935309458574 [NXP]

Microcontroller;
935309458574
型号: 935309458574
厂家: NXP    NXP
描述:

Microcontroller

微控制器 外围集成电路
文件: 总54页 (文件大小:1309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: QFN_Addendum  
Rev. 0, 07/2014  
Freescale Semiconductor  
Addendum  
Addendum for New QFN  
Package Migration  
This addendum provides the changes to the 98A case outline numbers for products covered in this book.  
Case outlines were changed because of the migration from gold wire to copper wire in some packages. See  
the table below for the old (gold wire) package versus the new (copper wire) package.  
To view the new drawing, go to Freescale.com and search on the new 98A package number for your  
device.  
For more information about QFN package use, see EB806: Electrical Connection Recommendations for  
the Exposed Pad on QFN and DFN Packages.  
© Freescale Semiconductor, Inc., 2014. All rights reserved.  
Original (gold wire)  
package document number package document number  
Current (copper wire)  
Part Number  
Package Description  
48 QFN  
MC68HC908JW32  
MC9S08AC16  
MC9S908AC60  
MC9S08AC128  
MC9S08AW60  
MC9S08GB60A  
MC9S08GT16A  
MC9S08JM16  
MC9S08JM60  
MC9S08LL16  
MC9S08QE128  
MC9S08QE32  
MC9S08RG60  
MCF51CN128  
MC9RS08LA8  
MC9S08GT16A  
MC9S908QE32  
MC9S908QE8  
MC9S08JS16  
MC9S08QB8  
98ARH99048A  
98ASA00466D  
48 QFN  
32 QFN  
32 QFN  
32 QFN  
24 QFN  
98ARL10606D  
98ARH99035A  
98ARE10566D  
98ASA00071D  
98ARL10608D  
98ASA00466D  
98ASA00473D  
98ASA00473D  
98ASA00736D  
98ASA00734D  
MC9S08QG8  
MC9S08SH8  
24 QFN  
24 QFN  
24 QFN  
16 QFN  
8 DFN  
98ARL10605D  
98ARE10714D  
98ASA00087D  
98ARE10614D  
98ARL10557D  
98ASA00474D  
98ASA00474D  
98ASA00602D  
98ASA00671D  
98ASA00672D  
MC9RS08KB12  
MC9S08QG8  
MC9RS08KB12  
MC9S08QG8  
MC9RS08KA2  
6 DFN  
98ARL10602D  
98ASA00735D  
Addendum for New QFN Package Migration, Rev. 0  
2
Freescale Semiconductor  
Freescale Semiconductor  
Document Number: MC9S08QE8  
Rev. 8, 4/2011  
                                                                                                                    
                                                                                                                      
                                                                                                                        
                                                                                                                          
                                                                                                                             
                                                                                                                               
                                                                                                                                 
                                                                                                                                   
                                                                                                                                      
                                                                                                                                        
                                                                                                                                           
                                                                                                                                             
                                                                                                                                               
                                                                                                                                                
                                                                                                                                                  
                                                                                                                                                     
                                                                                                                                                        
                                                                                                                                                          
                                                                                                                                                            
                                                                                                                                                              
                                                                                                                                                                
                                                                                                                                                                   
                                                                                                                                                                     
Data Sheet: Technical Data  
An Energy Efficient Solution by Freescale  
MC9S08QE8  
32-Pin QFN  
20-Pin SOIC  
MC9S08QE8 Series  
Covers: MC9S08QE8 and  
MC9S08QE4  
Case 2078-01  
751D-07  
32-Pin LQFP  
Case 873A  
16-Pin PDIP  
648  
28-Pin SOIC  
751F-05  
Features  
16-Pin TSSOP  
948F  
8-Bit HCS08 Central Processor Unit (CPU)  
Up to 20 MHz CPU at 3.6 V to 1.8 V across temperature range of  
–40 °C to 85 °C  
On-chip in-circuit emulator (ICE) debug module containing two  
comparators and nine trigger modes; eight deep FIFO for storing  
change-of-flow addresses and event-only data; debug module  
supports both tag and force breakpoints  
HC08 instruction set with added BGND instruction  
Support for up to 32 interrupt/reset sources  
On-Chip Memory  
Flash read/program/erase over full operating voltage and  
temperature  
Random-access memory (RAM)  
Security circuitry to prevent unauthorized access to RAM and  
flash contents  
Peripherals  
ADC — 10-channel, 12-bit resolution; 2.5 s conversion time;  
automatic compare function; 1.7 mV/C temperature sensor;  
internal bandgap reference channel; operation in stop3; fully  
functional from 3.6 V to 1.8 V  
ACMPx — Two analog comparators with selectable interrupt on  
rising, falling, or either edge of comparator output; compare  
option to fixed internal bandgap reference voltage; outputs can be  
optionally routed to TPM module; operation in stop3  
SCI — Full-duplex non-return to zero (NRZ); LIN master  
extended break generation; LIN slave extended break detection;  
wake-up on active edge  
SPI — Full-duplex or single-wire bidirectional; double-buffered  
transmit and receive; master or slave mode; MSB-first or  
LSB-first shifting  
IIC — Up to 100 kbps with maximum bus loading; multi-master  
operation; programmable slave address; interrupt driven  
byte-by-byte data transfer; supporting broadcast mode and 10-bit  
addressing  
TPMx — Two 3-channel (TPM1 and TPM2); selectable input  
capture, output compare, or buffered edge- or center-aligned  
PWM on each channel  
RTC — (Real-time counter) 8-bit modulus counter with binary or  
decimal based prescaler; external clock source for precise time  
base, time-of-day, calendar or task scheduling functions; free  
running on-chip low power oscillator (1 kHz) for cyclic wakeup  
without external components; runs in all MCU modes  
Input/Output  
Power-Saving Modes  
Two low power stop modes  
Reduced power wait mode  
Low power run and wait modes allow peripherals to run while  
voltage regulator is in standby  
Peripheral clock gating register can disable clocks to unused  
modules, thereby reducing currents  
Very low power external oscillator that can be used in stop2 or  
stop3 modes to provide accurate clock source to real time counter  
6 s typical wake-up time from stop3 mode  
Clock Source Options  
Oscillator (XOSC) — Loop-control Pierce oscillator; crystal or  
ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to  
16 MHz  
Internal Clock Source (ICS) — Internal clock source module  
containing a frequency-locked-loop (FLL) controlled by internal  
or external reference; precision trimming of internal reference  
allows 0.2% resolution and 2% deviation over temperature and  
voltage; supporting bus frequencies from 1 MHz to 10 MHz  
System Protection  
Watchdog computer operating properly (COP) reset with option to  
run from dedicated 1 kHz internal clock source or bus clock  
Low-voltage warning with interrupt  
Low-voltage detection with reset or interrupt  
Illegal opcode detection with reset  
26 GPIOs, one output-only pin and one input-only pin  
Eight KBI interrupts with selectable polarity  
Hysteresis and configurable pullup device on all input pins;  
configurable slew rate and drive strength on all output pins.  
Illegal address detection with reset  
Flash block protection  
Development Support  
Package Options  
Single-wire background debug interface  
Breakpoint capability to allow single breakpoint setting during  
in-circuit debugging (plus two more breakpoints in on-chip debug  
module)  
32-pin LQFP, 32-pin QFN, 28-pin SOIC, 20-pin SOIC,  
16-pin PDIP, 16-pin TSSOP  
This document contains information on a product under development. Freescale reserves the  
right to change or discontinue this product without notice.  
© Freescale Semiconductor, Inc., 2007-2011. All rights reserved.  
Table of Contents  
1
2
3
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . 7  
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.2 Parameter Classification. . . . . . . . . . . . . . . . . . . . 7  
3.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . 8  
3.4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . 8  
3.5 ESD Protection and Latch-Up Immunity. . . . . . . 10  
3.6 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . 11  
3.7 Supply Current Characteristics. . . . . . . . . . . . . . 14  
3.8 External Oscillator (XOSCVLP) Characteristics . 17  
3.9 Internal Clock Source (ICS) Characteristics. . . . 18  
3.10 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . 20  
3.10.1Control Timing . . . . . . . . . . . . . . . . . . . . . 20  
3.10.2TPM Module Timing. . . . . . . . . . . . . . . . . 21  
3.10.3SPI Timing . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.11 Analog Comparator (ACMP) Electricals. . . . . . . 24  
3.12 ADC Characteristics. . . . . . . . . . . . . . . . . . . . . . 25  
3.13 Flash Specifications. . . . . . . . . . . . . . . . . . . . . . 29  
3.14 EMC Performance . . . . . . . . . . . . . . . . . . . . . . . 29  
3.14.1Conducted Transient Susceptibility . . . . . 30  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Package Information. . . . . . . . . . . . . . . . . . . . . . . . . . 31  
5.1 Mechanical Drawings. . . . . . . . . . . . . . . . . . . . . 31  
4
5
Revision History  
To provide the most up-to-date information, the revision of our documents on the World Wide Web will  
be the most current. Your printed copy may be an earlier revision. To verify you have the latest information  
available, refer to:  
http://freescale.com/  
The following revision history table summarizes changes contained in this document.  
Rev  
Date  
Description of Changes  
Initial preliminary product preview release.  
2
3
4
5
Nov 7 2007  
Jan 22 2008  
Initial public release.  
Added Figure 11.  
March 13 2008  
October 8 2008  
Updated the Stop2 and Stop3 mode supply current in the Table 8.  
Replaced the stop mode adders section from Table 8 with an individual Table 9 with new  
specifications.  
Added a footnote to the Min. of the suppply voltage in Table 7.  
Changed the typical value of |IIn| and |IOZ| to — (no typical value) in Table 7.  
Added tVRR to Table 12.  
Updated “How to reach us” information.  
6
7
Nov. 4 2008  
Updated the operating voltage in Table 7.  
April 29 2009  
Changed VDDAD to VDDA, IDDAD to IDDA, and VSSAD to VSSA  
.
In Table 7, added |IOZTOT|.  
In Table 11, updated the DCO output frequency range-trimmed, and changed some symbols.  
Updated typicals and Max. for tIRST.  
Updated Table 17.  
8
April 12, 2011  
Added 32-pin QFN package.  
Related Documentation  
Find the most current versions of all documents at: http://www.freescale.com  
Reference Manual (MC9S08QE8RM)  
Contains extensive product information including modes of operation, memory,  
resets and interrupts, register definition, port pins, CPU, and all module  
information.  
MC9S08QE8 Series Data Sheet, Rev. 8  
2
Freescale Semiconductor  
MCU Block Diagram  
1
MCU Block Diagram  
The block diagram, Figure 1, shows the structure of MC9S08QE8 series MCU.  
BKGD/MS  
HCS08 CORE  
DEBUG MODULE (DBG)  
BDC  
CPU  
REAL-TIME COUNTER  
(RTC)  
PTA7/TPM2CH2/ADP9  
HCS08 SYSTEM CONTROL  
PTA6/TPM1CH2/ADP8  
SCL  
SDA  
PTA5/IRQ/TCLK/RESET  
RESETS AND INTERRUPTS  
MODES OF OPERATION  
POWER MANAGEMENT  
IIC MODULE (IIC)  
PTA4/ACMP1O/BKGD/MS  
PTA3/KBIP3/SCL/ADP3  
IRQ  
RxD  
TxD  
SERIAL COMMUNICATIONS  
INTERFACE MODULE (SCI)  
PTA2/KBIP2/SDA/ADP2  
COP  
IRQ  
LVD  
PTA1/KBIP1/TPM2CH0/ADP1/ACMP1–  
PTA0/KBIP0/TPM1CH0/ADP0/ACMP1+  
SS  
MISO  
USER FLASH  
(MC9S08QE8 = 8192 BYTES)  
(MC9S08QE4 = 4096 BYTES)  
PTB7/SCL/EXTAL  
SERIAL PERIPHERAL  
INTERFACE MODULE (SPI)  
MOSI  
SPSCK  
PTB6/SDA/XTAL  
PTB5/TPM1CH1/SS  
PTB4/TPM2CH1/MISO  
PTB3/KBIP7/MOSI/ADP7  
PTB2/KBIP6/SPSCK/ADP6  
PTB1/KBIP5/TxD/ADP5  
PTB0/KBIP4/RxD/ADP4  
TCLK  
USER RAM  
(MC9S08QE8 = 512 BYTES)  
(MC9S08QE4 = 256 BYTES)  
TPM1CH0  
16-BIT TIMER PWM  
MODULE (TPM1)  
TPM1CH1  
TPM1CH2  
TCLK  
20 MHz INTERNAL CLOCK  
SOURCE (ICS)  
TPM2CH0  
16-BIT TIMER PWM  
MODULE (TPM2)  
PTC7/ACMP2–  
PTC6/ACMP2+  
PTC5/ACMP2O  
PTC4  
TPM2CH1  
TPM2CH2  
LOW-POWER OSCILLATOR  
31.25 kHz to 38.4 kHz  
1 MHz to 16 MHz  
EXTAL  
XTAL  
(XOSCVLP)  
ACMP1O  
ACMP1–  
ACMP1+  
VSSA  
VDDA  
ANALOG COMPARATOR  
(ACMP1)  
PTC3  
VSS  
VDD  
PTC2  
VOLTAGE REGULATOR  
ACMP2O  
ACMP2–  
ACMP2+  
PTC1/TPM2CH2  
PTC0/TPM1CH2  
VSSA  
VDDA  
ANALOG COMPARATOR  
(ACMP2)  
VSSA/VREFL  
VDDA/VREFH  
PTD3  
PTD2  
PTD1  
PTD0  
12-BIT  
ANALOG-TO-DIGITAL  
CONVERTER (ADC12)  
ADP9–ADP0  
KBIP7–KBIP0  
VREFL  
VREFH  
KEYBOARD INTERRUPT  
MODULE (KBI)  
pins not available on 16-pin packages  
pins not available on 16-pin or 20-pin packages  
pins not available on 16-pin, 20-pin or 28-pin packages  
Notes: When PTA5 is configured as RESET, pin becomes bi-directional with output being open-drain drive containing an internal pullup device.  
When PTA4 is configured as BKGD, pin becomes bi-directional.  
For the 16-pin and 20-pin packages, VSSA/VREFL and VDDA/VREFH are double bonded to VSS and VDD respectively.  
Figure 1. MC9S08QE8 Series Block Diagram  
MC9S08QE8 Series Data Sheet, Rev. 8  
Freescale Semiconductor  
3
Pin Assignments  
2
Pin Assignments  
This section shows the pin assignments for the MC9S08QE8 series devices.  
31 30 29 28 27 26 25  
32  
PTA2/KBIP2/SDA/ADP2  
PTA3/KBIP3/SCL/ADP3  
PTD1  
PTD0  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
3
4
5
6
7
8
PTD2  
VDD  
PTD3  
VDDA/VREFH  
PTA6/TPM1CH2/ADP8  
PTA7/TPM2CH2/ADP9  
VSSA/VREFL  
VSS  
PTB0/KBIP4/RxD/ADP4  
PTB1/KBIP5/TxD/ADP5  
PTB7/SCL/EXTAL  
PTB6/SDA/XTAL  
9
15 16  
10 11 12 13 14  
Pins shown in bold type are lost in the next lower pin count package.  
Figure 2. MC9S08QE8 Series in 32-Pin LQFP/QFN Package  
MC9S08QE8 Series Data Sheet, Rev. 8  
4
Freescale Semiconductor  
Pin Assignments  
PTC6/ACMP2+  
PTC7/ACMP2–  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
PTC5/ACMP2O  
PTC4  
2
PTA5/IRQ/TCLK/RESET  
PTA4/ACMP1O/BKGD/MS  
VDD  
3
PTA0/KBIP0/TPM1CH0/ADP0/ACMP1+  
PTA1/KBIP1/TPM2CH0/ADP1/ACMP1–  
PTA2/KBIP2/SDA/ADP2  
4
5
VDDA/VREFH  
6
PTA3/KBIP3/SCL/ADP3  
VSSA/VREFL  
PTA6/TPM1CH2/ADP8  
7
VSS  
8
PTA7/TPM2CH2/ADP9  
PTB7/SCL/EXTAL  
PTB6/SDA/XTAL  
PTB5/TPM1CH1/SS  
9
PTB0/KBIP4/RxD/ADP4  
10  
11  
12  
13  
14  
PTB1/KBIP5/TxD/ADP5  
PTB2/KBIP6/SPSCK/ADP6  
PTB3/KBIP7/MOSI/ADP7  
PTC0/TPM1CH2  
PTB4/TPM2CH1/MISO  
PTC3  
PTC2  
PTC1/TPM2CH2  
Pins shown in bold type are lost in the next lower pin count package.  
Figure 3. MC9S08QE8 Series in 28-pin SOIC Package  
PTA0/KBIP0/TPM1CH0/ADP0/ACMP1+  
PTA1/KBIP1/TPM2CH0/ADP1/ACMP1–  
PTA2/KBIP2/SDA/ADP2  
1
20  
19  
18  
17  
16  
15  
14  
13  
PTA5/IRQ/TCLK/RESET  
PTA4/ACMP1O/BKGD/MS  
VDD  
2
3
4
PTA3/KBIP3/SCL/ADP3  
VSS  
5
PTB0/KBIP4/RxD/ADP4  
PTB7/SCL/EXTAL  
PTB6/SDA/XTAL  
PTB5/TPM1CH1/SS  
PTB4/TPM2CH1/MISO  
6
PTB1/KBIP5/TxD/ADP5  
7
PTB2/KBIP6/SPSCK/ADP6  
PTB3/KBIP7/MOSI/ADP7  
8
9
PTC3  
PTC2  
12  
11  
PTC0/TPM1CH2  
PTC1/TPM2CH2  
10  
Pins shown in bold type are lost in the next lower pin count package.  
Figure 4. MC9S08QE8 Series in 20-pin SOIC Package  
MC9S08QE8 Series Data Sheet, Rev. 8  
Freescale Semiconductor  
5
Pin Assignments  
16  
15  
14  
13  
PTA0/KBIP0/TPM1CH0/ADP0/ACMP1+  
PTA1/KBIP1/TPM2CH0ADP1/ACMP1–  
PTA2/KBIP2/SDA/ADP2  
1
2
3
4
5
6
7
8
PTA5/IRQ/TCLK/RESET  
PTA4/ACMP1O/BKGD/MS  
VDD  
PTA3/KBIP3/SCL/ADP3  
VSS  
12  
11  
PTB0/KBIP4/RxD/ADP4  
PTB7/SCL/EXTAL  
PTB6/SDA/XTAL  
PTB5/TPM1CH1/SS  
PTB4/TPM2CH1/MISO  
PTB1/KBIP5/TxD/ADP5  
10  
9
PTB2/KBIP6/SPSCK/ADP6  
PTB3/KBIP7/MOSI/ADP7  
Figure 5. MC9S08QE8 Series in 16-pin PDIP and TSSOP Packages  
Table 1. Pin Availability by Package Pin-Count  
Pin Number  
<-- Lowest Priority --> Highest  
Alt 1 Alt 2 Alt 3  
32  
28  
20  
16  
Port Pin  
Alt 4  
1
5
3
3
PTD1  
PTD0  
2
3
VDD  
4
6
4
4
VDDA/VREFH  
VSSA/VREFL  
VSS  
5
7
6
8
7
9
5
5
PTB7  
PTB6  
PTB5  
PTB4  
PTC3  
PTC2  
PTC1  
PTC0  
PTB3  
SCL1  
SDA1  
EXTAL  
8
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
6
6
XTAL  
9
7
7
TPM1CH1 SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
8
8
TPM2CH1 MISO  
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
TPM2CH22  
TPM1CH23  
KBIP7  
MOSI  
SPSCK  
TxD  
ADP7  
10 PTB2  
11 PTB1  
12 PTB0  
KBIP6  
ADP6  
ADP5  
ADP4  
ADP9  
ADP8  
KBIP5  
KBIP4  
RxD  
PTA7  
PTA6  
PTD3  
PTD2  
TPM2CH22  
TPM1CH23  
13 PTA3  
14 PTA2  
15 PTA1  
KBIP3  
KBIP2  
KBIP1  
SCL1  
SDA1  
TPM2CH0 ADP14  
ADP3  
ADP2  
ACMP1–4  
MC9S08QE8 Series Data Sheet, Rev. 8  
6
Freescale Semiconductor  
Electrical Characteristics  
Table 1. Pin Availability by Package Pin-Count (continued)  
Pin Number <-- Lowest Priority --> Highest  
Alt 1 Alt 2 Alt 3  
KBIP0  
TPM1CH0 ADP04  
32  
28  
20  
16  
Port Pin  
Alt 4  
ACMP1+4  
26  
27  
28  
29  
30  
31  
32  
26  
27  
28  
1
20  
1
16 PTA0  
1
PTC7  
PTC6  
PTC5  
PTC4  
PTA5  
PTA4  
ACMP2–  
ACMP2+  
ACMP2O  
2
3
IRQ  
TCLK  
RESET  
MS  
4
2
2
ACMP1O  
BKGD  
1
2
3
4
IIC pins, SCL and SDA can be repositioned using IICPS in SOPT2, default reset locations  
are PTA3 and PTA2.  
TPM2CH2 pin can be repositioned using TPM2CH2PS in SOPT2, default reset location is  
PTA7.  
TPM1CH2 pin can be repositioned using TPM1CH2PS in SOPT2, default reset location is  
PTA6.  
If ADC and ACMP1 are enabled, both modules will have access to the pin.  
3
Electrical Characteristics  
3.1  
Introduction  
This section contains electrical and timing specifications for the MC9S08QE8 series of microcontrollers  
available at the time of publication.  
3.2  
Parameter Classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the  
customer a better understanding the following classification is used and the parameters are tagged  
accordingly in the tables where appropriate:  
Table 2. Parameter Classifications  
Those parameters are guaranteed during production testing on each individual device.  
P
C
Those parameters are achieved by the design characterization by measuring a statistically relevant  
sample size across process variations.  
Those parameters are achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted. All values shown in the typical column are within this  
category.  
T
Those parameters are derived mainly from simulations.  
D
NOTE  
The classification is shown in the column labeled “C” in the parameter  
tables where appropriate.  
MC9S08QE8 Series Data Sheet, Rev. 8  
Freescale Semiconductor  
7
Electrical Characteristics  
3.3  
Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not  
guaranteed. Stress beyond the limits specified in Table 3 may affect device reliability or cause permanent  
damage to the device. For functional operating conditions, refer to the remaining tables in this section.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields;  
however, it is advised that normal precautions be taken to avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused  
inputs are tied to an appropriate logic voltage level (for instance, either V or V ) or the programmable  
SS  
DD  
pullup resistor associated with the pin is enabled.  
Table 3. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Supply voltage  
VDD  
IDD  
VIn  
–0.3 to 3.8  
120  
V
mA  
V
Maximum current into VDD  
Digital input voltage  
–0.3 to VDD + 0.3  
Instantaneous maximum current  
ID  
25  
mA  
Single pin limit (applies to all port pins)1, 2, 3  
Storage temperature range  
Tstg  
–55 to 150  
C  
1
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp  
voltages, then use the larger of the two resistance values.  
2
3
All functional non-supply pins, except for PTA5 are internally clamped to VSS and VDD  
.
Power supply must maintain regulation within operating VDD range during instantaneous and  
operating maximum current conditions. If positive injection current (VIn > VDD) is greater than  
IDD, the injection current may flow out of VDD and could result in external power supply going  
out of regulation. Ensure external VDD load will shunt current greater than maximum injection  
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if  
no system clock is present, or if the clock rate is very low (which would reduce overall power  
consumption).  
3.4  
Thermal Characteristics  
This section provides information about operating temperature range, power dissipation, and package  
thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in  
on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the  
MCU design. To take P into account in power calculations, determine the difference between actual pin  
I/O  
voltage and V or V and multiply by the pin current for each I/O pin. Except in cases of unusually high  
SS  
DD  
pin current (heavy loads), the difference between pin voltage and V or V will be very small.  
SS  
DD  
MC9S08QE8 Series Data Sheet, Rev. 8  
8
Freescale Semiconductor  
Electrical Characteristics  
Unit  
Table 4. Thermal Characteristics  
Symbol  
Rating  
Value  
Operating temperature range  
(packaged)  
TL to TH  
–40 to 85  
TA  
C  
C  
Maximum junction temperature  
TJM  
95  
Thermal resistance  
Single-layer board  
32-pin QFN  
32-pin LQFP  
28-pin SOIC  
20-pin SOIC  
16-pin PDIP  
16-pin TSSOP  
110  
66  
57  
JA  
C/W  
71  
64  
108  
Thermal resistance  
Four-layer board  
32-pin QFN  
32-pin LQFP  
28-pin SOIC  
20-pin SOIC  
16-pin PDIP  
16-pin TSSOP  
42  
47  
42  
52  
47  
78  
JA  
C/W  
The average chip-junction temperature (T ) in C can be obtained from:  
J
T = T + (P   )  
JA  
Eqn. 1  
J
A
D
where:  
T = Ambient temperature, C  
A
= Package thermal resistance, junction-to-ambient, C/W  
JA  
P = P P  
D
int  
I/O  
P
P
= I V , Watts — chip internal power  
= Power dissipation on input and output pins — user determined  
int  
I/O  
DD DD  
For most applications, P  P and can be neglected. An approximate relationship between P and T  
I/O  
int  
D
J
(if P is neglected) is:  
I/O  
P = K (T + 273 C)  
Eqn. 2  
D
J
Solving Equation 1 and Equation 2 for K gives:  
2
K = P (T + 273 C) +   (P )  
Eqn. 3  
D
A
JA  
D
MC9S08QE8 Series Data Sheet, Rev. 8  
Freescale Semiconductor  
9
Electrical Characteristics  
where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring  
P (at equilibrium) for a known T . Using this value of K, the values of P and T can be obtained by  
D
A
D
J
solving Equation 1 and Equation 2 iteratively for any value of T .  
A
3.5  
ESD Protection and Latch-Up Immunity  
Although damage from electrostatic discharge (ESD) is much less common on these devices than on early  
CMOS circuits, normal handling precautions must be taken to avoid exposure to static discharge.  
Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels  
of static without suffering any permanent damage.  
All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade  
Integrated Circuits. During the device qualification, ESD stresses were performed for the human body  
model (HBM), the machine model (MM) and the charge device model (CDM).  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification. Complete DC parametric and functional testing is performed per the applicable device  
specification at room temperature followed by hot temperature, unless instructed otherwise in the device  
specification.  
Table 5. ESD and Latch-up Test Conditions  
Model  
Description  
Series resistance  
Symbol  
Value  
Unit  
R1  
1500  
pF  
Human  
Body  
Storage capacitance  
C
100  
3
Number of pulses per pin  
Series resistance  
R1  
0
pF  
V
Machine  
Latch-up  
Storage capacitance  
C
200  
3
Number of pulses per pin  
Minimum input voltage limit  
Maximum input voltage limit  
–2.5  
7.5  
V
Table 6. ESD and Latch-Up Protection Characteristics  
1
No.  
1
Symbol  
VHBM  
VMM  
Min  
2000  
200  
500  
100  
Max  
Unit  
V
Rating  
Human body model (HBM)  
Machine model (MM)  
2
V
VCDM  
ILAT  
3
Charge device model (CDM)  
Latch-up current at TA = 85 C  
V
4
mA  
1
Parameter is achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted.  
MC9S08QE8 Series Data Sheet, Rev. 8  
10  
Freescale Semiconductor  
Electrical Characteristics  
3.6  
DC Characteristics  
This section includes information about power supply requirements and I/O pin characteristics.  
Table 7. DC Characteristics  
Num  
C
Characteristic  
Symbol  
Condition  
Min.  
Typical1  
Max.  
Unit  
Operating voltage  
1
V
DD rising  
2.02  
1.8  
3.6  
V
VDD falling  
All I/O pins,  
low-drive strength  
VDD > 1.8 V,  
ILoad = –2 mA  
C
P
C
D
C
P
C
D
V
DD – 0.5  
Output high  
voltage  
VDD > 2.7 V,  
2
VOH  
VDD – 0.5  
V
mA  
V
ILoad = –10 mA  
All I/O pins,  
high-drive strength  
VDD > 1.8V,  
VDD – 0.5  
ILoad = –2 mA  
Output high  
current  
Max total IOH for all ports IOHT  
100  
0.5  
0.5  
0.5  
100  
3
4
All I/O pins,  
low-drive strength  
VDD > 1.8 V,  
ILoad = 0.6 mA  
Output low  
voltage  
VDD > 2.7 V,  
ILoad = 10 mA  
VOL  
All I/O pins,  
high-drive strength  
VDD > 1.8 V,  
ILoad = 3 mA  
Output low  
current  
5
6
Max total IOL for all ports  
All digital inputs  
IOLT  
VIH  
mA  
V
P
C
P
C
VDD 2.7 V  
VDD 1.8 V  
VDD 2.7 V  
VDD 1.8 V  
0.70 VDD  
Input high  
voltage  
0.85 VDD  
0.35 VDD  
0.30 VDD  
Input low  
voltage  
7
8
All digital inputs  
VIL  
Input  
hysteresis  
C
All digital inputs Vhys  
0.06 x VDD  
mV  
Input  
leakage  
current  
All input only pins  
|IIn|  
9
P
VIn = VDD or VSS  
1
A  
(per pin)  
Hi-Z  
(off-state)  
leakage  
current  
All input/output  
10  
P
P
P
|IOZ  
|
VIn = VDD or VSS  
1
2
A  
A  
k  
(per pin)  
Total  
leakage  
combined  
for all inputs  
and Hi-Z  
pins  
11  
All input only and I/O |IOZTOT  
|
VIn = VDD or VSS  
All digital inputs, when  
enabled (all I/O pins other RPU,  
Pullup,  
pulldown  
resistors  
12a  
17.5  
52.5  
than  
RPD  
PTA5/IRQ/TCLK/RESET  
MC9S08QE8 Series Data Sheet, Rev. 8  
Freescale Semiconductor  
11  
Electrical Characteristics  
Table 7. DC Characteristics (continued)  
Num  
C
Characteristic  
Symbol  
Condition  
Min.  
Typical1  
Max.  
Unit  
RPU,  
RPD  
Pullup,  
12b C pulldown  
resistors  
(PTA5/IRQ/TCLK/RESET)  
Single pin limit  
17.5  
52.5  
k  
(Note3)  
–0.2  
–5  
0.2  
5
mA  
mA  
DCinjection  
13 C current 4, 5,  
IIC  
VIN < VSS, VIN > VDD  
Total MCU limit, includes  
sum of all stressed pins  
6
14 C Input capacitance, all pins  
15 C RAM retention voltage  
16 C POR re-arm voltage7  
17 D POR re-arm time  
CIn  
0.6  
1.4  
8
pF  
V
VRAM  
VPOR  
tPOR  
1.0  
2.0  
0.9  
10  
V
s  
VDD falling  
VDD rising  
1.80  
1.88  
1.84  
1.92  
1.88  
1.96  
18  
19  
P
P
Low-voltage detection threshold  
Low-voltage warning threshold  
VLVD  
VLVW  
V
V
VDD falling  
VDD rising  
2.08  
2.14  
2.24  
Low-voltage inhibit reset/recover  
hysteresis  
Bandgap voltage reference8  
20  
21  
P
P
Vhys  
VBG  
80  
mV  
V
1.15  
1.17  
1.18  
1
2
3
Typical values are measured at 25 C. Characterized, not tested  
As the supply voltage rises, the LVD circuit will hold the MCU in reset until the supply has risen above VLVDL  
.
The specified resistor value is the actual value internal to the device. The pullup or pulldown value may appear higher when  
measured externally on the pin.  
4
5
All functional non-supply pins, except for PTA5 are internally clamped to VSS and VDD  
.
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate  
resistance values for positive and negative clamp voltages, then use the larger of the two values.  
6
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If the positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could  
result in external power supply going out of regulation. Ensure that external VDD load will shunt current greater than maximum  
injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is  
present, or if clock rate is very low (which would reduce overall power consumption).  
7
8
Maximum is highest voltage that POR is guaranteed.  
Factory trimmed at VDD = 3.0 V, Temp = 25 C  
MC9S08QE8 Series Data Sheet, Rev. 8  
12  
Freescale Semiconductor  
Electrical Characteristics  
PULLUP RESISTOR TYPICALS  
40  
35  
30  
25  
20  
PULLDOWN RESISTOR TYPICALS  
85C  
40  
35  
30  
25  
20  
85C  
25C  
25C  
–40C  
–40C  
1.8  
2
2.2 2.4 2.6 2.8  
3
3.2 3.4 3.6  
1.8  
2.3  
2.8  
VDD (V)  
3.3  
3.6  
VDD (V)  
Figure 6. Pullup and Pulldown Typical Resistor Values (V = 3.0 V)  
DD  
TYPICAL VOL VS IOL AT VDD = 3.0 V  
TYPICAL VOL VS VDD  
0.2  
0.15  
0.1  
1.2  
85C  
25C  
1
–40C  
0.8  
0.6  
0.4  
0.2  
0
85  
25  
–40  
C, IOL = 2 mA  
C, IOL = 2 mA  
C, IOL = 2 mA  
0.05  
0
1
2
3
4
0
5
10  
OL (mA)  
15  
20  
VDD (V)  
I
Figure 7. Typical Low-Side Driver (Sink) Characteristics Low Drive (PTxDSn = 0)  
TYPICAL VOL VS VDD  
TYPICAL VOL VS IOL AT VDD = 3.0 V  
1
0.4  
0.3  
0.2  
0.1  
85C  
85C  
25C  
–40C  
25C  
0.8  
0.6  
0.4  
0.2  
–40C  
IOL = 10 mA  
IOL = 6 mA  
IOL = 3 mA  
0
0
0
10  
20  
30  
1
2
3
4
VDD (V)  
IOL (mA)  
Figure 8. Typical Low-Side Driver (Sink) Characteristics High Drive (PTxDSn = 1)  
MC9S08QE8 Series Data Sheet, Rev. 8  
Freescale Semiconductor  
13  
Electrical Characteristics  
TYPICAL VDD – VOH VS IOH AT VDD = 3.0 V  
TYPICAL VDD – VOH VS VDD AT SPEC IOH  
1.2  
1
0.25  
0.2  
85C  
85  
C, IOH = 2 mA  
C, IOH = 2 mA  
C, IOH = 2 mA  
25C  
25  
–40C  
–40  
0.8  
0.6  
0.4  
0.2  
0
0.15  
0.1  
0.05  
0
0
–5  
–10  
IOH (mA))  
–15  
–20  
1
2
3
4
VDD (V)  
Figure 9. Typical High-Side (Source) Characteristics Low Drive (PTxDSn = 0)  
TYPICAL VDD – VOH VS VDD AT SPEC IOH  
0.4  
85C  
25C  
–40C  
TYPICAL V – V VS I AT V = 3.0 V  
DD  
OH  
OH  
DD  
0.3  
0.2  
0.1  
0.8  
0.6  
0.4  
0.2  
0
85C  
25C  
–40C  
IOH = –10 mA  
IOH = –6 mA  
I
OH = –3 mA  
0
0
–5  
–10  
–15  
–20  
–25  
–30  
1
2
3
4
I
(mA)  
OH  
VDD (V)  
Figure 10. Typical High-Side (Source) Characteristics High Drive (PTxDSn = 1)  
3.7  
Supply Current Characteristics  
This section includes information about power supply current in various operating modes.  
Table 8. Supply Current Characteristics  
Parameter  
VDD  
(V)  
Bus  
Freq  
Temp  
(C)  
Typical1  
Num  
C
Symbol  
Max  
Unit  
P
T
T
T
10 MHz  
1 MHz  
10 MHz  
1 MHz  
5.60  
0.80  
3.60  
0.51  
8.2  
Run supply current  
FEI mode, all modules on  
mA  
1
RIDD  
–40 to 85 C  
3
3
Run supply current  
FEI mode, all modules off  
2
3
RIDD  
mA –40 to 85 C  
16 kHz  
FBILP  
T
T
T
T
165  
105  
77  
Run supply current  
LPRS = 0, all modules off  
RIDD  
3
3
A  
A  
–40 to 85 C  
–40 to 85 C  
16 kHz  
FBELP  
16 kHz  
FBILP  
Run supply current  
LPRS = 1, all modules off; running  
from flash  
4
RIDD  
16 kHz  
FBELP  
21  
MC9S08QE8 Series Data Sheet, Rev. 8  
14  
Freescale Semiconductor  
Electrical Characteristics  
Temp  
Table 8. Supply Current Characteristics (continued)  
Parameter  
VDD  
(V)  
Bus  
Typical1  
77  
Num  
C
T
T
Symbol  
Max  
Unit  
Freq  
(C)  
16 kHz  
FBILP  
Run supply current  
LPRS = 1, all modules off; running  
from RAM  
5
RIDD  
3
A  
–40 to 85 C  
16 kHz  
FBELP  
7.3  
T
T
10 MHz  
1 MHz  
570  
290  
Wait mode supply current  
FEI mode, all modules off  
6
7
WIDD  
WIDD  
3
3
A  
A  
–40 to 85 C  
–40 to 85 C  
Wait mode supply current  
LPRS = 1, all modules off  
16 kHz  
FBELP  
T
1
P
C
P
C
C
C
P
C
P
C
C
C
0.3  
0.5  
1
0.65  
0.8  
2.5  
0.50  
0.6  
2.0  
0.8  
1.8  
6
–40 to 25 C  
70 C  
3
2
3
2
85 C  
8
Stop2 mode supply current  
S2IDD  
A  
0.25  
0.3  
0.7  
0.4  
1.0  
3
–40 to 25 C  
70 C  
85 C  
–40 to 25 C  
70 C  
85 C  
Stop3 mode supply current  
no clocks active  
9
S3IDD  
A  
0.35  
0.8  
2.5  
0.60  
1.5  
5.5  
–40 to 25 C  
70 C  
85 C  
1
Data in Typical column was characterized at 3.0 V, 25C or is typical recommended value.  
Table 9. Stop Mode Adders  
Temperature  
Num  
C
Parameter  
Condition  
Units  
–40C  
25C  
70C  
85C  
1
2
3
4
T
T
T
T
LPO  
50  
1000  
63  
75  
1000  
70  
100  
1100  
77  
150  
1500  
81  
nA  
nA  
A  
nA  
ERREFSTEN  
IREFSTEN1  
RTC  
RANGE = HGO = 0  
Does not include clock source  
current  
50  
75  
100  
150  
5
6
7
T
T
T
LVD1  
LVDSE = 1  
90  
18  
95  
100  
20  
110  
22  
115  
23  
A  
A  
A  
ACMP1  
ADC1  
Not using the bandgap (BGBE = 0)  
ADLPC = ADLSMP = 1  
106  
114  
120  
Not using the bandgap (BGBE = 0)  
1
Not available in stop2 mode.  
MC9S08QE8 Series Data Sheet, Rev. 8  
Freescale Semiconductor  
15  
Electrical Characteristics  
5.000  
4.500  
4.000  
3.500  
3.000  
2.500  
2.000  
1.500  
1.000  
0.500  
0.000  
FEI: 10 MHz  
FBELP: 10 MHz  
FEI: 5 MHz  
FBELP: 5 MHz  
FEI: 1 MHz  
FBELP: 1 MHz  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VDD (V)  
Figure 11. Typical Run I for FBE and FEI, I vs. V  
DD  
DD  
DD  
(ADC off, All Other Modules Enabled)  
MC9S08QE8 Series Data Sheet, Rev. 8  
16  
Freescale Semiconductor  
Electrical Characteristics  
3.8  
External Oscillator (XOSCVLP) Characteristics  
Refer to Figure 12 and Figure 13 for crystal or resonator circuits.  
Table 10. XOSCVLP Specifications (Temperature Range = –40 to 85C Ambient)  
Num  
C
Characteristic  
Symbol  
Min.  
Typical1 Max. Unit  
Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)  
Low range (RANGE = 0)  
High range (RANGE = 1), high gain (HGO = 1), FBELP mode  
High range (RANGE = 1), low power (HGO = 0), FBELP mode  
flo  
fhi  
fhi  
32  
1
1
38.4  
16  
8
kHz  
MHz  
MHz  
1
C
Load capacitors  
Low range (RANGE=0), low power (HGO = 0)  
Other oscillator settings  
See Note 2  
See Note 3  
C1,C2  
2
3
D
D
Feedback resistor  
Low range, low power (RANGE = 0, HGO = 0)2  
Low range, high gain (RANGE = 0, HGO = 1)  
High range (RANGE = 1, HGO = X)  
10  
1
RF  
M  
k  
Series resistor —  
Low range, low power (RANGE = 0, HGO = 0)2  
100  
0
Low range, high gain (RANGE = 0, HGO = 1)  
High range, low power (RANGE = 1, HGO = 0)  
High range, high gain (RANGE = 1, HGO = 1)  
RS  
4
D
8 MHz  
4 MHz  
1 MHz  
0
0
0
0
10  
20  
Crystal start-up time4  
Low range, low power  
Low range, high gain  
High range, low power  
High range, high gain  
t
600  
400  
5
CSTL  
5
6
C
D
ms  
t
CSTH  
15  
Square wave input clock frequency (EREFS = 0, ERCLKEN = 1)  
FEE mode  
fextal  
0.03125  
0
20  
20  
MHz  
MHz  
FBE or FBELP mode  
1
2
3
4
Data in Typical column was characterized at 3.0 V, 25 C or is typical recommended value.  
Load capacitors (C1,C2), feedback resistor (RF) and series resistor (RS) are incorporated internally when RANGE = HGO = 0.  
See crystal or resonator manufacturer’s recommendation.  
Proper PC board layout procedures must be followed to achieve specifications.  
MC9S08QE8 Series Data Sheet, Rev. 8  
Freescale Semiconductor  
17  
Electrical Characteristics  
XOSCVLP  
EXTAL  
XTAL  
RS  
RF  
Crystal or Resonator  
C1  
C2  
Figure 12. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain  
XOSCVLP  
EXTAL  
XTAL  
Crystal or Resonator  
Figure 13. Typical Crystal or Resonator Circuit: Low Range/Low Power  
3.9  
Internal Clock Source (ICS) Characteristics  
Table 11. ICS Frequency Specifications (Temperature Range = –40 to 85C Ambient)  
Num  
C
Characteristic  
Symbol  
Min.  
Typical1  
Max.  
Unit  
Average internal reference frequency — factory trimmed  
at VDD = 3.6 V and temperature = 25 C  
fint_t  
1
P
32.768  
kHz  
Internal reference frequency — user trimmed  
Internal reference start-up time  
fint_ut  
tIRST  
2
3
P
T
31.25  
5
39.06  
10  
kHz  
s  
DCO output frequency range —  
trimmed2  
Low range  
(DRS = 00)  
fdco_t  
4
5
6
P
P
C
16  
20  
MHz  
MHz  
%fdco  
DCO output frequency2  
Reference = 32768 Hz and DMX32 = 1  
fdco_DMX32  
19.92  
0.1  
Resolution of trimmed DCO output frequency at fixed  
voltage and temperature (using FTRIM)  
fdco_res_t  
0.2  
MC9S08QE8 Series Data Sheet, Rev. 8  
18  
Freescale Semiconductor  
Electrical Characteristics  
Table 11. ICS Frequency Specifications (Temperature Range = –40 to 85C Ambient) (continued)  
Num  
C
Characteristic  
Symbol  
Min.  
Typical1  
Max.  
Unit  
Resolution of trimmed DCO output frequency at fixed  
voltage and temperature (not using FTRIM)  
fdco_res_t  
%fdco  
7
C
0.2  
0.4  
Total deviation of DCO output from trimmed frequency3  
Over full voltage and temperature range  
Over fixed voltage and temperature range of 0 to 70 C  
fdco_t  
%fdco  
8
C
–1.0 to 0.5  
2  
1  
0.5  
FLL acquisition time4  
tAcquire  
CJitter  
10  
11  
C
C
1
ms  
Long term jitter of DCO output clock (averaged over 2-ms  
interval)5  
%fdco  
0.02  
0.2  
1
2
3
4
Data in Typical column was characterized at 3.0 V, 25 C or is typical recommended value.  
The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.  
This parameter is characterized and not tested on each device.  
This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or  
changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used  
as the reference, this specification assumes it is already running.  
5
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBus  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage  
for a given interval.  
1.00%  
0.50%  
0.00%  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-0.50%  
-1.00%  
-1.50%  
-2.00%  
Temperature  
Figure 14. Deviation of DCO Output from Trimmed Frequency (20 MHz, 3.0 V)  
MC9S08QE8 Series Data Sheet, Rev. 8  
Freescale Semiconductor  
19  
Electrical Characteristics  
3.10 AC Characteristics  
This section describes timing characteristics for each peripheral system.  
3.10.1 Control Timing  
Table 12. Control Timing  
Num  
C
D
D
D
D
Rating  
Symbol  
fBus  
Min  
Typical1  
Max  
10  
Unit  
MHz  
s  
Bus frequency (tcyc = 1/fBus  
)
1
2
3
4
dc  
700  
tLPO  
Internal low power oscillator period  
1300  
External reset pulse width2  
Reset low drive  
textrst  
trstdrv  
100  
ns  
34 tcyc  
ns  
BKGD/MS setup time after issuing background debug  
force reset to enter user or BDM modes  
tMSSU  
tMSH  
5
6
D
D
500  
100  
ns  
BKGD/MS hold time after issuing background debug  
force reset to enter user or BDM modes 3  
s  
IRQ pulse width  
Asynchronous path2  
Synchronous path4  
tILIH, IHIL  
t
100  
1.5 tcyc  
ns  
ns  
7
D
8
D
Keyboard interrupt pulse width  
Asynchronous path2  
tILIH, IHIL  
t
100  
1.5 tcyc  
Synchronous path4  
Port rise and fall time —  
Low output drive (PTxDS = 0) (load = 50 pF)5  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
tRise, tFall  
ns  
16  
23  
9
C
Port rise and fall time —  
High output drive (PTxDS = 1) (load = 50 pF)5  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
tRise, tFall  
ns  
5
9
Voltage regulator recovery time  
tVRR  
10  
C
4
s  
1
2
3
Typical values are based on characterization data at VDD = 3.0 V, 25 C unless otherwise stated.  
This is the shortest pulse that is guaranteed to be recognized as a reset pin request.  
To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of tMSH after VDD  
rises above VLVD  
.
4
5
This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.  
Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range –40C to 85C.  
textrst  
RESET PIN  
Figure 15. Reset Timing  
MC9S08QE8 Series Data Sheet, Rev. 8  
20  
Freescale Semiconductor  
Electrical Characteristics  
tIHIL  
KBIPx  
IRQ/KBIPx  
tILIH  
Figure 16. IRQ/KBIPx Timing  
3.10.2 TPM Module Timing  
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that  
can be used as the optional external source to the timer counter. These synchronizers operate from the  
current bus rate clock.  
Table 13. TPM Input Timing  
No.  
C
Function  
Symbol  
Min  
Max  
Unit  
1
2
3
4
5
D
D
D
D
D
External clock frequency  
External clock period  
fTCLK  
tTCLK  
tclkh  
0
fBus/4  
Hz  
tcyc  
tcyc  
tcyc  
tcyc  
4
External clock high time  
External clock low time  
Input capture pulse width  
1.5  
1.5  
1.5  
tclkl  
tICPW  
tTCLK  
tclkh  
TCLK  
tclkl  
Figure 17. Timer External Clock  
tICPW  
TPMCHn  
TPMCHn  
tICPW  
Figure 18. Timer Input Capture Pulse  
MC9S08QE8 Series Data Sheet, Rev. 8  
Freescale Semiconductor  
21  
Electrical Characteristics  
3.10.3 SPI Timing  
Table 14 and Figure 19 through Figure 22 describe the timing requirements for the SPI system.  
Table 14. SPI Timing  
No.  
C
Function  
Operating frequency  
Symbol  
Min  
Max  
Unit  
D
Master  
Slave  
fop  
fBus/2048  
0
fBus/2  
fBus/4  
Hz  
SPSCK period  
Master  
Slave  
1
2
3
4
5
6
D
D
D
D
D
D
tSPSCK  
tLead  
tLag  
2
4
2048  
tcyc  
tcyc  
Enable lead time  
Master  
Slave  
12  
1
tSPSCK  
tcyc  
Enable lag time  
Master  
Slave  
12  
1
tSPSCK  
tcyc  
Clock (SPSCK) high or low time  
Master  
Slave  
tWSPSCK  
tcyc 30  
tcyc – 30  
1024 tcyc  
ns  
ns  
Data setup time (inputs)  
Master  
Slave  
tSU  
15  
15  
ns  
ns  
Data hold time (inputs)  
Master  
Slave  
tHI  
0
25  
ns  
ns  
7
8
D
D
Slave access time  
ta  
1
1
tcyc  
tcyc  
Slave MISO disable time  
tdis  
Data valid (after SPSCK edge)  
9
D
D
D
D
Master  
Slave  
tv  
25  
25  
ns  
ns  
Data hold time (outputs)  
Master  
Slave  
10  
11  
12  
tHO  
0
0
ns  
ns  
Rise time  
Input  
Output  
tRI  
tRO  
tcyc – 25  
25  
ns  
ns  
Fall time  
Input  
Output  
tFI  
tFO  
tcyc – 25  
25  
ns  
ns  
MC9S08QE8 Series Data Sheet, Rev. 8  
22  
Freescale Semiconductor  
Electrical Characteristics  
SS1  
(OUTPUT)  
1
2
11  
12  
3
SPSCK  
(CPOL = 0)  
(OUTPUT)  
4
4
SPSCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
MSB IN2  
LSB IN  
BIT 6 . . . 1  
9
9
10  
MOSI  
(OUTPUT)  
MSB OUT2  
BIT 6 . . . 1  
LSB OUT  
NOTES:  
1. SS output mode (DDS7 = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 19. SPI Master Timing (CPHA = 0)  
SS(1)  
(OUTPUT)  
1
11  
2
3
12  
SPSCK  
(CPOL = 0)  
(OUTPUT)  
4
4
11  
12  
SPSCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
MSB IN(2)  
BIT 6 . . . 1  
BIT 6 . . . 1  
LSB IN  
9
10  
MOSI  
(OUTPUT)  
MASTER MSB OUT(2)  
PORT DATA  
MASTER LSB OUT  
PORT DATA  
NOTES:  
1. SS output mode (DDS7 = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 20. SPI Master Timing (CPHA =1)  
MC9S08QE8 Series Data Sheet, Rev. 8  
Freescale Semiconductor  
23  
Electrical Characteristics  
SS  
(INPUT)  
11  
12  
3
1
12  
11  
SPSCK  
(CPOL = 0)  
(INPUT)  
2
4
4
SPSCK  
(CPOL = 1)  
(INPUT)  
8
7
10  
9
10  
MISO  
(OUTPUT)  
SEE  
NOTE  
BIT 6 . . . 1  
SLAVE LSB OUT  
MSB OUT  
SLAVE  
6
5
MOSI  
(INPUT)  
BIT 6 . . . 1  
MSB IN  
LSB IN  
NOTE:  
1. Not defined but normally MSB of character just received  
Figure 21. SPI Slave Timing (CPHA = 0)  
SS  
(INPUT)  
1
3
12  
2
11  
SPSCK  
(CPOL = 0)  
(INPUT)  
4
4
11  
12  
SPSCK  
(CPOL = 1)  
(INPUT)  
9
10  
8
MISO  
(OUTPUT)  
SEE  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
SLAVE  
MSB OUT  
NOTE  
5
6
7
MOSI  
(INPUT)  
MSB IN  
NOTE:  
1. Not defined but normally LSB of character just received  
Figure 22. SPI Slave Timing (CPHA = 1)  
3.11 Analog Comparator (ACMP) Electricals  
Table 15. Analog Comparator Electrical Specifications  
C
D
P
Characteristic  
Symbol  
VDD  
Min  
1.8  
Typical  
Max  
Unit  
V
Supply voltage  
Supply current (active)  
3.6  
35  
IDDAC  
20  
A  
MC9S08QE8 Series Data Sheet, Rev. 8  
24  
Freescale Semiconductor  
Electrical Characteristics  
Table 15. Analog Comparator Electrical Specifications (continued)  
C
Characteristic  
Analog input voltage  
Symbol  
Min  
Typical  
Max  
Unit  
D
P
C
VAIN  
VAIO  
VH  
VSS – 0.3  
20  
VDD  
40  
V
Analog input offset voltage  
mV  
mV  
Analog comparator hysteresis  
3.0  
9.0  
15.0  
IALKG  
tAINIT  
P
C
Analog input leakage current  
1.0  
1.0  
A  
s  
Analog comparator initialization delay  
3.12 ADC Characteristics  
Table 16. 12-Bit ADC Operating Conditions  
Characteristic  
Conditions  
Symb  
Min  
Typical1  
Max  
Unit  
Comment  
Supply voltage  
Absolute  
Delta to VDD (VDD – VDDA  
VDDA  
VDDA  
VSSA  
VADIN  
1.8  
0
3.6  
100  
V
mV  
mV  
V
2
)
–100  
–100  
VREFL  
2
Ground voltage Delta to VSS (VSS – VSSA  
)
0
100  
Input voltage  
VREFH  
Input  
capacitance  
CADIN  
4.5  
5
5.5  
7
pF  
Input  
resistance  
RADIN  
k  
Analog source  
resistance  
12-bit mode  
fADCK > 4 MHz  
fADCK < 4 MHz  
2
5
10-bit mode  
ADCK > 4 MHz  
fADCK < 4 MHz  
RAS  
k  
External to MCU  
f
5
10  
8-bit mode (all valid fADCK  
High speed (ADLPC = 0)  
Low power (ADLPC = 1)  
)
10  
ADC  
conversion  
clock freq.  
0.4  
8.0  
fADCK  
MHz  
0.4  
4.0  
1
2
Typical values assume VDDA = 3.0 V, Temp = 25 C, fADCK=1.0 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
DC potential difference.  
MC9S08QE8 Series Data Sheet, Rev. 8  
Freescale Semiconductor  
25  
Electrical Characteristics  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
+
VADIN  
CAS  
VAS  
+
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 23. ADC Input Impedance Equivalency Diagram  
Table 17. ADC Characteristics (V  
= V  
, V  
= V  
)
SSA  
REFH  
DDA  
REFL  
C
Characteristic  
Conditions  
Symbol  
Min  
Typ1  
Max  
Unit  
Comment  
Supply current  
ADLPC = 1  
ADLSMP = 1  
ADCO = 1  
T
IDDA  
IDDA  
IDDA  
120  
1
A  
A  
A  
Supply current  
ADLPC = 1  
ADLSMP = 0  
ADCO = 1  
T
T
202  
288  
Supply current  
ADLPC = 0  
ADLSMP = 1  
ADCO = 1  
Supply current  
ADLPC = 0  
ADLSMP = 0  
ADCO = 1  
P
P
IDDA  
0.532  
mA  
ADC  
asynchronous  
clock source  
High speed (ADLPC = 0)  
Low power (ADLPC = 1)  
2
3.3  
2
5
tADACK  
=
fADACK  
MHz  
1/fADACK  
1.25  
3.3  
MC9S08QE8 Series Data Sheet, Rev. 8  
26  
Freescale Semiconductor  
Electrical Characteristics  
) (continued)  
Table 17. ADC Characteristics (V  
= V  
, V  
= V  
REFL SSA  
REFH  
DDA  
C
Characteristic  
Conditions  
Symbol  
Min  
Typ1  
Max  
Unit  
Comment  
Conversion  
time (including  
sample time)  
Short sample (ADLSMP = 0)  
Long sample (ADLSMP = 1)  
20  
40  
See QE8  
reference  
manual for  
conversion  
time  
ADCK  
cycles  
P
tADC  
Short sample (ADLSMP = 0)  
Long sample (ADLSMP = 1)  
–40 C– 25 C  
3.5  
ADCK  
cycles  
P
Sample time  
tADS  
variances  
23.5  
1.646  
1.769  
Temp sensor  
slope  
D
D
m
mV/C  
25 C– 85 C  
Temp sensor  
voltage  
25 C  
VTEMP25  
701.2  
mV  
Characteristics for devices with dedicated analog supply (28- and 32-pin packages only)  
T
T
P
P
T
P
P
12-bit mode, 3.6> VDDA > 2.7  
12-bit mode, 2.7> VDDA > 1.8V  
10-bit mode  
–1 to 3 –2.5 to 5.5  
–1 to 3 –3.0 to 6.5  
Total  
unadjusted  
error  
Includes  
quantization  
ETUE  
LSB2  
1  
2.5  
1.0  
8-bit mode  
0.5  
1.0  
0.5  
0.3  
12-bit mode  
–1.5 to 2.0  
1.0  
Differential  
non-linearity  
10-bit mode3  
DNL  
INL  
LSB2  
LSB2  
8-bit mode3  
0.5  
–2.5 to  
2.75  
T
12-bit mode  
1.5  
Integral  
non-linearity  
T
T
T
P
P
T
P
P
10-bit mode  
8-bit mode  
12-bit mode  
10-bit mode  
8-bit mode  
12-bit mode  
0.5  
0.3  
1.5  
0.5  
0.5  
1.0  
0.5  
0.5  
–1 to 0  
1.0  
0.5  
2.5  
Zero-scale  
error  
VADIN  
=
EZS  
EFS  
EQ  
1.5  
LSB2  
LSB2  
LSB2  
VSSA  
0.5  
–3.5 to 1.0  
1  
VADIN  
=
Full-scale error 10-bit mode  
8-bit mode  
VDDA  
0.5  
12-bit mode  
Quantization  
10-bit mode  
error  
D
0.5  
8-bit mode  
0.5  
MC9S08QE8 Series Data Sheet, Rev. 8  
Freescale Semiconductor  
27  
Electrical Characteristics  
Table 17. ADC Characteristics (V  
= V  
, V  
= V  
) (continued)  
SSA  
REFH  
DDA  
REFL  
C
Characteristic  
Conditions  
12-bit mode  
Symbol  
Min  
Typ1  
Max  
Unit  
Comment  
2  
4  
Pad  
leakage4 *  
RAS  
Input leakage  
error  
D
10-bit mode  
8-bit mode  
EIL  
0.2  
0.1  
LSB2  
1.2  
Characteristics for devices with shared supply (16- and 20-pin packages only)  
T
P
P
T
P
P
T
T
T
T
P
P
T
P
P
12-bit mode  
10-bit mode  
8-bit mode  
12-bit mode  
10-bit mode3  
8-bit mode3  
12-bit mode  
10-bit mode  
8-bit mode  
12-bit mode  
10-bit mode  
8-bit mode  
12-bit mode  
Not recommended usage  
Total  
unadjusted  
error  
Includes  
quantization  
ETUE  
DNL  
INL  
EZS  
EFS  
EQ  
1.5  
0.7  
3.5  
1.5  
LSB2  
LSB2  
LSB2  
LSB2  
LSB2  
LSB2  
LSB2  
Not recommended usage  
Differential  
non-linearity  
0.5  
0.3  
1.0  
0.5  
Not recommended usage  
Integral  
non-linearity  
0.5  
0.3  
1.0  
0.5  
Not recommended usage  
Zero-scale  
error  
VADIN  
=
1.5  
0.5  
2.1  
0.7  
VSSA  
Not recommended usage  
VADIN  
=
Full-scale error 10-bit mode  
8-bit mode  
1  
1.5  
0.5  
VDDA  
0.5  
12-bit mode  
Not recommended usage  
Quantization  
10-bit mode  
error  
D
D
0.5  
0.5  
8-bit mode  
12-bit mode  
Not recommended usage  
Pad  
leakage4 *  
RAS  
Input leakage  
10-bit mode  
error  
EIL  
0.2  
0.1  
4  
8-bit mode  
1.2  
1
Typical values assume VDDA = 3.0 V, Temp = 25 C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
2
3
4
1 LSB = (VREFH – VREFL)/2N  
Monotonicity and No-missing-codes guaranteed in 10-bit and 8-bit modes  
Based on input pad leakage current. Refer to pad electricals.  
MC9S08QE8 Series Data Sheet, Rev. 8  
28  
Freescale Semiconductor  
Electrical Characteristics  
3.13 Flash Specifications  
This section provides details about program/erase times and program-erase endurance for the flash  
memory.  
Program and erase operations do not require any special power sources other than the normal V supply.  
DD  
For more detailed information about program/erase operations, see the Memory section.  
Table 18. Flash Characteristics  
C
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
Supply voltage for program/erase  
–40 C to 85 C  
D
Vprog/erase  
VRead  
fFCLK  
1.8  
1.8  
150  
5
3.6  
3.6  
V
D
D
D
P
P
P
P
Supply voltage for read operation  
Internal FCLK frequency1  
Internal FCLK period (1/FCLK)  
Byte program time (random location)2  
Byte program time (burst mode)2  
Page erase time2  
Mass erase time2  
Byte program current3  
Page erase current3  
V
200  
6.67  
kHz  
s  
tFcyc  
tprog  
9
tFcyc  
tFcyc  
tFcyc  
tFcyc  
mA  
mA  
tBurst  
4
4000  
20,000  
4
tPage  
tMass  
RIDDBP  
RIDDPE  
6
Program/erase endurance4  
TL to TH = –40C to 85 C  
T = 25 C  
C
C
10,000  
15  
100,000  
cycles  
years  
Data retention5  
tD_ret  
100  
1
2
The frequency of this clock is controlled by a software setting.  
These values are hardware state machine controlled. User code does not need to count cycles. This information supplied  
for calculating approximate time to program and erase.  
3
4
The program and erase currents are additional to the standard run IDD. These values are measured at room temperatures  
with VDD = 3.0 V, bus frequency = 4.0 MHz.  
Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how  
Freescale defines typical endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile  
Memory.  
5
Typical data retention values are based on intrinsic capability of the technology measured at high temperature and  
de-rated to 25C using the Arrhenius equation. For additional information on how Freescale defines typical data retention,  
please refer to Engineering Bulletin EB618, Typical Data Retention for Nonvolatile Memory.  
3.14 EMC Performance  
Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the  
MCU resides. Board design and layout, circuit topology choices, location and characteristics of external  
components as well as MCU software operation all play a significant role in EMC performance. The  
system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263,  
AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.  
MC9S08QE8 Series Data Sheet, Rev. 8  
Freescale Semiconductor  
29  
Ordering Information  
3.14.1 Conducted Transient Susceptibility  
Microcontroller transient conducted susceptibility is measured in accordance with an internal Freescale  
test method. The measurement is performed with the microcontroller installed on a custom EMC  
evaluation board and running specialized EMC test software designed in compliance with the test method.  
The conducted susceptibility is determined by injecting the transient susceptibility signal on each pin of  
the microcontroller. The transient waveform and injection methodology is based on IEC 61000-4-4  
(EFT/B). The transient voltage required to cause performance degradation on any pin in the tested  
configuration is greater than or equal to the reported levels unless otherwise indicated by footnotes below  
Table 19.  
Table 19. Conducted Susceptibility, EFT/B  
Amplitude1  
fOSC/fBUS  
Parameter  
Symbol  
Conditions  
Result  
Unit  
(Min)  
A
B
C
D
2.3  
VDD = 3.3 V  
TA = 25 oC  
package type  
32-pin LQFP  
8 MHz  
crystal  
8 MHz bus  
4.0  
Conducted susceptibility, electrical  
fast transient/burst (EFT/B)  
VCS_EFT  
kV  
>4.0  
>4.0  
1
Data based on qualification test results. Not tested in production.  
The susceptibility performance classification is described in Table 20.  
Table 20. Susceptibility Performance Classification  
Result  
Performance Criteria  
A
No failure  
The MCU performs as designed during and after exposure.  
Self-recovering The MCU does not perform as designed during exposure. The MCU returns  
B
C
D
failure  
automatically to normal operation after exposure is removed.  
The MCU does not perform as designed during exposure. The MCU does not return to  
normal operation until exposure is removed and the RESET pin is asserted.  
Soft failure  
The MCU does not perform as designed during exposure. The MCU does not return to  
normal operation until exposure is removed and the power to the MCU is cycled.  
Hard failure  
Damage  
The MCU does not perform as designed during and after exposure. The MCU cannot  
be returned to proper operation due to physical damage or other permanent  
performance degradation.  
E
4
Ordering Information  
This section contains ordering information for the device numbering system.  
Example of the device numbering system:  
MC9S08QE8 Series Data Sheet, Rev. 8  
30  
Freescale Semiconductor  
Package Information  
8
C
XX  
9
MC S08 QE  
Status  
(MC = Fully qualified)  
Package designator (see Table 21)  
Temperature range  
(C = –40 C to 85 C)  
Memory  
(9 = Flash-based)  
Core  
Approximate flash size in Kbytes  
Family  
5
Package Information  
Table 21. Package Descriptions  
Pin Count  
Package Type  
Quad Flat No-Leads  
Abbreviation  
Designator  
Case No.  
Document No.  
32  
32  
28  
20  
16  
16  
QFN  
LQFP  
SOIC  
SOIC  
PDIP  
FM  
LC  
2078  
873A  
751F  
751D  
648  
98ASA00071D  
98ASH70029A  
98ASB42345B  
98ASB42343B  
98ASB42431B  
98ASH70247A  
Low Quad Flat Package  
Small Outline Integrated Circuit  
Small Outline Integrated Circuit  
Plastic Dual In-line Package  
Thin Shrink Small Outline Package  
WL  
WJ  
PG  
TG  
TSSOP  
948F  
5.1  
Mechanical Drawings  
The following pages are mechanical drawings for the packages described in Table 21.  
MC9S08QE8 Series Data Sheet, Rev. 8  
Freescale Semiconductor  
31  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of  
Freescale Semiconductor, Inc. All other product or service names  
are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2007-2011. All rights reserved.  
MC9S08QE8  
Rev. 8  
4/2011  

相关型号:

935309459574

Microcontroller
NXP

935309463557

Microcontroller
NXP

935309469557

Microcontroller
NXP

935309486557

RISC Microcontroller
NXP

935309488557

RISC Microcontroller
NXP

935309501557

RISC Microprocessor
NXP

935309564518

RISC Microprocessor
NXP

935309564557

RISC Microprocessor
NXP

935309565557

RISC Microprocessor
NXP

935309574557

Microprocessor
NXP

935309634174

Peizoresistive Sensor
NXP

935309638117

Peizoresistive Sensor
NXP