74HCT9046AN,699 [NXP]

74HCT9046A - PLL with band gap controlled VCO DIP 16-Pin;
74HCT9046AN,699
型号: 74HCT9046AN,699
厂家: NXP    NXP
描述:

74HCT9046A - PLL with band gap controlled VCO DIP 16-Pin

光电二极管
文件: 总43页 (文件大小:209K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
74HCT9046A  
PLL with band gap controlled VCO  
Rev. 06 — 15 September 2009  
Product data sheet  
1. General description  
The 74HCT9046A is a high-speed Si-gate CMOS device. It is specified in compliance with  
JEDEC standard no 7A.  
2. Features  
I Operation power supply voltage range from 4.5 V to 5.5 V  
I Low power consumption  
I Inhibit control for ON/OFF keying and for low standby power consumption  
I center frequency up to 17 MHz (typical) at VCC = 5.5 V  
I Choice of two phase comparators:  
N PC1: EXCLUSIVE-OR  
N PC2: Edge-triggered JK flip-flop  
I No dead zone of PC2  
I Charge pump output on PC2, whose current is set by an external resistor Rbias  
I center frequency tolerance ±10 %  
I Excellent Voltage Controlled Oscillator (VCO) linearity  
I Low frequency drift with supply voltage and temperature variations  
I On-chip band gap reference  
I Glitch free operation of VCO, even at very low frequencies  
I Zero voltage offset due to operational amplifier buffering  
I ESD protection:  
N HBM JESD22-A114F exceeds 2000 V  
N MM JESD22-A115-A exceeds 200 V  
 
 
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
3. Applications  
I FM modulation and demodulation where a small center frequency tolerance is  
essential  
I Frequency synthesis and multiplication where a low jitter is required (e.g. video  
picture-in-picture)  
I Frequency discrimination  
I Tone decoding  
I Data synchronization and conditioning  
I Voltage-to-frequency conversion  
I Motor-speed control  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Temperature range Name  
Description  
Version  
74HCT9046AN  
74HCT9046AD  
40 °C to +125 °C  
40 °C to +125 °C  
DIP16  
SO16  
plastic dual in-line package; 16 leads (300 mil)  
SOT38-4  
SOT109-1  
plastic small outline package; 16 leads; body width  
3.9 mm  
74HCT9046APW 40 °C to +125 °C  
TSSOP16 plastic thin shrink small outline package; 16 leads;  
body width 4.4 mm  
SOT403-1  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
2 of 43  
 
 
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
5. Block diagram  
f
out  
C1  
f
V
in  
VCO_OUT  
SIG_IN  
COMP_IN  
CC  
16  
C1A  
C1B  
7
6
4
3
14  
9046A  
PC1_OUT/  
R2 12  
R3  
PHASE  
COMPARATOR  
1
PCP_OUT  
2
R2  
VCO  
PC2_OUT  
13  
R1 11  
PHASE  
COMPARATOR  
2
15 RB  
R4  
C2  
R1  
R
bias  
5
10  
9
8
1
DEM_OUT VCO_IN  
GND  
GND  
INH  
R
s
mbd040  
Fig 1. Block diagram  
6. Functional diagram  
PC1_OUT/  
PCP_OUT  
Φ
2
3
14  
15  
COMP_IN  
SIG_IN  
RB  
PLL  
9046A  
Φ
PC1_OUT/  
PCP_OUT  
COMP_IN  
3
2
PC2_OUT  
VCO_OUT  
13  
14  
SIG_IN  
C1A  
C1B  
R1  
13  
PC2_OUT  
6
7
C1A  
6
7
C1B  
R1  
4
11  
12  
15  
9
11  
12  
9
DEM_OUT  
VCO_OUT  
10  
4
R2  
VCO  
R2  
RB  
VCO_IN  
DEM_OUT  
mbd038  
10  
VCO_IN  
5
INH  
5
INH  
mbd039  
Fig 2. Logic symbol  
Fig 3. IEC logic symbol  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
3 of 43  
 
 
 
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
f
out  
f
in  
C1  
3
14  
6
7
4
C1A  
C1B VCO_OUT  
COMP_IN  
SIG_IN  
PC1  
PC1_OUT/  
PCP_OUT  
2
V
ref2  
R2  
12  
11  
10  
R3  
VCO  
R2  
PCP  
logic  
1
up  
V
ref1  
D
Q
Q
CP  
R1  
R
D
R1  
PC2_OUT  
logic  
1
13  
D
Q
Q
(1)  
CHARGE  
PUMP  
R3'  
DEM_OUT  
CP  
R4  
C2  
down  
V
ref1  
V
ref2  
R
D
R
S
RB 15  
R
bias  
BAND  
GAP  
V
ref2  
INH  
VCO_IN  
9
5
mbd102  
(1) R3' = Rbias /17  
Fig 4. Logic diagram  
 
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
7. Pinning information  
7.1 Pinning  
74HCT9046A  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
V
CC  
PC1_OUT/  
PCP_OUT  
RB  
COMP_IN  
VCO_OUT  
INH  
SIG_IN  
PC2_OUT  
R2  
C1A  
R1  
C1B  
DEM_OUT  
VCO_IN  
GND  
001aae500  
Fig 5. Pin configuration  
7.2 Pin description  
Table 2.  
Symbol  
GND  
Pin description  
Pin  
1
Description  
ground (0 V) of phase comparators  
PC1_OUT/PCP_OUT  
2
phase comparator 1 output or phase comparator pulse output  
COMP_IN  
VCO_OUT  
INH  
3
comparator input  
4
VCO output  
5
inhibit input  
C1A  
6
capacitor C1 connection A  
capacitor C1 connection B  
ground (0 V) VCO  
C1B  
7
GND  
8
VCO_IN  
DEM_OUT  
R1  
9
VCO input  
10  
11  
12  
13  
14  
15  
16  
demodulator output  
resistor R1 connection  
resistor R2 connection  
phase comparator 2 output; current source adjustable with Rbias  
signal input  
R2  
PC2_OUT  
SIG_IN  
RB  
bias resistor (Rbias) connection  
supply voltage  
VCC  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
5 of 43  
 
 
 
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
8. Functional description  
The 74HCT9046A is a phase-locked-loop circuit that comprises a linear VCO and two  
different phase comparators (PC1 and PC2) with a common signal input amplifier and a  
common comparator input, see Figure 1. The signal input can be directly coupled to large  
voltage signals (CMOS level), or indirectly coupled (with a series capacitor) to small  
voltage signals. A self-bias input circuit keeps small voltage signals within the linear region  
of the input amplifiers. With a passive low-pass filter, the 74HCT9046A forms a  
second-order loop PLL.  
The principle of this phase-locked-loop is based on the familiar 74HCT4046A. However  
extra features are built-in, allowing very high-performance phase-locked-loop applications.  
This is done, at the expense of PC3, which is skipped in this 74HCT9046A. The PC2 is  
equipped with a current source output stage here. Further a band gap is applied for all  
internal references, allowing a small center frequency tolerance. The details are summed  
up in Section 8.1. If one is familiar with the 74HCT4046A already, it will do to read this  
section only.  
8.1 Differences with respect to the familiar 74HCT4046A  
A center frequency tolerance of maximum ±10 %.  
The on board band gap sets the internal references resulting in a minimal frequency  
shift at supply voltage variations and temperature variations.  
The value of the frequency offset is determined by an internal reference voltage of  
2.5 V instead of VCC 0.7 V; In this way the offset frequency will not shift over the  
supply voltage range.  
A current switch charge pump output on pin PC2_OUT allows a virtually ideal  
performance of PC2; The gain of PC2 is independent of the voltage across the  
low-pass filter; Further a passive low-pass filter in the loop achieves an active  
performance. The influence of the parasitic capacitance of the PC2 output plays no  
role here, resulting in a true correspondence of the output correction pulse and the  
phase difference even up to phase differences as small as a few nanoseconds.  
Because of its linear performance without dead zone, higher impedance values for the  
filter, hence lower C-values, can be chosen; correct operation will not be influenced by  
parasitic capacitances as in case of the voltage source output using the  
74HCT4046A.  
No PC3 on pin RB but instead a resistor connected to GND, which sets the  
load/unload currents of the charge pump (PC2).  
Extra GND pin 1 to allow an excellent FM demodulator performance even at 10 MHz  
and higher.  
Combined function of pin PC1_OUT/PCP_OUT. If pin RB is connected to VCC (no  
bias resistor Rbias) pin PC1_OUT/PCP_OUT has its familiar function viz. output of  
PC1. If at pin RB a resistor (Rbias) is connected to GND it is assumed that PC2 has  
been chosen as phase comparator. Connection of Rbias is sensed by internal circuitry  
and this changes the function of pin PC1_OUT/PCP_OUT into a lock detect output  
(PCP_OUT) with the same characteristics as PCP_OUT of pin 1 of the 74HCT4046A.  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
6 of 43  
 
 
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
The inhibit function differs. For the 74HCT4046A a HIGH-level at the inhibit input  
(pin INH) disables the VCO and demodulator, while a LOW-level turns both on. For  
the 74HCT9046A a HIGH-level on the inhibit input disables the whole circuit to  
minimize standby power consumption.  
8.2 VCO  
The VCO requires one external capacitor C1 (between pins C1A and C1B) and one  
external resistor R1 (between pins R1 and GND) or two external resistors R1 and R2  
(between pins R1 and GND, and R2 and GND). Resistor R1 and capacitor C1 determine  
the frequency range of the VCO. Resistor R2 enables the VCO to have a frequency offset  
if required (see Figure 4).  
The high input impedance of the VCO simplifies the design of the low-pass filters by giving  
the designer a wide choice of resistor/capacitor ranges. In order not to load the low-pass  
filter, a demodulator output of the VCO input voltage is provided at pin DEM_OUT. The  
DEM_OUT voltage equals that of the VCO input. If DEM_OUT is used, a series resistor  
(Rs) should be connected from pin DEM_OUT to GND; if unused, DEM_OUT should be  
left open. The VCO output (pin VCO_OUT) can be connected directly to the comparator  
input (pin COMP_IN), or connected via a frequency divider. The output signal has a duty  
cycle of 50 % (maximum expected deviation 1 %), if the VCO input is held at a constant  
DC level. A LOW-level at the inhibit input (pin INH) enables the VCO and demodulator,  
while a HIGH-level turns both off to minimize standby power consumption.  
8.3 Phase comparators  
The signal input (pin SIG_IN) can be directly coupled to the self-biasing amplifier at  
pin SIG_IN, provided that the signal swing is between the standard HC family input logic  
levels. Capacitive coupling is required for signals with smaller swings.  
8.3.1 Phase Comparator 1 (PC1)  
This circuit is an EXCLUSIVE-OR network. The signal and comparator input frequencies  
(fi) must have a 50 % duty cycle to obtain the maximum locking range. The transfer  
characteristic of PC1, assuming ripple (fr = 2fi) is suppressed, is:  
V
VDEM_OUT  
=
CC(Φ  
ΦCOMP_IN)  
SIG_IN  
----------  
π
where:  
VDEM_OUT is the demodulator output at pin DEM_OUT  
VDEM_OUT = VPC1_OUT (via low-pass)  
V
The phase comparator gain is: Kp  
=
CC(V r)  
----------  
π
The average output voltage from PC1, fed to the VCO input via the low-pass filter and  
seen at the demodulator output at pin DEM_OUT (VDEM_OUT), is the resultant of the phase  
differences of signals (SIG_IN) and the comparator input (COMP_IN) as shown in  
Figure 6. The average of VDEM_OUT is equal to 0.5VCC when there is no signal or noise at  
SIG_IN and with this input the VCO oscillates at the center frequency (f0). Typical  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
7 of 43  
 
 
 
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
waveforms for the PC1 loop locked at f0 are shown in Figure 7. This figure also shows the  
actual waveforms across the VCO capacitor at pins C1A and C1B (VC1A and VC1B) to  
show the relation between these ramps and the VCO_OUT voltage.  
The frequency capture range (2f0) is defined as the frequency range of input signals on  
which the PLL will lock if it was initially out-of-lock. The frequency lock range (2fL) is  
defined as the frequency range of the input signals on which the loop will stay locked if it  
was initially in lock. The capture range is smaller or equal to the lock range.  
With PC1, the capture range depends on the low-pass filter characteristics and can be  
made as large as the lock range. This configuration remains locked even with very noisy  
input signals. Typical behavior of this type of phase comparator is that it may lock to input  
frequencies close to the harmonics of the VCO center frequency.  
mbd101  
V
CC  
V
DEM_OUT(AV)  
0.5V  
CC  
0
o
o
o
0
90  
180  
Φ
PC_IN  
V
VDEM_OUT = VPCI_OUT  
=
CCΦSIG_IN ΦCOMP_IN  
----------  
π
ΦPC_IN = SIG_IN ΦCOMP_IN  
)
Fig 6. Phase comparator 1; average output voltage as a function of input phase  
difference  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
8 of 43  
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
SIGN_IN  
COMP_IN  
VCO_OUT  
PC1_OUT  
VCO_IN  
V
CC  
GND  
C1A  
V
V
C1A  
C1B  
C1B  
mbd100  
Fig 7. Typical waveforms for PLL using phase comparator 1; loop-locked at f0  
8.3.2 Phase Comparator 2 (PC2)  
This is a positive edge-triggered phase and frequency detector. When the PLL is using  
this comparator, the loop is controlled by positive signal transitions and the duty cycles of  
SIG_IN and COMP_IN are not important. PC2 comprises two D-type flip-flops, control  
gating and a 3-state output stage with sink and source transistors acting as current  
sources, henceforth called charge pump output of PC2. The circuit functions as an  
up-down counter (see Figure 4) where SIG_IN causes an up-count and COMP_IN a down  
count. The current switch charge pump output allows a virtually ideal performance of PC2,  
due to appliance of some pulse overlap of the up and down signals, see Figure 8a.  
The pump current Icp is independent from the supply voltage and is set by the internal  
band gap reference of 2.5 V.  
2.5  
Rbias  
Icp = 17 ×  
(A)  
-----------  
Where Rbias is the external bias resistor between pin RB and ground.  
The current and voltage transfer function of PC2 are shown in Figure 9.  
The phase comparator gain is:  
Icp  
KP  
=
(A r)  
---------  
2π  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
9 of 43  
 
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
V
CC  
up  
I
I
cp  
cp  
V
CC  
PC2_OUT  
C2  
up  
PC2_OUT  
VC2_OUT  
R3'  
down  
I
cp  
down  
C2  
∆ Φ = ΦPC_IN  
pulse overlap of  
approximately 15 ns  
mbd046  
mbd099  
a. At every ∆Φ, even at zero ∆Φ both switches are  
closed simultaneously for a short period (typically  
15 ns).  
b. Comparable voltage-controlled switch  
Fig 8. The current switch charge pump output of PC2  
+I  
cp  
V
CC  
V
DEM_OUT(AV)  
I
× R  
cp  
0
0.5V  
CC  
I  
cp  
2  
π
+2  
π
0
0
2  
Φ
PC_IN  
+2  
π
0
π
Φ
001aak442  
PC_IN  
001aak443  
a. Current transfer  
b. Voltage transfer. This transfer can be observed at  
PC2_OUT by connecting a resistor (R = 10 k)  
between PC2_OUT and 0.5VCC  
.
Icp  
5
VDEM_OUT = VPC2_OUT  
=
Φ
------  
pump current  
Φ
PC_IN  
---------  
PC_IN  
4π  
ΦPC_IN = SIG_IN ΦCOMP_IN  
Fig 9. Phase comparator 2 current and voltage transfer characteristics  
2π  
)
When the frequencies of SIG_IN and COMP_IN are equal but the phase of SIG_IN leads  
that of COMP_IN, the up output driver at PC2_OUT is held ‘ON’ for a time corresponding  
to the phase difference (ΦPC_IN). When the phase of SIG_IN lags that of COMP_IN, the  
down or sink driver is held ‘ON’.  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
10 of 43  
 
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
When the frequency of SIG_IN is higher than that of COMP_IN, the source output driver is  
held ‘ON’ for most of the input signal cycle time and for the remainder of the cycle time  
both drivers are ‘OFF’ (3-state). If the SIG_IN frequency is lower than the COMP_IN  
frequency, then it is the sink driver that is held ‘ON’ for most of the cycle. Subsequently the  
voltage at the capacitor (C2) of the low-pass filter connected to PC2_OUT varies until the  
signal and comparator inputs are equal in both phase and frequency. At this stable point  
the voltage on C2 remains constant as the PC2 output is in 3-state and the VCO input at  
pin 9 is a high-impedance. Also in this condition the signal at the phase comparator pulse  
output (PCP_OUT) has a minimum output pulse width equal to the overlap time, so can be  
used for indicating a locked condition.  
Thus for PC2 no phase difference exists between SIG_IN and COMP_IN over the full  
frequency range of the VCO. Moreover, the power dissipation due to the low-pass filter is  
reduced because both output drivers are OFF for most of the signal input cycle. It should  
be noted that the PLL lock range for this type of phase comparator is equal to the capture  
range and is independent of the low-pass filter. With no signal present at SIG_IN the VCO  
adjust, via PC2, to its lowest frequency.  
By using current sources as charge pump output on PC2, the dead zone or backlash time  
could be reduced to zero. Also, the pulse widening due to the parasitic output capacitance  
plays no role here. This enables a linear transfer function, even in the vicinity of the zero  
crossing. The differences between a voltage switch charge pump and a current switch  
charge pump are shown in Figure 11.  
SIG_IN  
COMP_IN  
VCO_OUT  
15 ns typical  
UP  
PC_IN  
DOWN  
CURRENT AT  
PC2_OUT  
high-impedance OFF-state,  
(zero current)  
PC2_OUT/VCO_IN  
PCP_OUT  
mbd047  
The pulse overlap of the up and down signals (typically 15 ns).  
Fig 10. Timing diagram for PC2  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
11 of 43  
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
2.75  
2.75  
VCO_IN  
VCO_IN  
(1)  
2.50  
(1)  
2.50  
(2)  
0
2.25  
2.25  
25  
25  
25  
0
25  
phase error (ns)  
phase error (ns)  
001aak444  
001aak445  
(1) Due to parasitic capacitance on PC2_OUT.  
(2) Backlash time (dead zone).  
a. Response with traditional voltage-switch  
charge-pump PC2_OUT (74HCT4046A).  
b. Response with current switch charge-pump  
PC2_OUT as applied in the 74HCT9046A.  
Fig 11. The response of a locked-loop in the vicinity of the zero crossing of the phase error  
The design of the low-pass filter is somewhat different when using current sources. The  
external resistor R3 is no longer present when using PC2 as phase comparator.  
The current source is set by Rbias. A simple capacitor behaves as an ideal integrator now,  
because the capacitor is charged by a constant current. The transfer function of the  
voltage switch charge pump may be used. In fact it is even more valid, because the  
transfer function is no longer restricted for small changes only. Further the current is  
independent from both the supply voltage and the voltage across the filter. For one that is  
familiar with the low-pass filter design of the 74HCT4046A a relation may show how Rbias  
relates with a fictive series resistance, called R3'.  
This relation can be derived by assuming first that a voltage controlled switch PC2 of the  
74HCT4046A is connected to the filter capacitance C2 via this fictive R3' (see Figure 8b).  
Then during the PC2 output pulse the charge current equals:  
VCC VC2(0)  
Icp  
=
--------------------------------  
R3'  
2.5  
With the initial voltage VC2(0) at: 0.5VCC = 2.5 V, Icp = -------  
R3'  
As shown before the charge current of the current switch of the 74HCT9046A is:  
2.5  
Rbias  
Icp = 17 ×  
-----------  
Hence:  
R
R3‘ = bias(Ω)  
-----------  
17  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
12 of 43  
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
Using this equivalent resistance R3' for the filter design the voltage can now be expressed  
as a transfer function of PC2; assuming ripple (fr = fi) is suppressed, as:  
5
4π  
KPC2  
=
(V r)  
------  
Again this illustrates the supply voltage independent behavior of PC2.  
8.4 Loop filter component selection  
Examples of PC2 combined with a passive filter are shown in Figure 12 and 13. Figure 12  
shows that PC2 with only a C2 filter behaves as a high-gain filter. For stability the damped  
version of Figure 13 with series resistance R4 is preferred.  
Practical design values for Rbias are between 25 kand 250 kwith R3' = 1.5 kΩ  
to 15 kfor the filter design. Higher values for R3' require lower values for the filter  
capacitance which is very advantageous at low values of the loop natural frequency ωn.  
A
I
cp  
F
(jω)  
I
cp  
17  
1/  
Aτ  
1
C2  
INPUT  
OUTPUT  
001aak449  
R
bias  
ω
1/  
Aτ  
1
001aak450  
001aak451  
a. Simple loop filter for PC2  
without damping  
b. Amplitude characteristic  
c. Pole zero diagram  
A = DC gain limit, due to leakage  
R
1
1
τ1  
=
bias × C2 = R3' × C2  
F( jω)  
=
----------------------------- -----------  
-----------  
1 A + jωτ1 jωτ1  
17  
Fig 12. Simple loop filter for PC2 without damping  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
13 of 43  
 
 
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
A
I
F
cp  
(jω)  
I
cp  
17  
1/  
O
Aτ  
1
R4  
C2  
1/  
τ
INPUT  
OUTPUT  
001aak446  
2
R
m
bias  
ω
1/  
1 /  
Aτ  
Aτ  
2
1
001aak447  
001aak448  
a. Simple loop filter for PC2 with  
damping  
b. Amplitude characteristic  
c. Pole zero diagram  
A = DC gain limit, due to leakage  
R
1 + jωτ2  
bias × C2 = R3× C2  
F(jω)  
=
-----------------------------  
τ1  
=
-----------  
17  
τ2 = R4 × C2  
1 A + jωτ1  
Fig 13. Simple loop filter for PC2 with damping  
9. Limiting values  
Table 3.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).  
Symbol  
VCC  
IIK  
Parameter  
Conditions  
Min  
Max  
+7  
Unit  
V
supply voltage  
0.5  
input clamping current  
output clamping current  
output current  
VI < 0.5 V or VI > VCC + 0.5 V  
VO < 0.5 V or VO > VCC + 0.5 V  
0.5 V < VO < VCC + 0.5 V  
-
±20  
±20  
±25  
+50  
-
mA  
mA  
mA  
mA  
mA  
°C  
IOK  
-
IO  
-
ICC  
supply current  
-
IGND  
Tstg  
Ptot  
ground current  
50  
65  
storage temperature  
total power dissipation  
DIP16  
+150  
Tamb = 40 °C to +125 °C  
[1]  
[2]  
-
-
750  
500  
mW  
mW  
SO16 and TSSOP16  
[1] For DIP16 packages: above 70 °C the value of Ptot derates linearly with 12 mW/K.  
[2] For SO16 and TSSOP16 packages: above 70 °C the value of Ptot derates linearly with 8 mW/K.  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
14 of 43  
 
 
 
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
10. Recommended operating conditions  
Table 4.  
Symbol  
VCC  
Operating conditions  
Parameter  
Conditions  
Min  
4.5  
0
Typ  
Max  
5.5  
Unit  
V
supply voltage  
5.0  
VI  
input voltage  
-
-
VCC  
VCC  
+125  
139  
V
VO  
output voltage  
0
V
Tamb  
t/V  
ambient temperature  
input transition rise and fall rate  
40  
-
°C  
ns/V  
pin INH; VCC = 4.5 V  
1.67  
11. Static characteristics  
Table 5.  
Static characteristics  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Tamb = 25 °C  
Phase comparator section  
VIH  
HIGH-level input voltage  
pins SIG_IN and COMP_IN;  
VCC = 4.5 V; DC coupled  
3.15 2.4  
-
V
V
VIL  
LOW-level input voltage  
HIGH-level output voltage  
pins SIG_IN and COMP_IN;  
VCC = 4.5 V; DC coupled  
-
2.1  
1.35  
VOH  
pins PCP_OUT and PCn_OUT;  
VCC = 4.5 V; VI = VIH or VIL  
IO = 20 µA  
4.4  
4.5  
-
-
V
V
IO = 4.0 mA  
3.98 4.32  
VOL  
LOW-level output voltage  
pins PCP_OUT and PCn_OUT;  
VCC = 4.5 V; VI = VIH or VIL  
IO = 20 µA  
-
-
-
0
0.1  
V
IO = 4.0 mA  
0.15 0.26  
V
II  
input leakage current  
pins SIG_IN and COMP_IN;  
VCC = 5.5 V; VI = VCC or GND  
-
±30  
µA  
IOZ  
RI  
OFF-state output current  
input resistance  
pin PC2_OUT; VCC = 5.5 V;  
VI = VIH or VIL; VO = VCC or GND  
-
-
-
±0.5 µA  
SIG_IN and COMP_IN;  
250  
-
kΩ  
VCC = 4.5 V; VI at self-bias  
operating point; VI = 0.5 V;  
see Figure 14, 15 and 16  
Rbias  
bias resistance  
VCC = 4.5 V  
25  
-
250  
kΩ  
Icp  
charge pump current  
VCC = 4.5 V; Rbias = 40 kΩ  
±0.53 ±1.06 ±2.12 mA  
VCO section  
VIH  
HIGH-level input voltage  
LOW-level input voltage  
pin INH; VCC = 4.5 V to 5.5 V;  
DC coupled  
2.0  
-
1.6  
1.2  
-
V
V
VIL  
pin INH; VCC = 4.5 V to 5.5 V;  
DC coupled  
0.8  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
15 of 43  
 
 
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
Table 5.  
Static characteristics …continued  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
VOH  
HIGH-level output voltage  
pin VCO_OUT; VCC = 4.5 V;  
VI = VIH or VIL  
IO = 20 µA  
4.4  
4.5  
-
-
V
V
IO = 4.0 mA  
3.98 4.32  
VOL  
LOW-level output voltage  
pin VCO_OUT; VCC = 4.5 V;  
VI = VIH or VIL  
IO = 20 µA  
-
-
-
0
0.1  
V
V
V
IO = 4.0 mA  
0.15 0.26  
pins C1A and C1B; VCC = 4.5 V;  
VI = VIH or VIL; IO = 4.0 mA  
-
0.40  
II  
input leakage current  
pins INH and VCO_IN;  
-
-
±0.1 µA  
VCC = 5.5 V; VI = VCC or GND  
R1  
R2  
C1  
resistor 1  
resistor 2  
capacitor 1  
VCC = 4.5 V  
VCC = 4.5 V  
VCC = 4.5 V  
3
-
-
-
300  
300  
kΩ  
kΩ  
pF  
3
40  
no  
limit  
VVCO_IN  
voltage on pin VCO_IN  
over the range specified for R1  
VCC = 4.5 V  
1.1  
1.1  
1.1  
-
-
-
3.4  
3.9  
4.4  
V
V
V
VCC = 5.0 V  
VCC = 5.5 V  
Demodulator section  
Rs  
series resistance  
VCC = 4.5 V; at Rs > 300 kthe  
leakage current can influence  
VDEM_OUT  
50  
-
-
300  
kΩ  
mV  
Voffset  
offset voltage  
VCO_IN to VDEM_OUT; VCC = 4.5 V;  
VI = VVCO_IN = 0.5VCC; values  
taken over Rs range; see Figure 17  
±20  
25  
-
-
Rdyn  
dynamic resistance  
DEM_OUT; VCC = 4.5 V;  
-
VDEM_OUT = 0.5VCC  
General  
ICC  
supply current  
disabled; VCC = 5.5 V;  
pin INH at VCC  
-
-
-
-
8.0  
360  
-
µA  
µA  
pF  
ICC  
additional supply current  
input capacitance  
pin INH; VI = VCC 2.1 V; VCC  
4.5 V; other inputs at VCC or GND;  
=
100  
3.5  
CI  
Tamb = 40 °C to +85 °C  
Phase comparator section  
VIH  
HIGH-level input voltage  
pins SIG_IN and COMP_IN;  
VCC = 4.5 V; DC coupled  
pins SIG_IN and COMP_IN;  
VCC = 4.5 V; DC coupled  
3.15  
-
-
-
-
V
V
VIL  
LOW-level input voltage  
1.35  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
16 of 43  
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
Table 5.  
Static characteristics …continued  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
VOH  
HIGH-level output voltage  
pins PCP_OUT and PCn_OUT;  
VCC = 4.5 V; VI = VIH or VIL  
IO = 20 µA  
4.4  
-
-
-
-
V
V
IO = 4.0 mA  
3.84  
VOL  
LOW-level output voltage  
pins PCP_OUT and PCn_OUT;  
VCC = 4.5 V; VI = VIH or VIL  
IO = 20 µA  
-
-
-
-
-
-
0.1  
V
IO = 4.0 mA  
0.33  
±38  
V
II  
input leakage current  
SIG_IN and COMP_IN;  
µA  
VCC = 5.5 V; VI = VCC or GND  
IOZ  
OFF-state output current  
PC2_OUT; VCC = 5.5 V;  
-
-
±5.0 µA  
VI = VIH or VIL; VO = VCC or GND  
VCO section  
VIH  
HIGH-level input voltage  
LOW-level input voltage  
HIGH-level output voltage  
pin INH; VCC = 4.5 V to 5.5 V;  
DC coupled  
2.0  
-
-
-
-
V
V
VIL  
pin INH; VCC = 4.5 V to 5.5 V;  
DC coupled  
0.8  
VOH  
pin VCO_OUT; VCC = 4.5 V;  
VI = VIH or VIL  
IO = 20 µA  
4.4  
-
-
-
-
V
V
IO = 4.0 mA  
3.84  
VOL  
LOW-level output voltage  
pin VCO_OUT; VCC = 4.5 V;  
VI = VIH or VIL  
IO = 20 µA  
-
-
-
-
-
-
0.1  
V
V
V
IO = 4.0 mA  
0.33  
0.47  
pins C1A and C1B; VCC = 4.5 V;  
VI = VIH or VIL; IO = 4.0 mA  
II  
input leakage current  
pins INH and VCO_IN;  
-
-
±1.0 µA  
VCC = 5.5 V; VI = VCC or GND  
General  
ICC  
supply current  
disabled; VCC = 5.5 V;  
pin INH at VCC  
-
-
-
-
80.0 µA  
ICC  
additional supply current  
per input pin; VI = VCC 2.1 V;  
450  
µA  
VCC = 4.5 V; other inputs at VCC or  
GND;  
Tamb = 40 °C to +125 °C  
Phase comparator section  
VIH  
HIGH-level input voltage  
pins SIG_IN and COMP_IN;  
VCC = 4.5 V; DC coupled  
pins SIG_IN and COMP_IN;  
VCC = 4.5 V; DC coupled  
3.15  
-
-
-
-
V
V
VIL  
LOW-level input voltage  
1.35  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
17 of 43  
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
Table 5.  
Static characteristics …continued  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
VOH  
HIGH-level output voltage  
pins PCP_OUT and PCn_OUT;  
VCC = 4.5 V; VI = VIH or VIL  
IO = 20 µA  
4.4  
3.7  
-
-
-
-
V
V
IO = 4.0 mA  
VOL  
LOW-level output voltage  
pins PCP_OUT and PCn_OUT;  
VCC = 4.5 V; VI = VIH or VIL  
IO = 20 µA  
-
-
-
-
-
-
0.1  
0.4  
±45  
V
IO = 4.0 mA  
V
II  
input leakage current  
pins SIG_IN and COMP_IN;  
VCC = 5.5 V; VI = VCC or GND  
µA  
IOZ  
OFF-state output current  
pin PC2_OUT; VCC = 5.5 V;  
-
-
±10.0 µA  
VI = VIH or VIL; VO = VCC or GND  
VCO section  
VIH  
HIGH-level input voltage  
LOW-level input voltage  
HIGH-level output voltage  
pin INH; VCC = 4.5 V to 5.5 V;  
DC coupled  
2.0  
-
-
-
-
V
V
VIL  
pin INH; VCC = 4.5 V to 5.5 V;  
DC coupled  
0.8  
VOH  
pin VCO_OUT; VCC = 4.5 V;  
VI = VIH or VIL  
IO = 20 µA  
4.4  
3.7  
-
-
-
-
V
V
IO = 4.0 mA  
VOL  
LOW-level output voltage  
pin VCO_OUT; VCC = 4.5 V;  
VI = VIH or VIL  
IO = 20 µA  
-
-
-
-
-
-
0.1  
V
V
V
IO = 4.0 mA  
0.4  
pins C1A and C1B; VCC = 4.5 V;  
VI = VIH or VIL; IO = 4.0 mA  
0.54  
II  
input leakage current  
pins INH and VCO_IN;  
-
-
±1.0 µA  
VCC = 5.5 V; VCC or GND  
General  
ICC  
supply current  
disabled; VCC = 5.5 V;  
pin INH at VCC  
-
-
-
-
160.0 µA  
ICC  
additional supply current  
per input pin; VI = VCC 2.1 V;  
490  
µA  
VCC = 4.5 V; other inputs at VCC or  
GND;  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
18 of 43  
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
mga956 - 1  
mbd108  
800  
I
I
I
R
(k)  
V  
I
600  
400  
200  
0
V
=
CC  
4.5 V  
self-bias operating point  
5.5 V  
(0.5 V ) 0.25  
0.5 V  
(0.5 V ) + 0.25  
CC  
CC  
CC  
V
V (V)  
I
I
Fig 14. Typical input resistance curve at SIG_IN and  
COMP_IN  
Fig 15. Input resistance at SIG_IN; COMP_IN with  
VI = 0.5 V at self-bias point  
mga958  
mga957  
60  
5
V
= 5.5V  
V
offset  
CC  
(mV)  
40  
4.5 V  
I
I
(µA)  
20  
V
= 4.5 V  
CC  
0
0
20  
40  
4.5 V  
5.5 V  
5.5 V  
5  
(0.5 V ) 0.25  
(0.5 V ) 2  
0.5 V  
(0.5 V ) + 2  
CC  
(V)  
CC  
CC  
V
0.5 V  
(0.5 V ) + 0.25  
CC  
CC  
CC  
VCO_IN  
V (V)  
I
___ Rs = 50 kΩ  
- - - Rs = 300 kΩ  
Fig 16. Input current at SIG_IN; COMP_IN with  
Fig 17. Offset voltage at demodulator output as a  
function of VCO_IN and Rs  
VI = 0.5 V at self-bias point  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
19 of 43  
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
12. Dynamic characteristics  
Table 6.  
GND = 0 V; tr = tf = 6 ns; CL = 50 pF.  
Dynamic characteristics[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Tamb = 25 °C  
Phase comparator section  
tpd  
propagation delay  
SIG_IN, COMP_IN to PC1_OUT;  
VCC = 4.5 V; see Figure 18  
-
-
23  
35  
40  
68  
ns  
ns  
SIG_IN, COMP_IN to PCP_OUT;  
V
CC = 4.5 V; see Figure 18  
SIG_IN, COMP_IN to PC2_OUT;  
CC = 4.5 V; see Figure 19  
SIG_IN, COMP_IN to PC2_OUT;  
CC = 4.5 V; see Figure 19  
ten  
enable time  
disable time  
-
-
30  
36  
56  
65  
ns  
ns  
V
tdis  
V
tt  
transition time  
VCC = 4.5 V; see Figure 18  
-
-
7
15  
-
ns  
[4]  
[5]  
Vi(p-p)  
peak-to-peak input voltage  
pin SIGN_IN or COMP_IN;  
50  
mV  
V
CC = 4.5 V; AC coupled; fi = 1 MHz  
VCO section  
f  
frequency deviation  
center frequency  
VCC = 5.0 V; VVCO_IN = 3.9 V;  
R1 = 10 k; R2 = 10 k; C1 = 1 nF  
10  
-
+10  
-
%
f0  
VCC = 4.5 V; duty cycle = 50 %;  
11.0 15.0  
MHz  
V
VCO_IN = 0.5VCC; R1 = 4.3 k;  
R2 = ∞ Ω; C1 = 40 pF; see Figure 23  
and 31  
V
V
CC = 5 V; duty cycle = 50 %;  
VCO_IN = 0.5VCC; R1 = 3 k;  
-
16.0  
-
MHz  
R2 = ∞ Ω; C1 = 40 pF; see Figure 23  
and 31  
[6]  
f/f  
relative frequency variation  
duty cycle  
V
CC = 4.5 V; R1 = 100 k; R2 = ∞ Ω;  
-
-
0.4  
50  
-
-
%
%
C1 = 100 pF; see Figure 24 and 25  
δ
VCO_OUT; VCC = 4.5 V  
General  
CPD  
[2][3]  
power dissipation capacitance  
-
20  
-
pF  
Tamb = 40 °C to +85 °C  
Phase comparator section  
tpd  
propagation delay  
SIG_IN, COMP_IN to PC1_OUT;  
VCC = 4.5 V; see Figure 18  
-
-
-
-
50  
85  
ns  
ns  
SIG_IN, COMP_IN to PCP_OUT;  
V
CC = 4.5 V; see Figure 18  
SIG_IN, COMP_IN to PC2_OUT;  
CC = 4.5 V; see Figure 19  
SIG_IN, COMP_IN to PC2_OUT;  
CC = 4.5 V; see Figure 19  
ten  
enable time  
disable time  
transition time  
-
-
-
-
-
-
70  
81  
19  
ns  
ns  
ns  
V
tdis  
V
tt  
VCC = 4.5 V; see Figure 18  
VCO section  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
20 of 43  
 
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
Table 6.  
Dynamic characteristics[1] …continued  
GND = 0 V; tr = tf = 6 ns; CL = 50 pF.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
[7]  
f/T  
frequency variation with  
temperature  
VCC = 4.5 V; VVCO_IN = 0.5VCC  
;
-
0.06  
-
%/K  
recommended range: R1 = 10 k;  
R2 = 10 k; C1 = 1 nF; see Figure 20,  
21 and 22  
T
amb = 40 °C to +125 °C  
Phase comparator section  
tpd  
propagation delay  
SIG_IN, COMP_IN to PC1_OUT;  
VCC = 4.5 V; see Figure 18  
-
-
-
-
60  
ns  
ns  
SIG_IN, COMP_IN to PCP_OUT;  
102  
V
CC = 4.5 V; see Figure 18  
SIG_IN, COMP_IN to PC2_OUT;  
CC = 4.5 V; see Figure 19  
ten  
enable time  
disable time  
-
-
-
-
84  
98  
ns  
ns  
V
tdis  
SIG_IN, COMP_IN to PC2_OUT;  
VCC = 4.5 V; see Figure 19  
VCC = 4.5 V; see Figure 18  
tt  
transition time  
-
-
22  
ns  
[1] tpd is the same as tPLH and tPHL; tdis is the same as tPLZ and tPHZ; ten is the same as tPZL and tPZH; tt is the same as tTLH and tTHL  
.
[2] CPD is used to determine the dynamic power dissipation (PD in µW).  
PD = CPD × VCC2 × fi × N + (CL × VCC2 × fo) where:  
fi = input frequency in MHz;  
fo = output frequency in MHz;  
CL = output load capacitance in pF;  
VCC = supply voltage in V;  
N = total load switching outputs;  
(CL × VCC2 × fo) = sum of outputs.  
[3] Applies to the phase comparator section only (pin INH = HIGH). For power dissipation of the VCO and demodulator sections, see  
Figure 26, 27 and 28.  
[4] This is the (peak to peak) input sensitivity.  
[5] This is the center frequency tolerance.  
[6] This is the frequency linearity.  
[7] This is the frequency stability with temperature change.  
V
SIG_IN, COMP_IN  
inputs  
M
t
t
PLH  
PHL  
PCP_OUT, PC1_OUT  
outputs  
V
M
t
t
THL  
TLH  
mbd106  
VM = 0.5VCC; VI = GND to VCC  
.
Fig 18. Waveforms showing input (SIG_IN and COMP_IN) to output (PCP_OUT and PC1_OUT) propagation  
delays and the output transition times  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
21 of 43  
 
 
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
SIG_IN  
input  
V
M
COMP_IN  
input  
V
M
t
t
PLZ  
PHZ  
t
t
PZL  
PZH  
90%  
PC2_OUT  
output  
V
M
10%  
mga941  
VM = 0.5VCC; VI = GND to VCC  
.
Fig 19. Waveforms showing the enable and disable times for PC2_OUT  
mbd116  
mbd115  
15  
10  
5
20  
f  
(%)  
f  
(%)  
10  
0
10  
20  
0
V
=
CC  
5  
V
=
CC  
5.5 V  
4.5 V  
5.5 V  
4.5 V  
10  
15  
50  
0
50  
100  
T
150  
50  
0
50  
100  
T
150  
(°C)  
(°C)  
amb  
amb  
a. R1 = 3 k; R2 = ∞ Ω; C1 = 100 pF.  
b. R1 = 10 k; R2 = ∞ Ω; C1 = 100 pF.  
Fig 20. Frequency stability of the VCO as a function of ambient temperature with supply voltage as a parameter  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
22 of 43  
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
mbd124  
5.5 V  
mbd117  
10  
15  
10  
5
V
=
CC  
f  
(%)  
f  
(%)  
4.5 V  
5
0
V
=
CC  
0
5.5 V  
5  
10  
15  
5  
4.5 V  
10  
20  
50  
0
50  
100  
150  
50  
0
50  
100  
150  
T
(°C)  
Tamb (°C)  
amb  
a. R1 = 300 k; R2 = ∞ Ω; C1 = 100 pF.  
b. R1 = ∞ Ω; R2 = 3 k; C1 = 100 pF.  
Fig 21. Frequency stability of the VCO as a function of ambient temperature with supply voltage as a parameter  
mbd119  
mbd118  
10  
f  
(%)  
8
4
0
f  
(%)  
5
0
V
=
4  
8  
CC  
V
=
CC  
4.5 V  
5.5 V  
5  
5.5 V  
4.5 V  
10  
12  
50  
0
50  
100  
150  
50  
0
50  
100  
T
150  
T
(°C)  
(°C)  
amb  
amb  
a. R1 = ∞ Ω; R2 = 10 k; C1 = 100 pF.  
b. R1 = ∞ Ω; R2 = 300 k; C1 = 100 pF.  
Fig 22. Frequency stability of the VCO as a function of ambient temperature with supply voltage as a parameter  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
23 of 43  
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
mbd112  
mbd113  
30  
30  
20  
10  
0
f
f
VCO  
VCO  
(MHz)  
(kHz)  
V
=
CC  
4.5 V  
5.5 V  
20  
V
=
CC  
4.5 V  
10  
5.5 V  
0
0
2
4
6
0
2
4
6
V
(V)  
V
(V)  
VCO_IN  
VCO_IN  
a. R1 = 4.3 k; C1 = 39 pF.  
b. R1 = 4.3 k; C1 = 100 nF.  
mbd111  
mbd120  
400  
800  
f
f
VCO  
VCO  
(Hz)  
300  
(kHz)  
600  
V
= 5.5 V  
CC  
V
= 5.5 V  
CC  
4.5 V  
frequency  
4.5 V  
frequency  
200  
100  
0
400  
200  
0
0
2
4
6
0
2
4
6
V
(V)  
V
(V)  
VCO_IN  
VCO_IN  
c. R1 = 300 k; C1 = 39 pF.  
d. R1 = 300 k; C1 = 100 nF.  
Fig 23. Graphs showing VCO frequency as a function of the VCO input voltage (VVCO_IN  
)
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
24 of 43  
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
mbd114  
4
0
C1 = 1 µF  
4.5 V  
5.5 V  
fVCO  
mga937  
(%)  
f
(MHz)  
C1 =  
39 pF  
f
2
4.5 V  
f
0
f'  
0
4  
8  
f
1
5.5 V  
V
V
min  
max  
0.5 V  
CC  
2
3
1
10  
10  
10  
R1 (k)  
V
(V)  
VCO_IN  
R2 = ∞ Ω and V = 0.5 V  
f 1 + f 2  
f‘0  
=
-----------------  
2
f‘0 f  
linearity =  
0 × 100 %  
-----------------  
f 0  
Fig 24. Definition of VCO frequency linearity:  
Fig 25. Frequency linearity as a function of R1, C1 and  
VCC  
V = 0.5 V over the VCC range  
mbd110  
mbd121  
1
1
V
=
CC  
V
=
CC  
P
P
D
D
5.5 V  
C1 = 39 pF  
5.5 V  
C1 = 1 µF  
(W)  
(W)  
4.5 V  
C1 = 1 µF  
4.5 V  
C1 = 39 pF  
1
1
10  
10  
5.5 V  
C1 = 39 pF  
5.5 V  
4.5 V  
4.5 V  
C1 = 1 µF  
C1 = 39 pF  
2
2
10  
10  
0
100  
200  
300  
0
100  
200  
300  
R2 (k)  
R1 (k)  
R2 = ∞ Ω  
R1 = ∞ Ω  
Fig 26. Power dissipation as a function of R1  
Fig 27. Power dissipation as a function of R2  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
25 of 43  
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
mbd109  
3
4
5
10  
P
DEM  
(W)  
V
=
CC  
4.5 V  
5.5 V  
10  
10  
2
3
10  
10  
10  
R
s
(k)  
Fig 28. Typical power dissipation as a function of Rs  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
26 of 43  
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
13. Application information  
This information is a guide for the approximation of values of external components to be  
used with the 74HCT9046A in a phase-locked-loop system.  
Values of the selected components should be within the ranges shown in Table 7.  
Table 7.  
Component  
R1  
Survey of components  
Value  
between 3 kand 300 kΩ  
between 3 kand 300 kΩ  
parallel value > 2.7 kΩ  
> 40 pF  
R2  
R1 + R2  
C1  
Table 8.  
Subject  
Design considerations for VCO section  
Phase comparator  
Design consideration  
VCO frequency  
without extra  
offset  
PC1, PC2  
VCO frequency characteristic. With R2 = and R1 within the range  
3 k< R1 < 300 k, the characteristics of the VCO operation will be as  
shown in Figure 29a. (Due to R1, C1 time constant a small offset remains  
when R2 = ∞ Ω).  
PC1  
Selection of R1 and C1. Given f0, determine the values of R1 and C1 using  
Figure 31.  
PC2  
Given fmax and f0 determine the values of R1 and C1 using Figure 31; use  
Figure 33 to obtain 2fL and then use this to calculate fmin  
.
VCO frequency  
with extra offset  
PC1, PC2  
VCO frequency characteristic. With R1 and R2 within the ranges  
3 k< R1 < 300 k< R2 < 300 k, the characteristics of the VCO  
operation is as shown in Figure 29b.  
PC1, PC2  
Selection of R1, R2 and C1. Given f0 and fL determine the value of product  
R1C1 by using Figure 33. Calculate foff from the equation foff = f0 1.6fL.  
Obtain the values of C1 and R2 by using Figure 32. Calculate the value of  
R1 from the value of C1 and the product R1C1.  
PLL conditions with PC1  
VCO adjusts to f0 with ΦPC_IN = 90° and VVCO_IN = 0.5VCC  
no signal at pin  
SIG_IN  
PC2  
VCO adjusts to foffset with ΦPC_IN = 360° and VVCO_IN = minimum  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
27 of 43  
 
 
 
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
mga938  
f
VCO  
f
max  
f
0
2f  
due to  
L
R1,C1  
f
min  
1.1 V  
0.5 V  
V
1.1 V  
CC  
V
CC  
CC  
VCO_IN  
a. Operating without offset; f0 = center frequency; 2fL = frequency lock range.  
mga939  
f
VCO  
f
max  
f
0
due to  
R1,C1  
2f  
L
f
min  
f
off  
0.6f  
L
due to  
R2,C1  
0.5 V  
V
1.1 V  
CC  
V
CC  
1.1 V  
CC  
VCO_IN  
b. Operating with offset; f0 = center frequency; 2fL = frequency lock range.  
Fig 29. Frequency characteristic of VCO  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
28 of 43  
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
13.1 Filter design considerations for PC1 and PC2 of the 74HCT9046A  
Figure 30 shows some examples of passive and active filters to be used with the phase  
comparators of the 74HCT9046A. Transfer functions of phase comparators and filters are  
given in Table 9.  
Table 9.  
Transfer functions of phase comparators and filters  
Phase  
Explanation  
Figure  
Filter type  
Transfer function  
comparator  
PC1  
Figure 30a  
passive filter without  
damping  
V
1
CCV/r  
F( jω)  
F( jω)  
F( jω)  
F( jω)  
=
=
=
=
---------------------  
KPC1  
=
----------  
1 + jωτ1  
π
τ1 = R3 × C2;  
τ2 = R4 × C2;  
τ3 = R4 × C3;  
A = 105 = DC gain  
amplitude  
Figure 30b  
Figure 30c  
Figure 30d  
passive filter with  
damping  
1 + jωτ2  
-------------------------------------  
1 + jω(τ1 + τ2)  
active filter with  
damping  
1 + jωτ2  
1 + jωτ2  
--------------------------- ---------------------  
1/A + jωτ1  
jωτ1  
PC2  
passive filter with  
damping  
5
1 + jωτ2  
1 + jωτ2  
KPC  
+
V/r  
------  
---------------------------- ---------------------  
4π  
1 A + jωτ1  
A = 105 = DC gain amplitude  
1 + jωτ2 1 + jωτ2  
jωτ1  
τ1 = R3’ × C2;  
τ2 = R4 × C2;  
τ3 = R4 × C3;  
R3' = Rbias/17;  
Rbias = 25 kto 250 kΩ  
Figure 30e  
active filter with  
damping  
F( jω)  
=
--------------------------- ---------------------  
1/A + jωτ1 jωτ1  
A = 105 = DC gain amplitude  
Table 10. General design considerations  
Subject  
Phase comparator  
Design consideration  
PLL locks on harmonics at  
center frequency  
PC1  
PC2  
PC1  
PC2  
yes  
no  
Noise rejection at signal input  
high  
low  
AC ripple content when PLL is PC1  
fr = 2fi; large ripple content at ΦPC_IN = 90°  
fr = fi; small ripple content at ΦPC_IN = 0°  
locked  
PC2  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
29 of 43  
 
 
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
AMPLITUDE  
CHARACTERISTIC  
POLE ZERO  
DIAGRAM  
PC1  
CIRCUIT  
F
(jω)  
R3  
X
1/  
τ
1
1/τ  
C2  
1
(a)  
F
(jω)  
R3  
1/τ  
1/τ  
3
2
O
X
1
C3  
R4  
1/ τ  
2
1/ τ  
τ
2
τ
τ
2
1
1
C2  
(b)  
A
C3  
R4  
1/τ  
1/τ  
2
3
C2  
1/A τ  
X
O
1
1/τ  
2
1/A τ  
R3  
1
A
(c)  
PC2  
A
R3'  
1/τ  
1/τ  
3
2
O
X 1/ Aτ  
1
R4  
AR3'  
1/τ  
2
1/Aτ  
1
C2  
(d)  
A
C3  
R4  
1/τ  
1/τ  
3
2
C2  
O
X 1/ Aτ  
1
1/τ  
2
1/Aτ  
R3'  
1
A
(e)  
mbd107  
Fig 30. Passive and active filters for 74HCT9046A  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
30 of 43  
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
mbd103  
8
7
6
5
4
3
2
10  
f
0
(Hz)  
10  
10  
10  
10  
10  
10  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
10  
2
3
4
5
6
7
1
10  
10  
10  
10  
10  
10  
10  
C1 (pF)  
VCC = 5.5 V; R1 = 3 k.  
VCC = 4.5 V; R1 = 3 k.  
VCC = 5.5 V; R1 = 10 k.  
VCC = 4.5 V; R1 = 10 k.  
VCC = 5.5 V; R1 = 150 k.  
VCC = 4.5 V; R1 = 150 k.  
VCC = 5.5 V; R1 = 300 k.  
VCC = 4.5 V; R1 = 300 k.  
R2 = ∞ Ω; VVCO_IN = 0.5VCC; INH = GND; Tamb = 25 °C.  
Fig 31. Typical value of VCO center frequency (f0) as a function of C1  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
31 of 43  
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
mbd104  
8
7
6
5
4
3
2
10  
10  
10  
10  
10  
10  
10  
f
off  
(Hz)  
(1)  
(2)  
(3)  
(4)  
10  
2
3
4
5
6
7
1
10  
10  
10  
10  
10  
10  
10  
C1 (pF)  
VCC = 4.5 V to 5.5 V; R1 = 3 k.  
VCC = 4.5 V to 5.5 V; R1 = 10 k.  
VCC = 4.5 V to 5.5 V; R1 = 150 k.  
VCC = 4.5 V to 5.5 V; R1 = 300 k.  
R1 = ∞ Ω; VVCO_IN = 0.5VCC; INH = GND; Tamb = 25 °C.  
Fig 32. Typical value of frequency offset as a function of C1  
mbd105  
8
10  
2f  
L
(Hz)  
7
6
5
4
3
2
10  
10  
10  
10  
10  
10  
V
=
CC  
5.5 V  
4.5 V  
10  
10  
7  
6  
5  
4  
3  
2  
1  
10  
10  
10  
10  
10  
10  
1
R1C1 (s)  
2 f L  
Kv  
=
2π(r s V)  
---------------------------------------  
VVCO_IN range  
VVCO_IN = 1.1 V to (VCC 1.1) V  
Fig 33. Typical frequency lock range 2fL as a function of the product R1 and C1  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
32 of 43  
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
13.2 PLL design example  
The frequency synthesizer used in the design example shown in Figure 34 has the  
following parameters:  
Output frequency: 2 MHz to 3 MHz  
Frequency steps: 100 kHz  
Settling time: 1 ms  
Overshoot: < 20 %  
The open loop gain is:  
H(s) × G(s) = Kp × K f × Ko × Kn  
and the closed loop:  
Φu  
Kp × K f × Ko × Kn  
=
------  
-------------------------------------------------------  
Φi  
1 + Kp × K f × Ko × Kn  
where:  
Kp = phase comparator gain  
Kf = low-pass filter transfer gain  
Ko = Kv/s VCO gain  
Kn = 1n divider ratio  
The programmable counter ratio Kn can be found as follows:  
f OUT  
2 MHz  
--------------------  
100 kHz  
Nmin  
=
=
=
=
= 20  
= 30  
-------------  
fstep  
f OUT  
3 MHz  
--------------------  
100 kHz  
Nmax  
-------------  
f step  
The VCO is set by the values of R1, R2 and C1; R2 = 10 k(adjustable).  
The values can be determined using the information in Table 8.  
With f0 = 2.5 MHz and fL = 500 kHz this gives the following values (VCC = 5.0 V):  
R1 = 30 kΩ  
R2 = 30 kΩ  
C1 = 100 pF  
The VCO gain is:  
2 f L × 2π  
1 MHz  
-----------------  
2.8  
Kv  
=
=
× 2π ≈ 2.24 × 106r s V  
------------------------------------------  
(VCC 1.1) 1.1  
The gain of the phase comparator PC2 is:  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
33 of 43  
 
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
5
Kp  
=
= 0.4 V r  
-----------  
4 × π  
Using PC2 with the passive filter as shown in Figure 34 results in a high gain loop with the  
same performance as a loop with an active filter. Hence loop filter equations as for a high  
gain loop should be used. The current source output of PC2 can be simulated then with a  
fictive filter resistance:  
Rbias  
R3‘ =  
-----------  
17  
The transfer functions of the filter is given by:  
1 + sτ2  
K f  
=
----------------  
sτ2  
Where:  
τ1 = R3× C2  
τ2 = R4 × C2  
The characteristic equation is: 1 + K p × K f × Ko × Kn  
This results in:  
1 + sτ2  
K
1 + K p  
vK = 0  
---------------- -----  
n
sτ1  
s
or:  
τ
nτ1  
s2 + sK pKvK 2 + K K K ⁄ τ = 0  
----  
p
v
n
1
This can be written as:  
s2 + 2ξωns + n)2 = 0  
with the natural frequency ωn defined as:  
Kp × Kv × Kn  
ωn  
=
--------------------------------  
τ1  
and the damping value given as: ζ = 0.5 × τ2 × ωn  
In Figure 35 the output frequency response to a step of input frequency is shown.  
The overshoot and settling time percentages are now used to determine ωn.  
From Figure 35 it can be seen that the damping ratio ζ = 0.707 will produce an overshoot  
of less than 20 % and settle to within 5 % at ωnt = 5. The required settling time is 1 ms.  
This results in:  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
34 of 43  
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
= 5 × 103r s  
5
--  
t
5
ωn  
=
=
------------  
0.001  
Rewriting the equation for natural frequency results in:  
Kp × Kv × Kn  
τ1  
=
--------------------------------  
n)2  
The maximum overshoot occurs at Nmax = 30; hence Kn = 130:  
0.4 × 2.24 × 106  
τ1  
=
= 0.0012  
--------------------------------------  
50002 × 30  
When C2 = 470 nF, it follows:  
τ1  
0.0012  
470 × 109  
R3‘ =  
=
= 2550 Ω  
-------------------------  
------  
C2  
Hence the current source bias resistance  
Rbias = 17 × 2550 = 43 kΩ  
With ζ = 0.707 (0.5 × τ2 × ωn) it follows:  
0.707  
0.5 × 5000  
τ2  
=
= 0.00028  
-------------------------  
τ2  
0.00028  
470 × 109  
R4 =  
=
= 600 Ω  
-------------------------  
------  
C2  
For extra ripple suppression a capacitor C3 can be connected in parallel with R4, with an  
extra τ3 = R4 × C3.  
For stability reasons τ3 should be < 0.1τ2, hence C3 < 0.1C2 or C3 = 39 nF.  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
35 of 43  
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
K
p
K
f
K
o
100 kHz  
14  
PHASE  
COMPARATOR  
PC2  
R3'  
4
13  
9
OSCILLATOR  
"HCU04"  
DIVIDE BY 10  
"190"  
f
VCO  
12  
OUT  
(1)  
15  
3
R4  
11  
R2  
6
7
5
C3  
bias  
Φu  
R
R1  
K
n
C2  
1 MHz  
C1  
PROGRAMMABLE  
DIVIDER  
mbd098  
"4059"  
(1) R3’ = fictive resistance  
Rbias  
R3’ =  
------------  
17  
C1 = 100 pF  
C2 = 470 nF  
C3 = 39 nF  
R1 = 30 kΩ  
R2 = 30 kΩ  
R3' = 2550 Ω  
Rbias = 43 kΩ  
R4 = 600 Ω  
Fig 34. Frequency synthesizer  
mga959  
1.6  
1.4  
0.6  
= 0.3  
0.5  
0.707  
1.0  
ζ
0.4  
0.2  
0
∆ω (t)  
e
∆Φ (t)  
e
∆ω /ω  
e
∆Φ /ω  
e
n
n
1.2  
= 5.0  
ζ
1.0  
0.8  
= 2.0  
ζ
0.2  
0.6  
0.4  
0.2  
0.4  
0.6  
0.8  
0
1.0  
0
1
2
3
4
5
6
7
8
ω t  
n
Fig 35. Type 2, second order frequency step response  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
36 of 43  
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
mga952  
3.1  
N = 30  
proportional  
to output  
frequency  
(MHz)  
N stepped from 29 to 30  
2.9  
2.1  
2.0  
1.9  
step input  
N stepped from 21 to 20  
0
0.5  
1.0  
1.5  
2.0  
time (ms)  
2.5  
Fig 36. Frequency compared to the time response  
Since the output frequency is proportional to the VCO control voltage, the PLL frequency  
response can be observed with an oscilloscope by monitoring pin VCO_IN of the VCO.  
The average frequency response, as calculated by the Laplace method, is found  
experimentally by smoothing this voltage at pin VCO_IN with a simple RC filter, whose  
time constant is long compared with the phase detector sampling rate but short compared  
with the PLL response time.  
13.3 Further information  
For an extensive description and application example please refer to “Application note”  
ordering number 9397 750 00078.  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
37 of 43  
 
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
14. Package outline  
DIP16: plastic dual in-line package; 16 leads (300 mil)  
SOT38-4  
D
M
E
A
2
A
A
1
L
c
e
w M  
Z
b
1
(e )  
1
b
b
2
16  
9
M
H
pin 1 index  
E
1
8
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
A
A
A
2
(1)  
(1)  
Z
1
w
UNIT  
mm  
b
b
b
c
D
E
e
e
L
M
M
H
1
2
1
E
max.  
min.  
max.  
max.  
1.73  
1.30  
0.53  
0.38  
1.25  
0.85  
0.36  
0.23  
19.50  
18.55  
6.48  
6.20  
3.60  
3.05  
8.25  
7.80  
10.0  
8.3  
4.2  
0.51  
3.2  
2.54  
0.1  
7.62  
0.3  
0.254  
0.01  
0.76  
0.068 0.021 0.049 0.014  
0.051 0.015 0.033 0.009  
0.77  
0.73  
0.26  
0.24  
0.14  
0.12  
0.32  
0.31  
0.39  
0.33  
inches  
0.17  
0.02  
0.13  
0.03  
Note  
1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
95-01-14  
03-02-13  
SOT38-4  
Fig 37. Package outline SOT38-4 (DIP16)  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
38 of 43  
 
 
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
SO16: plastic small outline package; 16 leads; body width 3.9 mm  
SOT109-1  
D
E
A
X
v
c
y
H
M
A
E
Z
16  
9
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
8
e
w
M
detail X  
b
p
0
2.5  
scale  
5 mm  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
0.25  
0.10  
1.45  
1.25  
0.49  
0.36  
0.25  
0.19  
10.0  
9.8  
4.0  
3.8  
6.2  
5.8  
1.0  
0.4  
0.7  
0.6  
0.7  
0.3  
mm  
1.27  
0.05  
1.05  
0.041  
1.75  
0.25  
0.01  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.010 0.057  
0.004 0.049  
0.019 0.0100 0.39  
0.014 0.0075 0.38  
0.16  
0.15  
0.244  
0.228  
0.039 0.028  
0.016 0.020  
0.028  
0.012  
inches  
0.069  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT109-1  
076E07  
MS-012  
Fig 38. Package outline SOT109-1 (SO16)  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
39 of 43  
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm  
SOT403-1  
D
E
A
X
c
y
H
v
M
A
E
Z
9
16  
Q
(A )  
3
A
2
A
A
1
pin 1 index  
θ
L
p
L
1
8
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
Z
θ
1
2
3
p
E
p
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
5.1  
4.9  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.40  
0.06  
mm  
1.1  
0.65  
0.25  
1
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-18  
SOT403-1  
MO-153  
Fig 39. Package outline SOT403-1 (TSSOP16)  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
40 of 43  
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
15. Abbreviations  
Table 11. Abbreviations  
Acronym  
CMOS  
DUT  
Description  
Complementary Metal Oxide Semiconductor  
Device Under Test  
ESD  
ElectroStatic Discharge  
Human Body Model  
HBM  
MM  
Machine Model  
PLL  
Phase Locked Loop  
VCO  
Voltage Controlled Oscillator  
16. Revision history  
Table 12. Revision history  
Document ID  
74HCT9046A_6  
Modifications:  
Release date  
20090915  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
74HCT9046A_5  
The format of this data sheet has been redesigned to comply with the new identity  
guidelines of NXP Semiconductors.  
Legal texts have been adapted to the new company name where appropriate.  
Vi(p-p) value changed from 15 mV to 50 mV in Section 12.  
f/∆T value moved from minimum to typical column Section 12.  
Package version SOT38-1 changed to SOT38-4 in Section 4 and Figure 37.  
74HCT9046A_5  
74HCT9046A_4  
74HCT9046A_3  
20031030  
20030515  
19990111  
Product specification  
Product specification  
Product specification  
-
-
-
74HCT9046A_4  
74HCT9046A_3  
-
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
41 of 43  
 
 
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
17. Legal information  
17.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
17.2 Definitions  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
17.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
17.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
18. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
74HCT9046A_6  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 06 — 15 September 2009  
42 of 43  
 
 
 
 
 
 
74HCT9046A  
NXP Semiconductors  
PLL with band gap controlled VCO  
19. Contents  
1
2
3
4
5
6
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 3  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
8
8.1  
Functional description . . . . . . . . . . . . . . . . . . . 6  
Differences with respect to the familiar  
74HCT4046A . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
VCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Phase comparators. . . . . . . . . . . . . . . . . . . . . . 7  
Phase Comparator 1 (PC1) . . . . . . . . . . . . . . . 7  
Phase Comparator 2 (PC2) . . . . . . . . . . . . . . . 9  
Loop filter component selection . . . . . . . . . . . 13  
8.2  
8.3  
8.3.1  
8.3.2  
8.4  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 14  
Recommended operating conditions. . . . . . . 15  
Static characteristics. . . . . . . . . . . . . . . . . . . . 15  
Dynamic characteristics . . . . . . . . . . . . . . . . . 20  
10  
11  
12  
13  
13.1  
Application information. . . . . . . . . . . . . . . . . . 27  
Filter design considerations for PC1 and  
PC2 of the 74HCT9046A . . . . . . . . . . . . . . . . 29  
PLL design example . . . . . . . . . . . . . . . . . . . . 33  
Further information . . . . . . . . . . . . . . . . . . . . . 37  
13.2  
13.3  
14  
15  
16  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 38  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 41  
17  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 42  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 42  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
17.1  
17.2  
17.3  
17.4  
18  
19  
Contact information. . . . . . . . . . . . . . . . . . . . . 42  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2009.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 15 September 2009  
Document identifier: 74HCT9046A_6  
 

相关型号:

74HCT9046APW

PLL with band gap controlled VCO
NXP

74HCT9046APW,112

74HCT9046A - PLL with band gap controlled VCO TSSOP 16-Pin
NXP

74HCT9046APW-T

暂无描述
NXP

74HCT9114

Nine wide Schmitt trigger buffer; open drain outputs; inverting
NXP

74HCT9114D

IC HCT SERIES, 9 1-INPUT INVERT GATE, PDSO20, SO-20, Gate
NXP

74HCT9114D

Nine wide Schmitt trigger buffer; open drain outputs; invertingProduction
NEXPERIA

74HCT9114D,112

74HC(T)9114 - Nine wide Schmitt trigger buffer; open drain outputs; inverting SOP 20-Pin
NXP

74HCT9114D-T

IC HCT SERIES, 9 1-INPUT INVERT GATE, PDSO20, SO-20, Gate
NXP

74HCT9114DB

IC HCT SERIES, 9 1-INPUT INVERT GATE, PDSO20, Gate
NXP

74HCT9114DB-T

IC HCT SERIES, 9 1-INPUT INVERT GATE, PDSO20, Gate
NXP

74HCT9114N

Nine Bit Inverter
ETC

74HCT9114NB

IC HCT SERIES, 9 1-INPUT INVERT GATE, PDIP20, Gate
NXP