74HC7046AD-T [NXP]

IC PHASE LOCKED LOOP, PDSO16, PLL or Frequency Synthesis Circuit;
74HC7046AD-T
型号: 74HC7046AD-T
厂家: NXP    NXP
描述:

IC PHASE LOCKED LOOP, PDSO16, PLL or Frequency Synthesis Circuit

光电二极管
文件: 总38页 (文件大小:465K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
For a complete data sheet, please also download:  
The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications  
The IC06 74HC/HCT/HCU/HCMOS Logic Package Information  
The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines  
74HC/HCT7046A  
Phase-locked-loop with lock  
detector  
December 1990  
Product specification  
File under Integrated Circuits, IC06  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
amplifiers. With a passive low-pass  
SIGIN (pin 14) or COMPIN (pin 3)  
inputs between the HC and HCT  
versions.  
FEATURES  
filter, the “7046” forms a second-order  
loop PLL. The excellent VCO linearity  
is achieved by the use of linear  
op-amp techniques.  
Low power consumption  
Centre frequency up to 17 MHz  
(typ.) at VCC = 4.5 V  
Phase comparators  
Choice of two phase comparators:  
EXCLUSIVE-OR;  
edge-triggered JK flip-flop;  
The signal input (SIGIN) can be  
directly coupled to the self-biasing  
amplifier at pin 14, provided that the  
signal swing is between the standard  
HC family input logic levels.  
VCO  
The VCO requires one external  
capacitor C1 (between C1A and C1B)  
and one external resistor R1  
(between R1 and GND) or two  
external resistors R1 and R2  
Excellent VCO frequency linearity  
VCO-inhibit control for ON/OFF  
keying and for low standby power  
consumption  
Capacitive coupling is required for  
signals with smaller swings.  
(between R1 and GND, and R2 and  
GND). Resistor R1 and capacitor C1  
determine the frequency range of the  
VCO. Resistor R2 enables the VCO  
to have a frequency offset if required.  
Minimal frequency drift  
Phase comparator 1 (PC1)  
Operation power supply voltage  
range:  
VCO section 3.0 to 6.0 V  
digital section 2.0 to 6.0 V  
This is an EXCLUSIVE-OR network.  
The signal and comparator input  
frequencies (fi) must have a 50% duty  
factor to obtain the maximum locking  
range. The transfer characteristic of  
PC1, assuming ripple (fr = 2fi) is  
suppressed,  
The high input impedance of the VCO  
simplifies the design of low-pass  
filters by giving the designer a wide  
choice of resistor/capacitor ranges. In  
order not to load the low-pass filter, a  
demodulator output of the VCO input  
voltage is provided at pin 10  
Zero voltage offset due to op-amp  
buffering  
Output capability: standard  
ICC category: MSI  
is:  
V
VDEMOUT  
=
CC (φ SIGIN φCOMPIN  
)
----------  
π
GENERAL DESCRIPTION  
(DEMOUT). In contrast to conventional  
techniques where the DEMOUT  
The 74HC/HCT7046 are high-speed  
Si-gate CMOS devices and are  
specified in compliance with JEDEC  
standard no. 7.  
voltage is one threshold voltage lower  
than the VCO input voltage, here the  
DEMOUT voltage equals that of the  
VCO input. If DEMOUT is used, a load  
resistor (RS) should be connected  
from DEMOUT to GND; if unused,  
DEMOUT should be left open. The  
VCO output (VCOOUT) can be  
connected directly to the comparator  
input (COMPIN), or connected via a  
frequency-divider. The VCO output  
signal has a duty factor of 50%  
(maximum expected deviation 1%), if  
the VCO input is held at a constant  
DC level. A LOW level at the inhibit  
input (INH) enables the VCO and  
demodulator, while a HIGH level turns  
both off to minimize standby power  
consumption.  
where VDEMOUT is the demodulator  
output at pin 10;  
The 74HC/HCT7046 are  
VDEMOUT = VPC1OUT (via low-pass  
filter).  
phase-locked-loop circuits that  
comprise a linear voltage-controlled  
oscillator (VCO) and two different  
phase comparators (PC1 and PC2)  
with a common signal input amplifier  
and a common comparator input.  
The phase comparator gain  
is:  
VCC  
Kp  
=
(V r) .  
----------  
π
A lock detector is provided and this  
gives a HIGH level at pin 1 (LD) when  
the PLL is locked. The lock detector  
capacitor must be connected  
The average output voltage from  
PC1, fed to the VCO input via the  
low-pass filter and seen at the  
between pin 15 (CLD) and pin 8  
(GND). The value of the CLD capacitor  
can be determined, using information  
supplied in Fig.32. The input signal  
can be directly coupled to large  
voltage signals, or indirectly coupled  
(with a series capacitor) to small  
voltage signals. A self-bias input  
circuit keeps small voltage signals  
within the linear region of the input  
demodulator output at pin 10  
(VDEMOUT), is the resultant of the  
phase differences of signals (SIGIN)  
and the comparator input (COMPIN)  
as shown in Fig.6. The average of  
VDEMOUT is equal to 1/2 VCC when  
there is no signal or noise at SIGIN  
and with this input the VCO oscillates  
at the centre frequency (fo). Typical  
The only difference between the HC  
and HCT versions is the input level  
specification of the INH input. This  
input disables the VCO section. The  
comparators’ sections are identical,  
so that there is no difference in the  
December 1990  
2
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
waveforms for the PC1 loop locked at  
fo are shown in Fig.7.  
the low-pass filter. With no signal  
present at SIGIN the VCO adjusts, via  
PC2, to its lowest frequency.  
The phase comparator gain is:  
V
Kp  
=
CC (V r) .  
----------  
The frequency capture range (2fc) is  
defined as the frequency range of  
input signals on which the PLL will  
lock if it was initially out-of-lock. The  
frequency lock range (2fL) is defined  
as the frequency range of input  
signals on which the loop will stay  
locked if it was initially in lock. The  
capture range is smaller or equal to  
the lock range.  
4π  
APPLICATIONS  
V
DEMOUT is the resultant of the initial  
FM modulation and demodulation  
phase differences of SIGIN and  
COMPIN as shown in Fig.8. Typical  
waveforms for the PC2 loop locked at  
fo are shown in Fig.9.  
Frequency synthesis and  
multiplication  
Frequency discrimination  
Tone decoding  
When the frequencies of SIGIN and  
COMPIN are equal but the phase of  
SIGIN leads that of COMPIN, the  
p-type output driver at PC2OUT is held  
“ON” for a time corresponding to the  
phase difference (φDEMOUT). When  
the phase of SIGIN lags that of  
Data synchronization and  
conditioning  
With PC1, the capture range depends  
on the low-pass filter characteristics  
and can be made as large as the lock  
range. This configuration retains lock  
even with very noisy input signals.  
Typical behaviour of this type of  
phase comparator is that it can lock to  
input frequencies close to the  
harmonics of the VCO centre  
frequency.  
Voltage-to-frequency conversion  
Motor-speed control  
COMPIN, the n-type driver is held  
“ON”.  
When the frequency of SIGIN is higher  
than that of COMPIN, the p-type  
output driver is held “ON” for most of  
the input signal cycle time, and for  
the remainder of the cycle both n and  
p- type drivers are “OFF” (3-state). If  
the SIGIN frequency is lower than the  
COMPIN frequency, then it is the  
n-type driver that is held “ON” for  
most of the cycle. Subsequently, the  
voltage at the capacitor (C2) of the  
low-pass filter connected to PC2OUT  
varies until the signal and comparator  
inputs are equal in both phase and  
frequency. At this stable point the  
voltage on C2 remains constant as  
the PC2 output is in 3-state and the  
VCO input at pin 9 is a high  
Phase comparator 2 (PC2)  
This is a positive edge-triggered  
phase and frequency detector. When  
the PLL is using this comparator, the  
loop is controlled by positive signal  
transitions and the duty factors of  
SIGIN and COMPIN are not important.  
PC2 comprises two D-type flip-flops,  
control-gating and a 3-state output  
stage. The circuit functions as an  
up-down counter (Fig.5) where SIGIN  
causes an up-count and COMPIN  
a
down-count. The transfer function of  
PC2, assuming ripple (fr = fi) is  
suppressed,  
is:  
impedance.  
V
Thus, for PC2, no phase difference  
exists between SIGIN and COMPIN  
over the full frequency range of the  
VCO. Moreover, the power  
VDEMOUT  
=
CC (φ SIGIN φCOMPIN  
)
----------  
4π  
dissipation due to the low-pass filter is  
reduced because both p and n-type  
drivers are “OFF” for most of the  
signal input cycle. It should be noted  
that the PLL lock range for this type of  
phase comparator is equal to the  
capture range and is independent of  
where VDEMOUT is the demodulator  
output at pin 10;  
VDEMOUT = VPC2OUT (via low-pass  
filter).  
December 1990  
3
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
QUICK REFERENCE DATA  
GND = 0 V; Tamb = 25 °C;  
TYPICAL  
UNIT  
SYMBOL PARAMETER  
CONDITIONS  
HC  
HCT  
fo  
VCO centre frequency  
C1 = 40 pF; R1 = 3 k; VCC = 5 V  
19  
19  
MHz  
pF  
CI  
input capacitance (pin 5)  
3.5  
24  
3.5  
24  
CPD  
power dissipation capacitance per package notes 1 and 2  
pF  
Notes  
1. Applies to the phase comparator section only (VCO disabled).  
For power dissipation of VCO and demodulator sections see Figs 20, 21 and 22.  
2. CPD is used to determine the dynamic power dissipation (PD in µW):  
PD = CPD × VCC2 × fi + ∑ (CL × VCC2 × fo) where:  
fi = input frequency in MHz  
fo = output frequency in MHz  
(CL × VCC2 × fo) = sum of outputs  
CL = output load capacitance in pF  
VCC = supply voltage in V  
ORDERING INFORMATION  
See “74HC/HCT/HCU/HCMOS Logic Package Information”.  
December 1990  
4
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
PIN DESCRIPTION  
PIN NO.  
SYMBOL  
NAME AND FUNCTION  
lock detector output (active HIGH)  
phase comparator 1 output  
comparator input  
1
LD  
2
PC1OUT  
COMPIN  
VCOOUT  
INH  
3
4
VCO output  
5
inhibit input  
6
C1A  
capacitor C1 connection A  
capacitor C1 connection B  
ground (0 V)  
7
C1B  
8
GND  
VCOIN  
DEMOUT  
R1  
9
VCO input  
10  
11  
12  
13  
14  
15  
16  
demodulator output  
resistor R1 connection  
resistor R2 connection  
phase comparator 2 output  
signal input  
R2  
PC2OUT  
SIGIN  
CLD  
lock detector capacitor input  
positive supply voltage  
VCC  
Fig.1 Pin configuration.  
Fig.2 Logic symbol.  
Fig.3 IEC logic symbol.  
December 1990  
5
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
GM8A47  
December 1990  
6
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
Fig.5 Logic diagram.  
Fig.6 Phase comparator 1: average output  
voltage versus input phase difference:  
V
VDEMOUT = VPC1OUT  
=
CC (φ SIGIN φCOMPIN  
)
----------  
π
Fig.7 Typical waveforms for PLL using phase  
comparator 1, loop locked at fo.  
φDEMOUT = φSIGIN φCOMPIN  
December 1990  
7
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
Fig.8 Phase comparator 2: average output  
voltage versus input phase difference:  
V
VDEMOUT = VPC2OUT  
=
CC (φ SIGIN φCOMPIN  
)
----------  
4π  
Fig.9 Typical waveforms for PLL using phase  
comparator 2, loop locked at fo.  
˙
φDEMOUT = (φSIGIN φCOMPIN) .  
December 1990  
8
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
RECOMMENDED OPERATING CONDITIONS FOR 74HC/HCT  
74HC  
74HCT  
SYMBOL PARAMETER  
UNIT CONDITIONS  
min. typ. max. min. typ. max.  
VCC  
VCC  
DC supply voltage  
3.0  
2.0  
5.0  
5.0  
6.0  
6.0  
4.5  
4.5  
5.0  
5.0  
5.5  
5.5  
V
V
DC supply voltage if VCO section is  
not used  
VI  
DC input voltage range  
DC output voltage range  
0
0
VCC  
VCC  
+85  
0
VCC  
VCC  
+85  
V
VO  
0
V
Tamb  
Tamb  
operating ambient temperature range 40  
operating ambient temperature range 40  
40  
°C  
see DC and AC  
CHARACTER-  
ISTICS  
+125 40  
+125 °C  
tr, tf  
input rise and fall times (pin 5)  
1000  
500  
VCC = 2.0 V  
6.0  
6.0  
500  
ns  
VCC = 4.5 V  
400  
VCC = 6.0 V  
RATINGS  
Limiting values in accordance with the Absolute Maximum System (IEC 134)  
Voltages are referenced to GND (ground = 0 V)  
SYMBOL  
VCC  
PARAMETER  
MIN. MAX. UNIT CONDITIONS  
DC supply voltage  
0.5 +7  
V
±IIK  
DC input diode current  
DC output diode current  
DC output source or sink current  
DC VCC or GND current  
20  
20  
25  
mA  
mA  
mA  
for VI < −0.5 V or VI > VCC + 0.5 V  
for VO < −0.5 V or VO > VCC + 0.5 V  
for 0.5 V < VO < VCC + 0.5 V  
±IOK  
±IO  
±ICC  
±IGND  
;
50  
mA  
Tstg  
storage temperature range  
65  
+150 °C  
Ptot  
power dissipation per package  
for temperature range: 40 to +125 °C  
74HC/HCT  
plastic DIL  
750  
500  
mW  
mW  
above +70 °C: derate linearly with 12 mW/K  
plastic mini-pack (SO)  
above +70 °C: derate linearly with 8 mW/K  
December 1990  
9
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
DC CHARACTERISTICS FOR 74HC  
Quiescent supply current  
Voltages are referenced to GND (ground = 0 V)  
Tamb (°C)  
TEST CONDITIONS  
74HC  
SYMBOL  
PARAMETER  
UNIT  
VCC  
(V)  
+25  
40 to +85 40 to +125  
OTHER  
min. typ. max. min. max. min. max.  
8.0 80.0 160.0 µA  
ICC  
quiescent supply  
current  
(VCO disabled)  
6.0 pins 3, 5, and 14 at  
VCC; pin 9 at GND;  
II at pins 3 and 14  
to be excluded  
December 1990  
10  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
Phase comparator section  
Voltages are referenced to GND (ground = 0 V)  
Tamb (°C)  
TEST CONDITIONS  
74HC  
SYMBOL  
PARAMETER  
UNIT  
VCC VI  
(V)  
+25  
40 to +85 40 to +125  
OTHER  
min. typ. max. min. max. min. max.  
DC coupled HIGH  
level input voltage  
SIGIN, COMPIN  
1.5  
3.15 2.4  
4.2  
1.2  
1.5  
3.15  
4.2  
1.5  
3.15  
4.2  
2.0  
4.5  
6.0  
VIH  
V
V
V
V
V
3.2  
DC coupled LOW level  
input voltage  
SIGIN, COMPIN  
0.8  
2.1  
2.8  
0.5  
1.35  
1.8  
0.5  
1.35  
1.8  
0.5  
1.35  
1.8  
2.0  
4.5  
6.0  
VIL  
HIGH level output  
voltage  
LD, PCnOUT  
1.9  
4.4  
5.9  
2.0  
4.5  
6.0  
1.9  
4.4  
5.9  
1.9  
4.4  
5.9  
2.0 VIH IO = 20 µA  
4.5 or IO = 20 µA  
6.0 VIL IO = 20 µA  
VOH  
VOH  
VOL  
HIGH level output  
voltage  
LD, PCnOUT  
VIH  
or  
VIL  
3.98 4.32  
5.48 5.81  
3.84  
5.34  
3.7  
5.2  
4.5  
6.0  
IO = 4.0 mA  
IO = 5.2 mA  
LOW level output  
voltage  
LD, PCnOUT  
0
0
0
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
2.0 VIH IO = 20 µA  
4.5 or IO = 20 µA  
6.0 VIL IO = 20 µA  
LOW level output  
voltage  
LD, PCnOUT  
VIH  
or  
VIL  
0.15 0.26  
0.16 0.26  
0.33  
0.33  
0.4  
0.4  
4.5  
6.0  
IO = 4.0 mA  
IO = 5.2 mA  
VOL  
V
±II  
input leakage current  
SIGIN, COMPIN  
3.0  
7.0  
18.0  
30.0  
4.0  
9.0  
23.0  
38.0  
5.0  
µA  
2.0 VCC  
3.0 or  
4.5 GND  
6.0  
11.0  
27.0  
45.0  
±IOZ  
3-state  
0.5  
5.0  
10.0 µA  
6.0 VIH VO = VCC  
OFF-state current  
PC2OUT  
or  
VIL  
or GND  
RI  
input resistance  
SIGIN, COMPIN  
800  
250  
150  
kΩ  
3.0 VI at self-bias  
4.5 operating point;  
6.0 VI = 0.5 V; see  
Figs 10, 11 and 12  
December 1990  
11  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
VCO section  
Voltages are referenced to GND (ground = 0 V)  
Tamb (°C)  
TEST CONDITIONS  
74HC  
SYM-  
BOL  
PARAMETER  
UNIT  
VCC VI  
OTHER  
(V)  
+25  
40 to +85 40 to +125  
min. typ. max. min. max. min. max.  
HIGH level  
input voltage  
INH  
2.1  
3.15 2.4  
4.2  
1.7  
2.1  
3.15  
4.2  
2.1  
3.15  
4.2  
3.0  
4.5  
6.0  
VIH  
VIL  
V
3.2  
LOW level  
input voltage  
INH  
1.3  
2.1  
2.8  
0.9  
1.35  
1.8  
0.9  
1.35  
1.8  
0.9  
1.35  
1.8  
3.0  
4.5  
6.0  
V
HIGH level  
output voltage  
VCOOUT  
2.9  
4.4  
5.9  
3.0  
4.5  
6.0  
2.9  
4.4  
5.9  
2.9  
4.4  
5.9  
3.0 VIH IO = 20 µA  
VOH  
VOH  
VOL  
VOL  
VOL  
±II  
V
4.5 or  
IO = 20 µA  
6.0 VIL IO = 20 µA  
HIGH level  
output voltage  
VCOOUT  
VIH  
or  
VIL  
3.98 4.32  
5.48 5.81  
3.84  
5.34  
3.7  
5.2  
4.5  
6.0  
IO = 4.0 mA  
IO = 5.2 mA  
V
LOW level  
output voltage  
VCOOUT  
0
0
0
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
3.0 VIH IO = 20 µA  
4.5 or IO = 20 µA  
6.0 VIL IO = 20 µA  
V
LOW level  
output voltage  
VCOOUT  
VIH  
or  
VIL  
0.15 0.26  
0.16 0.26  
0.33  
0.33  
0.4  
0.4  
4.5  
6.0  
IO = 4.0 mA  
IO = 5.2 mA  
V
LOW level output  
voltage C1A, C1B  
(test purposes only)  
VIH  
or  
VIL  
0.40  
0.40  
0.47  
0.47  
0.54  
0.54  
4.5  
6.0  
IO = 4.0 mA  
IO = 5.2 mA  
V
VCC  
input leakage current  
INH, VCOIN  
0.1  
1.0  
1.0  
µA  
kΩ  
kΩ  
pF  
6.0 or  
GND  
3.0  
3.0  
3.0  
300  
300  
300  
3.0  
4.5  
6.0  
R1  
resistor range  
resistor range  
capacitor range  
note 1  
note 1  
3.0  
3.0  
3.0  
300  
300  
300  
3.0  
4.5  
6.0  
R2  
40  
40  
40  
3.0  
4.5  
6.0  
no  
limit  
C1  
over the range  
specified for R1;  
for linearity see  
Figs 18 and 19.  
1.1  
1.1  
1.1  
1.9  
3.4  
4.9  
3.0  
4.5  
6.0  
operating voltage  
range at VCOIN  
VVCOIN  
V
Note  
1. The parallel value of R1 and R2 should be more than 2.7 k. Optimum performance is achieved when R1 and/or R2  
are/is > 10 k.  
December 1990  
12  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
Demodulator section  
Voltages are referenced to GND (ground = 0 V)  
Tamb (°C)  
TEST CONDITIONS  
74HC  
SYMBOL  
PARAMETER  
UNIT  
VCC  
(V)  
+25  
40 to +85 40 to +125  
OTHER  
min. typ. max. min. max. min. max.  
RS  
resistor range  
50  
50  
50  
300  
300  
300  
kΩ  
mV  
3.0 at RS > 300 kΩ  
4.5 the leakage  
6.0 current can  
influence  
VDEMOUT  
VOFF  
offset voltage  
VCOIN to VDEMOUT  
±30  
±20  
±10  
3.0 VI = VVCOIN  
4.5 1/2 VCC  
=
;
6.0 values taken  
over RS range;  
see Fig.13  
RD  
dynamic output  
resistance at DEMOUT  
25  
25  
25  
3.0 VDEMOUT =  
4.5  
6.0  
1/2 VCC  
December 1990  
13  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
AC CHARACTERISTICS FOR 74HC  
Phase comparator section  
GND = 0 V; tr = tf = 6 ns; CL = 50 pF  
T
amb (°C)  
TEST CONDITIONS  
74HC  
SYMBOL PARAMETER  
UNIT  
VCC  
+25  
40 to +85 40 to +125  
OTHER  
(V)  
min. typ. max. min. max. min. max.  
t
t
PHL/ tPLH propagation delay  
SIGIN, COMPIN  
58  
21  
17  
200  
40  
34  
250  
50  
43  
300 ns  
60  
51  
2.0  
4.5  
6.0  
Fig.14  
to PC1OUT  
PZH/ tPZL 3-state output enable  
time SIGIN, COMPIN  
to PC2OUT  
74  
27  
22  
280  
56  
48  
350  
70  
60  
420 ns  
84  
71  
2.0  
4.5  
6.0  
Fig.15  
tPHZ/ tPLZ 3-state output disable  
time SIGIN, COMPIN  
to PC2OUT  
96  
35  
28  
325  
65  
55  
405  
81  
69  
490 ns  
98  
83  
2.0  
4.5  
6.0  
Fig.15  
t
THL/ tTLH output transition time  
19  
7
6
75  
15  
13  
95  
19  
16  
110  
22  
19  
ns  
2.0  
4.5  
6.0  
Fig.14  
VI(p-p)  
AC coupled input sensitivity  
(peak-to-peak value) at  
SIGIN or COMPIN  
9
mV  
2.0  
3.0  
4.5  
6.0  
fi = 1 MHz  
11  
15  
33  
VCO section  
GND = 0 V; tr = tf = 6 ns; CL = 50 pF  
Tamb (°C)  
TEST CONDITIONS  
OTHER  
74HC  
SYM-  
PARAMETER  
BOL  
UNIT  
+25  
40 to +85  
40  
to +125  
VCC  
(V)  
min. typ. max. typ. max. min. max.  
f/T  
frequency stability  
with temperature  
change  
0.20  
0.15  
0.14  
%/K 3.0 VI = VVCOIN =1/2 VCC ;  
4.5 R1 = 100 k; R2 = ;  
6.0 C1 = 100 pF; see Fig.16  
fo  
VCO centre  
frequency  
7.0  
11.0 17.0  
10.0  
MHz 3.0 VVCOIN = 1/2 VCC  
;
4.5 R1 = 3 k; R2 = ;  
(duty factor = 50%) 13.0 21.0  
6.0 C1 = 40 pF; see Fig.17  
fVCO VCO frequency  
1.0  
0.4  
0.3  
%
%
3.0 R1 = 100 k; R2 = ;  
4.5 C1 = 100 pF; see Figs 18  
6.0 and 19  
linearity  
δVCO  
duty factor at  
VCOOUT  
50  
50  
50  
3.0  
4.5  
6.0  
December 1990  
14  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
DC CHARACTERISTICS FOR 74HCT  
Quiescent supply current  
Voltages are referenced to GND (ground = 0 V)  
Tamb (°C)  
TEST CONDITIONS  
74HCT  
SYMBOL  
PARAMETER  
UNIT  
VCC  
(V)  
+25  
40 to +85 40 to +125  
OTHER  
min. typ. max. min. max. min. max.  
ICC  
quiescent supply current  
(VCO disabled)  
8.0  
80.0  
160.0 µA  
6.0 pins 3, 5 and 14  
at VCC; pin 9 at  
GND; II at pins 3  
and 14 to be  
excluded  
ICC  
additional quiescent  
supply current per input  
pin for unit load coefficient  
is 1 (note 1)  
100 360  
450  
490  
µA  
4.5 pins 3 and 14 at  
to  
VCC; pin 9 at  
5.5 GND; II at pins 3  
and 14 to be  
VI = VCC 2.1 V  
excluded  
Note  
1. The value of additional quiescent supply current (ICC) for a unit load of 1 is given above.  
To determine ICC per input, multiply this value by the unit load coefficient shown in the table below.  
INPUT  
INH  
UNIT LOAD COEFFICIENT  
1.00  
December 1990  
15  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
Phase comparator section  
Voltages are referenced to GND (ground = 0 V)  
T
amb (°C)  
74HCT  
40 to +85 40 to +125  
min. typ. max min. max. min. max.  
TEST CONDITIONS  
SYM  
BOL  
PARAMETER  
UNIT  
VCC VI  
(V)  
+25  
OTHER  
DC coupled  
VIH  
HIGH level input voltage 3.15 2.4  
SIGIN, COMPIN  
V
4.5  
DC coupled  
VIL  
LOW level input voltage  
SIGIN, COMPIN  
2.1 1.35  
V
4.5  
VIH  
or  
VIL  
HIGH level output voltage  
LD, PCnOUT  
VOH  
VOH  
VOL  
VOL  
±II  
4.4  
4.5  
4.4  
4.4  
3.7  
V
4.5  
4.5  
4.5  
4.5  
5.5  
5.5  
IO = 20 µA  
IO = 4.0 mA  
IO = 20 µA  
IO = 4.0 mA  
VIH  
or  
VIL  
HIGH level output voltage  
LD, PCnOUT  
3.98 4.32  
3.84  
V
VIH  
or  
VIL  
LOW level output voltage  
LD, PCnOUT  
0
0.1  
0.1  
0.33  
38  
0.1  
0.4  
45  
V
VIH  
or  
VIL  
LOW level output voltage  
LD, PCnOUT  
0.15 0.26  
V
VCC  
or  
input leakage current  
SIGIN, COMPIN  
30  
µA  
µA  
GND  
3-state  
OFF-state current  
PC2OUT  
VIH  
or  
VIL  
VO = VCC  
or GND  
±IOZ  
0.5  
5.0  
10.0  
VI at self-bias  
input resistance  
SIGIN, COMPIN  
operating point;  
VI = 0.5 V; see Figs  
10, 11 and 12  
RI  
250  
kΩ  
4.5  
December 1990  
16  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
DC CHARACTERISTICS FOR 74HCT  
VCO section  
Voltages are referenced to GND (ground = 0 V)  
Tamb (°C)  
TEST CONDITIONS  
74HCT  
SYMBOL  
PARAMETER  
UNIT  
VCC VI  
OTHER  
(V)  
+25  
40 to +85 40 to +125  
min. typ. max. min. max. min. max.  
VIH  
VIL  
HIGH level input  
voltage  
INH  
2.0  
1.6  
2.0  
2.0  
V
4.5  
to  
5.5  
LOW level input  
voltage  
INH  
1.2 0.8  
4.5  
0.8  
0.8  
V
4.5  
to  
5.5  
VOH  
VOH  
VOL  
VOL  
VOL  
±II  
HIGH level output  
voltage  
VCOOUT  
4.4  
4.4  
4.4  
3.7  
V
4.5 VIH IO = 20 µA  
or  
VIL  
HIGH level output  
voltage  
VCOOUT  
3.98 4.32  
3.84  
V
4.5 VIH IO = 4.0 mA  
or  
VIL  
LOW level output  
voltage  
VCOOUT  
0
0.1  
0.1  
0.1  
0.4  
0.54  
1.0  
V
4.5 VIH IO = 20 µA  
or  
VIL  
LOW level output  
voltage  
VCOOUT  
0.15 0.26  
0.40  
0.33  
0.47  
1.0  
V
4.5 VIH IO = 4.0 mA  
or  
VIL  
LOW level output  
voltage C1A, C1B  
(test purposes only)  
V
4.5 VIH IO = 4.0 mA  
or  
VIL  
input leakage  
current  
0.1  
µA  
5.5 VCC  
or  
INH, VCOIN  
GND  
R1  
R2  
C1  
resistor range  
resistor range  
capacitor range  
3.0  
3.0  
40  
300  
300  
kΩ  
kΩ  
pF  
4.5  
4.5  
4.5  
note 1  
note 1  
no  
limit  
VVCOIN  
operating voltage  
range at VCOIN  
1.1  
3.4  
V
4.5  
over the range  
specified for  
R1;  
for linearity see  
Figs 18 and 19.  
Note  
1. The parallel value of R1 and R2 should be more than 2.7 k. Optimum performance is achieved when R1 and/or R2  
are/is > 10 k.  
December 1990  
17  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
Demodulator section  
Voltages are referenced to GND (ground = 0 V)  
T
amb (°C)  
74HCT  
40 to +85 40 to +125  
min. typ. max. min. max. min. max.  
TEST CONDITIONS  
SYMBOL  
PARAMETER  
UNIT  
VCC  
+25  
OTHER  
(V)  
RS  
resistor range  
50  
300  
kΩ  
4.5 at RS > 300 kthe  
leakage current can  
influence VDEMOUT  
VOFF  
offset voltage  
VCOIN to VDEMOUT  
±20  
mV  
4.5 VI = VVCOIN = 1/2  
VCC; values taken  
over RS range;  
see Fig.13  
RD  
dynamic output  
25  
4.5 VDEMOUT = 1/2 VCC  
resistance at DEMOUT  
AC CHARACTERISTICS FOR 74HCT  
Phase comparator section  
GND = 0 V; tr = tf = 6 ns; CL = 50 pF  
Tamb (°C)  
TEST  
CONDITIONS  
74HCT  
SYMBOL PARAMETER  
UNIT  
VCC  
+25  
40 to +85  
40 to +125  
OTHER  
(V)  
min. typ. max. min. max. min. max.  
t
PHL/ tPLH propagation delay  
21  
27  
35  
40  
56  
65  
15  
50  
70  
81  
19  
60  
84  
98  
22  
ns  
ns  
ns  
4.5  
Fig.14  
SIGIN, COMPIN  
to PC1OUT  
tPZH/ tPZL 3-state output enable  
time SIGIN, COMPIN  
to PC2OUT  
4.5  
4.5  
Fig.15  
Fig.15  
Fig.14  
t
PHZ/ tPLZ 3-state output disable  
time SIGIN, COMPIN  
to PC2OUT  
t
THL/ tTLH output transition time  
7
ns  
4.5  
4.5  
VI(p-p)  
AC coupled input sensitivity  
(peak-to-peak value) at  
SIGIN or COMPIN  
15  
mV  
fi =  
1 MHz  
December 1990  
18  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
VCO section  
GND = 0 V; tr = tf = 6 ns; CL = 50 pF  
Tamb (°C)  
TEST CONDITIONS  
74HCT  
SYMBOL PARAMETER  
UNIT  
VCC  
(V)  
+25  
40 to +85 40 to +125  
OTHER  
min. typ. max. typ. max. min. max.  
f/T  
frequency stability  
with temperature  
change  
0.15  
%/K 4.5 VI = VCOIN within  
recommended  
range;  
R1 = 100 k;  
R2 = ;  
C1 = 100 pf;  
see Fig.16b  
fo  
VCO centre frequency 11.0 17.0  
(duty factor = 50%)  
MHz 4.5 VVCOIN = 1/2 VCC;  
R1 = 3 k; R2 = ;  
C1 = 40 pF;  
see Fig.17  
fVCO  
VCO frequency  
linearity  
0.4  
50  
%
%
4.5 R1 = 100 k;  
R2 = ;  
C1 = 100 pF; see  
Figs 18 and 19  
δVCO  
duty factor at VCOOUT  
4.5  
December 1990  
19  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
FIGURE REFERENCES FOR DC CHARACTERISTICS  
Fig.11 Input resistance at SIGIN, COMPIN with  
VI = 0.5 V at self-bias point.  
Fig.10 Typical input resistance curve at SIGIN,  
COMPIN.  
____ RS = 50 k  
- - - - RS = 300 kΩ  
Fig.12 Input current at SIGIN, COMPIN with  
Fig.13 Offset voltage at demodulator output as a  
function of VCOIN and RS.  
VI = 0.5 V at self-bias point.  
December 1990  
20  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
AC WAVEFORMS  
(1) HC : VM = 50%; VI = GND to VCC  
.
Fig.14 Waveforms showing input (SIGIN, COMPIN) to output (PC1OUT) propagation delays and the output  
transition times.  
(1) HC : VM = 50%; VI = GND to VCC  
.
Fig.15 Waveforms showing the 3-state enable and disable times for PC2OUT  
.
December 1990  
21  
MSB711  
MSB712  
MSB710  
25  
25  
25  
handbook, halfpage  
handbook, halfpage  
handbook, halfpage  
V
=
CC  
3 V  
5 V  
f  
(%)  
f  
(%)  
f
(%)  
3 V  
5 V  
20  
20  
15  
20  
15  
6 V  
6 V  
V
=
15  
V
=
CC  
CC  
3 V  
6 V  
5 V  
3 V  
3 V  
5 V  
6 V  
A
10  
5
10  
5
10  
5
5 V  
6 V  
3 V  
4.5 V  
5 V  
6 V  
0
0
0
5  
10  
15  
20  
5
10  
15  
20  
5
10  
15  
20  
25  
50  
25  
50  
25  
50  
0
50  
100  
150  
0
50  
100  
T
150  
0
50  
100  
T
150  
o
o
o
T
( C)  
(
C)  
(
C)  
amb  
amb  
amb  
(a)  
(b)  
(c)  
Fig.16 Frequency stability of the VCO as a function of ambient temperature with supply voltage as a parameter.  
without offset (R2 = ): (a) R1 = 3 k; (b) R1 = 10 k; (c) R1 = 300 k.  
- - - - with offset (R1 = ): (a) R2 = 3 k; (b) R2 = 10 k; (c) R2 = 300 k.  
In (b), the frequency stability for R1 = R2 = 10 kat 5 V is also given (curve A). This curve is set by the total VCO bias current, and is  
not simply the addition of the two 10 kstability curves. C1 = 100 pF; VVCO IN = 0.5 VCC  
.
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
AC WAVEFORMS  
To obtain optimum temperature stability, C1 must be a small as possible, but larger than 100 pF.  
Fig.16 Continued.  
December 1990  
23  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
Fig.17 Graphs showing VCO frequency (fVCO) as a function of the VCO input voltage (VVCOIN).  
December 1990  
24  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
Fig.18 Definition of VCO frequency linearity:  
V = 0.5 V over the VCC range:  
for VCO linearity  
f1 + f2  
f0  
=
--------------  
2
Fig.19 Frequency linearity as a function of R1, C1  
f0 f  
linearity =  
0 × 100%  
----------------  
and VCC: R2 = and V = 0.5 V.  
f0  
December 1990  
25  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
____ C1 = 40 pF  
____ C1 = 40 pF  
- - - - C1 = 1 µF  
- - - - C1 = 1 µF  
Fig.20 Power dissipation versus the value of R1:  
Fig.21 Power dissipation versus the value of R2:  
CL = 50 pF; R1 = ; VVCOIN = GND = 0 V;  
Tamb = 25 °C.  
CL = 50 pF; R2 = ; VVCOIN = 1/2 VCC  
Tamb = 25 °C.  
;
Fig.22 Typical dc power dissipation of demodulator  
section as a function of RS: R1 = R2 = ;  
Tamb = 25 °C; VVCOIN = 1/2 VCC  
.
December 1990  
26  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
APPLICATION INFORMATION  
This information is a guide for the approximation of values of external components to be used with the 74HC/HCT7046  
in a phase-lock-loop system.  
References should be made to Figs 27, 28 and 29 as indicated in the table.  
Values of the selected components should be within the following ranges:  
R1  
R2  
between 3 kand 300 kΩ;  
between 3 kand 300 kΩ;  
R1 + R2 parallel value > 2.7 k;  
C1  
greater than 40 pF.  
PHASE  
COMPARATOR  
SUBJECT  
DESIGN CONSIDERATIONS  
VCO frequency characteristic  
VCO frequency  
without extra  
offset  
PC1, PC2  
With R2 = and R1 within the range 3 kΩ < R1 < 300 k, the characteristics  
of the VCO operation will be as shown in Fig. 23.  
(Due to R1, C1 time constant a small offset remains when R2 = .)  
Fig. 23 Frequency characteristic of VCO operating without offset:  
fo = centre frequency; 2fL = frequency lock range.  
Selection of R1 and C1  
PC1  
PC2  
Given fo, determine the values of R1 and C1 using Fig.27.  
Given fmax and fo, determine the values of R1 and C1 using Fig.27,  
use Fig.29 to obtain 2fL and then use this to calculate fmin.  
December 1990  
27  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
PHASE  
COMPARATOR  
SUBJECT  
DESIGN CONSIDERATIONS  
VCO frequency characteristic  
VCO frequency  
with extra  
offset  
PC1, PC2  
With R1 and R2 within the ranges 3 kΩ < R1 < 300 kΩ, 3 kΩ < R2 < 300 k,  
the characteristics of the VCO operation will be as shown in Fig. 24.  
Fig. 24 Frequency characteristic of VCO operating with offset:  
fo = centre frequency; 2fL = frequency lock range.  
Selection of R1, R2 and C1  
PC1, PC2  
Given f0 and fL, determine the value of product R1C1 by using Fig.29.  
Calculate foff from the equation foff = fo 1.6fL.  
Obtain the values of C1 and R2 by using Fig.28.  
Calculate the value of R1 from the value of C1 and the product R1C1.  
December 1990  
28  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
PHASE  
COMPARATOR  
SUBJECT  
DESIGN CONSIDERATIONS  
PLL conditions  
with no signal at  
the SIGIN input  
PC1  
VCO adjusts to fo with φDEMOUT = 90° and VVCOIN = 1/2 VCC (see Fig.6).  
VCO adjusts to fo with φDEMOUT = 360° and VVCOIN = min. (see Fig.8).  
PC2  
PLL frequency  
capture range  
PC1, PC2  
Loop filter component selection  
(a) τ = R3 x C2  
(b) amplitude characteristic  
(c) pole-zero diagram  
Fig. 25 Simple loop filter for PLL without offset; R3 500 .  
(a) τ1 = R3 x C2;  
τ2 = R4 x C2;  
(b) amplitude characteristic  
(c) pole-zero diagram  
τ3 = (R3 + R4) x C2  
Fig. 26 Simple loop filter for PLL with offset; R3 + R4 500 .  
PLL locks on  
harmonics at  
centre frequency  
PC1  
PC2  
yes  
no  
noise rejection at PC1  
high  
low  
signal input  
PC2  
AC ripple content PC1  
when PLL is  
locked  
fr = 2fi, large ripple content at φDEMOUT = 90°  
PC2  
fr = fi, small ripple content at φDEMOUT = 0°  
December 1990  
29  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
(1) To obtain optimum VCO performance, C1 must be as small as possible but larger than 100 pF.  
(2) Interpolation for various values of R1 can be easily calculated because a constant R1C1 product will produce  
almost the same VCO output frequency.  
Fig.27 Typical value of VCO centre frequency (fo) as a function of C1: R2 = ; VVCOIN = 1/2 VCC; INH = GND;  
Tamb = 25 °C.  
December 1990  
30  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
APPLICATION INFORMATION  
(1) To obtain optimum VCO performance, C1 must be as small as possible but larger than 100 pF.  
(2) Interpolation for various values of R2 can be easily calculated because a constant R2C2 product will produce  
almost the same VCO output frequency.  
Fig.28 Typical value of frequency offset as a function of C1: R1 = ; VVCOIN = 1/2 VCC; INH = GND; Tamb = 25 °C.  
December 1990  
31  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
Fig.29 Typical frequency lock range (2fL) versus the product R1C1: VVCOIN range = 0.9 to (VCC 0.9) V;  
R2 = ; VCO gain:  
2fL  
KV  
=
2 π (r/s/V).  
------------------------------------  
VVCOIN range  
December 1990  
32  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
on the application, the phase error can be defined as the  
limit, a phase error of greater magnitude would be  
considered out-of-lock. An example of an in-lock detection  
circuit using the “7046A” is shown in Fig.30.  
APPLICATION INFORMATION  
Lock-detection circuit  
The built-in lock-detection circuit will only work when used  
in conjunction with the phase comparator PC2. The  
lock-indication is derived from the phase error between  
SIGIN and COMPIN. The PC2 has a typical phase error of  
zero degrees over the entire VCO operating range.  
However, to remain in-lock the circuit requires some small  
adjustments. The variation is dependent on the loop  
parameters and back-lash time (typically 5 ns). Depending  
If the PLL is in-lock, only very small pulses will come from  
the “up” or “down” connections of PC2. These pulses are  
filtered out by a RC network. A Schmitt trigger produces a  
steady state level, a HIGH level indicates an in-lock  
condition and a pulsed output indicates an out-of-lock  
condition as shown in Fig.31.  
See Fig.31 for input waveform.  
Fig.30 An example of an in-lock detection circuit using the “7046A”.  
(a)  
(b)  
Fig.31 Waveforms showing the lock detection process; (a) in-lock; (b) out-of-lock.  
33  
December 1990  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
CLD  
tLD  
=
=
capacitor connected to pin 15  
(includes the parasitic input capacitance of the IC, approximately 3.5 pF).  
phase difference between SIGIN and COMPIN (positive-going edges).  
Fig.32 CLD capacitor value versus typical tLD  
.
December 1990  
34  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
The maximum permitted phase error  
must be defined, before tLD can be  
defined using the following formula:  
φmax  
1
tLD  
=
×
.
----------- ------  
360 f IN  
Using this calculated value in Fig.32,  
it is possible to define the value of  
CLD, e.g. assuming the phase error is  
36° and fIN = 2 MHz:  
36°  
360 2 MHz  
1
t LD  
=
×
= 50 ns,  
--------- -----------------  
and using Fig.32, it can be seen that  
CLD is 26 pF.  
Fig.33 Steady state signal for lock indication.  
With the addition of one retriggerable  
monostable (e.g. “123”, “423” or  
“4538”) a steady state LOW and  
HIGH indication can be obtained, as  
shown in Fig.33.  
December 1990  
35  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
The characteristics equation is:  
PLL design example  
1 + H (s) × G (s) = 0.  
The frequency synthesizer, used in the design example  
shown in Fig.34, has the following parameters:  
This results in:  
Output frequency: 2 MHz to 3 MHz  
frequency steps : 100 kHz  
1 + Kp × Kv × Kn × τ2  
K p × K v × K n  
s2 +  
s +  
= 0.  
-------------------------------  
-----------------------------------------------------  
1 + τ2)  
1 + τ 2 )  
settling time  
overshoot  
: 1 ms  
: < 20%  
The natural frequency ωn is defined as follows:  
˙
The open-loop gain is H (s) x G (s) = Kp × Kf × Ko × Kn.  
Kp × Kv × Kn  
ωn  
=
------------------------------- .  
1 + τ2)  
Where:  
Kp  
Kf  
=
=
=
=
phase comparator gain  
low-pass filter transfer gain  
Kv/s VCO gain  
and the damping value ζ is defined as follows:  
1 + Kp × Kv × Kn × τ2  
1
ζ =  
×
.
---------- -----------------------------------------------------  
Ko  
Kn  
2 ω n τ1 + τ2  
1/n divider ratio  
The overshoot and settling time percentages are now used  
to determine ωn. From Fig.35 it can be seen that the  
damping ratio ζ = 0.8 will produce an overshoot of less  
than 20% and settle to within 5% at ωnt = 4.5. The required  
settling time is 1 ms. This results in:  
The programmable counter ratio Kn can be found as  
follows:  
fout  
2 MHz  
---------------------  
100 kHz  
Nmin.  
=
=
= 20  
----------  
fstep  
5
--  
t
5
ω n  
=
=
= 5 × 103 r/s.  
--------------  
0.001  
fout  
3 MHz  
---------------------  
100 kHz  
Nmax.  
=
=
= 30  
----------  
fstep  
Rewriting the equation for natural frequency results in:  
Kp × Kv × Kn  
The VCO is set by the values of R1, R2 and C1,  
R2 = 10 k(adjustable). The values can be determined  
using the information in the section “DESIGN  
CONSIDERATIONS”.  
With fo = 2.5 MHz and fL = 500 kHz this gives the following  
values (VCC = 5.0 V):  
1 + τ2) =  
.
-------------------------------  
2
ωn  
The maximum overshoot occurs at Nmax.:  
0.4 × 2 × 106  
1 + τ 2 ) =  
= 0.0011 s.  
---------------------------------  
50002 × 30  
R1 = 10 kΩ  
R2 = 10 kΩ  
C1 = 500 pF  
When C2 = 470 nF, then  
1 + τ2) × 2 × ωn × ζ 1  
The VCO gain is:  
R4 =  
= 790 .  
----------------------------------------------------------------  
Kp × Kv × Kn  
2fL × 2 × π  
× 2 π ≈ 2 × 106 r/s/v  
1 MHz  
-----------------  
3.2  
KV  
=
= =  
----------------------------------------------  
0.9 (VCC 0.9)  
R3 is calculated using the damping ratio equation:  
τ1  
The gain of the phase comparator is:  
VCC  
R3 =  
R4 = 2 k.  
-------  
C2  
Kp  
=
= 0.4 V/r.  
------------  
4 × π  
The transfer gain of the filter is given by:  
1 + τ2s  
Kf =  
------------------------------------  
1 + (τ1 + τ2) s  
Where:  
τ 1 = R3C2 and τ2 = R4C2.  
December 1990  
36  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
Fig.34 Frequency synthesizer.  
Note  
For an extensive description and application example please refer to application note ordering number  
9398 649 90011.  
Also available a computer design program for PLL’s ordering number 9398 961 10061.  
MGA959  
1.6  
0.6  
0.4  
0.2  
0
= 0.3  
0.5  
0.707  
1.0  
ζ
1.4  
1.2  
(t)  
(t)  
∆ Φ  
e
∆ ω  
e
∆ ω /ω  
∆ Φ /ω  
n
e
n
e
= 5.0  
ζ
1.0  
0.8  
= 2.0  
ζ
0.2  
0.6  
0.4  
0.2  
0.4  
0.6  
0.8  
0
1.0  
0
1
2
3
4
5
6
7
8
ω
t
n
Fig.35 Type 1, second order frequency step response.  
Since the output frequency is proportional to the VCO control voltage, the PLL frequency response can be observed with  
an oscilloscope by monitoring pin 9 of the VCO. The average frequency response, as calculated by the Laplace method,  
is found experimentally by smoothing this voltage at pin 9 with a simple RC filter, whose time constant is long compared  
to the phase detector sampling rate but short compared to the PLL response time.  
December 1990  
37  
Philips Semiconductors  
Product specification  
Phase-locked-loop with lock detector  
74HC/HCT7046A  
Fig.36 Frequency compared to the time response.  
PACKAGE OUTLINES  
See “74HC/HCT/HCU/HCMOS Logic Package Outlines”.  
December 1990  
38  

相关型号:

74HC7046ADB

IC PHASE LOCKED LOOP, PDSO16, PLASTIC, SSOP-16, PLL or Frequency Synthesis Circuit
NXP

74HC7046ADB-T

IC PHASE LOCKED LOOP, PDSO16, PLASTIC, SSOP-16, PLL or Frequency Synthesis Circuit
NXP

74HC7046AN

Phase-locked-loop with lock detector
NXP

74HC7046AN,112

74HC(T)7046A - Phase-locked-loop with lock detector DIP 16-Pin
NXP

74HC7080

16-bit even/odd parity generator/checker
NXP

74HC7080D

Parity Generator/Checker, CMOS, PDSO20,
PHILIPS

74HC7080D

IC HC/UH SERIES, 16-BIT PARITY GENERATOR/CHECKER, CONFIGURABLE OUTPUT, PDSO20, Arithmetic Circuit
NXP

74HC7080D-T

Parity Generator/Checker, CMOS, PDSO20,
PHILIPS

74HC7080DB

IC HC/UH SERIES, 16-BIT PARITY GENERATOR/CHECKER, CONFIGURABLE OUTPUT, PDSO20, Arithmetic Circuit
NXP

74HC7080DB-T

IC HC/UH SERIES, 16-BIT PARITY GENERATOR/CHECKER, CONFIGURABLE OUTPUT, PDSO20, Arithmetic Circuit
NXP

74HC7080N

IC HC/UH SERIES, 16-BIT PARITY GENERATOR/CHECKER, CONFIGURABLE OUTPUT, PDIP20, Arithmetic Circuit
NXP

74HC7080NB

IC HC/UH SERIES, 16-BIT PARITY GENERATOR/CHECKER, CONFIGURABLE OUTPUT, PDIP20, Arithmetic Circuit
NXP