74HCT181N3 [NXP]

4-bit arithmetic logic unit; 4位算术逻辑单元
74HCT181N3
型号: 74HCT181N3
厂家: NXP    NXP
描述:

4-bit arithmetic logic unit
4位算术逻辑单元

运算电路 逻辑集成电路 光电二极管
文件: 总20页 (文件大小:168K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
For a complete data sheet, please also download:  
The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications  
The IC06 74HC/HCT/HCU/HCMOS Logic Package Information  
The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines  
74HC/HCT181  
4-bit arithmetic logic unit  
1998 Jun 10  
Product specification  
Supersedes data of September 1993  
File under Integrated Circuits, IC06  
Philips Semiconductors  
Product specification  
4-bit arithmetic logic unit  
74HC/HCT181  
When speed requirements are not stringent, it can be used  
in a simple ripple carry mode by connecting the carry  
output (Cn+4) signal to the carry input (Cn) of the next unit.  
FEATURES  
Full carry look-ahead for high-speed arithmetic  
operation on long words  
For high-speed operation the device is used in conjunction  
with the “182” carry look-ahead circuit. One carry  
look-ahead package is required for each group of four  
“181” devices. Carry look-ahead can be provided at  
various levels and offers high-speed capability over  
extremely long word lengths.  
Provides 16 arithmetic operations: add, subtract,  
compare, double, plus 12 others  
Provides all 16 logic operations of two variables:  
EXCLUSIVE-OR, compare, AND, NAND, NOR, OR plus  
10 other logic operations  
Output capability:  
standard,  
A=B open drain  
The comparator output (A=B) of the device goes HIGH  
when all four function outputs (F0 to F3) are HIGH and can  
be used to indicate logic equivalence over 4 bits when the  
unit is in the subtract mode. A=B is an open collector  
output and can be wired-AND with other A=B outputs to  
give a comparison for more than 4 bits. The open drain  
output A=B should be used with an external pull-up  
resistor in order to establish a logic HIGH level. The A=B  
signal can also be used with the Cn+4 signal to indicate  
A > B and A < B.  
ICC category: MSI  
GENERAL DESCRIPTION  
The 74HC/HCT181 are high-speed Si-gate CMOS devices  
and are pin compatible with low power Schottky TTL  
(LSTTL). They are specified in compliance with JEDEC  
standard no. 7A.  
The 74HC/HCT181 are 4-bit high-speed parallel  
Arithmetic Logic Units (ALU). Controlled by the four  
function select inputs (S0 to S3) and the mode control input  
(M), they can perform all the 16 possible logic operations  
or 16 different arithmetic operations on active HIGH or  
active LOW operands (see function table).  
The function table lists the arithmetic operations that are  
performed without a carry in. An incoming carry adds a one  
to each operation. Thus, select code LHHL generates  
A minus B minus 1 (2s complement notation) without a  
carry in and generates A minus B when a carry is applied.  
Because subtraction is actually performed by  
complementary addition (1s complement), a carry out  
means borrow; thus, a carry is generated when there is no  
under-flow and no carry is generated when there is  
underflow.  
When the mode control input (M) is HIGH, all internal  
carries are inhibited and the device3 performs logic  
operations on the individual bits as listed. When M is LOW,  
the carries are enabled and the “181” performs arithmetic  
operations on the two 4-bit words. The “181” incorporates  
full internal carry look-ahead and provides for either ripple  
carry between devices using the Cn+4 output, or for carry  
look-ahead between packages using the carry  
As indicated, the “181” can be used with either active LOW  
inputs producing active LOW outputs or with active HIGH  
inputs producing active HIGH outputs.  
For either case the table lists the operations that are  
performed to the operands.  
propagation (P) and carry generate (G) signals. P and  
G are not affected by carry in.  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
74HC181N3;  
74HCT181N3  
DIP24  
DIP24  
SO24  
plastic dual in-line package; 24 leads (300 mil)  
plastic dual in-line package; 24 leads (600 mil)  
plastic small outline package; 24 leads; body width 7.5 mm  
SOT222-1  
74HC181N;  
74HCT181N  
SOT101-1  
SOT137-1  
74HC181D;  
74HCT181D  
1998 Jun 10  
2
Philips Semiconductors  
Product specification  
4-bit arithmetic logic unit  
74HC/HCT181  
QUICK REFERENCE DATA  
GND = 0 V; Tamb = 25 °C; tr = tf = 6 ns  
TYPICAL  
HCT  
SYMBOL  
PARAMETER  
propagation delay  
CONDITIONS  
UNIT  
HC  
tPHL/ tPLH  
CL = 15 pF; VCC = 5 V  
An or Bn to A=B  
Cn to Cn+4  
28  
17  
3.5  
90  
30  
21  
3.5  
92  
ns  
ns  
pF  
pF  
CI  
input capacitance  
CPD  
power dissipation capacitance notes 1 and 2  
per L package  
Notes  
1. CPD is used to determine the dynamic power dissipation (PD in µW):  
PD = CPD × VCC2 × fi + (CL × VCC2 × fo) where:  
fi = input frequency in MHz  
fo = output frequency in MHz  
(CL × VCC2 × fo) = sum of outputs  
CL = output load capacitance in pF  
VCC = supply voltage in V  
2. For HC the condition is VI = GND to VCC  
For HCT the condition is VI = GND to VCC 1.5 V  
A
B
Fig.1 Pin configuration.  
Fig.2 Logic symbol.  
Fig.3 IEC logic symbol.  
1998 Jun 10  
3
Philips Semiconductors  
Product specification  
4-bit arithmetic logic unit  
74HC/HCT181  
PIN DESCRIPTION  
PIN NO.  
SYMBOL  
NAME AND FUNCTION  
1, 22, 20, 18  
B0 to B3  
A0 to A3  
S0 to S3  
Cn  
operand inputs (active LOW)  
operand inputs (active LOW)  
select inputs  
2, 23, 21, 19  
6, 5, 4, 3  
7
carry input  
8
M
mode control input  
9, 10, 11, 13  
F0 to F3  
GND  
A=B  
function outputs (active LOW)  
ground (0 V)  
12  
14  
15  
16  
17  
24  
comparator output  
P
carry propagate output (active LOW)  
carry output  
Cn+4  
G
carry generate output (active LOW)  
positive supply voltage  
VCC  
k, halfpage  
F
A
A
A
A
2
23  
21  
19  
9
0
1
2
3
0
1
2
3
F
F
F
10  
11  
13  
B
B
B
B
C
n+4  
1
22  
20  
18  
16  
0
1
2
3
A=B 14  
G
P
17  
15  
C
7
n
S
6
5
4
3
8
0
1
2
3
S
S
S
M
MBK219  
Fig.4 Functional diagram.  
Fig.5 Active HIGH operands - active LOW operands.  
4
1998 Jun 10  
Philips Semiconductors  
Product specification  
4-bit arithmetic logic unit  
74HC/HCT181  
FUNCTION TABLES  
MODE SELECT  
INPUTS  
ACTIVE LOW INPUTS AND  
OUTPUTS  
MODE SELECT  
INPUTS  
ACTIVE HIGH INPUTS AND  
OUTPUTS  
ARITHMETIC(2)  
(M=L; Cn=H)  
LOGIC  
(M=H)  
ARITHMETIC(2)  
(M=L; Cn=L)  
LOGIC  
(M=H)  
S3  
S2  
S1  
S0  
S3  
S2  
S1  
S0  
L
L
L
L
L
L
L
L
L
L
H
H
L
H
L
A
AB  
A minus 1  
AB minus 1  
AB minus 1  
L
L
L
L
L
L
L
L
L
L
H
H
L
H
L
A
A + B  
AB  
A
A + B  
A + B  
A + B  
logical 1 minus 1  
H
H
logical 0 minus 1  
L
L
L
L
H
H
H
H
L
L
H
H
L
H
L
A + B  
B
A plus (A + B)  
L
L
L
L
H
H
H
H
L
L
H
H
L
H
L
AB  
B
A
A plus AB  
AB plus (A + B)  
A minus B minus 1  
A + B  
(A + B) plus AB  
A minus B minus 1  
AB minus 1  
A
B
B
H
A + B  
H
AB  
H
H
H
H
L
L
L
L
L
L
H
H
L
H
L
AB  
A
B
A + B  
A plus (A + B)  
A plus B  
AB plus (A + B)  
A + B  
H
H
H
H
L
L
L
L
L
L
H
H
L
H
L
A + B  
A plus AB  
A plus B  
(A + B) plus AB  
AB minus 1  
B
A
B
B
AB  
H
H
H
H
H
H
H
H
H
H
L
L
H
H
L
H
L
logical 0 A plus A(1)  
H
H
H
H
H
H
H
H
L
L
H
H
L
H
L
logical 1 A plus A(1)  
AB  
AB  
A
AB plus A  
AB plus A  
A
A + B  
A + B  
A
(A + B) plus A  
(A + B) plus A  
A minus 1  
H
H
Notes to the function tables  
Notes to the function tables  
1. Each bit is shifted to the next more significant position. 1. Each bit is shifted to the next more significant position.  
2. Arithmetic operations expressed in 2s complement  
notation.  
2. Arithmetic operations expressed in 2s complement  
notation.  
H = HIGH voltage level  
L = LOW voltage level  
H = HIGH voltage level  
L = LOW voltage level  
1998 Jun 10  
5
Philips Semiconductors  
Product specification  
4-bit arithmetic logic unit  
74HC/HCT181  
Fig.6 Logic diagram.  
6
1998 Jun 10  
Philips Semiconductors  
Product specification  
4-bit arithmetic logic unit  
74HC/HCT181  
Table 1 SUM MODE TEST  
Function inputs S0 = S3 = 4.5 V, M = S1 = S2 = 0 V  
INPUT OTHER INPUT, SAME BIT  
PARAMETER UNDER  
Apply 4.5 V Apply GND  
TEST  
OTHER DATA INPUTS  
Apply 4.5 V Apply GND  
OUTPUT  
UNDER  
TEST  
t
PLH/ tPHL  
tPLH/ tPHL  
tPLH/ tPHL  
PLH/ tPHL  
tPLH/ tPHL  
Ai  
Bi  
Ai  
Bi  
Ai  
Bi  
Ai  
Bi  
Cn  
Bi  
none  
none  
none  
none  
Bi  
remaining A and B Cn  
remaining A and B Cn  
Fi  
Fi  
P
Ai  
Bi  
none  
remaining A and B, Cn  
t
Ai  
none  
remaining A and B, Cn  
remaining A, Cn  
remaining A, Cn  
remaining A, Cn  
remaining A, Cn  
all B  
P
none  
none  
none  
none  
none  
remaining B  
remaining B  
remaining B  
remaining B  
all A  
G
G
t
PLH/ tPHL  
PLH/ tPHL  
Ai  
t
Bi  
Cn+4  
tPLH/ tPHL  
tPLH/ tPHL  
Ai  
Cn+4  
none  
any F or Cn+4  
Table 2 DIFFERENTIAL MODE TEST  
Function inputs S1 = S2 = 4.5 V, M = S0 = S3 = 0 V  
INPUT OTHER INPUT, SAME BIT  
PARAMETER UNDER  
Apply 4.5 V Apply GND  
TEST  
OTHER DATA INPUTS  
OUTPUT  
UNDER  
TEST  
Apply 4.5 V  
Apply GND  
t
PLH/ tPHL  
Ai  
Bi  
Ai  
Bi  
Ai  
Bi  
Ai  
Bi  
Ai  
Bi  
Cn  
none  
Ai  
Bi  
remaining A  
remaining A  
none  
remaining B, Cn  
Fi  
tPLH/ tPHL  
tPLH/ tPHL  
tPLH/ tPHL  
none  
Bi  
remaining B, Cn  
Fi  
none  
Ai  
remaining A and B, Cn  
remaining A and B, Cn  
remaining A and B, Cn  
remaining A and B, Cn  
remaining B, Cn  
P
none  
none  
Ai  
none  
P
tPLH/ tPHL  
tPLH/ tPHL  
Bi  
none  
G
none  
none  
Ai  
none  
G
tPLZ/ tPZL  
tPLZ/ tPZL  
tPLH/ tPHL  
Bi  
remaining A  
remaining A  
none  
A=B  
A=B  
none  
none  
Ai  
remaining B, Cn  
Bi  
remaining A and B, Cn Cn+4  
remaining A and B, Cn Cn+4  
tPLH/ tPHL  
tPLH/ tPHL  
none  
none  
none  
none  
all A and B  
none  
any F or Cn+4  
Table 3 LOGIC MODE TEST  
Function inputs M = S1 = S2 = 4.5 V, S0 = S3 = 0 V  
INPUT OTHER INPUT, SAME BIT  
PARAMETER UNDER  
Apply 4.5 V Apply GND  
TEST  
OTHER DATA INPUTS  
Apply 4.5 V Apply GND  
OUTPUT  
UNDER  
TEST  
tPLH/ tPHL  
tPLH/ tPHL  
Ai  
Bi  
Bi  
Ai  
none  
none  
none  
none  
remaining A and B, Cn Fi  
remaining A and B, Cn Fi  
1998 Jun 10  
7
Philips Semiconductors  
Product specification  
4-bit arithmetic logic unit  
74HC/HCT181  
RATINGS (for A=B output only)  
Limiting values in accordance with the Absolute Maximum System (IEC 134)  
Voltage are referenced to GND (ground = 0 V)  
SYMBOL  
PARAMETER  
DC output voltage  
MIN.  
0.5  
MAX.  
+7.0  
UNIT  
CONDITIONS  
VO  
V
IOK  
IO  
DC output diode current  
20  
25  
mA  
mA  
for VO < −0.5 V  
for 0.5 V < VO  
DC output source or sink current  
DC CHARACTERISTICS FOR 74HC  
For the DC characteristics see “74HC/HCT/HCU/HCMOS Logic Family Specifications”.  
Output capability: standard  
ICC category: MSI  
Voltages are referenced to GND (ground = 0 V)  
Tamb (°C)  
TEST CONDITIONS  
74HC  
SYMBOL PARAMETER  
UNIT  
VIL OTHER  
VCC  
(V)  
+25  
40 to +85 40 to +125  
min. typ. max. min. max. min.  
max.  
2.0  
to  
6.0  
HIGH level output  
leakage current  
note 1  
VO = 0 or 6 V  
IOZ  
0.5  
5.0  
10.0  
µA  
VIL  
Note to the DC characteristics  
1. The maximum operating output voltage (VO(max)) is 6.0 V.  
1998 Jun 10  
8
Philips Semiconductors  
Product specification  
4-bit arithmetic logic unit  
74HC/HCT181  
AC CHARACTERISTICS FOR 74HC  
GND = 0 V; tr = tf = 6 ns; CL = 50 pF  
Tamb (°C)  
TEST CONDITIONS  
MODE OTHER  
74HC  
SYMBOL PARAMETER  
UNIT  
VCC  
(V)  
+25  
40 to +85 40 to +125  
min. typ. max. min. max. min. max.  
tPHL/ tPLH propagation delay  
Cn to Cn+4  
55 165  
20 33  
16 28  
205  
41  
35  
250 ns  
50  
43  
2.0  
4.5  
6.0  
M = 0 V;  
sum  
Fig.9;  
diff  
Tables 1 and 2  
t
t
t
t
PHL/ tPLH propagation delay  
69 200  
25 40  
20 34  
250  
50  
43  
300 ns  
60  
51  
2.0  
4.5  
6.0  
M = 0 V;  
Fig.9;  
Tables 1 and 2  
sum  
diff  
Cn to Fn  
PHL/ tPLH propagation delay  
An to G  
72 210  
26 42  
21 36  
265  
53  
45  
315 ns  
63  
54  
2.0  
4.5  
6.0  
M = S1 = S2 = 0 V;  
sum  
S0 = S3 = 4.5 V;  
Fig.7; Table 1  
PHL/ tPLH propagation delay  
Bn to G  
77 230  
28 46  
22 39  
290  
58  
49  
345 ns  
69  
59  
2.0  
4.5 sum  
6.0  
M = S1 = S2 = 0 V;  
S0 = S3 = 4.5 V;  
Fig.7; Table 1  
PHL/ tPLH propagation delay  
An to G  
76 215  
26 43  
21 37  
270  
54  
46  
320 ns  
65  
55  
2.0  
4.5 diff  
6.0  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.8; Table 2  
tPHL/ tPLH propagation delay  
Bn to G  
77 240  
28 48  
22 41  
300  
60  
51  
360 ns  
72  
61  
2.0  
4.5 diff  
6.0  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.8; Table 2  
tPHL/ tPLH propagation delay  
An to P  
61 185  
22 37  
18 31  
230  
46  
39  
280 ns  
56  
48  
2.0  
4.5 sum  
6.0  
M = S1 = S2 = 0 V;  
S0 = S3 = 4.5 V;  
Fig.7; Table 1  
tPHL/ tPLH propagation delay  
Bn to P  
63 195  
23 39  
18 33  
245  
49  
42  
295 ns  
59  
50  
2.0  
4.5 sum  
6.0  
M = S1 = S2 = 0 V;  
S0 = S3 = 4.5 V;  
Fig.7; Table 1  
tPHL/ tPLH propagation delay  
An to P  
55 170  
20 34  
16 29  
215  
43  
37  
255 ns  
51  
43  
2.0  
4.5 diff  
6.0  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.8; Table 2  
t
t
t
t
t
PHL/ tPLH propagation delay  
63 195  
23 39  
18 33  
245  
49  
42  
295 ns  
59  
50  
2.0  
4.5 diff  
6.0  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.8; Table 2  
Bn to P  
PHL/ tPLH propagation delay  
Ai to Fi  
77 230  
28 46  
22 39  
290  
58  
49  
345 ns  
69  
59  
2.0  
4.5 sum  
6.0  
M = S1 = S2 = 0 V;  
S0 = S3 = 4.5 V;  
Fig.7; Table 1  
PHL/ tPLH propagation delay  
Bi to Fi  
85 255  
31 51  
25 43  
320  
64  
54  
385 ns  
77  
65  
2.0  
4.5 sum  
6.0  
M = S1 = S2 = 0 V;  
S0 = S3 = 4.5 V;  
Fig.7; Table 1  
PHL/ tPLH propagation delay  
Ai to Fi  
77 235  
28 47  
22 40  
295  
59  
50  
355 ns  
71  
60  
2.0  
4.5 diff  
6.0  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.8; Table 2  
PHL/ tPLH propagation delay  
Bi to Fi  
83 255  
31 51  
24 43  
320  
64  
54  
385 ns  
77  
65  
2.0  
4.5 diff  
6.0  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.8; Table 2  
1998 Jun 10  
9
Philips Semiconductors  
Product specification  
4-bit arithmetic logic unit  
74HC/HCT181  
T
amb (°C)  
TEST CONDITIONS  
MODE OTHER  
74HC  
SYMBOL PARAMETER  
UNIT  
VCC  
(V)  
+25  
40 to +85 40 to +125  
min. typ. max. min. max. min. max.  
tPHL/ tPLH propagation delay  
Ai to Fi  
74 230  
27 46  
22 39  
290  
58  
49  
345 ns  
69  
59  
2.0  
M = 4.5 V;  
4.5 logic Fig.8;  
6.0  
Table 3  
tPHL/ tPLH propagation delay  
Bi to Fi  
83 255  
30 51  
24 43  
320  
64  
54  
385 ns  
77  
65  
2.0  
M = 4.5 V;  
4.5 logic Fig.8;  
6.0  
Table 3  
t
PHL/ tPLH propagation delay  
80 235  
29 47  
23 40  
295  
59  
50  
355 ns  
71  
60  
2.0  
4.5 sum  
6.0  
M = S1 = S2 = 0 V;  
S0 = S3 = 4.5 V;  
Fig.8; Table 1  
An to Cn+4  
tPHL/ tPLH propagation delay  
Bn to Cn+4  
80 235  
29 47  
23 40  
295  
59  
50  
355 ns  
71  
60  
2.0  
4.5 sum  
6.0  
M = S1 = S2 = 0 V;  
S0 = S3 = 4.5 V;  
Fig.8; Table 1  
t
t
t
t
t
PHL/ tPLH propagation delay  
77 235  
28 47  
22 40  
295  
59  
50  
355 ns  
71  
60  
2.0  
4.5 diff  
6.0  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.10; Table 2  
An to Cn+4  
PHL/ tPLH propagation delay  
Bn to Cn+4  
85 255  
31 51  
25 43  
320  
64  
54  
385 ns  
77  
65  
2.0  
4.5 diff  
6.0  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.10; Table 2  
PZL/ tPLZ propagation delay  
An to A=B  
80 245  
29 49  
23 42  
305  
61  
52  
370 ns  
74  
63  
2.0  
4.5 diff  
6.0  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.11; Table 2  
PZL/ tPLZ propagation delay  
Bn to A=B  
88 270  
32 54  
26 46  
340  
68  
58  
405 ns  
81  
69  
2.0  
4.5 diff  
6.0  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.11; Table 2  
PHL/ tPLH propagation delay  
An to Fn  
83 255  
30 51  
24 43  
320  
64  
54  
385 ns  
77  
65  
2.0  
4.5 sum  
6.0  
M = S1 = S2 = 0 V;  
S0 = S3 = 4.5 V;  
Fig.7; Table 1  
tPHL/ tPLH propagation delay  
Bn to Fn  
85 265  
31 53  
25 45  
330  
66  
56  
400 ns  
80  
68  
2.0  
4.5 sum  
6.0  
M = S1 = S2 = 0 V;  
S0 = S3 = 4.5 V;  
Fig.7; Table 1  
tPHL/ tPLH propagation delay  
An to Fn  
77 240  
28 48  
22 41  
300  
60  
51  
360 ns  
72  
61  
2.0  
4.5 diff  
6.0  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.8; Table 2  
tPHL/ tPLH propagation delay  
Bn to Fn  
88 275  
32 55  
26 47  
345  
69  
59  
415 ns  
83  
71  
2.0  
4.5 diff  
6.0  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.8; Table 2  
tTHL/ tTLH output transition  
time  
19 75  
95  
19  
16  
110 ns  
22  
19  
2.0  
4.5  
6.0  
note ;  
Figs 7 and 11  
7
6
15  
13  
Note to the AC characteristics  
1. For the open drain output (A=B) only tTHL is valid.  
1998 Jun 10  
10  
Philips Semiconductors  
Product specification  
4-bit arithmetic logic unit  
74HC/HCT181  
DC CHARACTERISTICS FOR 74HCT  
For the DC characteristics see “74HC/HCT/HCU/HCMOS Logic Family Specifications”.  
Output capability: standard  
ICC category: MSI  
Voltages are referenced to GND (ground = 0 V)  
Tamb (°C)  
TEST CONDITIONS  
VIL OTHER  
74HCT  
SYMBOL PARAMETER  
UNIT  
VCC  
(V)  
+25  
40 to +85 40 to +125  
min. typ. max. min. max. min. max.  
IOZ  
HIGH level output  
leakage current  
0.5  
5.0  
10.0 µA  
2.0  
to  
VIL  
note 1  
VO = 0 or 6 V  
6.0  
Note to the DC characteristics  
1. The maximum operating output voltage (VO(max)) is 6.0 V.  
Note to HCT types  
The value of additional quiescent supply current (ICC) for a unit load of 1 is given in the family specifications.  
To determine ICC per input, multiply this value by the unit load coefficient shown in the table below.  
INPUT  
UNIT LOAD COEFFICIENT  
Cn, M  
An, Bn  
Sn  
0.50  
0.75  
1.00  
1998 Jun 10  
11  
Philips Semiconductors  
Product specification  
4-bit arithmetic logic unit  
74HC/HCT181  
AC CHARACTERISTICS FOR 74HCT  
GND = 0 V; tr = tf = 6 ns; CL = 50 pF  
T
amb (°C)  
TEST CONDITIONS  
MODE OTHER  
74HCT  
SYMBOL PARAMETER  
+25  
UNIT  
VCC  
(V)  
40 to +85 40 to +125  
min. typ. max. min. max. min.  
25 42  
max.  
63  
tPHL/ tPLH propagation  
delay  
53  
60  
68  
68  
68  
68  
51  
51  
50  
50  
73  
73  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4.5 sum  
diff  
M = 0 V;  
Fig.9;  
Tables 1 and 2  
Cn to Cn+4  
tPHL/ tPLH propagation  
28 48  
31 54  
32 54  
31 54  
31 54  
23 41  
24 41  
23 40  
23 40  
33 58  
34 58  
72  
81  
81  
81  
81  
62  
62  
60  
60  
87  
87  
4.5 sum  
diff  
M = 0 V;  
Fig.9;  
Tables 1 and 2  
delay  
Cn to Fn  
t
t
t
t
t
t
PHL/ tPLH propagation  
4.5 sum  
4.5 sum  
4.5 diff  
4.5 diff  
4.5 sum  
4.5 sum  
4.5 diff  
4.5 diff  
4.5 sum  
4.5 sum  
M = S1 = S2 = 0 V;  
S0 = S3 = 4.5 V;  
Fig.7; Table 1  
delay  
An to G  
PHL/ tPLH propagation  
M = S1 = S2 = 0 V;  
S0 = S3 = 4.5 V;  
Fig.7; Table 1  
delay  
Bn to G  
PHL/ tPLH propagation  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.8; Table 2  
delay  
An to G  
PHL/ tPLH propagation  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.8; Table 2  
delay  
Bn to G  
PHL/ tPLH propagation  
M = S1 = S2 = 0 V;  
S0 = S3 = 4.5 V;  
Fig.7; Table 1  
delay  
An to P  
PHL/ tPLH propagation  
M = S1 = S2 = 0 V;  
S0 = S3 = 4.5 V;  
Fig.7; Table 1  
delay  
Bn to P  
tPHL/ tPLH propagation  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.8; Table 2  
delay  
An to P  
t
PHL/ tPLH propagation  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.8; Table 2  
delay  
Bn to P  
tPHL/ tPLH propagation  
M = S1 = S2 = 0 V;  
S0 = S3 = 4.5 V;  
Fig.7; Table 1  
delay  
Ai to Fi  
t
PHL/ tPLH propagation  
M = S1 = S2 = 0 V;  
S0 = S3 = 4.5 V;  
Fig.7; Table 1  
delay  
Bi to Fi  
1998 Jun 10  
12  
Philips Semiconductors  
Product specification  
4-bit arithmetic logic unit  
74HC/HCT181  
Tamb (°C)  
TEST CONDITIONS  
MODE OTHER  
74HCT  
SYMBOL PARAMETER  
+25  
UNIT  
VCC  
(V)  
40 to +85 40 to +125  
min. typ. max. min. max. min.  
33 57  
max.  
86  
tPHL/ tPLH propagation  
71  
71  
68  
68  
66  
66  
69  
69  
75  
75  
70  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4.5 diff  
4.5 diff  
4.5 logic  
4.5 logic  
4.5 sum  
4.5 sum  
4.5 diff  
4.5 diff  
4.5 diff  
4.5 diff  
4.5 sum  
4.5 sum  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.8; Table 2  
delay  
Ai to Fi  
tPHL/ tPLH propagation  
33 57  
29 54  
33 54  
30 53  
31 53  
30 55  
34 55  
34 60  
35 60  
33 56  
33 56  
86  
81  
81  
80  
80  
83  
83  
90  
90  
84  
84  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.8; Table 2  
delay  
Bi to Fi  
t
PHL/ tPLH propagation  
M = 4.5 V;  
Fig.8; Table 3  
delay  
Ai to Fi  
tPHL/ tPLH propagation  
M = 4.5 V;  
Fig.8; Table 3  
delay  
Bi to Fi  
tPHL/ tPLH propagation  
delay  
M = S1 = S2 = 0 V;  
S0 = S3 = 4.5 V;  
Fig.8; Table 1  
An to Cn+4  
t
t
t
t
PHL/ tPLH propagation  
delay  
M = S1 = S2 = 0 V;  
S0 = S3 = 4.5 V;  
Fig.8; Table 1  
Bn to Cn+4  
PHL/ tPLH propagation  
delay  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.10; Table 2  
An to Cn+4  
PHL/ tPLH propagation  
delay  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.10; Table 2  
Bn to Cn+4  
PZL/ tPLZ propagation  
delay  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.11; Table 2  
An to A=B  
tPZL/ tPLZ propagation  
delay  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.11; Table 2  
Bn to A=B  
t
t
PHL/ tPLH propagation  
delay  
M = S1 = S2 = 0 V;  
S0 = S3 = 4.5 V;  
Fig.7; Table 1  
An to Fn  
PHL/ tPLH propagation  
delay  
M = S1 = S2 = 0 V;  
S0 = S3 = 4.5 V;  
Fig.7; Table 1  
Bn to Fn  
1998 Jun 10  
13  
Philips Semiconductors  
Product specification  
4-bit arithmetic logic unit  
74HC/HCT181  
T
amb (°C)  
TEST CONDITIONS  
MODE OTHER  
74HCT  
SYMBOL PARAMETER  
+25  
UNIT  
VCC  
(V)  
40 to +85 40 to +125  
min. typ. max. min. max. min.  
max.  
84  
tPHL/ tPLH propagation  
32 56  
70  
70  
19  
ns  
ns  
ns  
4.5 diff  
4.5 diff  
4.5  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.8; Table 2  
delay  
An to Fn  
tPHL/ tPLH propagation  
33 56  
84  
22  
M = S0 = S3 = 0 V;  
S1 = S2 = 4.5 V;  
Fig.8; Table 2  
delay  
An to Fn  
t
THL/ tTLH output  
transition time  
7
15  
Figs 7 and 11;  
note 1  
Note to the AC characteristics  
1. For the open drain output (A=B) only tTHL is valid.  
1998 Jun 10  
14  
Philips Semiconductors  
Product specification  
4-bit arithmetic logic unit  
74HC/HCT181  
AC WAVEFORMS  
Fig.7 Propagation delays for carry input to carry  
output, carry input to function outputs,  
Fig.8 Propagation delays for operands to carry  
generate, propagate outputs and function  
outputs.  
operands to carry generate operands,  
propagation outputs and output transition lines.  
Fig.9 Propagation delays for operands to carry  
output and function outputs.  
Fig.10 Propagation delays for operands to carry  
output.  
Note to AC waveforms  
(1) HC: VM = 50%; VI = GND to VCC  
.
HCT: VM = 1.3 V; VI = GND to 3 V.  
APPLICATION INFORMATION  
A and B inputs and F outputs  
of “181” are not shown  
Fig.11 Waveforms showing the input (Ai, Bj) to output  
(A=B) propagation delays and output transition  
time of the open drain output (A=B).  
Fig.12 Application example showing 16-bit ALU  
ripple-carry configuration.  
1998 Jun 10  
15  
Philips Semiconductors  
Product specification  
4-bit arithmetic logic unit  
74HC/HCT181  
PACKAGE OUTLINES  
DIP24: plastic dual in-line package; 24 leads (300 mil)  
SOT222-1  
D
M
E
A
2
A
L
A
1
c
w M  
e
Z
b
1
(e )  
1
M
H
b
24  
13  
pin 1 index  
E
1
12  
0
5
10 mm  
scale  
DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)  
(1)  
A
A
A
2
(1)  
(1)  
Z
1
w
UNIT  
mm  
b
b
c
D
E
e
e
L
M
M
H
1
1
E
max.  
min.  
max.  
max.  
1.63  
1.14  
0.56  
0.43  
0.36  
0.25  
31.9  
31.5  
6.73  
6.48  
3.51  
3.05  
8.13  
7.62  
10.03  
7.62  
4.70  
0.38  
3.94  
2.54  
0.100  
7.62  
0.25  
0.01  
2.05  
0.064  
0.045  
0.022  
0.017  
0.014  
0.010  
1.256  
1.240  
0.265  
0.255  
0.138  
0.120  
0.32  
0.30  
0.395  
0.300  
inches  
0.185  
0.015  
0.155  
0.300  
0.081  
Note  
1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-03-11  
SOT222-1  
MS-001AF  
1998 Jun 10  
16  
Philips Semiconductors  
Product specification  
4-bit arithmetic logic unit  
74HC/HCT181  
DIP24: plastic dual in-line package; 24 leads (600 mil)  
SOT101-1  
D
M
E
A
2
A
L
A
1
c
e
w M  
Z
b
1
(e )  
1
b
M
H
24  
13  
pin 1 index  
E
1
12  
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
A
A
A
2
(1)  
(1)  
Z
1
UNIT  
mm  
b
b
c
D
E
e
e
L
M
M
H
w
1
1
E
max.  
min.  
max.  
max.  
1.7  
1.3  
0.53  
0.38  
0.32  
0.23  
32.0  
31.4  
14.1  
13.7  
3.9  
3.4  
15.80  
15.24  
17.15  
15.90  
5.1  
0.51  
4.0  
2.54  
0.10  
15.24  
0.60  
0.25  
0.01  
2.2  
0.066  
0.051  
0.021  
0.015  
0.013  
0.009  
1.26  
1.24  
0.56  
0.54  
0.15  
0.13  
0.62  
0.60  
0.68  
0.63  
inches  
0.20  
0.020  
0.16  
0.087  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-01-23  
SOT101-1  
051G02  
MO-015AD  
1998 Jun 10  
17  
Philips Semiconductors  
Product specification  
4-bit arithmetic logic unit  
74HC/HCT181  
SO24: plastic small outline package; 24 leads; body width 7.5 mm  
SOT137-1  
D
E
A
X
c
H
v
M
A
E
y
Z
24  
13  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
12  
w
detail X  
e
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.30  
0.10  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
15.6  
15.2  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
mm  
2.65  
0.25  
0.01  
1.27  
0.050  
1.4  
0.25 0.25  
0.01  
0.1  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.61  
0.014 0.009 0.60  
0.30  
0.29  
0.419  
0.394  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches 0.10  
0.055  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-01-24  
97-05-22  
SOT137-1  
075E05  
MS-013AD  
1998 Jun 10  
18  
Philips Semiconductors  
Product specification  
4-bit arithmetic logic unit  
74HC/HCT181  
Several techniques exist for reflowing; for example,  
SOLDERING  
Introduction  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
WAVE SOLDERING  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(order code 9398 652 90011).  
Wave soldering techniques can be used for all SO  
packages if the following conditions are observed:  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave) soldering  
technique should be used.  
DIP  
The longitudinal axis of the package footprint must be  
parallel to the solder flow.  
SOLDERING BY DIPPING OR BY WAVE  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joint for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
The package footprint must incorporate solder thieves at  
the downstream end.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg max). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
REPAIRING SOLDERED JOINTS  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Apply a low voltage soldering iron (less than 24 V) to the  
lead(s) of the package, below the seating plane or not  
more than 2 mm above it. If the temperature of the  
soldering iron bit is less than 300 °C it may remain in  
contact for up to 10 seconds. If the bit temperature is  
between 300 and 400 °C, contact may be up to 5 seconds.  
REPAIRING SOLDERED JOINTS  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
SO  
REFLOW SOLDERING  
Reflow soldering techniques are suitable for all SO  
packages.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
1998 Jun 10  
19  
Philips Semiconductors  
Product specification  
4-bit arithmetic logic unit  
74HC/HCT181  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1998 Jun 10  
20  

相关型号:

74HCT181PW

IC HCT SERIES, 4-BIT ARITHMETIC LOGIC UNIT, PDSO24, Arithmetic Circuit
NXP

74HCT181PW-T

IC HCT SERIES, 4-BIT ARITHMETIC LOGIC UNIT, PDSO24, Arithmetic Circuit
NXP

74HCT182

Look-ahead carry generator
NXP

74HCT182D

暂无描述
NXP

74HCT182D-T

IC HCT SERIES, 4-BIT LOOK-AHEAD CARRY GENERATOR, PDSO16, Arithmetic Circuit
NXP

74HCT182D-T

Look-Ahead Carry Generator, CMOS, PDSO16,
PHILIPS

74HCT182DB

IC HCT SERIES, 4-BIT LOOK-AHEAD CARRY GENERATOR, PDSO16, Arithmetic Circuit
NXP

74HCT182N

Look-Ahead Carry Generator, CMOS, PDIP16,
PHILIPS

74HCT182N-B

Look-Ahead Carry Generator, CMOS, PDIP16
PHILIPS

74HCT182NB

IC HCT SERIES, 4-BIT LOOK-AHEAD CARRY GENERATOR, PDIP16, Arithmetic Circuit
NXP

74HCT182PW

IC HCT SERIES, 4-BIT LOOK-AHEAD CARRY GENERATOR, PDSO16, Arithmetic Circuit
NXP

74HCT190

Presettable synchronous BCD decade up/down counter
NXP