74HCT297D-T [NXP]

IC SPECIALTY LOGIC CIRCUIT, PDSO16, Logic IC:Other;
74HCT297D-T
型号: 74HCT297D-T
厂家: NXP    NXP
描述:

IC SPECIALTY LOGIC CIRCUIT, PDSO16, Logic IC:Other

光电二极管 逻辑集成电路
文件: 总12页 (文件大小:101K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
For a complete data sheet, please also download:  
The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications  
The IC06 74HC/HCT/HCU/HCMOS Logic Package Information  
The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines  
74HC/HCT297  
Digital phase-locked-loop filter  
September 1993  
Product specification  
File under Integrated Circuits, IC06  
Philips Semiconductors  
Product specification  
Digital phase-locked-loop filter  
74HC/HCT297  
components. The accuracy of the digital  
FEATURES  
phase-locked-loop (DPLL) is not affected by VCC and  
temperature variations but depends solely on accuracies  
of the K-clock, I/D-clock and loop propagation delays.  
Digital design avoids analog compensation errors  
Easily cascadable for higher order loops  
Useful frequency range:  
The phase detector generates an error signal waveform  
that, at zero phase error, is a 50% duty factor square wave.  
At the limits of linear operation, the phase detector output  
will be either HIGH or LOW all of the time depending on the  
direction of the phase error (φIN − φOUT). Within these limits  
the phase detector output varies linearly with the input  
phase error according to the gain kd, which is expressed in  
terms of phase detector output per cycle or phase error.  
The phase detector output can be defined to vary between  
± 1 according to the relation:  
– DC to 55 MHz typical (K-clock)  
– DC to 35 MHz typical (I/D-clock)  
Dynamically variable bandwidth  
Very narrow bandwidth attainable  
Power-on reset  
Output capability: standard/bus driver  
ICC category: MSI  
˙˙  
% HIGH % LOW  
phase detector output =  
.
GENERAL DESCRIPTION  
------------------------------------------------  
100  
The 74HC/HCT297 are high-speed Si-gate CMOS devices  
and are pin compatible with low power Schottky TTL  
(LSTTL). They are specified in compliance with JEDEC  
standard no. 7A.  
The output of the phase detector will be kdφe, where the  
phase error φe = φIN − φOUT  
.
EXCLUSIVE-OR phase detectors (XORPD) and  
edge-controlled phase detectors (ECPD) are commonly  
used digital types. The ECPD is more complex than the  
XORPD logic function but can be described generally as a  
circuit that changes states on one of the transitions of its  
inputs. The gain (kd) for an XORPD is 4 because its output  
remains HIGH (XORPDOUT = 1) for a phase error of 1/4  
cycle.  
Similarly, kd for the ECPD is 2 since its output remains  
HIGH for a phase error of 1/2 cycle. The type of phase  
detector will determine the zero-phase-error point, i.e., the  
phase separation of the phase detector inputs for a  
φe defined to be zero. For the basic DPLL system of  
The 74HC/HCT297 are designed to provide a simple,  
cost-effective solution to high-accuracy, digital,  
phase-locked-loop applications. These devices contain all  
the necessary circuits, with the exception of the  
divide-by-n counter, to build first order  
phase-locked-loops.  
Both EXCLUSIVE-OR (XORPD) and edge-controlled  
(ECPD) phase detectors are provided for maximum  
flexibility. The input signals for the EXCLUSIVE-OR phase  
detector must have a 50% duty factor to obtain the  
maximum lock-range.  
Proper partitioning of the loop function, with many of the  
building blocks external to the package, makes it easy for  
the designer to incorporate ripple cancellation (see Fig.7)  
or to cascade to higher order phase-locked-loops.  
Fig.6 φe = 0 when the phase detector output is a square  
wave.  
The XORPD inputs are 1/4 cycle out-of-phase for zero  
phase error. For the ECPD, φe = 0 when the inputs are 1/2  
cycle out-of-phase.  
The length of the up/down K-counter is digitally  
programmable according to the K-counter function table.  
With, A, B, C and D all LOW, the K-counter is disabled.  
With A HIGH and B, C and D LOW, the K-counter is only  
three stages long, which widens the bandwidth or capture  
range and shortens the lock time of the loop. When A, B,  
C and D are all programmed HIGH, the K-counter  
becomes seventeen stages long, which narrows the  
bandwidth or capture range and lengthens the lock time.  
Real-time control of loop bandwidth by manipulating the A  
to D inputs can maximize the overall performance of the  
digital phase-locked loop.  
The phase detector output controls the up/down input to  
the K-counter. The counter is clocked by input frequency  
Mfc, which is a multiple M of the loop centre frequency fc.  
When the K-counter recycles up, it generates a carry  
pulse. Recycling while counting down generates a borrow  
pulse. If the carry and the borrow outputs are conceptually  
combined into one output that is positive for a carry and  
negative for a borrow, and if the K-counter is considered as  
a frequency divider with the ratio Mfc/K, the output of the  
K-counter will equal the input frequency multiplied by the  
division ratio. Thus the output from the K-counter is  
(kdφeMfc) / K.  
The “297” can perform the classic first-order  
phase-locked-loop function without using analog  
September 1993  
2
Philips Semiconductors  
Product specification  
Digital phase-locked-loop filter  
74HC/HCT297  
The carry and borrow pulses go to the  
The output of the N-counter (or the output of the  
increment/decrement (I/D) circuit which, in the absence of  
any carry or borrow pulses has an output that is 1/2 of the  
input clock (I/DCP). The input clock is just a multiple, 2N, of  
the loop centre frequency. In response to a carry or borrow  
pulse, the I/D circuit will either add or delete a pulse at  
I/DOUT. Thus the output of the I/D circuit will be  
Nfc + (kd eMfc)/2K.  
phase-locked-loop) is thus: fo = fc + (kdφeMfc)/2KN.  
If this result is compared to the equation for a first-order  
analog phase-locked-loop, the digital equivalent of the  
gain of the VCO is just Mfc/2KN or fc/K for M = 2N.  
Thus the simple first-order phase-locked-loop with an  
adjustable K-counter is the equivalent of an analog  
phase-locked-loop with a programmable VCO gain.  
QUICK REFERENCE DATA  
GND = 0 V; Tamb = 25 °C; tr = tf = 6 ns  
TYPICAL  
SYMBOL  
PHL/ tPLH  
PARAMETER  
CONDITIONS  
UNIT  
HC  
HCT  
t
propagation delay  
I/DCP to I/DOUT  
φA1, φB to XORPDOUT  
φB, φA2 to ECPDOUT  
maximum clock frequency  
KCP  
CL = 15 pF; VCC = 5 V  
15  
13  
19  
18  
13  
19  
ns  
ns  
ns  
fmax  
63  
41  
3.5  
18  
68  
40  
3.5  
19  
MHz  
MHz  
pF  
I/DCP  
CI  
input capacitance  
CPD  
power dissipation capacitance per package notes 1 and 2  
pF  
Notes  
1. CPD is used to determine the dynamic power dissipation (PD in µW):  
2
PD = CPD × VCC2 × fi + ∑ (CL × VCC × fo) where:  
fi = input frequency in MHz  
fo = output frequency in MHz  
(CL × VCC2 × fo) = sum of outputs  
CL = output load capacitance in pF  
VCC = supply voltage in V  
2. For HC the condition is VI = GND to VCC  
For HCT the condition is VI = GND to VCC 1.5 V  
ORDERING INFORMATION  
See “74HC/HCT/HCU/HCMOS Logic Package Information”.  
September 1993  
3
Philips Semiconductors  
Product specification  
Digital phase-locked-loop filter  
74HC/HCT297  
PIN DESCRIPTION  
PIN NO.  
SYMBOL  
NAME AND FUNCTION  
2, 1, 15, 14  
A, B, C, D  
ENCTR  
KCP  
modulo control inputs  
3
K-counter enable input  
4
K-counter clock input (LOW-to-HIGH, edge-triggered)  
5
I/DCP  
increment/decrement clock input (HIGH-to-LOW, edge-triggered)  
down/up control  
6
D/U  
7
I/DOUT  
increment/decrement bus output  
ground (0 V)  
8
GND  
9, 10, 13  
φA1, φB, φA2  
XORPDOUT  
ECPDOUT  
VCC  
phase inputs  
11  
12  
16  
EXCLUSIVE-OR phase detector output  
edge-controlled phase detector output  
positive supply voltage  
Fig.1 Pin configuration.  
Fig.2 Logic symbol.  
Fig.3 IEC logic symbol.  
September 1993  
4
Philips Semiconductors  
Product specification  
Digital phase-locked-loop filter  
74HC/HCT297  
Fig.4 Functional diagram.  
K-COUNTER (DIGITAL CONTROL) FUNCTION TABLE  
EXCLUSIVE-OR PHASE DETECTOR FUNCTION  
TABLE  
D
C
B
A
MODULO (K)  
φA1  
φB  
XORPDOUT  
L
L
L
L
L
L
L
L
L
L
H
H
L
H
L
inhibited  
23  
24  
25  
26  
27  
28  
29  
L
L
H
H
L
H
L
L
H
H
L
H
H
L
L
L
L
H
H
H
H
L
L
H
H
L
H
L
EDGE-CONTROLLED PHASE DETECTOR TABLE  
H
φA2  
H or L  
φB  
ECPDOUT  
H
H
H
H
L
L
L
L
L
L
H
H
L
H
L
210  
211  
212  
213  
214  
215  
216  
217  
H
L
H or L  
H or L  
H
H or L  
no change  
no change  
H
H
H
H
H
H
H
H
L
L
H
H
L
H
L
Notes  
1. H = HIGH voltage level  
L = LOW voltage level  
H
= HIGH-to-LOW transition  
= LOW-to-HIGH transition  
September 1993  
5
Philips Semiconductors  
Product specification  
Digital phase-locked-loop filter  
74HC/HCT297  
Fig.5 Logic diagram.  
6
September 1993  
Philips Semiconductors  
Product specification  
Digital phase-locked-loop filter  
74HC/HCT297  
Fig.6 DPLL using EXCLUSIVE-OR phase detection.  
Fig.7 DPLL using both phase detectors in a ripple-cancellation scheme.  
September 1993  
7
Philips Semiconductors  
Product specification  
Digital phase-locked-loop filter  
74HC/HCT297  
Fig.8 Timing diagram: I/DOUT in-lock condition.  
Fig.9 Timing diagram: edge-controlled phase comparator waveforms.  
Fig.10 Timing diagram: EXCLUSIVE-OR phase detector waveforms.  
8
September 1993  
Philips Semiconductors  
Product specification  
Digital phase-locked-loop filter  
74HC/HCT297  
DC CHARACTERISTICS FOR 74HC  
For the DC characteristics see “74HC/HCT/HCU/HCMOS Logic Family Specifications”.  
Output capability: standard/bus driver  
ICC category: MSI  
AC CHARACTERISTICS FOR 74HC  
GND = 0 V; tr = tf = 6 ns; CL = 50 pF  
Tamb (°C)  
TEST CONDITIONS  
74HC  
SYMBOL PARAMETER  
UNIT  
WAVEFORMS  
VCC  
(V)  
+25  
40 to +85 40 to +125  
min. typ. max. min. max. min. max.  
tPHL/ tPLH propagation delay  
I/DCP to I/DOUT  
50  
18  
14  
175  
35  
30  
220  
44  
37  
265  
53  
45  
ns  
ns  
ns  
ns  
ns  
2.0 Fig.11  
4.5  
6.0  
t
t
t
t
PHL/ tPLH propagation delay  
φA1, φB  
44  
16  
13  
160  
32  
27  
200  
40  
34  
240  
48  
41  
2.0 Fig.12  
4.5  
6.0  
to XORPDOUT  
PHL/ tPLH propagation delay  
φB, φA2  
61  
22  
18  
220  
44  
37  
275  
55  
47  
330  
66  
56  
2.0 Fig.13  
4.5  
6.0  
to ECPDOUT  
THL/ tTLH output transition time:  
bus driver output;  
14  
5
4
60  
12  
10  
75  
15  
13  
90  
18  
15  
2.0 Fig.11  
4.5  
6.0  
I/DOUT (pin 7)  
THL/ tTLH output transition time:  
standard outputs;  
19  
7
6
75  
15  
13  
95  
19  
16  
110  
22  
19  
2.0 Fig.12 and 13  
4.5  
6.0  
XORPDOUT, ECPDOUT  
(pins 11, 12)  
tW  
clock pulse width  
KCP  
80  
16  
14  
22  
8
6
100  
20  
17  
120  
24  
20  
ns  
ns  
ns  
ns  
2.0 Fig.14  
4.5  
6.0  
tW  
clock pulse width  
I/DCP  
100 28  
20  
17  
125  
25  
21  
150  
30  
26  
2.0 Fig.11  
4.5  
6.0  
10  
8
tsu  
set-up time  
D/U, ENCTR to KCP  
120 33  
24  
20  
150  
30  
26  
180  
36  
31  
2.0 Fig.14  
4.5  
6.0  
12  
10  
th  
hold time  
D/U, ENCTR to KCP  
0
0
0
19  
7  
6  
0
0
0
0
0
0
2.0 Fig.14  
4.5  
6.0  
fmax  
maximum clock pulse  
frequency KCP  
6.0  
30  
35  
19  
57  
68  
4.8  
24  
28  
4.0  
20  
24  
MHz 2.0 Fig.14  
4.5  
6.0  
fmax  
maximum clock pulse  
frequency I/DCP  
4.0  
20  
24  
12  
37  
44  
3.2  
16  
19  
2.6  
13  
15  
MHz 2.0 Fig.11  
4.5  
6.0  
September 1993  
9
Philips Semiconductors  
Product specification  
Digital phase-locked-loop filter  
74HC/HCT297  
To determine ICC per input, multiply this value by the unit  
DC CHARACTERISTICS FOR 74HCT  
load coefficient shown in the table below.  
For the DC characteristics see  
“74HC/HCT/HCU/HCMOS Logic Family Specifications”.  
Output capability: standard/bus driver  
ICC category: MSI  
INPUT  
UNIT LOAD COEFFICIENT  
ENCTR, D/U  
0.3  
0.6  
1.5  
Note to HCT types  
A, B, C, D, KCP, φA2  
I/DCP, φA1, φB  
The value of additional quiescent supply current (ICC) for  
a unit load of 1 is given in the family specifications.  
AC CHARACTERISTICS FOR 74HCT  
GND = 0 V, tr = tf = 6 ns; CL = 50 pF  
Tamb (°C)  
TEST CONDITIONS  
74HCT  
SYMBOL PARAMETER  
UNIT  
WAVEFORMS  
VCC  
(V)  
+25  
40 to +85 40 to +125  
min. typ. max. min. max. min. max.  
tPHL/ tPLH propagation delay  
I/DCP to I/DOUT  
21  
16  
22  
5
35  
32  
44  
12  
44  
40  
55  
15  
53  
48  
66  
18  
ns  
ns  
ns  
ns  
4.5 Fig.11  
4.5 Fig.12  
4.5 Fig.13  
4.5 Fig.11  
t
t
t
PHL/ tPLH propagation delay  
φA1, φB to XORPDOUT  
PHL/ tPLH propagation delay  
φB, φA2 to ECPDOUT  
THL/ tTLH output transition time  
bus driver output  
I/DOUT (pin 7)  
tTHL/ tTLH output transition time  
standard outputs  
7
15  
19  
22  
ns  
4.5 Figs 12 and 13  
XORPDOUT, ECPDOUT  
(pins 11, 12)  
tW  
clock pulse width  
KCP  
16  
25  
24  
0
8
20  
31  
30  
0
24  
38  
36  
0
ns  
ns  
ns  
ns  
4.5 Fig.14  
4.5 Fig.11  
4.5 Fig.14  
4.5 Fig.14  
tW  
clock pulse width  
I/DCP  
13  
13  
8  
62  
36  
tsu  
set-up time  
D/U, ENCTR to KCP  
th  
hold time  
D/U, ENCTR to KCP  
fmax  
fmax  
maximum clock pulse  
frequency KCP  
30  
20  
24  
16  
20  
13  
MHz 4.5 Fig.14  
MHz 4.5 Fig.11  
maximum clock pulse  
frequency I/DCP  
September 1993  
10  
Philips Semiconductors  
Product specification  
Digital phase-locked-loop filter  
74HC/HCT297  
AC WAVEFORMS  
(1) HC : VM = 50%; VI = GND to VCC  
.
HCT: VM = 1.3 V; VI = GND to 3 V.  
Fig.11 Waveforms showing the clock (I/DCP) to output (I/DOUT) propagation delays, the clock pulse width, output  
transition times and maximum clock pulse frequency.  
(1) HC : VM = 50%; VI = GND to VCC  
.
HCT: VM = 1.3 V; VI = GND to 3 V.  
Fig.12 Waveforms showing the phase input (φB, φA1) to output (XORPDOUT) propagation delays and output  
transition times.  
September 1993  
11  
Philips Semiconductors  
Product specification  
Digital phase-locked-loop filter  
74HC/HCT297  
(1) HC : VM = 50%; VI = GND to VCC  
.
HCT: VM = 1.3 V; VI = GND to 3 V.  
Fig.13 Waveforms showing the phase input (φB, φA2) to output (ECPDOUT) propagation delays and output  
transition times.  
The shaded areas indicate when the input is  
permitted to change for predictable output  
performance.  
(1) HC : VM = 50%; VI = GND to VCC  
.
HCT: VM = 1.3 V; VI = GND to 3 V.  
Fig.14 Waveforms showing the clock (KCP) pulse width and the maximum clock pulse frequency, and the input  
(D/U, ENCTR) to clock (KCP) set-up and hold times.  
PACKAGE OUTLINES  
See “74HC/HCT/HCU/HCMOS Logic Package Outlines”.  
September 1993  
12  

相关型号:

74HCT297DB

IC SPECIALTY LOGIC CIRCUIT, PDSO16, Logic IC:Other
NXP

74HCT297DB-T

IC SPECIALTY LOGIC CIRCUIT, PDSO16, Logic IC:Other
NXP

74HCT297DT

IC SPECIALTY LOGIC CIRCUIT, PDSO16, Logic IC:Other
NXP

74HCT297N

暂无描述
NXP

74HCT297NB

IC SPECIALTY LOGIC CIRCUIT, PDIP16, Logic IC:Other
NXP

74HCT297PW

IC SPECIALTY LOGIC CIRCUIT, PDSO16, Logic IC:Other
NXP

74HCT299

8-bit universal shift register; 3-state
NXP

74HCT299D

8-bit universal shift register; 3-state
NXP

74HCT299D,652

HCT SERIES, 8-BIT BIDIRECTIONAL PARALLEL IN PARALLEL OUT SHIFT REGISTER, TRUE OUTPUT, PDSO20, MINI, PLASTIC, SO-20
NXP

74HCT299D-T

IC HCT SERIES, 8-BIT BIDIRECTIONAL PARALLEL IN PARALLEL OUT SHIFT REGISTER, TRUE OUTPUT, PDSO20, MINI, PLASTIC, SO-20, Shift Register
NXP

74HCT299DB

8-bit universal shift register; 3-state
NXP

74HCT299DB,112

IC HCT SERIES, 8-BIT BIDIRECTIONAL PARALLEL IN PARALLEL OUT SHIFT REGISTER, TRUE OUTPUT, PDSO20, PLASTIC, SSOP2-20, Shift Register
NXP