935286885112 [NXP]

Audio Amplifier;
935286885112
型号: 935286885112
厂家: NXP    NXP
描述:

Audio Amplifier

放大器 商用集成电路
文件: 总40页 (文件大小:229K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDA8922C  
2 × 75 W class-D power amplifier  
Rev. 01 — 7 September 2009  
Product data sheet  
1. General description  
The TDA8922C is a high-efficiency Class D audio power amplifier. Typical output power is  
2 × 75 W with a speaker load impedance of 6 .  
The TDA8922C is available in both HSOP24 and DBS23P power packages. The amplifier  
operates over a wide supply voltage range from ±12.5 V to ±32.5 V and features low  
quiescent current consumption.  
2. Features  
I Pin compatible with TDA8950/20C for both HSOP24 and DBS23P packages  
I Symmetrical operating supply voltage range from ±12.5 V to ±32.5 V  
I Stereo full differential inputs, can be used as stereo Single-Ended (SE) or mono  
Bridge-Tied Load (BTL) amplifier  
I High output power in typical applications:  
N SE 2 × 75 W, RL = 6 (VDD = 30 V; VSS = 30 V)  
N SE 2 × 60 W, RL = 8 (VDD = 30 V; VSS = 30 V)  
N BTL 1 × 155 W, RL = 8 (VDD = 25 V; VSS = 25 V)  
I Low noise  
I Smooth pop noise-free start-up and switch off  
I Zero dead time switching  
I Fixed frequency  
I Internal or external clock  
I High efficiency  
I Low quiescent current  
I Advanced protection strategy: voltage protection and output current limiting  
I Thermal FoldBack (TFB)  
I Fixed gain of 30 dB in SE and 36 dB in BTL applications  
I Fully short-circuit proof across load  
I BD modulation in BTL configuration  
3. Applications  
I DVD  
I Mini and micro receiver  
I Home Theater In A Box (HTIAB) system  
I High-power speaker system  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
4. Quick reference data  
Table 1.  
Quick reference data  
Symbol Parameter  
General  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
[2]  
VDD  
VSS  
supply voltage  
Operating mode  
Operating mode  
12.5 30  
32.5  
32.5  
70  
V
V
V
negative supply voltage  
12.5 30  
Vth(ovp) overvoltage protection threshold  
voltage  
VDD VSS  
65  
-
Iq(tot)  
total quiescent current  
Operating mode; no load; no filter;  
no RC-snubber network connected  
-
40  
70  
-
mA  
W
Stereo single-ended configuration  
Po output power  
[3]  
[3]  
Tj = 85 °C; LLC = 22 µH; CLC = 680 nF (see  
Figure 10); RL = 6 ; THD + N = 10 %;  
-
-
75  
VDD = 30 V; VSS = 30 V  
Mono bridge-tied load configuration  
Po output power  
Tj = 85 °C; LLC = 22 µH; CLC = 680 nF (see  
Figure 10); RL = 8 ; THD + N = 10 %;  
155  
-
W
VDD = 25 V; VSS = 25 V  
[1] VDD is the supply voltage on pins VDDP1, VDDP2 and VDDA.  
[2] VSS is the supply voltage on pins VSSP1, VSSP2, VSSA and VSSD.  
[3] Output power is measured indirectly; based on RDSon measurement; see Section 13.3.  
5. Ordering information  
Table 2.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
TDA8922CJ  
DBS23P  
HSOP24  
plastic DIL-bent-SIL power package; 23 leads (straight lead length 3.2 mm) SOT411-1  
TDA8922CTH  
plastic, heatsink small outline package; 24 leads; low stand-off height  
SOT566-3  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
2 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
6. Block diagram  
VDDA  
3 (20)  
n.c.  
10 (4)  
STABI PROT  
18 (12) 13 (7)  
VDDP2  
23 (16)  
VDDP1  
14 (8)  
15 (9)  
BOOT1  
OUT1  
9 (3)  
8 (2)  
IN1M  
IN1P  
DRIVER  
HIGH  
PWM  
MODULATOR  
INPUT  
STAGE  
SWITCH1  
CONTROL  
AND  
16 (10)  
HANDSHAKE  
DRIVER  
LOW  
mute  
11 (5)  
7 (1)  
n.c.  
OSC  
STABI  
V
V
SSP1  
TDA8922CTH  
(TDA8922CJ)  
TEMPERATURE SENSOR  
CURRENT PROTECTION  
VOLTAGE PROTECTION  
OSCILLATOR  
MANAGER  
6 (23)  
DDP2  
22 (15)  
MODE  
MODE  
mute  
BOOT2  
OUT2  
2 (19)  
SGND  
DRIVER  
HIGH  
CONTROL  
AND  
21 (14)  
5 (22)  
4 (21)  
SWITCH2  
IN2P  
IN2M  
HANDSHAKE  
INPUT  
STAGE  
PWM  
DRIVER  
LOW  
MODULATOR  
1 (18)  
12 (6)  
n.c.  
24 (17)  
VSSD  
19 (-)  
n.c.  
17 (11)  
VSSP1  
20 (13)  
010aaa549  
VSSA  
VSSP2  
Pin numbers in brackets refer to type number TDA8922CJ.  
Fig 1. Block diagram  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
3 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
7. Pinning information  
7.1 Pinning  
1
2
OSC  
IN1P  
3
IN1M  
4
n.c.  
5
n.c.  
6
n.c.  
7
PROT  
VDDP1  
BOOT1  
OUT1  
VSSP1  
STABI  
VSSP2  
OUT2  
BOOT2  
VDDP2  
VSSD  
VSSA  
SGND  
VDDA  
IN2M  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
1
2
VSSD  
VDDP2  
BOOT2  
OUT2  
VSSA  
SGND  
VDDA  
IN2M  
IN2P  
MODE  
OSC  
IN1P  
IN1M  
n.c.  
TDA8922CJ  
3
4
5
VSSP2  
n.c.  
6
TDA8922CTH  
7
STABI  
VSSP1  
OUT1  
8
9
10  
11  
12  
BOOT1  
VDDP1  
PROT  
n.c.  
IN2P  
n.c.  
MODE  
010aaa546  
010aaa547  
Fig 2. Pin configuration TDA8922CTH  
Fig 3. Pin configuration TDA8922CJ  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
4 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
7.2 Pin description  
Table 3.  
Symbol Pin  
TDA8922CTH TDA8922CJ  
Pin description  
Description  
VSSA  
SGND  
VDDA  
IN2M  
1
2
3
4
5
6
18  
19  
20  
21  
22  
23  
negative analog supply voltage  
signal ground  
positive analog supply voltage  
channel 2 negative audio input  
channel 2 positive audio input  
IN2P  
MODE  
mode selection input: Standby, Mute or Operating  
mode  
OSC  
IN1P  
IN1M  
n.c.  
7
1
oscillator frequency adjustment or tracking input  
channel 1 positive audio input  
channel 1 negative audio input  
not connected  
8
2
9
3
10  
11  
12  
13  
4
n.c.  
5
not connected  
n.c.  
6
not connected  
PROT  
7
decoupling capacitor for protection (OCP)  
channel 1 positive power supply voltage  
channel 1 bootstrap capacitor  
channel 1 PWM output  
VDDP1 14  
BOOT1 15  
8
9
OUT1  
16  
10  
11  
12  
-
VSSP1 17  
channel 1 negative power supply voltage  
decoupling of internal stabilizer for logic supply  
not connected  
STABI  
n.c.  
18  
19  
VSSP2 20  
OUT2 21  
13  
14  
15  
16  
17  
channel 2 negative power supply voltage  
channel 2 PWM output  
BOOT2 22  
VDDP2 23  
channel 2 bootstrap capacitor  
channel 2 positive power supply voltage  
negative digital supply voltage  
VSSD  
24  
8. Functional description  
8.1 General  
The TDA8922C is a two-channel audio power amplifier that uses Class D technology.  
For each channel, the audio input signal is converted into a digital Pulse Width Modulation  
(PWM) signal using an analog input stage and a PWM modulator; see Figure 1. To drive  
the output power transistors, the digital PWM signal is fed to a control and handshake  
block and to high- and low-side driver circuits. This level-shifts the low-power digital PWM  
signal from a logic level to a high-power PWM signal switching between the main supply  
lines.  
A second order low-pass filter converts the PWM signal to an analog audio signal that can  
be used to drive a loudspeaker.  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
5 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
The TDA8922C single-chip Class D amplifier contains high-power switches, drivers,  
timing and handshaking between the power switches, along with some control logic. To  
ensure maximum system robustness, an advanced protection strategy has been  
implemented to provide overvoltage, overtemperature and overcurrent protection.  
Each of the two audio channels contains a PWM modulator, an analog feedback loop and  
a differential input stage. The TDA8922C also contains circuits common to both channels  
such as the oscillator, all reference sources, the mode interface and a digital timing  
manager.  
The two independent amplifier channels feature high output power, high efficiency, low  
distortion and low quiescent currents. They can be connected in the following  
configurations:  
Stereo Single-Ended (SE)  
Mono Bridge-Tied Load (BTL)  
The amplifier system can be switched to one of three operating modes using pin MODE:  
Standby mode: featuring very low quiescent current  
Mute mode: the amplifier is operational but the audio signal at the output is  
suppressed by disabling the voltage-to-current (VI) converter input stages  
Operating mode: the amplifier is fully operational, de-muted and can deliver an output  
signal  
A slowly rising voltage should be applied (e.g. via an RC network) to pin MODE to ensure  
pop noise-free start-up. The bias-current setting of the (VI converter) input stages is  
related to the voltage on the MODE pin.  
In Mute mode, the bias-current setting of the VI converters is zero (VI converters are  
disabled). In Operating mode, the bias current is at a maximum. The time constant  
required to apply the DC output offset voltage gradually between Mute and Operating  
mode levels can be generated using an RC network connected to pin MODE. An example  
of a circuit for driving the MODE pin, optimized for optimal pop noise performance, is  
shown in Figure 4. If the capacitor was omitted, the very short switching time constant  
could result in audible pop noises being generated at start-up (depending on the DC  
output offset voltage and loudspeaker used).  
+5 V  
5.6 kΩ  
470 Ω  
MODE  
TDA8922C  
5.6 kΩ  
10 µF  
mute/  
operating  
standby/  
operating  
S1  
S2  
SGND  
010aaa583  
Fig 4. Example of mode selection circuit  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
6 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
To ensure the coupling capacitors at the inputs (CIN in Figure 10) are fully charged before  
the outputs start switching, a delay is inserted during the transition from Mute to Operating  
mode. An overview of the start-up timing is provided in Figure 5.  
audio output  
(1)  
modulated PWM  
V
MODE  
50 %  
duty cycle  
operating  
> 4.2 V  
< 2.9 V  
mute  
2.1 V < V  
MODE  
standby  
0 V (SGND)  
time  
100 ms  
> 350 ms  
50 ms  
audio output  
(1)  
modulated PWM  
V
MODE  
50 %  
duty cycle  
operating  
> 4.2 V  
< 2.9 V  
mute  
2.1 V < V  
MODE  
standby  
0 V (SGND)  
time  
100 ms  
> 350 ms  
50 ms  
010aaa584  
(1) First 14 pulse down.  
Upper diagram: When switching from Standby to Mute, there is a delay of approximately 100 ms  
before the output starts switching. The audio signal will become available once VMODE reaches the  
Operating mode level (see Table 8), but not earlier than 150 ms after switching to Mute. To start-up  
pop noise-free, it is recommended that the time constant applied to pin MODE be at least 350 ms  
for the transition between Mute and Operating modes.  
Lower diagram: When switching directly from Standby to Operating mode, there is a delay of  
100 ms before the outputs start switching. The audio signal becomes available after a second  
delay of 50 ms. To start-up pop noise-free, it is recommended that the time-constant applied to pin  
MODE be at least 500 ms for the transition between Standby and Operating modes.  
Fig 5. Timing on mode selection input pin MODE  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
7 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
8.2 Pulse-width modulation frequency  
The amplifier output signal is a PWM signal with a typical carrier frequency of between  
250 kHz and 450 kHz. A second order LC demodulation filter on the output converts the  
PWM signal into an analog audio signal. The carrier frequency is determined by an  
external resistor, ROSC, connected between pins OSC and VSSA. The optimal carrier  
frequency setting is between 250 kHz and 450 kHz.  
The carrier frequency is set to 345 kHz by connecting an external 30 kresistor between  
pins OSC and VSSA. See Table 9 for more details.  
If two or more Class D amplifiers are used in the same audio application, it is  
recommended that an external clock circuit be used with all devices (see Section 13.4).  
This will ensure that they operate at the same switching frequency, thus avoiding beat  
tones (if the switching frequencies are different, audible interference known as ‘beat tones’  
can be generated).  
8.3 Protection  
The following protection circuits are incorporated into the TDA8922C:  
Thermal protection:  
Thermal FoldBack (TFB)  
OverTemperature Protection (OTP)  
OverCurrent Protection (OCP)  
Window Protection (WP)  
Supply voltage protection:  
UnderVoltage Protection (UVP)  
OverVoltage Protection (OVP)  
UnBalance Protection (UBP)  
How the device reacts to a fault conditions depends on which protection circuit has been  
activated.  
8.3.1 Thermal protection  
The TDA8922C employes an advanced thermal protection strategy. A TFB function  
gradually reduces the output power within a defined temperature range. If the temperature  
continues to rise, OTP is activated to shut down the device completely.  
8.3.1.1 Thermal FoldBack (TFB)  
If the junction temperature (Tj) exceeds the thermal foldback activation threshold, the gain  
is gradually reduced. This reduces the output signal amplitude and the power dissipation,  
eventually stabilizing the temperature.  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
8 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
TFB is specified at the thermal foldback activation temperature Tact(th_fold) where the  
closed-loop voltage gain is reduced by 6 dB. The TFB range is:  
T
act(th_fold) 5 °C < Tact(th_fold) < Tact(th_prot)  
The value of Tact(th_fold) for the TDA8922C is approximately 153 °C; see Table 8 for more  
details.  
8.3.1.2 OverTemperature Protection (OTP)  
If TFB fails to stabilize the temperature and the junction temperature continues to rise, the  
amplifier will shut down as soon as the temperature reaches the thermal protection  
activation threshold, Tact(th_prot). The amplifier will resume switching approximately 100 ms  
after the temperature drops below Tact(th_prot)  
.
The thermal behavior is illustrated in Figure 6.  
Gain  
(dB)  
30 dB  
24 dB  
0 dB  
T
T (°C)  
j
(T  
5°C)  
act(th_prot)  
act(th_fold)  
T
act(th_fold)  
1
2
3
001aah656  
(1) Duty cycle of PWM output modulated according to the audio input signal.  
(2) Duty cycle of PWM output reduced due to TFB.  
(3) Amplifier is switched off due to OTP.  
Fig 6. Behavior of TFB and OTP  
8.3.2 OverCurrent Protection (OCP)  
In order to guarantee the robustness of the TDA8922C, the maximum output current  
delivered at the output stages is limited. OCP is built in for each output power switch.  
OCP is activated when the current in one of the power transistors exceeds the OCP  
threshold (IORM = 6 A) due, for example, to a short-circuit to a supply line or across the  
load.  
The TDA8922C amplifier distinguishes between low-ohmic short-circuit conditions and  
other overcurrent conditions such as a dynamic impedance drop at the loudspeakers. The  
impedance threshold (Zth) depends on the supply voltage.  
How the amplifier reacts to a short circuit depends on the short-circuit impedance:  
Short-circuit impedance > Zth: the amplifier limits the maximum output current to IORM  
but the amplifier does not shut down the PWM outputs. Effectively, this results in a  
clipped output signal across the load (behavior very similar to voltage clipping).  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
9 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
Short-circuit impedance < Zth: the amplifier limits the maximum output current to IORM  
and at the same time discharges the capacitor on pin PROT. When CPROT is fully  
discharged, the amplifier shuts down completely and an internal timer is started.  
The value of the protection capacitor (CPROT) connected to pin PROT can be between  
10 pF and 220 pF (typically 47 pF). While OCP is activated, an internal current source is  
enabled that will discharge CPROT  
.
When OCP is activated, the active power transistor is turned off and the other power  
transistor is turned on to reduce the current (CPROT is partially discharged). Normal  
operation is resumed at the next switching cycle (CPROT is recharged). CPROT is partially  
discharge each time OCP is activated during a switching cycle. If the fault condition that  
caused OCP to be activated persists long enough to fully discharge CPROT, the amplifier  
will switch off completely and a restart sequence will be initiated.  
After a fixed period of 100 ms, the amplifier will attempt to switch on again, but will fail if  
the output current still exceeds the OCP threshold. The amplifier will continue trying to  
switch on every 100 ms. The average power dissipation will be low in this situation  
because the duty cycle is short.  
Switching the amplifier on and off in this way will generate unwanted ‘audio holes’. This  
can be avoided by increasing the value of CPROT (up to 220 pF) to delay amplifier  
switch-off. CPROT will also prevent the amplifier switching off due to transient  
frequency-dependent impedance drops at the speakers.  
The amplifier will switch on, and remain in Operating mode, once the overcurrent  
condition has been removed. OCP ensures the TDA8922C amplifier is fully protected  
against short-circuit conditions while avoiding audio holes.  
Table 4.  
Type  
Current limiting behavior during low output impedance conditions at different  
values of CPROT  
[1]  
VDD/VSS VI (mV, p-p) f (Hz) CPROT (pF) PWM output stops  
(V)  
Short  
Short  
Short  
(Zth = 0 ) (Zth = 0.5 ) (Zth = 1 )  
TDA8922C +29.5/  
500  
20  
1000 10  
20 15  
10  
yes  
yes  
yes  
yes  
no  
yes  
yes  
yes  
no  
yes  
yes  
yes  
no  
29.5  
1000 15  
1000 220  
no  
no  
[1] Tested using three samples and an external clock.  
8.3.3 Window Protection (WP)  
Window Protection (WP) checks the conditions at the output terminals of the power stage  
and is activated:  
During the start-up sequence, when the TDA8922C is switching from Standby to  
Mute.  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
10 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
Start-up will be interrupted If a short-circuit is detected between one of the output  
terminals and pin VDDP1/VDDP2 or VSSP1/VSSP2. The TDA8922C will wait until the  
short-circuit to the supply lines has been removed before resuming start-up. The short  
circuit will not generate large currents because the short-circuit check is carried out  
before the power stages are enabled.  
When the amplifier is shut down completely because the OCP circuit has detected a  
short circuit to one of the supply lines.  
WP will be activated when the amplifier attempts to restart after 100 ms (see  
Section 8.3.2). The amplifier will not start-up again until the short circuit to the supply  
lines has been removed.  
8.3.4 Supply voltage protection  
If the supply voltage drops below the minimum supply voltage threshold, Vth(uvp), the UVP  
circuit will be activated and the system will shut down. Once the supply voltage rises  
above Vth(uvp) again, the system will restart after a delay of 100 ms.  
If the supply voltage exceeds the maximum supply voltage threshold, Vth(ovp), the OVP  
circuit will be activated and the power stages will be shut down. When the supply voltage  
drops below Vth(ovp) again, the system will restart after a delay of 100 ms.  
An additional UnBalance Protection (UBP) circuit compares the positive analog supply  
voltage (on pin VDDA) with the negative analog supply voltage (on pin VSSA) and is  
triggered if the voltage difference exceeds a factor of two (VDDA > 2 × |VSSA| OR |VSSA| >  
2 × VDDA). When the supply voltage difference drops below the unbalance threshold,  
Vth(ubp), the system restarts after 100 ms.  
An overview of all protection circuits and their respective effects on the output signal is  
provided in Table 5.  
Table 5.  
Overview of TDA8922C protection circuits  
Protection name Complete  
shutdown  
Restart directly Restart after  
100 ms  
Pin PROT  
detection  
TFB[1]  
OTP  
OCP  
WP  
N
N
N
N
N
Y
N
N
N
N
Y
N
N[2]  
Y
Y[2]  
Y[2]  
N[3]  
Y
Y
N
UVP  
OVP  
UBP  
N
Y
Y
N
Y
Y
N
Y
[1] Amplifier gain depends on the junction temperature and heatsink size.  
[2] The amplifier shuts down completely only if the short-circuit impedance is below the impedance threshold  
(Zth; see Section 8.3.2). In all other cases, current limiting results in a clipped output signal.  
[3] Fault condition detected during any Standby-to-Mute transition or during a restart after OCP has been  
activated (short-circuit to one of the supply lines).  
8.4 Differential audio inputs  
The audio inputs are fully differential ensuring a high common mode rejection ratio and  
maximum flexibility in the application.  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
11 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
Stereo operation: to avoid acoustical phase differences, the inputs should be in  
anti-phase and the speakers should be connected in anti-phase. This configuration:  
minimizes power supply peak current  
minimizes supply pumping effects, especially at low audio frequencies  
Mono BTL operation: the inputs must be connected in anti-parallel. The output of one  
channel is inverted and the speaker load is connected between the two outputs of the  
TDA8922C. In practice (because of the OCP threshold) the output power can be  
boosted to twice the output power that can be achieved with the single-ended  
configuration.  
The input configuration for a mono BTL application is illustrated in Figure 7.  
OUT1  
IN1P  
IN1M  
V
SGND  
in  
IN2P  
IN2M  
OUT2  
power stage  
mbl466  
Fig 7. Input configuration for mono BTL application  
9. Limiting values  
Table 6. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
V  
Parameter  
Conditions  
DD VSS; Standby, Mute modes  
Min  
-
Max  
Unit  
V
voltage difference  
V
65  
IORM  
Tstg  
repetitive peak output current maximum output current limiting  
storage temperature  
6
-
A
55  
40  
-
+150  
+85  
°C  
°C  
°C  
V
Tamb  
Tj  
ambient temperature  
junction temperature  
150  
VMODE  
VOSC  
VI  
voltage on pin MODE  
voltage on pin OSC  
input voltage  
referenced to SGND  
0
6
0
SGND + 6  
+5  
V
referenced to SGND  
5  
V
pins IN1P, IN1M, IN2P and IN2M  
VPROT  
VESD  
voltage on pin PROT  
referenced to voltage on pin VSSD  
0
12  
V
electrostatic discharge voltage Human Body Model (HBM)  
Charged Device Model (CDM)  
2000 +2000  
500 +500  
V
V
Iq(tot)  
total quiescent current  
Operating mode; no load; no filter  
no RC-snubber network connected  
-
70  
mA  
VPWM(p-p) peak-to-peak PWM voltage  
on pins OUT1 and OUT2  
-
120  
V
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
12 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
10. Thermal characteristics  
Table 7.  
Symbol  
Rth(j-a)  
Thermal characteristics  
Parameter  
Conditions  
Typ  
40  
Unit  
K/W  
K/W  
thermal resistance from junction to ambient in free air  
thermal resistance from junction to case  
Rth(j-c)  
1.5  
11. Static characteristics  
Table 8.  
Static characteristics  
VDD = 30 V; VSS = 30 V; fosc = 350 kHz; Tamb = 25 °C; unless otherwise specified.  
Symbol  
Supply  
VDD  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
[2]  
supply voltage  
Operating mode  
12.5  
30  
32.5  
32.5  
70  
V
V
V
VSS  
negative supply voltage  
Operating mode  
12.5 30  
Vth(ovp)  
overvoltage protection threshold  
voltage  
Standby, Mute modes  
65  
-
VDD VSS  
Vth(uvp)  
undervoltage protection threshold  
voltage  
VDD VSS  
20  
-
25  
V
[3]  
Vth(ubp)  
Iq(tot)  
unbalance protection threshold voltage  
total quiescent current  
-
-
33  
40  
-
%
Operating mode; no load; no  
filter; no RC-snubber network  
connected  
70  
mA  
Istb  
standby current  
-
480  
650  
µA  
Mode select input; pin MODE  
[4]  
[4][5]  
[4][5]  
[4][5]  
VMODE  
voltage on pin MODE  
referenced to SGND  
Standby mode  
Mute mode  
0
-
6
V
0
-
0.8  
2.9  
6
V
2.1  
4.2  
-
-
V
Operating mode  
VI = 5.5 V  
-
V
II  
input current  
110  
150  
µA  
Audio inputs; pins IN1M, IN1P, IN2P and IN2M  
VI input voltage  
Amplifier outputs; pins OUT1 and OUT2  
VO(offset) output offset voltage  
[4]  
DC input  
-
0
-
V
SE; Mute mode  
-
-
-
-
-
-
-
-
±25  
mV  
mV  
mV  
mV  
[6]  
[6]  
SE; Operating mode  
BTL; Mute mode  
±150  
±30  
BTL; Operating mode  
±210  
Stabilizer output; pin STABI  
VO(STABI)  
output voltage on pin STABI  
Mute and Operating modes;  
with respect to VSSD  
9.3  
-
9.8  
10.3  
-
V
Temperature protection  
Tact(th_prot) thermal protection activation  
temperature  
154  
°C  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
13 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
Table 8.  
Static characteristics …continued  
VDD = 30 V; VSS = 30 V; fosc = 350 kHz; Tamb = 25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[7]  
Tact(th_fold) thermal foldback activation  
temperature  
closed loop SE voltage gain  
reduced with 6 dB  
-
153  
-
°C  
[1] VDD is the supply voltage on pins VDDP1, VDDP2 and VDDA.  
[2] VSS is the supply voltage on pins VSSP1, VSSP2, VSSA and VSSD.  
[3] Unbalance protection activated when VDDA > 2 × |VSSA| OR |VSSA| > 2 × VDDA  
[4] With respect to SGND (0 V).  
.
[5] The transition between Standby and Mute modes has hysteresis, while the slope of the transition between Mute and Operating modes is  
determined by the time-constant of the RC network on pin MODE; see Figure 8.  
[6] DC output offset voltage is gradually applied to the output during the transition between Mute and Operating modes. The slope caused  
by any DC output offset is determined by the time-constant of the RC network on pin MODE.  
[7] At a junction temperature of approximately Tact(th_fold) 5 °C, gain reduction commences and at a junction temperature of approximately  
Tact(th_prot), the amplifier switches off.  
slope is directly related to the time-constant  
of the RC network on the MODE pin  
V
(V)  
O
V
O(offset)(on)  
Standby  
Mute  
On  
V
O(offset)(mute)  
0
0.8  
2.1  
2.9  
4.2  
5.5  
V
(V)  
MODE  
010aaa585  
Fig 8.  
Behavior of mode selection pin MODE  
12. Dynamic characteristics  
12.1 Switching characteristics  
Table 9.  
Dynamic characteristics  
VDD = 30 V; VSS = 30 V; Tamb = 25 °C; unless otherwise specified.  
Symbol Parameter  
Internal oscillator  
Conditions  
Min  
Typ  
Max  
Unit  
fosc(typ) typical oscillator frequency ROSC = 30.0 kΩ  
fosc oscillator frequency  
External oscillator input or frequency tracking; pin OSC  
290  
250  
345  
-
365  
450  
kHz  
kHz  
VOSC  
Vtrip  
voltage on pin OSC  
trip voltage  
HIGH-level  
SGND + 4.5 SGND + 5  
SGND + 6  
V
-
SGND + 2.5 -  
900  
V
[1]  
ftrack  
tracking frequency  
500  
-
kHz  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
14 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
Table 9.  
Dynamic characteristics …continued  
VDD = 30 V; VSS = 30 V; Tamb = 25 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
-
Unit  
MΩ  
pF  
Zi  
input impedance  
1
-
-
-
-
Ci  
tr(i)  
input capacitance  
input rise time  
15  
[2]  
from SGCN to SGND + 5 V  
-
100  
ns  
[1] When using an external oscillator, the frequency ftrack (500 kHz minimum, 900 kHz maximum) will result in a PWM frequency fosc (250  
kHz minimum, 450 kHz maximum) due to the internal clock divider; see Section 8.2.  
[2] When tr(i) > 100 ns, the output noise floor will increase.  
12.2 Stereo SE configuration characteristics  
Table 10. Dynamic characteristics  
VDD = 30 V; VSS = 30 V; RL = 6 ; fi = 1 kHz; fosc = 350 kHz; Rs(L) < 0.1 [1]; Tamb = 25 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min Typ Max Unit  
[2]  
Po  
output power  
L = 22 µH; CLC = 680 nF; Tj = 85 °C  
THD = 0.5 %; RL = 6 Ω  
THD = 10 %; RL = 6 Ω  
Po = 1 W; fi = 1 kHz  
-
58  
75  
-
-
W
W
%
%
dB  
-
[3]  
[3]  
THD  
total harmonic distortion  
-
0.02 -  
0.05 -  
Po = 1 W; fi = 6 kHz  
-
Gv(cl)  
closed-loop voltage gain  
29  
30  
31  
SVRR  
supply voltage rejection ratio  
between pins VDDPn and SGND  
Operating mode; fi = 100 Hz  
Operating mode; fi = 1 kHz  
Mute mode; fi = 100 Hz  
[4]  
[4]  
[4]  
[4]  
-
-
-
-
72  
-
-
-
-
dB  
dB  
dB  
dB  
55  
80  
Standby mode; fi = 100 Hz  
between pins VSSPn and SGND  
Operating mode; fi = 100 Hz  
Operating mode; fi = 1 kHz  
Mute mode; fi = 100 Hz  
116  
[4]  
[4]  
[4]  
[4]  
-
72  
60  
-
-
-
-
-
dB  
dB  
dB  
dB  
kΩ  
-
-
72  
Standby mode; fi = 100 Hz  
-
116  
63  
Zi  
input impedance  
between one of the input pins and  
SGND  
45  
[5]  
Vn(o)  
output noise voltage  
Operating mode; Rs = 0 ; inputs  
-
160  
-
µV  
shorted  
[6]  
[7]  
Mute mode  
-
-
-
-
-
-
-
-
-
-
85  
70  
-
-
-
1
-
-
-
-
-
-
-
µV  
dB  
dB  
dB  
dB  
%
αcs  
channel separation  
|∆Gv|  
αmute  
CMRR  
ηpo  
voltage gain difference  
mute attenuation  
[8]  
fi = 1 kHz; Vi = 2 V (RMS)  
Vi(CM) = 1 V (RMS)  
SE, RL = 6 Ω  
75  
75  
88  
90  
90  
380  
320  
common mode rejection ratio  
output power efficiency  
SE, RL = 8 Ω  
%
BTL, RL = 16 Ω  
%
[9]  
[9]  
RDSon(hs) high-side drain-source on-state resistance  
RDSon(ls) low-side drain-source on-state resistance  
mΩ  
mΩ  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
15 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
[1] Rs(L) is the series resistance of the low-pass LC filter inductor used in the application.  
[2] Output power is measured indirectly; based on RDSon measurement; see Section 13.3.  
[3] THD measured between 22 Hz and 20 kHz, using AES17 20 kHz brick wall filter; max. limit is guaranteed but may not be 100 % tested.  
[4] Vripple = Vripple(max) = 2 V (p-p); measured independently between VDDPn and SGND and between VSSPn and SGND.  
[5] 22 Hz to 20 kHz, using AES17 20 kHz brick wall filter.  
[6] 22 Hz to 20 kHz, using AES17 20 kHz brick wall filter.  
[7] Po = 1 W; fi = 1 kHz.  
[8] Vi = Vi(max) = 1 V (RMS); fi = 1 kHz.  
[9] Leads and bond wires included.  
12.3 Mono BTL application characteristics  
Table 11. Dynamic characteristics  
VDD = 25 V; VSS = 25 V; RL = 8 ; fi = 1 kHz; fosc = 350 kHz; Rs(L) < 0.1 [1]; Tamb = 25 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min Typ Max Unit  
[2]  
Po  
output power  
Tj = 85 °C; LLC = 22 µH; CLC = 680 nF  
(see Figure 10)  
THD = 0.5 %; RL = 8 Ω  
THD = 10 %; RL = 8 Ω  
Po = 1 W; fi = 1 kHz  
-
-
-
-
-
115  
155  
-
-
W
W
%
%
dB  
[3]  
[3]  
THD  
total harmonic distortion  
0.02 -  
0.05 -  
Po = 1 W; fi = 6 kHz  
Gv(cl)  
closed-loop voltage gain  
36  
-
SVRR  
supply voltage rejection ratio  
between pin VDDPn and SGND  
Operating mode; fi = 100 Hz  
Operating mode; fi = 1 kHz  
Mute mode; fi = 100 Hz  
[4]  
[4]  
[4]  
[4]  
-
-
-
-
72  
-
-
-
-
dB  
dB  
dB  
dB  
64  
86  
Standby mode; fi = 100 Hz  
between pin VSSPn and SGND  
Operating mode; fi = 100 Hz  
Operating mode; fi = 1 kHz  
Mute mode; fi = 100 Hz  
100  
[4]  
[4]  
[4]  
[4]  
-
72  
72  
86  
100  
63  
-
-
-
-
-
dB  
dB  
dB  
dB  
kΩ  
-
-
Standby mode; fi = 100 Hz  
-
Zi  
input impedance  
measured between one of the input  
pins and SGND  
45  
[5]  
[6]  
[7]  
Vn(o)  
output noise voltage  
Operating mode; Rs = 0 Ω  
Mute mode  
-
-
-
-
190  
45  
-
-
-
-
µV  
µV  
dB  
dB  
αmute  
mute attenuation  
fi = 1 kHz; Vi = 2 V (RMS)  
Vi(CM) = 1 V (RMS)  
75  
CMRR  
common mode rejection ratio  
75  
[1] Rs(L) is the series resistance of the low-pass LC filter inductor used in the application.  
[2] Output power is measured indirectly; based on RDSon measurement; see Section 13.3.  
[3] THD measured between 22 Hz and 20 kHz, using AES17 20 kHz brick wall filter; max. limit is guaranteed but may not be 100 % tested.  
[4] Vripple = Vripple(max) = 2 V (p-p).  
[5] 22 Hz to 20 kHz, using an AES17 20 kHz brick wall filter; low noise due to BD modulation.  
[6] 22 Hz to 20 kHz, using an AES17 20 kHz brick wall filter.  
[7] Vi = Vi(max) = 1 V (RMS); fi = 1 kHz.  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
16 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
13. Application information  
13.1 Mono BTL application  
When using the power amplifier in a mono BTL application, the inputs of the two channels  
must be connected in anti-parallel and the phase of one of the inputs must be inverted;  
(see Figure 7). In principle, the loudspeaker can be connected between the outputs of the  
two single-ended demodulation filters.  
13.2 Pin MODE  
To ensure a pop noise-free start-up, an RC time-constant must be applied to pin MODE.  
The bias-current setting of the VI converter input is directly related to the voltage on pin  
MODE. In turn the bias-current setting of the VI converters is directly related to the DC  
output offset voltage. A slow dV/dt on pin MODE results in a slow dV/dt for the DC output  
offset voltage, ensuring a pop noise-free transition between Mute and Operating modes. A  
time-constant of 500 ms is sufficient to guarantee pop noise-free start-up; see Figure 4,  
Figure 5 and Figure 8 for more information.  
13.3 Estimating the output power  
13.3.1 Single-Ended (SE)  
Maximum output power:  
2
R
L
× 0.5(V  
V ) × (1 t  
× 0.5 f  
)
osc  
--------------------------------------------------------  
DD  
SS  
w(min)  
R + R  
+ R  
s(L)  
L
DSon(hs)  
P
=
(1)  
(2)  
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
2R  
o(0.5%)  
L
Maximum output current is internally limited to 6 A:  
0.5(V  
V ) × (1 t  
× 0.5 f  
)
osc  
DD  
SS  
w(min)  
I
=
-----------------------------------------------------------------------------------------------------  
R + R + R  
o(peak)  
L
DSon(hs)  
s(L)  
Where:  
Po(0.5 %): output power at the onset of clipping  
RL: load impedance  
RDSon(hs): high-side RDSon of power stage output DMOS (temperature dependent)  
Rs(L): series impedance of the filter coil  
tw(min): minimum pulse width (typical 100 ns, temperature dependent)  
fosc: oscillator frequency  
Remark: Note that Io(peak) should be less than 6 A (Section 8.3.2). Io(peak) is the sum of the  
current through the load and the ripple current. The value of the ripple current is  
dependent on the coil inductance and the voltage drop across the coil.  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
17 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
13.3.2 Bridge-Tied Load (BTL)  
Maximum output power:  
2
R
L
× (V  
V ) × (1 t  
× 0.5 f  
)
osc  
-------------------------------------------------------------------  
DD  
SS  
w(min)  
R + R + R  
L
DSon(hs)  
DSon(ls)  
P
=
(3)  
(4)  
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
2R  
o(0.5%)  
L
Maximum output current internally limited to 6 A:  
(V  
V ) × (1 t  
× 0.5 f  
)
osc  
DD  
SS  
w(min)  
I
=
----------------------------------------------------------------------------------------------  
R + (R + R ) + 2R  
o(peak)  
L
DSon(hs)  
DSon(ls)  
s(L)  
Where:  
Po(0.5 %): output power at the onset of clipping  
RL: load impedance  
RDSon(hs): high-side RDSon of power stage output DMOS (temperature dependent)  
RDSon(ls): low-side RDSon of power stage output DMOS (temperature dependent)  
Rs(L): series impedance of the filter coil  
VP: single-sided supply voltage or 0.5 × (VDD + |VSS|)  
tw(min): minimum pulse width (typical 100 ns, temperature dependent)  
fosc: oscillator frequency  
Remark: Note that Io(peak) should be less than 6 A; see Section 8.3.2. Io(peak) is the sum of  
the current through the load and the ripple current. The value of the ripple current is  
dependent on the coil inductance and the voltage drop across the coil.  
13.4 External clock  
To ensure duty cycle-independent operation, the external clock frequency is divided by  
two internally. The external clock frequency is therefore twice the internal clock frequency  
(typically 2 × 350 kHz = 700 kHz).  
If several Class D amplifiers are used in a single application, it is recommended that all  
the devices run at the same switching frequency. This can be achieved by connecting the  
OSC pins together and feeding them from an external oscillator. When using an external  
oscillator, it is necessary to force pin OSC to a DC level above SGND. This disables the  
internal oscillator and causes the PWM to switch at half the external clock frequency.  
The internal oscillator requires an external resistor ROSC, connected between pin OSC  
and pin VSSA. ROSC must be removed when using an external oscillator.  
The noise generated by the internal oscillator is supply voltage dependent. An external  
low-noise oscillator is recommended for low-noise applications running at high supply  
voltages.  
13.5 Heatsink requirements  
An external heatsink must be connected to the TDA8922C.  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
18 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
Equation 5 defines the relationship between maximum power dissipation before activation  
of TFB and total thermal resistance from junction to ambient.  
(5)  
T j Tamb  
Rth  
=
-----------------------  
(ja)  
P
Power dissipation (P) is determined by the efficiency of the TDA8922C. Efficiency  
measured as a function of output power is given in Figure 20. Power dissipation can be  
derived as a function of output power as shown in Figure 19.  
mbl469  
30  
P
(W)  
(1)  
20  
(2)  
10  
(3)  
(4)  
(5)  
0
0
20  
40  
60  
80  
T
100  
(°C)  
amb  
(1) Rth(j-a) = 5 K/W.  
(2) Rth(j-a) = 10 K/W.  
(3) Rth(j-a) = 15 K/W.  
(4) Rth(j-a) = 20 K/W.  
(5) Rth(j-a) = 35 K/W.  
Fig 9. Derating curves for power dissipation as a function of maximum ambient  
temperature  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
19 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
In the following example, a heatsink calculation is made for an 8 BTL application with a  
±30 V supply:  
The audio signal has a crest factor of 10 (the ratio between peak power and average  
power (20 dB)); this means that the average output power is 110 of the peak power.  
Thus, the peak RMS output power level is the 0.5 % THD level, i.e. 110 W.  
The average power is then 110 × 110 W = 11 W.  
The dissipated power at an output power of 11 W is approximately 5 W.  
When the maximum expected ambient temperature is 50 °C, the total Rth(j-a) becomes  
(150 50)  
= 20 K/W  
-------------------------  
5
Rth(j-a) = Rth(j-c) + Rth(c-h) + Rth(h-a)  
Rth(j-c) (thermal resistance from junction to case) = 1.5 K/W  
Rth(c-h) (thermal resistance from case to heatsink) = 0.5 K/W to 1 K/W (dependent on  
mounting)  
So the thermal resistance between heatsink and ambient temperature is:  
Rth(h-a) (thermal resistance from heatsink to ambient) = 20 (1.5 + 1) = 17.5 K/W  
The derating curves for power dissipation (for several Rth(j-a) values) are illustrated in  
Figure 9. A maximum junction temperature Tj = 150 °C is taken into account. The  
maximum allowable power dissipation for a given heatsink size can be derived, or the  
required heatsink size can be determined, at a required power dissipation level; see  
Figure 9.  
13.6 Pumping effects  
In a typical stereo single-ended configuration, the TDA8922C is supplied by a symmetrical  
supply voltage (e.g. VDD = 30 V and VSS = 30 V). When the amplifier is used in an SE  
configuration, a ‘pumping effect’ can occur. During one switching interval, energy is taken  
from one supply (e.g. VDD), while a part of that energy is returned to the other supply line  
(e.g. VSS) and vice versa. When the voltage supply source cannot sink energy, the voltage  
across the output capacitors of that voltage supply source increases and the supply  
voltage is pumped to higher levels. The voltage increase caused by the pumping effect  
depends on:  
Speaker impedance  
Supply voltage  
Audio signal frequency  
Value of supply line decoupling capacitors  
Source and sink currents of other channels  
Pumping effects should be minimized to prevent the malfunctioning of the audio amplifier  
and/or the voltage supply source. Amplifier malfunction due to the pumping effect can  
trigger UVP, OVP or UBP.  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
20 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
The most effective way to avoid pumping effects is to connect the TDA8922C in a mono  
full-bridge configuration. In the case of stereo single-ended applications, it is advised to  
connect the inputs in anti-phase (see Section 8.4 on page 11). The power supply can also  
be adapted; for example, by increasing the values of the supply line decoupling  
capacitors.  
13.7 Application schematic  
Notes on the application schematic:  
Connect a solid ground plane around the switching amplifier to avoid emissions  
Place 100 nF capacitors as close as possible to the TDA8922C power supply pins  
Connect the heatsink to the ground plane or to VSSPn using a 100 nF capacitor  
Use a thermally conductive, electrically non-conductive, Sil-Pad between the  
TDA8922C heat spreader and the external heatsink  
The heat spreader of the TDA8922C is internally connected to VSSD  
Use differential inputs for the most effective system level audio performance with  
unbalanced signal sources. In case of hum due to floating inputs, connect the  
shielding or source ground to the amplifier ground.  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
21 of 40  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
+
5 V  
R
VDDA  
5.6 k  
VDDA  
VDDP  
10 Ω  
470 Ω  
mode control  
VDDP  
GND  
SINGLE-ENDED  
OUTPUT FILTER VALUES  
C
VDDP  
470 µF  
+
5 V  
C
22 µF  
VP  
LOAD  
L
LC  
C
LC  
10 µF  
470 kΩ  
470 kΩ  
10 kΩ  
5.6 kΩ  
C
VSSP  
470 µF  
6 to 8 Ω  
4 to 8 Ω  
33 µH  
22 µH  
330 nF  
470 nF  
VSSP  
VSSP  
VSSA  
10 kΩ  
mute/  
operating  
standby/  
operating  
R
VSSA  
T1  
HFE > 80  
T2  
HFE > 80  
10 Ω  
SGND  
mode  
control  
VDDP VSSP  
VSSA  
R
C
C
VP  
C
VSSP  
VDDP  
VDDP  
OSC  
30 kΩ  
C
SN  
220 pF  
100 nF  
100 nF  
100 nF  
R
SN  
n.c. n.c. n.c.  
10 Ω  
C
SN  
220 pF  
C
IN  
4
5
6
1
23  
8
11  
+
IN1P  
IN1M  
VSSP  
2
3
L
LC  
OUT1  
470 nF  
10  
9
IN1  
C
IN  
R
22 Ω  
ZO  
C
BO  
+
BOOT1  
C
LC  
470 nF  
C
ZO  
15 nF  
100 nF  
SGND  
IN2P  
19  
22  
TDA8922CJ  
C
BO  
BOOT2  
OUT2  
C
IN  
15  
14  
15 nF  
L
LC  
470 nF  
IN2  
C
IN  
+
IN2M  
VDDP  
C
R
22 Ω  
21  
20  
ZO  
470 nF  
C
LC  
SN  
18  
12  
7
17  
16  
13  
R
SN  
220 pF  
C
ZO  
+
100 nF  
10 Ω  
C
SN  
220 pF  
C
C
C
C
C
VDDA  
VSSA  
VDDP  
VP  
VSSP  
VSSP  
(1)  
C
PROT  
C
STAB  
470 nF  
220 nF  
220 nF  
100 nF  
100 nF  
100 nF  
VDDA  
VSSA  
V
V
VDDP VSSP  
010aaa548  
SSP  
SSA  
(1) The value of CPROT can be in the range 10 pF to 220 pF (see Section 8.3.2)  
Fig 10. Typical application diagram  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
13.8 Curves measured in reference design (demonstration board)  
010aaa565  
10  
THD+N  
(%)  
1
(1)  
1  
10  
(2)  
(3)  
2  
10  
3  
10  
2  
1  
2
3
10  
10  
1
10  
10  
10  
P
(W)  
o
VDD = 30 V, VSS = 30 V, fosc = 350 kHz (external oscillator), 2 × 6 SE configuration.  
(1) fi = 6 kHz.  
(2) fi = 1 kHz.  
(3) fi = 100 Hz.  
Fig 11. THD + N as a function of output power, SE configuration with 2 × 6 load  
010aaa566  
10  
THD+N  
(%)  
1
(1)  
1  
10  
(2)  
2  
10  
(3)  
3  
10  
2  
1  
2
3
10  
10  
1
10  
10  
10  
P
(W)  
o
VDD = 30 V, VSS = 30 V, fosc = 350 kHz (external oscillator), 2 × 8 SE configuration.  
(1) fi = 6 kHz.  
(2) fi = 1 kHz.  
(3) fi = 100 Hz.  
Fig 12. THD + N as a function of output power, SE configuration with 2 × 8 load  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
23 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
010aaa567  
10  
THD+N  
(%)  
1
1  
10  
(1)  
(2)  
(3)  
2  
10  
3  
10  
2  
1  
2
3
10  
10  
1
10  
10  
10  
P
(W)  
o
VDD = 25 V, VSS = 25 V, fosc = 350 kHz (external oscillator), 1 × 8 BTL configuration.  
(1) fi = 6 kHz.  
(2) fi = 1 kHz.  
(3) fi = 100 Hz.  
Fig 13. THD + N as a function of output power, BTL configuration with 1 × 8 load  
010aaa568  
10  
THD+N  
(%)  
1
1  
10  
(1)  
2  
10  
(2)  
3  
10  
2
3
4
5
10  
10  
10  
10  
10  
f (Hz)  
i
VDD = 30 V, VSS = 30 V, fosc = 350 kHz (external oscillator), 2 × 6 SE configuration.  
(1) Po = 1 W.  
(2) Po = 10 W.  
Fig 14. THD + N as a function of frequency, SE configuration with 2 × 6 load  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
24 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
010aaa569  
10  
THD+N  
(%)  
1
1  
10  
(1)  
(2)  
2  
10  
3  
10  
2
3
4
5
10  
10  
10  
10  
10  
f (Hz)  
i
VDD = 30 V, VSS = 30 V, fosc = 350 kHz (external oscillator), 2 × 8 SE configuration.  
(1) Po = 1 W.  
(2) Po = 10 W.  
Fig 15. THD + N as a function of frequency, SE configuration with 2 × 8 load  
010aaa570  
10  
THD+N  
(%)  
1
1  
10  
(1)  
2  
10  
(2)  
3  
10  
2
3
4
5
10  
10  
10  
10  
10  
f (Hz)  
i
VDD = 25 V, VSS = 25 V, fosc = 350 kHz (external oscillator), 1 × 8 BTL configuration.  
(1) Po = 1 W.  
(2) Po = 10 W.  
Fig 16. THD + N as a function of frequency, BTL configuration with 1 × 8 load  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
25 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
010aaa571  
0
α
cs  
(dB)  
20  
40  
60  
(1)  
(2)  
80  
100  
2
3
4
5
10  
10  
10  
10  
10  
fi (Hz)  
VDD = 30 V, VSS = 30 V, fosc = 350 kHz (external oscillator), 2 × 6 SE configuration.  
1 W and 10 W respectively.  
Fig 17. Channel separation as a function of frequency, SE configuration with 2 × 6 load  
010aaa572  
0
α
cs  
(dB)  
20  
40  
60  
(1)  
(2)  
80  
100  
2
3
4
5
10  
10  
10  
10  
10  
fi (Hz)  
VDD = 30 V, VSS = 30 V, fosc = 350 kHz (external oscillator), 2 × 8 SE configuration.  
1 W and 10 W respectively.  
Fig 18. Channel separation as a function of frequency, SE configuration with 2 × 8 load  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
26 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
010aaa573  
30  
20  
10  
0
P
(W  
D
(1)  
(2)  
(3)  
2  
1  
1
2
3
10  
10  
1
10  
10  
10  
P
(W)  
o
fi = 1 kHz; fosc = 350 kHz (external oscillator).  
(1) 2 × 6 SE configuration; VDD = 32 V; VSS = 32 V.  
(2) 2 × 8 SE configuration; VDD = 32 V; VSS = 32 V.  
(3) 1 × 8 BTL configuration; VDD = 25 V; VSS = 25 V.  
Fig 19. Power dissipation as a function of output power per channel, SE configuration  
010aaa574  
(3)  
100  
(1)  
η
(2)  
(%)  
80  
60  
40  
20  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
P
(W)  
o
fi = 1 kHz, fosc = 350 kHz (external oscillator).  
(1) 2 × 8 SE configuration; VDD = 32 V; VSS = 32 V.  
(2) 2 × 6 SE configuration; VDD = 32 V; VSS = 32 V.  
(3) 1 × 8 BTL configuration; VDD = 25 V; VSS = 25 V.  
Fig 20. Efficiency as a function of output power per channel, SE configuration  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
27 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
010aaa575  
(1)  
100  
P
o
(W)  
80  
(2)  
(3)  
60  
40  
20  
0
(4)  
V
V
(V)  
(V)  
12.5  
12.5  
17.5  
17.5  
22.5  
22.5  
27.5  
27.5  
32.5  
32.5  
DD  
SS  
Infinite heat sink used.  
fi = 1 kHz, fosc = 350 kHz (external oscillator).  
(1) THD + N = 10 %, 6 .  
(2) THD + N = 10 %, 8 Ω  
(3) THD + N = 0.5 %, 6 Ω  
(4) THD + N = 0.5 %, 8 .  
Fig 21. Output power as a function of supply voltage, SE configuration  
010aaa576  
200  
P
o
(W)  
160  
(1)  
(2)  
120  
80  
40  
0
V
V
(V)  
(V)  
12.5  
12.5  
15  
15  
17.5  
17.5  
20  
20  
22.5  
22.5  
25  
25  
27.5  
27.5  
DD  
SS  
Infinite heat sink used.  
fi = 1 kHz, fosc = 350 kHz (external oscillator).  
(1) THD + N = 10 %, 8 .  
(2) THD + N = 0.5 %, 8 .  
Fig 22. Output power as a function of supply voltage, BTL configuration  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
28 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
010aaa577  
(1)  
40  
Gv(cl)  
(dB)  
(2)  
(3)  
30  
20  
10  
2
3
4
5
10  
10  
10  
10  
10  
fi (Hz)  
VDD = 30 V, VSS = 30 V, fosc = 350 kHz (external oscillator), Vi = 100 mV, Ci = 330 pF.  
(1) 1 × 8 BTL configuration; LLC = 15 µH, CLC = 680 nF, VDD = 25 V, VSS = 25 V.  
(2) 2 × 8 SE configuration; LLC = 33 µH, CLC = 330 nF, VDD = 30 V, VSS = 30 V.  
(3) 2 × 6 SE configuration; LLC = 33 µH, CLC = 330 nF, VDD = 30 V; VSS = 30 V.  
Fig 23. Closed-loop voltage gain as a function of frequency  
010aaa578  
20  
SVRR  
(dB)  
(1)  
60  
(2)  
(3)  
100  
140  
2
3
4
5
10  
10  
10  
10  
10  
f (Hz)  
i
Ripple on VDD, short on input pins.  
VDD = 30 V, VSS = 30 V, Vripple = 2 V (p-p), 2 × 8 SE configuration.  
(1) Operating mode.  
(2) Mute mode.  
(3) Standby mode.  
Fig 24. SVRR as a function of ripple frequency, ripple on VDD  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
29 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
010aaa579  
20  
SVRR  
(dB)  
(1)  
(2)  
60  
100  
140  
(3)  
2
3
4
5
10  
10  
10  
10  
10  
f (Hz)  
i
Ripple on VSS, short on input pins.  
VDD = 30 V, VSS = 30 V, Vripple = 2 V (p-p), 2 × 8 SE configuration.  
(1) Mute mode.  
(2) Operating mode.  
(3) Standby mode.  
Fig 25. SVRR as a function of ripple frequency, ripple on VSS  
010aaa586  
0
SVRR  
(dB)  
40  
(1)  
80  
(2)  
(3)  
120  
2
3
4
5
10  
10  
10  
10  
10  
fi (Hz)  
Ripple on VDD, short on input pins.  
VDD = 25 V, VSS = 25 V, Vripple = 2 V (p-p), 1 × 8 BTL configuration.  
(1) Operating mode.  
(2) Mute mode.  
(3) Standby mode.  
Fig 26. SVRR as a function of ripple frequency, ripple on VDD  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
30 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
010aaa587  
0
SVRR  
(dB)  
40  
(1)  
(2)  
80  
(3)  
120  
2
3
4
5
10  
10  
10  
10  
10  
fi (Hz)  
Ripple on VSS, short on input pins.  
VDD = 25 V, VSS = 25 V, Vripple = 2 V (p-p), 1 × 8 BTL configuration.  
(1) Operating mode.  
(2) Mute mode.  
(3) Standby mode.  
Fig 27. SVRR as a function of ripple frequency, ripple on VSS  
010aaa580  
2
10  
V
o
(V)  
1
2  
10  
10  
10  
4  
6  
(1)  
(2)  
0
2
4
6
V
(V)  
MODE  
VDD = 30 V, VSS = 30 V, Vi = 100 mV.  
(1) Mode voltage down.  
(2) Mode voltage up.  
Fig 28. Output voltage as a function of mode voltage  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
31 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
010aaa581  
50  
α
mute  
(dB)  
60  
70  
80  
90  
(1)  
(2)  
2
3
4
5
10  
10  
10  
10  
10  
fi (Hz)  
VDD = 30 V, VSS = 30 V, fosc = 350 kHz (external oscillator), Vi = 2 V (RMS).  
(1) 2 × 6 SE configuration.  
(2) 2 × 8 SE configuration.  
Fig 29. Mute attenuation as a function of frequency  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
32 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
14. Package outline  
DBS23P: plastic DIL-bent-SIL power package; 23 leads (straight lead length 3.2 mm)  
SOT411-1  
non-concave  
D
h
x
D
E
h
view B: mounting base side  
A
2
d
A
A
5
4
β
E
2
B
j
E
E
1
L
2
L
L
3
1
L
c
2
Q
v M  
1
23  
e
m
e
w
M
1
Z
b
p
e
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
(1)  
(1)  
UNIT A  
A
A
b
c
D
d
D
E
e
e
e
E
E
E
j
L
L
L
L
3
m
Q
v
w
x
β
Z
2
4
5
p
h
1
2
h
1
2
1
2
4.6 1.15 1.65 0.75 0.55 30.4 28.0  
4.3 0.85 1.35 0.60 0.35 29.9 27.5  
12.2  
11.8  
10.15 6.2 1.85 3.6 14 10.7 2.4  
9.85 5.8 1.65 2.8 13 9.9 1.6  
1.43  
0.78  
2.1  
1.8  
6
mm  
12  
2.54 1.27 5.08  
4.3  
0.6 0.25 0.03 45°  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
98-02-20  
02-04-24  
SOT411-1  
Fig 30. Package outline SOT411-1 (DBS23P)  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
33 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
HSOP24: plastic, heatsink small outline package; 24 leads; low stand-off height  
SOT566-3  
E
A
D
x
X
c
y
E
H
2
v
M
A
E
D
1
D
2
12  
1
pin 1 index  
Q
A
A
2
(A )  
3
E
1
A
4
θ
L
p
detail X  
24  
13  
w
M
Z
b
p
e
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
max.  
(1)  
(2)  
(2)  
A
A
A
b
c
D
D
D
E
E
1
E
e
H
E
L
p
Q
v
w
x
y
Z
θ
UNIT  
2
3
4
p
1
2
2
8°  
0°  
+0.08 0.53 0.32  
0.04 0.40 0.23  
16.0 13.0 1.1 11.1 6.2  
15.8 12.6 0.9 10.9 5.8  
2.9  
2.5  
14.5 1.1  
13.9 0.8  
1.7  
1.5  
2.7  
2.2  
3.5  
3.2  
mm  
1
3.5  
0.35  
0.25 0.25 0.03 0.07  
Notes  
1. Limits per individual lead.  
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
03-02-18  
03-07-23  
SOT566-3  
Fig 31. Package outline SOT566-3 (HSOP24)  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
34 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
15. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
15.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
15.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
15.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
35 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
15.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 32) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 12 and 13  
Table 12. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 13. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 32.  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
36 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 32. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
16. Soldering of through-hole mount packages  
16.1 Introduction to soldering through-hole mount packages  
This text gives a very brief insight into wave, dip and manual soldering.  
Wave soldering is the preferred method for mounting of through-hole mount IC packages  
on a printed-circuit board.  
16.2 Soldering by dipping or by solder wave  
Driven by legislation and environmental forces the worldwide use of lead-free solder  
pastes is increasing. Typical dwell time of the leads in the wave ranges from  
3 seconds to 4 seconds at 250 °C or 265 °C, depending on solder material applied, SnPb  
or Pb-free respectively.  
The total contact time of successive solder waves must not exceed 5 seconds.  
The device may be mounted up to the seating plane, but the temperature of the plastic  
body must not exceed the specified maximum storage temperature (Tstg(max)). If the  
printed-circuit board has been pre-heated, forced cooling may be necessary immediately  
after soldering to keep the temperature within the permissible limit.  
16.3 Manual soldering  
Apply the soldering iron (24 V or less) to the lead(s) of the package, either below the  
seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is  
less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is  
between 300 °C and 400 °C, contact may be up to 5 seconds.  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
37 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
16.4 Package related soldering information  
Table 14. Suitability of through-hole mount IC packages for dipping and wave soldering  
Package  
Soldering method  
Dipping  
Wave  
CPGA, HCPGA  
-
suitable  
DBS, DIP, HDIP, RDBS, SDIP, SIL  
PMFP[2]  
suitable  
-
suitable[1]  
not suitable  
[1] For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit  
board.  
[2] For PMFP packages hot bar soldering or manual soldering is suitable.  
17. Revision history  
Table 15. Revision history  
Document ID  
Release date  
20090907  
Data sheet status  
Change notice  
Supersedes  
TDA8922C_1  
Product data sheet  
-
-
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
38 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
18. Legal information  
18.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
18.2 Definitions  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
18.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
18.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
19. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
TDA8922C_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 7 September 2009  
39 of 40  
TDA8922C  
NXP Semiconductors  
2 × 75 W class-D power amplifier  
20. Contents  
1
2
3
4
5
6
General description . . . . . . . . . . . . . . . . . . . . . . 1  
16  
16.1  
Soldering of through-hole mount packages. 37  
Introduction to soldering through-hole  
mount packages. . . . . . . . . . . . . . . . . . . . . . . 37  
Soldering by dipping or by solder wave . . . . . 37  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 37  
Package related soldering information. . . . . . 38  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
16.2  
16.3  
16.4  
17  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 38  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
18  
Legal information . . . . . . . . . . . . . . . . . . . . . . 39  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 39  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
18.1  
18.2  
18.3  
18.4  
8
8.1  
8.2  
8.3  
8.3.1  
8.3.1.1  
8.3.1.2  
8.3.2  
8.3.3  
8.3.4  
8.4  
Functional description . . . . . . . . . . . . . . . . . . . 5  
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pulse-width modulation frequency . . . . . . . . . . 8  
Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal protection . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal FoldBack (TFB) . . . . . . . . . . . . . . . . . 8  
OverTemperature Protection (OTP) . . . . . . . . . 9  
OverCurrent Protection (OCP) . . . . . . . . . . . . . 9  
Window Protection (WP). . . . . . . . . . . . . . . . . 10  
Supply voltage protection . . . . . . . . . . . . . . . . 11  
Differential audio inputs . . . . . . . . . . . . . . . . . 11  
19  
20  
Contact information . . . . . . . . . . . . . . . . . . . . 39  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 12  
Thermal characteristics. . . . . . . . . . . . . . . . . . 13  
Static characteristics. . . . . . . . . . . . . . . . . . . . 13  
10  
11  
12  
Dynamic characteristics . . . . . . . . . . . . . . . . . 14  
Switching characteristics . . . . . . . . . . . . . . . . 14  
Stereo SE configuration characteristics . . . . . 15  
Mono BTL application characteristics. . . . . . . 16  
12.1  
12.2  
12.3  
13  
Application information. . . . . . . . . . . . . . . . . . 17  
Mono BTL application. . . . . . . . . . . . . . . . . . . 17  
Pin MODE. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Estimating the output power . . . . . . . . . . . . . . 17  
Single-Ended (SE) . . . . . . . . . . . . . . . . . . . . . 17  
Bridge-Tied Load (BTL) . . . . . . . . . . . . . . . . . 18  
External clock . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Heatsink requirements . . . . . . . . . . . . . . . . . . 18  
Pumping effects . . . . . . . . . . . . . . . . . . . . . . . 20  
Application schematic. . . . . . . . . . . . . . . . . . . 21  
Curves measured in reference design  
13.1  
13.2  
13.3  
13.3.1  
13.3.2  
13.4  
13.5  
13.6  
13.7  
13.8  
(demonstration board) . . . . . . . . . . . . . . . . . . 23  
14  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 33  
15  
Soldering of SMD packages . . . . . . . . . . . . . . 35  
Introduction to soldering . . . . . . . . . . . . . . . . . 35  
Wave and reflow soldering . . . . . . . . . . . . . . . 35  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 35  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 36  
15.1  
15.2  
15.3  
15.4  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2009.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 7 September 2009  
Document identifier: TDA8922C_1  

相关型号:

935286924112

HC/UH SERIES, 8-BIT BIDIRECTIONAL PARALLEL IN PARALLEL OUT SHIFT REGISTER, TRUE OUTPUT, PDSO20, PLASTIC, TSSOP1-20
NXP

935286924118

HC/UH SERIES, 8-BIT BIDIRECTIONAL PARALLEL IN PARALLEL OUT SHIFT REGISTER, TRUE OUTPUT, PDSO20, PLASTIC, TSSOP1-20
NXP

935286926112

LIQUID CRYSTAL DISPLAY DRIVER, PDSO40, PLASTIC, SOT158-1, VSOP-40
NXP

935286926118

LIQUID CRYSTAL DISPLAY DRIVER, PDSO40, PLASTIC, SOT158-1, VSOP-40
NXP

935286926518

LIQUID CRYSTAL DISPLAY DRIVER, PDSO40, PLASTIC, SOT158-1, VSOP-40
NXP

935286939118

16 I/O, PIA-GENERAL PURPOSE, PDSO24, 4.40 MM, PLASTIC, MO-153, SOT355-1, TSSOP-24
NXP

935286982551

32-BIT, FLASH, 70MHz, RISC MICROCONTROLLER, PQCC48, 6 X 6 MM, 0.85 MM HEIGHT, PLASTIC, SOT778-3, HVQFN-48
NXP

935286984551

32-BIT, FLASH, 266MHz, RISC MICROCONTROLLER, PBGA296, 15 X 15 MM, 0.70 MM PITCH, PLASTIC, MO-216, SOT1048-1, TFBGA-296
NXP

935287028512

70W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO36, PLASTIC, SOT851-2, HSOP-36
NXP

935287058118

IC LED DISPLAY DRIVER, PQCC28, 6 X 6 MM, 0.85 MM HIGHT, PLASTIC, MO-220, SOT788-1, HVQFN-28, Display Driver
NXP

935287129118

LIQUID CRYSTAL DISPLAY DRIVER, PDSO48, 6.10 MM, PLASTIC, MO-153, SOT-362-1, TSSOP-48
NXP

935287234118

LED DISPLAY DRIVER, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT313-2, LQFP-48
NXP