935030700623 [NXP]

RF/Microwave Amplifier, RF/MICROWAVE WIDE BAND LOW POWER AMPLIFIER, SOT109-1, MS-012AC, SO-16;
935030700623
型号: 935030700623
厂家: NXP    NXP
描述:

RF/Microwave Amplifier, RF/MICROWAVE WIDE BAND LOW POWER AMPLIFIER, SOT109-1, MS-012AC, SO-16

放大器 射频 微波 功率放大器
文件: 总20页 (文件大小:272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
SA5209  
Wideband variable gain amplifier  
Product specification  
Replaces data of 1990 Aug 20  
1997 Nov 07  
IC17 Data Handbook  
Philip s Se m ic ond uc tors  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5209  
DESCRIPTION  
PIN CONFIGURATION  
The SA5209 represents a breakthrough in monolithic amplifier  
design featuring several innovations. This unique design has  
combined the advantages of a high speed bipolar process with the  
proven Gilbert architecture.  
N, D PACKAGES  
1
2
3
4
5
6
7
8
16  
V
V
CC1  
CC2  
15  
14  
13  
12  
11  
10  
9
GND  
GND  
1
2
The SA5209 is a linear broadband RF amplifier whose gain is  
controlled by a single DC voltage. The amplifier runs off a single 5  
volt supply and consumes only 40mA. The amplifier has high  
impedance (1k) differential inputs. The output is 50differential.  
Therefore, the 5209 can simultaneously perform AGC, impedance  
transformation, and the balun functions.  
IN  
OUT  
A
A
GND  
GND  
IN  
2
1
OUT  
B
B
GND  
GND  
2
1
V
GND  
GND  
BG  
2
2
The dynamic range is excellent over a wide range of gain setting.  
Furthermore, the noise performance degrades at a comparatively  
slow rate as the gain is reduced. This is an important feature when  
building linear AGC systems.  
V
AGC  
SR00237  
Figure 1. Pin Configuration  
FEATURES  
Gain to 1.5GHz  
APPLICATIONS  
850MHz bandwidth  
Linear AGC systems  
Very linear AM modulator  
RF balun  
High impedance differential input  
50differential output  
Single 5V power supply  
Cable TV multi-purpose amplifier  
Fiber optic AGC  
0 - 1V gain control pin  
>60dB gain control range at 200MHz  
26dB maximum gain differential  
RADAR  
User programmable fixed gain block  
Video  
Exceptional V  
/ V  
linearity  
GAIN  
CONTROL  
7dB noise figure minimum  
Full ESD protection  
Easily cascadable  
Satellite receivers  
Cellular communications  
ORDERING INFORMATION  
DESCRIPTION  
TEMPERATURE RANGE  
-40 to +85°C  
ORDER CODE  
DWG #  
SOT109-1  
SOT38-4  
16-Pin Plastic Small Outline (SO) package  
16-Pin Plastic Dual In-Line Package (DIP)  
SA5209D  
SA5209N  
-40 to +85°C  
2
1997 Nov 07  
853-1453 18663  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5209  
ABSOLUTE MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
RATING  
UNITS  
V
CC  
Supply voltage  
-0.5 to +8.0  
V
o
1
Power dissipation, T = 25 C (still air)  
A
16-Pin Plastic DIP  
16-Pin Plastic SO  
P
D
1450  
1100  
mW  
mW  
°C  
°C  
T
Maximum operating junction temperature  
Storage temperature range  
150  
JMAX  
T
-65 to +150  
STG  
NOTES:  
1. Maximum dissipation is determined by the operating ambient temperature and the thermal resistance, θ  
:
JA  
16-Pin DIP: θ = 85°C/W  
JA  
16-Pin SO: θ = 110°C/W  
JA  
RECOMMENDED OPERATING CONDITIONS  
SYMBOL  
PARAMETER  
RATING  
UNITS  
V
CC  
Supply voltage  
V
CC1  
= V  
= 4.5 to 7.0V  
V
CC2  
Operating ambient temperature range  
SA Grade  
T
A
°C  
°C  
-40 to +85  
Operating junction temperature range  
SA Grade  
T
J
-40 to +105  
DC ELECTRICAL CHARACTERISTICS  
o
T = 25 C, V  
= V  
= +5V, V  
= 1.0V, unless otherwise specified.  
A
CC1  
CC2  
AGC  
LIMITS  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNIT  
MAX  
MIN  
TYP  
DC tested  
38  
30  
17  
16  
23  
22  
43  
48  
I
Supply current  
mA  
55  
CC  
1
Over temperature  
DC tested, R = 10kΩ  
19  
25  
21  
dB  
22  
L
A
Voltage gain (single-ended in/single-ended out)  
Voltage gain (single-ended in/differential out)  
V
1
Over temperature  
DC tested, R = 10kΩ  
27  
dB  
28  
L
A
V
1
Over temperature  
DC tested at ±50µA  
0.9  
0.8  
40  
1.2  
60  
1.5  
kΩ  
1.7  
R
Input resistance (single-ended)  
Output resistance (single-ended)  
Output offset voltage (output referred)  
DC level on inputs  
IN  
1
Over temperature  
DC tested at ±1mA  
75  
R
OUT  
1
Over temperature  
35  
90  
+20  
2.0  
2.4  
45  
±100  
mV  
V
OS  
1
Over temperature  
±250  
1.6  
1.4  
1.9  
1.7  
20  
2.4  
V
IN  
V
1
Over temperature  
2.6  
2.9  
V
OUT  
DC level on outputs  
V
1
Over temperature  
3.1  
Output offset supply rejection ratio  
(output referred)  
PSRR  
dB  
1
Over temperature  
15  
4.5V<V <7V  
CC  
1.2  
1.1  
1.32  
1.45  
V
R
= 10kΩ  
BG  
V
BG  
Bandgap reference voltage  
1
Over temperature  
1.55  
3
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5209  
DC ELECTRICAL CHARACTERISTICS  
o
T = 25 C, V  
= V  
= +5.0V, V  
= 1.0V, unless otherwise specified.  
A
CC1  
CC2  
AGC  
LIMITS  
TYP  
10  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNIT  
MAX  
MIN  
1
R
Bandgap loading  
Over temperature  
2
kΩ  
BG  
1
V
AGC DC control voltage range  
Over temperature  
0-1.3  
-0.7  
V
AGC  
0V<V  
<1.3V  
-6  
AGC  
I
AGC pin DC bias current  
µA  
-10  
BAGC  
1
Over temperature  
NOTES:  
1. “Over Temperature Range” testing is as follows:  
SA is -40 to +85°C  
At the time of this data sheet release, the D package over-temperature data sheet limits are guaranteed via guardbanded room temperature  
testing only.  
AC ELECTRICAL CHARACTERISTICS  
o
T = 25 C, V  
= V  
= +5.0V, V  
= 1.0V, unless otherwise specified.  
A
CC1  
CC2  
AGC  
LIMITS  
TYP  
SYMBOL  
BW  
PARAMETER  
TEST CONDITIONS  
UNIT  
MHz  
dB  
MIN  
600  
500  
MAX  
850  
-3dB bandwidth  
Gain flatness  
1
Over temperature  
DC - 500MHz  
+0.4  
+0.6  
GF  
1
Over temperature  
Maximuminputvoltageswing(single-ended)for  
linear operation  
V
200  
mV  
mV  
IMAX  
P-P  
2
R = 50Ω  
400  
1.9  
9.3  
2.5  
-60  
0.3  
0.013  
2
Maximum output voltage swing (single-ended)  
L
P-P  
V
OMAX  
2
for linear operation  
R = 1kΩ  
L
V
P-P  
NF  
Noise figure (unmatched configuration)  
Equivalent input noise voltage spectral density  
Reverse isolation  
R
= 50, f = 50MHz  
f = 100MHz  
dB  
S
V
IN-EQ  
nV/Hz  
dB  
S12  
f = 100MHz  
G/V  
Gain supply sensitivity (single-ended)  
Gain temperature sensitivity  
dB/V  
CC  
G/T  
R = 50Ω  
L
dB/°C  
pF  
C
Input capacitance (single-ended)  
-3dB bandwidth of gain control function  
1dB gain compression point at output  
IN  
BW  
20  
MHz  
dBm  
AGC  
O-1dB  
P
f = 100MHz  
-3  
f = 100MHz, V  
=0.1V  
AGC  
AGC  
AGC  
P
1dB gain compression point at input  
Third-order intercept point at output  
-10  
dBm  
dBm  
I-1dB  
f = 100MHz, V  
>0.5V  
IP3  
+13  
OUT  
f = 100MHz, V  
<0.5V  
IP3  
Third-order intercept point at input  
Gain match output A to output B  
+5  
dBm  
dB  
IN  
G  
f = 100MHz, V  
= 1V  
0.1  
AB  
AGC  
NOTE:  
1. “Over Temperature Range” testing is as follows:  
SA is -40 to +85°C  
At the time of this data sheet release, the D package over-temperature data sheet limits are guaranteed via guardbanded room temperature  
testing only.  
2. With R > 1k, overload occurs at input for single-ended gain < 13dB and at output for single-ended gain > 13dB. With R = 50, overload  
L
L
occurs at input for single-ended gain < 6dB and at output for single-ended gain > 6dB.  
4
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5209  
gain. The 5209 has about a 1.2dB noise figure degradation for  
each 2dB gain reduction. With the input matched for optimum gain,  
the 8dB noise figure at 23dB gain will degrade to about a 20dB  
noise figure at 0dB gain.  
SA5209 APPLICATIONS  
The SA5209 is a wideband variable gain amplifier (VGA) circuit  
which finds many applications in the RF, IF and video signal  
processing areas. This application note describes the operation of  
the circuit and several applications of the VGA. The simplified  
equivalent schematic of the VGA is shown in Figure 2. Transistors  
Q1-Q6 form the wideband Gilbert multiplier input stage which is  
biased by current source I1. The top differential pairs are biased  
The SA5209 also displays excellent linearity between voltage gain  
and control voltage. Indeed, the relationship is of sufficient linearity  
that high fidelity AM modulation is possible using the SA5209. A  
maximum control voltage frequency of about 20MHz permits video  
baseband sources for AM.  
from a buffered and level-shifted signal derived from the V  
input  
AGC  
and the RF input appears at the lower differential pair. The circuit  
topology and layout offer low input noise and wide bandwidth. The  
second stage is a differential transimpedance stage with current  
feedback which maintains the wide bandwidth of the input stage.  
The output stage is a pair of emitter followers with 50output  
impedance. There is also an on-chip bandgap reference with  
buffered output at 1.3V, which can be used to derive the gain control  
voltage.  
A stabilized bandgap reference voltage is made available on the  
SA5209 (Pin 7). For fixed gain applications this voltage can be  
resistor divided, and then fed to the gain control terminal (Pin 8).  
Using the bandgap voltage reference for gain control produces very  
stable gain characteristics over wide temperature ranges. The gain  
setting resistors are not part of the RF signal path, and thus stray  
capacitance here is not important.  
The wide bandwidth and excellent gain control linearity make the  
SA5209 VGA ideally suited for the automatic gain control (AGC)  
function in RF and IF processing in cellular radio base stations,  
Direct Broadcast Satellite (DBS) decoders, cable TV systems, fiber  
optic receivers for wideband data and video, and other radio  
communication applications. A typical AGC configuration using the  
SA5209 is shown in Figure 3. Three SA5209s are cascaded with  
appropriate AC coupling capacitors. The output of the final stage  
drives the full-wave rectifier composed of two UHF Schottky diodes  
Both the inputs and outputs should be capacitor coupled or DC  
isolated from the signal sources and loads. Furthermore, the two  
inputs should be DC isolated from each other and the two outputs  
should likewise be DC isolated from each other. The SA5209 was  
designed to provide optimum performance from a 5V power source.  
However, there is some range around this value (4.5 - 7V) that can  
be used.  
The input impedance is about 1k. The main advantage to a  
differential input configuration is to provide the balun function.  
Otherwise, there is an advantage to common mode rejection, a  
specification that is not normally important to RF designs. The  
source impedance can be chosen for two different performance  
characteristics: Gain, or noise performance. Gain optimization will  
be realized if the input impedance is matched to about 1k. A 4:1  
balun will provide such a broadband match from a 50source.  
Noise performance will be optimized if the input impedance is  
matched to about 200. A 2:1 balun will provide such a broadband  
match from a 50source. The minimum noise figure can then be  
expected to be about 7dB. Maximum gain will be about 23dB for a  
single-ended output. If the differential output is used and properly  
matched, nearly 30dB can be realized. With gain optimization, the  
noise figure will degrade to about 8dB. With no matching unit at the  
input, a 9dB noise figure can be expected from a 50source. If the  
source is terminated, the noise figure will increase to about 15dB.  
All these noise figures will occur at maximum gain.  
BAT17 as shown. The diodes are biased by R1 and R2 to V  
such  
CC  
that a quiescent current of about 2mA in each leg is achieved. An  
SA5230 low voltage op amp is used as an integrator which drives  
the V  
pin on all three SA5209s. R3 and C3 filter the high  
AGC  
frequency ripple from the full-wave rectified signal. A voltage  
divider is used to generate the reference for the non-inverting input  
of the op amp at about 1.7V. Keeping D3 the same type as D1 and  
D2 will provide a first order compensation for the change in Schottky  
voltage over the operating temperature range and improve the AGC  
performance. R6 is a variable resistor for adjustments to the op  
amp reference voltage. In low cost and large volume applications  
this could be replaced with a fixed resistor, which would result in a  
slight loss of the AGC dynamic range. Cascading three SA5209s  
will give a dynamic range in excess of 60dB.  
The SA5209 is a very user-friendly part and will not oscillate in most  
applications. However, in an application such as with gains in  
excess of 60dB and bandwidth beyond 100MHz, good PC board  
layout with proper supply decoupling is strongly recommended.  
The SA5209 has an excellent noise figure vs gain relationship. With  
any VGA circuit, the noise performance will degrade with decreasing  
V
CC  
R
3
R
R
2
1
Q
7
A1  
Q
8
OUT  
OUT  
A
B
Q
Q
Q
Q
4
1
2
3
50  
50  
R
4
I
I
3
2
V
AGC  
+
Q
Q
6
5
0–1V  
IN  
B
BANDGAP  
REFERENCE  
V
BG  
IN  
A
I
1
SR00238  
Figure 2. Equivalent Schematic of the VGA  
5
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5209  
AGC  
OUTPUT  
RF/IF  
INPUT  
5209  
5209  
5209  
V
CC  
R1  
R2  
R4  
C4  
L1  
L2  
R
=
R
R
R
R
R
=
=
=
=
=
3.9k  
1
2
3
4
5
6
360  
62k  
D1  
D2  
100Ω  
1k pot  
BAT 17  
C3  
5230  
2πfL  
=
=
10k  
1
1
+
R3  
L
L
2
D3  
R6  
V
CC  
R5  
BAT 17  
SR00239  
Figure 3. AGC Configuration Using Cascaded SA5209s  
0.1µF  
10µF  
0.1µF  
+
V
CC  
5VDC  
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
V
CC1  
CC2  
GND1  
GND  
2
V
IN  
A
OUT  
IN  
OUT  
A
A
0.1µF  
0.1µF  
0.1µF  
50Ω  
GND1  
GND2  
IN  
B
OUT  
B
OUT  
B
0.1µF  
GND1  
GND2  
GND2  
GND2  
V
BG  
V
AGC  
(16-Pin SO, 150-mil wide)  
SR00240  
Figure 4. VGA AC Evaluation Board  
+5V  
MINI CIRCUITS  
2:1 BALUN  
OR SIMILAR  
50Ω  
SOURCE  
50Ω  
OUTPUT  
5209  
50Ω  
This circuit will exhibit about a 7dB  
noise figure with approximately  
22dB gain.  
1 : 2  
V
AGC  
+1V  
SR00241  
Figure 5. Broadband Noise Optimization  
6
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5209  
+5V  
2:1 TURNS RATIO  
LC TUNED  
TRANSFORMER  
50Ω  
50Ω  
OUTPUT  
This circuit will exhibit about a 7dB  
noise figure with approximately  
22dB gain. Narrowband circuits  
have the advantage of greater stabil-  
ity, particularly when multiple de-  
vices are cascaded.  
5209  
SOURCE  
50Ω  
V
AGC  
+1V  
SR00242  
Figure 6. Narrowband Noise Optimization  
+5V  
MINI CIRCUITS  
4:1 BALUN OR  
EQUIVALENT  
50Ω  
50Ω  
SOURCE  
OUTPUT  
This circuit will exhibit about an 8dB  
noise figure with 24dB gain.  
5209  
1 : 4  
50Ω  
V
AGC  
+1V  
SR00243  
Figure 7. Broadband Gain Optimization  
+5V  
4:1 TURNS RATIO  
LC TUNED  
TRANSFORMER  
50Ω  
50Ω  
OUTPUT  
This circuit will exhibit approximate-  
ly an 8dB noise figure and 25dB gain.  
5209  
SOURCE  
50Ω  
V
AGC  
+1V  
SR00244  
Figure 8. Narrowband Gain Optimization  
+5V  
50Ω  
50Ω  
SOURCE  
OUTPUT  
50Ω  
The noisefigureofthisconfiguration  
will be approximately 15dB.  
5209  
50Ω  
V
AGC  
+1V  
SR00245  
Figure 9. Simple Amplifier Configuration  
+5V  
50Ω  
50Ω  
SOURCE  
OUTPUT  
With the 50source left untermi-  
5209  
nated, the noise figure is 9dB.  
50Ω  
V
AGC  
+1V  
SR00246  
Figure 10. Unterminated Configuration  
7
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5209  
+5V  
50Ω  
50Ω  
SOURCE  
OUTPUT  
5209  
Gain = 19dB + 20log  
V
10 AGC  
50Ω  
V
R2  
AGC  
= ƪ  
ƫ
1V  
VBG  
where V  
AGC  
R1 ) R2  
V
BG  
and is in units of Volts, for V  
AGC  
R
R
2
1
SR00247  
Figure 11. User-Programmable Fixed Gain Block  
+5V  
FULL CARRIER  
AM (DSB)  
50Ω  
RF INPUT  
50Ω  
OUTPUT  
5209  
V
SOURCE  
50Ω  
All harmonic distortion products will be  
at least -50dBc over the audio spectrum.  
AGC  
.5V  
+5V  
R
9R  
MODULATING  
SIGNAL  
SR00248  
Figure 12. AM Modulator  
50Ω  
CRYSTAL  
FILTER  
OUTPUT  
5209  
5209  
5209  
50Ω  
V
AGC  
V
V
AGC  
AGC  
The high input impedance to the NE5209 makes matching  
to crystal filters relatively easy. The total delta gain of this  
systemwillapproach80dB. IFfrequencieswellintotheUHF  
region can be configured with this type of architecture.  
GAIN CONTROL  
SIGNAL  
SR00249  
Figure 13. Receiver AGC IF Gain  
(+5V, unless otherwise noted)  
V
CC  
R
S
±
V
R
R
L
S
T
5209  
R
R
L
T
±
V
AGC  
SR00250  
Figure 14. Test Set-up 1 (Used for all Graphs)  
8
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5209  
10  
20  
19.5  
19  
V
= 5.5V  
= 5.0V  
= 4.5V  
CC  
CC  
CC  
9
8
7
6
5
4
3
2
1
0
V
V
5.5V  
5.0V  
4.5V  
18.5  
18  
17.5  
17  
R
= 0Ω  
= ∞  
S
L
T = 25°C  
R
R
= R = 50Ω  
S
L
R = ∞  
t
R = ∞  
t
16.5  
16  
V
= 1.1V  
AGC  
f = 10MHz  
See Test Setup 1  
DC Tested  
See test-setup 1  
15.5  
15  
0
0.2  
0.4  
0.6  
V
0.8  
1
1.2  
–100  
–50  
0
50  
100  
150  
Temperature (°C)  
(V)  
AGC  
SR00251  
SR00252  
Figure 15. Gain vs V  
and V  
Figure 17. Voltage Gain vs Temperature and V  
AGC  
CC  
CC  
-55°C  
+25°C  
10  
9
8
7
6
5
4
3
2
1
0
55  
50  
45  
40  
35  
30  
25  
20  
+125°C  
V
= 7.0V  
= 6.0V  
CC  
V
CC  
V
V
= 5.0V  
= 4.5V  
CC  
CC  
R
S
= R = 50Ω  
L
R
= ∞  
t
See test-setup 1  
See test-setup 1  
100  
–100  
–50  
0
50  
150  
Temperature (°C)  
0
0.2  
0.4  
0.6  
(V)  
0.8  
1
1.2  
V
AGC  
SR00253  
SR00254  
Figure 16. Insertion Gain vs V  
and Temperature  
Figure 18. Supply Current vs Temperature and V  
CC  
AGC  
9
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5209  
1.5  
1.45  
1.4  
5
4.5  
4
V
= 7.0V  
= 6.0V  
CC  
V
CC  
1.35  
3.5  
3
V
= 7.0V  
= 4.5V  
CC  
1.3  
1.25  
1.2  
V
CC  
V
= 5.0V  
= 4.5V  
CC  
CC  
2.5  
2
V
1.15  
1.1  
1.5  
1
DC Tested  
See test-setup 1  
DC Tested  
See test-setup 1  
1.05  
1
0.5  
0
–100  
–50  
0
50  
100  
150  
–100  
–50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
SR00255  
SR00256  
Figure 19. Input Resistance vs Temperature  
Figure 21. Output Bias Voltage vs Temperature and V  
CC  
2.5  
2
2.5  
2
V
= 7.0V  
CC  
CC  
= 5.0V  
CC  
V
V
V
= 6.0V  
1.5  
1.5  
= 4.5V  
CC  
V
= 1.1V  
AGC  
= 10kΩ  
1
0.5  
0
R
1
0.5  
0
L
DC Tested  
See test-setup 1  
DC Tested  
See test-setup 1  
–100  
–50  
0
50  
100  
150  
–100  
–50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
SR00257  
SR00258  
Figure 20. Input Bias Voltage vs Temperature  
Figure 22. DC Output Swing vs Temperature  
10  
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5209  
16  
14  
12  
10  
8
20  
10  
1.1V  
0.8V  
V
V
V
V
= 7.0V  
= 6.0V  
= 5.0V  
= 4.5V  
CC  
CC  
CC  
CC  
0.4V  
200mV  
100mV  
50mV  
25mV  
0
T = 25°C  
= 1.1V  
V
6
AGC  
= 50Ω  
–10  
R
t
f = 10MHz  
4
See Test Setup 1  
T = 25°C  
= R  
50Ω  
–20  
–30  
R
=
L
2
S
R
= 50Ω  
t
0
See Test  
Setup 1  
–100  
–50  
0
50  
100  
150  
10  
100  
1000 1500  
Temperature (°C)  
Frequency (MHz)  
SR00259  
SR00260  
Figure 23. Insertion Gain vs Frequency and V  
Figure 25. Insertion Gain vs Temperature and V  
AGC  
CC  
15  
0
5.5V  
4.5V  
–5  
10  
–10  
5
125°C  
–15  
T = 25°C  
25°C  
V
= 1.1V  
AGC  
0
R
= R = 50Ω  
-55°C  
S
L
R = 50Ω  
See Test Setup 1  
–20  
t
R
= R = 50Ω  
S L  
R
= 50Ω  
t
See Test Setup 1  
–5  
–25  
10  
100  
Frequency (MHz)  
10  
1000 1500  
100  
1000 1500  
Frequency (MHz)  
SR00261  
SR00262  
Figure 24. Insertion Gain vs Frequency and V  
Figure 26. Output Return Loss vs Frequency  
CC  
11  
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5209  
0
–10  
–20  
–30  
–40  
–50  
15  
10  
5
OUTPUT  
T = 25°C  
= R = 50Ω  
R
S
L
R
= 50Ω  
t
f = 100MHz  
See test-setup 1  
–60  
T = 25°C  
INPUT  
0
R
= R = 50Ω  
S
L
–70  
–80  
–90  
R = 50Ω  
t
See test-setup 1  
–5  
0
0.2  
0.4  
0.6  
(V)  
0.8  
1
V
Frequency (MHz)  
AGC  
SR00263  
OUTPUT  
INPUT  
SR00264  
Figure 27. Reverse Isolation vs Frequency  
Figure 29. Third-Order Intermodulation Intercept vs V  
AGC  
0
–5  
20  
18  
16  
14  
12  
10  
–10  
–15  
–20  
–25  
–30  
T = 25°C  
8
R
= R = 50Ω  
S
L
R
= 50Ω  
T = 25°C  
t
f = 100MHz  
See test-setup 1  
6
4
2
0
R
= R = 50Ω  
S
L
= ∞  
R
t
f = 50MHz  
See test-setup 1  
0
0.2  
0.4  
0.6  
(V)  
0.8  
1
0
0.2  
0.4  
V
0.6  
(V)  
0.8  
1
V
AGC  
AGC  
SR00265  
SR00266  
Figure 28. 1dB Gain Compression vs V  
Figure 30. Noise Figure vs V  
AGC  
AGC  
12  
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5209  
12  
10  
8
16  
14  
0Termination  
12  
on INB  
10  
50Termination  
8
6
4
2
0
6
on INB  
T = 25°C  
= 1.1V  
4
R
= R = 50Ω  
L
t
S
V
AGC  
= R = 50Ω  
R
= 50Ω  
R
S
L
R
= R = 10k  
1
2
R = on INA  
t
f = 100MHz  
2
See test-setup 1  
See Figure 10  
0
10  
100  
1000  
–60  
–10  
40  
90  
140  
Frequency (MHz)  
Temperature (°C)  
SR00267  
SR00268  
Figure 31. Noise Figure vs Frequency  
Figure 33. Fixed Gain vs Temperature  
1.4  
V
V
V
V
= 7.0V  
= 6.0V  
= 5.0V  
= 4.5V  
CC  
CC  
CC  
CC  
+VCC  
GND  
1.35  
1.3  
1.25  
1.2  
INA  
OUTA  
1.15  
1.1  
INB  
OUTB  
NE5209  
Bandgap Load = 2kΩ  
TOP VIEW - COMPONENT SIDE  
1.05  
1
–100  
–50  
0
50  
100  
150  
Temperature (°C)  
SR00269  
Figure 32. Bandgap Voltage vs Temperature and V  
CC  
TOP VIEW - SOLDER SIDE  
Figure 34. VGA AC Evaluation Board Layout  
SR00270  
13  
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5209  
+V  
OUT  
GND  
CC  
A
IN  
A
NE5209  
IN  
B
OUT  
B
TOP VIEW - COMPONENT SIDE  
TOP VIEW - SOLDER SIDE  
Figure 35. AGC Configuration Using Cascaded SA5209s - Layout  
SR00271  
AMP10101 / NE5219SO/DN8.90  
TOP VIEW - COMPONENT SIDE  
TOP VIEW - SOLDER SIDE  
SR00272  
Figure 36. VGA AC Evaluation Board Layout (DIP Package)  
14  
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5209  
SO16: plastic small outline package; 16 leads; body width 3.9 mm  
SOT109-1  
15  
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5209  
DIP16: plastic dual in-line package; 16 leads (300 mil)  
SOT38-4  
16  
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5209  
DEFINITIONS  
Data Sheet Identification  
Product Status  
Definition  
This data sheet contains the design target or goal specifications for product development. Specifications  
may change in any manner without notice.  
Objective Specification  
Formative or in Design  
This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to make changes at any time without notice in order to improve design  
and supply the best possible product.  
Preliminary Specification  
Product Specification  
Preproduction Product  
Full Production  
This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes  
at any time without notice, in order to improve design and supply the best possible product.  
Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products,  
including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright,  
or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask  
work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes  
only. PhilipsSemiconductorsmakesnorepresentationorwarrantythatsuchapplicationswillbesuitableforthespecifiedusewithoutfurthertesting  
or modification.  
LIFE SUPPORT APPLICATIONS  
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices,  
orsystemswheremalfunctionofaPhilipsSemiconductorsandPhilipsElectronicsNorthAmericaCorporationProductcanreasonablybeexpected  
to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips  
Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully  
indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Copyright Philips Electronics North America Corporation 1997  
All rights reserved. Printed in U.S.A.  
Sunnyvale, California 94088–3409  
Telephone 800-234-7381  
Philips  
Semiconductors  
it Q  
Philips Semiconductors Home  
ProducBuy  
MySemContac  
Product Information  
catalogonline  
Information as of 2003-04-22  
My.Semiconductors.COM.  
Your personal service from Use right mouse button to  
Philips Semiconductors.  
Please register now !  
Stay informed  
SA5209; Wideband  
variable gain  
amplifier  
download datasheet  
Download datasheet  
Products  
General description  
Features  
Applications  
Datasheet  
Buy online  
Parametrics  
Email/translate  
Block diagram  
Products & packages  
Support & tools  
Similar products  
MultiMarket  
Semiconductors  
Product Selector  
Catalog by  
Function  
to
General description  
The SA5209 represents a breakthrough in monolithic amplifier design featuring several innovations. This  
unique design has combined the advantages of a high speed bipolar process with the proven Gilbert  
architecture.  
Catalog by  
System  
Cross-reference  
Packages  
The SA5209 is a linear broadband RF amplifier whose gain is controlled by a single DC voltage. The  
amplifier runs off a single 5 volt supply and consumes only 40mA. The amplifier has high impedance (1k)  
differential inputs. The output is 50differential. Therefore, the 5209 can simultaneously perform AGC,  
impedance transformation, and the balun functions.  
End of Life  
information  
Distributors Go  
Here!  
The dynamic range is excellent over a wide range of gain setting. Furthermore, the noise performance  
degrades at a comparatively slow rate as the gain is reduced. This is an important feature when building  
linear AGC systems.  
Models  
SoC solutions  
to
Features  
Gain to 1.5GHz  
850MHz bandwidth  
High impedance differential input  
50differential output  
Single 5V power supply  
0 - 1V gain control pin  
>60dB gain control range at 200MHz  
26dB maximum gain differential  
Exceptional V  
/ V  
linearity  
CONTROL  
GAIN  
7dB noise figure minimum  
Full ESD protection  
Easily cascadable  
 
to
Applications  
Linear AGC systems  
Very linear AM modulator  
RF balun  
Cable TV multi-purpose amplifier  
Fiber optic AGC  
RADAR  
User programmable fixed gain block  
Video  
Satellite receivers  
Cellular communications  
AN177: An Overview Of The Phase-Locked Loop (PLL) (date 01-Dec-88)  
Down  
Down  
AN178: Modeling The PLL (date 01-Dec-88)  
to
Datasheet  
Type  
number  
Title  
Publication  
release date  
Datasheet status  
Page  
count  
File  
size  
(kB)  
Datasheet  
SA5209  
Wideband  
variable gain  
amplifier  
11/7/1997  
Product  
specification  
17  
211  
Download  
Down  
to
Parametrics  
Type  
number  
Package Operating Dual GBW  
Input  
PSRR(mV/V) Single  
supply(V  
temp.(Cel)  
product(MHz) noise(pA/sqrt(Hz))  
)
DC  
SOT109  
(SO16)  
SA5209D  
-40~85  
yes 850 2.5  
45  
4.5 to 7  
to
Products, packages, availability and ordering  
Type  
North  
Ordering code Marking/Packing Package Device status Buy online  
IC packing info  
number  
American (12NC)  
type  
Down  
number  
SOT109  
(SO16)  
Standard Marking *  
Tube (Signetics)  
Full production  
Full production  
SA5209D SA5209D  
9350 307 00602  
-
-
order this  
order this  
Standard Marking *  
9350 307 00623 Reel Pack, SMD,  
13" (Signetics)  
SOT109  
(SO16)  
SA5209D-  
T
Products in the above table are all in production. Some variants are discontinued; click here for information  
on these variants.  
to
Similar products  
SA5209 links to the similar products page containing an overview of products that are similar in  
Produ  
function or related to the type number(s) as listed on this page. The similar products page includes products  
from the same catalog tree(s), relevant selection guides and products from the same functional category.  
to
Email/translate this product information  
Email this product information.  
Translate this product information page from English to:  
Translate  
French  
The English language is the official language used at the semiconductors.philips.com website and webpages.  
All translations on this website are created through the use of Google Language Tools and are provided for  
convenience purposes only. No rights can be derived from any translation on this website.  
About this Web Site  
| Copyright © 2003 Koninklijke Philips N.V. All rights reserved. | Privacy Policy |  
| Koninklijke Philips N.V. | Access to and use of this Web Site is subject to the following Terms of Use. |  

相关型号:

935030750602

IC SPECIALTY TELECOM CIRCUIT, PDSO8, 3.90 MM, SOT-96-1, MS-012AA, PLASTIC, SO-8, Telecom IC:Other
NXP

935030750623

IC SPECIALTY TELECOM CIRCUIT, PDSO8, 3.90 MM, SOT-96-1, MS-012AA, PLASTIC, SO-8, Telecom IC:Other
NXP

935030770602

IC SPECIALTY TELECOM CIRCUIT, PDIP8, 0.300 INCH, SOT-97-1, MO-001AN, PLASTIC, DIP-8, Telecom IC:Other
NXP

935031300602

F/FAST SERIES, QUAD 2-INPUT NOR GATE, PDSO14, 3.90 MM, PLASTIC, SOT-108-1, SO-14
NXP

935031310602

F/FAST SERIES, QUAD 2-INPUT NOR GATE, PDIP14, 0.300 INCH, PLASTIC, SOT-27-1, DIP-14
NXP

935031320602

F/FAST SERIES, QUAD 2-INPUT OR GATE, PDSO14, 3.90 MM, PLASTIC, SOT-108-1, MS-012AB, SO-14
NXP

935031320623

F/FAST SERIES, QUAD 2-INPUT OR GATE, PDSO14, 3.90 MM, PLASTIC, SOT-108-1, MS-012AB, SO-14
NXP

935031330602

F/FAST SERIES, QUAD 2-INPUT OR GATE, PDIP14, 0.300 INCH, PLASTIC, SOT-27-1, MO-001AA, DIP-14
NXP

935031340602

IC F/FAST SERIES, DUAL POSITIVE EDGE TRIGGERED D FLIP-FLOP, COMPLEMENTARY OUTPUT, PDSO14, 3.90 MM, PLASTIC, MS-012AB, SOT-108-1, SO-14, FF/Latch
NXP

935031340623

IC F/FAST SERIES, DUAL POSITIVE EDGE TRIGGERED D FLIP-FLOP, COMPLEMENTARY OUTPUT, PDSO14, 3.90 MM, PLASTIC, MS-012AB, SOT-108-1, SO-14, FF/Latch
NXP

935031370602

IC F/FAST SERIES, OCTAL 1-BIT REGISTERED TRANSCEIVER, TRUE OUTPUT, PDIP24, 0.300 INCH, PLASTIC, MS-001AF, SOT-222-1, DIP-24, Bus Driver/Transceiver
NXP

935031380602

F/FAST SERIES, DUAL POSITIVE EDGE TRIGGERED D FLIP-FLOP, COMPLEMENTARY OUTPUT, PDSO14, 3.90 MM, PLASTIC, MS-012AB, SOT-108-1, SO-14
NXP