74LVCH1T45GW [NXP]

Dual supply translating transceiver; 3-state; 双电源转换收发器;三态
74LVCH1T45GW
型号: 74LVCH1T45GW
厂家: NXP    NXP
描述:

Dual supply translating transceiver; 3-state
双电源转换收发器;三态

文件: 总30页 (文件大小:632K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
Rev. 02 — 19 January 2010  
Product data sheet  
1. General description  
The 74LVC1T45; 74LVCH1T45 are single bit, dual supply transceivers with 3-state outputs  
that enables bidirectional level translation. They feature one data input-output port (A and  
B), a direction control input (DIR) and dual supply pins (VCC(A) and VCC(B)). Both VCC(A)  
and VCC(B) can be supplied at any voltage between 1.2 V and 5.5 V making the device  
suitable for translating between any of the low voltage nodes (1.2 V, 1.5 V, 1.8 V, 2.5 V,  
3.3 V and 5.0 V). Pins A and DIR are referenced to VCC(A) and pin B is referenced to  
V
CC(B). A HIGH on DIR allows transmission from A to B and a LOW on DIR allows  
transmission from B to A.  
The devices are fully specified for partial power-down applications using IOFF. The IOFF  
circuitry disables the output, preventing any damaging backflow current through the  
device when it is powered down. In suspend mode when either VCC(A) or VCC(B) are at  
GND level, both A port and B port are in the high-impedance OFF-state.  
Active bus hold circuitry in the 74LVCH1T45 holds unused or floating data inputs at a valid  
logic level.  
2. Features  
„ Wide supply voltage range:  
‹ VCC(A): 1.2 V to 5.5 V  
‹ VCC(B): 1.2 V to 5.5 V  
„ High noise immunity  
„ Complies with JEDEC standards:  
‹ JESD8-7 (1.2 V to 1.95 V)  
‹ JESD8-5 (1.8 V to 2.7 V)  
‹ JESD8C (2.7 V to 3.6 V)  
‹ JESD36 (4.5 V to 5.5 V)  
„ ESD protection:  
‹ HBM JESD22-A114E Class 3A exceeds 4000 V  
‹ CDM JESD22-C101C exceeds 1000 V  
„ Maximum data rates:  
‹ 420 Mbps (3.3 V to 5.0 V translation)  
‹ 210 Mbps (translate to 3.3 V))  
‹ 140 Mbps (translate to 2.5 V)  
‹ 75 Mbps (translate to 1.8 V)  
‹ 60 Mbps (translate to 1.5 V)  
„ Suspend mode  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
„ Latch-up performance exceeds 100 mA per JESD 78 Class II  
„ ±24 mA output drive (VCC = 3.0 V)  
„ Inputs accept voltages up to 5.5 V  
„ Low power consumption: 16 μA maximum ICC  
„ IOFF circuitry provides partial Power-down mode operation  
„ Multiple package options  
„ Specified from 40 °C to +85 °C and 40 °C to +125 °C  
3. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Temperature range Name  
Description  
Version  
74LVC1T45GW  
74LVCH1T45GW  
74LVC1T45GM  
74LVCH1T45GM  
74LVC1T45GF  
74LVCH1T45GF  
40 °C to +125 °C  
40 °C to +125 °C  
40 °C to +125 °C  
SC-88  
plastic surface-mounted package; 6 leads  
SOT363  
XSON6  
XSON6  
plastic extremely thin small outline package; no leads; SOT886  
6 terminals; body 1 × 1.45 × 0.5 mm  
plastic extremely thin small outline package; no leads; SOT891  
6 terminals; body 1 × 1 × 0.5 mm  
4. Marking  
Table 2.  
Marking  
Type number  
Marking code[1]  
74LVC1T45GW  
74LVCH1T45GW  
74LVC1T45GM  
74LVCH1T45GM  
74LVC1T45GF  
74LVCH1T45GF  
V5  
X5  
V5  
X5  
V5  
X5  
[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
2 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
5. Functional diagram  
5
DIR  
DIR  
A
3
A
4
B
B
V
CC(A)  
V
CC(B)  
V
CC(A)  
V
CC(B)  
001aag885  
001aag886  
Fig 1. Logic symbol  
Fig 2. Logic diagram  
6. Pinning information  
6.1 Pinning  
74LVC1T45  
74LVCH1T45  
74LVC1T45  
74LVCH1T45  
74LVC1T45  
74LVCH1T45  
V
1
2
3
6
5
4
V
CC(B)  
CC(A)  
1
2
3
6
5
4
V
V
CC(B)  
V
1
2
3
6
5
4
V
CC(B)  
CC(A)  
CC(A)  
GND  
DIR  
B
GND  
DIR  
B
GND  
DIR  
B
A
A
A
001aaj992  
001aaj993  
Transparent top view  
Transparent top view  
001aaj991  
Fig 3. Pin configuration SOT363  
(SC-88)  
Fig 4. Pin configuration SOT886  
(XSON6)  
Fig 5. Pin configuration SOT891  
6.2 Pin description  
Table 3.  
Symbol  
VCC(A)  
GND  
A
Pin description  
Pin  
Description  
1
2
3
4
5
6
supply voltage port A and DIR  
ground (0 V)  
data input or output  
data input or output  
direction control  
B
DIR  
VCC(B)  
supply voltage port B  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
3 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
7. Functional description  
Table 4.  
Function table[1]  
Supply voltage  
VCC(A), VCC(B)  
1.2 V to 5.5 V  
1.2 V to 5.5 V  
GND[3]  
Input  
DIR  
L
Input/output[2]  
A
B
A = B  
input  
Z
input  
B = A  
Z
H
X
[1] H = HIGH voltage level; L = LOW voltage level; X = don’t care; Z = high-impedance OFF-state.  
[2] The input circuit of the data I/O is always active.  
[3] When either VCC(A) or VCC(B) is at GND level, the device goes into suspend mode.  
8. Limiting values  
Table 5.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).  
Symbol  
VCC(A)  
VCC(B)  
IIK  
Parameter  
Conditions  
Min  
0.5  
0.5  
50  
0.5  
50  
0.5  
0.5  
-
Max  
+6.5  
+6.5  
-
Unit  
V
supply voltage A  
supply voltage B  
input clamping current  
input voltage  
V
VI < 0 V  
mA  
V
[1]  
VI  
+6.5  
-
IOK  
output clamping current  
output voltage  
VO < 0 V  
mA  
V
[1][2][3]  
[1]  
VO  
Active mode  
VCCO + 0.5  
+6.5  
±50  
100  
-
Suspend or 3-state mode  
VO = 0 V to VCCO  
ICC(A) or ICC(B)  
V
[2]  
IO  
output current  
mA  
mA  
mA  
°C  
mW  
ICC  
IGND  
Tstg  
Ptot  
supply current  
-
ground current  
100  
65  
-
storage temperature  
total power dissipation  
+150  
250  
[4]  
Tamb = 40 °C to +125 °C  
[1] The minimum input voltage ratings and output voltage ratings may be exceeded if the input and output current ratings are observed.  
[2] VCCO is the supply voltage associated with the output port.  
[3] VCCO + 0.5 V should not exceed 6.5 V.  
[4] For SC-88 package: above 87.5 °C the value of Ptot derates linearly with 4.0 mW/K.  
For XSON6 package: above 118 °C the value of Ptot derates linearly with 7.8 mW/K.  
9. Recommended operating conditions  
Table 6.  
Symbol  
VCC(A)  
VCC(B)  
VI  
Recommended operating conditions  
Parameter  
Conditions  
Min  
1.2  
1.2  
0
Max  
5.5  
5.5  
5.5  
Unit  
V
supply voltage A  
supply voltage B  
input voltage  
V
V
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
4 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
Table 6.  
Symbol  
VO  
Recommended operating conditions …continued  
Parameter  
Conditions  
Min  
Max  
VCCO  
5.5  
+125  
20  
Unit  
V
[1]  
[2]  
output voltage  
Active mode  
0
Suspend or 3-state mode  
0
V
Tamb  
ambient temperature  
40  
°C  
Δt/ΔV  
input transition rise and fall rate VCCI = 1.2 V  
VCCI = 1.4 V to 1.95 V  
-
-
-
-
-
ns/V  
ns/V  
ns/V  
ns/V  
ns/V  
20  
VCCI = 2.3 V to 2.7 V  
VCCI = 3 V to 3.6 V  
VCCI = 4.5 V to 5.5 V  
20  
10  
5
[1] VCCO is the supply voltage associated with the output port.  
[2] VCCI is the supply voltage associated with the input port.  
10. Static characteristics  
Table 7.  
Typical static characteristics at Tamb = 25 °C  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).  
Symbol Parameter Conditions  
HIGH-level output voltage VI = VIH or VIL  
IO = 3 mA; VCCO = 1.2 V  
LOW-level output voltage VI = VIH or VIL  
IO = 3 mA; VCCO = 1.2 V  
Min  
Typ  
Max  
Unit  
[1]  
VOH  
VOL  
II  
-
1.09  
-
V
[1]  
[2]  
-
-
0.07  
-
-
V
input leakage current  
DIR input; VI = 0 V to 5.5 V;  
VCCI = 1.2 V to 5.5 V  
±1  
μA  
[2]  
[2]  
IBHL  
bus hold LOW current  
bus hold HIGH current  
A or B port; VI = 0.42 V; VCCI = 1.2 V  
A or B port; VI = 0.78 V; VCCI = 1.2 V  
A or B port; VCCI = 1.2 V  
-
-
-
19  
-
-
-
μA  
μA  
μA  
IBHH  
IBHLO  
19  
19  
[2][3]  
bus hold LOW overdrive  
current  
[2][3]  
[1]  
IBHHO  
IOZ  
bus hold HIGH overdrive  
current  
A or B port; VCCI = 1.2 V  
-
-
-
-
-
-
19  
-
-
μA  
μA  
μA  
μA  
pF  
pF  
OFF-state output current  
A or B port; VO = 0 V or VCCO  
VCCO = 1.2 V to 5.5 V  
;
±1  
±1  
±1  
-
IOFF  
power-off leakage current A port; VI or VO = 0 V to 5.5 V;  
CC(A) = 0 V; VCC(B) = 1.2 V to 5.5 V  
-
V
B port; VI or VO = 0 V to 5.5 V;  
VCC(B) = 0 V; VCC(A) = 1.2 V to 5.5 V  
-
CI  
input capacitance  
DIR input; VI = 0 V or 3.3 V;  
VCC(A) = VCC(B) = 3.3 V  
2.2  
6.0  
CI/O  
input/output capacitance  
A and B port; suspend mode;  
-
VO = 3.3 V or 0 V; VCC(A) = VCC(B) = 3.3 V  
[1] VCCO is the supply voltage associated with the output port.  
[2] VCCI is the supply voltage associated with the data input port.  
[3] To guarantee the node switches, an external driver must source/sink at least IBHLO / IBHHO when the input is in the range VIL to VIH.  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
5 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
Table 8.  
Static characteristics  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).  
Symbol Parameter  
Conditions  
40 °C to +85 °C  
40 °C to +125 °C  
Unit  
Min  
Max  
Min  
Max  
[2]  
VIH  
HIGH-level  
data input  
input voltage  
VCCI = 1.2 V  
0.8VCCI  
0.65VCCI  
1.7  
-
-
-
-
-
0.8VCCI  
0.65VCCI  
1.7  
-
-
-
-
-
V
V
V
V
V
VCCI = 1.4 V to 1.95 V  
VCCI = 2.3 V to 2.7 V  
VCCI = 3.0 V to 3.6 V  
VCCI = 4.5 V to 5.5 V  
DIR input  
2.0  
2.0  
0.7VCCI  
0.7VCCI  
VCCI = 1.2 V  
0.8VCC(A)  
0.65VCC(A)  
1.7  
-
-
-
-
-
0.8VCC(A)  
0.65VCC(A)  
1.7  
-
-
-
-
-
V
V
V
V
V
VCCI = 1.4 V to 1.95 V  
VCCI = 2.3 V to 2.7 V  
VCCI = 3.0 V to 3.6 V  
VCCI = 4.5 V to 5.5 V  
data input  
2.0  
2.0  
0.7VCC(A)  
0.7VCC(A)  
[2]  
VIL  
LOW-level  
input voltage  
VCCI = 1.2 V  
-
-
-
-
-
0.2VCCI  
0.35VCCI  
0.7  
-
-
-
-
-
0.2VCCI  
0.35VCCI  
0.7  
V
V
V
V
V
VCCI = 1.4 V to 1.95 V  
VCCI = 2.3 V to 2.7 V  
VCCI = 3.0 V to 3.6 V  
VCCI = 4.5 V to 5.5 V  
DIR input  
0.8  
0.8  
0.3VCCI  
0.3VCCI  
VCCI = 1.2 V  
-
-
-
-
-
0.2VCC(A)  
0.35VCC(A)  
0.7  
-
-
-
-
-
0.2VCC(A)  
0.35VCC(A)  
0.7  
V
V
V
V
V
VCCI = 1.4 V to 1.95 V  
VCCI = 2.3 V to 2.7 V  
VCCI = 3.0 V to 3.6 V  
VCCI = 4.5 V to 5.5 V  
VI = VIH  
0.8  
0.8  
0.3VCC(A)  
0.3VCC(A)  
VOH  
HIGH-level  
output voltage  
[1]  
IO = 100 μA;  
VCCO 0.1  
-
VCCO 0.1  
-
V
VCCO = 1.2 V to 4.5 V  
IO = 6 mA; VCCO = 1.4 V  
IO = 8 mA; VCCO = 1.65 V  
IO = 12 mA; VCCO = 2.3 V  
IO = 24 mA; VCCO = 3.0 V  
IO = 32 mA; VCCO = 4.5 V  
1.0  
1.2  
1.9  
2.4  
3.8  
-
-
-
-
-
1.0  
1.2  
1.9  
2.4  
3.8  
-
-
-
-
-
V
V
V
V
V
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
6 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
Table 8.  
Static characteristics …continued  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).  
Symbol Parameter  
Conditions  
40 °C to +85 °C  
40 °C to +125 °C  
Unit  
Min  
Max  
Min  
Max  
[1]  
VOL  
LOW-level  
VI = VIL  
output voltage  
IO = 100 μA;  
-
0.1  
-
0.1  
V
VCCO = 1.2 V to 4.5 V  
IO = 6 mA; VCCO = 1.4 V  
IO = 8 mA; VCCO = 1.65 V  
IO = 12 mA; VCCO = 2.3 V  
IO = 24 mA; VCCO = 3.0 V  
IO = 32 mA; VCCO = 4.5 V  
-
-
-
-
-
-
0.3  
0.45  
0.3  
-
-
-
-
-
-
0.3  
0.45  
0.3  
V
V
V
0.55  
0.55  
±2  
0.55  
0.55  
±10  
V
V
II  
input leakage DIR input; VI = 0 V to 5.5 V;  
current CCI = 1.2 V to 5.5 V  
μA  
V
[2]  
IBHL  
bus hold LOW A or B port  
current  
VI = 0.49 V; VCCI = 1.4 V  
15  
25  
-
-
-
-
-
10  
20  
-
-
-
-
-
μA  
μA  
μA  
μA  
μA  
VI = 0.58 V; VCCI = 1.65 V  
VI = 0.70 V; VCCI = 2.3 V  
VI = 0.80 V; VCCI = 3.0 V  
VI = 1.35 V; VCCI = 4.5 V  
45  
45  
100  
100  
80  
100  
[2]  
IBHH  
IBHLO  
IBHHO  
IOZ  
bus hold HIGH A or B port  
current  
VI = 0.91 V; VCCI = 1.4 V  
VI = 1.07 V; VCCI = 1.65 V  
VI = 1.60 V; VCCI = 2.3 V  
VI = 2.00 V; VCCI = 3.0 V  
VI = 3.15 V; VCCI = 4.5 V  
15  
25  
-
-
-
-
-
10  
20  
45  
80  
100  
-
-
-
-
-
μA  
μA  
μA  
μA  
μA  
45  
100  
100  
[2][3]  
[2][3]  
[1]  
bus hold LOW A or B port  
overdrive  
VCCI = 1.6 V  
125  
200  
300  
500  
900  
-
-
-
-
-
125  
200  
300  
500  
900  
-
-
-
-
-
μA  
μA  
μA  
μA  
μA  
current  
VCCI = 1.95 V  
VCCI = 2.7 V  
VCCI = 3.6 V  
VCCI = 5.5 V  
bus hold HIGH A or B port  
overdrive  
VCCI = 1.6 V  
125  
200  
300  
500  
900  
-
-
-
125  
200  
300  
500  
900  
-
-
μA  
μA  
μA  
μA  
μA  
μA  
current  
VCCI = 1.95 V  
VCCI = 2.7 V  
-
-
-
VCCI = 3.6 V  
-
-
-
VCCI = 5.5 V  
-
OFF-state  
A or B port; VO = 0 V or VCCO  
;
±2  
±10  
output current VCCO = 1.2 V to 5.5 V  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
7 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
Table 8.  
Static characteristics …continued  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).  
Symbol Parameter  
Conditions  
40 °C to +85 °C  
40 °C to +125 °C  
Unit  
Min  
Max  
Min  
Max  
IOFF  
power-off  
leakage  
current  
A port; VI or VO = 0 V to 5.5 V;  
VCC(A) = 0 V;  
-
±2  
-
±10  
μA  
VCC(B) = 1.2 V to 5.5 V  
B port; VI or VO = 0 V to 5.5 V;  
VCC(B) = 0 V;  
-
±2  
-
±10  
μA  
VCC(A) = 1.2 V to 5.5 V  
[2]  
ICC  
supply current A port; VI = 0 V or VCCI; IO = 0 A  
VCC(A), VCC(B) = 1.2 V to 5.5 V  
VCC(A), VCC(B) = 1.65 V to 5.5 V  
VCC(A) = 5.5 V; VCC(B) = 0 V  
-
-
8
3
2
-
-
-
8
3
2
-
μA  
μA  
μA  
μA  
-
-
VCC(A) = 0 V; VCC(B) = 5.5 V  
2  
2  
B port; VI = 0 V or VCCI; IO = 0 A  
VCC(A), VCC(B) = 1.2 V to 5.5 V  
VCC(A), VCC(B) = 1.65 V to 5.5 V  
VCC(B) = 5.5 V; VCC(A) = 0 V  
-
-
8
3
2
-
-
-
8
3
2
-
μA  
μA  
μA  
μA  
-
-
VCC(B) = 0 V; VCC(A) = 5.5 V  
2  
2  
A plus B port (ICC(A) + ICC(B));  
IO = 0 A; VI = 0 V or VCCI  
VCC(A), VCC(B) = 1.2 V to 5.5 V  
VCC(A), VCC(B) = 1.65 V to 5.5 V  
-
-
16  
4
-
-
16  
4
μA  
μA  
ΔICC  
additional  
supply current  
VCC(A), VCC(B) = 3.0 V to 5.5 V  
[4]  
[4]  
A port; A port at VCC(A) 0.6 V;  
-
-
50  
50  
-
-
75  
75  
μA  
μA  
DIR at VCC(A); B port = open  
DIR input; DIR at VCC(A) 0.6 V;  
A port at VCC(A) or GND;  
B port = open  
B port; B port at VCC(B) 0.6 V;  
-
50  
-
75  
μA  
DIR at GND; A port = open  
[1] VCCO is the supply voltage associated with the output port.  
[2] VCCI is the supply voltage associated with the data input port.  
[3] To guarantee the node switches, an external driver must source/sink at least IBHLO / IBHHO when the input is in the range VIL to VIH.  
[4] For non bus hold parts only (74LVC1T45).  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
8 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
11. Dynamic characteristics  
Table 9.  
Typical dynamic characteristics at VCC(A) = 1.2 V and Tamb = 25 °C  
Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for waveforms see Figure 6 and Figure 7  
Symbol Parameter  
Conditions  
VCC(B)  
Unit  
1.2 V  
10.6  
10.6  
10.1  
10.1  
9.4  
1.5 V  
8.1  
1.8 V  
2.5 V  
5.8  
3.3 V  
5.3  
5.0 V  
5.1  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPZH  
tPZL  
LOW to HIGH  
propagation delay  
A to B  
7.0  
9.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
B to A  
9.5  
8.5  
8.3  
8.2  
HIGH to LOW  
propagation delay  
A to B  
7.1  
6.0  
5.3  
5.2  
5.4  
B to A  
8.6  
8.1  
7.8  
7.6  
7.6  
HIGH to OFF-state  
propagation delay  
DIR to A  
DIR to B  
DIR to A  
DIR to B  
DIR to A  
DIR to B  
DIR to A  
DIR to B  
9.4  
9.4  
9.4  
9.4  
9.4  
12.0  
7.1  
9.4  
9.0  
7.8  
8.4  
7.9  
LOW to OFF-state  
propagation delay  
7.1  
7.1  
7.1  
7.1  
7.1  
9.5  
7.8  
7.7  
6.9  
7.6  
7.0  
[1]  
[1]  
[1]  
[1]  
OFF-state to HIGH  
propagation delay  
20.1  
17.7  
22.1  
19.5  
17.3  
15.2  
18.0  
16.5  
16.7  
14.1  
17.1  
15.4  
15.4  
12.9  
15.6  
14.7  
15.9  
12.4  
16.0  
14.6  
15.2  
12.2  
15.5  
14.8  
OFF-state to LOW  
propagation delay  
[1] tPZH and tPZL are calculated values using the formula shown in Section 14.4 “Enable times”  
Table 10. Typical dynamic characteristics at VCC(B) = 1.2 V and Tamb = 25 °C  
Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for waveforms see Figure 6 and Figure 7  
Symbol Parameter  
Conditions  
VCC(A)  
Unit  
1.2 V  
10.6  
10.6  
10.1  
10.1  
9.4  
1.5 V  
9.5  
1.8 V  
2.5 V  
8.5  
3.3 V  
8.3  
5.0 V  
8.2  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPZH  
tPZL  
LOW to HIGH  
propagation delay  
A to B  
9.0  
7.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
B to A  
8.1  
5.8  
5.3  
5.1  
HIGH to LOW  
propagation delay  
A to B  
8.6  
8.1  
7.8  
7.6  
7.6  
B to A  
7.1  
6.0  
5.3  
5.2  
5.4  
HIGH to OFF-state  
propagation delay  
DIR to A  
DIR to B  
DIR to A  
DIR to B  
DIR to A  
DIR to B  
DIR to A  
DIR to B  
6.5  
5.7  
4.1  
4.1  
3.0  
12.0  
7.1  
6.1  
5.4  
4.6  
4.3  
4.0  
LOW to OFF-state  
propagation delay  
4.9  
4.5  
3.2  
3.4  
2.5  
9.5  
7.3  
6.6  
5.9  
5.7  
5.6  
[1]  
[1]  
[1]  
[1]  
OFF-state to HIGH  
propagation delay  
20.1  
17.7  
22.1  
19.5  
15.4  
14.4  
13.2  
15.1  
13.6  
13.5  
11.4  
13.8  
11.7  
11.7  
9.9  
11.0  
11.7  
9.5  
10.7  
10.7  
9.4  
OFF-state to LOW  
propagation delay  
11.9  
11.7  
10.6  
[1] tPZH and tPZL are calculated values using the formula shown in Section 14.4 “Enable times”  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
9 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
Table 11. Typical power dissipation capacitance at VCC(A) = VCC(B) and Tamb = 25 °C [1][2]  
Voltages are referenced to GND (ground = 0 V).  
Symbol Parameter  
Conditions  
VCC(A) and VCC(B)  
Unit  
1.8 V  
2.5 V  
3.3 V  
5.5 V  
CPD  
power dissipation A port: (direction A to B);  
2
3
3
4
pF  
pF  
capacitance  
B port: (direction B to A)  
A port: (direction B to A);  
B port: (direction A to B)  
15  
16  
16  
18  
[1] CPD is used to determine the dynamic power dissipation (PD in μW).  
PD = CPD × VCC2 × fi × N + Σ(CL × VCC2 × fo) where:  
fi = input frequency in MHz;  
fo = output frequency in MHz;  
CL = load capacitance in pF;  
VCC = supply voltage in V;  
N = number of inputs switching;  
Σ(CL × VCC2 × fo) = sum of the outputs.  
[2] fi = 10 MHz; VI = GND to VCC; tr = tf = 1 ns; CL = 0 pF; RL = ∞ Ω.  
Table 12. Dynamic characteristics for temperature range 40 °C to +85 °C  
Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7  
Symbol Parameter  
Conditions  
VCC(B)  
Unit  
1.5 V ± 0.1 V 1.8 V ± 0.15 V 2.5 V ± 0.2 V 3.3 V ± 0.3 V 5.0 V ± 0.5 V  
Min Max Min  
Max Min Max Min Max Min Max  
VCC(A) = 1.4 V to 1.6 V  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPZH  
tPZL  
LOW to HIGH  
propagation delay  
A to B  
B to A  
A to B  
B to A  
2.8  
2.8  
2.6  
2.6  
3.0  
3.5  
2.4  
2.8  
-
21.3  
21.3  
19.3  
19.3  
18.7  
24.8  
11.4  
18.3  
39.6  
32.7  
44.1  
38.0  
2.4  
2.6  
2.2  
2.4  
3.0  
3.5  
2.4  
3.0  
-
17.6  
19.1  
15.3  
17.3  
18.7  
23.6  
11.4  
17.2  
36.3  
29.0  
40.9  
34.0  
2.0  
2.3  
1.8  
2.3  
3.0  
3.0  
2.4  
2.5  
-
13.5  
14.9  
11.8  
13.2  
18.7  
11.0  
11.4  
9.4  
1.7  
2.3  
1.7  
2.2  
3.0  
3.3  
2.4  
3.0  
-
11.8  
12.4  
10.9  
11.3  
18.7  
11.3  
11.4  
10.1  
22.5  
23.2  
22.6  
29.6  
1.6  
2.2  
1.7  
2.3  
3.0  
2.8  
2.4  
2.5  
-
10.5 ns  
12.0 ns  
10.8 ns  
11.0 ns  
18.7 ns  
10.3 ns  
11.4 ns  
9.4 ns  
21.4 ns  
21.9 ns  
21.3 ns  
29.5 ns  
HIGH to LOW  
propagation delay  
HIGH to OFF-state DIR to A  
propagation delay  
DIR to B  
LOW to OFF-state DIR to A  
propagation delay  
DIR to B  
[1]  
[1]  
[1]  
[1]  
OFF-state to HIGH DIR to A  
propagation delay  
24.3  
24.9  
24.2  
30.5  
DIR to B  
-
-
-
-
-
OFF-state to LOW DIR to A  
propagation delay  
-
-
-
-
-
DIR to B  
-
-
-
-
-
VCC(A) = 1.65 V to 1.95 V  
tPLH  
tPHL  
tPHZ  
tPLZ  
LOW to HIGH  
propagation delay  
A to B  
B to A  
A to B  
B to A  
2.6  
2.4  
2.4  
2.2  
2.9  
3.2  
2.4  
2.5  
19.1  
17.6  
17.3  
15.3  
17.1  
24.1  
10.5  
17.6  
2.2  
2.2  
2.0  
2.0  
2.9  
3.2  
2.4  
2.6  
17.7  
17.7  
14.3  
14.3  
17.1  
21.9  
10.5  
16.0  
2.2  
2.3  
1.6  
2.1  
2.9  
2.7  
2.4  
2.2  
9.3  
16.0  
8.5  
1.7  
2.1  
1.8  
2.0  
2.9  
3.0  
2.4  
2.7  
7.2  
15.5  
7.1  
1.4  
1.9  
1.7  
1.8  
2.9  
2.5  
2.4  
2.4  
6.8 ns  
15.1 ns  
7.0 ns  
12.2 ns  
17.1 ns  
8.2 ns  
10.5 ns  
6.4 ns  
HIGH to LOW  
propagation delay  
12.9  
17.1  
11.5  
10.5  
9.2  
12.6  
17.1  
10.3  
10.5  
8.4  
HIGH to OFF-state DIR to A  
propagation delay  
DIR to B  
LOW to OFF-state DIR to A  
propagation delay  
DIR to B  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
10 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
Table 12. Dynamic characteristics for temperature range 40 °C to +85 °C …continued  
Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7  
Symbol Parameter  
Conditions  
VCC(B)  
Unit  
1.5 V ± 0.1 V 1.8 V ± 0.15 V 2.5 V ± 0.2 V 3.3 V ± 0.3 V 5.0 V ± 0.5 V  
Min Max Min  
Max Min Max Min Max Min Max  
[1]  
tPZH  
OFF-state to HIGH DIR to A  
propagation delay  
-
-
-
-
35.2  
29.6  
39.4  
34.4  
-
-
-
-
33.7  
28.2  
36.2  
31.4  
-
-
-
-
25.2  
19.8  
24.4  
25.6  
-
-
-
-
23.9  
17.7  
22.9  
24.2  
-
-
-
-
21.8 ns  
[1]  
[1]  
[1]  
DIR to B  
17.3 ns  
20.4 ns  
24.1 ns  
tPZL  
OFF-state to LOW DIR to A  
propagation delay  
DIR to B  
VCC(A) = 2.3 V to 2.7 V  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPZH  
tPZL  
LOW to HIGH  
propagation delay  
A to B  
B to A  
A to B  
B to A  
2.3  
2.0  
2.3  
1.8  
2.1  
3.0  
1.7  
2.3  
-
17.9  
13.5  
15.8  
11.8  
8.1  
2.3  
2.2  
2.1  
1.9  
2.1  
3.0  
1.7  
2.5  
-
16.0  
9.3  
1.5  
1.5  
1.4  
1.4  
2.1  
2.5  
1.7  
2.0  
-
8.5  
8.5  
1.3  
1.4  
1.3  
1.3  
2.1  
2.8  
1.7  
2.5  
-
6.2  
8.0  
1.1  
1.0  
0.9  
0.9  
2.1  
2.3  
1.7  
1.8  
-
4.8 ns  
7.5 ns  
4.6 ns  
6.2 ns  
8.1 ns  
6.9 ns  
5.8 ns  
5.3 ns  
12.8 ns  
10.6 ns  
13.1 ns  
12.7 ns  
HIGH to LOW  
propagation delay  
12.9  
8.5  
7.5  
5.4  
7.5  
7.0  
HIGH to OFF-state DIR to A  
propagation delay  
8.1  
8.1  
8.1  
DIR to B  
22.5  
5.8  
21.4  
5.8  
11.0  
5.8  
9.3  
LOW to OFF-state DIR to A  
propagation delay  
5.8  
DIR to B  
14.6  
28.1  
23.7  
34.3  
23.9  
13.2  
22.5  
21.8  
29.9  
21.0  
9.0  
8.4  
[1]  
[1]  
[1]  
[1]  
OFF-state to HIGH DIR to A  
propagation delay  
17.5  
14.3  
18.5  
15.6  
16.4  
12.0  
16.3  
13.5  
DIR to B  
-
-
-
-
-
OFF-state to LOW DIR to A  
propagation delay  
-
-
-
-
-
DIR to B  
-
-
-
-
-
VCC(A) = 3.0 V to 3.6 V  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPZH  
tPZL  
LOW to HIGH  
propagation delay  
A to B  
B to A  
A to B  
B to A  
2.3  
1.7  
2.2  
1.7  
2.3  
2.9  
2.0  
2.3  
-
17.1  
11.8  
15.6  
10.9  
7.3  
2.1  
1.7  
2.0  
1.8  
2.3  
2.9  
2.0  
2.4  
-
15.5  
7.2  
1.4  
1.3  
1.3  
1.3  
2.3  
2.3  
2.0  
1.9  
-
8.0  
6.2  
0.8  
0.7  
0.8  
0.8  
2.3  
2.7  
2.0  
2.3  
-
5.6  
5.6  
0.7  
0.6  
0.7  
0.7  
2.7  
2.2  
2.0  
1.7  
-
4.4 ns  
5.4 ns  
4.0 ns  
4.5 ns  
7.3 ns  
6.3 ns  
5.6 ns  
4.9 ns  
10.3 ns  
10.0 ns  
10.8 ns  
11.3 ns  
HIGH to LOW  
propagation delay  
12.6  
7.1  
7.0  
5.0  
5.4  
5.0  
HIGH to OFF-state DIR to A  
propagation delay  
7.3  
7.3  
7.3  
DIR to B  
18.0  
5.6  
16.5  
5.6  
10.1  
5.6  
8.6  
LOW to OFF-state DIR to A  
propagation delay  
5.6  
DIR to B  
13.6  
25.4  
22.7  
28.9  
22.9  
12.5  
19.7  
21.1  
23.6  
19.9  
7.8  
7.1  
[1]  
[1]  
[1]  
[1]  
OFF-state to HIGH DIR to A  
propagation delay  
14.0  
13.6  
15.5  
14.3  
12.7  
11.2  
13.6  
12.3  
DIR to B  
-
-
-
-
-
OFF-state to LOW DIR to A  
propagation delay  
-
-
-
-
-
DIR to B  
-
-
-
-
-
VCC(A) = 4.5 V to 5.5 V  
tPLH  
tPHL  
tPHZ  
LOW to HIGH  
propagation delay  
A to B  
B to A  
A to B  
B to A  
2.2  
1.6  
2.3  
1.7  
1.7  
2.9  
16.6  
10.5  
15.3  
10.8  
5.4  
1.9  
1.4  
1.8  
1.7  
1.7  
2.9  
15.1  
6.8  
1.0  
1.0  
1.0  
0.9  
1.7  
2.3  
7.5  
4.8  
6.2  
4.6  
5.4  
9.7  
0.7  
0.7  
0.7  
0.7  
1.7  
2.7  
5.4  
4.4  
4.5  
4.0  
5.4  
8.0  
0.5  
0.5  
0.5  
0.5  
1.7  
2.5  
3.9 ns  
3.9 ns  
3.5 ns  
3.5 ns  
5.4 ns  
5.7 ns  
HIGH to LOW  
propagation delay  
12.2  
7.0  
HIGH to OFF-state DIR to A  
propagation delay  
5.4  
DIR to B  
17.3  
16.1  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
11 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
Table 12. Dynamic characteristics for temperature range 40 °C to +85 °C …continued  
Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7  
Symbol Parameter  
Conditions  
VCC(B)  
Unit  
1.5 V ± 0.1 V 1.8 V ± 0.15 V 2.5 V ± 0.2 V 3.3 V ± 0.3 V 5.0 V ± 0.5 V  
Min Max Min  
Max Min Max Min Max Min Max  
tPLZ  
tPZH  
tPZL  
LOW to OFF-state DIR to A  
1.4  
3.7  
1.4  
3.7  
1.3  
3.7  
7.4  
1.0  
3.7  
7.0  
0.9  
3.7 ns  
propagation delay  
DIR to B  
2.3  
13.1  
23.6  
20.3  
28.1  
20.7  
2.4  
12.1  
18.9  
18.8  
23.1  
17.6  
1.9  
2.3  
1.8  
4.5 ns  
8.4 ns  
7.6 ns  
9.2 ns  
8.9 ns  
[1]  
[1]  
[1]  
[1]  
OFF-state to HIGH DIR to A  
-
-
-
-
-
-
-
-
-
-
-
-
12.2  
11.2  
14.3  
11.6  
-
-
-
-
11.4  
9.1  
-
-
-
-
propagation delay  
DIR to B  
OFF-state to LOW DIR to A  
12.0  
9.9  
propagation delay  
DIR to B  
[1] tPZH and tPZL are calculated values using the formula shown in Section 14.4 “Enable times”  
Table 13. Dynamic characteristics for temperature range 40 °C to +125 °C  
Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7  
Symbol Parameter  
Conditions  
VCC(B)  
Unit  
1.5 V ± 0.1 V 1.8 V ± 0.15 V 2.5 V ± 0.2 V 3.3 V ± 0.3 V 5.0 V ± 0.5 V  
Min Max  
Min  
Max Min Max Min Max Min Max  
VCC(A) = 1.4 V to 1.6 V  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPZH  
tPZL  
LOW to HIGH  
propagation delay  
A to B  
B to A  
A to B  
B to A  
2.5  
2.5  
2.3  
2.3  
2.7  
3.1  
2.1  
2.5  
-
23.5  
23.5  
21.3  
21.3  
20.6  
27.3  
12.6  
20.2  
43.7  
36.1  
48.6  
41.9  
2.1  
2.3  
1.9  
2.1  
2.7  
3.1  
2.1  
2.7  
-
19.4  
21.1  
16.9  
19.1  
20.6  
26.0  
12.6  
19.0  
40.1  
32.0  
45.1  
37.5  
1.8  
2.0  
1.6  
2.0  
2.7  
2.7  
2.1  
2.2  
-
14.9  
16.4  
13.0  
14.6  
20.6  
12.1  
12.6  
10.4  
26.8  
27.5  
26.7  
33.6  
1.5  
2.0  
1.5  
1.9  
2.7  
2.9  
2.1  
2.7  
-
13.0  
13.7  
12.0  
12.5  
20.6  
12.5  
12.6  
11.2  
24.9  
25.6  
25.0  
32.6  
1.4  
1.9  
1.5  
2.0  
2.7  
2.5  
2.1  
2.2  
-
11.6 ns  
13.2 ns  
11.9 ns  
12.1 ns  
20.6 ns  
11.4 ns  
12.6 ns  
10.4 ns  
23.6 ns  
24.2 ns  
23.5 ns  
32.5 ns  
HIGH to LOW  
propagation delay  
HIGH to OFF-state DIR to A  
propagation delay  
DIR to B  
LOW to OFF-state DIR to A  
propagation delay  
DIR to B  
[1]  
[1]  
[1]  
[1]  
OFF-state to HIGH DIR to A  
propagation delay  
DIR to B  
-
-
-
-
-
OFF-state to LOW DIR to A  
propagation delay  
-
-
-
-
-
DIR to B  
-
-
-
-
-
VCC(A) = 1.65 V to 1.95 V  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPZH  
LOW to HIGH  
propagation delay  
A to B  
B to A  
A to B  
B to A  
2.3  
2.1  
2.1  
1.9  
2.6  
2.8  
2.1  
2.2  
-
21.1  
19.4  
19.1  
16.9  
18.9  
26.6  
11.6  
19.4  
38.8  
32.7  
1.9  
1.9  
1.8  
1.8  
2.6  
2.8  
2.1  
2.3  
-
19.5  
19.5  
15.8  
15.8  
18.9  
24.1  
11.6  
17.6  
37.1  
31.1  
1.9  
2.0  
1.4  
1.8  
2.6  
2.4  
2.1  
1.9  
-
10.3  
17.6  
9.4  
1.5  
1.8  
1.6  
1.8  
2.6  
2.7  
2.1  
2.4  
-
8.0  
17.1  
7.9  
1.2  
1.7  
1.5  
1.6  
2.6  
2.2  
2.1  
2.1  
-
7.5 ns  
16.7 ns  
7.7 ns  
13.5 ns  
18.9 ns  
9.1 ns  
11.6 ns  
7.4 ns  
24.1 ns  
19.1 ns  
HIGH to LOW  
propagation delay  
14.2  
18.9  
12.7  
11.6  
10.2  
27.8  
21.9  
13.9  
18.9  
11.4  
11.6  
9.3  
HIGH to OFF-state DIR to A  
propagation delay  
DIR to B  
LOW to OFF-state DIR to A  
propagation delay  
DIR to B  
[1]  
[1]  
OFF-state to HIGH DIR to A  
propagation delay  
26.4  
19.6  
DIR to B  
-
-
-
-
-
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
12 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
Table 13. Dynamic characteristics for temperature range 40 °C to +125 °C …continued  
Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7  
Symbol Parameter  
Conditions  
VCC(B)  
Unit  
1.5 V ± 0.1 V 1.8 V ± 0.15 V 2.5 V ± 0.2 V 3.3 V ± 0.3 V 5.0 V ± 0.5 V  
Min Max  
Min  
Max Min Max Min Max Min Max  
[1]  
tPZL  
OFF-state to LOW DIR to A  
-
-
43.5  
38.0  
-
-
39.9  
34.7  
-
-
26.9  
28.3  
-
-
25.3  
26.8  
-
-
22.6 ns  
propagation delay  
[1]  
DIR to B  
26.6 ns  
VCC(A) = 2.3 V to 2.7 V  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPZH  
tPZL  
LOW to HIGH  
propagation delay  
A to B  
B to A  
A to B  
B to A  
2.0  
1.8  
2.0  
1.6  
1.8  
2.7  
1.5  
2.0  
-
19.7  
14.9  
17.4  
13.0  
9.0  
2.0  
1.9  
1.8  
1.7  
1.8  
2.7  
1.5  
2.2  
-
17.6  
10.3  
14.2  
9.4  
1.3  
1.3  
1.2  
1.2  
1.8  
2.2  
1.5  
1.8  
-
9.4  
9.4  
1.1  
1.2  
1.1  
1.1  
1.8  
2.5  
1.5  
2.2  
-
6.9  
8.8  
0.9  
0.9  
0.8  
0.8  
1.8  
2.0  
1.5  
1.6  
-
5.3 ns  
8.3 ns  
5.1 ns  
6.9 ns  
9.0 ns  
7.6 ns  
6.4 ns  
5.9 ns  
14.2 ns  
11.7 ns  
14.5 ns  
14.1 ns  
HIGH to LOW  
propagation delay  
8.3  
6.0  
8.3  
7.7  
HIGH to OFF-state DIR to A  
propagation delay  
9.0  
9.0  
9.0  
DIR to B  
24.8  
6.4  
23.6  
6.4  
12.1  
6.4  
10.3  
6.4  
LOW to OFF-state DIR to A  
propagation delay  
DIR to B  
16.1  
31.0  
26.1  
37.8  
26.4  
14.6  
24.9  
24.0  
33.0  
23.2  
9.9  
9.3  
[1]  
[1]  
[1]  
[1]  
OFF-state to HIGH DIR to A  
propagation delay  
19.3  
15.8  
20.4  
17.3  
18.1  
13.3  
18.0  
15.0  
DIR to B  
-
-
-
-
-
OFF-state to LOW DIR to A  
propagation delay  
-
-
-
-
-
DIR to B  
-
-
-
-
-
VCC(A) = 3.0 V to 3.6 V  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPZH  
tPZL  
LOW to HIGH  
propagation delay  
A to B  
B to A  
A to B  
B to A  
2.0  
1.5  
1.9  
1.5  
2.0  
2.6  
1.8  
2.0  
-
18.9  
13.0  
17.2  
12.0  
8.1  
1.8  
1.5  
1.8  
1.6  
2.0  
2.6  
1.8  
2.1  
-
17.1  
8.0  
1.2  
1.1  
1.1  
1.1  
2.0  
2.0  
1.8  
1.7  
-
8.8  
6.9  
0.7  
0.6  
0.7  
0.7  
2.0  
2.4  
1.8  
2.0  
-
6.2  
6.2  
0.6  
0.5  
0.6  
0.6  
2.4  
1.9  
1.8  
1.5  
-
4.9 ns  
6.0 ns  
4.4 ns  
5.0 ns  
8.1 ns  
7.0 ns  
6.2 ns  
5.4 ns  
11.4 ns  
11.1 ns  
12.0 ns  
12.5 ns  
HIGH to LOW  
propagation delay  
13.9  
7.9  
7.7  
5.5  
6.0  
5.5  
HIGH to OFF-state DIR to A  
propagation delay  
8.1  
8.1  
8.1  
DIR to B  
19.8  
6.2  
18.2  
6.2  
11.2  
6.2  
9.5  
LOW to OFF-state DIR to A  
propagation delay  
6.2  
DIR to B  
15.0  
28.0  
25.1  
31.8  
25.3  
13.8  
21.8  
23.3  
26.1  
22.0  
8.6  
7.9  
[1]  
[1]  
[1]  
[1]  
OFF-state to HIGH DIR to A  
propagation delay  
15.5  
15.0  
17.2  
15.8  
14.1  
12.4  
15.0  
13.6  
DIR to B  
-
-
-
-
-
OFF-state to LOW DIR to A  
propagation delay  
-
-
-
-
-
DIR to B  
-
-
-
-
-
VCC(A) = 4.5 V to 5.5 V  
tPLH  
tPHL  
tPHZ  
tPLZ  
LOW to HIGH  
propagation delay  
A to B  
B to A  
A to B  
B to A  
1.9  
1.4  
2.0  
1.5  
1.5  
2.6  
1.2  
2.0  
18.3  
11.6  
16.9  
11.9  
6.0  
1.7  
1.2  
1.6  
1.5  
1.5  
2.6  
1.2  
2.1  
16.7  
7.5  
0.9  
0.9  
0.9  
0.8  
1.5  
2.0  
1.1  
1.7  
8.3  
5.3  
6.9  
5.1  
6.0  
10.7  
4.1  
8.2  
0.6  
0.6  
0.6  
0.6  
1.5  
2.4  
0.9  
2.0  
6.0  
4.9  
5.0  
4.4  
6.0  
8.8  
4.1  
7.7  
0.4  
0.4  
0.4  
0.4  
1.5  
2.2  
0.8  
1.6  
4.3 ns  
4.3 ns  
3.9 ns  
3.9 ns  
6.0 ns  
6.3 ns  
4.1 ns  
5.0 ns  
HIGH to LOW  
propagation delay  
13.5  
7.7  
HIGH to OFF-state DIR to A  
propagation delay  
6.0  
DIR to B  
19.1  
4.1  
17.8  
4.1  
LOW to OFF-state DIR to A  
propagation delay  
DIR to B  
14.5  
13.4  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
13 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
Table 13. Dynamic characteristics for temperature range 40 °C to +125 °C …continued  
Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7  
Symbol Parameter  
Conditions  
VCC(B)  
Unit  
1.5 V ± 0.1 V 1.8 V ± 0.15 V 2.5 V ± 0.2 V 3.3 V ± 0.3 V 5.0 V ± 0.5 V  
Min Max  
Min  
Max Min Max Min Max Min Max  
[1]  
tPZH  
OFF-state to HIGH DIR to A  
propagation delay  
-
-
-
-
26.1  
22.4  
31.0  
22.9  
-
-
-
-
20.9  
20.8  
25.5  
19.5  
-
-
-
-
13.5  
12.4  
15.8  
12.9  
-
-
-
-
12.6  
10.1  
13.2  
11.0  
-
-
-
-
9.3 ns  
[1]  
[1]  
[1]  
DIR to B  
8.4 ns  
10.2 ns  
9.9 ns  
tPZL  
OFF-state to LOW DIR to A  
propagation delay  
DIR to B  
[1] tPZH and tPZL are calculated values using the formula shown in Section 14.4 “Enable times”  
12. Waveforms  
V
I
V
A, B input  
M
GND  
t
t
PLH  
PHL  
V
OH  
B, A output  
V
M
001aae967  
V
OL  
Measurement points are given in Table 14.  
VOL and VOH are typical output voltage levels that occur with the output load.  
Fig 6. The data input (A, B) to output (B, A) propagation delay times  
V
I
DIR input  
V
M
t
GND  
t
PLZ  
PZL  
V
CCO  
output  
LOW-to-OFF  
OFF-to-LOW  
V
M
V
X
V
OL  
t
t
PZH  
PHZ  
V
OH  
V
Y
output  
HIGH-to-OFF  
OFF-to-HIGH  
V
M
GND  
outputs  
enabled  
outputs  
disabled  
outputs  
enabled  
001aae968  
Measurement points are given in Table 14.  
VOL and VOH are typical output voltage levels that occur with the output load.  
Fig 7. Enable and disable times  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
14 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
Table 14. Measurement points  
Supply voltage  
VCC(A), VCC(B)  
1.2 V to 1.6 V  
1.65 V to 2.7 V  
3.0 V to 5.5 V  
Input[1]  
Output[2]  
VM  
VM  
VX  
VY  
0.5VCCI  
0.5VCCI  
0.5VCCI  
0.5VCCO  
0.5VCCO  
0.5VCCO  
VOL + 0.1 V  
VOL + 0.15 V  
VOL + 0.3 V  
VOH 0.1 V  
VOH 0.15 V  
VOH 0.3 V  
[1] VCCI is the supply voltage associated with the data input port.  
[2] VCCO is the supply voltage associated with the output port.  
t
W
V
I
90 %  
negative  
pulse  
V
V
V
M
M
10 %  
0 V  
t
t
r
f
t
r
t
f
V
I
90 %  
positive  
pulse  
V
M
M
10 %  
0 V  
t
W
V
EXT  
R
V
CC  
L
V
V
O
I
G
DUT  
R
C
R
L
T
L
001aae331  
Test data is given in Table 15.  
RL = Load resistance.  
CL = Load capacitance including jig and probe capacitance.  
RT = Termination resistance.  
VEXT = External voltage for measuring switching times.  
Fig 8. Load circuitry for switching times  
Table 15. Test data  
Supply voltage  
VCC(A), VCC(B)  
1.2 V to 5.5 V  
Input  
VI[1]  
Load  
CL  
VEXT  
[3]  
Δt/ΔV[2]  
RL  
2 kΩ  
tPLH, tPHL  
tPZH, tPHZ  
GND  
tPZL, tPLZ  
VCCI  
1.0 ns/V  
15 pF  
open  
2VCCO  
[1] VCCI is the supply voltage associated with the data input port.  
[2] dV/dt 1.0 V/ns  
[3] VCCO is the supply voltage associated with the output port.  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
15 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
13. Typical propagation delay characteristics  
001aai907  
001aai908  
14  
PHL  
14  
t
t
PLH  
(ns)  
12  
(ns)  
12  
(1)  
(1)  
10  
8
10  
8
(2)  
(3)  
(2)  
(3)  
(4)  
(5)  
(6)  
(4)  
(5)  
(6)  
6
6
4
4
2
2
0
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
a. HIGH to LOW propagation delay (A to B)  
b. LOW to HIGH propagation delay (A to B)  
001aai909  
001aai910  
14  
PHL  
14  
t
t
PLH  
(ns)  
12  
(ns)  
12  
(1)  
(1)  
(2)  
(3)  
(4)  
(2)  
(3)  
10  
8
10  
8
(5)  
(6)  
(4)  
(5)  
(6)  
6
6
4
4
2
2
0
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
c. HIGH to LOW propagation delay (B to A)  
d. LOW to HIGH propagation delay (B to A)  
(1) VCC(B) = 1.2 V.  
(2) VCC(B) = 1.5 V.  
(3) VCC(B) = 1.8 V.  
(4) VCC(B) = 2.5 V.  
(5) VCC(B) = 3.3 V.  
(6) VCC(B) = 5.0 V.  
Fig 9. Typical propagation delay vs load capacitance; Tamb = 25 °C; VCC(A) = 1.2 V  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
16 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
001aai911  
001aai912  
14  
PHL  
14  
t
t
PLH  
(ns)  
12  
(ns)  
12  
(1)  
10  
8
10  
8
(1)  
(2)  
(2)  
(3)  
6
6
(3)  
(4)  
(4)  
(5)  
(6)  
4
4
(5)  
(6)  
2
2
0
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
a. HIGH to LOW propagation delay (A to B)  
b. LOW to HIGH propagation delay (A to B)  
001aai913  
001aai914  
14  
PHL  
14  
t
t
PLH  
(ns)  
12  
(ns)  
12  
10  
8
10  
8
(1)  
(1)  
(2)  
(3)  
(4)  
(2)  
(3)  
(4)  
6
6
(5)  
(6)  
(5)  
(6)  
4
4
2
2
0
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
c. HIGH to LOW propagation delay (B to A)  
d. LOW to HIGH propagation delay (B to A)  
(1) VCC(B) = 1.2 V.  
(2) VCC(B) = 1.5 V.  
(3) VCC(B) = 1.8 V.  
(4) VCC(B) = 2.5 V.  
(5) VCC(B) = 3.3 V.  
(6) VCC(B) = 5.0 V.  
Fig 10. Typical propagation delay vs load capacitance; Tamb = 25 °C; VCC(A) = 1.5 V  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
17 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
001aai915  
001aai916  
14  
PHL  
14  
t
t
PLH  
(ns)  
12  
(ns)  
12  
(1)  
10  
8
10  
8
(1)  
(2)  
(3)  
(2)  
(3)  
6
6
(4)  
(5)  
(6)  
(4)  
(5)  
(6)  
4
4
2
2
0
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
a. HIGH to LOW propagation delay (A to B)  
b. LOW to HIGH propagation delay (A to B)  
001aai917  
001aai918  
14  
PHL  
14  
t
t
PLH  
(ns)  
12  
(ns)  
12  
10  
8
10  
8
(1)  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
6
6
(2)  
(3)  
(4)  
(5)  
(6)  
4
4
2
2
0
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
c. HIGH to LOW propagation delay (B to A)  
d. LOW to HIGH propagation delay (B to A)  
(1) VCC(B) = 1.2 V.  
(2) VCC(B) = 1.5 V.  
(3) VCC(B) = 1.8 V.  
(4) VCC(B) = 2.5 V.  
(5) VCC(B) = 3.3 V.  
(6) VCC(B) = 5.0 V.  
Fig 11. Typical propagation delay vs load capacitance; Tamb = 25 °C; VCC(A) = 1.8 V  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
18 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
001aai919  
001aai920  
14  
PHL  
14  
t
t
PLH  
(ns)  
12  
(ns)  
12  
(1)  
10  
8
10  
8
(1)  
(2)  
(3)  
(2)  
(3)  
6
6
(4)  
(5)  
(6)  
4
4
(4)  
(5)  
(6)  
2
2
0
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
a. HIGH to LOW propagation delay (A to B)  
b. LOW to HIGH propagation delay (A to B)  
001aai921  
001aai922  
14  
PHL  
14  
t
t
PLH  
(ns)  
12  
(ns)  
12  
10  
8
10  
8
(1)  
6
6
(1)  
(2)  
(3)  
(2)  
(3)  
(4)  
(5)  
(6)  
4
4
(4)  
(5)  
(6)  
2
2
0
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
c. HIGH to LOW propagation delay (B to A)  
d. LOW to HIGH propagation delay (B to A)  
(1) VCC(B) = 1.2 V.  
(2) VCC(B) = 1.5 V.  
(3) VCC(B) = 1.8 V.  
(4) VCC(B) = 2.5 V.  
(5) VCC(B) = 3.3 V.  
(6) VCC(B) = 5.0 V.  
Fig 12. Typical propagation delay vs load capacitance; Tamb = 25 °C; VCC(A) = 2.5 V  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
19 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
001aai923  
001aai924  
14  
PHL  
14  
t
t
PLH  
(ns)  
12  
(ns)  
12  
10  
8
10  
8
(1)  
(1)  
(2)  
(3)  
(2)  
(3)  
6
6
4
4
(4)  
(5)  
(6)  
(4)  
(5)  
(6)  
2
2
0
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
a. HIGH to LOW propagation delay (A to B)  
b. LOW to HIGH propagation delay (A to B)  
001aai925  
001aai926  
14  
PHL  
14  
t
t
PLH  
(ns)  
12  
(ns)  
12  
10  
8
10  
8
6
6
(1)  
(1)  
(2)  
(3)  
(2)  
(3)  
(4)  
(5)  
(6)  
4
4
(4)  
(5)  
(6)  
2
2
0
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
c. HIGH to LOW propagation delay (B to A)  
d. LOW to HIGH propagation delay (B to A)  
(1) VCC(B) = 1.2 V.  
(2) VCC(B) = 1.5 V.  
(3) VCC(B) = 1.8 V.  
(4) VCC(B) = 2.5 V.  
(5) VCC(B) = 3.3 V.  
(6) VCC(B) = 5.0 V.  
Fig 13. Typical propagation delay vs load capacitance; Tamb = 25 °C; VCC(A) = 3.3 V  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
20 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
001aai927  
001aai928  
14  
PHL  
14  
t
t
PLH  
(ns)  
12  
(ns)  
12  
10  
8
10  
8
(1)  
(1)  
(2)  
(3)  
(2)  
(3)  
6
6
4
4
(4)  
(5)  
(6)  
(4)  
(5)  
(6)  
2
2
0
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
a. HIGH to LOW propagation delay (A to B)  
b. LOW to HIGH propagation delay (A to B)  
001aai929  
001aai930  
14  
PHL  
14  
t
t
PLH  
(ns)  
12  
(ns)  
12  
10  
8
10  
8
6
6
(1)  
(1)  
(2)  
(3)  
(2)  
(3)  
4
4
(4)  
(5)  
(6)  
(4)  
(5)  
(6)  
2
2
0
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
c. HIGH to LOW propagation delay (B to A)  
d. LOW to HIGH propagation delay (B to A)  
(1) VCC(B) = 1.2 V.  
(2) VCC(B) = 1.5 V.  
(3) VCC(B) = 1.8 V.  
(4) VCC(B) = 2.5 V.  
(5) VCC(B) = 3.3 V.  
(6) VCC(B) = 5.0 V.  
Fig 14. Typical propagation delay vs load capacitance; Tamb = 25 °C; VCC(A) = 5 V  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
21 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
14. Application information  
14.1 Unidirectional logic level-shifting application  
The circuit given in Figure 15 is an example of the 74LVC1T45; 74LVCH1T45 being used  
in an unidirectional logic level-shifting application.  
74LVC1T45  
74LVCH1T45  
V
V
V
V
CC1  
CC2  
V
V
CC(B)  
CC(A)  
GND  
A
1
2
3
6
5
4
DIR  
B
CC1  
CC2  
system-1  
system-2  
001aaj994  
Fig 15. Unidirectional logic level-shifting application  
Table 16. Description unidirectional logic level-shifting application  
Pin  
1
Name  
VCC(A)  
GND  
A
Function  
VCC1  
GND  
OUT  
IN  
Description  
supply voltage of system-1 (1.2 V to 5.5 V)  
device GND  
2
3
output level depends on VCC1 voltage  
input threshold value depends on VCC2 voltage  
the GND (LOW level) determines B port to A port direction  
supply voltage of system-2 (1.2 V to 5.5 V)  
4
B
5
DIR  
DIR  
6
VCC(B)  
VCC2  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
22 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
14.2 Bidirectional logic level-shifting application  
Figure 16 shows the 74LVC1T45; 74LVCH1T45 being used in a bidirectional logic  
level-shifting application. Since the device does not have an output enable pin, the system  
designer should take precautions to avoid bus contention between system-1 and  
system-2 when changing directions.  
74LVC1T45  
74LVCH1T45  
V
CC1  
V
CC1  
V
CC2  
V
CC2  
V
V
CC(B)  
CC(A)  
GND  
A
1
2
3
6
5
4
I/O-1  
I/O-2  
DIR  
B
PULL-UP/DOWN  
PULL-UP/DOWN  
DIR CTRL  
system-1  
system-2  
001aaj995  
Pull-up or pull-down only needed for 74LVC1T45.  
Fig 16. Bidirectional logic level-shifting application  
Table 17 gives a sequence that will illustrate data transmission from system-1 to system-2  
and then from system-2 to system-1.  
Table 17. Description bidirectional logic level-shifting application[1]  
State DIR CTRL I/O-1  
I/O-2  
input  
Z
Description  
1
2
H
H
output  
Z
system-1 data to system-2  
system-2 is getting ready to send data to system-1.  
I/O-1 and I/O-2 are disabled. The bus-line state  
depends on bus hold.  
3
4
L
L
Z
Z
DIR bit is set LOW. I/O-1 and I/O-2 still are disabled.  
The bus-line state depends on bus hold.  
input  
output  
system-2 data to system-1  
[1] H = HIGH voltage level;  
L = LOW voltage level;  
Z = high-impedance OFF-state.  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
23 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
14.3 Power-up considerations  
The device is designed such that no special power-up sequence is required other than  
GND being applied first.  
Table 18. Typical total supply current (ICC(A) + ICC(B)  
)
VCC(A)  
VCC(B)  
0 V  
0
Unit  
1.8 V  
< 1  
< 2  
< 2  
< 2  
2
2.5 V  
< 1  
3.3 V  
< 1  
5.0 V  
< 1  
2
0 V  
μA  
μA  
μA  
μA  
μA  
1.8 V  
2.5 V  
3.3 V  
5.0 V  
< 1  
< 1  
< 1  
< 1  
< 2  
< 2  
< 2  
< 2  
< 2  
< 2  
< 2  
< 2  
< 2  
< 2  
< 2  
14.4 Enable times  
Calculate the enable times for the 74LVC1T45; 74LVCH1T45 using the following formulas:  
tPZH (DIR to A) = tPLZ (DIR to B) + tPLH (B to A)  
tPZL (DIR to A) = tPHZ (DIR to B) + tPHL (B to A)  
tPZH (DIR to B) = tPLZ (DIR to A) + tPLH (A to B)  
tPZL (DIR to B) = tPHZ (DIR to A) + tPHL (A to B)  
In a bidirectional application, these enable times provide the maximum delay from the  
time the DIR bit is switched until an output is expected. For example, if the 74LVC1T45;  
74LVCH1T45 initially is transmitting from A to B, then the DIR bit is switched, the B port of  
the device must be disabled before presenting it with an input. After the B port has been  
disabled, an input signal applied to it appears on the corresponding A port after the  
specified propagation delay.  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
24 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
15. Package outline  
Plastic surface-mounted package; 6 leads  
SOT363  
D
B
E
A
X
y
H
v
M
A
E
6
5
4
Q
pin 1  
index  
A
A
1
1
2
3
c
e
1
b
L
p
w
M B  
p
e
detail X  
0
1
2 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
1
UNIT  
A
b
c
D
E
e
e
H
L
Q
v
w
y
p
p
1
E
max  
0.30  
0.20  
1.1  
0.8  
0.25  
0.10  
2.2  
1.8  
1.35  
1.15  
2.2  
2.0  
0.45  
0.15  
0.25  
0.15  
mm  
0.1  
1.3  
0.65  
0.2  
0.2  
0.1  
REFERENCES  
JEDEC JEITA  
EUROPEAN  
PROJECTION  
OUTLINE  
VERSION  
ISSUE DATE  
IEC  
04-11-08  
06-03-16  
SOT363  
SC-88  
Fig 17. Package outline SOT363 (SC-88)  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
25 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
XSON6: plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1.45 x 0.5 mm  
SOT886  
b
1
2
3
4×  
(2)  
L
L
1
e
6
5
4
e
1
e
1
6×  
A
(2)  
A
1
D
E
terminal 1  
index area  
0
1
2 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
A
1
UNIT  
b
D
E
e
e
L
L
1
1
max max  
0.25  
0.17  
1.5  
1.4  
1.05  
0.95  
0.35 0.40  
0.27 0.32  
mm  
0.5 0.04  
0.6  
0.5  
Notes  
1. Including plating thickness.  
2. Can be visible in some manufacturing processes.  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
04-07-15  
04-07-22  
SOT886  
MO-252  
Fig 18. Package outline SOT886 (XSON6)  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
26 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
XSON6: plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1 x 0.5 mm  
SOT891  
b
1
2
3
4×  
(1)  
L
L
1
e
6
5
4
e
1
e
1
6×  
A
(1)  
A
1
D
E
terminal 1  
index area  
0
1
2 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
A
1
UNIT  
b
D
E
e
e
L
L
1
1
max max  
0.20 1.05 1.05  
0.12 0.95 0.95  
0.35 0.40  
0.27 0.32  
mm  
0.5 0.04  
0.55 0.35  
Note  
1. Can be visible in some manufacturing processes.  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
05-04-06  
07-05-15  
SOT891  
Fig 19. Package outline SOT891 (XSON6)  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
27 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
16. Abbreviations  
Table 19. Abbreviations  
Acronym  
CDM  
Description  
Charged Device Model  
CMOS  
DUT  
Complementary Metal Oxide Semiconductor  
Device Under Test  
ESD  
ElectroStatic Discharge  
HBM  
Human Body Model  
17. Revision history  
Table 20. Revision history  
Document ID  
Release date  
20100119  
Data sheet status  
Change notice  
Supersedes  
74LVC_LVCH1T45_2  
Modifications:  
Product data sheet  
-
74LVC_LVCH1T45_1  
Table 6: input transition rise and fall rate conditions and limits changed.  
74LVC_LVCH1T45_1  
20090511  
Product data sheet  
-
-
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
28 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
18. Legal information  
18.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
18.2 Definitions  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
18.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
18.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
19. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
74LVC_LVCH1T45_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 19 January 2010  
29 of 30  
74LVC1T45; 74LVCH1T45  
NXP Semiconductors  
Dual supply translating transceiver; 3-state  
20. Contents  
1
2
3
4
5
General description. . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 3  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 3  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3  
7
Functional description . . . . . . . . . . . . . . . . . . . 4  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Recommended operating conditions. . . . . . . . 4  
Static characteristics. . . . . . . . . . . . . . . . . . . . . 5  
Dynamic characteristics . . . . . . . . . . . . . . . . . . 9  
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Typical propagation delay characteristics . . 16  
8
9
10  
11  
12  
13  
14  
Application information. . . . . . . . . . . . . . . . . . 22  
Unidirectional logic level-shifting application . 22  
Bidirectional logic level-shifting application. . . 23  
Power-up considerations . . . . . . . . . . . . . . . . 24  
Enable times. . . . . . . . . . . . . . . . . . . . . . . . . . 24  
14.1  
14.2  
14.3  
14.4  
15  
16  
17  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 25  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 28  
18  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 29  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 29  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
18.1  
18.2  
18.3  
18.4  
19  
20  
Contact information. . . . . . . . . . . . . . . . . . . . . 29  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2010.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 19 January 2010  
Document identifier: 74LVC_LVCH1T45_2  

相关型号:

74LVCH1T45GW-Q100

Dual supply translating transceiver; 3-state
NEXPERIA

74LVCH2240AD

Dual 4-Bit Inverting Buffer/Driver
ETC

74LVCH2240ADB

Dual 4-Bit Inverting Buffer/Driver
ETC

74LVCH2240ADB-T

IC LVC/LCX/Z SERIES, DUAL 4-BIT DRIVER, INVERTED OUTPUT, PDSO20, Bus Driver/Transceiver
NXP

74LVCH2240APG

Bus Driver, LVC/LCX/Z Series, 2-Func, 4-Bit, Inverted Output, CMOS, PDSO20, 0.65 MM PITCH, TSSOP-20
IDT

74LVCH2240APW

Dual 4-Bit Inverting Buffer/Driver
ETC

74LVCH2240APW-T

IC LVC/LCX/Z SERIES, DUAL 4-BIT DRIVER, INVERTED OUTPUT, PDSO20, Bus Driver/Transceiver
NXP

74LVCH2240AQ

Bus Driver, LVC/LCX/Z Series, 2-Func, 4-Bit, Inverted Output, CMOS, PDSO20, 0.635 MM PITCH. QSOP-20
IDT

74LVCH2241AD

Dual 4-Bit Non-Inverting Buffer/Driver
ETC

74LVCH2241ADB

Dual 4-Bit Non-Inverting Buffer/Driver
ETC

74LVCH2241ADB-T

IC LVC/LCX/Z SERIES, DUAL 4-BIT DRIVER, TRUE OUTPUT, PDSO20, Bus Driver/Transceiver
NXP

74LVCH2241APW

Dual 4-Bit Non-Inverting Buffer/Driver
ETC