74HC3G34 [NXP]

Triple Buffer Gate; 三重缓冲门
74HC3G34
型号: 74HC3G34
厂家: NXP    NXP
描述:

Triple Buffer Gate
三重缓冲门

文件: 总16页 (文件大小:83K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
74HC3G34; 74HCT3G34  
Triple buffer gate  
Product specification  
2003 May 19  
Supersedes data of 2003 Feb 10  
Philips Semiconductors  
Product specification  
Triple buffer gate  
74HC3G34; 74HCT3G34  
FEATURES  
DESCRIPTION  
Wide supply voltage range from 2.0 to 6.0 V  
Symmetrical output impedance  
High noise immunity  
The 74HC3G/HCT3G34 is a high-speed Si-gate CMOS  
device and is pin compatible with low power Schottky TTL  
(LSTTL). Specified in compliance with JEDEC  
standard no. 7.  
Low power dissipation  
The 74HC3G/HCT3G34 provides three buffers.  
Balanced propagation delays  
Very small 8-pin package  
Output capability: standard  
ESD protection:  
HBM EIA/JESD22-A114-A exceeds 2000 V  
MM EIA/JESD22-A115-A exceeds 200 V.  
QUICK REFERENCE DATA  
GND = 0 V; Tamb = 25 °C; tr = tf 6.0 ns.  
TYPICAL  
SYMBOL  
PARAMETER  
CONDITIONS  
CL = 50 pF;  
UNIT  
HC3G34 HCT3G34  
t
PHL/tPLH propagation delay nA to nY  
9
10  
ns  
VCC = 4.5 V  
CI  
input capacitance  
1.5  
10  
1.5  
9
pF  
pF  
CPD  
power dissipation capacitance per gate  
notes 1 and 2  
Notes  
1. CPD is used to determine the dynamic power dissipation (PD in µW).  
PD = CPD × VCC2 × fi × N + (CL × VCC2 × fo) where:  
fi = input frequency in MHz;  
fo = output frequency in MHz;  
CL = output load capacitance in pF;  
VCC = supply voltage in Volts;  
N = total load switching outputs;  
(CL × VCC2 × fo) = sum of outputs.  
2. For 74HC3G34 the condition is VI = GND to VCC  
.
For 74HCT3G34 the condition is VI = GND to VCC 1.5 V.  
FUNCTION TABLE  
See note 1.  
INPUT  
nA  
OUTPUT  
nY  
L
L
H
H
Note  
1. H = HIGH voltage level;  
L = LOW voltage level.  
2003 May 19  
2
Philips Semiconductors  
Product specification  
Triple buffer gate  
74HC3G34; 74HCT3G34  
ORDERING INFORMATION  
TYPE NUMBER  
PACKAGE  
PACKAGE MATERIAL  
TEMPERATURE RANGE  
PINS  
CODE  
MARKING  
74HC3G34DP  
74HCT3G34DP  
74HC3G34DC  
74HCT3G34DC  
40 to +125 °C  
40 to +125 °C  
40 to +125 °C  
40 to +125 °C  
8
8
8
8
TSSOP8  
TSSOP8  
VSSOP8  
VSSOP8  
plastic  
plastic  
plastic  
plastic  
SOT505-2  
SOT505-2  
SOT765-1  
SOT765-1  
P34  
U34  
P34  
U34  
PINNING  
PIN  
1
SYMBOL  
DESCRIPTION  
1A  
data input  
2
3Y  
data output  
data input  
3
2A  
4
GND  
2Y  
ground (0 V)  
data output  
data input  
5
6
3A  
7
1Y  
data output  
supply voltage  
8
VCC  
handbook, halfpage  
handbook, halfpage  
1
2
3
1A  
3Y  
2A  
1Y  
7
6
5
1A  
3Y  
2A  
1
2
3
4
8
7
6
5
V
CC  
1Y  
3A  
2Y  
3A  
2Y  
34  
GND  
MNA743  
MNA744  
Fig.1 Pin configuration.  
Fig.2 Logic symbol.  
2003 May 19  
3
Philips Semiconductors  
Product specification  
Triple buffer gate  
74HC3G34; 74HCT3G34  
handbook, halfpage  
1
1
1
7
5
2
3
6
1
MNA745  
Fig.3 IEC logic symbol.  
2003 May 19  
4
Philips Semiconductors  
Product specification  
Triple buffer gate  
74HC3G34; 74HCT3G34  
RECOMMENDED OPERATING CONDITIONS  
74HC3G34  
74HCT3G34  
UNIT  
SYMBOL  
PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
2.0  
TYP. MAX. MIN.  
TYP. MAX.  
VCC  
VI  
5.0  
6.0  
4.5  
0
5.0  
5.5  
V
V
V
input voltage  
0
VCC  
VCC  
VCC  
VCC  
VO  
output voltage  
0
0
Tamb  
operating ambient  
temperature  
see DC and AC  
characteristics per  
device  
40  
+25  
+125 40  
+25  
+125 °C  
tr, tf  
input rise and fall times  
VCC = 2.0 V  
VCC = 4.5 V  
1000  
500  
ns  
ns  
ns  
6.0  
6.0  
500  
VCC = 6.0 V  
400  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).  
SYMBOL  
PARAMETER  
supply voltage  
CONDITIONS  
MIN. MAX. UNIT  
VCC  
IIK  
0.5  
+7.0  
±20  
±20  
25  
V
input diode current  
VI < 0.5 V or VI > VCC + 0.5 V; note 1  
VO < 0.5 V or VO > VCC + 0.5 V; note 1  
0.5 V < VO < VCC + 0.5 V; note 1  
note 1  
mA  
mA  
mA  
mA  
IOK  
IO  
output diode current  
output source or sink current  
VCC or GND current  
storage temperature  
power dissipation  
ICC  
Tstg  
PD  
50  
65  
+150 °C  
300 mW  
Tamb = 40 to +125 °C; note 2  
Notes  
1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.  
2. Above 55 °C the value of PD derates linearly with 2.5 mW/K.  
2003 May 19  
5
Philips Semiconductors  
Product specification  
Triple buffer gate  
74HC3G34; 74HCT3G34  
DC CHARACTERISTICS  
Type 74HC3G34  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).  
TEST CONDITIONS  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
OTHER  
VCC (V)  
Tamb = 40 to +85 °C; note 1  
VIH HIGH-level input voltage  
2.0  
1.5  
1.2  
V
V
V
V
V
V
4.5  
6.0  
2.0  
4.5  
6.0  
3.15  
4.2  
2.4  
3.2  
0.8  
2.1  
2.8  
VIL  
LOW-level input voltage  
0.5  
1.35  
1.8  
VOH  
HIGH-level output voltage VI = VIH or VIL  
IO = 20 µA  
IO = 20 µA  
IO = 20 µA  
IO = 4.0 mA  
IO = 5.2 mA  
2.0  
4.5  
6.0  
4.5  
6.0  
1.9  
2.0  
V
V
V
V
V
4.4  
4.5  
5.9  
6.0  
4.13  
5.63  
4.32  
5.81  
VOL  
LOW-level output voltage  
VI = VIH or VIL  
IO = 20 µA  
2.0  
4.5  
6.0  
4.5  
6.0  
6.0  
6.0  
0
0.1  
V
V
V
V
V
IO = 20 µA  
0
0.1  
IO = 20 µA  
0
0.1  
IO = 4.0 mA  
IO = 5.2 mA  
VI = VCC or GND  
0.15  
0.16  
0.33  
0.33  
±1.0  
10  
ILI  
input leakage current  
µA  
µA  
ICC  
quiescent supply current  
VI = VCC or GND;  
IO = 0  
2003 May 19  
6
Philips Semiconductors  
Product specification  
Triple buffer gate  
74HC3G34; 74HCT3G34  
TEST CONDITIONS  
OTHER VCC (V)  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
Tamb = 40 to +125 °C  
VIH  
HIGH-level input voltage  
2.0  
4.5  
6.0  
2.0  
4.5  
6.0  
1.5  
V
V
V
V
V
V
3.15  
4.2  
VIL  
LOW-level input voltage  
0.5  
1.35  
1.8  
VOH  
HIGH-level output voltage VI = VIH or VIL  
IO = 20 µA  
IO = 20 µA  
IO = 20 µA  
IO = 4.0 mA  
IO = 5.2 mA  
2.0  
4.5  
6.0  
4.5  
6.0  
1.9  
4.4  
5.9  
3.7  
5.2  
V
V
V
V
V
VOL  
LOW-level output voltage  
VI = VIH or VIL  
IO = 20 µA  
2.0  
4.5  
6.0  
4.5  
6.0  
6.0  
6.0  
0.1  
0.1  
0.1  
0.4  
0.4  
±1.0  
20  
V
V
V
V
V
IO = 20 µA  
IO = 20 µA  
IO = 4.0 mA  
IO = 5.2 mA  
VI = VCC or GND  
ILI  
input leakage current  
µA  
µA  
ICC  
quiescent supply current  
VI = VCC or GND;  
IO = 0  
Note  
1. All typical values are measured at Tamb = 25 °C.  
2003 May 19  
7
Philips Semiconductors  
Product specification  
Triple buffer gate  
74HC3G34; 74HCT3G34  
Type 74HCT3G34  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).  
TEST CONDITIONS  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
OTHER  
VCC (V)  
Tamb = 40 to +85 °C; note 1  
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
4.5 to 5.5  
4.5 to 5.5  
2.0  
1.6  
V
V
1.2  
0.8  
VOH  
HIGH-level output voltage VI = VIH or VIL  
IO = 20 µA  
4.5  
4.5  
4.4  
4.5  
V
V
IO = 4.0 mA  
4.13  
4.32  
VOL  
LOW-level output voltage  
VI = VIH or VIL  
IO = 20 µA  
4.5  
4.5  
5.5  
5.5  
0
0.1  
V
V
IO = 4.0 mA  
0.15  
0.33  
±1.0  
10  
ILI  
input leakage current  
VI = VCC or GND  
µA  
µA  
ICC  
quiescent supply current  
VI = VCC or GND;  
IO = 0  
ICC  
additional supply current  
per input  
VI = VCC 2.1 V;  
IO = 0  
4.5 to 5.5  
375  
µA  
Tamb = 40 to +125 °C  
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
4.5 to 5.5  
4.5 to 5.5  
2.0  
V
V
0.8  
VOH  
HIGH-level output voltage VI = VIH or VIL  
IO = 20 µA  
4.5  
4.5  
4.4  
3.7  
V
V
IO = 4.0 mA  
VOL  
LOW-level output voltage  
VI = VIH or VIL  
IO = 20 µA  
4.5  
4.5  
5.5  
5.5  
0.1  
0.4  
±1.0  
20  
V
IO = 4.0 mA  
V
ILI  
input leakage current  
VI = VCC or GND  
µA  
µA  
ICC  
quiescent supply current  
VI = VCC or GND;  
IO = 0  
ICC  
additional supply current  
per input  
VI = VCC 2.1 V;  
IO = 0  
4.5 to 5.5  
410  
µA  
Note  
1. All typical values are measured at Tamb = 25 °C.  
2003 May 19  
8
Philips Semiconductors  
Product specification  
Triple buffer gate  
74HC3G34; 74HCT3G34  
AC CHARACTERISTICS  
Type 74HC3G34  
GND = 0 V; tr = tf 6.0 ns; CL = 50 pF.  
TEST CONDITIONS  
WAVEFORMS VCC (V)  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
Tamb = 40 to +85 °C; note 1  
tPHL/tPLH propagation delay nA to nY see Figs 4 and 5  
2.0  
4.5  
6.0  
2.0  
4.5  
6.0  
29  
95  
ns  
9
19  
16  
95  
19  
16  
ns  
ns  
ns  
ns  
ns  
8
tTHL/tTLH  
output transition time  
see Figs 4 and 5  
18  
6
5
Tamb = 40 to +125 °C  
tPHL/tPLH propagation delay nA to nY see Figs 4 and 5  
2.0  
4.5  
6.0  
2.0  
4.5  
6.0  
125  
25  
ns  
ns  
ns  
ns  
ns  
ns  
20  
tTHL/tTLH  
output transition time  
see Figs 4 and 5  
125  
25  
20  
Note  
1. All typical values are measured at Tamb = 25 °C.  
Type 74HCT3G34  
GND = 0 V; tr = tf 6.0 ns; CL = 50 pF.  
TEST CONDITIONS  
WAVEFORMS CC (V)  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
V
Tamb = 40 to +85 °C; note 1  
t
PHL/tPLH propagation delay nA to nY see Figs 4 and 5  
THL/tTLH output transition time see Figs 4 and 5  
4.5  
10  
6
23  
19  
ns  
ns  
t
4.5  
Tamb = 40 to +125 °C  
tPHL/tPLH propagation delay nA to nY see Figs 4 and 5  
THL/tTLH output transition time see Figs 4 and 5  
4.5  
4.5  
29  
25  
ns  
ns  
t
Note  
1. All typical values are measured at Tamb = 25 °C.  
2003 May 19  
9
Philips Semiconductors  
Product specification  
Triple buffer gate  
74HC3G34; 74HCT3G34  
AC WAVEFORMS  
V
handbook, halfpage  
I
V
V
M
nA input  
M
GND  
t
t
PHL  
PLH  
V
OH  
90%  
V
V
nY output  
M
M
10%  
V
OL  
t
t
TLH  
MNA746  
THL  
For 74HC3G: VM = 50%; VI = GND to VCC  
.
For 74HCT3G: VM = 1.3 V; VI = GND to 3.0 V.  
Fig.4 The input (nA) to output (nY) propagation delays and the output transition times.  
S1  
V
CC  
open  
V
CC  
GND  
R
=
L
1 k  
V
V
O
I
PULSE  
GENERATOR  
D.U.T.  
C
50 pF  
=
L
R
T
MNA742  
TEST  
S1  
t
PLH/tPHL  
tPLZ/tPZL  
tPHZ/tPZH  
open  
VCC  
Definitions for test circuit:  
RL = Load resistor.  
CL = load capacitance including jig and probe capacitance.  
GND  
RT = termination resistance should be equal to the output impedance Zo of the pulse generator.  
Fig.5 Load circuitry for switching times.  
2003 May 19  
10  
Philips Semiconductors  
Product specification  
Triple buffer gate  
74HC3G34; 74HCT3G34  
PACKAGE OUTLINES  
TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm  
SOT505-2  
D
E
A
X
c
H
v
M
y
A
E
Z
5
8
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
detail X  
1
4
e
w
M
b
p
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
A
A
A
b
c
D
E
e
H
E
L
L
p
UNIT  
v
w
y
Z
θ
1
2
3
p
max.  
0.15  
0.00  
0.95  
0.75  
0.38  
0.22  
0.18  
0.08  
3.1  
2.9  
3.1  
2.9  
4.1  
3.9  
0.47  
0.33  
0.70  
0.35  
8°  
0°  
mm  
1.1  
0.25  
0.65  
0.5  
0.2  
0.13  
0.1  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
02-01-16  
SOT505-2  
- - -  
2003 May 19  
11  
Philips Semiconductors  
Product specification  
Triple buffer gate  
74HC3G34; 74HCT3G34  
VSSOP8: plastic very thin shrink small outline package; 8 leads; body width 2.3 mm  
SOT765-1  
D
E
A
X
c
y
H
v
M
A
E
Z
5
8
Q
A
2
A
A
1
(A )  
3
pin 1 index  
θ
L
p
L
detail X  
1
4
e
w
M
b
p
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
A
A
A
b
c
D
E
e
H
L
L
p
Q
UNIT  
v
w
y
Z
θ
1
2
3
p
E
max.  
0.15  
0.00  
0.85  
0.60  
0.27  
0.17  
0.23  
0.08  
2.1  
1.9  
2.4  
2.2  
3.2  
3.0  
0.40  
0.15  
0.21  
0.19  
0.4  
0.1  
8°  
0°  
mm  
1
0.12  
0.5  
0.4  
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
02-06-07  
SOT765-1  
MO-187  
2003 May 19  
12  
Philips Semiconductors  
Product specification  
Triple buffer gate  
74HC3G34; 74HCT3G34  
SOLDERING  
If wave soldering is used the following conditions must be  
observed for optimal results:  
Introduction to soldering surface mount packages  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering can still be used for  
certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is  
recommended.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
Reflow soldering  
The footprint must incorporate solder thieves at the  
downstream end.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Driven by legislation and environmental forces the  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
worldwide use of lead-free solder pastes is increasing.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Several methods exist for reflowing; for example,  
convection or convection/infrared heating in a conveyor  
type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending  
on heating method.  
Typical dwell time of the leads in the wave ranges from  
3 to 4 seconds at 250 °C or 265 °C, depending on solder  
material applied, SnPb or Pb-free respectively.  
Typical reflow peak temperatures range from  
215 to 270 °C depending on solder paste material. The  
top-surface temperature of the packages should  
preferably be kept:  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
below 220 °C (SnPb process) or below 245 °C (Pb-free  
process)  
Manual soldering  
– for all the BGA packages  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
– for packages with a thickness 2.5 mm  
– for packages with a thickness < 2.5 mm and a  
volume 350 mm3 so called thick/large packages.  
below 235 °C (SnPb process) or below 260 °C (Pb-free  
process) for packages with a thickness < 2.5 mm and a  
volume < 350 mm3 so called small/thin packages.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
Moisture sensitivity precautions, as indicated on packing,  
must be respected at all times.  
Wave soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
2003 May 19  
13  
Philips Semiconductors  
Product specification  
Triple buffer gate  
74HC3G34; 74HCT3G34  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
WAVE  
REFLOW(2)  
not suitable suitable  
PACKAGE(1)  
BGA, LBGA, LFBGA, SQFP, TFBGA, VFBGA  
DHVQFN, HBCC, HBGA, HLQFP, HSQFP, HSOP, HTQFP,  
HTSSOP, HVQFN, HVSON, SMS  
not suitable(3)  
suitable  
PLCC(4), SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended(4)(5) suitable  
not recommended(6)  
suitable  
SSOP, TSSOP, VSO, VSSOP  
Notes  
1. For more detailed information on the BGA packages refer to the “(LF)BGA Application Note” (AN01026); order a copy  
from your Philips Semiconductors sales office.  
2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
3. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder  
cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side,  
the solder might be deposited on the heatsink surface.  
4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
5. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm; it is definitely not  
suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
6. Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than  
0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
2003 May 19  
14  
Philips Semiconductors  
Product specification  
Triple buffer gate  
74HC3G34; 74HCT3G34  
DATA SHEET STATUS  
DATA SHEET  
LEVEL  
PRODUCT  
STATUS(2)(3)  
DEFINITION  
STATUS(1)  
I
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
II  
Preliminary data Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Relevant changes will  
be communicated via a Customer Product/Process Change Notification  
(CPCN).  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
DEFINITIONS  
DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes in the products -  
including circuits, standard cells, and/or software -  
described or contained herein in order to improve design  
and/or performance. When the product is in full production  
(status ‘Production’), relevant changes will be  
Application information  
Applications that are  
communicated via a Customer Product/Process Change  
Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these  
products, conveys no licence or title under any patent,  
copyright, or mask work right to these products, and  
makes no representations or warranties that these  
products are free from patent, copyright, or mask work  
right infringement, unless otherwise specified.  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2003 May 19  
15  
Philips Semiconductors – a worldwide company  
Contact information  
For additional information please visit http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.  
© Koninklijke Philips Electronics N.V. 2003  
SCA75  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
613508/03/pp16  
Date of release: 2003 May 19  
Document order number: 9397 750 11197  

相关型号:

74HC3G34-Q100

Triple buffer gate
NEXPERIA

74HC3G34DC

Triple Buffer Gate
NXP

74HC3G34DC

Triple buffer gateProduction
NEXPERIA

74HC3G34DC-Q100

Triple buffer gate
NEXPERIA

74HC3G34DP

Triple Buffer Gate
NXP

74HC3G34DP

Triple buffer gateProduction
NEXPERIA

74HC3G34DP-Q100

Triple buffer gate
NEXPERIA

74HC3G34DP-Q100,125

Buffer, HC/UH Series, 3-Func, 1-Input, CMOS, PDSO8
NXP

74HC3G34DP-Q100H

74HC(T)3G34-Q100 - Dual non-inverting Schmitt trigger TSSOP 8-Pin
NXP

74HC3G34GD

Triple buffer gate
NXP

74HC3G34GD,125

74HC(T)3G34 - Triple buffer gate SON 8-Pin
NXP

74HC3GU04

Inverter
NXP