74HCT1G66GW-R [NXP]

Bilateral switch - Description: PicoGate Bilateral Switch; TTL Enabled ; Logic switching levels: TTL ; Number of pins: 5 ; On resistance: 35 Ohms; Power dissipation considerations: Low Power ; Propagation delay: 3 ns; Voltage: 4.5-5.5 V;
74HCT1G66GW-R
型号: 74HCT1G66GW-R
厂家: NXP    NXP
描述:

Bilateral switch - Description: PicoGate Bilateral Switch; TTL Enabled ; Logic switching levels: TTL ; Number of pins: 5 ; On resistance: 35 Ohms; Power dissipation considerations: Low Power ; Propagation delay: 3 ns; Voltage: 4.5-5.5 V

开关
文件: 总20页 (文件大小:104K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
74HC1G66; 74HCT1G66  
Bilateral switch  
Product specification  
2002 May 15  
Supersedes data of 2001 Mar 02  
Philips Semiconductors  
Product specification  
Bilateral switch  
74HC1G66; 74HCT1G66  
FEATURES  
DESCRIPTION  
Wide operating voltage range from 2.0 to 9.0 V  
Very low ON-resistance:  
The 74HC1G/HCT1G66 is a high-speed Si-gate CMOS  
device.  
The 74HC1G/HCT1G66 provides an analog switch. The  
switch has two input/output pins (Y and Z) and an active  
HIGH enable input pin (E). When pin E is LOW, the analog  
switch is turned off.  
– 45 (typical) at VCC = 4.5 V  
– 30 (typical) at VCC = 6.0 V  
– 25 (typical) at VCC = 9.0 V.  
High noise immunity  
The non standard output currents are equal compared to  
the 74HC/HCT4066.  
Low power dissipation  
Very small 5 pins package  
Output capability: non standard.  
QUICK REFERENCE DATA  
GND = 0 V; Tamb = 25 °C; tr = tf = 6.0 ns.  
TYPICAL  
SYMBOL  
PARAMETER  
turn-on time E to Vos  
CONDITIONS  
UNIT  
ns  
HC1G HCT1G  
tPZH/tPZL  
CL = 15 pF; RL = 1 k; VCC = 5 V 11  
CL = 15 pF; RL = 1 k; VCC = 5 V 11  
1.5  
12  
12  
1.5  
9
t
PHZ/tPLZ  
turn-off time E to Vos  
ns  
pF  
pF  
pF  
CI  
input capacitance  
CPD  
CS  
power dissipation capacitance  
maximum switch capacitance  
notes 1 and 2  
9
8
8
Notes  
1. CPD is used to determine the dynamic power dissipation (PD in µW).  
PD = CPD × VCC2 × fi + ((CL +CS)× VCC2 × fo) where:  
fi = input frequency in MHz;  
fo = output frequency in MHz;  
CL = output load capacitance in pF;  
CS = maximum switch capacitance in pF;  
VCC = supply voltage in Volts;  
((CL +CS)× VCC2 × fo) = sum of outputs.  
2. For HC1G the condition is VI = GND to VCC  
.
For HCT1G the condition is VI = GND to VCC 1.5 V.  
FUNCTION TABLE  
See note 1.  
INPUT E  
SWITCH  
OFF  
L
H
ON  
Note  
1. H = HIGH voltage level;  
L = LOW voltage level.  
2002 May 15  
2
Philips Semiconductors  
Product specification  
Bilateral switch  
74HC1G66; 74HCT1G66  
ORDERING INFORMATION  
OUTSIDE NORTH  
PACKAGE  
PACKAGE MATERIAL  
TEMPERATURE  
AMERICA  
PINS  
CODE  
MARKING  
RANGE  
74HC1G66GW  
74HCT1G66GW  
74HC1G66GV  
74HCT1G66GV  
40 to +125 °C  
40 to +125 °C  
40 to +125 °C  
40 to +125 °C  
5
5
5
5
SC-88A  
SC-88A  
SC-74A  
SC-74A  
plastic  
plastic  
plastic  
plastic  
SOT353  
SOT353  
SOT753  
SOT753  
HL  
TL  
H66  
T66  
PINNING  
PIN  
SYMBOL  
DESCRIPTION  
1
2
3
4
5
Y
Z
independent input/output Y  
independent input/output Z  
ground (0 V)  
GND  
E
enable input E (active HIGH)  
supply voltage  
VCC  
handbook, halfpage  
handbook, halfpage  
Y
Z
1
2
3
5
4
V
E
CC  
1
2
Y
Z
4
E
66  
GND  
MNA075  
MNA074  
Fig.1 Pin configuration.  
Fig.2 Logic symbol.  
Y
handbook, halfpage  
E
1
handbook, halfpage  
1
X1  
2
1
V
V
CC  
4
#
CC  
MNA076  
Z
GND  
MNA077  
Fig.3 IEC logic symbol.  
Fig.4 Logic diagram.  
2002 May 15  
3
Philips Semiconductors  
Product specification  
Bilateral switch  
74HC1G66; 74HCT1G66  
RECOMMENDED OPERATING CONDITIONS  
74HC1G66  
74HCT1G66  
UNIT  
SYMBOL  
PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
2.0  
TYP. MAX. MIN.  
TYP. MAX.  
VCC  
VI  
5.0  
10.0  
4.5  
5.0  
5.5  
V
V
V
input voltage  
GND  
GND  
40  
VCC  
VCC  
GND  
GND  
VCC  
VCC  
VS  
switch voltage  
Tamb  
operating ambient  
temperature  
see DC and AC  
characteristics per  
device  
+125 40  
+125 °C  
tr, tf  
input rise and fall times VCC = 2.0 V  
VCC = 4.5 V  
1000  
500  
400  
250  
ns  
ns  
ns  
ns  
6.0  
6.0  
500  
VCC = 6.0 V  
VCC = 10.0 V  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V);  
see note 1.  
SYMBOL  
PARAMETER  
supply voltage  
CONDITIONS  
MIN. MAX. UNIT  
VCC  
IIK  
0.5  
+11.0  
±20  
V
input diode current  
VI < − 0.5 V or VI > VCC + 0.5 V  
VS < − 0.5 V or VS > VCC + 0.5 V  
0.5 V < VS < VCC + 0.5 V  
mA  
mA  
mA  
mA  
ISK  
IS  
switch diode current  
±20  
switch source or sink current  
VCC or GND current  
±25  
ICC  
Tstg  
PD  
±50  
storage temperature  
65  
+150 °C  
power dissipation per package  
for temperature range from 40 to + 125 °C;  
200  
mW  
note 2  
PS  
power dissipation per switch  
100  
mW  
Notes  
1. To avoid drawing VCC current out of pin Z, when switch current flows in pin Y, the voltage drop across the  
bidirectional switch must not exceed 0.4 V. If the switch current flows into pin Z, no VCC current will flow out of  
terminal Y. In this case there is no limit for the voltage drop across the switch, but the voltage at pins Y and Z may  
not exceed VCC or GND.  
2. Above 55 °C the value of PD derates linearly with 2.5 mW/K.  
2002 May 15  
4
Philips Semiconductors  
Product specification  
Bilateral switch  
74HC1G66; 74HCT1G66  
DC CHARACTERISTICS  
Family 74HC1G66  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).  
TEST CONDITIONS  
Tamb (°C)  
SYMBOL  
PARAMETER  
40 to +85  
40 to +125  
MIN. MAX.  
1.5  
UNIT  
OTHER  
VCC (V)  
MIN. TYP.(1) MAX.  
VIH  
HIGH-level input  
voltage  
2.0  
4.5  
6.0  
9.0  
2.0  
4.5  
6.0  
9.0  
6.0  
10.0  
10.0  
1.5  
3.15  
4.2  
6.3  
1.2  
2.4  
3.2  
4.7  
0.8  
2.1  
2.8  
4.3  
0.1  
0.2  
0.1  
V
3.15  
4.2  
6.3  
V
V
V
VIL  
LOW-level input  
voltage  
0.5  
1.35  
1.8  
2.7  
1.0  
2.0  
1.0  
0.5  
1.35  
1.8  
2.7  
1.0  
2.0  
1.0  
V
V
V
V
ILI  
input leakage  
current  
VI = VCC or GND  
µA  
µA  
µA  
IS  
analog switch  
current, OFF-state  
VI = VIH or VIL;  
VS = VCC GND;  
see Fig.6  
analog switch  
current, ON-state  
VI = VIH or VIL;  
VS = VCC GND;  
see Fig.7  
10.0  
0.1  
1.0  
1.0  
µA  
ICC  
quiescent supply  
current  
VI = VCC or GND;  
Vis = GND or VCC  
Vos = VCC or GND  
6.0  
1.0  
2.0  
10  
20  
20  
40  
µA  
µA  
;
10.0  
Note  
1. All typical values are measured at Tamb = 25 °C.  
2002 May 15  
5
Philips Semiconductors  
Product specification  
Bilateral switch  
74HC1G66; 74HCT1G66  
Family 74HCT1G66  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).  
TEST CONDITIONS  
T
amb (°C)  
40 to +85  
MIN. TYP.(1) MAX. MIN. MAX.  
SYMBOL  
PARAMETER  
40 to +125 UNIT  
OTHER  
VCC (V)  
VIH  
HIGH-level input  
voltage  
4.5 to 5.5 2.0 1.6  
2.0  
V
VIL  
ILI  
IS  
LOW-level input voltage  
input leakage current  
4.5 to 5.5 0.1 1.2  
0.8  
1.0  
1.0  
0.8  
1.0  
1.0  
V
VI = VCC or GND  
5.5  
5.5  
0.1  
0.1  
µA  
µA  
analog switch current,  
OFF-state  
VI = VIH or VIL;  
VS = VCC GND;  
see Fig.6  
analog switch current,  
ON-state  
VI = VIH or VIL;  
VS = VCC GND;  
see Fig.7  
5.5  
0.1  
1
1.0  
10  
1.0  
20  
µA  
µA  
µA  
ICC  
quiescent supply  
current  
VI = VCC or GND;  
4.5 to 5.5  
4.5 to 5.5  
Vis = GND or VCC  
;
Vos = VCC or GND  
ICC  
additional supply  
current per input  
VI = VCC 2.1 V  
500  
850  
Note  
1. All typical values are measured at Tamb = 25 °C.  
2002 May 15  
6
Philips Semiconductors  
Product specification  
Bilateral switch  
74HC1G66; 74HCT1G66  
Family 74HC1G66 and 74HCT1G66  
For 74HC1G66: VCC = 2.0, 4.5, 6.0 or 9.0 V; note 1.  
For 74HCT1G66: VCC = 4.5 V.  
TEST CONDITIONS  
Tamb (°C)  
SYMBOL PARAMETER  
40 to +85  
40 to +125 UNIT  
VCC  
(V)  
IS  
(µA)  
OTHER  
MIN. TYP.(2) MAX. MIN. MAX.  
RON  
ON-resistance Vis = VCC to GND;  
2.0  
100  
(peak)  
VI = VIH or VIL;  
see Fig.5  
4.5  
6.0  
9.0  
2.0  
4.5  
6.0  
9.0  
2.0  
4.5  
6.0  
9.0  
1000 −  
1000 −  
1000 −  
42  
31  
23  
75  
29  
23  
18  
75  
35  
27  
21  
118  
105  
88  
142  
126  
105  
ON-resistance Vis = GND;  
100  
(rail)  
VI = VIH or VIL;  
see Fig.5  
1000 −  
1000 −  
1000 −  
95  
82  
70  
115  
100  
80  
Vis = VCC  
;
100  
VI = VIH or VIL;  
see Fig.5  
1000 −  
1000 −  
1000 −  
106  
94  
78  
128  
113  
95  
Notes  
1. At supply voltages approaching 2 V, the analog switch ON-resistance becomes extremely non-linear. Therefore it is  
recommended that these devices be used to transmit digital signals only, when using this supply voltage.  
2. All typical values are measured at Tamb = 25 °C.  
2002 May 15  
7
Philips Semiconductors  
Product specification  
Bilateral switch  
74HC1G66; 74HCT1G66  
LOW  
(from enable input)  
HIGH  
(from enable inputs)  
V
Y
Z
Y
Z
A
A
V
= 0 to V  
- GND  
I
is  
is  
CC  
V = V  
I
or GND  
V
= GND or V  
O
CC  
CC  
GND  
GND  
MNA078  
MNA079  
Fig.5 Test circuit for measuring ON-resistance  
(RON).  
Fig.6 Test circuit for measuring OFF-state  
current.  
MNA081  
80  
handbook, halfpage  
R
ON  
()  
HIGH  
(from enable input)  
60  
V
= 4.5 V  
CE  
Y
Z
40  
20  
0
A
A
6.0 V  
9.0 V  
V = V  
I
or GND  
V
(open circuit)  
GND  
CC  
O
MNA080  
0
2
4
6
6
10  
(V)  
V
is  
Fig.8 Typical ON-resistance (RON) as a function  
of input voltage (Vis) for Vis = 0 to VCC  
Fig.7 Test circuit for measuring ON-state current.  
.
2002 May 15  
8
Philips Semiconductors  
Product specification  
Bilateral switch  
74HC1G66; 74HCT1G66  
AC CHARACTERISTICS  
Type 74HC1G66  
GND = 0 V; tr = tf = 6 ns.  
TEST CONDITIONS  
WAVEFORMS VCC (V)  
PHL/tPLH propagation delay RL = ; CL = 50 pF;  
Tamb (°C)  
SYMBOL  
PARAMETER  
40 to +85  
40 to +125  
UNIT  
MIN. TYP.(1) MAX. MIN. MAX.  
t
t
t
2.0  
4.5  
6.0  
9.0  
8
75  
15  
13  
10  
125  
25  
21  
16  
190  
38  
33  
16  
90  
18  
15  
12  
150  
30  
26  
20  
225  
45  
38  
20  
ns  
Vis to Vos  
see Fig.12  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
1
PZH/tPZL  
turn-on time  
E to Vos  
RL = 1 k; CL = 50 pF; 2.0  
50  
16  
13  
9
see Figs 13 and 14  
4.5  
6.0  
9.0  
PHZ/tPLZ  
turn-off time  
E to Vos  
RL = 1 k; CL = 50 pF: 2.0  
27  
16  
14  
12  
see Figs 13 and 14  
4.5  
6.0  
9.0  
Note  
1. All typical values are measured at Tamb = 25 °C.  
Type 74HCT1G66  
GND = 0 V; tr = tf = 6 ns; Vis is the input voltage at pins Yor Z, whichever is assigned as an input. Vos is the output  
voltage at pins Yor Z, whichever is assigned as an output.  
TEST CONDITIONS  
WAVEFORMS VCC (V)  
tPHL/tPLH propagation delay RL = ; CL = 50 pF; 4.5  
T
amb (°C)  
SYMBOL  
PARAMETER  
40 to +85  
40 to +125  
UNIT  
MIN. TYP.(1) MAX. MIN. MAX.  
3
15  
30  
44  
18  
36  
53  
ns  
Vis to Vos  
see Fig.12.  
tPZH/tPZL  
turn-on time  
E to Vos  
RL = 1 k; CL = 50 pF; 4.5  
see Figs 15 and 16.  
15  
13  
ns  
ns  
tPHZ/tPLZ  
turn-off time  
E to Vos  
RL = 1 k; CL = 50 pF; 4.5  
see Figs 15 and 16.  
Note  
1. All typical values are measured at Tamb = 25 °C.  
2002 May 15  
9
Philips Semiconductors  
Product specification  
Bilateral switch  
74HC1G66; 74HCT1G66  
Type 74HC1G66 and 74HCT1G66  
At recommended conditions and typical values. GND = 0 V; tr = tf = 6.0 ns. Vis is the input voltage at pins Yor Z,  
whichever is assigned as an input; Vos is the output voltage at pins Yor Z, whichever is assigned as an output.  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
Vis(p-p) (V) VCC (V) TYP. UNIT  
sine-wave distortion  
f = 1 kHz  
RL = 10 k; CL = 50 pF; see Fig.12 4.0  
4.5  
9.0  
4.5  
9.0  
4.5  
9.0  
4.5  
9.0  
0.04  
0.02  
0.12  
0.06  
50  
50  
180  
200  
8
%
8.0  
RL = 10 k; CL = 50 pF; see Fig.12 4.0  
8.0  
%
sine-wave distortion  
f = 10 kHz  
%
%
switch OFF signal  
feed-through  
RL = 600 ; CL = 50 pF; f = 1 MHz; note 1  
see Figs 9 and 13  
dB  
dB  
MHz  
MHz  
pF  
fmax  
minimum frequency  
response (3 dB)  
RL = 50 ; CL = 10 pF;  
note 2  
see Figs 10 and 11  
CS  
maximum switch  
capacitance  
Notes  
1. Adjust input voltage Vis is 0 dBm level (0 dBM = 1 mW into 600 ).  
2. Adjust input voltage Vis is 0 dBm level at Vos for 1 MHz (0 dBM = 1 mW into 50 ).  
2002 May 15  
10  
Philips Semiconductors  
Product specification  
Bilateral switch  
74HC1G66; 74HCT1G66  
MNA082  
0
(dB)  
20  
40  
60  
80  
100  
2
3
4
5
6
10  
10  
10  
10  
10  
10  
f (kHz)  
Test conditions: VCC = 4.5 V; GND = 0 V; RL = 50 ; RSOURCE = 1 k.  
Fig.9 Typical switch OFF signal feed-through as a function of frequency.  
MNA083  
5
(dB)  
0
5  
10  
2
3
4
5
6
10  
10  
10  
10  
10  
f (kHz)  
Test conditions: VCC = 4.5 V; GND = 0 V; RL = 50 ; RSOURCE = 1 k.  
Fig.10 Typical frequency response.  
11  
2002 May 15  
Philips Semiconductors  
Product specification  
Bilateral switch  
74HC1G66; 74HCT1G66  
V
CC  
2R  
L
0.1 µF  
Y/Z  
Z/Y  
V
V
os  
is  
sine-wave  
2R  
C
dB  
L
L
channel  
ON  
GND  
MNA084  
Adjust input voltage to obtain 0 dBm at Vos when fin = 1 MHz.  
After set-up, frequency of fin is increased to obtain a reading of 3 db at Vos  
.
Fig.11 Test circuit for measuring minimum frequency response.  
V
CC  
2R  
L
10 µF  
Y/Z  
Z/Y  
V
V
os  
is  
= 1 kHz  
f
in  
sine-wave  
DISTORTION  
METER  
2R  
C
L
L
channel  
ON  
GND  
MNA085  
Fig.12 Test circuit for measuring sine-wave distortion.  
V
CC  
2R  
L
0.1 µF  
Y/Z  
Z/Y  
V
V
os  
is  
2R  
C
dB  
L
L
channel  
OFF  
GND  
MNA086  
Fig.13 Test circuit for measuring switch OFF signal feed-through.  
12  
2002 May 15  
Philips Semiconductors  
Product specification  
Bilateral switch  
74HC1G66; 74HCT1G66  
AC WAVEFORMS  
V
I
(1)  
V
E INPUT  
M
V
handbook, halfpage  
I
GND  
(1)  
t
t
PZL  
V
PLZ  
V
M
is  
V
CC  
OUTPUT  
LOW-to-OFF  
OFF-to-LOW  
GND  
(1)  
V
M
t
t
PLH  
PHL  
(2)  
V
X
(2)  
V
OH  
t
t
PHZ  
PZH  
(1)  
(3)  
V
Y
V
V
M
os  
OUTPUT  
(1)  
V
HIGH-to-OFF  
OFF-to-HIGH  
M
(2)  
MNA087  
V
OL  
GND  
outputs  
enabled  
outputs  
enabled  
outputs  
disabled  
MNA088  
(1) For HC1G VM = 50%  
For HCT1G VM = 1.3 V.  
(1) For HC1G VM = 50%; VI = GND to VCC  
For HCT1G VM = 1.3 V; VI = GND to 3.0 V.  
X = 10% of signal amplitude.  
(3) VY = 90% of signal amplitude.  
(2) VOL and VOH are the typical output voltage drop that occur with  
the output load.  
(2)  
V
Fig.14 The input (Vis) to output (Vos) propagation  
delays.  
Fig.15 The turn-on and turn-off times.  
V
handbook, halfpage  
CC  
t
W
V
V
O
V
R
= 1 k  
I
CC  
open  
L
AMPLITUDE  
0 V  
PULSE  
GENERATOR  
D.U.T.  
90%  
10%  
S
NEGATIVE  
INPUT PULSE  
1
(1)  
t
V
C
M
L
R
T
50 pF  
MNA090  
(t )  
f
t
t
(t )  
THL  
TLH  
THL  
r
t
(t )  
r
(t )  
f
TLH  
AMPLITUDE  
90%  
10%  
POSITIVE  
INPUT PULSE  
(1)  
V
Definitions for test circuit:  
M
CL = load capacitance including jig and probe capacitance  
(see “AC characteristics” for values)  
0 V  
t
MNA089  
RT = termination resistance should be equal to the output  
impedance Zo of the pulse generator.  
W
TEST  
tPLH/tPHL  
tPLZ/tPZL  
tPHZ/tPZH  
S1  
open  
tr = tf = 6 ns, when measuring fmax, there is no constraint on tr, tf with  
50% duty factor.  
VCC  
(1) For HC1G66: VM = 50%; VI = GND to VCC  
For HCT1G66: VM = 1.3 V; VI = GND to 3.0 V.  
GND  
Fig.16 Test circuit for measuring AC performance.  
Fig.17 Input pulse definitions.  
2002 May 15  
13  
Philips Semiconductors  
Product specification  
Bilateral switch  
74HC1G66; 74HCT1G66  
PACKAGE OUTLINES  
Plastic surface mounted package; 5 leads  
SOT353  
D
B
E
A
X
y
H
v
M
A
E
5
4
Q
A
A
1
1
2
3
c
e
1
b
p
L
p
w
M B  
e
detail X  
0
1
2 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
1
(2)  
UNIT  
A
b
c
D
E
e
e
H
L
Q
v
w
y
p
p
1
E
max  
0.30  
0.20  
1.1  
0.8  
0.25  
0.10  
2.2  
1.8  
1.35  
1.15  
2.2  
2.0  
0.45  
0.15  
0.25  
0.15  
mm  
0.1  
1.3  
0.65  
0.2  
0.2  
0.1  
REFERENCES  
JEDEC  
EUROPEAN  
PROJECTION  
OUTLINE  
VERSION  
ISSUE DATE  
IEC  
EIAJ  
SC-88A  
97-02-28  
SOT353  
2002 May 15  
14  
Philips Semiconductors  
Product specification  
Bilateral switch  
74HC1G66; 74HCT1G66  
Plastic surface mounted package; 5 leads  
SOT753  
D
B
E
A
X
y
H
v
M
A
E
5
4
Q
A
A
1
c
L
p
1
2
3
detail X  
e
b
p
w
M B  
0
1
2 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
UNIT  
A
A
b
c
D
E
e
H
L
Q
v
w
y
p
1
p
E
0.100  
0.013  
0.40  
0.25  
1.1  
0.9  
0.26  
0.10  
3.1  
2.7  
1.7  
1.3  
3.0  
2.5  
0.6  
0.2  
0.33  
0.23  
mm  
0.95  
0.2  
0.2  
0.1  
REFERENCES  
JEDEC JEITA  
EUROPEAN  
PROJECTION  
OUTLINE  
VERSION  
ISSUE DATE  
IEC  
SOT753  
SC-74A  
02-04-16  
2002 May 15  
15  
Philips Semiconductors  
Product specification  
Bilateral switch  
74HC1G66; 74HCT1G66  
SOLDERING  
If wave soldering is used the following conditions must be  
observed for optimal results:  
Introduction to soldering surface mount packages  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering can still be used for  
certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is  
recommended.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
Reflow soldering  
The footprint must incorporate solder thieves at the  
downstream end.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Several methods exist for reflowing; for example,  
convection or convection/infrared heating in a conveyor  
type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending  
on heating method.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 220 °C for  
thick/large packages, and below 235 °C for small/thin  
packages.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Manual soldering  
Wave soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
2002 May 15  
16  
Philips Semiconductors  
Product specification  
Bilateral switch  
74HC1G66; 74HCT1G66  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
WAVE  
REFLOW(2)  
not suitable suitable  
PACKAGE(1)  
BGA, LBGA, LFBGA, SQFP, TFBGA, VFBGA  
HBCC, HBGA, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, not suitable(3)  
HVSON, SMS  
suitable  
PLCC(4), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
suitable  
not recommended(4)(5) suitable  
not recommended(6)  
suitable  
Notes  
1. For more detailed information on the BGA packages refer to the “(LF)BGA Application Note” (AN01026); order a copy  
from your Philips Semiconductors sales office.  
2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
3. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder  
cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side,  
the solder might be deposited on the heatsink surface.  
4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
5. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm; it is definitely not  
suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
6. Wave soldering is suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
2002 May 15  
17  
Philips Semiconductors  
Product specification  
Bilateral switch  
74HC1G66; 74HCT1G66  
DATA SHEET STATUS  
PRODUCT  
STATUS(2)  
DATA SHEET STATUS(1)  
DEFINITIONS  
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
Preliminary data  
Product data  
Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Changes will be  
communicated according to the Customer Product/Process Change  
Notification (CPCN) procedure SNW-SQ-650A.  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
DEFINITIONS  
DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes, without notice, in the  
products, including circuits, standard cells, and/or  
software, described or contained herein in order to  
improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for  
the use of any of these products, conveys no licence or title  
under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that  
these products are free from patent, copyright, or mask  
work right infringement, unless otherwise specified.  
Application information  
Applications that are  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2002 May 15  
18  
Philips Semiconductors  
Product specification  
Bilateral switch  
74HC1G66; 74HCT1G66  
NOTES  
2002 May 15  
19  
Philips Semiconductors – a worldwide company  
Contact information  
For additional information please visit http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.  
© Koninklijke Philips Electronics N.V. 2002  
SCA74  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
613508/03/pp20  
Date of release: 2002 May 15  
Document order number: 9397 750 09723  

相关型号:

74HCT1G86

2-input EXCLUSIVE-OR gate
NXP

74HCT1G86GV

2-input EXCLUSIVE-OR gate
NXP

74HCT1G86GV

2-input EXCLUSIVE-OR gateProduction
NEXPERIA

74HCT1G86GV,125

74HC(T)1G86 - 2-input EXCLUSIVE-OR gate TSOP 5-Pin
NXP

74HCT1G86GV-Q100

HCT SERIES, 2-INPUT XOR GATE, PDSO5, PLASTIC, SC-74A, SOT-753, 5 PIN
NXP

74HCT1G86GV-Q100

2-input EXCLUSIVE-OR gateProduction
NEXPERIA

74HCT1G86GV-Q100,125

XOR Gate, HCT Series, 1-Func, 2-Input, CMOS, PDSO5
NXP

74HCT1G86GV-Q100H

74HC(T)1G86-Q100 - 2-input EXCLUSIVE-OR gate TSOP 5-Pin
NXP

74HCT1G86GW

2-input EXCLUSIVE-OR gate
NXP

74HCT1G86GW

2-input EXCLUSIVE-OR gateProduction
NEXPERIA

74HCT1G86GW,115

74HC(T)1G86 - 2-input EXCLUSIVE-OR gate TSSOP 5-Pin
NXP

74HCT1G86GW,118

74HC(T)1G86 - 2-input EXCLUSIVE-OR gate TSSOP 5-Pin
NXP