935313936557 [NXP]

RISC Microprocessor;
935313936557
型号: 935313936557
厂家: NXP    NXP
描述:

RISC Microprocessor

外围集成电路
文件: 总46页 (文件大小:421K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: MCF52277  
Rev. 8, 09/2009  
MCF52277  
LQFP–176  
MAPBGA–196  
15mm x 15mm  
24 mm x 24 mm  
MCF5227x ColdFire®  
Microprocessor Data Sheet  
Features  
®
Version 2 ColdFire Core with EMAC  
• Up to 159 Dhrystone 2.1 MIPS @ 166.67 MHz  
• 8 Kbytes configurable cache (instruction only, data only, or  
split instruction/data)  
• 128 Kbytes internal SRAM  
• Support for booting from SPI-compatible flash, EEPROM,  
and FRAM devices  
• Crossbar switch technology (XBS) for concurrent access to  
peripherals or RAM from multiple bus masters  
• 16 channel DMA controller  
• 16- or 32-bit SDR/DDR controller  
• USB 2.0 On-the-Go controller  
• Liquid crystal display controller with support up to  
800 × 600 pixels  
• ADC and touchscreen controller  
• FlexCAN module  
• 4 32-bit timers with DMA support  
• DMA supported serial peripheral interface (DSPI)  
• 3 UARTs  
2
• I C bus interface  
• Synchronous serial interface (SSI)  
• Plus-width modulator (PWM)  
• Real-time clock (RTC)  
• Two programmable interrupt controllers (PIT)  
Freescale reserves the right to change the detail specifications as may be required to permit  
improvements in the design of its products.  
© Freescale Semiconductor, Inc., 2009. All rights reserved.  
Table of Contents  
1
2
3
MCF5227x Family Comparison . . . . . . . . . . . . . . . . . . . . . . . .4  
5.5 Oscillator and PLL Electrical Characteristics. . . . . . . . 19  
5.6 ASP Electrical Characteristics. . . . . . . . . . . . . . . . . . . 20  
5.7 External Interface Timing Specifications . . . . . . . . . . . 21  
5.7.1 FlexBus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
5.7.2 SDRAM Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
5.8 General Purpose I/O Timing . . . . . . . . . . . . . . . . . . . . 29  
5.9 Reset and Configuration Override Timing . . . . . . . . . . 29  
5.10 LCD Controller Timing Specifications . . . . . . . . . . . . . 30  
5.11 USB On-The-Go Specifications. . . . . . . . . . . . . . . . . . 33  
5.12 SSI Timing Specifications . . . . . . . . . . . . . . . . . . . . . . 34  
5.13 I2C Timing Specifications . . . . . . . . . . . . . . . . . . . . . . 36  
5.14 DMA Timer Timing Specifications . . . . . . . . . . . . . . . . 38  
5.15 DSPI Timing Specifications . . . . . . . . . . . . . . . . . . . . . 38  
5.16 SBF Timing Specifications. . . . . . . . . . . . . . . . . . . . . . 39  
5.17 JTAG and Boundary Scan Timing Specifications . . . . 40  
5.18 Debug AC Timing Specifications . . . . . . . . . . . . . . . . . 42  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Product Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Hardware Design Considerations. . . . . . . . . . . . . . . . . . . . . . .5  
3.1 PLL Power Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
3.2 USB Power Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
3.3 ADC Power Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
3.4 Supply Voltage Sequencing . . . . . . . . . . . . . . . . . . . . . .6  
3.4.1 Power Up Sequence . . . . . . . . . . . . . . . . . . . . . .6  
3.4.2 Power Down Sequence . . . . . . . . . . . . . . . . . . . .6  
3.5 Power Consumption Specifications. . . . . . . . . . . . . . . . .7  
Pin Assignments and Reset States . . . . . . . . . . . . . . . . . . . . .9  
4.1 Signal Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
4.2 Pinout—176 LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4.3 Pinout—196 MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . .15  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
5.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
5.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .17  
5.3 ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
5.4 DC Electrical Specifications . . . . . . . . . . . . . . . . . . . . .18  
4
5
6
7
8
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
2
Freescale Semiconductor  
MCF52277  
JTAG  
Oscillator  
PLL  
Version 2 ColdFire Core  
8K  
Configurable  
Cache  
Serial Boot  
Facility  
BDM  
Hardware  
Divide  
EMAC  
LCD  
Controller  
128K  
SRAM  
USB OTG  
eDMA  
Crossbar Switch (XBS)  
Peripheral Bridge  
DSPI  
SDRAM  
Controller  
FlexBus  
Touch  
Screen  
RTC  
SSI  
FlexCAN  
I2C  
GPIO  
EPORT  
INTC  
4 DMA  
Timers  
PWM  
2 PITs  
3 UARTs  
LEGEND  
BDM  
– Background debug module  
LCD  
– Liquid-crystal display  
DSPI  
eDMA  
EMAC  
EPORT  
GPIO  
I2C  
– DMA serial peripheral interface  
– Enhanced direct memory access  
– Enchanced multiply-accumulate unit  
– Edge port module  
– General purpose input/output module  
– Inter-intergrated circuit  
PIT  
– Programmable interrupt timer  
– Phase-locked loop module  
– Pulse-width modulator  
– Real time clock  
– Synchronous serial interface  
– Universal asynchronous receiver/transmitter  
PLL  
PWM  
RTC  
SSI  
UART  
INTC  
JTAG  
Interrupt controller  
– Joint Test Action Group interface  
USB OTG – Universal Serial Bus On-the-Go controller  
Figure 1. MCF52277 Block Diagram  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
3
MCF5227x Family Comparison  
1
MCF5227x Family Comparison  
The following table compares the various device derivatives available within the MCF5227x family.  
Table 1. MCF5227x Family Configurations  
Module  
MCF52274  
MCF52277  
ColdFire Version 2 Core with EMAC  
(Enhanced Multiply-Accumulate Unit)  
Core (System) Clock  
up to 120 MHz  
up to 60 MHz  
up to 114  
up to 166.67 MHz  
up to 83.33 MHz  
up to 159  
Peripheral and External Bus Clock  
(Core clock ÷ 2)  
Performance (Dhrystone/2.1 MIPS)  
Static RAM (SRAM)  
128 Kbytes  
8 Kbytes  
Configurable Cache  
ASP Touchscreen Controller  
LCD Controller  
12-bit color  
18-bit color  
USB 2.0 On-the-Go  
FlexBus External Interface  
SDR/DDR SDRAM Controller  
FlexCAN 2.0B communication module  
Real Time Clock  
Watchdog Timer  
16-channel Direct Memory Access (DMA)  
Interrupt Controllers (INTC)  
Synchronous Serial Interface (SSI)  
I2C  
1
1
DSPI  
UARTs  
3
3
4
2
32-bit DMA Timers  
4
Periodic Interrupt Timers (PIT)  
PWM Module  
2
Edge Port Module (EPORT)  
General Purpose I/O Module (GPIO)  
JTAG - IEEE® 1149.1 Test Access Port  
Package  
176 LQFP  
196 MAPBGA  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
4
Freescale Semiconductor  
Ordering Information  
2
Ordering Information  
Table 2. Orderable Part Numbers  
Freescale Part  
Description  
Package  
Speed  
Temperature  
Number  
MCF52274CLU120  
MCF52277CVM160  
MCF52274 RISC Microprocessor  
MCF52277 RISC Microprocessor  
176 LQFP  
120 MHz  
–40° to +85° C  
–40° to +85° C  
196 MAPBGA 166.67 MHz  
3
Hardware Design Considerations  
3.1  
PLL Power Filtering  
To further enhance noise isolation, an external filter is strongly recommended for PLL analog V pins. The filter shown in  
DD  
Figure 2 should be connected between the board V and the PLLV pins. The resistor and capacitors should be placed as  
DD  
DD  
close to the dedicated PLLV pin as possible.  
DD  
10 Ω  
Board IVDD  
PLL VDD Pin  
10 µF  
0.1 µF  
GND  
Figure 2. System PLL V Power Filter  
DD  
3.2  
USB Power Filtering  
To minimize noise, external filters are required for each of the USB power pins. The filter shown in Figure 3 should be  
connected between the board EV and the USBV pin. The resistor and capacitors should be placed as close to the dedicated  
DD  
DD  
USBV pin as possible.  
DD  
0 Ω  
Board EVDD  
USB VDD Pin  
10 µF  
0.1 µF  
GND  
Figure 3. USB V Power Filter  
DD  
NOTE  
In addition to the above filter circuitry, a 0.01 F capacitor is also recommended in parallel  
with those shown.  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
5
Hardware Design Considerations  
3.3  
ADC Power Filtering  
To minimize noise, an external filters is required for the ADCV power pin. The filter shown in Figure 4 should be connected  
DD  
between the board EV and the ADCV pin. The resistor and capacitors should be placed as close to the dedicated ADCV  
DD  
DD  
DD  
pin as possible.  
0 Ω  
Board EVDD  
ADC VDD Pin  
10 µF  
0.1 µF  
GND  
Figure 4. ADC V Power Filter  
DD  
3.4  
Supply Voltage Sequencing  
The relationship between SDV and EV is non-critical during power-up and power-down sequences. Both SDV (2.5V  
DD  
DD  
DD  
or 3.3V) and EV are specified relative to IV  
.
DD  
DD  
3.4.1  
Power Up Sequence  
If EV /SDV are powered up with IV at 0 V, then the sense circuits in the I/O pads will cause all pad output drivers  
DD  
DD  
DD  
connected to the EV /SDV to be in a high impedance state. There is no limit on how long after EV /SDV powers up  
DD  
DD  
DD  
DD  
before IV must powered up. IV should not lead the EV , SDV or PLLV by more than 0.4 V during power ramp-up,  
DD  
DD  
DD  
DD  
DD  
or there will be high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than  
500 us to avoid turning on the internal ESD protection clamp diodes.  
3.4.2  
Power Down Sequence  
If IV /PLLV are powered down first, then sense circuits in the I/O pads will cause all output drivers to be in a high  
DD  
DD  
impedance state. There is no limit on how long after IV and PLLV power down before EV or SDV must power  
DD  
DD  
DD  
DD  
down. IV should not lag EV , SDV , or PLLV going low by more than 0.4 V during power down or there will be  
DD  
DD  
DD  
DD  
undesired high current in the ESD protection diodes. There are no requirements for the fall times of the power supplies.  
The recommended power down sequence is as follows:  
1. Drop IV /PLLV to 0 V.  
DD  
DD  
2. Drop EV /SDV supplies.  
DD  
DD  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
6
Freescale Semiconductor  
Hardware Design Considerations  
3.5  
Power Consumption Specifications  
All application power consumption data is lab data measured on an M52277EVB running the Freescale Linux BSP.  
1
Table 3. MCF52277 Application Power Consumption  
Core  
Freq.  
Idle (LCD  
image)  
Idle (audio  
image)  
Button  
Demo  
Slideshow  
Demo  
MP3  
Playback  
USB FS  
File Copy  
Units  
IVDD  
EVDD  
61.4  
28.87  
18.8  
59.2  
25.73  
18.57  
84.7  
35.3  
21.8  
96.5  
34.6  
23.9  
89.2  
33.46  
22.66  
89.5  
29.86  
22.2  
mA  
160 MHz  
SDVDD  
Total Power  
221.211  
207.135  
282.78  
301.95  
285.006  
272.748  
mW  
1
All voltage rails at nominal values: IVDD = 1.5 V, EVDD = 3.3 V, and SDVDD = 1.8 V.  
350  
300  
250  
200  
150  
100  
50  
0
Idle (LCD Idle (Audio  
image) Image)  
Button  
Demo  
Slideshow  
Demo  
MP3  
USB FS  
Playback File Copy  
Figure 5. Power Consumption in Various Applications  
All current consumption data is lab data measured on a single device using an evaluation board. Table 4 shows the typical power  
consumption in low-power modes. These current measurements are taken after executing a STOP instruction.  
1,2  
Table 4. Current Consumption in Low-Power Modes  
System Frequency  
4MHz  
(LIMP  
mode)  
Mode  
Voltage Supply  
80MHz  
64MHz  
48MHz  
32MHz  
IVDD (mA)  
Power (mW)  
IVDD (mA)  
75.1  
112.65  
61.9  
62.7  
94.05  
52.8  
49.2  
73.80  
42.0  
36.6  
54.90  
31.7  
3.5  
5.25  
2.9  
RUN  
WAIT  
Power (mW)  
92.85  
79.20  
63.00  
47.55  
4.35  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
7
Hardware Design Considerations  
1,2  
Table 4. Current Consumption in Low-Power Modes (continued)  
System Frequency  
4MHz  
(LIMP  
mode)  
Mode  
Voltage Supply  
80MHz  
64MHz  
48MHz  
32MHz  
IVDD (mA)  
Power (mW)  
IVDD (mA)  
57.0  
85.50  
16.1  
24.15  
15.9  
23.85  
1.8  
48.8  
73.20  
15.1  
22.65  
14.9  
22.35  
1.8  
38.9  
58.35  
13.4  
20.10  
13.2  
19.80  
1.8  
29.7  
44.55  
12.5  
18.75  
12.4  
18.60  
1.8  
2.7  
4.05  
1.3  
DOZE  
STOP 0  
STOP 1  
STOP 2  
STOP 3  
Power (mW)  
IVDD (mA)  
1.95  
1.3  
Power (mW)  
IVDD (mA)  
1.95  
1.3  
Power (mW)  
IVDD (mA)  
2.70  
0.5  
2.70  
0.5  
2.70  
0.5  
2.70  
0.5  
1.95  
0.5  
Power (mW)  
0.75  
0.75  
0.75  
0.75  
0.75  
1
2
All values are measured on an M52277EVB with nominal core voltage(IVDD = 1.5 V). Tests  
performed at room temperature. All peripheral clocks on prior to entering low-power mode  
Refer to the Power Management chapter in the MCF52277 Reference Manual for more information  
on low-power modes.  
120  
100  
RUN  
80  
WAIT  
DOZE  
60  
40  
20  
0
STOP 0  
STOP 1  
STOP 2  
STOP 3  
80  
64  
48  
32  
4 (LIMP)  
System Frequency (MHz)  
Figure 6. IV Power Consumption in Low-Power Modes  
DD  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
8
Freescale Semiconductor  
Pin Assignments and Reset States  
4
Pin Assignments and Reset States  
4.1  
Signal Multiplexing  
The following table lists all the MCF5227x pins grouped by function. The direction column is the direction for the primary  
function of the pin only. Refer to Section 4, “Pin Assignments and Reset States,” for package diagrams. For a more detailed  
discussion of the MCF5227x signals, consult the MCF52277 Reference Manual (MCF52277RM).  
NOTE  
In this table and throughout this document a single signal within a group is designated  
without square brackets (i.e., FB_A23), while designations for multiple signals within a  
group use brackets (i.e., FB_A[23:21]) and is meant to include all signals within the two  
bracketed numbers when these numbers are separated by a colon.  
NOTE  
The primary functionality of a pin is not necessarily its default functionality. Most pins that  
are muxed with GPIO will default to their GPIO functionality. See Table 5 for a list of the  
exceptions.  
Table 5. Special-Case Default Signal Functionality  
Pin  
Default Signal  
FB_BE/BWE[3:0]  
FB_CS[3:0]  
FB_OE  
FB_BE/BWE[3:0]  
FB_CS[3:0]  
FB_OE  
FB_TA  
FB_TA  
FB_R/W  
FB_R/W  
FB_TS  
FB_TS  
Table 6. MCF5227x Signal Information and Muxing  
MCF52274  
176 LQFP  
MCF52277  
196 MAPBGA  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
Reset  
RESET  
U
I
EVDD  
EVDD  
103  
102  
J11  
RSTOUT  
O
K11  
Clock  
EXTAL  
XTAL  
I
EVDD  
EVDD  
106  
105  
F14  
G14  
U3  
O
Mode Selection  
BOOTMOD[1:0]  
I
EVDD  
110, 109  
G10, H10  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
9
Pin Assignments and Reset States  
Table 6. MCF5227x Signal Information and Muxing (continued)  
MCF52274  
176 LQFP  
MCF52277  
196 MAPBGA  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
FlexBus  
FB_A[23:22]  
FB_A[21:16]  
FB_CS[5:4]  
O
O
SDVDD  
143, 142  
C11, D11  
SDVDD 141–139, 137–135  
A12, B12, C12,  
B13, A13, A14  
FB_A[15:14]  
FB_A[13:11]  
FB_A10  
SD_BA[1:0]  
SD_A[13:11]  
O
O
O
O
SDVDD  
SDVDD  
SDVDD  
SDVDD  
131, 130  
129–127  
126  
B14, C13  
C14, D12, D13  
D14  
FB_A[9:0]  
SD_A[9:0]  
125–116  
E11–E14,  
F11–F13, G11,  
G12, H11  
FB_D[31:16]  
FB_D[15:0]  
SD_D[31:16]  
FB_D[31:16]  
I/O SDVDD  
I/O SDVDD  
30–37, 49–56  
19–26, 60–67  
J4, K1–K4, L1–L3,  
M3, N3, P3,M4,  
N4, P4, L5, M5  
G1–G4, H1–H4,  
M6, N6, P6, L7,  
M7, N7, P7, L8  
FB_CLK  
FB_BE/BWE[3:0]  
FB_CS[3:2]  
FB_CS1  
O
O
O
O
O
O
I
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
42  
P1  
J3, N5, J1, L6  
B11, A11  
D10  
PBE[3:0]  
PCS[3:2]  
PCS1  
SD_DQM[3:0]  
U
29, 57, 27, 59  
SD_CS1  
144  
145  
69  
FB_CS0  
PCS0  
C10  
FB_OE  
PFBCTL3  
PFBCTL2  
PFBCTL1  
PFBCTL0  
N8  
FB_TA  
115  
68  
H12  
FB_R/W  
O
O
M8  
FB_TS  
DACK0  
15  
F4  
SDRAM Controller  
SD_A10  
SD_CAS  
SD_CKE  
SD_CLK  
O
O
O
O
O
O
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
46  
47  
L4  
N2  
17  
F2  
40  
M1  
SD_CLK  
41  
N1  
SD_CS0  
18  
F1  
SD_DQS[3:2]  
SD_RAS  
I/O SDVDD  
SDVDD  
28, 58  
48  
J2, P5  
P2  
O
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
10  
Freescale Semiconductor  
Pin Assignments and Reset States  
Table 6. MCF5227x Signal Information and Muxing (continued)  
MCF52274  
176 LQFP  
MCF52277  
196 MAPBGA  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
SD_SDR_DQS  
SD_WE  
O
O
SDVDD  
SDVDD  
38  
16  
M2  
F3  
External Interrupts Port4  
IRQ7  
IRQ4  
IRQ1  
PIRQ7  
PIRQ4  
PIRQ1  
I
I
I
EVDD  
EVDD  
EVDD  
162  
161  
160  
D7  
C7  
B7  
5
DREQ0  
DSPI_PCS4  
USB_CLKIN  
SSI_CLKIN  
LCD Controller6  
LCD_D[17:16]6  
LCD_D[15:14]6  
LCD_D13  
PLCDDH[1:0]  
PLCDDM[7:6]  
PLCDDM5  
PLCDDM4  
PLCDDM[3:0]  
PLCDDL7  
LCD_D[11:10]  
LCD_D[9:8]  
CANTX  
O
O
O
O
O
O
O
O
O
O
O
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
9, 8  
7, 6  
E3, E4  
D1, D2  
C1  
LCD_D12  
CANRX  
C2  
LCD_D[11:8]6  
LCD_D[7:4]  
PWM7  
5–2  
D3, C3, D4, B1  
LCD_D7  
B2  
LCD_D6  
PLCDDL6  
PWM5  
A1  
LCD_D[5:2]6  
PLCDDL[5:2]  
PLCDDL1  
LCD_D[3:0]  
PWM3  
175–172  
A2, A3, B3, A4  
LCD_D1  
B4  
C4  
B5  
LCD_D0  
PLCDDL0  
PWM1  
LCD_ACD/  
LCD_OE  
PLCDCTL3  
LCD_SPL_SPR  
169  
LCD_FLM/  
LCD_VSYNC  
PLCDCTL2  
PLCDCTL1  
PLCDCTL0  
O
O
O
EVDD  
EVDD  
EVDD  
10  
11  
E2  
E1  
A5  
LCD_LP/  
LCD_HSYNC  
LCD_LSCLK  
USB On-the-Go  
170  
USB_DM  
USB_DP  
O
O
USB  
VDD  
149  
150  
A9  
USB  
VDD  
A10  
Real Time Clock  
RTC_EXTAL  
RTC_XTAL  
I
EVDD  
EVDD  
100  
99  
J14  
O
K14  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
11  
Pin Assignments and Reset States  
Table 6. MCF5227x Signal Information and Muxing (continued)  
MCF52274  
176 LQFP  
MCF52277  
196 MAPBGA  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
Touchscreen Controller  
ADC_IN[7:0]  
ADC_REF  
I
I
VDD_  
ADC  
82–85, 87–90  
P12, N12, P13,  
N13, P14, N14,  
M13, M14  
VDD_  
ADC  
86  
M12  
I2C  
I2C_SCL  
I2C_SDA  
PI2C1  
PI2C0  
CANTX  
CANRX  
U2TXD  
U2RXD  
U
U
I/O  
I/O  
EVDD  
EVDD  
168  
167  
C5  
D5  
DSPI7  
DSPI_PCS0/SS  
DSPI_SIN  
PDSPI3  
PDSPI2  
PDSPI1  
PDSPI0  
U2RTS  
U2RXD  
U2TXD  
U2CTS  
U
I/O  
I
EVDD  
EVDD  
EVDD  
EVDD  
152  
155  
154  
153  
B9  
D8  
D9  
C9  
8
SBF_DI  
SBF_D0  
SBF_CK  
DSPI_SOUT  
DSPI_SCK  
O
I/O  
UARTs  
U1CTS  
U1RTS  
U1TXD  
U1RXD  
U0CTS  
U0RTS  
U0TXD  
U0RXD  
PUART7  
PUART6  
PUART5  
PUART4  
PUART3  
PUART2  
PUART1  
PUART0  
SSI_BCLK  
SSI_FS  
LCD_CLS  
I
O
O
I
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
156  
157  
159  
158  
97  
C8  
B8  
LCD_PS  
SSI_TXD  
SSI_RXD  
DT1OUT  
DT1IN  
A7  
A8  
USB_VBUS_EN  
I
K12  
J12  
L12  
K13  
USB_VBUS_OC  
O
O
I
98  
CANTX  
95  
CANRX  
96  
DMA Timers  
DT3IN  
DT2IN/SBF_CS7  
DT1IN  
PTIMER3  
PTIMER2  
PTIMER1  
PTIMER0  
DT3OUT  
DT2OUT  
DT1OUT  
DT0OUT  
SSI_MCLK  
DSPI_PCS2  
I
I
I
I
EVDD  
EVDD  
EVDD  
EVDD  
163  
164  
165  
166  
D6  
C6  
B6  
A6  
LCD_CONTRAST  
LCD_REV  
DT0IN  
BDM/JTAG9  
PST[3:0]  
O
O
EVDD  
EVDD  
L9, M9, N9, P9  
DDATA[3:0]  
L10, M10, N10,  
P10  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
12  
Freescale Semiconductor  
Pin Assignments and Reset States  
Table 6. MCF5227x Signal Information and Muxing (continued)  
MCF52274  
176 LQFP  
MCF52277  
196 MAPBGA  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
ALLPST  
JTAG_EN  
PSTCLK  
DSI  
D
O
I
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
76  
79  
74  
78  
81  
80  
77  
K10  
P8  
TCLK  
TDI  
U
O
I
U
M11  
L11  
N11  
P11  
DSO  
TDO  
TMS  
TRST  
U
O
I
BKPT  
DSCLK  
U
I
Test  
TEST  
Power Supplies  
D
I
EVDD  
134  
E10  
IVDD  
EVDD  
39, 75, 114, 138,  
171  
K5, F10, E5, J10  
12, 72, 73, 94, 111, E6, E7, F5, F6, G5,  
148, 176 H9, J9, K8, K9  
SD_VDD  
14, 43, 44, 70, 113, E8, E9, F9, G9, H5,  
132, 146  
J5, J6, K6, K7  
VDD_OSC  
VDD_PLL  
VDD_USB  
VDD_RTC  
VDD_ADC  
VSS  
108  
G13  
H14  
B10  
J13  
L13  
104  
151  
101  
91  
1, 13, 45, 71, 93,  
112, 133, 147  
F7, F8, G6–G8,  
H6–H8, J7, J8  
VSS_OSC  
VSS_ADC  
107  
92  
H13  
L14  
1
2
3
4
5
6
7
Pull-ups are generally only enabled on pins with their primary function, except as noted.  
Refers to pin’s primary function.  
Enabled only in oscillator bypass mode (internal crystal oscillator is disabled).  
GPIO functionality is determined by the edge port module. The GPIO module is only responsible for assigning the alternate functions.  
Pull-up when DREQ controls the pin.  
The 176 LQFP device only supports a 12-bit LCD data bus.  
DSPI or SBF signal functionality is controlled by RESET. When asserted, these pins are configured for serial boot; when negated, the  
pins are configured for DSPI.  
8
Pull-up when the serial boot facility (SBF) controls the pin.  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
13  
Pin Assignments and Reset States  
9
If JTAG_EN is asserted, these pins default to alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning these  
pins.  
4.2  
Pinout—176 LQFP  
The pinout for the MCF52274 package is shown below.  
VSS  
1
SD_VDD  
FB_A15  
FB_A14  
FB_A13  
FB_A12  
FB_A11  
FB_A10  
FB_A9  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
2
3
4
5
6
7
8
9
LCD_D8  
LCD_D9  
LCD_D10  
LCD_D11  
LCD_D14  
LCD_D15  
LCD_D16  
LCD_D17  
LCD_FLM/VSYNC  
LCD_LP/HSYNC  
EVDD  
FB_A8  
FB_A7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
122 FB_A6  
FB_A5  
FB_A4  
FB_A3  
FB_A2  
FB_A1  
FB_A0  
FB_TA  
IVDD  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
VSS  
SD_VDD  
FB_TS  
SD_WE  
SD_CKE  
SD_CS0  
FB_D15  
FB_D14  
FB_D13  
FB_D12  
FB_D11  
FB_D10  
FB_D9  
SD_VDD  
VSS  
111 EVDD  
110 BOOTMOD1  
109 BOOTMOD0  
108 VDD_OSC  
107 VSS_OSC  
106 EXTAL  
FB_D8  
FB_BE/BWE1  
SD_DQS3  
FB_BE/BWE3  
FB_D31  
105 XTAL  
104 VDD_PLL  
103 RESET  
102 RSTOUT  
101 VDD_RTC  
100 RTC_EXTAL  
99 RTC_XTAL  
98 U0RTS  
97 U0CTS  
96 U0RXD  
95 U0TXD  
94 EVDD  
FB_D30  
FB_D29  
FB_D28  
FB_D27  
FB_D26  
FB_D25  
FB_D24  
SD_SDR_DQS  
IVDD  
SD_CLK  
SD_CLK  
FB_CLK  
SD_VDD  
SD_VDD 44  
93 VSS  
92 VSS_ADC  
91 VDD_ADC  
90 ADC_IN0  
89 ADC_IN1  
Figure 7. MCF52274 Pinout (176 LQFP)  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
14  
Freescale Semiconductor  
Electrical Characteristics  
4.3  
Pinout—196 MAPBGA  
The pinout for the MCF52277 package is shown below.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
LCD_  
LSCLK  
A
B
C
D
E
F
LCD_D6 LCD_D5 LCD_D4 LCD_D2  
LCD_D8 LCD_D7 LCD_D3 LCD_D1  
T0IN  
U1TXD  
U1RXD USB_DM USB_DP FB_CS2 FB_A21  
FB_A17  
FB_A16  
A
B
C
D
E
F
LCD_  
ACD/OE  
DSPI_  
PCS0  
VDD_  
USB  
T1IN  
T2IN  
IRQ_1  
IRQ_4  
U1RTS  
U1CTS  
FB_CS3 FB_A20  
FB_A18  
FB_A14  
FB_A11  
FB_A7  
FB_A15  
FB_A13  
FB_A10  
FB_A6  
EXTAL  
XTAL  
DSPI_  
SCK  
LCD_D13 LCD_D12 LCD_D10 LCD_D0 I2C_SCL  
FB_CS0 FB_A23  
FB_CS1 FB_A22  
FB_A19  
FB_A12  
FB_A8  
FB_A4  
FB_A1  
FB_TA  
U0RTS  
U0CTS  
U0TXD  
DSPI_  
SOUT  
LCD_D15 LCD_D14 LCD_D11 LCD_D9 I2C_SDA  
LCD_LP/ LCD_FLM/  
T3IN  
IRQ_7 DSPI_SIN  
LCD_D17 LCD_D16  
IVDD  
EVDD  
EVDD  
SDVDD  
SDVDD  
IVDD  
EVDD  
EVDD  
VSS  
EVDD  
VSS  
SDVDD  
VSS  
SDVDD  
SDVDD  
SDVDD  
EVDD  
EVDD  
EVDD  
PST3  
TEST  
IVDD  
FB_A9  
FB_A5  
FB_A2  
FB_A0  
RESET  
HSYNC  
VSYNC  
SD_CS0 SD_CKE  
SD_WE  
FB_D13  
FB_D9  
FB_TS  
FB_D12  
FB_D8  
FB_A3  
BOOT  
MOD1  
VDD_  
OSC  
G
H
J
FB_D15  
FB_D11  
FB_D14  
FB_D10  
SD_DQS3  
FB_D29  
FB_D25  
VSS  
VSS  
G
H
J
BOOT  
MOD0  
VSS_  
OSC  
VDD_  
PLL  
VSS  
VSS  
VSS  
FB_BE/  
BWE1  
FB_BE/  
BWE3  
VDD_  
RTC  
RTC_  
EXTAL  
FB_D31  
FB_D27  
SDVDD  
SDVDD  
VSS  
VSS  
IVDD  
RTC_  
XTAL  
K
L
FB_D30  
FB_D26  
SD_CLK  
FB_D28  
SDVDD  
FB_D4  
FB_D3  
FB_D2  
EVDD  
FB_D0  
FB_R/W  
FB_OE  
JTAG_EN RSTOUT  
U0RXD  
K
L
FB_BE/  
BWE0  
VDD_  
ADC  
VSS_  
ADC  
FB_D24 SD_A10 FB_D17  
DDATA3  
DDATA2  
DDATA1  
TDO  
TDI  
SD_  
SDR_DQS  
ADC_  
REF  
M
N
P
FB_D23  
FB_D20  
FB_D19  
FB_D16  
FB_D7  
FB_D6  
PST2  
ADC_IN1 ADC_IN0  
M
N
P
FB_BE/  
BWE2  
SD_CLK SD_CAS FB_D22  
FB_CLK SD_RAS FB_D21  
PST1  
TMS  
ADC_IN6 ADC_IN4 ADC_IN2  
ADC_IN7 ADC_IN5 ADC_IN3  
SD_  
DQS0  
FB_D18  
FB_D5  
FB_D1  
TCLK  
PST0  
DDATA0  
TRST  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Figure 8. MCF52277 Pinout (196 MAPBGA)  
5
Electrical Characteristics  
This document contains electrical specification tables and reference timing diagrams for the MCF5227x microprocessor. This  
section contains detailed information on DC/AC electrical characteristics and AC timing specifications.  
The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not  
be fully tested or guaranteed at this early stage of the product life cycle, however for production silicon these specifications will  
be met. Finalized specifications will be published after complete characterization and device qualifications have been  
completed.  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
15  
Electrical Characteristics  
NOTE  
The parameters specified in this MCU document supersede any values found in the module  
specifications.  
5.1  
Maximum Ratings  
1, 2  
Table 7. Absolute Maximum Ratings  
Characteristic  
Symbol  
Value  
Unit  
Core Supply Voltage  
IVDD  
EVDD  
–0.5 to +2.0  
–0.3 to +4.0  
–0.3 to +4.0  
–0.3 to +4.0  
–0.3 to +2.0  
–0.5 to +2.0  
–0.3 to +3.6  
25  
V
V
CMOS Pad Supply Voltage  
DDR/Memory Pad Supply Voltage  
Oscillator Supply Voltage  
PLL Supply Voltage  
SDVDD  
OSCVDD  
PLLVDD  
RTCVDD  
VIN  
V
V
V
RTC Supply Voltage  
V
Digital Input Voltage 3  
V
Instantaneous Maximum Current  
ID  
mA  
Single pin limit (applies to all pins) 3, 4, 5  
Operating Temperature Range (Packaged)  
TA  
(TL – TH)  
–40 to +85  
°C  
°C  
Storage Temperature Range  
Tstg  
–55 to +150  
1
Functional operating conditions are given in Section 5.4, “DC Electrical Specifications.Absolute maximum ratings  
are stress ratings only, and functional operation at the maxima is not guaranteed. Continued operation at these  
levels may affect device reliability or cause permanent damage to the device.  
2
This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is  
advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages  
to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic  
voltage level (e.g., either VSS or EVDD).  
3
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor,  
calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.  
4
5
All functional non-supply pins are internally clamped to VSS and EVDD  
.
Power supply must maintain regulation within operating EVDD range during instantaneous and operating maximum  
current conditions. If positive injection current (Vin > EVDD) is greater than IDD, the injection current may flow out of  
EVDD and could result in external power supply going out of regulation. Insure external EVDD load will shunt current  
greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power (ex; no  
clock). Power supply must maintain regulation within operating EVDD range during instantaneous and operating  
maximum current conditions.  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
16  
Freescale Semiconductor  
Electrical Characteristics  
5.2  
Thermal Characteristics  
Table 8. Thermal Characteristics  
196  
MAPBGA  
176  
Unit  
Characteristic  
Symbol  
LQFP  
Junction to ambient, natural convection Four layer board (2s2p)  
θJA  
θJMA  
θJB  
θJC  
Ψjt  
381,2  
341,2  
273  
481,2  
421,2  
373  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
oC  
Junction to ambient (@200 ft/min)  
Junction to board  
Four layer board (2s2p)  
Junction to case  
174  
144  
Junction to top of package  
Maximum operating junction temperature  
41,5  
31,5  
Tj  
105  
105  
1
θ
JA, θJMA and Ψjt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection.  
Freescale recommends the use of θJmA and power dissipation specifications in the system design to prevent device  
junction temperatures from exceeding the rated specification. System designers should be aware that device  
junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the  
device junction temperature specification can be verified by physical measurement in the customer’s system using  
the Ψjt parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.  
2
3
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board  
temperature is measured on the top surface of the board near the package.  
4
5
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL  
SPEC-883 Method 1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter  
is written in conformance with Psi-JT.  
The average chip-junction temperature (T ) in °C can be obtained from:  
J
TJ = TA + (PD × ΘJMA  
)
Eqn. 1  
Where:  
TA  
= Ambient Temperature, °C  
QJMA  
PD  
= Package Thermal Resistance, Junction-to-Ambient, °C/W  
= PINT + PI/O  
PINT  
PI/O  
= IDD × IVDD, Watts - Chip Internal Power  
= Power Dissipation on Input and Output Pins — User Determined  
For most applications P < P  
and can be ignored. An approximate relationship between P and T (if P is neglected) is:  
D J I/O  
I/O  
INT  
K
---------------------------------  
PD  
=
Eqn. 2  
(TJ + 273°C)  
Solving equations 1 and 2 for K gives:  
K = PD × (TA × 273°C) + QJMA × P2D  
Eqn. 3  
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P (at equilibrium)  
D
for a known T . Using this value of K, the values of P and T can be obtained by solving Equation 1 and Equation 2 iteratively  
A
D
J
for any value of T .  
A
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
17  
Electrical Characteristics  
5.3  
ESD Protection  
1,2  
Table 9. ESD Protection Characteristics  
Characteristic  
ESD Target for Human Body Model  
Symbol  
Value  
2000  
Unit  
HBM  
V
1
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade  
Integrated Circuits.  
2
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification requirements. Complete DC parametric and functional testing is performed per  
applicable device specification at room temperature followed by hot temperature, unless specified  
otherwise in the device specification.  
5.4  
DC Electrical Specifications  
Table 10. DC Electrical Specifications  
Characteristic  
Symbol  
Min  
Max  
Unit  
Core Supply Voltage  
IVDD  
PLLVDD  
RTCVDD  
EVDD  
1.4  
1.4  
1.4  
3.0  
1.6  
1.6  
1.6  
3.6  
V
V
V
V
V
PLL Supply Voltage  
RTC Supply Voltage  
CMOS Pad Supply Voltage  
SDRAM and FlexBus Supply Voltage  
SDVDD  
Mobile DDR/Bus Pad Supply Voltage (nominal 1.8V)  
DDR/Bus Pad Supply Voltage (nominal 2.5V)  
SDR/Bus Pad Supply Voltage (nominal 3.3V)  
1.7  
2.25  
3.0  
1.95  
2.75  
3.6  
USB Supply Voltage  
USBVDD  
OSCVDD  
EVIH  
3.0  
3.0  
3.6  
3.6  
V
V
V
V
V
Oscillator Supply Voltage  
CMOS Input High Voltage  
CMOS Input Low Voltage  
2
EVDD + 0.3  
0.8  
EVIL  
VSS – 0.3  
EVDD – 0.4  
CMOS Output High Voltage  
IOH = –5.0 mA  
EVOH  
CMOS Output Low Voltage  
EVOL  
0.4  
V
V
IOL = 5.0 mA  
SDRAM and FlexBus Input High Voltage  
SDVIH  
Mobile DDR/Bus Input High Voltage (nominal 1.8V)  
DDR/Bus Pad Supply Voltage (nominal 2.5V)  
SDR/Bus Pad Supply Voltage (nominal 3.3V)  
1.35  
1.7  
2
SDVDD + 0.3  
SDVDD + 0.3  
SDVDD + 0.3  
SDRAM and FlexBus Input Low Voltage  
SDVIL  
V
Mobile DDR/Bus Input High Voltage (nominal 1.8V)  
DDR/Bus Pad Supply Voltage (nominal 2.5V)  
SDR/Bus Pad Supply Voltage (nominal 3.3V)  
VSS – 0.3  
0.45  
0.8  
0.8  
VSS – 0.3  
VSS – 0.3  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
18  
Freescale Semiconductor  
Electrical Characteristics  
Table 10. DC Electrical Specifications (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
SDRAM and FlexBus Output High Voltage  
Mobile DDR/Bus Input High Voltage (nominal 1.8V)  
DDR/Bus Pad Supply Voltage (nominal 2.5V)  
SDR/Bus Pad Supply Voltage (nominal 3.3V)  
IOH = –5.0 mA for all modes  
SDVOH  
V
1.4  
2.1  
2.4  
SDRAM and FlexBus Output Low Voltage  
Mobile DDR/Bus Input High Voltage (nominal 1.8V)  
DDR/Bus Pad Supply Voltage (nominal 2.5V)  
SDR/Bus Pad Supply Voltage (nominal 3.3V)  
IOL = 5.0 mA for all modes  
SDVOL  
V
0.3  
0.3  
0.5  
Input Leakage Current  
Iin  
–1.0  
–10  
1.0  
μA  
Vin = VDD or VSS, Input-only pins  
Weak Internal Pull-Up Device Current, tested at VIL Max.1  
IAPU  
Cin  
–130  
μA  
Input Capacitance 2  
pF  
All input-only pins  
All input/output (three-state) pins  
7
7
1
Refer to the signals section for pins having weak internal pull-up devices.  
This parameter is characterized before qualification rather than 100% tested.  
2
5.5  
Oscillator and PLL Electrical Characteristics  
Table 11. PLL Electrical Characteristics  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
1
PLL Reference Frequency Range  
Crystal reference  
fref_crystal  
fref_ext  
16  
16  
251  
MHz  
MHz  
External reference  
66.671  
2
Core/system frequency  
CLKOUT Frequency  
fsys  
fsys/2  
512 Hz2  
256 Hz2  
166.67  
83.33  
MHz  
MHz  
3
4
Crystal Start-up Time3,4  
tcst  
10  
ms  
EXTAL Input High Voltage  
Crystal Mode5  
VIHEXT  
VIHEXT  
VXTAL + 0.4  
EVDD/2 + 0.4  
V
V
All other modes (External, Limp)  
5
EXTAL Input Low Voltage  
Crystal Mode5  
VILEXT  
VILEXT  
VXTAL – 0.4  
EVDD/2 – 0.4  
V
V
All other modes (External, Limp)  
7
8
PLL Lock Time 3,6  
tlpll  
tdc  
40  
1
50000  
60  
CLKIN  
%
Duty cycle of reference3  
9
XTAL Current  
IXTAL  
3
mA  
pF  
10  
11  
12  
Total on-chip stray capacitance on XTAL  
Total on-chip stray capacitance on EXTAL  
Crystal capacitive load  
CS_XTAL  
CS_EXTAL  
CL  
1.5  
1.5  
pF  
See crystal spec  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
19  
Electrical Characteristics  
Num  
Table 11. PLL Electrical Characteristics (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
13  
Discrete load capacitance for XTAL  
Discrete load capacitance for EXTAL  
CL_XTAL  
CL_EXTAL  
2 × (CL –  
CS_XTAL –  
pF  
CS_EXTAL  
7
CS_PCB  
)
14  
15  
17  
Frequency un-LOCK Range  
Frequency LOCK Range  
fUL  
–4.0  
–2.0  
4.0  
% fsys  
% fsys  
fLCK  
Cjitter  
2.0  
CLKOUT period jitter 4, 5, 8 measured at fsys max  
Peak-to-peak jitter (Clock edge to clock edge)  
Long-term jitter  
10  
TBD  
% fsys/2  
% fsys/2  
19  
VCO frequency (fvco = fref × PFDR)  
fvco  
350  
540  
MHz  
1
2
3
Although these are the allowable frequency ranges, do not violate the VCO frequency range of the PLL. See the  
MCF5227x Reference Manual for more details.  
The minimum system frequency is the minimum input clock divided by the maximum low-power divider  
(16 MHz ÷ 32,768). When the PLL is enabled, the minimum system frequency (fsys) is 37.5 MHz.  
This parameter is guaranteed by characterization before qualification rather than 100% tested. Applies to external clock  
reference only.  
4
5
6
Proper PC board layout procedures must be followed to achieve specifications.  
This parameter is guaranteed by design rather than 100% tested.  
This specification is the PLL lock time only and does not include oscillator start-up time..  
7
8
CS_PCB is the measured PCB stray capacitance on EXTAL and XTAL.  
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fsys  
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal.  
.
Noise injected into the PLL circuitry via PLL VDD, EVDD, and VSS and variation in crystal oscillator frequency increase  
the Cjitter percentage for a given interval.  
5.6  
ASP Electrical Characteristics  
Table 12 lists the electrical specifications for the ASP module.  
Table 12. ASP Electrical Characteristics  
Characteristic  
ASP Analog Supply Voltage  
Symbol  
Min  
Typical  
Max  
Unit  
VDDA  
VADIN  
3.0  
0
700  
1
3.6  
VDDA  
V
V
Input Voltage Range  
Operating Current Consumption  
Power-down Current Consumption  
Resolution  
IDDA_ON  
IDDA_OFF  
RES  
2
uA  
uA  
±8  
±2  
12  
bits  
kS/s  
lsb1  
lsb1  
MHz  
V
Sampling rate  
125  
±24  
±24  
8
Integral Non-linearity  
Differential Non-linearity  
ADC Internal Clock Frequency  
Conversion Range  
INL  
DNL  
tAIC  
RAD  
0
VDDA  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
20  
Freescale Semiconductor  
Electrical Characteristics  
Table 12. ASP Electrical Characteristics (continued)  
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
Conversion Time  
Sample Time  
tADC  
15  
32  
tAIC  
cycles  
tADS  
tAMS  
3
20  
3
tAIC  
cycles  
Multiplexer Settling Time  
tAIC  
cycles  
Zero-scale Error  
Full-scale Error  
Input Capacitance  
ZE  
FE  
±4  
±320  
±12  
±370  
34  
lsb1  
lsb1  
pF  
CAIN  
1
A least significant bit (lsb) is a unit of voltage equal to the smallest resolution of the ADC. This unit of measure approximately  
relates the error voltage to the observed error in conversion (code error), and is useful for systemic errors such as differential  
non-linearity. A 2.56-V input on an ADC with ± 3 lsb of error could read between 0x1FD and 0x203. This unit is by far the most  
common terminology and will be the preferred unit used for error representation.  
A bit is a unit equal to the log (base2) of the error voltage normalized to the resolution of the ADC. An error of N bits  
corresponds to 2N lsb of error. This measure is easily confused with lsb and is hard to extrapolate between integer values.  
5.7  
External Interface Timing Specifications  
FlexBus  
5.7.1  
A multi-function external bus interface called FlexBus is provided with basic functionality to interface to slave-only devices up  
to a maximum bus frequency of 66MHz. It can be directly connected to asynchronous or synchronous devices such as external  
boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For  
asynchronous devices a simple chip-select based interface can be used.  
All processor bus timings are synchronous; that is, input setup/hold and output delay are given in respect to the rising edge of  
a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider  
of that frequency.  
The following timing numbers indicate when data will be latched or driven onto the external bus, relative to the Flexbus output  
clock, FB_CLK. All other timing relationships can be derived from these values.  
Table 13. FlexBus AC Timing Specifications  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
Notes  
Frequency of Operation  
FB1 Clock Period (FB_CLK)  
12.0  
83.33  
MHz  
ns  
fsys/2  
tFBCK  
tcyc  
1
FB2 Address, Data, and Control Output Valid (FB_A[23:0], FB_D[31:0], tFBCHDCV  
FB_CS[5:0], FB_R/W, FB_TS, FB_BE/BWE[3:0] and FB_OE)  
7.0  
ns  
1, 2  
FB3 Address, Data, and Control Output Hold (FB_A[23:0], FB_D[31:0], tFBCHDCI  
FB_CS[5:0], FB_R/W, FB_TS, FB_BE/BWE[3:0], and FB_OE)  
1
ns  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
21  
Electrical Characteristics  
Num  
Table 13. FlexBus AC Timing Specifications (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
Notes  
FB4 Data Input Setup  
FB5 Data Input Hold  
tDVFBCH  
tDIFBCH  
tCVFBCH  
tCIFBCH  
3.5  
0
ns  
ns  
ns  
ns  
FB6 Transfer Acknowledge (TA) Input Setup  
FB7 Transfer Acknowledge (TA) Input Hold  
4
0
1
2
Timing for chip selects only applies to the FB_CS[5:0] signals. Please see Section 5.7.2.2, “DDR SDRAM AC Timing  
Specifications,for SD_CS[3:0] timing.  
The FlexBus supports programming an extension of the address hold. Please consult the device reference manual for more  
information.  
NOTE  
The processor drives the data lines during the first clock cycle of the transfer with the full  
32-bit address. This may be ignored by standard connected devices using non-multiplexed  
address and data buses. However, some applications may find this feature beneficial.  
The address and data busses are muxed between the FlexBus and SDRAM controller. At  
the end of the read and write bus cycles the address signals are indeterminate.  
S0  
S1  
S2  
S3  
FB_CLK  
FB1  
FB3  
ADDR[23:0]  
FB_A[23:0]  
FB2  
FB5  
FB_D[31:X]  
ADDR[31:X]  
DATA  
FB4  
FB_R/W  
FB_TS  
FB_CSn, FB_OE,  
FB_BE/BWEn  
FB6  
FB7  
FB_TA  
Figure 9. FlexBus Read Timing  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
22  
Freescale Semiconductor  
Electrical Characteristics  
S0  
S1  
S2  
S3  
FB_CLK  
FB1  
FB3  
ADDR[23:0]  
FB_A[23:0]  
FB2  
ADDR[31:X]  
FB_D[31:X]  
DATA  
FB_R/W  
FB_TS  
FB_CSn, FB_BE/BWEn  
FB_OE  
FB6  
FB7  
FB_TA  
Figure 10. Flexbus Write Timing  
5.7.2  
SDRAM Bus  
The SDRAM controller supports accesses to main SDRAM memory from any internal master. It supports either standard  
SDRAM or double data rate (DDR) SDRAM, but it does not support both at the same time.  
5.7.2.1  
SDR SDRAM AC Timing Specifications  
The following timing numbers indicate when data will be latched or driven onto the external bus, relative to the memory bus  
clock, when operating in SDR mode on write cycles and relative to SD_DQS on read cycles. The device’s SDRAM controller  
is a DDR controller that has an SDR mode. Because it is designed to support DDR, a DQS pulse must still be supplied to the  
device for each data beat of an SDR read. The processor accomplishes this by asserting a signal named SD_SDR_DQS during  
read cycles. Care must be taken during board design to adhere to the following guidelines and specs with regard to the  
SD_SDR_DQS signal and its usage.  
Table 14. SDR Timing Specifications  
Num  
Characteristic  
Frequency of Operation  
Symbol  
Min  
Max  
Unit  
Notes  
1
60  
12.0  
0.45  
0.45  
83.33  
16.67  
0.55  
MHz  
ns  
2
3
3
SD1 Clock Period  
tSDCK  
tSDCKH  
SD2 Pulse Width High  
SD3 Pulse Width Low  
SD_CLK  
SD_CLK  
ns  
tSDCKH  
0.55  
SD4 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA,  
SD_CS[1:0] - Output Valid  
tSDCHACV  
0.5 × SD_CLK  
+ 1.0  
SD5 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA,  
SD_CS[1:0] - Output Hold  
tSDCHACI  
2.0  
ns  
4
5
SD6 SD_SDR_DQS Output Valid  
tDQSOV  
Self timed  
ns  
ns  
SD7 SD_DQS[3:2] input setup relative to SD_CLK  
tDQVSDCH  
0.25 ×  
0.40 × SD_CLK  
SD_CLK  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
23  
Electrical Characteristics  
Num  
Table 14. SDR Timing Specifications (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
Notes  
6
SD8 SD_DQS[3:2] input hold relative to SD_CLK  
tDQISDCH  
Does not apply. 0.5×SD_CLK fixed  
width.  
7
SD9 Data (D[31:0]) Input Setup relative to SD_CLK (reference  
only)  
tDVSDCH  
0.25 ×  
SD_CLK  
ns  
SD10 Data Input Hold relative to SD_CLK (reference only)  
tDISDCH  
1.0  
ns  
ns  
SD11 Data (D[31:0]) and Data Mask(SD_DQM[3:0]) Output Valid tSDCHDMV  
0.5 × SD_CLK  
+ 2  
SD12 Data (D[31:0]) and Data Mask (SD_DQM[3:0]) Output Hold tSDCHDMI  
1.5  
ns  
1
The device supports same frequency of operation for both FlexBus and SDRAM clock operates as that of the internal bus clock.  
Please see the PLL chapter of the device reference manual for more information on setting the SDRAM clock rate.  
2
3
4
SD_CLK is one SDRAM clock in ns.  
Pulse width high plus pulse width low cannot exceed min and max clock period.  
SD_SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This is a guideline only. Subtle  
variation from this guideline is expected. SD_SDR_DQS will only pulse during a read cycle and one pulse will occur for each  
data beat.  
5
SD_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This spec is a guideline only. Subtle  
variation from this guideline is expected. SD_DQS will only pulse during a read cycle and one pulse will occur for each data  
beat.  
6
7
The SD_DQS pulse is designed to be 0.5 clock in width. The timing of the rising edge is most important. The falling edge does  
not affect the memory controller.  
Since a read cycle in SDR mode still uses the DQS circuit within the device, it is critical that the data valid window be centered  
1/4 clk after the rising edge of DQS. Ensuring that this happens will result in successful SDR reads. The input setup spec is  
provided as guidance.  
SD2  
SD1  
SD_CLK  
SD3  
SD5  
SD_CSn  
SD_RAS  
SD_CAS  
SD_WE  
CMD  
ROW  
SD4  
A[23:0]  
SD_BA[1:0]  
COL  
SD11  
SDDM  
D[31:0]  
SD12  
WD2  
WD1  
WD3  
WD4  
Figure 11. SDR Write Timing  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
24  
Freescale Semiconductor  
Electrical Characteristics  
SD2  
SD1  
SD_CLK  
SD5  
SD_CSn,  
SD_RAS,  
SD_CAS,  
SD_WE  
SD3  
CMD  
ROW  
3/4 MCLK  
Reference  
SD4  
A[23:0],  
SD_BA[1:0]  
COL  
tDQS  
SDDM  
SD6  
SD_SDR_DQS (Measured at Output Pin)  
SD_DQS[3:2] (Measured at Input Pin)  
Board Delay  
SD8  
SD7  
Board Delay  
Delayed  
SD_CLK  
SD9  
D[31:0]  
from  
WD1  
WD2  
WD3  
WD4  
Memories  
NOTE: Data driven from memories relative  
to delayed memory clock.  
SD10  
Figure 12. SDR Read Timing  
5.7.2.2  
DDR SDRAM AC Timing Specifications  
When using the SDRAM controller in DDR mode, the following timing numbers must be followed to properly latch or drive  
data onto the memory bus. All timing numbers are relative to the two DQS byte lanes.  
Table 15. DDR Timing Specifications  
Num  
Characteristic  
Frequency of Operation  
Symbol  
Min  
Max  
Unit  
Notes  
1
tDDCK  
tDDSK  
60  
12.0  
0.45  
0.45  
83.33  
16.67  
0.55  
MHz  
ns  
2
3
3
4
DD1 Clock Period  
DD2 Pulse Width High  
DD3 Pulse Width Low  
tDDCKH  
tDDCKL  
tSDCHACV  
SD_CLK  
SD_CLK  
ns  
0.55  
DD4 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,  
SD_CS[1:0] - Output Valid  
0.5 × SD_CLK  
+ 1.0  
DD5 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,  
SD_CS[1:0] - Output Hold  
tSDCHACI  
2.0  
ns  
DD6 Write Command to first DQS Latching Transition  
tCMDVDQ  
tDQDMV  
1.25  
SD_CLK  
ns  
5
6
DD7 Data and Data Mask Output Setup (DQDQS)  
1.5  
Relative to DQS (DDR Write Mode)  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
25  
Electrical Characteristics  
Num  
Table 15. DDR Timing Specifications (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
Notes  
7
DD8 Data and Data Mask Output Hold (DQSDQ) Relative tDQDMI  
1.0  
ns  
to DQS (DDR Write Mode)  
8
9
DD9 Input Data Skew Relative to DQS (Input Setup)  
DD10 Input Data Hold Relative to DQS  
tDVDQ  
tDIDQ  
1
ns  
ns  
0.25 × SD_CLK  
+ 0.5ns  
DD11 DQS falling edge from SDCLK rising (output hold time) tDQLSDCH  
0.5  
ns  
1
The frequency of operation is either 2x or 4x the FB_CLK frequency of operation. FlexBus and SDRAM clock operate at the  
same frequency as the internal bus clock.  
2
3
4
SD_CLK is one SDRAM clock in ns.  
Pulse-width high plus pulse-width low cannot exceed minimum or maximum clock period.  
Command output valid should be one-half the memory bus clock (SD_CLK) plus some minor adjustments for process,  
temperature, and voltage variations.  
5
This specification relates to the required input setup time of today’s DDR memories. The device’s output setup should be larger  
than the input setup of the DDR memories. If it is not larger, then the input setup on the memory will be in violation.  
MEM_DATA[31:24] is relative to MEM_DQS[3], MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to  
MEM_DQS[1], and MEM_DATA[7:0] is relative MEM_DQS[0].  
6
7
The first data beat will be valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats  
will be valid for each subsequent DQS edge.  
This specification relates to the required hold time of today’s DDR memories. MEM_DATA[31:24] is relative to MEM_DQS[3],  
MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to MEM_DQS[1], and MEM_DATA[7:0] is relative  
MEM_DQS[0].  
8
9
Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line  
becomes valid. This input skew must include DDR memory output skew and system-level board skew (due to routing or other  
factors).  
Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes  
invalid.  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
26  
Freescale Semiconductor  
Electrical Characteristics  
DD1  
DD2  
SD_CLK  
DD3  
SD_CLK  
DD5  
SD_CSn, SD_WE,  
SD_RAS, SD_CAS  
CMD  
DD4  
A[13:0]  
ROW  
COL  
DD11  
SD_DQS[3:2]  
SD_DM[3:2]  
D[31:16]  
DD6  
DD7  
WD1 WD2 WD3 WD4  
DD8  
Figure 13. DDR Write Timing  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
27  
Electrical Characteristics  
DD1  
DD2  
SD_CLK  
DD3  
SD_CLK  
DD5  
CL=2  
SD_CSn,SD_WE,  
SD_RAS, SD_CAS  
CMD  
ROW  
DD4  
CL=2.5  
A[13:0]  
COL  
DD9  
DQS Read  
Postamble  
DQS Read  
Preamble  
SD_DQS3/SD_DQS2  
D[31:24]/D[23:16]  
DD10  
WD1 WD2 WD3 WD4  
DQS Read  
Preamble  
DQS Read  
Postamble  
SD_DQS3/SD_DQS2  
D[31:24]/D[23:16]  
WD1 WD2 WD3 WD4  
Figure 14. DDR Read Timing  
Table 16. DDR Clock Crossover Specifications  
Symbol  
VMP  
VOUT Clock output voltage level  
Characteristic  
Min  
Max  
Unit  
Clock output mid-point voltage  
1.05  
–0.3  
0.7  
1.45  
V
V
V
V
SD_VDD + 0.3  
SD_VDD + 0.6  
1.45  
VID  
VIX  
Clock output differential voltage (peak to peak swing)  
Clock crossing point voltage1  
1.05  
1
The clock crossover voltage is only guaranteed when using the highest drive strength option for the SDCLK[1:0] and  
SDCLK[1:0] signals.  
SD_CLK  
VIX  
VID  
VMP  
VIX  
SD_CLK  
Figure 15. SD_CLK and SD_CLK Crossover Timing  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
28  
Freescale Semiconductor  
Electrical Characteristics  
5.8  
General Purpose I/O Timing  
1
Table 17. GPIO Timing  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
G1 FB_CLK High to GPIO Output Valid  
G2 FB_CLK High to GPIO Output Invalid  
G3 GPIO Input Valid to FB_CLK High  
G4 FB_CLK High to GPIO Input Invalid  
tCHPOV  
tCHPOI  
tPVCH  
tCHPI  
1.5  
9
10  
ns  
ns  
ns  
ns  
1.5  
1
These general purpose specifications apply to the following signals: IRQn, all UART signals, FlexCAN signals, PWM  
signals, DACKn and DREQn, and all signals configured as GPIO.  
FB_CLK  
G2  
G1  
GPIO Outputs  
GPIO Inputs  
G3  
G4  
Figure 16. GPIO Timing  
5.9  
Reset and Configuration Override Timing  
Table 18. Reset and Configuration Override Timing  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
R1 RESET Input valid to FB_CLK High  
tRVCH  
tCHRI  
9
1.5  
5
10  
1
ns  
ns  
R2 FB_CLK High to RESET Input invalid  
R3 RESET Input valid Time 1  
tRIVT  
tCYC  
ns  
R4 FB_CLK High to RSTOUT Valid  
tCHROV  
tROVCV  
tCOS  
0
R5 RSTOUT valid to Config. Overrides valid  
R6 Configuration Override Setup Time to RSTOUT invalid  
R7 Configuration Override Hold Time after RSTOUT invalid  
R8 RSTOUT invalid to Configuration Override High Impedance  
ns  
20  
0
tCYC  
ns  
tCOH  
tROICZ  
tCYC  
1
During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to  
the system. Thus, RESET must be held a minimum of 100 ns.  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
29  
Electrical Characteristics  
FB_CLK  
R1  
R2  
R3  
RESET  
R4  
R4  
RSTOUT  
R8  
R5  
R6  
R7  
Configuration Overrides*:  
(RCON, Override pins)  
Figure 17. RESET and Configuration Override Timing  
NOTE  
Refer to the CCM chapter of the MCF52277 Reference Manual for more information.  
5.10 LCD Controller Timing Specifications  
This sections lists the timing specifications for the LCD Controller.  
Table 19. LCD_LSCLK Timing  
Num  
Characteristic  
Min  
Max  
Unit  
T1  
T2  
T3  
LCD_LSCLK Period  
Pixel data setup time  
Pixel data up time  
25  
11  
11  
2000  
ns  
ns  
ns  
Note: The pixel clock is equal to LCD_LSCLK / (PCD + 1). When it is in CSTN, TFT, or monochrome mode with  
bus width = 1, LCD_LSCLK is equal to the pixel clock. When it is in monochrome with other bus width  
settings, LCD_LSCLK is equal to the pixel clock divided by bus width. The polarity of LCD_LSCLK and  
LCD_D signals can also be programmed.  
T1  
LCD_LSCLK  
LCD_D[17:0]  
T2  
T3  
Figure 18. LCD_LSCLK to LCD_D[17:0] timing diagram  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
30  
Freescale Semiconductor  
Electrical Characteristics  
Non-display Region  
Display Region  
T3  
T1  
T4  
LCD_VSYNC  
LCD_HSYNC  
LCD_OE  
T2  
Line Y  
Line 1  
Line Y  
LCD_D[17:0]  
T5  
T6  
XMAX  
T7  
LCD_HSYNC  
LCD_LSCLK  
LCD_OE  
(1,1)  
(1,2)  
LCD_D[15:0]  
(1,X)  
Figure 19. 4/8/12/16/18 Bit/Pixel TFT Color Mode Panel Timing  
Table 20. 4/8/12/16/18 Bit/Pixel TFT Color Mode Panel Timing  
Num  
Characteristic  
Min  
Value  
Unit  
T1 End of LCD_OE to beginning of LCD_VSYNC  
T5 + T6 + T7 – 1  
(VWAIT1 × T2) +  
Ts  
T5 + T6 + T7 – 1  
T2 LCD_HSYNC period  
T2  
1
XMAX+T5+T6+T7  
VWIDTH × T2  
(VWAIT2 × T2)+1  
HWIDTH + 1  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
T3 LCD_VSYNC pulse width  
T4 End of LCD_VSYNC to beginning of LCD_OE  
T5 LCD_HSYNC pulse width  
1
T6 End of LCD_HSYNC to beginning to LCD_OE  
T7 End of LCD_OE to beginning of LCD_HSYNC  
3
HWAIT2 + 3  
1
HWAIT1 + 1  
Note: Ts is the LCD_LSCLK period. LCD_VSYNC, LCD_HSYNC, and LCD_OE can be programmed as active high or active  
low. In Figure 19, all 3 signals are active low. LCD_LSCLK can be programmed to be deactivated during the  
LCD_VSYNC pulse or the LCD_OE deasserted period. In Figure 19, LCD_LSCLK is always active.  
Note: XMAX is defined in number of pixels in one line.  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
31  
Electrical Characteristics  
XMAX  
LCD_LSCLK  
LCD_D  
LCD_SPL_SPR  
LCD_HSYNC  
D2  
D1  
D320  
D320  
T1  
T2  
T3  
T2  
T4  
T4  
LCD_CLS  
LCD_PS  
T5  
T6  
T7  
T7  
LCD_REV  
Figure 20. Sharp TFT Panel Timing  
Table 21. Sharp TFT Panel Timing  
Num  
Characteristic  
Min  
Value  
Unit  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
LCD_SPL/LCD_SPR pulse width  
1
1
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
End of LCD_D of line to beginning of LCD_HSYNC  
End of LCD_HSYNC to beginning of LCD_D of line  
LCD_CLS rise delay from end of LCD_D of line  
LCD_CLS pulse width  
HWAIT1+1  
HWAIT2 + 4  
4
3
CLS_RISE_DELAY+1  
CLS_HI_WIDTH+1  
PS_RISE_DELAY  
1
LCD_PS rise delay from LCD_CLS negation  
LCD_REV toggle delay from last LCD_D of line  
0
1
REV_TOGGLE_DELAY+1  
Note: Falling of LCD_SPL/LCD_SPR aligns with first LCD_D of line.  
Note: Falling of LCD_PS aligns with rising edge of LCD_CLS.  
Note: LCD_REV toggles in every LCD_HSYN period.  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
32  
Freescale Semiconductor  
Electrical Characteristics  
T1  
T1  
LCD_VSYNC  
T3  
T4  
T2  
T2  
XMAX  
LCD_HSYNC  
LCD_LSCLK  
Ts  
LCD_D[15:0]  
Figure 21. Non-TFT Mode Panel Timing  
Table 22. Non-TFT Mode Panel Timing  
Num  
Characteristic  
Min  
Value  
Unit  
T1  
T2  
T3  
T4  
LCD_HSYNC to LCD_VSYNC delay  
LCD_HSYNC pulse width  
2
1
HWAIT2 + 2  
HWIDTH + 1  
0 T3 Ts  
HWAIT1 + 1  
Tpix  
Tpix  
LCD_VSYNC to LCD_LSCLK  
LCD_LSCLK to LCD_HSYNC  
1
Tpix  
Note: Ts is the LCD_LSCLK period while Tpix is the pixel clock period. LCD_VSYNC, LCD_HSYNC, and  
LCD_LSCLK can be programmed as active high or active low. In Figure 21, all these 3 signals are active  
high. When it is in CSTN mode or monochrome mode with bus width = 1, T3 = Tpix = Ts. When it is in  
monochrome mode with bus width = 2, 4 and 8, T3 = 1, 2 and 4 Tpix respectively.  
5.11 USB On-The-Go Specifications  
The MCF5227x device is compliant with industry standard USB 2.0 specification.  
Table 23. USB On-Chip Transceiver DC Characteristics  
Characteristic  
Condition Symbol  
Min  
Typ  
Max  
Unit  
Input High  
Input Low  
Driven  
VIH  
VIL  
2.0  
0.8  
00  
V
V
Input Differential  
(DP – DM)  
VID  
200  
0.8  
0.8  
mV  
V
Differential Common Mode Range  
Single Ended Receive Threshold  
Single Ended Receive Hysteresis  
Output High  
VCM  
2.5  
2.0  
VSETHR  
VSEHYS  
VOH  
V
400  
mV  
mV  
V
Driven  
Driven  
0.0  
2.8  
1.3  
300  
2.0  
2.0  
Output Low  
VOL  
Differential Output Crossover  
DP = DM  
VCRS  
V
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
33  
Electrical Characteristics  
Table 23. USB On-Chip Transceiver DC Characteristics (continued)  
Characteristic  
Condition Symbol  
Min  
Typ  
Max  
Unit  
P side Impedance  
Driven  
Driven  
ZP  
ZM  
6.25  
6.25  
8.25  
8.25  
0.17  
50k  
11.25  
11.25  
0.23  
70k  
Ω
Ω
Ω
Ω
M side Impedance  
Impedance Matching P/M  
Pulldown Resistance1  
ZMatching  
RPD  
30k  
1
The pulldown resistors are included to provide a method to keep DP and DM signals in a known quiescent state  
if desired when the USB port is not being used or when the USB cable is not connected. These on-chip  
resistors should not be used to provide the 15-kΩ host-mode pulldowns called for in Chapter 7 of the USB  
Specification, Rev. 1.1 or Rev. 2.0.  
Table 24. USB On-Chip Transceiver Full Speed AC Characteristics  
Characteristic  
Condition  
Symbol  
Min  
Typ  
Max  
Unit  
Rise Time  
Fall Time  
10–90%  
90–10%  
tLH  
tHL  
7
7
11  
11  
40  
17.5  
17.5  
60  
ns  
ns  
ps  
tLH  
-------  
Rise/Fall Matching  
20  
Matching  
tHL  
tLH  
Rise/Fall Matching, DP and DM  
TIme Skew Between DP and DM  
330  
100  
360  
140  
640  
210  
ps  
ps  
-------  
Pad-to-Pad  
tSKE  
tHL  
Table 25. USB On-Chip Transceiver Low Speed AC Characteristics  
Characteristic  
Condition  
Symbol  
Min  
Typ  
Max  
Unit  
Rise Time  
Fall Time  
10–90%  
90–10%  
tLH  
tHL  
75  
75  
80  
300  
300  
125  
ns  
ns  
%
tLH  
-------  
tHL  
tLH  
-------  
Rise/Fall Matching  
Matching  
tHL  
5.12 SSI Timing Specifications  
This section provides the AC timings for the SSI in master (clocks driven) and slave modes (clocks input). All timings are given  
for non-inverted serial clock polarity (SSI_TCR[TSCKP] = 0, SSI_RCR[RSCKP] = 0) and a non-inverted frame sync  
(SSI_TCR[TFSI] = 0, SSI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings  
remain valid by inverting the clock signal (SSI_BCLK) and/or the frame sync (SSI_FS) shown in the figures below.  
1
Table 26. SSI Timing—Master Modes  
Num  
Characteristic  
SSI_MCLK cycle time  
Symbol  
Min  
Max  
Unit  
Notes  
2
S1  
S2  
S3  
S4  
tMCLK 4 × 1/fSYS  
45%  
55%  
ns  
tMCLK  
ns  
SSI_MCLK pulse width high / low  
SSI_BCLK cycle time  
3
tBCLK 4 × 1/fSYS  
45%  
SSI_BCLK pulse width  
55%  
tBCLK  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
34  
Freescale Semiconductor  
Electrical Characteristics  
1
Table 26. SSI Timing—Master Modes (continued)  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
Notes  
S5  
S6  
S7  
S8  
S9  
SSI_BCLK to SSI_FS output valid  
0
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
SSI_BCLK to SSI_FS output invalid  
SSI_BCLK to SSI_TXD valid  
0
SSI_BCLK to SSI_TXD invalid / high impedence  
SSI_RXD / SSI_FS input setup before SSI_BCLK  
10  
0
S10 SSI_RXD / SSI_FS input hold after SSI_BCLK  
1
2
3
All timings specified with a capactive load of 25pF.  
SSI_MCLK can be generated from SSI_CLKIN or a divided version of the internal system clock (SYSCLK).  
SSI_BCLK can be derived from SSI_CLKIN or a divided version of SYSCLK. If the SYSCLK is used, the minimum  
divider is 6. If the SSI_CLKIN input is used, the programmable dividers must be set to ensure that SSI_BCLK does not  
exceed 4 x fSYS  
.
1
Table 27. SSI Timing—Slave Modes  
Characteristic Symbol  
Num  
Min  
Max  
Unit  
Notes  
S11 SSI_BCLK cycle time  
tBCLK 4 × 1/fSYS  
55%  
ns  
tBCLK  
ns  
S12 SSI_BCLK pulse width high / low  
S13 SSI_FS input setup before SSI_BCLK  
S14 SSI_FS input hold after SSI_BCLK  
S15 SSI_BCLK to SSI_TXD / SSI_FS output valid  
45%  
10  
2
ns  
0
10  
ns  
S16 SSI_BCLK to SSI_TXD / SSI_FS output invalid / high  
impedence  
ns  
S17 SSI_RXD setup before SSI_BCLK  
S18 SSI_RXD hold after SSI_BCLK  
10  
2
ns  
ns  
1
All timings specified with a capactive load of 25 pF.  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
35  
Electrical Characteristics  
S1  
S2  
S2  
SSI_MCLK  
(Output)  
S3  
SSI_BCLK  
(Output)  
S4  
S4  
S5  
S6  
SSI_FS  
(Output)  
S9  
S10  
SSI_FS  
(Input)  
S7  
S8  
S7  
S8  
SSI_TXD  
SSI_RXD  
S9  
S10  
Figure 22. SSI Timing—Master Modes  
S11  
SSI_BCLK  
(Input)  
S12  
S12  
S15  
S16  
SSI_FS  
(Output)  
S13  
S14  
SSI_FS  
(Input)  
S15  
S16  
S16  
S15  
SSI_TXD  
SSI_RXD  
S17  
S18  
Figure 23. SSI Timing—Slave Modes  
2
5.13 I C Timing Specifications  
2
Table 28 lists specifications for the I C input timing parameters shown in Figure 24.  
2
Table 28. I C Input Timing Specifications between SCL and SDA  
Num  
Characteristic  
Min  
Max  
Unit  
I1  
I2  
I3  
I4  
Start condition hold time  
Clock low period  
2
8
1
tcyc  
tcyc  
ms  
ns  
I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
Data hold time  
0
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
36  
Freescale Semiconductor  
Electrical Characteristics  
Table 28. I C Input Timing Specifications between SCL and SDA (continued)  
2
Num  
Characteristic  
Min  
Max  
Unit  
I5  
I6  
I7  
I8  
I9  
I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
Clock high time  
4
1
ms  
tcyc  
ns  
Data setup time  
0
Start condition setup time (for repeated start condition only)  
Stop condition setup time  
2
tcyc  
tcyc  
2
2
Table 29 lists specifications for the I C output timing parameters shown in Figure 24.  
2
Table 29. I C Output Timing Specifications between SCL and SDA  
Num  
I11 Start condition hold time  
I21 Clock low period  
Characteristic  
Min  
Max  
Unit  
6
3
tcyc  
tcyc  
µs  
10  
7
I32 I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
I41 Data hold time  
tcyc  
ns  
I53 I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
I61 Clock high time  
10  
2
tcyc  
tcyc  
tcyc  
tcyc  
I71 Data setup time  
I81 Start condition setup time (for repeated start condition only)  
I91 Stop condition setup time  
20  
10  
1
Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum  
frequency (IFDR = 0x20) results in minimum output timings as shown in Table 29. The I2C interface is designed  
to scale the actual data transition time to move it to the middle of the SCL low period. The actual position is  
affected by the prescale and division values programmed into the IFDR; however, the numbers given in Table 29  
are minimum values.  
2
3
Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive  
low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and pull-up  
resistor values.  
Specified at a nominal 50-pF load.  
Figure 24 shows timing for the values in Table 29 and Table 28.  
I5  
I6  
I2  
I2C_SCL  
I2C_SDA  
I7  
I8  
I1  
I9  
I4  
I3  
2
Figure 24. I C Input/Output Timings  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
37  
Electrical Characteristics  
5.14 DMA Timer Timing Specifications  
Table 30 lists timer module AC timings.  
Table 30. Timer Module AC Timing Specifications  
Characteristic Min  
Num  
Max  
Unit  
T1  
T2  
DT0IN / DT1IN / DT2IN / DT3IN cycle time  
DT0IN / DT1IN / DT2IN / DT3IN pulse width  
3
1
tCYC  
tCYC  
5.15 DSPI Timing Specifications  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with both master and slave operations. Many  
of the transfer attributes are programmable. Table 31 provides DSPI timing characteristics for classic SPI timing modes. Refer  
to the DSPI chapter of the MCF52277 Reference Manual for information on the modified transfer formats used for  
communicating with slower peripheral devices.  
1
Table 31. DSPI Module AC Timing Specifications  
Num  
Characteristic  
DSPI_SCK Cycle Time  
DSPI_SCK Duty Cycle  
Symbol  
Min  
Max  
Unit  
Notes  
2
DS1  
DS2  
tSCK  
4 x 1/fSYS  
ns  
ns  
(tsck ÷ 2) – 2.0 (tsck ÷ 2) + 2.0  
Master Mode  
3
4
DS3  
DS4  
DS5  
DS6  
DS7  
DS8  
DSPI_PCSn to DSPI_SCK delay  
tCSC  
tASC  
(2 × 1/fSYS) – 2.0  
5
ns  
ns  
ns  
ns  
ns  
ns  
DSPI_SCK to DSPI_PCSn delay  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
(2 × 1/fSYS) – 3.0  
–5  
9
0
Slave Mode  
DS9  
DSPI_SCK to DSPI_SOUT valid  
0
4
ns  
ns  
ns  
ns  
ns  
ns  
DS10 DSPI_SCK to DSPI_SOUT invalid  
DS11 DSPI_SIN to DSPI_SCK input setup  
DS12 DSPI_SCK to DSPI_SIN input hold  
DS13 DSPI_SS active to DSPI_SOUT driven  
DS14 DSPI_SS inactive to DSPI_SOUT not driven  
20  
18  
2
7
1
Timings shown are for DMCR[MTFE] = 0 (classic SPI) and DCTARn[CPHA] = 0. Data is sampled on the DSPI_SIN pin on the  
odd-numbered DSPI_SCK edges and driven on the DSPI_SOUT pin on even-numbered DSPI edges.  
2
3
4
When in master mode, the baud rate is programmable in DCTARn[PBR] and DCTARn[BR].  
The DSPI_PCSn to DSPI_SCK delay is programmable in DCTARn[PCSSCK] and DCTARn[CSSCK].  
The DSPI_SCK to DSPI_PCSn delay is programmable in DCTARn[PASC] and DCTARn[ASC].  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
38  
Freescale Semiconductor  
Electrical Characteristics  
DS3  
DS4  
DSPI_PCSn  
DS1  
DS2  
DSPI_SCK  
(DCTARn[CPOL] = 0)  
DS2  
DSPI_SCK  
(DCTARn[CPOL] = 1)  
DS7  
DS8  
DSPI_SIN  
Last Data  
First Data  
Data  
Data  
DS6  
DS5  
DSPI_SOUT  
First Data  
Last Data  
Figure 25. DSPI Classic SPI Timing—Master Mode  
DSPI_SS  
DS1  
DSPI_SCK  
DS2  
(DCTARn[CPOL] = 0)  
DS2  
DSPI_SCK  
(DCTARn[CPOL] = 1)  
DS13  
DS9  
DS10  
Data  
DS14  
First Data  
DSPI_SOUT  
DSPI_SIN  
Last Data  
DS11  
DS12  
Data  
Last Data  
First Data  
Figure 26. DSPI Classic SPI Timing—Slave Mode  
5.16 SBF Timing Specifications  
The Serial Boot Facility (SBF) provides a means to read configuration information and system boot code from a broad array of  
SPI-compatible EEPROMs, flashes, FRAMs, nVSRAMs, etc. Table 32 provides the AC timing specifications for the SBF.  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
39  
Electrical Characteristics  
Num  
Table 32. SBF AC Timing Specifications  
Characteristic  
Symbol  
Min  
Max  
Unit  
Notes  
1
SB1  
SB2  
SB3  
SB4  
SB5  
SB6  
SB7  
SB8  
SBF_CK Cycle Time  
SBF_CK High/Low Time  
tSBFCK  
30  
12  
ns  
tSBFCK  
ns  
30%  
SBF_CS to SBF_CK delay  
SBF_CK to SBF_CS delay  
SBF_CK to SBF_DO valid  
SBF_CK to SBF_DO invalid  
SBF_DI to SBF_SCK input setup  
SBF_CK to SBF_DI input hold  
tSBFCK – 2.0  
tSBFCK – 2.0  
ns  
0
ns  
ns  
6
ns  
0
ns  
1
At reset, the SBF_CK cycle time is tREF × 67. The first byte of data read from the serial memory contains a divider  
value that is used to set the SBF_CK cycle time for the duration of the serial boot process.  
SB1  
SB4  
SB2  
SB2  
SBF_CK  
SBF_CS  
SB3  
SB7 SB8  
SBF_DI  
Last Data  
SB5  
First Data  
SB6  
Data  
Data  
SBF_DO  
First Data  
Last Data  
Figure 27. SBF Timing  
5.17 JTAG and Boundary Scan Timing Specifications  
Table 33. JTAG and Boundary Scan Timing  
Num  
Characteristic1  
TCLK Frequency of Operation  
Symbol  
Min  
Max  
Unit  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
fJCYC  
tJCYC  
tJCW  
DC  
4
1/4  
3
fsys/2  
tCYC  
ns  
TCLK Cycle Period  
TCLK Clock Pulse Width  
26  
0
TCLK Rise and Fall Times  
tJCRF  
tBSDST  
tBSDHT  
tBSDV  
tBSDZ  
ns  
Boundary Scan Input Data Setup Time to TCLK Rise  
Boundary Scan Input Data Hold Time after TCLK Rise  
TCLK Low to Boundary Scan Output Data Valid  
TCLK Low to Boundary Scan Output High Z  
4
33  
33  
ns  
26  
0
ns  
ns  
0
ns  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
40  
Freescale Semiconductor  
Electrical Characteristics  
Table 33. JTAG and Boundary Scan Timing (continued)  
Num  
Characteristic1  
Symbol  
Min  
Max  
Unit  
J9  
TMS, TDI Input Data Setup Time to TCLK Rise  
tTAPBST  
tTAPBHT  
tTDODV  
tTDODZ  
tTRSTAT  
tTRSTST  
4
10  
0
26  
8
ns  
ns  
ns  
ns  
ns  
ns  
J10 TMS, TDI Input Data Hold Time after TCLK Rise  
J11 TCLK Low to TDO Data Valid  
J12 TCLK Low to TDO High Z  
0
J13 TRST Assert Time  
100  
10  
J14 TRST Setup Time (Negation) to TCLK High  
1
JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.  
J2  
J3  
J3  
VIH  
VIL  
TCLK  
(input)  
J4  
J4  
Figure 28. Test Clock Input Timing  
TCLK  
VIL  
VIH  
J5  
J6  
Data Inputs  
Input Data Valid  
J7  
J8  
Data Outputs  
Output Data Valid  
Data Outputs  
Data Outputs  
J7  
Output Data Valid  
Figure 29. Boundary Scan (JTAG) Timing  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
41  
Electrical Characteristics  
TCLK  
VIL  
VIH  
J9  
Input Data Valid  
J10  
TDI  
TMS  
J11  
TDO  
Output Data Valid  
J12  
J11  
TDO  
TDO  
Output Data Valid  
Figure 30. Test Access Port Timing  
TCLK  
TRST  
J14  
J13  
Figure 31. TRST Timing  
5.18 Debug AC Timing Specifications  
Table 34 lists specifications for the debug AC timing parameters shown in Figure 32.  
Table 34. Debug AC Timing Specification  
Num  
Characteristic  
PSTCLK cycle time  
Min  
Max  
Units  
D0  
D1  
D2  
D3  
D41  
D5  
D6  
1
1.5  
1
1
3.0  
1/fSYS  
ns  
PSTCLK rising to PSTDDATA valid  
PSTCLK rising to PSTDDATA invalid  
DSI-to-DSCLK setup  
ns  
PSTCLK  
PSTCLK  
PSTCLK  
PSTCLK  
DSCLK-to-DSO hold  
4
DSCLK cycle time  
5
BKPT assertion time  
1
1
DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative  
to the rising edge of PSTCLK.  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
42  
Freescale Semiconductor  
Package Information  
D0  
PSTCLK  
D2  
D1  
PSTDDATA[7:0]  
Figure 32. Real-Time Trace AC Timing  
D5  
DSCLK  
DSI  
D3  
Current  
D4  
Next  
DSO  
Past  
Current  
Figure 33. BDM Serial Port AC Timing  
6
Package Information  
The latest package outline drawings are available on the product summary pages on our web site:  
http://www.freescale.com/coldfire. The following table lists the case outline numbers per device. Use these numbers in the web  
page’s keyword search engine to find the latest package outline drawings.  
Table 35. Package Information  
Device  
Package Type  
Mask Set  
Revision  
Case Outline Numbers  
MCF52274  
176 LQFP  
All  
All  
1.1  
98ASS23479W  
98ASH98061A  
98ARH98390A  
M26H  
MCF52277  
196 MAPBGA  
2M26H, 3M26H  
1.2–1.3  
7
Product Documentation  
Documentation is available from a local Freescale distributor, a Freescale sales office, the Freescale Literature Distribution  
Center, or through the Freescale world-wide web address at http://www.freescale.com/coldfire.  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
43  
Revision History  
8
Revision History  
Table 36 summarizes revisions to this document.  
f
Table 36. MCF52277 Data Sheet Revision History  
Rev. No. Date of Release Summary of Changes  
3
4
02/2008  
05/2008  
Initial public revision.  
Corrected MCF52274 order number from MCF52274CAB120 to  
MCF52274CLU120 in Table 2  
5
07/2008  
Corrected MCF52277CVM166 part number to MCF52277CVM160 in Table 2.  
Although, this device has a maximum rated frequency of 166.67 MHz.  
6
7
07/2008  
02/2009  
Added data to Section 3.5, “Power Consumption Specifications.”  
Changed document type from Data Sheet: Advance Information to Data Sheet:  
Technical Data and corresponding footnote on first page  
Replaced tSYS with 1/fSYS throughout  
Changed the following specs in Table 14 and Table 15:  
• Minimum frequency of operation from TBD to 60MHz  
• Maximum clock period from TBD to 16.67 ns  
Added RTC and Oscillator Supply Voltage specs to Table 7 and Table 10  
In Table 8:  
• Updated thermal characteristics for the 196 MAPBGA package  
• Added thermal characteristics for the 176 LQFP package that were TBD  
In Table 11:  
• Corrected maximum crystal reference frequency range from 66.67 to 25 MHz  
• Added footnotes to maximum crystal and external reference frequency ranges  
• Changed minimum core/system and CLKOUT frequencies from TBD to 512 and  
256 Hz, respectively.  
In Table 12:  
• Added Typical column  
• Removed Internal Reference Voltage spec as it isn’t necessary  
• Moved Current Consumption specs from maximum column to typical column  
• Added INL and DNL specs that were TBD, and changed the unit footnote  
• Replaced Gain and Offset Error specs with Full-Scale and Zero-Scale Error  
• Removed Input Leakage Current and Input Current specs as they aren’t  
necessary  
Removed Gain Calculations section as it isn’t necessary  
8
09/2009  
Iin Table 35, added case outline number for MCF52277 masks 2M26H and 3M26H  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
44  
Freescale Semiconductor  
Revision History  
MCF5227x ColdFire® Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
45  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Semiconductor was negligent regarding the design or manufacture of the part.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2009. All rights reserved.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MCF52277  
Rev. 8  
09/2009  

相关型号:

935313952557

Microcontroller
NXP

935313964557

RISC Microprocessor
NXP

935313969557

Microprocessor
NXP

935313973574

Microcontroller
NXP

935313997174

Microcontroller
NXP

935314044557

Microcontroller
NXP

935314056557

Multifunction Peripheral
NXP

935314063528

RISC Microcontroller
NXP

935314065518

Multifunction Peripheral
NXP

935314076518

ADPCM Codec
NXP

935314076557

PCM Codec
NXP

935314077574

Microcontroller
NXP