74F50728 [NXP]

Synchronizing cascaded dual positive edge-triggered D-type flip-flop; 同步级联的双正边沿触发的D型触发器
74F50728
型号: 74F50728
厂家: NXP    NXP
描述:

Synchronizing cascaded dual positive edge-triggered D-type flip-flop
同步级联的双正边沿触发的D型触发器

触发器
文件: 总12页 (文件大小:93K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
74F50728  
Synchronizing cascaded dual positive  
edge-triggered D-type flip-flop  
Positive specification  
IC15 Data Handbook  
1990 Sep 14  
Philips  
Semiconductors  
Philips Semiconductors  
Product specification  
Synchronizing cascaded dual positive  
edge-triggered D-type flip-flop  
74F50728  
Clock triggering occurs at a voltage level and is not directly related  
to the transition time of the positive–going pulse. Following the hold  
time interval, data at the Dn input may be changed without affecting  
the levels of the output. Data entering the 74F50728 requires two  
clock cycles to arrive at the outputs.  
FEATURES  
Metastable immune characteristics  
Output skew less than 1.5ns  
See 74F5074 for synchronizing dual D-type flip-flop  
The 74F50728 is designed so that the outputs can never display a  
metastable state due to setup and hold time violations. If setup time  
and hold time are violated the propagation delays may be extended  
beyond the specifications but the outputs will not glitch or display a  
See 74F50109 for synchronizing dual J–K positive edge-triggered  
flip-flop  
See 74F50729 for synchronizing dual dual D-type flip-flop with  
metastable state. Typical metastability parameters for the 74F50728  
edge-triggered set and reset  
6
are: τ 135ps and T  
9.8 X 10 sec where τ represents a  
0
Industrial temperature range available (–40°C to +85°C)  
function of the rate at which a latch in a metastable state resolves  
that condition and T represents a function of the measurement of  
o
the propensity of a latch to enter a metastable state.  
DESCRIPTION  
The 74F50728 is a cascaded dual positive edge–triggered D–type  
featuring individual data, clock, set and reset inputs; also true and  
complementary outputs.  
TYPICAL SUPPLY  
CURRENT (TOTAL)  
TYPE  
TYPICAL f  
max  
74F50728  
145 MHz  
23mA  
Set (SDn) and reset (RDn) are asynchronous active low inputs and  
operate independently of the clock (CPn) input. They set and reset  
both flip–flops of a cascaded pair simultaneously. Data must be  
stable just one setup time prior to the low–to–high transition of the  
clock for guaranteed propagation delays.  
ORDERING INFORMATION  
ORDER CODE  
COMMERCIAL RANGE  
= 5V ±10%,  
INDUSTRIAL RANGE  
DESCRIPTION  
PKG DWG #  
V
V
CC  
= 5V ±10%,  
CC  
T
amb  
= 0°C to +70°C  
T
amb  
= –40°C to +85°C  
I74F50728N  
14–pin plastic DIP  
14–pin plastic SO  
N74F50728N  
N74F50728D  
SOT27-1  
I74F50728D  
SOT108-1  
INPUT AND OUTPUT LOADING AND FAN OUT TABLE  
74F (U.L.) HIGH/  
LOW  
LOAD VALUE HIGH/  
LOW  
PINS  
DESCRIPTION  
D0, D1  
CP0, CP1  
Data inputs  
1.0/0.417  
1.0/1.0  
1.0/1.0  
1.0/1.0  
50/33  
20µA/250µA  
20µA/20µA  
20µA/20µA  
20µA/20µA  
1.0mA/20mA  
Clock inputs (active rising edge)  
Set inputs (active low)  
Reset inputs (active low)  
Data outputs  
SD0, SD1  
RD0, RD1  
Q0, Q1, Q0, Q1  
NOTE: One (1.0) FAST unit load is defined as: 20µA in the high state and 0.6mA in the low state.  
2
September 14, 1990  
853-1389 00421  
Philips Semiconductors  
Product specification  
Synchronizing cascaded dual positive  
edge-triggered D-type flip-flop  
74F50728  
PIN CONFIGURATION  
LOGIC DIAGRAM  
4, 10  
SDn  
V
1
2
3
4
5
14  
13  
CC  
RD0  
D0  
2, 12  
Dn  
5, 9  
D
Q
Q
D
Q
Qn  
RD1  
12 D1  
6, 8  
CP0  
Q
CP  
Q n  
CP  
11  
10  
9
CP1  
SD1  
Q1  
SD0  
Q0  
3, 11  
CPn  
Q0  
6
7
1, 13  
RDn  
8
GND  
Q1  
V
= Pin 14  
cc  
GND = Pin 7  
SF00608  
SF00605  
NOTE: Data entering the flip–flop requires two clock cycles to  
arrive at the output.  
LOGIC SYMBOL  
SYNCHRONIZING SOLUTIONS  
2
12  
Synchronizing incoming signals to a system clock has proven to be  
costly, either in terms of time delays or hardware. The reason for this  
is that in order to synchronize the signals a flip–flop must be used to  
”capture” the incoming signal. While this is perhaps the only way to  
synchronize a signal, to this point, there have been problems with  
this method. Whenever the flop’s setup or hold times are violated  
the flop can enter a metastable state causing the outputs in turn to  
glitch, oscillate, enter an intermediate state or change state in some  
abnormal fashion. Any of these conditions could be responsible for  
causing a system crash. To minimize this risk, flip–flops are often  
cascaded so that the input signal is captured on the first clock pulse  
and released on the second clock pulse (see Fig.1). This gives the  
first flop about one clock period minus the flop delay and minus the  
second flop’s clock–to–Q setup time to resolve any metastable  
condition. This method greatly reduces the probability of the outputs  
of the synchronizing device displaying an abnormal state but the  
trade-off is that one clock cycle is lost to synchronize the incoming  
data and two separate flip–flops are required to produce the  
cascaded flop circuit. In order to assist the designer of synchronizing  
circuits Philips Semiconductors is offering the 74F50728.  
D0 D1  
3
4
CP0  
SD0  
RD0  
1
11  
CP1  
10  
13  
SD1  
RD1  
Q0 Q0 Q1 Q1  
5
6
9
8
V
= Pin 14  
CC  
GND = Pin 7  
SF00606  
IEC/IEEE SYMBOL  
&
4
3
2
S
3
C1  
D
Q
Q
D
Q
Q
Q OUTPUT  
Q OUTPUT  
DATA  
1D  
R
6
CLOCK  
1
CP  
CP  
10  
11  
12  
S
9
8
SF00609  
C2  
Figure 1.  
2D  
R
The 50728 consists of two pair of cascaded D–type flip–flops with  
metastable immune features and is pin compatible with the 74F74.  
Because the flops are cascaded on a single part the metastability  
13  
SF00607  
3
September 14, 1990  
Philips Semiconductors  
Product specification  
Synchronizing cascaded dual positive  
edge-triggered D-type flip-flop  
74F50728  
characteristics are greatly improved over using two separate flops  
that are cascaded. The pin compatibility with the 74F74 allows for  
plug–in retrofitting of previously designed systems.  
Suppose a designer wants to use the flop for synchronizing  
asynchronous data that is arriving at 10MHz (as measured by a  
frequency counter), and is using a clock frequency of 50MHz. He  
simply plugs his number into the equation below:  
Because the probability of failure of the 74F50728 is so remote, the  
metastability characteristics of the part were empirically determined  
based on the characteristics of its sister part, the 74F5074. The  
table below shows the 74F5074 metastability characteristics.  
(t’/t)  
MTBF = e /T f f  
o C I  
In this formula, f is the frequency of the clock, f is the average  
C
I
input event frequency, and t’ is the period of the clock input (20  
Having determined the T and τ of the flop, calculating the mean  
nanoseconds). In this situation the f will be twice the data  
0
I
time between failures (MTBF) for the 74F50728 is simple. It is,  
however, somewhat different than calculating MTBF for a typical part  
because data requires two clock pulses to transit from the input to  
the output. Also, in this case a failure is considered of the output  
beyond the normal propagation delay.  
frequency of 20 MHz because input events consist of both of low  
and high data transitions. From Fig. 2 it is clear that the MTBF is  
41  
greater than 10 seconds. Using the above formula the actual  
42  
34  
MTBF is 2.23 X 10 seconds or about 7 X 10 years.  
TYPICAL VALUES FOR τ AND T AT VARIOUS V S AND TEMPERATURES  
0
CC  
T
amb  
= 0°C  
T
amb  
= 25°C  
T = 70°C  
amb  
τ
T
0
τ
T
0
τ
T
0
9
6
5
V
CC  
V
CC  
V
CC  
= 5.5V  
= 5.0V  
= 4.5V  
125ps  
115ps  
115ps  
1.0 X 10 sec  
138ps  
135ps  
132ps  
5.4 X 10 sec  
160ps  
167ps  
175ps  
1.7 X 10 sec  
10  
6
4
1.3 X 10 sec  
9.8 X 10 sec  
3.9 X 10 sec  
13  
8
4
3.4 X 10 sec  
5.1 X 10 sec  
7.3 X 10 sec  
MEAN TIME BETWEEN FAILURES VERSUS DATA FREQUENCY AT VARIOUS CLOCK FREQUENCY  
70  
10  
Clock = 40MHz  
60  
10  
50  
10  
Mean time  
between failures  
(seconds)  
Clock = 50MHz  
Clock = 650MHz  
40  
30  
20  
10  
00  
10  
10  
10  
Clock = 70MHz  
Clock = 80MHz  
Clock = 100MHz  
1 billion years  
10  
10  
1K  
100K  
10M  
Data frequency (Hz)  
8
= 25°C, τ =135ps, To = 9.8 X 10 sec  
NOTE: V = 5V, T  
CC  
amb  
SF00610  
Figure 2.  
4
September 14, 1990  
Philips Semiconductors  
Product specification  
Synchronizing cascaded dual positive  
edge-triggered D-type flip-flop  
74F50728  
FUNCTION TABLE  
INTERNAL  
OUTPUTS  
REGISTER  
OPERATING MODE  
INPUTS  
RDn  
SDn  
L
CPn  
X
Dn  
X
X
X
h
Q
H
L
Qn  
H
Qn  
L
H
L
Asynchronous set  
H
X
L
H
Asynchronous reset  
Undetermined*  
Load ”1”  
L
L
X
X
H
H
H
H
H
H
h
H
L
H
l
l
L
H
Load ”0”  
H
L
X
NC  
NC  
NC  
Hold  
NOTES:  
NC= No change from the previous setup  
H = High voltage level  
X
*
=
=
Don’t care  
h
=
High voltage level one setup time prior to low–to–high  
clock transition  
This setup is unstable and will change when either set of  
reset return to the high–level  
L
l
=
=
Low voltage level  
Low voltage level one setup time prior to low–to–high  
clock transition  
=
Low–to–high clock transition.  
** = Data entering the flip–flop requires two clock cycles to  
arrive at the output (see logic diagram)  
ABSOLUTE MAXIMUM RATINGS  
(Operation beyond the limit set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the  
operating free air temperature range.)  
SYMBOL  
PARAMETER  
RATING  
–0.5 to +7.0  
–0.5 to +7.0  
–30 to +5  
UNIT  
V
V
CC  
V
IN  
Supply voltage  
Input voltage  
Input current  
V
I
IN  
mA  
V
I
Voltage applied to output in high output state  
Current applied to output in low output state  
Operating free air temperature range  
–0.5 to V  
V
OUT  
CC  
40  
mA  
°C  
°C  
°C  
OUT  
T
amb  
Commercial range  
Industrial range  
0 to +70  
–40 to +85  
–65 to +150  
T
stg  
Storage temperature range  
RECOMMENDED OPERATING CONDITIONS  
SYMBOL  
PARAMETER  
LIMITS  
MIN  
4.5  
NOM  
MAX  
UNIT  
V
V
Supply voltage  
5.0  
5.5  
CC  
IH  
IL  
V
V
High–level input voltage  
Low–level input voltage  
Input clamp current  
2.4  
V
0.8  
–18  
–3  
V
I
I
I
mA  
mA  
mA  
Ik  
High–level output current  
Low–level output current  
OH  
OL  
20  
T
amb  
Operating free air temperature range  
Commercial range  
Industrial range  
0
+70  
°C  
°C  
–40  
+85  
5
September 14, 1990  
Philips Semiconductors  
Product specification  
Synchronizing cascaded dual positive  
edge-triggered D-type flip-flop  
74F50728  
DC ELECTRICAL CHARACTERISTICS  
(Over recommended operating free-air temperature range unless otherwise noted.)  
SYMBOL  
PARAMETER  
TEST  
LIMITS  
UNIT  
1
2
CONDITIONS  
MIN TYP  
MAX  
V
High-level output voltage  
V
V
V
= MIN, V = MIN  
I
OH  
= MAX  
2.5  
V
V
±10%V  
±5%V  
OH  
CC  
IH  
CC  
= MAX,  
2.7  
3.4  
IL  
CC  
= MIN, V  
=
IL  
CC  
V
OL  
Low-level output voltage  
I
OL  
= MAX  
0.30  
0.30  
0.50  
0.50  
V
V
±10%V  
CC  
MAX,  
V
IH  
= MIN  
±5%V  
CC  
V
Input clamp voltage  
V
V
= MIN, I = I  
IK  
-0.73 -1.2  
100  
V
IK  
CC  
I
I
I
I
Input current at maximum input voltage  
= MAX, V = 7.0V  
µA  
I
CC  
I
High–level input current  
V
CC  
V
CC  
= MAX, V = 2.7V  
20  
µA  
µA  
IH  
IL  
I
Low–level input current  
Dn  
= MAX, V = 0.5V  
-250  
–20  
-150  
I
CPn, SDn, RDn  
µA  
3
I
I
Short–circuit output current  
V
V
= MAX, V = 2.25V  
-60  
mA  
OS  
CC  
O
4
Supply current (total)  
= MAX  
23  
34  
mA  
CC  
CC  
NOTES:  
1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.  
2. All typical values are at V = 5V, T  
= 25°C.  
amb  
CC  
3. Not more than one output should be shorted at a time. For testing I , the use of high-speed test apparatus and/or sample-and-hold  
OS  
techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting  
of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any  
sequence of parameter tests, I tests should be performed last.  
OS  
4. Measure I with the clock input grounded and all outputs open, then with Q and Q outputs high in turn.  
CC  
AC ELECTRICAL CHARACTERISTICS  
LIMITS  
T
= +25°C  
T
= 0°C to  
+70°C  
= +5.0V ± 10%  
T
amb  
= –40°C to +85°C  
V = +5.0V ± 10%  
CC  
amb  
amb  
V
SYMBOL  
PARAMETER  
TEST  
V
= +5.0V  
UNIT  
CC  
CC  
CONDITION  
C = 50pF,  
L
C = 50pF,  
L
C = 50pF,  
L
R = 500Ω  
L
R = 500Ω  
L
R = 500Ω  
L
MIN  
TYP MAX  
MIN  
MAX  
MIN  
MAX  
f
Maximum clock frequency  
Waveform 1  
Waveform 1  
100  
145  
85  
70  
ns  
ns  
max  
t
t
Propagation delay  
CPn to Qn or Qn  
2.0  
2.0  
3.8  
3.8  
6.0  
6.0  
1.5  
2.0  
6.5  
6.5  
1.5  
2.0  
7.5  
7.0  
PLH  
PHL  
t
t
Propagation delay  
SDn RDn to Qn or Qn  
3.5  
3.5  
5.0  
5.0  
8.0  
8.0  
3.0  
3.0  
9.0  
8.5  
3.0  
3.0  
10.5  
10.0  
PLH  
PHL  
Waveform 2  
Waveform 4  
ns  
ns  
1, 2  
t
Output skew  
1.5  
1.5  
1.5  
sk(o)  
NOTES TO AC ELECTRICAL CHARACTERISTICS  
1. | t actual –t actual | for any one output compare to any other output where N and M are either LH or HL.  
PLH  
PHL  
2. Skew lines are valid only under same conditions (temperature, V , loading, etc.,).  
CC  
6
September 14, 1990  
Philips Semiconductors  
Product specification  
Synchronizing cascaded dual positive  
edge-triggered D-type flip-flop  
74F50728  
AC SETUP REQUIREMENTS  
LIMITS  
T
amb  
= +25°C  
T
amb  
= 0°C to  
T
amb  
= –40°C to +85°C  
+70°C  
V
CC  
= +5.0V ± 10%  
V
CC  
= +5.0V ± 10%  
SYMBOL  
PARAMETER  
TEST  
V
CC  
= +5.0V  
UNIT  
CONDITION  
C = 50pF,  
L
C = 50pF,  
L
C = 50pF,  
L
R = 500Ω  
L
R = 500Ω  
L
R = 500Ω  
L
MIN  
TYP MAX  
MIN  
MAX  
MIN  
MAX  
t
t
(H)  
(L)  
Setup time, high or low  
Dn to CPn  
1.5  
1.5  
2.0  
2.0  
2.0  
2.0  
su  
su  
Waveform 1  
Waveform 1  
ns  
ns  
t (H)  
Hold time, high or low  
Dn to CPn  
0.0  
0.0  
1.5  
1.5  
1.5  
1.5  
h
t (L)  
h
t
t
(H)  
(L)  
CPn pulse width,  
high or low  
3.0  
4.0  
3.5  
5.0  
4.0  
5.5  
w
w
Waveform 2  
Waveform 2  
Waveform 3  
ns  
ns  
ns  
t
t
(L)  
SDn, RDn pulse width, low  
4.5  
3.5  
4.0  
3.5  
4.5  
3.5  
w
Recovery time  
SDn, RDn to CPn  
rec  
AC WAVEFORMS  
t
(L)  
Jn, Kn  
w
V
t
V
V
V
M
M
M
M
SDn  
RDn  
V
V
M
M
t
(H)  
t
(H)  
(L)  
t (L)  
h
su  
h
su  
1/f  
M
max  
t
(L)  
w
V
V
M
M
CPn  
Qn  
V
V
M
V
M
t
(H)  
w
t
t
PHL  
PLH  
t
(L)  
t
PHL  
w
t
PLH  
Qn  
Qn  
V
V
V
M
M
M
V
V
M
M
M
t
t
PLH  
PHL  
t
t
PHL  
PLH  
V
M
V
M
V
Qn  
SF00050  
SF00139  
Waveform 2. Propagation delay for set and reset to output,  
set and reset pulse width  
Waveform 1. Propagation delay for data to output, data setup  
time and hold times, and clock width, and  
maximum clock frequency  
V
Qn, Qn  
M
t
sk(o)  
SDn or RDn  
V
M
t
Qn, Qn  
rec  
V
M
V
CPn  
M
SF00590  
Waveform 4. Output skew  
SF00603  
Waveform 3. Recovery time for set or reset to output  
NOTES:  
For all waveforms, V = 1.5V.  
M
The shaded areas indicate when the input is permitted to change for predictable output performance.  
7
September 14, 1990  
Philips Semiconductors  
Product specification  
Synchronizing cascaded dual positive  
edge-triggered D-type flip-flop  
74F50728  
TEST CIRCUIT AND WAVEFORMS  
t
w
AMP (V)  
90%  
V
CC  
90%  
NEGATIVE  
PULSE  
V
V
M
M
10%  
10%  
V
V
OUT  
IN  
0V  
PULSE  
GENERATOR  
D.U.T.  
t
t )  
t
t )  
THL ( f  
TLH ( r  
R
C
R
L
t
t )  
T
L
t
t )  
TLH ( r  
THL ( f  
AMP (V)  
90%  
M
90%  
POSITIVE  
PULSE  
V
V
M
10%  
10%  
0V  
Test Circuit for Totem-Pole Outputs  
DEFINITIONS:  
t
w
Input Pulse Definition  
INPUT PULSE REQUIREMENTS  
R
=
=
=
Load resistor;  
L
see AC ELECTRICAL CHARACTERISTICS for value.  
Load capacitance includes jig and probe capacitance;  
see AC ELECTRICAL CHARACTERISTICS for value.  
family  
74F  
C
L
V
rep. rate  
t
t
t
amplitude  
M
w
TLH  
THL  
R
T
Termination resistance should be equal to Z  
of  
OUT  
2.5ns 2.5ns  
3.0V  
1.5V  
1MHz  
500ns  
pulse generators.  
SF00006  
8
September 14, 1990  
Philips Semiconductors  
Product specification  
Synchronizing cascaded dual positive edge-triggered  
D-type flip-flop  
74F50728  
DIP14: plastic dual in-line package; 14 leads (300 mil)  
SOT27-1  
9
1990 Sep 14  
Philips Semiconductors  
Product specification  
Synchronizing cascaded dual positive edge-triggered  
D-type flip-flop  
74F50728  
SO14: plastic small outline package; 14 leads; body width 3.9 mm  
SOT108-1  
10  
1990 Sep 14  
Philips Semiconductors  
Product specification  
Synchronizing cascaded dual positive edge-triggered  
D-type flip-flop  
74F50728  
NOTES  
11  
1990 Sep 14  
Philips Semiconductors  
Product specification  
Synchronizing cascaded dual positive edge-triggered  
D-type flip-flop  
74F50728  
Data sheet status  
[1]  
Data sheet  
status  
Product  
status  
Definition  
Objective  
specification  
Development  
This data sheet contains the design target or goal specifications for product development.  
Specification may change in any manner without notice.  
Preliminary  
specification  
Qualification  
This data sheet contains preliminary data, and supplementary data will be published at a later date.  
Philips Semiconductors reserves the right to make chages at any time without notice in order to  
improve design and supply the best possible product.  
Product  
specification  
Production  
This data sheet contains final specifications. Philips Semiconductors reserves the right to make  
changes at any time without notice in order to improve design and supply the best possible product.  
[1] Please consult the most recently issued datasheet before initiating or completing a design.  
Definitions  
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one  
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or  
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended  
periods may affect device reliability.  
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips  
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or  
modification.  
Disclaimers  
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications  
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.  
RighttomakechangesPhilipsSemiconductorsreservestherighttomakechanges, withoutnotice, intheproducts, includingcircuits,standard  
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless  
otherwise specified.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Copyright Philips Electronics North America Corporation 1998  
All rights reserved. Printed in U.S.A.  
Sunnyvale, California 94088–3409  
Telephone 800-234-7381  
print code  
Date of release: 10-98  
9397-750-05215  
Document order number:  
Philips  
Semiconductors  

相关型号:

74F50729

Synchronizing dual D-type flip-flop with edge-triggered set and reset with metastable immune characteristics
NXP

74F5074

Synchronizing dual D-type flip-flop/clock driver
NXP

74F51

Dual 2-wide 2-input, 2-wise 3-input AND-OR-invert gate
NXP

74F51

Dual 2-Wide 2-Input; 2-Wide 3-Input AND-OR-Invert Gate
FAIRCHILD

74F51D-T

AND-OR-Invert Gate, F/FAST Series, 2-Func, 6-Input, TTL, PDSO14
YAGEO

74F51DC

AND-OR-Invert Gate, TTL, CDIP14,
FAIRCHILD

74F51DC

AND-OR-Invert Gate
ROCHESTER

74F51DC

IC,LOGIC GATE,2/2-INPUT AND-NOR,F-TTL,DIP,14PIN,CERAMIC
NSC

74F51N

AND-OR-Invert Gate, F/FAST Series, 2-Func, 6-Input, TTL, PDIP14
YAGEO

74F51PC

Dual 2-Wide 2-Input; 2-Wide 3-Input AND-OR-Invert Gate
FAIRCHILD

74F51PCQR

AND-OR-Invert Gate, TTL, PDIP14,
FAIRCHILD

74F51PCQR

AND-OR-Invert Gate
ROCHESTER