W78E058D Data Sheet  
8
MEMORY ORGANIZATION  
The W78E516D/W78E058D series separate the memory into two separate sections, the Program  
Memory and the Data Memory. The Program Memory is used to store the instruction op-codes, while  
the Data Memory is used to store data or for memory mapped devices.  
FFFFH  
FFFFH  
FFH  
Indirect  
Addressing  
RAM  
SFRs Direct  
Addressing  
Only  
80H  
7FH  
Direct &  
Indirect  
Addressing  
RAM  
64K Bytes  
External  
Data  
64k  
Bytes  
On Chip  
AP Flash  
00H  
memory  
FFFH  
FFH  
00H  
256 byte On Chip  
AUX RAM  
4K byte On Chip  
LD ROM  
0000H  
0000H  
0000H  
Figure 8- 1 Memory Map  
8.1 Program Memory (on-chip Flash)  
The Program Memory on the W78E516D/W78E058D series can be up to 64K/32K bytes long. All in-  
structions are fetched for execution from this memory area. The MOVC instruction can also access  
this memory region.  
8.2 Scratch-pad RAM and Register Map  
As mentioned before the W78E516D/W78E058D series have separate Program and Data Memory  
areas. There are also several Special Function Registers (SFRs) which can be accessed by software.  
The SFRs can be accessed only by direct addressing, while the on-chip RAM can be accessed by  
either direct or indirect addressing.  
FFH  
SFR  
Indirect  
Direct  
RAM  
Addressing  
Addressing  
Only  
80H  
7FH  
Direct  
&
Indirect  
RAM  
Addressing  
00H  
256 bytes RAM and SFR Data Memory Space  
Figure 8- 2 W78E516D/W78E058D RAM and SFR Memory Map  
- 14 -  
 
 
 
 
W78E516D/W78E058D Data Sheet  
Since the scratch-pad RAM is only 256bytes it can be used only when data contents are small. There  
are several other special purpose areas within the scratch-pad RAM. These are illustrated in next fig-  
ure.  
FFH  
Indirect RAM  
80H  
7FH  
Direct RAM  
30H  
2FH 7F 7E 7D 7C 7B 7A 79  
2EH 77 76 75 74 73 72 71  
2DH 6F 6E 6D 6C 6B 6A 69  
2CH 67 66 65 64 63 62 61  
2BH 5F 5E 5D 5C 5B 5A 59  
2AH 57 56 55 54 53 52 51  
29H 4F 4E 4D 4C 4B 4A 49  
41  
78  
70  
68  
60  
58  
50  
48  
40  
38  
30  
28  
20  
18  
10  
08  
00  
28H 47  
46  
45  
44  
43  
42  
27H 3F 3E 3D 3C 3B 3A 39  
26H 34 33  
25H 2F 2E 2D 2C 2B 2A 29  
24H 27 26 25 24 23 22 21  
23H 1F 1E 1D 1C 1B 1A 19  
22H 17 16 15 14 13 12 11  
21H 0F 0E 0D 0C 0B 0A 09  
37  
36  
35  
32  
31  
20H 07  
1FH  
06  
05  
04  
03  
02  
01  
Bank 3  
18H  
17H  
Bank 2  
Bank 1  
Bank 0  
10H  
0FH  
08H  
07H  
00H  
Figure 8- 3 Scratch-pad RAM  
Publication Release Date: Feb 15, 2011  
Revision A09  
- 15 -  
W78E516D/W78E058D Data Sheet  
8.2.1 Working Registers  
There are four sets of working registers, each consisting of eight 8-bit registers. These are termed as  
Banks 0, 1, 2, and 3. Individual registers within these banks can be directly accessed by separate in-  
structions. These individual registers are named as R0, R1, R2, R3, R4, R5, R6 and R7. However, at  
one time the W78E516D/W78E058D series can work with only one particular bank. The bank selec-  
tion is done by setting RS1-RS0 bits in the PSW. The R0 and R1 registers are used to store the ad-  
dress for indirect accessing.  
8.2.2 Bit addressable Locations  
The Scratch-pad RAM area from location 20h to 2Fh is byte as well as bit addressable. This means  
that a bit in this area can be individually addressed. In addition some of the SFRs are also bit ad-  
dressable. The instruction decoder is able to distinguish a bit access from a byte access by the type of  
the instruction itself. In the SFR area, any existing SFR whose address ends in a 0 or 8 is bit address-  
able.  
8.2.3 Stack  
The scratch-pad RAM can be used for the stack. This area is selected by the Stack Pointer (SP),  
which stores the address of the top of the stack. Whenever a jump, call or interrupt is invoked the re-  
turn address is placed on the stack. There is no restriction as to where the stack can begin in the  
RAM. By default however, the Stack Pointer contains 07h at reset. The user can then change this to  
any value desired. The SP will point to the last used value. Therefore, the SP will be incremented and  
then address saved onto the stack. Conversely, while popping from the stack the contents will be read  
first, and then the SP is decreased.  
8.2.4 AUX-RAM  
AUX-RAM 0H~255H is addressed indirectly as the same way to access external data memory with the  
MOVX instruction. Address pointer are R0 and R1 of the selected register bank and DPTR register. A  
access to external data memory locations higher than 255 will be performed with the MOVX instruction  
in the same way as in the 8051. The AUX-RAM is disabled after power-on reset. Setting the bit 4 in  
CHPCON register will enable the access to AUX-RAM.  
- 16 -  
 
 
 
 
 
W78E516D/W78E058D Data Sheet  
9
SPECIAL FUNCTION REGISTERS  
The W78E516D/W78E058D series uses Special Function Registers (SFRs) to control and monitor  
peripherals and their Modes. The SFRs reside in the register locations 80-FFh and are accessed by  
direct addressing only. Some of the SFRs are bit addressable. This is very useful in cases where us-  
ers wish to modify a particular bit without changing the others. The SFRs that are bit addressable are  
those whose addresses end in 0 or 8. The W78E516D/W78E058D series contain all the SFRs present  
in the standard 8052. However some additional SFRs are added. In some cases the unused bits in the  
original 8052, have been given new functions. The list of the SFRs is as follows.  
W78E516D/W78E058D Special Function Registers (SFRs) and Reset Values  
F8  
F0  
E8  
E0  
D8  
D0  
FF  
F7  
EF  
E7  
DF  
D7  
CF  
C7  
BF  
B7  
AF  
A7  
9F  
97  
+B  
CHPENR  
+ACC  
+P4  
+PSW  
C8 +T2CON  
RCAP2L  
RCAP2H  
TL2  
TH2  
C0  
B8  
B0  
A8  
A0  
98  
90  
88  
80  
+XICON  
+IP  
P4CONA P4CONB  
SFRAL  
SFRAH  
SFRFD  
SFRCN  
CHPCON  
+P3  
P43AL  
P42AL  
P43AH  
P42AH  
+IE  
P2ECON  
+P2  
+SCON  
+P1  
SBUF  
P41AL  
TH0  
P41AH  
TH1  
+TCON  
+P0  
TMOD  
SP  
TL0  
TL1  
AUXR  
WDTC  
PCON  
8F  
87  
DPL  
DPH  
P40AL  
P40AH  
P0UPR  
Figure 9-1: Special Function Register Location Table  
Note: 1.The SFRs marked with a plus sign(+) are both byte- and bit-addressable.  
2. The text of SFR with bold type characters are extension function registers.  
Publication Release Date: Feb 15, 2011  
Revision A09  
- 17 -  
 
 
W78E516D/W78E058D Data Sheet  
Special Function Registers:  
SYMBOL  
CHPENR  
B
DEFINITION  
Chip enable register  
B register  
ADDRESS  
F6H  
MSB  
BIT ADDRESS, SYMBOL  
LSB  
RESET  
1111 0110B  
0000 0000B  
0000 0000B  
0000 1111B  
0000 0000B  
F0H  
(F7)  
(E7)  
(F6)  
(E6)  
(F5)  
(E5)  
(F4)  
(E4)  
(F3)  
(E3)  
P43  
(F2)  
(E2)  
P42  
(F1)  
(E1)  
P41  
(F0)  
(E0)  
P40  
ACC  
Accumulator  
Port 4  
E0H  
P4  
D8H  
PSW  
Program status word  
D0H  
(D7)  
CY  
(D6)  
AC  
(D5)  
F0  
(D4)  
RS1  
(D3)  
RS0  
(D2)  
OV  
(D1)  
F1  
(D0)  
P
TH2  
T2 reg. high  
CDH  
CCH  
CBH  
CAH  
C8H  
0000 0000B  
0000 0000B  
0000 0000B  
0000 0000B  
0000 0000B  
TL2  
T2 reg. low  
RCAP2H  
RCAP2L  
T2CON  
T2 capture low  
T2 capture high  
Timer 2 control  
(CF)  
TF2  
(CE)  
(CD)  
(CC)  
(CB)  
(CA)  
TR2  
(C9)  
(C8)  
EXF2  
RCLK  
TCLK  
EXEN2  
C/T2  
CP/RL2  
SFRCN  
SFRFD  
SFRAH  
SFRAL  
SFR for program control  
SFR for program data  
C7H  
C6H  
0000 0000B  
0000 0000B  
0000 0000B  
0000 0000B  
Port4 base address high register C5H  
Port4 base address low register  
Port 4 control B  
C4H  
C3H  
C2H  
C0H  
BFH  
P4CONB  
P4CONA  
XICON  
P43FUN1 P43FUN0 P43CMP1 P43COM0 P42FUN1 P42FUN0 P42CMP1 P42CMP2 0000 0000B  
P41UN1 P41FUN0 P41CMP1 P41COM0 P40FUN1 P40FUN0 P40CMP1 P40CMP2 0000 0000B  
Port 4 control A  
External interrupt control  
Chip Control  
PX3  
EX3  
IE3  
IT3  
PX2  
EX2  
IE2  
IT2  
0000 0000B  
SWRESET  
ENAUXRA  
M
FBOOTSL FPROGEN  
CHPCON  
XXX0  
0000B[1]  
IP  
Interrupt priority  
B8H  
(BF)  
-
(BE)  
-
(BD)  
PT2  
(BC)  
PS  
(BB)  
PT1  
(BA)  
PX1  
(B9)  
PT0  
(B8)  
PX0  
x000 0000B  
P43AH  
P43AL  
P3  
Port 4.3 comparator high address B5H  
Port 4.3 comparator low address B4H  
0000 0000B  
0000 0000B  
1111 1111B  
Port 3  
B0H  
(B7)  
RD  
(B6)  
WR  
(B5)  
T1  
(B4)  
T0  
(B3)  
(B2)  
(B1)  
TXD  
(B0)  
INT1  
INT0  
RXD  
P43CSINV  
P2ECON  
Port 2 expanded control  
AEH  
P42CSIN P41CSIN P40CSIN  
-
-
0000 0000B  
V
V
V
P42AH  
P42AL  
IE  
Port 4.2 comparator high address ADH  
Port 4.3 comparator low address ACH  
0000 0000B  
0000 0000B  
0000 0000B  
Interrupt enable  
A8H  
(AF)  
EA  
(AE)  
-
(AD)  
ET2  
(AC)  
ES  
(AB)  
ET1  
(AA)  
EX1  
(A9)  
ET0  
(A8)  
EX0  
P2  
Port 2  
A0H  
(A7)  
A15  
(A6)  
A14  
(A5)  
A13  
(A4)  
A12  
(A3)  
A11  
(A2)  
A10  
(A1)  
A9  
(A0)  
A8  
1111 1111B  
SBUF  
SCON  
Serial buffer  
Serial control  
99H  
98H  
xxxx xxxxB  
0000 0000B  
(9F)  
(9E)  
SM1  
(9D)  
SM2  
(9C)  
REN  
(9B)  
TB8  
(9A)  
RB8  
(99)  
TI  
(98)  
RI  
SM0/FE  
P41AH  
P41AL  
P1  
Port 4.1 comparator high address 95H  
Port 4.1 comparator low address 94H  
0000 0000B  
0000 0000B  
1111 1111B  
Port 1  
90H  
(97)  
(96)  
(95)  
(94)  
-
(93)  
-
(92)  
PS2  
(91)  
(90)  
T2  
T2EX  
WDTC  
AUXR  
TH1  
Watchdog control  
Auxiliary  
8FH  
8EH  
8DH  
8CH  
8BH  
8AH  
89H  
ENW  
CLRW  
WIDL  
PS1  
PS0  
0000 0000B  
ALE_OFF 0000 0110B  
0000 0000B  
Timer high 1  
Timer high 0  
Timer low 1  
Timer low 0  
Timer mode  
TH0  
0000 0000B  
TL1  
0000 0000B  
TL0  
0000 0000B  
TMOD  
GATE  
C/T  
M1  
M0  
GATE  
C/T  
M1  
M0  
0000 0000B  
- 18 -  
W78E516D/W78E058D Data Sheet  
TCON  
Timer control  
88H  
(8F)  
TF1  
(8E)  
TR1  
(8D)  
TF0  
(8C)  
TR0  
(8B)  
IE1  
(8A)  
IT1  
(89)  
IE0  
(88)  
IT0  
0000 0000B  
PCON  
P0UPR  
P40AH  
P40AL  
DPH  
Power control  
87H  
86H  
85H  
84H  
83H  
82H  
81H  
80H  
SMOD  
SMOD0  
-
POR  
GF1  
GF0  
PD  
IDL  
00x1 0000B  
0000 0000B  
0000 0000B  
0000 0000B  
0000 0000B  
0000 0000B  
0000 0111B  
1111 1111B  
Port 0 pull up option register  
HI address comparator of P4.0  
LO address comparator of P4.0  
Data pointer high  
P0UP  
DPL  
Data pointer low  
SP  
Stack pointer  
P0  
Port 0  
(87)  
(86)  
(85)  
(84)  
(83)  
(82)  
(81)  
(80)  
[1]: When CPU in F04KBOOT mode (Ref. P65), CHPCON=1xx0 0000B, other mode the CHPCON=0xx0 0000B  
9.1 SFR Detail Bit Descriptions  
Port 0  
Bit:  
7
6
5
4
3
2
1
0
P0.7  
P0.6  
P0.5  
P0.4  
P0.3  
P0.2  
P0.1  
P0.0  
Mnemonic: P0  
BIT NAME  
Address: 80h  
FUNCTION  
7-0 P0.[7:0]  
Port 0 is an open-drain bi-directional I/O port. This port also provides a multiplexed low order  
address/data bus during accesses to external memory.  
STACK POINTER  
Bit:  
7
6
5
4
3
2
1
0
SP.7  
SP.6  
SP.5  
SP.4  
SP.3  
SP.2  
SP.1  
SP.0  
Mnemonic: SP  
BIT NAME  
Address: 81h  
FUNCTION  
7-0 SP.[7:0]  
The Stack Pointer stores the Scratch-pad RAM address where the stack begins. In other  
words it always points to the top of the stack.  
DATA POINTER LOW  
Bit:  
7
6
5
4
3
2
1
0
DPL.7  
DPL.6  
DPL.5  
DPL.4  
DPL.3  
DPL.2  
DPL.1  
DPL.0  
Mnemonic: DPL  
Address: 82h  
BIT  
NAME  
FUNCTION  
This is the low byte of the standard 8052 16-bit data pointer.  
7-0  
DPL.[7:0]  
DATA POINTER HIGH  
Bit:  
7
6
5
4
3
2
1
0
Publication Release Date: Feb 15, 2011  
Revision A09  
- 19 -  
 
 
W78E516D/W78E058D Data Sheet  
DPH.7  
DPH.6  
DPH.5  
DPH.4  
DPH.3  
DPH.2  
DPH.1  
DPH.0  
Mnemonic: DPH  
Address: 83h  
BIT  
NAME  
FUNCTION  
This is the high byte of the standard 8052 16-bit data pointer.  
7-0  
DPH.[7:0]  
P4.0 Base Address Low Byte Register  
Bit:  
7
6
5
4
3
2
1
0
P40AL.7  
P40AL.6  
P40AL.5  
P40AL.4  
P40AL.3  
P40AL.2  
P40AL.1  
P40AL.0  
Mnemonic: P40AL  
Address: 84h  
BIT NAME  
FUNCTION  
7-0 P40AL.[7:0] The Base address register for comparator of P4.0. P40AL contains the low-  
order byte of address.  
P4.0 Base Address High Byte Register  
Bit:  
7
6
5
4
3
2
1
0
P40AH.7  
P40AH.6  
P40AH.5  
P40AH.4  
P40AH.3  
P40AH.2  
P40AH.1  
P40AH.0  
Mnemonic:P40AH  
Address: 85h  
BIT NAME  
FUNCTION  
7-0 P40AH.[7:0] The Base address register for comparator of P4.0. P40AH contains the High-  
order byte of address.  
Port 0 Pull up Option Register  
Bit:  
7
-
6
-
5
-
4
-
3
-
2
-
1
-
0
P0UP  
Mnemonic: P0UPR  
Address: 86h  
BIT NAME  
FUNCTION  
0
P0UP  
0: Port 0 pins are open-drain.  
1: Port 0 pins are internally pulled-up. Port 0 is structurally the same as Port 2.  
Power Control  
Bit:  
7
6
5
-
4
-
3
2
1
0
SMOD  
SMOD0  
GF1  
GF0  
PD  
IDL  
Mnemonic: PCON  
Address: 87h  
BIT NAME  
FUNCTION  
7
6
SMOD  
1: This bit doubles the serial port baud rate in mode 1, 2, and 3 when set to 1.  
SMOD  
0
0: Framing Error Detection Disable. SCON.7 (SM0/FE) bit is used as SM0 (stan-  
dard 8052 function).  
1: Framing Error Detection Enable. SCON.7 (SM0/FE) bit is used to reflect as  
- 20 -  
W78E516D/W78E058D Data Sheet  
Frame Error (FE) status flag.  
Reserved  
0: Cleared by software.  
5
4
-
POR  
1: Set automatically when a power-on reset has occurred.  
General purpose user flags.  
3
2
1
GF1  
GF0  
PD  
General purpose user flags.  
1: The CPU goes into the POWER DOWN mode. In this mode, all the clocks are  
stopped and program execution is frozen.  
0
IDL  
1: The CPU goes into the IDLE mode. In this mode, the clocks CPU clock stopped,  
so program execution is frozen. But the clock to the serial, timer and interrupt  
blocks is not stopped, and these blocks continue operating.  
Timer Control  
Bit:  
7
6
5
4
3
2
1
0
TF1  
TR1  
TF0  
TR0  
IE1  
IT1  
IE0  
IT0  
Mnemonic: TCON  
Address: 88h  
BIT NAME  
FUNCTION  
7
TF1  
Timer 1 Overflow Flag. This bit is set when Timer 1 overflows. It is cleared auto-  
matically when the program does a timer 1 interrupt service routine. Software can  
also set or clear this bit.  
6
5
TR1  
TF0  
Timer 1 Run Control. This bit is set or cleared by software to turn timer/counter on  
or off.  
Timer 0 Overflow Flag. This bit is set when Timer 0 overflows. It is cleared auto-  
matically when the program does a timer 0 interrupt service routine. Software can  
also set or clear this bit.  
4
3
TR0  
IE1  
Timer 0 Run Control. This bit is set or cleared by software to turn timer/counter on  
or off.  
Interrupt 1 Edge Detect Flag: Set by hardware when an edge/level is detected on  
INT1. This bit is cleared by hardware when the service routine is vectored to only if  
the interrupt was edge triggered. Otherwise it follows the inverse of the pin.  
2
1
IT1  
IE0  
Interrupt 1 Type Control. Set/cleared by software to specify falling edge/ low level  
triggered external inputs.  
Interrupt 0 Edge Detect Flag. Set by hardware when an edge/level is detected  
onINT0 . This bit is cleared by hardware when the service routine is vectored to  
only if the interrupt was edge triggered. Otherwise it follows the inverse of the pin.  
0
IT0  
Interrupt 0 Type Control: Set/cleared by software to specify falling edge/ low level  
triggered external inputs.  
Timer Mode Control  
Bit:  
7
6
5
4
3
2
1
0
Publication Release Date: Feb 15, 2011  
Revision A09  
- 21 -  
W78E516D/W78E058D Data Sheet  
GATE  
M1  
M0  
GATE  
M1  
M0  
C/ T  
C/ T  
TIMER1  
Mnemonic: TMOD  
BIT NAME  
TIMER0  
Address: 89h  
FUNCTION  
7
GATE  
Gating control: When this bit is set, Timer/counter 1 is enabled only while the INT1  
pin is high and the TR1 control bit is set. When cleared, the INT1 pin has no effect,  
and Timer 1 is enabled whenever TR1 control bit is set.  
6
Timer or Counter Select: When clear, Timer 1 is incremented by the internal clock.  
When set, the timer counts falling edges on the T1 pin.  
C/T  
5
4
3
M1  
Timer 1 mode select bit 1. See table below.  
Timer 1 mode select bit 0. See table below.  
M0  
GATE  
Gating control: When this bit is set, Timer/counter 0 is enabled only while the INT0  
pin is high and the TR0 control bit is set. When cleared, the INT0 pin has no ef-  
fect, and Timer 0 is enabled whenever TR0 control bit is set.  
2
Timer or Counter Select: When clear, Timer 0 is incremented by the internal clock.  
When set, the timer counts falling edges on the T0 pin.  
C/T  
1
0
M1  
M0  
Timer 0 mode select bit 1. See table below.  
Timer 0 mode select bit 0. See table below.  
M1, M0: Mode Select bits:  
M1 M0 MODE  
Mode 0: 8-bit timer/counter TLx serves as 5-bit pre-scale.  
Mode 1: 16-bit timer/counter, no pre-scale.  
0
0
1
1
0
1
0
1
Mode 2: 8-bit timer/counter with auto-reload from THx.  
Mode 3: (Timer 0) TL0 is an 8-bit timer/counter controlled by the standard Timer0 control  
bits. TH0 is an 8-bit timer only controlled by Timer1 control bits. (Timer 1) Timer/Counter  
1 is stopped.  
Timer 0 LSB  
Bit:  
7
6
5
4
3
2
1
0
TL0.7  
TL0.6  
TL0.5  
TL0.4  
TL0.3  
TL0.2  
TL0.1  
TL0.0  
Mnemonic: TL0  
Address: 8Ah  
BIT NAME  
FUNCTION  
7-0 TL0.[7:0] Timer 0 LSB.  
Timer 1 LSB  
Bit:  
7
6
5
4
3
2
1
0
TL1.7  
TL1.6  
TL1.5  
TL1.4  
TL1.3  
TL1.2  
TL1.1  
TL1.0  
- 22 -  
W78E516D/W78E058D Data Sheet  
Mnemonic: TL1  
Address: 8Bh  
BIT NAME  
FUNCTION  
7-0 TL1.[7:0] Timer 1 LSB.  
Timer 0 MSB  
Bit:  
7
6
5
4
3
2
1
0
TH0.7  
TH0.6  
TH0.5  
TH0.4  
TH0.3  
TH0.2  
TH0.1  
TH0.0  
Mnemonic: TH0  
Address: 8Ch  
BIT NAME  
FUNCTION  
7-0 TH0.[7:0] Timer 0 MSB.  
Timer 1 MSB  
Bit:  
7
6
5
4
3
2
1
0
TH1.7  
TH1.6  
TH1.5  
TH1.4  
TH1.3  
TH1.2  
TH1.1  
TH1.0  
Mnemonic: TH1  
Address: 8Dh  
BIT NAME  
FUNCTION  
7-0 TH1.[7:0] Timer 1 MSB.  
AUXR  
Bit:  
7
-
6
-
5
-
4
-
3
-
2
-
1
-
0
ALE_OFF  
Mnemonic: AUXR  
BIT NAME  
Address: 8Eh  
FUNCTION  
ALE_OFF  
0
1: Disable ALE output  
0: Enable ALE output  
Watchdog Timer Control Register  
Bit:  
7
6
5
4
3
2
1
0
ENW  
CLRW  
WIDL  
-
-
PS2  
PS1  
PS0  
Mnemonic: WDTC  
Address: 8FH  
BIT NAME  
FUNCTION  
Enable watch-dog if set.  
7
6
ENW  
CLRW  
Clear watch-dog timer and Pre-scalar if set. This flag will be cleared automati-  
cally.  
5
WIDL  
If this bit is set, watch-dog is enabled under IDLE mode. If cleared, watch-dog is  
Publication Release Date: Feb 15, 2011  
- 23 -  
Revision A09  
W78E516D/W78E058D Data Sheet  
disabled under IDLE mode. Default is cleared.  
2-0 PS2-0  
Watch-dog Pre-scalar timer select. Pre-scalar is selected when set PS20 as fol-  
lows:  
PS2 PS1 PS0  
PRE-SCALAR SELECT  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2
4
8
16  
32  
64  
128  
256  
Port 1  
Bit:  
7
6
5
4
3
2
1
0
P1.7  
P1.6  
P1.5  
P1.4  
P1.3  
P1.2  
P1.1  
P1.0  
Mnemonic: P1  
BIT NAME  
Address: 90h  
FUNCTION  
7-0 P1.[7:0]  
General purpose I/O port. Most instructions will read the port pins in case of a port  
read access, however in case of read-modify-write instructions, the port latch is  
read.  
P4.1 Base Address Low Byte Register  
Bit:  
7
6
5
4
3
2
1
0
P41AL.7  
P41AL.6  
P41AL.5  
P41AL.4  
P41AL.3  
P41AL.2  
P41AL.1  
P41AL.0  
Mnemonic: P41AL  
Address: 94h  
BIT NAME  
FUNCTION  
7-0 P41AL.[7:0] The Base address register for comparator of P4.1. P41AL contains the low-  
order byte of address.  
P4.1 Base Address High Byte Register  
Bit:  
7
6
5
4
3
2
1
0
P41AH.7  
P41AH.6  
P41AH.5  
P41AH.4  
P41AH.3  
P41AH.2  
P41AH.1  
P41AH.0  
Mnemonic: P41AH  
Address: 95h  
BIT NAME  
FUNCTION  
7-0 P41AH.[7:0] The Base address register for comparator of P4.1. P41AH contains the High-  
order byte of address.  
- 24 -  
W78E516D/W78E058D Data Sheet  
Serial Port Control  
Bit:  
7
6
5
4
3
2
1
0
SM0/FE  
SM1  
SM2  
REN  
TB8  
RB8  
TI  
RI  
Mnemonic: SCON  
Address: 98h  
BIT NAME  
FUNCTION  
7
SM0/FE  
Serial port mode select bit 0 or Framing Error Flag: The SMOD0 bit in PCON  
SFR determines whether this bit acts as SM0 or as FE. The operation of SM0 is  
described below. When used as FE, this bit will be set to indicate an invalid stop  
bit. This bit must be manually cleared in software to clear the FE condition.  
6
5
SM1  
SM2  
Serial Port mode select bit 1. See table below.  
Multiprocessor communication mode enable.  
The function of this bit is dependent on the serial port mode.  
Mode 0: No effect.  
Mode 1: Checking valid stop bit.  
0 = Reception is always valid no matter the logic level of stop bit.  
1 = Reception is ignored if the received stop bit is not logic 1.  
Mode 2 or 3: For multiprocessor communication.  
0 = Reception is always valid no matter the logic level of the 9th bit.  
1 = Reception is ignored if the received 9th bit is not logic 1.  
4
REN  
Receive enable:  
0: Disable serial reception.  
1: Enable serial reception.  
3
2
1
TB8  
RB8  
TI  
This is the 9th bit to be transmitted in modes 2 and 3. This bit is set and cleared  
by software as desired.  
In modes 2 and 3 this is the received 9th data bit. In mode 1, if SM2 = 0, RB8 is  
the stop bit that was received. In mode 0 it has no function.  
Transmit interrupt flag: This flag is set by hardware at the end of the 8th bit time  
in mode 0, or at the beginning of the stop bit in all other modes during serial  
transmission. This bit must be cleared by software.  
Receive interrupt flag: This flag is set by hardware at the end of the 8th bit time  
in mode 0, or halfway through the stop bits time in the other modes during serial  
reception. However the restrictions of SM2 apply to this bit. This bit can be  
cleared only by software.  
0
RI  
SM1, SM0: Mode Select bits:  
Mode SM0  
SM1  
Description  
Length  
Baud Rate  
0
1
2
3
0
0
1
1
0
1
0
1
Synchronous  
Asynchronous  
Asynchronous  
Asynchronous  
8
Tclk divided by 4 or 12  
Variable  
10  
11  
11  
Tclk divided by 32 or 64  
Variable  
Publication Release Date: Feb 15, 2011  
Revision A09  
- 25 -  
W78E516D/W78E058D Data Sheet  
Serial Data Buffer  
Bit:  
7
6
5
4
3
2
1
0
SBUF.7  
SBUF.6  
SBUF.5  
SBUF.4  
SBUF.3  
SBUF.2  
SBUF.1  
SBUF.0  
Mnemonic: SBUF  
BIT NAME  
7~0 SBUF  
Address: 99h  
FUNCTION  
Serial data on the serial port is read from or written to this location. It actually  
consists of two separate internal 8-bit registers. One is the receive resister, and  
the other is the transmit buffer. Any read access gets data from the receive data  
buffer, while write access is to the transmit data buffer.  
Port 2  
Bit:  
7
6
5
4
3
2
1
0
P2.7  
P2.6  
P2.5  
P2.4  
P2.3  
P2.2  
P2.1  
P2.0  
Mnemonic: P2  
BIT NAME  
Address: A0h  
FUNCTION  
7-0 P2.[7:0]  
Port 2 is a bi-directional I/O port with internal pull-ups. This port also provides the  
upper address bits for accesses to external memory.  
Interrupt Enable  
Bit:  
7
6
-
5
4
3
2
1
0
EA  
ET2  
ES  
ET1  
EX1  
ET0  
EX0  
Mnemonic: IE  
Address: A8h  
BIT NAME  
FUNCTION  
7
6
5
4
3
2
1
0
EA  
Global enable. Enable/Disable all interrupts.  
Reserved  
-
ET2  
ES  
Enable Timer 2 interrupt.  
Enable Serial Port 0 interrupt.  
Enable Timer 1 interrupt.  
Enable external interrupt 1.  
Enable Timer 0 interrupt.  
Enable external interrupt 0.  
ET1  
EX1  
ET0  
EX0  
P4.2 Base Address Low Byte Register  
Bit:  
7
6
5
4
3
2
1
0
P42AL.7  
P42AL.6  
P42AL.5  
P42AL.4  
P42AL.3  
P42AL.2  
P42AL.1  
P42AL.0  
Mnemonic: P42AL  
Address: ACh  
- 26 -  
W78E516D/W78E058D Data Sheet  
BIT NAME  
FUNCTION  
7-0 P42AL.[7:0] The Base address register for comparator of P4.2. P42AL contains the low-  
order byte of address.  
P4.2 Base Address High Byte Register  
Bit:  
7
6
5
4
3
2
1
0
P42AH.7  
P42AH.6  
P42AH.5  
P42AH.4  
P42AH.3  
P42AH.2  
P42AH.1  
P42AH.0  
Mnemonic:P42AH  
Address: ADh  
BIT NAME  
FUNCTION  
7-0 P42AH.[7:0] The Base address register for comparator of P4.2. P42AH contains the High-  
order byte of address.  
Port 2 Expanded Control  
Bit:  
7
6
5
4
3
2
1
0
P43CSIN  
P42CSIN  
P41CSIN  
P40CSIN  
-
-
-
-
Mnemonic: P2ECON  
Address:AEh  
BIT NAME  
FUNCTION  
The active polarity of P4.3 when pin P4.3 is defined as read and/or write strobe signal.  
1 : P4.3 is active high when pin P4.3 is defined as read and/or write strobe signal.  
0 : P4.3 is active low when pin P4.3 is defined as read and/or write strobe signal.  
7
P43CSINV  
6
5
4
P42CSINV  
P41CSINV  
P40CSINV  
The similarity definition as P43SINV.  
The similarity definition as P43SINV.  
The similarity definition as P43SINV.  
Port 3  
Bit:  
7
6
5
4
3
2
1
0
P3.7  
P3.6  
P3.5  
P3.4  
P3.3  
P3.2  
P3.1  
P3.0  
Mnemonic: P3  
Address: B0h  
P3.7-0: General purpose Input/Output port. Most instructions will read the port pins in case of a port  
read access, however in case of read-modify-write instructions, the port latch is read. These alter-  
nate functions are described below:  
BIT NAME  
FUNCTION  
RD  
7
P3.7  
6
5
4
P3.6  
P3.5  
P3.4  
WR  
T1  
T0  
Publication Release Date: Feb 15, 2011  
Revision A09  
- 27 -  
W78E516D/W78E058D Data Sheet  
3
2
P3.3  
P3.2  
INT1  
INT0  
TX  
1
0
P3.1  
P3.0  
RX  
P4.3 Base Address Low Byte Register  
Bit:  
7
6
5
4
3
2
1
0
P43AL.7  
P43AL.6  
P43AL.5  
P43AL.4  
P43AL.3  
P43AL.2  
P43AL.1  
P43AL.0  
Mnemonic: P43AL  
Address: B4h  
BIT NAME  
FUNCTION  
7-0 P43AL.[7:0] The Base address register for comparator of P4.3. P43AL contains the low-  
order byte of address.  
P4.3 Base Address High Byte Register  
Bit:  
7
6
5
4
3
2
1
0
P43AH.7  
P43AH.6  
P43AH.5  
P43AH.4  
P43AH.3  
P43AH.2  
P43AH.1  
P43AH.0  
Mnemonic: P43AH  
Address: B5h  
BIT NAME  
FUNCTION  
7-0 P43AH.[7:0] The Base address register for comparator of P4.3. P43AH contains the High-  
order byte of address.  
Interrupt Priority  
Bit:  
7
6
5
4
3
2
1
0
-
-
PT2  
PS  
PT1  
PX1  
PT0  
PX0  
Mnemonic: IP  
Address: B8h  
BIT NAME  
FUNCTION  
1: To set interrupt priority of Timer 2 is higher priority level.  
5
4
3
2
1
0
PT2  
PS  
1: To set interrupt priority of Serial port 0 is higher priority level.  
1: To set interrupt priority of Timer 1 is higher priority level.  
PT1  
PX1  
PT0  
PX0  
1: To set interrupt priority of External interrupt 1 is higher priority level.  
1: To set interrupt priority of Timer 0 is higher priority level.  
1: To set interrupt priority of External interrupt 0 is higher priority level.  
Chip Control  
Bit:  
7
6
5
4
3
2
1
0
-
-
ENAUXRAM  
0
0
FBOOTSL  
FPRGEN  
SWRESET  
- 28 -  
W78E516D/W78E058D Data Sheet  
(F04KMODE)  
Mnemonic: CHPCON  
BIT NAME  
(MUST SET 0)  
(MUST SET 0)  
Address: BFh  
FUNCTION  
7
SWRESET(F04KMODE) When this bit is set to 1, and both FBOOTSL and FPROGEN are  
set to 1. It will enforce microcontroller reset to initial condition just  
like power on reset. This action will re-boot the microcontroller and  
start to normal operation. To read this bit can determine that the  
F04KBOOT mode is running.  
1: Enable on-chip AUX-RAM.  
0: Disable the on-chip AUX-RAM  
4
1
ENAUXRAM  
The Loader Program Location Select.  
FBOOTSL  
0: The Loader Program locates at the 64K/32K Byte flash memory  
bank.  
1: The Loader Program locates at the 4KB flash memory bank.  
Flash EPROM Programming Enable  
0
FPROGEN  
1: Enable. The microcontroller switches to the programming flash  
mode after entering the idle mode and waken up from interrupt.  
The microcontroller will execute the loader program while in on-  
chip programming mode.  
0: Disable. The on-chip flash memory is read-only. In-system pro-  
grammability is disabled.  
External Interrupt Control  
Bit:  
7
6
5
4
3
2
1
0
PX3  
EX3  
IE3  
IT3  
PX2  
EX2  
IE2  
IT2  
Mnemonic: XICON  
Address: C0h  
BIT NAME  
FUNCTION  
7
6
5
PX3  
EX3  
IE3  
External interrupt 3 priority high if set  
External interrupt 3 enable if set  
If IT3 = 1, IE3 is set/cleared automatically by hardware when interrupt is de-  
tected/serviced  
4
IT3  
External interrupt 3 is falling-edge/low-level triggered when this bit is set/cleared  
by software  
3
2
1
PX2  
EX2  
IE2  
External interrupt 2 priority high if set  
External interrupt 2 enable if set  
If IT2 = 1, IE2 is set/cleared automatically by hardware when interrupt is de-  
tected/serviced  
0
IT2  
External interrupt 2 is falling-edge/low-level triggered when this bit is set/cleared  
by software  
Port 4 control A  
Publication Release Date: Feb 15, 2011  
- 29 -  
Revision A09  
W78E516D/W78E058D Data Sheet  
Bit:  
7
6
5
4
3
2
1
0
P41FUN1  
P41FUN0  
P41CMP1 P41CMP0 P40FUN1  
P40FUN0  
P40CMP1 P40CMP0  
Address: C2h  
Mnemonic: P4CONA  
BIT NAME FUNCTION  
7,6 P41FUN1 00: Mode 0. P4.1 is a general purpose I/O port which is the same as Port1.  
P41FUN0 01: Mode 1. P4.1is a Read Strobe signal for chip select purpose. The address  
range depends on the SFR P41AH, P41AL, P41CMP1 and P41CMP0.  
10: Mode 2. P4.1 is a Write Strobe signal for chip select purpose. The address  
range depends on the SFR P41AH,P41AL,P41CMP1 and P41CMP0.  
11: Mode 3. P4.1 is a Read/Write Strobe signal for chip select purpose. The ad-  
dress range depends on the SFR P41AH, P41AL, P41CMP1, and P41CMP0.  
5,4 P41CMP1 Chip-select signals address comparison:  
P41CMP0 00: Compare the full address (16 bits length) with the base address register  
P41AH, P41AL.  
01: Compare the 15 high bits (A15-A1) of address bus with the base address  
register P41AH, P41AL.  
10: Compare the 14 high bits (A15-A2) of address bus with the base address  
register P41AH, P41AL.  
11: Compare the 8 high bits (A15-A8) of address bus with the base address reg-  
ister P41AH, P41AL.  
3,2 P40FUN1 The P4.0 function control bits which are the similar definition as P40FUN1,  
P40FUN0. .  
P40FUN0  
1,0 P40CMP1 The P4.0 address comparator length control bits which are the similar definition  
as P40CMP, P40CMP0.  
P40CMP0  
Port 4 control B  
Bit:  
7
6
5
4
3
2
1
0
P43FUN1  
P43FUN0  
P43CMP1 P43CMP0 P42FUN1  
P42FUN0  
P42CMP1 P42CMP0  
Address: C3h  
Mnemonic: P4CONB  
BIT NAME FUNCTION  
P43FUN1  
P43FUN0  
The P4.3 function control bits which are the similar definition as P43FUN1, P43FUN0. .  
7,6  
5,4  
3,2  
1,0  
P43CMP1  
P43CMP0  
The P4.3 address comparator length control bits which are the similar definition as  
P43CMP1,P43CMP0.  
P42FUN1  
P42FUN0  
The P4.2 function control bits which are the similar definition as P42FUN1, P42FUN0. .  
P42CMP1  
P42CMP0  
The P4.2 address comparator length control bits which are the similar definition as  
P42CMP1,P42CMP0.  
SFR program of address low  
Bit:  
7
6
5
4
3
2
1
0
SFRAL.7  
SFRAL.6  
SFRAL.5  
SFRAL.4  
SFRAL.3  
SFRAL.2  
SFRAL.1  
SFRAL.0  
- 30 -  
W78E516D/W78E058D Data Sheet  
Mnemonic: SFRAL  
Address: C4h  
BIT NAME  
FUNCTION  
7-0 SFRAL.[7:0] The programming address of on-chip flash memory in programming mode.  
SFRFAL contains the low-order byte of address.  
SFR program of address high  
Bit:  
7
6
5
4
3
2
1
0
SFRAH.7  
SFRAH.6  
SFRAH.5  
SFRAH.4  
SFRAH.3  
SFRAH.2  
SFRAH.1  
SFRAH.0  
Mnemonic: SFRAH  
Address: C5h  
BIT NAME  
FUNCTION  
7-0 SFRAH.[7:0] The programming address of on-chip flash memory in programming mode.  
SFRFAH contains the high-order byte of address.  
SFR program For Data  
Bit:  
7
6
5
4
3
2
1
0
SFRFD.7  
SFRFD.6  
SFRFD.5  
SFRFD.4  
SFRFD.3  
SFRFD.2  
SFRFD.1  
SFRFD.0  
SFRFD  
Address: C6h  
BIT NAME  
FUNCTION  
7-0 SFRFD.[7:0] The programming data for on-chip flash memory in programming mode.  
SFR for Program Control  
Bit:  
7
-
6
5
4
3
2
1
0
WFWIN  
OEN  
CEN  
CTRL3  
CTRL2  
CTRL1  
CTRL0  
SFRCN  
Address: C7h  
BIT NAME  
FUNCTION  
On-chip FLASH EPROM bank select for in-system programming.  
6
WFWIN  
0: 64K bytes FLASH EPROM bank is selected as destination for re-  
programming.  
1: 4K bytes FLASH EPROM bank is selected as destination for re-  
programming.  
5
4
OEN  
CEN  
FLASH EPROM output enable.  
FLASH EPROM chip enable.  
CTRL[3:0]: The flash control signals  
3-0 CTRL[3:0]  
Mode  
CTRL<3:0>  
WFWIN  
OEN  
CEN  
SFRAH,SFRAL  
SFRFD  
Erase  
0010  
0
1
0
X
X
APROM  
Program  
APROM  
0001  
0
1
0
Address in  
Data in  
Publication Release Date: Feb 15, 2011  
Revision A09  
- 31 -  
W78E516D/W78E058D Data Sheet  
Read  
0000  
0
0
0
Address in  
Data out  
APROM  
Timer 2 Control  
Bit:  
7
6
5
4
3
2
1
0
TF2  
EXF2  
RCLK  
TCLK  
EXEN2  
TR2  
CP / RL2  
Address: C8h  
C / T2  
Mnemonic: T2CON  
BIT NAME  
FUNCTION  
7
TF2  
Timer 2 overflow flag: This bit is set when Timer 2 overflows. It can be set only  
if RCLK and TCLK are both 0. It is cleared only by software. Software can also  
set or clear this bit.  
6
EXF2  
Timer 2 External Flag: A negative transition on the T2EX pin (P1.1) or timer 2  
CP / RL2  
overflow will cause this flag to set based on the  
, EXEN2 bits. If set  
by a negative transition, this flag must be cleared by software. Setting this bit  
in software or detection of a negative transition on T2EX pin will force a timer  
interrupt if enabled.  
5
4
3
RCLK  
TCLK  
Receive Clock Flag: This bit determines the serial port 0 time-base when re-  
ceiving data in serial modes 1 or 3. If it is 0, then timer 1 overflow is used for  
baud rate generation, otherwise timer 2 overflow is used. Setting this bit forces  
timer 2 in baud rate generator mode.  
Transmit Clock Flag: This bit determines the serial port 0 time-base when  
transmitting data in modes 1 and 3. If it is set to 0, the timer 1 overflow is used  
to generate the baud rate clock otherwise timer 2 overflow is used. Setting this  
bit forces timer 2 in baud rate generator mode.  
EXEN2  
Timer 2 External Enable. This bit enables the capture/reload function on the  
T2EX pin if Timer 2 is not generating baud clocks for the serial port. If this bit  
is 0, then the T2EX pin will be ignored, otherwise a negative transition de-  
tected on the T2EX pin will result in capture or reload.  
2
1
TR2  
Timer 2 Run Control. This bit enables/disables the operation of timer 2. Clear-  
ing this bit will halt the timer 2 and preserve the current count in TH2, TL2.  
Counter/Timer Select. This bit determines whether timer 2 will function as a  
timer or a counter. Independent of this bit, the timer will run at 2 clocks per tick  
when used in baud rate generator mode.  
C / T2  
0
Capture/Reload Select. This bit determines whether the capture or reload  
function will be used for timer 2. If either RCLK or TCLK is set, this bit will be  
ignored and the timer will function in an auto-reload mode following each over-  
flow. If the bit is 0 then auto-reload will occur when timer 2 overflows or a fal-  
ling edge is detected on T2EX pin if EXEN2 = 1. If this bit is 1, then timer 2  
captures will occur when a falling edge is detected on T2EX pin if EXEN2 =  
1.  
CP / RL2  
Timer 2 Capture LSB  
- 32 -  
W78E516D/W78E058D Data Sheet  
Bit:  
7
6
5
4
3
2
1
0
RCAP2L.7  
RCAP2L.6  
RCAP2L.5  
RCAP2L.4  
RCAP2L.3  
RCAP2L.2  
RCAP2L.1  
RCAP2L.0  
Mnemonic: RCAP2L  
Address: CAh  
BIT NAME  
FUNCTION  
7-0 RCAP2L.[7:0] This register is used to capture the TL2 value when a timer 2 is configured in  
capture mode. RCAP2L is also used as the LSB of a 16-bit reload value  
when timer 2 is configured in auto-reload mode.  
Timer 2 Capture MSB  
Bit:  
7
6
5
4
3
2
1
0
RCAP2h.7  
RCAP2h.6  
RCAP2h.5  
RCAP2h.4  
RCAP2h.3  
RCAP2h.2  
RCAP2h.1  
RCAP2h.0  
Mnemonic: RCAP2H  
Address: CBh  
BIT NAME  
FUNCTION  
7-0 RCAP2H.[7:0] This register is used to capture the TH2 value when a timer 2 is configured in  
capture mode. RCAP2H is also used as the MSB of a 16-bit reload value  
when timer 2 is configured in auto-reload mode.  
Timer 2 LSB  
Bit:  
7
6
5
4
3
2
1
0
TL2.7  
TL2.6  
TL2.5  
TL2.4  
TL2.3  
TL2.2  
TL2.1  
TL2.0  
Mnemonic: TL2  
BIT NAME  
Address: CCh  
FUNCTION  
Timer 2 LSB  
7-0 TL2.[7:0]  
Timer 2 MSB  
Bit:  
7
6
5
4
3
2
1
0
TH2.7  
TH2.6  
TH2.5  
TH2.4  
TH2.3  
TH2.2  
TH2.1  
TH2.0  
Mnemonic: TH2  
BIT NAME  
Address: CDh  
FUNCTION  
Timer 2 MSB  
7-0 TH2.[7:0]  
Program Status Word PROGRAM STATUS WORD  
Bit:  
7
6
5
4
3
2
1
0
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
Mnemonic: PSW  
BIT NAME FUNCTION  
Address: D0h  
Publication Release Date: Feb 15, 2011  
Revision A09  
- 33 -  
W78E516D/W78E058D Data Sheet  
7
CY  
Carry flag:  
Set for an arithmetic operation which results in a carry being generated from the  
ALU. It is also used as the accumulator for the bit operations.  
6
5
AC  
F0  
Auxiliary carry:  
Set when the previous operation resulted in a carry from the high order nibble.  
User flag 0:  
The General purpose flag that can be set or cleared by the user.  
Register bank select bits:  
4
3
2
RS1  
RS0  
OV  
Register bank select bits:  
Overflow flag:  
Set when a carry was generated from the seventh bit but not from the 8th bit as a  
result of the previous operation, or vice-versa.  
1
0
F1  
P
User Flag 1:  
The General purpose flag that can be set or cleared by the user by software.  
Parity flag:  
Set/cleared by hardware to indicate odd/even number of 1’s in the accumulator.  
RS.1-0: Register bank selection bits:  
RS1  
RS0  
Register bank Address  
0
0
1
1
0
1
0
1
0
1
2
3
00-07h  
08-0Fh  
10-17h  
18-1Fh  
Port 4  
Bit:  
7
-
6
-
5
-
4
3
2
1
0
-
P4.3  
P4.2  
P4.1  
P4.0  
Mnemonic: P4  
Address: D8h  
Port 4, SFR P4 at address D8H, is a 4-bit multipurpose programmable I/O port. Each bit can be con-  
figured individually by software. The Port 4 has four different operation mode:  
In mode 0, P4.0P4.3 is a bi-directional I/O port which is same as port 1. P4.2 and P4.3 also serve as  
external interrupt INT3 and INT2 if enabled.  
In mode 1, P4.0P4.3 are read data strobe signals which are synchronized with RD signal at specified  
addresses. These signals can be used as chip-select signals for external peripherals.  
In mode 2 , P4.0P4.3 are write data strobe signals which are synchronized with WR signal at speci-  
fied addresses. These signals can be used as chip-select signals for external peripherals.  
In mode 3, P4.0P4.3 are read data strobe signals which are synchronized with RD or WRsignal at  
specified addresses. These signals can be used as chip-select signals for external peripherals.  
When Port 4 is configured with the feature of chip-select signals, the chip-select signal address range  
depends on the contents of the SFR P4xAH, P4xAL, P4CONA and P4CONB. The registers P4xAH  
and P4xAL contain the 16-bit base address of P4.x. The registers P4CONA and P4CONB contain the  
control bits to configure the Port 4 operation mode.  
- 34 -  
W78E516D/W78E058D Data Sheet  
Here is an example to program the P4.0 as a write strobe signal at the I/O port address 1234H  
~1237H and positive polarity, and P4.1~P4.3 are used as general I/O ports.  
MOV P40AH,#12H  
MOV P40AL,#34H  
;Define the base I/O address 1234H for P4.0 as an special function  
MOV P4CONA,#00001010B ;Define the P4.0 as a write strobe signal pin and the comparator  
MOV P4CONB,#00H  
MOV P2ECON,#10H  
;P4.1~P4.3 as general I/O port which are the same as PORT1  
;Write the P40SINV =1 to inverse the P4.0 write strobe polarity  
;default is negative.  
Then any instruction MOVX @DPTR,A (with DPTR=1234H~1237H) will generate the positive polarity  
write strobe signal at pin P4.0 . And the instruction MOV P4,#XX will output the bit3 to bit1 of data #XX  
to pin P4.3~ P4.1.  
P4xCSINV  
P4 REGISTER  
DATA I/O  
P4.x  
RD_CS  
WR_CS  
READ  
WRITE  
RD/WR_CS  
PIN  
MUX 4->1  
P4.x  
P4xFUN0  
ADDRESS BUS  
P4xFUN1  
EQUAL  
REGISTER  
comparator  
P4xAL  
P4xAH  
Bit Length  
Selectable  
comparator  
P4.x INPUT DATA BUS  
REGISTER  
P4xCMP0  
P4xCMP1  
The Port 4 Structure Diagram  
ACCUMULATOR  
Bit:  
7
6
5
4
3
2
1
0
Publication Release Date: Feb 15, 2011  
Revision A09  
- 35 -  
W78E516D/W78E058D Data Sheet  
ACC.7  
ACC.6  
ACC.5  
ACC.4  
ACC.3  
ACC.2  
ACC.1  
ACC.0  
Mnemonic: ACC  
Address: E0h  
Bit Name  
Function  
7-0 ACC  
The A or ACC register is the standard 8052 accumulator.  
B Register  
Bit:  
7
6
5
4
3
2
1
0
B.7  
B.6  
B.5  
B.4  
B.3  
B.2  
B.1  
B.0  
Mnemonic: B  
Address: F0h  
Bit Name  
Function  
7-0  
B
The B register is the standard 8052 register that serves as a second accumulator.  
Chip Enable Register  
Bit:  
7
6
5
4
3
2
1
0
CHPENR. CHPENR. CHPENR. CHPENR. CHPENR. CHPENR. CHPENR. CHPENR.  
7
6
5
4
3
2
1
0
Mnemonic: CHPENR  
Address: F6h  
The CHPCON is read only by default .You must write #87,#59H sequentially to this special register  
CHPENR to enable the CHPCON write attribute, and write other value to disable CHPCON write at-  
tribute. This register protects from writing to the CHPCON register carelessly.  
- 36 -  
W78E516D/W78E058D Data Sheet  
10 INSTRUCTION  
The W78E516D/W78E058D series execute all the instructions of the standard 8052 family. The opera-  
tions of these instructions, as well as their effects on flag and status bits, are exactly the same.  
Op-code  
HEX Code  
00  
Bytes  
1
W78E516D/W78E058D series Clock cycles  
NOP  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
ADD A, R0  
28  
1
ADD A, R1  
29  
1
ADD A, R2  
2A  
2B  
2C  
2D  
2E  
2F  
1
ADD A, R3  
1
ADD A, R4  
1
ADD A, R5  
1
ADD A, R6  
1
ADD A, R7  
1
ADD A, @R0  
ADD A, @R1  
ADD A, direct  
ADD A, #data  
ADDC A, R0  
ADDC A, R1  
ADDC A, R2  
ADDC A, R3  
ADDC A, R4  
ADDC A, R5  
ADDC A, R6  
ADDC A, R7  
ADDC A, @R0  
ADDC A, @R1  
ADDC A, direct  
ADDC A, #data  
SUBB A, R0  
SUBB A, R1  
SUBB A, R2  
SUBB A, R3  
SUBB A, R4  
26  
1
27  
1
25  
2
24  
2
38  
1
39  
1
3A  
3B  
3C  
3D  
3E  
3F  
1
1
1
1
1
1
36  
1
37  
1
35  
2
34  
2
98  
1
99  
1
9A  
9B  
9C  
1
1
1
Publication Release Date: Feb 15, 2011  
Revision A09  
- 37 -  
 
 
W78E516D/W78E058D Data Sheet  
Op-code  
SUBB A, R5  
SUBB A, R6  
SUBB A, R7  
SUBB A, @R0  
SUBB A, @R1  
SUBB A, direct  
SUBB A, #data  
INC A  
HEX Code  
9D  
9E  
9F  
96  
Bytes  
W78E516D/W78E058D series Clock cycles  
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
24  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
48  
48  
97  
95  
94  
04  
INC R0  
08  
INC R1  
09  
INC R2  
0A  
0B  
0C  
0D  
0E  
0F  
06  
INC R3  
INC R4  
INC R5  
INC R6  
INC R7  
INC @R0  
INC @R1  
INC direct  
INC DPTR  
DEC A  
07  
05  
A3  
14  
DEC R0  
18  
DEC R1  
19  
DEC R2  
1A  
1B  
1C  
1D  
1E  
1F  
16  
DEC R3  
DEC R4  
DEC R5  
DEC R6  
DEC R7  
DEC @R0  
DEC @R1  
DEC direct  
MUL AB  
17  
15  
A4  
84  
DIV AB  
- 38 -  
W78E516D/W78E058D Data Sheet  
Op-code  
HEX Code  
D4  
58  
Bytes  
W78E516D/W78E058D series Clock cycles  
DA A  
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
1
1
1
1
1
1
1
1
1
1
2
2
2
3
1
1
1
1
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
24  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
24  
12  
12  
12  
12  
ANL A, R0  
ANL A, R1  
ANL A, R2  
ANL A, R3  
ANL A, R4  
ANL A, R5  
ANL A, R6  
ANL A, R7  
ANL A, @R0  
ANL A, @R1  
ANL A, direct  
ANL A, #data  
ANL direct, A  
ANL direct, #data  
ORL A, R0  
ORL A, R1  
ORL A, R2  
ORL A, R3  
ORL A, R4  
ORL A, R5  
ORL A, R6  
ORL A, R7  
ORL A, @R0  
ORL A, @R1  
ORL A, direct  
ORL A, #data  
ORL direct, A  
ORL direct, #data  
XRL A, R0  
XRL A, R1  
XRL A, R2  
XRL A, R3  
59  
5A  
5B  
5C  
5D  
5E  
5F  
56  
57  
55  
54  
52  
53  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
46  
47  
45  
44  
42  
43  
68  
69  
6A  
6B  
Publication Release Date: Feb 15, 2011  
Revision A09  
- 39 -  
W78E516D/W78E058D Data Sheet  
Op-code  
HEX Code  
6C  
6D  
6E  
6F  
Bytes  
W78E516D/W78E058D series Clock cycles  
XRL A, R4  
XRL A, R5  
XRL A, R6  
XRL A, R7  
XRL A, @R0  
XRL A, @R1  
XRL A, direct  
XRL A, #data  
XRL direct, A  
XRL direct, #data  
CLR A  
1
1
1
1
1
1
2
2
2
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
12  
12  
12  
12  
12  
12  
12  
12  
12  
24  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
66  
67  
65  
64  
62  
63  
E4  
F4  
CPL A  
RL A  
23  
RLC A  
33  
RR A  
03  
RRC A  
13  
SWAP A  
C4  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
E6  
E7  
E5  
74  
MOV A, R0  
MOV A, R1  
MOV A, R2  
MOV A, R3  
MOV A, R4  
MOV A, R5  
MOV A, R6  
MOV A, R7  
MOV A, @R0  
MOV A, @R1  
MOV A, direct  
MOV A, #data  
MOV R0, A  
MOV R1, A  
MOV R2, A  
MOV R3, A  
MOV R4, A  
F8  
F9  
FA  
FB  
FC  
- 40 -  
W78E516D/W78E058D Data Sheet  
Op-code  
HEX Code  
FD  
FE  
FF  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
78  
Bytes  
W78E516D/W78E058D series Clock cycles  
MOV R5, A  
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
12  
12  
12  
24  
24  
24  
24  
24  
24  
24  
24  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
24  
24  
12  
12  
12  
24  
24  
24  
24  
24  
24  
24  
MOV R6, A  
MOV R7, A  
MOV R0, direct  
MOV R1, direct  
MOV R2, direct  
MOV R3, direct  
MOV R4, direct  
MOV R5, direct  
MOV R6, direct  
MOV R7, direct  
MOV R0, #data  
MOV R1, #data  
MOV R2, #data  
MOV R3, #data  
MOV R4, #data  
MOV R5, #data  
MOV R6, #data  
MOV R7, #data  
MOV @R0, A  
MOV @R1, A  
MOV @R0, direct  
MOV @R1, direct  
MOV @R0, #data  
MOV @R1, #data  
MOV direct, A  
MOV direct, R0  
MOV direct, R1  
MOV direct, R2  
MOV direct, R3  
MOV direct, R4  
MOV direct, R5  
MOV direct, R6  
79  
7A  
7B  
7C  
7D  
7E  
7F  
F6  
F7  
A6  
A7  
76  
77  
F5  
88  
89  
8A  
8B  
8C  
8D  
8E  
Publication Release Date: Feb 15, 2011  
Revision A09  
- 41 -  
W78E516D/W78E058D Data Sheet  
Op-code  
HEX Code  
8F  
Bytes  
W78E516D/W78E058D series Clock cycles  
MOV direct, R7  
MOV direct, @R0  
MOV direct, @R1  
MOV direct, direct  
MOV direct, #data  
MOV DPTR, #data 16  
MOVC A, @A+DPTR  
MOVC A, @A+PC  
MOVX A, @R0  
MOVX A, @R1  
MOVX A, @DPTR  
MOVX @R0, A  
MOVX @R1, A  
MOVX @DPTR, A  
PUSH direct  
POP direct  
2
2
2
3
3
3
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
2
1
2
1
2
1
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
24  
12  
12  
12  
12  
12  
86  
87  
85  
75  
90  
93  
83  
E2  
E3  
E0  
F2  
F3  
F0  
C0  
D0  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
C6  
C7  
D6  
D7  
C5  
C3  
C2  
D3  
D2  
B3  
XCH A, R0  
XCH A, R1  
XCH A, R2  
XCH A, R3  
XCH A, R4  
XCH A, R5  
XCH A, R6  
XCH A, R7  
XCH A, @R0  
XCH A, @R1  
XCHD A, @R0  
XCHD A, @R1  
XCH A, direct  
CLR C  
CLR bit  
SETB C  
SETB bit  
CPL C  
- 42 -  
W78E516D/W78E058D Data Sheet  
Op-code  
HEX Code  
Bytes  
W78E516D/W78E058D series Clock cycles  
CPL bit  
B2  
82  
B0  
72  
A0  
A2  
92  
2
2
2
2
2
2
2
2
12  
24  
24  
24  
24  
12  
24  
24  
ANL C, bit  
ANL C, /bit  
ORL C, bit  
ORL C, /bit  
MOV C, bit  
MOV bit, C  
ACALL addr11  
71, 91, B1, 11,  
31, 51, D1, F1  
LCALL addr16  
RET  
12  
22  
32  
3
1
1
2
24  
24  
24  
24  
RETI  
AJMP ADDR11  
01, 21, 41, 61,  
81, A1, C1, E1  
LJMP addr16  
02  
73  
80  
60  
70  
40  
50  
20  
30  
10  
B5  
B4  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
3
1
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
JMP @A+DPTR  
SJMP rel  
JZ rel  
JNZ rel  
JC rel  
JNC rel  
JB bit, rel  
JNB bit, rel  
JBC bit, rel  
CJNE A, direct, rel  
CJNE A, #data, rel  
CJNE @R0, #data, rel  
CJNE @R1, #data, rel  
CJNE R0, #data, rel  
CJNE R1, #data, rel  
CJNE R2, #data, rel  
CJNE R3, #data, rel  
CJNE R4, #data, rel  
CJNE R5, #data, rel  
Publication Release Date: Feb 15, 2011  
Revision A09  
- 43 -  
W78E516D/W78E058D Data Sheet  
Op-code  
HEX Code  
BE  
Bytes  
W78E516D/W78E058D series Clock cycles  
CJNE R6, #data, rel  
CJNE R7, #data, rel  
DJNZ R0, rel  
DJNZ R1, rel  
DJNZ R5, rel  
DJNZ R2, rel  
DJNZ R3, rel  
DJNZ R4, rel  
DJNZ R6, rel  
DJNZ R7, rel  
DJNZ direct, rel  
3
3
2
2
2
2
2
2
2
2
3
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
BF  
D8  
D9  
DD  
DA  
DB  
DC  
DE  
DF  
D5  
Table 10-1: Instruction Set for W78E516D/W78E058D  
- 44 -  
W78E516D/W78E058D Data Sheet  
11 INSTRUCTION TIMING  
A machine cycle consists of a sequence of 6 states, numbered S1 through S6. Each state time lasts  
for two oscillator periods. Thus a machine cycle takes 12 oscillator periods or 1us if the oscillator fre-  
quency is 12MHz.  
Each state is divided into a Phase 1 half and a Phase 2 half. The fetch/execute sequences in states  
and phases for various kinds of instructions. Normally two program fetches are generated during each  
machine cycle, even if the instruction being executed doesn’t require it. If the instruction being exe-  
cuted doesn’t need more code bytes, the CPU simply ignores the extra fetch, and the Program Coun-  
ter is not incremented. Execution of a one-cycle instruction begins during State 1 of the machine cycle,  
when the op-codes is latched into the Instruction Register. A second fetch occurs during S4 of the  
same machine cycle. Execution is complete at the end of State 6 of this machine cycle.  
The MOVX instructions take two machine cycles to execute. No program fetch is generated during the  
second cycle of a MOVX instruction. This is the only time program fetches are skipped. The  
fetch/execute sequence for MOVX instructions.  
The fetch/execute sequences are the same whether the Program Memory is internal or external to the  
chip. Execution times do not depend on whether the Program Memory is internal or external.  
the signals and timing involved in program fetches when the Program Memory is external. If Program  
Memory is external, then the Program Memory read strobe PSEN is normally activated twice per ma-  
chine cycle. If an access to external Data Memory occurs, two PSENs pulse are skipped, because the  
address and data bus are being used for the Data Memory access. Note that a Data Memory bus cy-  
cle takes twice as much time as a Program Memory bus cycle.  
Publication Release Date: Feb 15, 2011  
- 45 -  
Revision A09  
 
 
W78E516D/W78E058D Data Sheet  
12 POWER MANAGEMENT  
The W78E516D/W78E058D has several features that help the user to control the power consumption  
of the device. The power saved features have basically the POWER DOWN mode and the IDLE mode  
of operation.  
12.1 Idle Mode  
The user can put the device into idle mode by writing 1 to the bit PCON.0. The instruction that sets the  
idle bit is the last instruction that will be executed before the device goes into Idle Mode. In the Idle  
mode, the clock to the CPU is halted, but not to the Interrupt, Timer, Watchdog timer and Serial port  
blocks. This forces the CPU state to be frozen; the Program counter, the Stack Pointer, the Program  
Status Word, the Accumulator and the other registers hold their contents. The port pins hold the logi-  
cal states they had at the time Idle was activated. The Idle mode can be terminated in two ways. Since  
the interrupt controller is still active, the activation of any enabled interrupt can wake up the processor.  
This will automatically clear the Idle bit, terminate the Idle mode, and the Interrupt Service Routine  
(ISR) will be executed. After the ISR, execution of the program will continue from the instruction which  
put the device into Idle mode.  
The Idle mode can also be exited by activating the reset. The device can put into reset either by apply-  
ing a high on the external RST pin, a Power on reset condition or a Watchdog timer reset. The exter-  
nal reset pin has to be held high for at least two machine cycles i.e. 24 clock periods to be recognized  
as a valid reset. In the reset condition the program counter is reset to 0000h and all the SFRs are set  
to the reset condition. Since the clock is already running there is no delay and execution starts imme-  
diately.  
12.2 Power Down Mode  
The device can be put into Power Down mode by writing 1 to bit PCON.1. The instruction that does  
this will be the last instruction to be executed before the device goes into Power Down mode. In the  
Power Down mode, all the clocks are stopped and the device comes to a halt. All activity is completely  
stopped and the power consumption is reduced to the lowest possible value. The port pins output the  
values held by their respective SFRs.  
The W78E516D/W78E058D will exit the Power Down mode with a reset or by an external interrupt pin  
enabled as level detects. An external reset can be used to exit the Power down state. The high on  
RST pin terminates the Power Down mode, and restarts the clock. The program execution will restart  
from 0000h. In the Power down mode, the clock is stopped, so the Watchdog timer cannot be used to  
provide the reset to exit Power down mode.  
The W78E516D/W78E058D can be woken from the Power Down mode by forcing an external inter-  
rupt pin activated, provided the corresponding interrupt is enabled, while the global enable(EA) bit is  
set and the external input has been set to a level detect mode. If these conditions are met, then the  
high level on the external pin re-starts the oscillator. Then device executes the interrupt service routine  
for the corresponding external interrupt. After the interrupt service routine is completed, the program  
execution returns to the instruction after one which put the device into Power Down mode and contin-  
ues from there.  
- 46 -  
 
 
 
 
W78E516D/W78E058D Data Sheet  
13 RESET CONDITIONS  
The user has several hardware related options for placing the W78E516D/W78E058D into reset con-  
dition. In general, most register bits go to their reset value irrespective of the reset condition, but there  
are a few flags whose state depends on the source of reset. The user can use these flags to deter-  
mine the cause of reset using software.  
13.1 Sources of reset  
13.1.1 External Reset  
The device continuously samples the RST pin at state S5P2 of every machine cycle. Therefore the  
RST pin must be held for at least 2 machine cycles (24 clock cycles) to ensure detection of a valid  
RST high. The reset circuitry then synchronously applies the internal reset signal. Thus the reset is a  
synchronous operation and requires the clock to be running to cause an external reset. For more tim-  
ing descript, please reference the character 21.4.5 (Page 79).  
Once the device is in reset condition, it will remain so as long as RST is 1. Even after RST is deacti-  
vated, the device will continue to be in reset state for up to two machine cycles, and then begin pro-  
gram execution from 0000h. There is no flag associated with the external reset condition.  
13.1.2 Watchdog Timer Reset  
The Watchdog timer is a free running timer with programmable time-out intervals. The user can clear  
the watchdog timer at any time, causing it to restart the count. When the time-out interval is reached  
an interrupt flag is set. If the Watchdog reset is enabled and the watchdog timer is not cleared, the  
watchdog timer will generate a reset. This places the device into the reset condition. The reset condi-  
tion is maintained by hardware for two machine cycles. Once the reset is removed the device will be-  
gin execution from 0000h.  
13.1.3 Software Reset  
The W78E516D/W78E058D offers a software reset to switch back to the AP Flash EPROM. Setting  
CHPCON bits 0, 1 and 7 to logic-1 creates a software reset to reset the CPU.  
13.1.4 RESET STATE  
Most of the SFRs and registers on the device will go to the same condition in the reset state. The Pro-  
gram Counter is forced to 0000h and is held there as long as the reset condition is applied. However,  
the reset state does not affect the on-chip RAM. The data in the RAM will be preserved during the re-  
set. However, the stack pointer is reset to 07h, and therefore the stack contents will be lost. The RAM  
contents will be lost if the VDD falls below approximately 2V, as this is the minimum voltage level re-  
quired for the RAM to operate normally. Therefore after a first time power on reset the RAM contents  
will be indeterminate. During a power fail condition, if the power falls below 2V, the RAM contents are  
lost.  
After a reset most SFRs are cleared. Interrupts and Timers are disabled. The Watchdog timer is dis-  
abled if the reset source was a POR. The port SFRs have 0FFh written into them which puts the port  
pins in a high state.  
Publication Release Date: Feb 15, 2011  
- 47 -  
Revision A09  
 
 
 
 
 
 
 
W78E516D/W78E058D Data Sheet  
Interrupts  
The W78E516D/W78E058D has a 2 priority level interrupt structure with 8 interrupt sources. Each of  
the interrupt sources has an individual priority bit, flag, interrupt vector and enable bit. In addition, the  
interrupts can be globally enabled or disabled.  
13.2 Interrupt Sources  
The External Interrupts INT0 and INT1 can be either edge triggered or level triggered, depending on  
bits IT0 and IT1. The bits IE0 and IE1 in the TCON register are the flags which are checked to gener-  
ate the interrupt. In the edge triggered mode, the INTx inputs are sampled in every machine cycle. If  
the sample is high in one cycle and low in the next, then a high to low transition is detected and the  
interrupts request flag IEx in TCON is set. The flag bit requests the interrupt. Since the external inter-  
rupts are sampled every machine cycle, they have to be held high or low for at least one complete  
machine cycle. The IEx flag is automatically cleared when the service routine is called. If the level trig-  
gered mode is selected, then the requesting source has to hold the pin low till the interrupt is serviced.  
The IEx flag will not be cleared by the hardware on entering the service routine. If the interrupt contin-  
ues to be held low even after the service routine is completed, then the processor may acknowledge  
another interrupt request from the same source. Note that the external interrupts INT2 and INT3 . By  
default, the individual interrupt flag corresponding to external interrupt 2 to 3 must be cleared manually  
by software.  
The Timer 0 and 1 Interrupts are generated by the TF0 and TF1 flags. These flags are set by the over-  
flow in the Timer 0 and Timer 1. The TF0 and TF1 flags are automatically cleared by the hardware  
when the timer interrupt is serviced. The Timer 2 interrupt is generated by a logical OR of the TF2 and  
the EXF2 flags. These flags are set by overflow or capture/reload events in the timer 2 operation. The  
hardware does not clear these flags when a timer 2 interrupt is executed. Software has to resolve the  
cause of the interrupt between TF2 and EXF2 and clear the appropriate flag.  
The Serial block can generate interrupts on reception or transmission. There are two interrupt sources  
from the Serial block, which are obtained by the RI and TI bits in the SCON SFR. These bits are not  
automatically cleared by the hardware, and the user will have to clear these bits using software.  
All the bits that generate interrupts can be set or reset by hardware, and thereby software initiated in-  
terrupts can be generated. Each of the individual interrupts can be enabled or disabled by setting or  
clearing a bit in the IE SFR. IE also has a global enable/disable bit EA, which can be cleared to dis-  
able all the interrupts, at once.  
Source  
Vector Address  
0003h  
Source  
Vector Address  
000Bh  
External Interrupt 0  
External Interrupt 1  
Serial Port  
Timer 0 Overflow  
Timer 1 Overflow  
Timer 2 Overflow  
External Interrupt 3  
0013h  
001Bh  
0023h  
002Bh  
External Interrupt 2  
0033h  
003Bh  
Table 13- 1 W78E516D/W78E058D interrupt vector table  
13.3 Priority Level Structure  
There are two priority levels for the interrupts high, low. The interrupt sources can be individually set to  
either high or low levels. Naturally, a higher priority interrupt cannot be interrupted by a lower priority  
interrupt. However there exists a pre-defined hierarchy amongst the interrupts themselves. This hier-  
archy comes into play when the interrupt controller has to resolve simultaneous requests having the  
same priority level. This hierarchy is defined as shown on Table.  
- 48 -  
 
 
 
W78E516D/W78E058D Data Sheet  
The interrupt flags are sampled every machine cycle. In the same machine cycle, the sampled inter-  
rupts are polled and their priority is resolved. If certain conditions are met then the hardware will exe-  
cute an internally generated LCALL instruction which will vector the process to the appropriate inter-  
rupt vector address. The conditions for generating the LCALL are;  
1. An interrupt of equal or higher priority is not currently being serviced.  
2. The current polling cycle is the last machine cycle of the instruction currently being executed.  
3. The current instruction does not involve a write to IE, IP, XICON registers and is not a RETI.  
If any of these conditions are not met, then the LCALL will not be generated. The polling cycle is re-  
peated every machine cycle, with the interrupts sampled in the same machine cycle. If an interrupt flag  
is active in one cycle but not responded to, and is not active when the above conditions are met, the  
denied interrupt will not be serviced. This means that active interrupts are not remembered; every poll-  
ing cycle is new.  
The processor responds to a valid interrupt by executing an LCALL instruction to the appropriate ser-  
vice routine. This may or may not clear the flag which caused the interrupt. In case of Timer interrupts,  
the TF0 or TF1 flags are cleared by hardware whenever the processor vectors to the appropriate timer  
service routine. In case of external interrupt, /INT0 and /INT1, the flags are cleared only if they are  
edge triggered. In case of Serial interrupts, the flags are not cleared by hardware. In the case of Timer  
2 interrupt, the flags are not cleared by hardware. The hardware LCALL behaves exactly like the soft-  
ware LCALL instruction. This instruction saves the Program Counter contents onto the Stack, but does  
not save the Program Status Word PSW. The PC is reloaded with the vector address of that interrupt  
which caused the LCALL. These address of vector for the different sources are as shown on below  
table. The vector table is not evenly spaced; this is to accommodate future expansions to the device  
family.  
Execution continues from the vectored address till an RETI instruction is executed. On execution of  
the RETI instruction the processor pops the Stack and loads the PC with the contents at the top of the  
stack. The user must take care that the status of the stack is restored to what is was after the hard-  
ware LCALL, if the execution is to return to the interrupted program. The processor does not notice  
anything if the stack contents are modified and will proceed with execution from the address put back  
into PC. Note that a RET instruction would perform exactly the same process as a RETI instruction,  
but it would not inform the Interrupt Controller that the interrupt service routine is completed, and  
would leave the controller still thinking that the service routine is underway.  
Each interrupt source can be individually enabled or disabled by setting or clearing a bit in registers IE.  
The IE register also contains a global disable bit, EA, which disables all interrupts at once.  
Each interrupt source can be individually programmed to one of 2 priority levels by setting or clearing  
bits in the IP registers. An interrupt service routine in progress can be interrupted by a higher priority  
interrupt, but not by another interrupt of the same or lower priority. The highest priority interrupt service  
cannot be interrupted by any other interrupt source. So, if two requests of different priority levels are  
received simultaneously, the request of higher priority level is serviced.  
If requests of the same priority level are received simultaneously, an internal polling sequence deter-  
mines which request is serviced. This is called the arbitration ranking. Note that the arbitration ranking  
is only used to resolve simultaneous requests of the same priority level.  
Publication Release Date: Feb 15, 2011  
- 49 -  
Revision A09  
W78E516D/W78E058D Data Sheet  
Table below summarizes the interrupt sources, flag bits, vector addresses, enable bits, priority bits,  
arbitration ranking, and external interrupt may wake up the CPU from Power Down mode.  
Source  
Flag  
Vector  
address  
Enable bit Flag  
cleared by  
Arbitration  
ranking  
Power-  
down  
wakeup  
External Interrupt 0  
Timer 0 Overflow  
External Interrupt 1  
Timer 1 Overflow  
Serial Port  
IE0  
TF0  
IE1  
TF1  
0003H  
000BH  
0013H  
001BH  
EX0 (IE.0) Hardware,  
software  
1(highest)  
Yes  
ET0 (IE.1) Hardware,  
software  
2
3
4
No  
EX1 (IE.2) Hardware,  
software  
Yes  
No  
ET1 (IE.3) Hardware,  
software  
RI + TI  
TF2  
0023H  
002BH  
ES (IE.4)  
Software  
5
6
No  
No  
Timer 2 Over-  
flow/Match  
ET2 (IE.5) Software  
External Interrupt 2  
XICON  
XICON  
0033H  
003BH  
EX2  
Hardware,  
software  
7
Yes  
Yes  
(XICON.2)  
External Interrupt 3  
EX3  
Hardware,  
software  
8(lowest)  
(XICON.6)  
Table 13- 2 Summary of interrupt sources  
13.4 Interrupt Response Time  
The response time for each interrupt source depends on several factors, such as the nature of the in-  
terrupt and the instruction underway. In the case of external interrupts INT0 and INT1, they are sam-  
pled at S5P2 of every machine cycle and then their corresponding interrupt flags IEx will be set or re-  
set. The Timer 0 and 1 overflow flags are set at C3 of the machine cycle in which overflow has oc-  
curred. These flag values are polled only in the next machine cycle. If a request is active and all three  
conditions are met, then the hardware generated LCALL is executed. This LCALL itself takes four ma-  
chine cycles to be completed. Thus there is a minimum time of five machine cycles between the inter-  
rupt flag being set and the interrupt service routine being executed.  
A longer response time should be anticipated if any of the three conditions are not met. If a higher or  
equal priority is being serviced, then the interrupt latency time obviously depends on the nature of the  
service routine currently being executed. If the polling cycle is not the last machine cycle of the instruc-  
tion being executed, then an additional delay is introduced. The maximum response time (if no other  
interrupt is in service) occurs if the device is performing a write to IE, IP and then executes a MUL or  
DIV instruction.  
13.5 Interrupt Inputs  
Since the external interrupt pins are sampled once each machine cycle, an input high or low should  
hold for at least 6 CPU Clocks to ensure proper sampling. If the external interrupt is high for at least  
- 50 -  
 
 
 
W78E516D/W78E058D Data Sheet  
one machine cycle, and then hold it low for at least one machine cycle. This is to ensure that the tran-  
sition is seen and that interrupt request flag IEn is set. IEn is automatically cleared by the CPU when  
the service routine is called.  
If the external interrupt is level-activated, the external source must hold the request active until the  
requested interrupt is actually generated. If the external interrupt is still asserted when the interrupt  
service routine is completed another interrupt will be generated. It is not necessary to clear the inter-  
rupt flag IEn when the interrupt is level sensitive, it simply tracks the input pin level.  
If an external interrupt is enabled when the W78E516D/W78E058D is put into Power Down or Idle  
mode, the interrupt will cause the processor to wake up and resume operation. Refer to the section on  
Power Reduction Modes for details.  
Publication Release Date: Feb 15, 2011  
- 51 -  
Revision A09  
W78E516D/W78E058D Data Sheet  
14 PROGRAMMABLE TIMERS/COUNTERS  
The W78E516D/W78E058D series have Three 16-bit programmable timer/counters, a machine cycle  
equals 12 or 6 oscillator periods, and it depends on 12T mode or 6T mode that the user configured  
this device.  
14.1 Timer/Counters 0 & 1  
W78E516D/W78E058D has two 16-bit Timer/Counters. Each of these Timer/Counters has two 8 bit  
registers which form the 16 bit counting register. For Timer/Counter 0 they are TH0, the upper 8 bits  
register, and TL0, the lower 8 bit register. Similarly Timer/Counter 1 has two 8 bit registers, TH1 and  
TL1. The two can be configured to operate either as timers, counting machine cycles or as counters  
counting external inputs.  
When configured as a "Timer", the timer counts clock cycles. The timer clock can be programmed to  
be thought of as 1/12 of the system clock. In the "Counter" mode, the register is incremented on the  
falling edge of the external input pin, T0 in case of Timer 0, and T1 for Timer 1. The T0 and T1 inputs  
are sampled in every machine cycle at C4. If the sampled value is high in one machine cycle and low  
in the next, then a valid high to low transition on the pin is recognized and the count register is incre-  
mented. Since it takes two machine cycles to recognize a negative transition on the pin, the maximum  
rate at which counting will take place is 1/24 of the master clock frequency. In either the "Timer" or  
"Counter" mode, the count register will be updated at C3. Therefore, in the "Timer" mode, the recog-  
nized negative transition on pin T0 and T1 can cause the count register value to be updated only in  
the machine cycle following the one in which the negative edge was detected.  
C/T  
The "Timer" or "Counter" function is selected by the "  
" bit in the TMOD Special Function Register.  
Each Timer/Counter has one selection bit for its own; bit 2 of TMOD selects the function for Ti-  
mer/Counter 0 and bit 6 of TMOD selects the function for Timer/Counter 1. In addition each Ti-  
mer/Counter can be set to operate in any one of four possible modes. The mode selection is done by  
bits M0 and M1 in the TMOD SFR.  
14.2 Time-Base Selection  
W78E516D/W78E058D provides users with two modes of operation for the timer. The timers can be  
programmed to operate like the standard 8051 family, counting at the rate of 1/12 of the clock speed.  
This will ensure that timing loops on W78E516D/W78E058D and the standard 8051 can be matched.  
This is the default mode of operation of the W78E516D/W78E058D timers.  
14.2.1 Mode 0  
In Mode 0, the timer/counter is a 13-bit counter. The 13-bit counter consists of THx (8 MSB) and the  
five lower bits of TLx (5 LSB). The upper three bits of TLx are ignored. The timer/counter is enabled  
C/T  
INTx  
when TRx is set and either GATE is 0 or  
is 1. When  
is 0, the timer/counter counts clock  
C/T  
cycles; when  
is 1, it counts falling edges on T0 (Timer 0) or T1 (Timer 1). For clock cycles, the  
time base be 1/12 speed, and the falling edge of the clock increments the counter. When the 13-bit  
value moves from 1FFFh to 0000h, the timer overflow flag TFx is set, and an interrupt occurs if en-  
abled. This is illustrated in next figure below.  
14.2.2 Mode 1  
Mode 1 is similar to Mode 0 except that the counting register forms a 16-bit counter, rather than a 13-  
bit counter. This means that all the bits of THx and TLx are used. Roll-over occurs when the timer  
moves from a count of 0FFFFh to 0000h. The timer overflow flag TFx of the relevant timer is set and if  
- 52 -  
 
 
 
 
 
 
W78E516D/W78E058D Data Sheet  
enabled an interrupt will occur. The selection of the time-base in the timer mode is similar to that in  
Mode 0. The gate function operates similarly to that in Mode 0.  
C/T=TMOD.2  
(C/T=TMOD.6)  
M1, M0=TMOD.1, TMOD.0  
(M1, M0=TMOD.5, TMOD.4)  
Fosc  
1/12  
0
1
00  
0
4
7
0
7
01  
T0=P3.4  
(T1=P3.5)  
TL0  
(TL1)  
TH0  
(TH1)  
TR0=TCON.4  
(TR1=TCON.6)  
Interrupt  
TFx  
TF0  
(TF1)  
GATE=TMOD.3  
(GATE=TMOD.7)  
INT0=P3.2  
(INT1=P3.3)  
Figure 14- 1 Timer/Counters 0 & 1 in Mode 0,1  
14.2.3 Mode 2  
In Mode 2, the timer/counter is in the Auto Reload Mode. In this mode, TLx acts as an 8-bit count reg-  
ister, while THx holds the reload value. When the TLx register overflows from FFh to 00h, the TFx bit  
in TCON is set and TLx is reloaded with the contents of THx, and the counting process continues from  
here. The reload operation leaves the contents of the THx register unchanged. Counting is enabled by  
the TRx bit and proper setting of GATE and INTx . As in the other two modes 0 and 1 mode 2 allows  
counting of clock/12 or pulses on pin Tn.  
C/T=TMOD.2  
(C/T=TMOD.6)  
Fosc  
1/12  
TL0  
(TL1)  
0
1
0
0
7
7
Interrupt  
TFx  
T0=P3.4  
(T1=P3.5)  
TF0  
(TF1)  
TR0=TCON.4  
(TR1=TCON.6)  
TH0  
(TH1)  
GATE=TMOD.3  
(GATE=TMOD.7)  
INT0=P3.2  
(INT1=P3.3)  
Timer/Counter Mode2  
Figure 14- 2 Timer/Counter 0 & 1 in Mode 2  
Publication Release Date: Feb 15, 2011  
Revision A09  
- 53 -  
 
 
W78E516D/W78E058D Data Sheet  
14.2.4 Mode 3  
Mode 3 has different operating methods for the two timer/counters. For timer/counter 1, mode 3 simply  
freezes the counter. Timer/Counter 0, however, configures TL0 and TH0 as two separate 8 bit count  
registers in this mode. The logic for this mode is shown in the figure. TL0 uses the Timer/Counter 0  
C/T  
INT0  
control bits  
, GATE, TR0,  
and TF0. The TL0 can be used to count clock cycles (clock/12) or  
1-to-0 transitions on pin T0 as determined by C/T (TMOD.2). TH0 is forced as a clock cycle counter  
(clock/12) and takes over the use of TR1 and TF1 from Timer/Counter 1. Mode 3 is used in cases  
where an extra 8 bit timer is needed. With Timer 0 in Mode 3, Timer 1 can still be used in Modes 0, 1  
and 2, but its flexibility is somewhat limited. While its basic functionality is maintained, it no longer has  
control over its overflow flag TF1 and the enable bit TR1. Timer 1 can still be used as a timer/counter  
and retains the use of GATE and INT1 pin. In this condition it can be turned on and off by switching it  
out of and into its own Mode 3. It can also be used as a baud rate generator for the serial port.  
C/T=TMOD.2  
Fosc  
1/12  
0
TL0  
0
7
Interrupt  
TF0  
1
T0=P3.4  
TR0=TCON.4  
GATE=TMOD.3  
INT0=P3.2  
TH0  
0
7
Interrupt  
TF1  
TR1=TCON.6  
Figure 14-3 Timer/Counter Mode 3  
14.3 Timer/Counter 2  
Timer/Counter 2 is a 16 bit counter. Timer/Counter 2 is equipped with a capture/reload capability. As  
with the Timer 0 and Timer 1 counters, there exists considerable flexibility in selecting and controlling  
the clock, and in defining the operating mode. The clock source for Timer/Counter 2 may be selected  
for either the external T2 pin (C/T2 = 1) or the crystal oscillator, which is divided by 12 (C/T2 = 0). The  
clock is then enabled when TR2 is a 1, and disabled when TR2 is a 0.  
14.3.1 Capture Mode  
CP / RL2  
The capture mode is enabled by setting the  
bit in the T2CON register to a 1. In the capture  
mode, Timer/Counter 2 serves as a 16 bit up counter. When the counter rolls over from 0FFFFh to  
0000h, the TF2 bit is set, which will generate an interrupt request. If the EXEN2 bit is set, then a nega-  
tive transition of T2EX pin will cause the value in the TL2 and TH2 register to be captured by the  
RCAP2L and RCAP2H registers. This action also causes the EXF2 bit in T2CON to be set, which will  
- 54 -  
 
 
 
 
W78E516D/W78E058D Data Sheet  
also generate an interrupt.  
(RCLK,TCLK,CP/RL2 )= (0,0,1)  
C/T2=T2CON.1  
Fosc  
1/12  
0
T2CON.7  
TL2 TH2  
TF2  
1
T2=P1.0  
Timer2  
Interrupt  
TR2=T2CON.2  
RCAP2L RCAP2H  
T2EX=P1.1  
EXF2  
T2CON.6  
EXEN2=T2CON.3  
Figure 14-4 16-Bit Capture Mode  
14.3.2 Auto-Reload Mode, Counting up  
CP / RL2  
The auto-reload mode as an up counter is enabled by clearing the  
bit in the T2CON regis-  
ter. In this mode, Timer/Counter 2 is a 16 bit up counter. When the counter rolls over from 0FFFFh, a  
reload is generated that causes the contents of the RCAP2L and RCAP2H registers to be reloaded  
into the TL2 and TH2 registers. The reload action also sets the TF2 bit. If the EXEN2 bit is set, then a  
negative transition of T2EX pin will also cause a reload. This action also sets the EXF2 bit in T2CON.  
(RCLK,TCLK,CP/RL2 )= (0,0,0)  
C/T2=T2CON.1  
Fosc  
1/12  
0
T2CON.7  
TL2 TH2  
TF2  
1
T2=P1.0  
TR2=T2CON.2  
Timer2  
Interrupt  
RCAP2L RCAP2H  
EXF2  
T2CON.6  
Figure 14- 5 16-Bit Auto-reload Mode, Counting Up  
Publication Release Date: Feb 15, 2011  
Revision A09  
- 55 -  
 
 
W78E516D/W78E058D Data Sheet  
14.3.3 Baud Rate Generator Mode  
The baud rate generator mode is enabled by setting either the RCLK or TCLK bits in T2CON register.  
While in the baud rate generator mode, Timer/Counter 2 is a 16 bit counter with auto reload when the  
count rolls over from 0FFFFh. However, rolling over does not set the TF2 bit. If EXEN2 bit is set, then  
a negative transition of the T2EX pin will set EXF2 bit in the T2CON register and cause an interrupt  
request.  
RCLK+TCLK=1,CP/RL2 =0  
T im er1  
O verflow  
1/2  
0
1
1/2  
C /T 2=T 2C O N .1  
SM O D =  
P C O N .7  
Fosc  
0
1
T im er2  
O verflow  
R C L K =  
T 2C O N .5  
T L 2  
T H 2  
1
0
0
T 2= P1.0  
R x C lock  
1/16  
1/16  
T C L K =  
T 2C O N .4  
T R 2=T 2C O N .2  
1
T x C lock  
R C A P 2L  
R C A P 2H  
T 2E X = P1.1  
T im er2  
Interrupt  
E X F 2  
T 2C O N .6  
E X E N 2=T 2C O N .3  
Figure 14- 6 Baud Rate Generator Mode  
- 56 -  
 
 
W78E516D/W78E058D Data Sheet  
15 WATCHDOG TIMER  
The Watchdog timer is a free-running timer which can be programmed by the user to serve as a sys-  
tem monitor, a time-base generator or an event timer. It is basically a set of dividers that divide the  
system clock. The divider output is selectable and determines the time-out interval. When the time-out  
occurs a system reset can also be caused if it is enabled. The main use of the Watchdog timer is as a  
system monitor. This is important in real-time control applications. In case of power glitches or electro-  
magnetic interference, the processor may begin to execute errant code. If this is left unchecked the  
entire system may crash. The watchdog time-out selection will result in different time-out values de-  
pending on the clock speed. The Watchdog timer will de disabled on reset. In general, software should  
restart the Watchdog timer to put it into a known state. The control bits that support the Watchdog ti-  
mer are discussed below.  
ENW : Enable watchdog if set.  
CLRW : Clear watchdog timer and Pre-scalar if set. This flag will be cleared automatically  
WIDL : If this bit is set, watch-dog is enabled under IDLE mode. If cleared, watchdog is disabled un-  
der IDLE mode. Default is cleared.  
PS2, PS1, PS0: Watchdog Pre-scalar timer select. Pre-scalar is selected when set PS20 as follows:  
PS2 PS1 PS0  
Pre-scalar select  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2
4
8
16  
32  
64  
128  
256  
The time-out period is obtained using the following equation:  
1
× 214 × Pr e scalar ×1000×12ms (12T mode)  
OSC  
Before Watchdog time-out occurs, the program must clear the 14-bit timer by writing 1 to WDTC.6  
(CLRW). After 1 is written to this bit, the 14-bit timer, Pre-scalar and this bit will be reset on the next  
instruction cycle. The Watchdog timer is cleared on reset.  
Publication Release Date: Feb 15, 2011  
- 57 -  
Revision A09  
 
 
W78E516D/W78E058D Data Sheet  
ENW  
WIDL  
IDLE  
EXTERNAL  
RESET  
INTERNAL  
14- BIT TIMER  
RESET  
1/6  
1/12  
Pre-Scalar  
CLRW  
OSC  
CLEAR  
Figure 15- 1 Watchdog Timer Block Diagram  
Typical Watch-Dog time-out period when OSC = 20 MHz  
PS2 PS1 PS0 Watchdog time-out period  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
19.66 mS  
39.32 mS  
78.64 mS  
157.28 mS  
314.57 mS  
629.14 mS  
1.25 S  
2.50 S  
Table 15- 1 Watch-Dog time-out period  
- 58 -  
W78E516D/W78E058D Data Sheet  
16 SERIAL PORT  
Serial port in this device is a full duplex port. The serial port is capable of synchronous as well as  
asynchronous communication. In Synchronous mode the device generates the clock and operates in a  
half duplex mode. In the asynchronous mode, full duplex operation is available. This means that it can  
simultaneously transmit and receive data. The transmit register and the receive buffer are both ad-  
dressed as SBUF Special Function Register. However any write to SBUF will be to the transmit regis-  
ter, while a read from SBUF will be from the receiver buffer register. The serial port can operate in four  
different modes as described below.  
16.1 MODE 0  
This mode provides synchronous communication with external devices. In this mode serial data is  
transmitted and received on the RXD line. TXD is used to transmit the shift clock. The TxD clock is  
provided by the device whether it is transmitting or receiving. This mode is therefore a half duplex  
mode of serial communication. In this mode, 8 bits are transmitted or received per frame. The LSB is  
transmitted/received first. The baud rate is fixed at 1/12 of the oscillator frequency. This Baud Rate is  
determined by the SM2 bit (SCON.5). When this bit is set to 0, then the serial port runs at 1/12 of the  
clock. This additional facility of programmable baud rate in mode 0 is the only difference between the  
standard 8051 and W78E516D/W78E058D.  
The functional block diagram is shown below. Data enters and leaves the Serial port on the RxD line.  
The TxD line is used to output the shift clock. The shift clock is used to shift data into and out of this  
device and the device at the other end of the line. Any instruction that causes a write to SBUF will start  
the transmission. The shift clock will be activated and data will be shifted out on the RxD pin till all 8  
bits are transmitted. If SM2 = 1, then the data on RxD will appear 1 clock period before the falling  
edge of shift clock on TxD. The clock on TxD then remains low for 2 clock periods, and then goes high  
again. If SM2 = 0, the data on RxD will appear 3 clock periods before the falling edge of shift clock on  
TxD. The clock on TxD then remains low for 6 clock periods, and then goes high again. This ensures  
that at the receiving end the data on RxD line can either be clocked on the rising edge of the shift  
clock on TxD or latched when the TxD clock is low.  
Publication Release Date: Feb 15, 2011  
- 59 -  
Revision A09  
 
 
 
W78E516D/W78E058D Data Sheet  
Transmit Shift Register  
Write to  
SBUF  
Internal  
Data Bus  
PARIN  
LOAD SOUT  
Fosc  
1/12  
RXD  
P3.0 Alternate  
Output Function  
CLOCK  
1/4  
TX START  
TX CLOCK  
TX SHIFT  
TI  
SM2  
0
1
Serial Interrupt  
RI  
RX CLOCK  
TXD  
P3.1 Alternate  
Output Function  
SHIFT CLOCK  
RI  
REN  
LOAD SBUF  
RX SHIFT  
TX START  
Read SBUF  
Serial Controllor  
CLOCK  
Internal  
SBUF  
PAROUT  
Data Bus  
RXD  
SIN  
P3.0 Alternate  
Input Function  
Receive Shift Register  
Figure 16- 1 Serial port mode 0  
The TI flag is set high in S6P2 following the end of transmission of the last bit. The serial port will re-  
ceive data when REN is 1 and RI is zero. The shift clock (TxD) will be activated and the serial port will  
latch data on the rising edge of shift clock. The external device should therefore present data on the  
falling edge on the shift clock. This process continues till all the 8 bits have been received. The RI flag  
is set in S6P2 following the last rising edge of the shift clock on TxD. This will stop reception, till the RI  
is cleared by software.  
16.2 MODE 1  
In Mode 1, the full duplex asynchronous mode is used. Serial communication frames are made up of  
10 bits transmitted on TXD and received on RXD. The 10 bits consist of a start bit (0), 8 data bits (LSB  
first), and a stop bit (1). On receive mode, the stop bit goes into RB8 in the SFR SCON. The baud rate  
in this mode is variable. The serial baud can be programmed to be 1/16 or 1/32 of the Timer 1 over-  
flow. Since the Timer 1 can be set to different reload values, a wide variation in baud rates is possible.  
Transmission begins with a write to SBUF. The serial data is brought out on to TxD pin at S6P2 follow-  
ing the first roll-over of divide by 16 counter. The next bit is placed on TxD pin at S6P2 following the  
next rollover of the divide by 16 counter. Thus the transmission is synchronized to the divide by 16  
counters and not directly to the write to SBUF signal. After all 8 bits of data are transmitted, the stop  
bit is transmitted. The TI flag is set in the S6P2 state after the stop bit has been put out on TxD pin.  
This will be at the 10th rollover of the divide by 16 counters after a write to SBUF.  
Reception is enabled only if REN is high. The serial port actually starts the receiving of serial data,  
with the detection of a falling edge on the RxD pin. The 1-to-0 detector continuously monitors the RxD  
line, sampling it at the rate of 16 times the selected baud rate. When a falling edge is detected, the  
divide by 16 counters is immediately reset. This helps to align the bit boundaries with the rollovers of  
the divide by 16 counters.  
- 60 -  
 
 
W78E516D/W78E058D Data Sheet  
The 16 states of the counter effectively divide the bit time into 16 slices. The bit detection is done on a  
best of three basie. The bit detector samples the RxD pin, at the 8th, 9th and 10th counter states. By  
using a majority 2 of 3 voting system, the bit value is selected. This is done to improve the noise rejec-  
tion feature of the serial port. If the first bit detected after the falling edge of RxD pin is not 0, then this  
indicates an invalid start bit, and the reception is immediately aborted. The serial port again looks for a  
falling edge in the RxD line. If a valid start bit is detected, then the rest of the bits are also detected  
and shifted into the SBUF.  
After shifting in 8 data bits, there is one more shift to do, after which the SBUF and RB8 are loaded  
and RI is set. However certain conditions must be met before the loading and setting of RI can be  
done.  
1. RI must be 0 and  
2. Either SM2 = 0, or the received stop bit = 1.  
If these conditions are met, then the stop bit goes to RB8, the 8 data bits go into SBUF and RI is set.  
Otherwise the received frame may be lost. After the middle of the stop bit, the receiver goes back to  
looking for a 1-to-0 transition on the RxD pin.  
Transmit Shift Register  
Timer 1  
Timer 2  
Overflow  
Overflow  
1
0
STOP  
Internal  
Data Bus  
PARIN  
Write to  
SBUF  
SOUT  
TXD  
START  
LOAD  
1/2  
CLOCK  
SMOD  
0
1
TX START  
TX CLOCK  
0
1
1
TX SHIFT  
TCLK  
1/16  
1/16  
0
RCLK  
Serial  
Controllor  
TI  
Serial Interrupt  
RX CLOCK  
RI  
LOAD SBUF  
RX SHIFT  
SAMPLE  
1-To-0  
DETECTOR  
TX START  
Read SBUF  
Internal  
Data Bus  
SBUF  
RB8  
CLOCK PAROUT  
BIT  
DETECTOR  
RXD  
SIN  
D8  
Receive Shift Register  
Figure 16- 2 Serial port mode 1  
16.3 MODE 2  
This mode uses a total of 11 bits in asynchronous full-duplex communication. The functional descrip-  
tion is shown in the figure below. The frame consists of one start bit (0), 8 data bits (LSB first), a pro-  
Publication Release Date: Feb 15, 2011  
- 61 -  
Revision A09  
 
 
W78E516D/W78E058D Data Sheet  
grammable 9th bit (TB8) and a stop bit (1). The 9th bit received is put into RB8. The baud rate is pro-  
grammable to 1/32 or 1/64 of the oscillator frequency, which is determined by the SMOD bit in PCON  
SFR. Transmission begins with a write to SBUF. The serial data is brought out on to TxD pin at S6P2  
following the first roll-over of the divide by 16 counter. The next bit is placed on TxD pin at S6P2 fol-  
lowing the next rollover of the divide by 16 counter. Thus the transmission is synchronized to the di-  
vide by 16 counters, and not directly to the write to SBUF signal. After all 9 bits of data are transmitted,  
the stop bit is transmitted. The TI flag is set in the S6P2 state after the stop bit has been put out on  
TxD pin. This will be at the 11th rollover of the divide by 16 counters after a write to SBUF. Reception  
is enabled only if REN is high. The serial port actually starts the receiving of serial data, with the de-  
tection of a falling edge on the RxD pin. The 1-to-0 detector continuously monitors the RxD line, sam-  
pling it at the rate of 16 times the selected baud rate. When a falling edge is detected, the divide by 16  
counters is immediately reset. This helps to align the bit boundaries with the rollovers of the divide by  
16 counters. The 16 states of the counter effectively divide the bit time into 16 slices. The bit detection  
is done on a best of three basis. The bit detector samples the RxD pin, at the 8th, 9th and 10th coun-  
ter states. By using a majority 2 of 3 voting system, the bit value is selected. This is done to improve  
the noise rejection feature of the serial port.  
Transmit Shift Register  
1
TB8  
STOP  
D8  
Fosc/2  
Internal  
PARIN  
Write to  
SBUF  
Data Bus  
TXD  
SOUT  
0
START  
LOAD  
CLOCK  
1/2  
TX START  
TX CLOCK  
TX SHIFT  
SMOD 0  
1
1/16  
1/16  
Serial  
Controllor  
TI  
Serial Interrupt  
RX CLOCK  
RI  
LOAD SBUF  
RX SHIFT  
SAMPLE  
1-To-0  
DETECTOR  
TX START  
Read SBUF  
Internal  
Data Bus  
SBUF  
RB8  
CLOCK PAROUT  
BIT  
DETECTOR  
RXD  
SIN  
D8  
Receive Shift Register  
Figure 16- 3 Serial port mode 2  
If the first bit detected after the falling edge of RxD pin, is not 0, then this indicates an invalid start bit,  
and the reception is immediately aborted. The serial port again looks for a falling edge in the RxD line.  
If a valid start bit is detected, then the rest of the bits are also detected and shifted into the SBUF. Af-  
ter shifting in 9 data bits, there is one more shift to do, after which the SBUF and RB8 are loaded and  
RI is set. However certain conditions must be met before the loading and setting of RI can be done.  
1. RI must be 0 and  
- 62 -  
W78E516D/W78E058D Data Sheet  
2. Either SM2 = 0, or the received stop bit = 1.  
If these conditions are met, then the stop bit goes to RB8, the 8 data bits go into SBUF and RI is set.  
Otherwise the received frame may be lost. After the middle of the stop bit, the receiver goes back to  
looking for a 1-to-0 transition on the RxD pin.  
MODE 3  
This mode is similar to Mode 2 in all respects, except that the baud rate is programmable. The user  
must first initialize the Serial related SFR SCON before any communication can take place. This in-  
volves selection of the Mode and baud rate. The Timer 1 should also be initialized if modes 1 and 3  
are used. In all four modes, transmission is started by any instruction that uses SBUF as a destination  
register. Reception is initiated in Mode 0 by the condition RI = 0 and REN = 1. This will generate a  
clock on the TxD pin and shift in 8 bits on the RxD pin. Reception is initiated in the other modes by the  
incoming start bit if REN = 1. The external device will start the communication by transmitting the start  
bit.  
Transmit Shift Register  
Timer 1  
Overflow  
Timer 2  
Overflow  
1
STOP  
D8  
TB8  
Internal  
Data Bus  
PARIN  
Write to  
SBUF  
TXD  
SOUT  
0
START  
LOAD  
1/2  
SMOD  
0
1
CLOCK  
0
1
1
TX START  
TX CLOCK  
TX SHIFT  
TCLK  
1/16  
0
RCLK  
Serial  
Controllor  
1/16  
TI  
Serial Interrupt  
RX CLOCK  
RI  
SAMPLE  
LOAD SBUF  
RX SHIFT  
1-To-0  
DETECTOR  
TX START  
Read SBUF  
Internal  
Data Bus  
SBUF  
RB8  
CLOCK PAROUT  
BIT  
DETECTOR  
RXD  
SIN  
D8  
Receive Shift Register  
Figure 15- 4 Serial port mode 3  
SM0  
SM1  
Mode  
Type  
Baud Clock  
Frame  
Size  
Start  
Stop  
9th bit  
Function  
Bit  
No  
1
Bit  
No  
1
0
0
0
1
0
1
Synch.  
4 or 12 TCLKS 8 bits  
None  
Asynch.  
Timer 1 or 2  
10 bits  
None  
Publication Release Date: Feb 15, 2011  
Revision A09  
- 63 -  
W78E516D/W78E058D Data Sheet  
1
1
0
1
2
3
Asynch.  
Asynch.  
32 or 64  
TCLKS  
11 bits  
11 bits  
1
1
1
1
0, 1  
0, 1  
Timer 1 or 2  
Table 16- 1 Serial Ports Modes  
- 64 -  
W78E516D/W78E058D Data Sheet  
17 F04KBOOT MODE (BOOT FROM 4K BYTES OF LDROM )  
The W78E516D/W78E058D boots from APROM program memory(64K/32K bytes) by default at power  
on reset or reset-pin reset. On some occasions, user can force the W78E516D/W78E058D booting  
from the LDROM program memory (4K bytes) at power on reset or external reset. The settings for this  
special mode as follow.  
F04KBOOT MODE  
P4.3  
X
P2.7  
L
P2.6  
L
Mode  
FO4KBOOT  
FO4KBOOT  
L
X
X
The Reset Timing For Entering  
F04KBOOT Mode  
P2.7  
Hi-Z  
Hi-Z  
P2.6  
RST  
300ms  
10ms  
T h e R e s e t T im in g F o r  
E n te rin g F 0 4 K B O O T M o d e  
H i-Z  
P 4 .3  
R S T  
3 0 0 m s  
1 0 m s  
NOTE1: The possible situation that you need to enter F04KBOOT mode is when the APROM program  
can not run normally and W78E516D/W78E058D can not jump to LDROM to execute on chip pro-  
Publication Release Date: Feb 15, 2011  
- 65 -  
Revision A09  
 
 
W78E516D/W78E058D Data Sheet  
gramming function. Then you can use this F04KBOOT mode to force the W78E516D/W78E058D  
jump to LDROM and run on chip programming procedure. When you design your system, you can  
connect the pins P26, P27 to switches or jumpers. For example in a CD ROM system, you can con-  
nect the P26 and P27 to PLAY and EJECT buttons on the panel. When the APROM program is fail to  
execute the normal application program. User can press both two buttons at the same time and then  
switch on the power of the personal computer to force the W78E516D/W78E058D to enter the  
F04KBOOT mode. After power on of personal computer, you can release both PLAY and EJECT but-  
ton.  
NOTE2: In application system design, user must take care the P2, P3, ALE, /EA and /PSEN pin value  
at reset to avoid W78E516D/W78E058D entering the programming mode or F04KBOOT mode in  
normal operation.  
- 66 -  
W78E516D/W78E058D Data Sheet  
18 ISP(IN-SYSTEM PROGRAMMING)  
ISP is the ability of programmable MCU to be programmed while F/W code in AP-ROM or LD-ROM  
(ISP work voltage 3.3-5.5V).  
The W78E058D/516D equips one 32K byte of main ROM bank for application program (called  
APROM) and one 4K byte of auxiliary ROM bank for loader program (called LDROM). In the normal  
operation, the microcontroller executes the code in the APROM. If the content of APROM needs to be  
modified, the W78E058D/516D allows user to activate the In-System Programming (ISP) mode by  
setting the CHPCON register. The CHPCON is read-only by default, software must write two spe-  
cific values 87H, then 59H sequentially to the CHPENR register to enable the CHPCON write  
attribute. Writing CHPENR register with the values except 87H and 59H will close CHPCON reg-  
ister write attribute. The W78E058D/516D achieves all in-system programming operations including  
enter/exit ISP Mode, program, erase, read ... etc, during device in the idle mode. Setting the bit  
CHPCON.0 the device will enter in-system programming mode after a wake-up from idle mode. Be-  
cause device needs proper time to complete the ISP operations before awaken from idle mode, soft-  
ware may use timer interrupt to control the duration for device wake-up from idle mode. To perform  
ISP operation for revising contents of APROM, software located at APROM setting the CHPCON reg-  
ister then enter idle mode, after awaken from idle mode the device executes the corresponding inter-  
rupt service routine in LDROM. Because the device will clear the program counter while switching  
from APROM to LDROM, the first execution of RETI instruction in interrupt service routine will jump to  
00H at LDROM area. The device offers a software reset for switching back to APROM while the con-  
tent of APROM has been updated completely. Setting CHPCON register bit 0, 1 and 7 to logic-1  
will result a software reset to reset the CPU. The software reset serves as a external reset. This in-  
system programming feature makes the job easy and efficient in which the application needs to up-  
date firmware frequently. In some applications, the in-system programming feature make it possible to  
easily update the system firmware without opening the chassis.  
SFRAH, SFRAL: The objective address of on-chip ROM in the in-system programming mode.  
SFRAH contains the high-order byte of address, SFRAL contains the low-order  
byte of address.  
SFRFD: The programming data for on-chip ROM in programming mode.  
SFRCN: The control byte of on-chip ROM programming mode.  
SFRCN (C7)  
BIT  
NAME  
FUNCTION  
7
-
Reserve.  
On-chip ROM bank select for in-system programming.  
0: 32K/64K bytes ROM bank is selected as destination for re-  
programming.  
6
WFWIN  
1: 4K bytes ROM bank is selected as destination for re-programming.  
5
4
OEN  
CEN  
ROM output enable.  
ROM chip enable.  
3, 2, 1, 0  
CTRL [3:0] The flash control signals  
Publication Release Date: Feb 15, 2011  
Revision A09  
- 67 -  
 
 
W78E516D/W78E058D Data Sheet  
MODE  
WFWIN  
OEN  
CEN  
CTRL<3:0>  
SFRAH, SFRAL  
SFRFD  
Erase 32KB/64KB  
APROM  
0
1
0
0010  
X
X
Program 32KB/64KB  
APROM  
0
0
1
0
0
0
0001  
0000  
Address in  
Address in  
Data in  
Read 32KB/64KB  
APROM  
Data out  
Erase 4KB LDROM  
Program 4KB LDROM  
Read 4KB LDROM  
1
1
1
1
1
0
0
0
0
0010  
0001  
0000  
X
X
Address in  
Address in  
Data in  
Data out  
- 68 -  
W78E516D/W78E058D Data Sheet  
The Algorithm of In-System Program m ing  
Part 1:APR O M procedure  
of entering In-System  
Program m ing M ode  
STA R T  
Enter In-System  
Program m ing M ode ?  
(conditions depend on user's  
application)  
N o  
Y es  
Setting control registers  
M O V C H PEN R,#87H  
M O V C H PEN R,#59H  
M O V CH PCO N ,#03H  
Execute the norm al application  
program  
Setting Tim er (about 1.5us) and  
enable tim er interrupt  
EN D  
Start Tim er and enter idle M ode.  
( CPU w ill be w akened from idle m ode by  
tim er interrupt, then enter In-System  
Program m ing m ode)  
CPU w ill be w akened by interrupt and re-  
boot from 4K B LD RO M to execute the  
loader program .  
G o  
Publication Release Date: Feb 15, 2011  
Revision A09  
- 69 -  
W78E516D/W78E058D Data Sheet  
Part 2: 4KB LDROM  
Procedure of Updating  
the APROM  
Go  
Timer Interrupt Service  
Routine:  
Stop Timer & disable interrupt  
PGM  
Yes  
Is F04KBOOT Mode?  
(CHPCON.7=1)  
Yes  
End of Programming ?  
N
o
No  
Reset the CHPCON Register:  
MOV CHPENR,#87H  
Setting Timer and enable  
Timer interrupt for wake-up .  
(150us for program operation)  
MOV CHPENR,#59H  
MOV CHPCON,#03H  
Software reset CPU and  
re-boot from the 64KB  
APROM.  
Get the parameters of new  
code (Address and data bytes)  
through I/O ports, UART or  
Setting Timer and enable  
Timer interrupt for wake-up .  
(15ms for erasing operation)  
MOV CHPENR,#87H  
other interfaces.  
MOV CHPENR,#59H  
MOV CHPCON,#83H  
Setting erase operation mode:  
MOV SFRCN,#22H  
(Erase 64KB APROM)  
Setting control registers for  
programming:  
MOV SFRAH,#ADDRESS_H  
MOV SFRAL,#ADDRESS_L  
MOV SFRFD,#DATA  
Start Timer and enter IDLE  
Mode.  
MOV SFRCN,#21H  
(Erasing...)  
End of erase  
operation. CPU will  
be wakened by  
Timer interrupt.  
END  
Executing new code from  
address 00H in the 64KB  
APROM.  
PGM  
Note: Setting the CHPCON from 00H to 03H will clear the program counter (PC).  
19 CONFIG BITS  
During the on-chip Flash EPROM operation mode, the Flash EPROM can be programmed and veri-  
fied repeatedly. Until the code inside the Flash EPROM is confirmed OK, the code can be protected.  
The protection of Flash EPROM and those operations on it are described below.  
The W78E516D/W78E058D has several Special Setting Registers, including the Security Register  
and Company/Device ID Registers, which can not be accessed in programming mode. Those bits of  
the Security Registers can not be changed once they have been programmed from high to low. They  
- 70 -  
 
 
W78E516D/W78E058D Data Sheet  
can only be reset through erase-all operation. The contents of the Company ID and Device ID regis-  
ters have been set in factory.  
B 6  
B 7  
B 5  
B 4  
B 3 B 2 B 1 B 0  
B 0 : L o ck b it  
lo g ic 0 : E n a b le , a ll o f th e A P R O M /L D R O M /C o n fig  
B its w ill b e lo cke d .  
B 1 : M O V C in h ib it  
lo g ic 0 : T h e M O V C in stru ctio n in e xte rn a l m e m o ry  
ca n n o t a cce ss th e co d e in in te rn a l m e m o ry  
lo g ic 1 : n o re strictio n .  
B 5 : M a ch in e C ycle S e le ct  
lo g ic 0 : 6 T  
lo g ic 1 : 1 2 T  
B 7 : O scilla to r C o n tro l  
lo g ic 0 : 1 /2 g a in  
lo g ic 1 : F u ll g a in  
D e fa u lt 1 fo r a ll se cu rity b its .  
R e se rve d b its m u st b e ke p t in lo g ic 1 .  
C o n fig B its  
Bit 0: Lock bits  
This bit is used to protect the customer's program code in the W78E516D/W78E058D. It may be set  
after the programmer finishes the programming and verifies sequence. Once these bits are set to logic  
0, both the FLASH data and Special Setting Registers can not be accessed again.  
Bit 1: Movc inhibit  
This bit is used to restrict the accessible region of the MOVC instruction. It can prevent the MOVC in-  
struction in external program memory from reading the internal program code. When this bit is set to  
logic 0, a MOVC instruction in external program memory space will be able to access code only in the  
external memory, not in the internal memory. A MOVC instruction in internal program memory space  
will always be able to access the ROM data in both internal and external memory. If this bit is logic 1,  
there are no restrictions on the MOVC instruction.  
Bit 5: Machine Cycle Select  
This bit is select MCU core, default value is logic 1(12T). Once these bits are set to logic 0, the MCU  
core is 6T.  
Bit 7: Crystal Select  
If this bit is set to logic 0 (24 MHz), the EMI effect will be reduce. If this bit is set to logic 1 (40 MHz ),  
the W78E516D/W78E058D could to use 40MHz crystal, but the EMI effect is major. So we provide the  
option bit which could be chose by customer.  
Publication Release Date: Feb 15, 2011  
- 71 -  
Revision A09  
W78E516D/W78E058D Data Sheet  
20 TYPICAL APPLICATION CIRCUITS  
External Program Memory and Crystal  
VCC  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
31  
19  
39  
38  
37  
36  
35  
34  
33  
32  
3
4
7
2
5
6
9
12  
15  
16  
19  
10  
9
8
7
6
5
4
3
25  
24  
21  
23  
2
26  
27  
1
11  
12  
13  
15  
16  
17  
18  
19  
EA  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
C1  
C2  
CRYSTAL  
XTAL1  
8
13  
14  
17  
18  
R
18  
9
XTAL2  
RST  
A8  
A9  
A8  
A9  
RST  
A8  
A9  
21  
22  
23  
24  
25  
26  
27  
28  
1
11  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
OC  
G
A10  
A11  
A12  
A13  
A14  
A15  
A10  
A11  
A12  
A13  
A14  
A15  
A10  
A11  
A12  
A13  
A14  
A15  
12  
13  
14  
15  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
VCC  
74373  
P3.5/T1  
10uF  
8.2K  
1
2
3
4
5
6
7
8
P1.0/T2  
P1.1/T2EX  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
20  
22  
CE  
OE  
16  
17  
29  
30  
11  
10  
WR/P3.6  
RD/P3.7  
PSEN  
ALE  
TXD/P3.1  
RXD/P3.0  
64KB ROM  
PSEN  
ALE  
W78E516DDG-40DIP  
or  
W78E058DDG-40DIP  
Figure A  
Expanded External Data Memory and Oscillator  
VCC  
VCC  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
AD0  
31  
19  
39  
38  
37  
36  
35  
34  
33  
32  
3
4
7
2
5
6
9
12  
11  
10  
9
8
7
6
5
27  
26  
23  
25  
4
13  
14  
15  
17  
18  
19  
20  
21  
EA  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
D0  
Q0  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
D0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Oscillator  
XTAL1  
8
13  
14  
17  
18  
12  
15  
16  
19  
18  
9
XTAL2  
RST  
A8  
A9  
RST  
A8  
A9  
21  
22  
23  
24  
25  
26  
27  
28  
1
11  
VCC  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
OC  
G
22  
30  
24  
29  
A10  
A11  
A12  
A13  
A14  
A15  
CS1  
CS2  
OE  
A10  
A11  
A12  
A13  
A14  
A15  
12  
13  
14  
15  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
VCC  
74373  
28  
3
31  
WE  
P3.5/T1  
10uF  
1
2
3
4
5
6
7
8
P1.0/T2  
P1.1/T2EX  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
64KB RAM  
/WR  
/RD  
16  
17  
29  
30  
11  
10  
WR/P3.6  
RD/P3.7  
PSEN  
ALE  
TXD/P3.1  
RXD/P3.0  
8.2K  
ALE  
W78E516DDG-40DIP  
or  
W78E058DDG-40DIP  
Figure B  
- 72 -  
 
 
W78E516D/W78E058D Data Sheet  
21 ELECTRICAL CHARACTERISTICS  
21.1 Absolute Maximum Ratings  
SYMBOL  
PARAMETER  
Min  
MAX  
5.5  
UNIT  
V
DC Power Supply  
Input Voltage  
2.4  
VDDVSS  
VIN  
VSS-0.3  
-40  
VDD+0.3  
+85  
V
Operating Temperature  
TA  
°C  
Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely af-  
fects the lift and reliability of the device.  
Publication Release Date: Feb 15, 2011  
- 73 -  
Revision A09  
 
 
 
W78E516D/W78E058D Data Sheet  
21.2 D.C. ELECTRICAL CHARACTERISTICS  
TA=-40~+85, VDD=2.4V~5.5V, VSS=0V  
*1  
Sym  
Parameter  
Test Condition  
Min  
Max  
Unit  
Typ  
Input Low Voltage  
0.2VDD-  
0.1  
2.4 < VDD < 5.5V  
-0.5  
V
VIL  
(Ports 0~4, /EA,  
XTAL1, RST)  
Input High Voltage  
(Ports 0~4, /EA)  
VDD+  
0.5  
0.2VDD  
+0.9  
2.4 < VDD < 5.5V  
V
V
VIH  
Input High Voltage  
(XTAL1, RST)  
VDD+  
0.5  
2.4 < VDD < 5.5V  
0.7VDD  
VIH1  
*3,*4  
*4  
Output Low Voltage  
VDD=4.5V, IOL= 12.0mA  
0.4  
V
V
VOL  
(Ports 0~4, ALE,  
/PSEN)  
*3,*4  
VDD=2.4V, IOL= 8.0mA  
VDD=4.5V, IOH= -300μA  
Output High Voltage  
(Ports 1~4)  
2.4  
2.0  
VOH1  
*4  
VDD=2.4V, IOH= -20μA  
Output High Voltage  
*4  
*4  
VDD=4.5V, IOH= -8.0mA  
VDD=2.4V, IOH= -2.0mA  
2.4  
2.0  
(Ports 0 & 2 in exter-  
nal bus mode, ALE,  
/PSEN)  
V
VOH2  
Logical 0 Input Cur-  
rent  
VDD=5.5V, VIN=0.4V  
-45  
-510  
±1.0  
-50  
-650  
±10  
IIL  
ITL  
ILI  
μA  
μA  
μA  
(Ports 1~4)  
Logical 1-to-0 Tran-  
sition Current (Ports  
1~4)  
*2  
VDD=5.5V, VIN=2.0V  
Input Leakage Cur-  
rent  
0 < VIN < VDD+0.5  
(Port 0)  
*5  
Active mode  
10.4  
18.2  
3.6  
@12MHz, VDD=5.0V  
@40MHz, VDD=5.0V  
@12MHz, VDD=3.3V  
@20MHz, VDD=3.3V  
mA  
4.4  
Power Supply Cur-  
rent  
Idle mode  
IDD  
@12MHz, VDD=5.0V  
@40MHz, VDD=5.0V  
@12MHz, VDD=3.3V  
@20MHz, VDD=3.3V  
3.4  
10.3  
1.3  
mA  
1.9  
Power-down mode  
<1  
50  
μA  
- 74 -  
 
 
W78E516D/W78E058D Data Sheet  
RST-pin Internal  
Pull-down Resistor  
KΩ  
2.4 < VDD < 5.5V  
30  
350  
RRST  
Note:  
*1: Typical values are not guaranteed. The values listed are tested at room temperature and based on  
a limited number of samples.  
*2: Pins of ports 1~4 source a transition current when they are being externally driven from 1 to 0.  
The transition current reaches its maximum value when VIN is approximately 2V.  
*3: Under steady state (non-transient) conditions, IOL must be externally limited as follows:  
Maximum IOL per port pin: 20mA  
Maximum IOL per 8-bit port: 40mA  
Maximum total IOL for all outputs: 100mA  
*4: If IOH exceeds the test condition, VOH will be lower than the listed specification.  
If IOL exceeds the test condition, VOL will be higher than the listed specification.  
*5: Tested while CPU is kept in reset state and EA=H, Port0=H.  
Voltage  
4.5-5.5V  
4.5-5.5V  
2.4V  
Max. Frequency  
40MHz  
6T/12T mode  
Note  
12T  
6T  
20MHz  
20MHz  
12T  
6T  
2.4V  
10MHz  
Frequency VS Voltage Table  
21.3 AC CHARACTERISTICS  
The AC specifications are a function of the particular process used to manufacture the part, the ratings  
of the I/O buffers, the capacitive load, and the internal routing capacitance. Most of the specifications  
can be expressed in terms of multiple input clock periods (TCP), and actual parts will usually experi-  
ence less than a ±20 nS variation. The numbers below represent the performance expected from a 0.6  
micron CMOS process when using 2 and 4 mA output buffers.  
Clock Input Waveform  
XTAL1  
TCH  
TCL  
FOP,  
TCP  
PARAMETER  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
NOTES  
Operating Speed  
Fop  
4
-
40  
MHz  
1
Publication Release Date: Feb 15, 2011  
Revision A09  
- 75 -  
 
 
W78E516D/W78E058D Data Sheet  
Clock Period  
Clock High  
Clock Low  
TCP  
Tch  
Tcl  
25  
10  
10  
-
-
-
-
-
-
nS  
nS  
nS  
2
3
3
Notes:  
1. The clock may be stopped indefinitely in either state.  
2. The TCP specification is used as a reference in other specifications.  
3. There are no duty cycle requirements on the XTAL1 input.  
Program Fetch Cycle  
PARAMETER  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
NOTES  
-
-
nS  
4
TAAS  
1 TCP-Δ  
Address Valid to ALE Low  
Address Hold from ALE Low  
-
-
-
-
nS  
nS  
1, 4  
4
TAAH  
TAPL  
1 TCP-Δ  
1 TCP-Δ  
ALE Low to PSEN Low  
PSEN Low to Data Valid  
Data Hold after PSEN High  
-
-
-
-
nS  
nS  
nS  
2
3
TPDA  
TPDH  
TPDZ  
2 TCP  
1 TCP  
0
0
1 TCP  
Data Float after PSEN High  
ALE Pulse Width  
-
-
nS  
nS  
4
4
TALW  
TPSW  
2 TCP-Δ  
3 TCP-Δ  
2 TCP  
3 TCP  
PSEN Pulse Width  
Notes:  
1. P0.0P0.7, P2.0P2.7 remain stable throughout entire memory cycle.  
2. Memory access time is 3 TCP.  
3. Data have been latched internally prior to PSEN going high.  
4. "Δ" (due to buffer driving delay and wire loading) is 20 nS.  
Data Read Cycle  
PARAMETER  
ALE Low to RD Low  
RD Low to Data Valid  
Data Hold from RD High  
Data Float from RD High  
RD Pulse Width  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
NOTES  
-
nS  
1, 2  
TDAR  
3 TCP-Δ  
3 TCP+Δ  
-
-
nS  
nS  
nS  
nS  
1
TDDA  
TDDH  
TDDZ  
TDRD  
4 TCP  
2 TCP  
2 TCP  
-
0
0
-
-
2
6 TCP-Δ  
6 TCP  
Notes:  
1. Data memory access time is 8 TCP.  
2. "Δ" (due to buffer driving delay and wire loading) is 20 nS.  
Data Write Cycle  
ITEM  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
-
nS  
TDAW  
TDAD  
TDWD  
TDWR  
3 TCP-Δ  
3 TCP+Δ  
ALE Low to WR Low  
Data Valid to WR Low  
Data Hold from WR High  
WR Pulse Width  
-
-
-
-
nS  
nS  
nS  
1 TCP-Δ  
1 TCP-Δ  
6 TCP-Δ  
-
6 TCP  
Note: "Δ" (due to buffer driving delay and wire loading) is 20 nS.  
- 76 -  
W78E516D/W78E058D Data Sheet  
Port Access Cycle  
PARAMETER  
SYMBOL  
MIN.  
1 TCP  
0
TYP.  
MAX.  
UNIT  
-
-
nS  
TPDS  
Port Input Setup to ALE Low  
Port Input Hold from ALE Low  
Port Output to ALE  
-
-
-
-
nS  
nS  
TPDH  
TPDA  
1 TCP  
Note: Ports are read during S5P2, and output data becomes available at the end of S6P2. The timing data are referenced to  
ALE, since it provides a convenient reference.  
21.4 TIMING waveforms  
21.4.1 Program Fetch Cycle  
S1  
S2  
S3  
S4  
S5  
S6  
S1  
S2  
S3  
S4  
S5  
S6  
XTAL1  
ALE  
T
ALW  
T
APL  
PSEN  
T
PSW  
T
AAS  
PORT 2  
PORT 0  
T
PDA  
T
AAH  
T
T
PDZ  
PDH,  
A0-A7  
A0-A7  
Code  
A0-A7  
Code  
Data  
Data  
A0-A7  
Publication Release Date: Feb 15, 2011  
Revision A09  
- 77 -  
 
 
 
W78E516D/W78E058D Data Sheet  
21.4.2 Data Read Cycle  
S4  
S5  
S6  
S1  
S2  
S3  
S4  
S5  
S6  
S1  
S2  
S3  
XTAL1  
ALE  
PSEN  
PORT 2  
A8-A15  
DATA  
A0-A7  
PORT 0  
RD  
T
T
DDA  
DAR  
T
T
DDZ  
DDH,  
T
DRD  
21.4.3 Data Write Cycle  
S4  
S5  
S6  
S1  
S2  
S3  
S4  
S5  
S6  
S1  
S2  
S3  
XTAL1  
ALE  
PSEN  
A8-A15  
PORT 2  
PORT 0  
WR  
A0-A7  
DATA OUT  
T DWD  
TDAD  
T DWR  
T DAW  
- 78 -  
 
 
 
W78E516D/W78E058D Data Sheet  
21.4.4 Port Access Cycle  
S5  
S6  
S1  
XTAL1  
ALE  
TPDS  
TPDH  
T PDA  
DATA OUT  
PORT  
INPUT  
SAMPLE  
21.4.5 Reset Pin Access Cycle  
65536 crystal clock  
12 Crystal Clock = 1 Machine Cycle  
Crystal  
Clock  
ALE  
VDD  
Power  
~0.7V  
~2.0V  
VSS  
POF  
Reset  
Pin  
24 crystal clock  
Internal  
Reset  
1 = reset state  
0 = cpu free running  
Publication Release Date: Feb 15, 2011  
Revision A09  
- 79 -  
 
 
 
W78E516D/W78E058D Data Sheet  
22 PACKAGE DIMENSIONS  
22.1 40-pin DIP  
D
40  
21  
1
E
20  
1
E
S
c
2
1
Base Plane  
A
A
L
A
Seating Plane  
B
e1  
eA  
α
B1  
Dimension in mm  
Symbol Dimension in inch  
Nom  
Nom  
Max  
Min  
Max Min  
0.210  
5.33  
A
0.010  
0.150  
0.25  
1
A
0.155 0.160  
3.81 3.94 4.06  
0.41 0.46 0.56  
1.22 1.27 1.37  
2
A
0.016 0.018  
0.022  
0.054  
B
B
c
0.050  
0.048  
0.008  
1
0.20  
0.36  
52.58  
15.49  
13.97  
0.010 0.014  
2.055 2.070  
0.25  
52.20  
15.24  
13.84  
D
E
0.610  
0.590 0.600  
14.99  
13.72  
0.540  
0.545  
0.550  
0.110  
1
E
1
e
0.090 0.100  
2.29 2.54 2.79  
3.05  
0
0.140  
15  
3.30  
0.120  
0
0.130  
3.56  
15  
L
α
A
17.02  
2.29  
e
0.630  
0.670 16.00  
0.090  
0.650  
16.51  
S
- 80 -  
 
 
 
W78E516D/W78E058D Data Sheet  
22.2 44-pin PLCC  
H
D
D
6
1
44  
40  
7
39  
E
E
E
H
G
17  
29  
18  
28  
c
L
2
A
A
1
A
e
b
b
y
1
Seating Plane  
G
D
Dimension in inch  
Dimension in mm  
Symbol  
Nom  
Nom  
Min  
Max  
Min  
Max  
0.185  
4.70  
A
0.020  
0.145  
0.026  
0.51  
3.68  
1
A
A
b
b
c
D
E
e
0.150  
0.028  
0.018  
0.010  
0.653  
0.653  
3.81  
0.71  
0.155  
0.032  
0.022  
0.014  
0.658  
0.658  
3.94  
0.81  
2
0.66  
1
0.56  
0.016  
0.008  
0.648  
0.648  
0.41  
0.46  
0.20  
0.25  
0.36  
16.46  
16.46  
16.59  
16.59  
16.71  
16.71  
BSC  
1.27  
BSC  
0.050  
0.590  
0.590  
0.680  
0.680  
0.090  
14.99  
14.99  
17.27  
17.27  
2.29  
15.49  
15.49  
17.53  
17.53  
2.54  
16.00  
16.00  
17.78  
17.78  
2.79  
0.610  
0.610  
0.690  
0.690  
0.100  
0.630  
0.630  
0.700  
0.700  
0.110  
0.004  
G
G
H
H
L
y
D
E
D
E
0.10  
Publication Release Date: Feb 15, 2011  
Revision A09  
- 81 -  
 
 
W78E516D/W78E058D Data Sheet  
22.3 44-pin PQFP  
H
D
D
34  
44  
33  
1
E
E
H
11  
12  
22  
e
b
c
2
A
A
1
See Detail F  
A
L
y
Seating Plane  
L
1
Detail F  
Dimension in inch  
Dimension in mm  
Symbol  
Min  
Nom  
Max  
-
Min  
Nom  
Max  
-
A
A
A
0.002  
0.075  
0.01  
0.01  
0.081  
0.014  
0.006  
0.394  
0.394  
.0315  
0.02  
0.25  
2.05  
0.35  
0.15  
10.00  
10.00  
0.80  
0.05  
1.90  
0.25  
0.10  
9.9  
0.5  
2.20  
0.45  
0.25  
10.1  
10.1  
1
2
0.087  
0.018  
0.010  
0.398  
0.398  
b
c
D
E
e
0.004  
0.390  
0.390  
9.9  
D
0.510  
0.510  
0.025  
0.530  
0.530  
0.037  
12.95  
12.95  
0.65  
H
0.520  
0.520  
0.031  
0.063  
13.20  
13.20  
0.8  
13.45  
13.45  
0.95  
HE  
L
1.60  
1
L
y
0
0.10  
10  
0.004  
10  
0
0
- 82 -  
 
 
W78E516D/W78E058D Data Sheet  
22.4 48-pin LQFP  
Publication Release Date: Feb 15, 2011  
- 83 -  
Revision A09  
 
 
W78E516D/W78E058D Data Sheet  
Application Note: In-system Programming Software Examples  
This application note illustrates the in-system programmability of the microcontroller. In this example,  
microcontroller will boot from APROM bank and waiting for a key to enter in-system programming  
mode for re-programming the contents of APROM. While entering in-system programming mode, mi-  
crocontroller executes the loader program in 4KB LDROM bank. The loader program erases the  
APROM then reads the new code data from external SRAM buffer (or through other interfaces) to up-  
date the APROM.  
EXAMPLE 1:  
;*******************************************************************************************************************  
;* Example of APROM program: Program will scan the P1.0. if P1.0 = 0, enters in-system  
;* programming mode for updating the contents of APROM code else executes the current ROM code.  
;* XTAL = 40 MHz  
;*******************************************************************************************************************  
.chip 8052  
.RAMCHK OFF  
.symbols  
CHPCON  
CHPENR  
SFRAL  
SFRAH  
SFRFD  
SFRCN  
EQU  
EQU  
EQU  
EQU  
EQU  
EQU  
BFH  
F6H  
C4H  
C5H  
C6H  
C7H  
ORG  
LJMP  
0H  
100H  
;JUMP TO MAIN PROGRAM  
;************************************************************************  
;* TIMER0 SERVICE VECTOR ORG=000BH  
;************************************************************************  
ORG  
CLR  
00BH  
TR0  
;TR0=0,STOP TIMER0  
MOV  
MOV  
RETI  
TL0,R6  
TH0,R7  
;************************************************************************  
;* APROM MAIN PROGRAM  
;************************************************************************  
ORG  
100H  
MAIN_:  
MOV  
ANL  
A,P1  
A,#01H  
;SCAN P1.0  
CJNE  
A,#01H,PROGRAM_  
;IF P1.0=0, ENTER IN-SYSTEM  
;PROGRAMMING MODE  
JMP  
NORMAL_MODE  
PROGRAM_:  
MOV  
MOV  
MOV  
CHPENR,#87H  
CHPENR,#59H  
CHPCON,#03H  
; CHPENR=87H, CHPCON  
; REGISTER WRTE ENABLE  
; CHPENR=59H, CHPCON  
; REGISTER WRITE ENABLE  
;CHPCON=03H, ENTER IN-SYSTEM  
; PROGRAMMING MODE  
- 84 -  
W78E516D/W78E058D Data Sheet  
MOV  
MOV  
MOV  
TCON,#00H  
IP,#00H  
IE,#82H  
;TR=0 TIMER0 STOP  
;IP=00H  
;TIMER0 INTERRUPT ENABLE FOR  
;WAKE-UP FROM IDLE MODE  
;TL0=FEH  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
R6,#FEH  
R7,#FFH  
TL0,R6  
;TH0=FFH  
TH0,R7  
TMOD,#01H  
TCON,#10H  
PCON,#01H  
;TMOD=01H,SET TIMER0 A 16-BIT TIMER  
;TCON=10H,TR0=1,GO  
;ENTER IDLE MODE FOR LAUNCHING  
;THE IN-SYSTEM PROGRAMMABILITY  
;********************************************************************************  
;* Normal mode APROM program: depending user's application  
;********************************************************************************  
NORMAL_MODE:  
.
;User's application program  
.
.
.
.
EXAMPLE 2:  
;***************************************************************************************************************************** ;*  
Example of 4KB LDROM program: This lorder program will erase the APROM first, then reads the new ;* code  
from external SRAM and program them into APROM bank. XTAL = 40 MHz  
;*****************************************************************************************************************************  
.chip 8052  
.RAMCHK OFF  
.symbols  
CHPCON  
CHPENR  
SFRAL  
SFRAH  
SFRFD  
SFRCN  
EQU  
EQU  
EQU  
EQU  
EQU  
EQU  
BFH  
F6H  
C4H  
C5H  
C6H  
C7H  
ORG  
LJMP  
000H  
100H  
;JUMP TO MAIN PROGRAM  
;************************************************************************  
;* 1. TIMER0 SERVICE VECTOR ORG=0BH  
;************************************************************************  
ORG  
CLR  
000BH  
TR0  
;TR0=0,STOP TIMER0  
MOV  
MOV  
RETI  
TL0,R6  
TH0,R7  
;************************************************************************  
;* 4KB LDROM MAIN PROGRAM  
Publication Release Date: Feb 15, 2011  
Revision A09  
- 85 -  
W78E516D/W78E058D Data Sheet  
;************************************************************************  
ORG 100H  
MAIN_4K:  
MOV  
MOV  
MOV  
CHPENR,#87H  
CHPENR,#59H  
7FH,#01H  
;CHPENR=87H, CHPCON WRITE ENABLE.  
;CHPENR=59H, CHPCON WRITE ENABLE.  
;SET F04KBOOT MODE FLAG.  
MOV  
ANL  
A,CHPCON  
A,#01H  
CJNE  
MOV  
A,#00H,UPDATE_  
7FH,#00H  
;CHECK CHPCON BIT 0  
;FLAG=0, NOT IN THE F04KBOOT MODE.  
MOV  
MOV  
CHPCON,#01H  
CHPENR,#00H  
;CHPCON=01H, ENABLE IN-SYSTEM PROGRAMMING.  
;DISABLE CHPCON WRITE ATTRIBUTE  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
TCON,#00H  
TMOD,#01H  
IP,#00H  
;TCON=00H ,TR=0 TIMER0 STOP  
;TMOD=01H ,SET TIMER0 A 16BIT TIMER  
;IP=00H  
IE,#82H  
;IE=82H,TIMER0 INTERRUPT ENABLED  
R6,#FEH  
R7,#FFH  
TL0,R6  
TH0,R7  
TCON,#10H  
PCON,#01H  
;TCON=10H,TR0=1,GO  
;ENTER IDLE MODE  
UPDATE_:  
MOV  
MOV  
MOV  
MOV  
MOV  
CHPENR,#00H  
TCON,#00H  
IP,#00H  
IE,#82H  
TMOD,#01H  
;DISABLE CHPCON WRITE-ATTRIBUTE  
;TCON=00H ,TR=0 TIM0 STOP  
;IP=00H  
;IE=82H,TIMER0 INTERRUPT ENABLED  
;TMOD=01H ,MODE1  
MOV  
R6,#3CH  
;SET WAKE-UP TIME FOR ERASE OPERATION,  
;ABOUT 15ms. DEPENDING ON USER'S  
;SYSTEM CLOCK RATE.  
MOV  
MOV  
MOV  
R7,#B0H  
TL0,R6  
TH0,R7  
ERASE_P_4K:  
MOV  
SFRCN,#22H  
TCON,#10H  
PCON,#01H  
;SFRCN(C7H)=22H ERASE  
;TCON=10H,TR0=1,GO  
;ENTER IDLE MODE( FOR ERASE OPERATION)  
MOV  
MOV  
;*********************************************************************  
;* BLANK CHECK  
;*********************************************************************  
MOV  
MOV  
MOV  
MOV  
MOV  
SFRCN,#0H  
SFRAH,#0H  
SFRAL,#0H  
R6,#FBH  
;READ APROM MODE  
;START ADDRESS = 0H  
;SET TIMER FOR READ OPERATION, ABOUT 1.5us.  
R7,#FFH  
- 86 -  
W78E516D/W78E058D Data Sheet  
MOV  
MOV  
TL0,R6  
TH0,R7  
BLANK_CHECK_LOOP:  
SETB  
MOV  
MOV  
TR0  
PCON,#01H  
A,SFRFD  
;ENABLE TIMER 0  
;ENTER IDLE MODE  
;READ ONE BYTE  
CJNE  
INC  
A,#FFH,BLANK_CHECK_ERROR  
SFRAL  
;NEXT ADDRESS  
MOV  
JNZ  
A,SFRAL  
BLANK_CHECK_LOOP  
INC  
SFRAH  
MOV  
CJNE  
JMP  
A,SFRAH  
A,#C0H,BLANK_CHECK_LOOP ;END ADDRESS=BFFFH  
PROGRAM_ROM  
BLANK_CHECK_ERROR:  
MOV  
MOV  
JMP  
P1,#F0H  
P3,#F0H  
$
;*******************************************************************************  
;* RE-PROGRAMMING APROM BANK  
;*******************************************************************************  
PROGRAM_ROM:  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
DPTR,#0H  
R2,#00H  
R1,#00H  
DPTR,#0H  
SFRAH,R1  
SFRCN,#21H  
R6,#0CH  
R7,#FEH  
TL0,R6  
;THE ADDRESS OF NEW ROM CODE  
;TARGET LOW BYTE ADDRESS  
;TARGET HIGH BYTE ADDRESS  
;EXTERNAL SRAM BUFFER ADDRESS  
;SFRAH, TARGET HIGH ADDRESS  
;SFRCN(C7H)=21 (PROGRAM )  
;SET TIMER FOR PROGRAMMING, ABOUT 150us.  
TH0,R7  
PROG_D_:  
MOV  
MOVX  
MOV  
MOV  
MOV  
INC  
SFRAL,R2  
A,@DPTR  
SFRFD,A  
TCON,#10H  
PCON,#01H  
DPTR  
;SFRAL(C4H)= LOW BYTE ADDRESS  
;READ DATA FROM EXTERNAL SRAM BUFFER  
;SFRFD(C6H)=DATA IN  
;TCON=10H,TR0=1,GO  
;ENTER IDLE MODE( PRORGAMMING)  
INC  
R2  
CJNE  
INC  
R2,#0H,PROG_D_  
R1  
MOV  
CJNE  
SFRAH,R1  
R1,#C0H,PROG_D_  
;*****************************************************************************  
; * VERIFY APROM BANK  
;*****************************************************************************  
MOV  
MOV  
MOV  
R4,#03H  
R6,#FBH  
R7,#FFH  
;ERROR COUNTER  
;SET TIMER FOR READ VERIFY, ABOUT 1.5us.  
Publication Release Date: Feb 15, 2011  
- 87 -  
Revision A09  
W78E516D/W78E058D Data Sheet  
MOV  
MOV  
TL0,R6  
TH0,R7  
MOV  
MOV  
DPTR,#0H  
R2,#0H  
;The start address of sample code  
;Target low byte address  
MOV  
R1,#0H  
;Target high byte address  
MOV  
MOV  
SFRAH,R1  
SFRCN,#00H  
;SFRAH, Target high address  
;SFRCN=00 (Read ROM CODE)  
READ_VERIFY_:  
MOV  
SFRAL,R2  
;SFRAL(C4H)= LOW ADDRESS  
;TCON=10H,TR0=1,GO  
MOV  
MOV  
INC  
TCON,#10H  
PCON,#01H  
R2  
MOVX  
INC  
A,@DPTR  
DPTR  
CJNE  
CJNE  
INC  
A,SFRFD,ERROR_  
R2,#0H,READ_VERIFY_  
R1  
MOV  
SFRAH,R1  
CJNE  
R1,#C0H,READ_VERIFY_  
;******************************************************************************  
;* PROGRAMMING COMPLETLY, SOFTWARE RESET CPU  
;******************************************************************************  
MOV  
MOV  
MOV  
CHPENR,#87H  
CHPENR,#59H  
CHPCON,#83H  
;CHPENR=87H  
;CHPENR=59H  
;CHPCON=83H, SOFTWARE RESET.  
ERROR_:  
.
DJNZ  
R4,UPDATE_  
;IF ERROR OCCURS, REPEAT 3 TIMES.  
;IN-SYSTEM PROGRAMMING FAIL, USER'S  
;PROCESS TO DEAL WITH IT.  
- 88 -  
W78E516D/W78E058D Data Sheet  
23 REVISION HISTORY  
VERSION  
A01  
DATE  
PAGE  
DESCRIPTION  
Initial Issued  
June 24, 2008  
August 21,2008  
September 1,2008  
November 3,2008  
January 7,2009  
-
7,8  
-
A02  
Update pin assignment.  
Update W78I516D/W78I058D parts  
Update DC table typo error  
Update VIL and VIH .  
A03  
A04  
A05  
74  
-
Update DC table  
A06  
A07  
April 2, 2009  
April 22,2009  
Revise some typing errors  
Rename SFR 86H POR register to P0UPR  
-
-
70  
Revise the Application Circuit  
6
1.  
2.  
3.  
4.  
5.  
Revise the Table 3-1  
65  
70  
71  
Add the picture for “F04KBOOT Mode” of P4.3  
Revise the ISP Flow Chart  
A08  
June 30,2009  
Revise the CONFIG BITS  
Remove the “Preliminary” character each page  
18  
65  
1.  
2.  
Revise the default reset value for CHPCON  
Add the reset-pin reset can entry the  
F04KBOOT mode.  
A09  
Feb 15,2011  
3.  
4.  
5.  
Revise the flow chart of ISP programming  
Revise the CONFIG BITS  
70  
79  
Add the external reset pin timing  
Publication Release Date: Feb 15, 2011  
- 89 -  
Revision A09  
 
 
W78E516D/W78E058D Data Sheet  
Important Notice  
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any  
malfunction or failure of which may cause loss of human life, bodily injury or severe property  
damage. Such applications are deemed, “Insecure Usage”.  
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic  
energy control instruments, airplane or spaceship instruments, the control or operation of dy-  
namic, brake or safety systems designed for vehicular use, traffic signal instruments, all types  
of safety devices, and other applications intended to support or sustain life.  
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay  
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the  
damages and liabilities thus incurred by Nuvoton.  
- 90 -  

相关型号:

W78E516DDG

8-BIT MICROCONTROLLER
NUVOTEM TALEM

W78E516DDG

8-BIT MICROCONTROLLER
NUVOTON

W78E516DFG

8-BIT MICROCONTROLLER
NUVOTON

W78E516DLG

8-BIT MICROCONTROLLER
NUVOTON

W78E516DPG

8-BIT MICROCONTROLLER
NUVOTON

W78E516F-24/40

Microcontroller, 8-Bit, FLASH, 40MHz, CMOS, PQFP44, PLASTIC, QFP-44
WINBOND

W78E516M-24/40

Microcontroller, 8-Bit, FLASH, 40MHz, CMOS, PQFP44, TQFP-44
WINBOND

W78E516P-24/40

Microcontroller, 8-Bit, FLASH, 40MHz, CMOS, PQCC44, PLASTIC, LCC-44
WINBOND

W78E51B

8-BIT MTP MICROCONTROLLER
WINBOND

W78E51B-24

8-BIT MTP MICROCONTROLLER
WINBOND

W78E51B-24/40

Microcontroller, 8-Bit, EEPROM, 40MHz, CMOS, PDIP40, DIP-40
WINBOND

W78E51B-40

8-BIT MTP MICROCONTROLLER
WINBOND