935314156557 [NXP]

Multifunction Peripheral;
935314156557
型号: 935314156557
厂家: NXP    NXP
描述:

Multifunction Peripheral

文件: 总147页 (文件大小:1781K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ale Semiconductor  
Data Sheet: Technical Data  
Document Number: MCIMX35SR2AEC  
Rev. 10, 06/2012  
IMX35  
Package Information  
Plastic Package  
Case 5284 17 x 17 mm, 0.8 mm Pitch  
i.MX35 Applications  
Processors for  
Automotive Products  
Ordering Information  
See Table 1 on page 3 for ordering information.  
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1. Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
1.2 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.3. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
1 Introduction  
The i.MX35 Auto Application Processor family is  
designed for automotive infotainment and navigation  
applications. These processors are AECQ100 Grade 3  
qualified and rated for ambient operating temperatures  
up to 85 °C.  
2
Functional Description and Application Information. . . . . . 4  
2.1. Application Processor Domain Overview. . . . . . . . . 5  
2.2. Shared Domain Overview . . . . . . . . . . . . . . . . . . . . 6  
2.3. Advanced Power Management Overview . . . . . . . . 6  
2.4. ARM11 Microprocessor Core. . . . . . . . . . . . . . . . . . 6  
2.5. Module Inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3. Signal Descriptions: Special Function Related Pins . . . . 12  
4. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.1. i.MX35 Chip-Level Conditions . . . . . . . . . . . . . . . . 13  
4.2. Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.3. Supply Power-Up/Power-Down Requirements and  
Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.4. Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.5. Power Characteristics . . . . . . . . . . . . . . . . . . . . . . 19  
4.6. Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . 20  
4.7. I/O Pin DC Electrical Characteristics . . . . . . . . . . . 21  
4.8. I/O Pin AC Electrical Characteristics . . . . . . . . . . . 24  
4.9. Module-Level AC Electrical Specifications. . . . . . . 30  
5. Package Information and Pinout . . . . . . . . . . . . . . . . . . 131  
5.1. MAPBGA Production Package 1568-01, 17 × 17 mm,  
0.8 Pitch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Based on an ARM11 microprocessor core running at up  
to 532 MHz, the device offers the following features and  
optimized system cost for the target applications.  
Audio connectivity and telematics:  
— Compressed audio playback from storage  
devices (CD, USB, HDD or SD card)  
— PlayFromDevice (1-wire and 2-wire  
support) for portable media players  
— iPod/iPhone control and playback  
— High-speed CD ripping to USB, SD/MMC  
or HDD for virtual CD changer  
5.2. MAPBGA Signal Assignments. . . . . . . . . . . . . . . 133  
6. Product Documentation . . . . . . . . . . . . . . . . . . . . . . . . . 145  
7. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
— Audio processing for hands-free telephony:  
Bluetooth, AEC/NS, and microphone beam  
forming  
— Speech recognition  
© Freescale Semiconductor, Inc., 2010. All rights reserved.  
A/V connectivity and navigation:  
— Includes audio connectivity and telematics features  
— Map display and route calculation  
— QVGA video decode, WVGA video display  
— Sophisticated graphical user interface  
The i.MX35 processor takes advantage of the ARM1136JF-S™ core running at 532 MHz that is boosted  
by a multilevel cache system, and features peripheral devices such as an autonomous image processing  
unit, a vector floating point (VFP11) co-processor, and a RISC-based DMA controller.  
The i.MX35 supports connections to various types of external memories, such as SDRAM, mobile DDR  
and DDR2, SLC and MLC NAND Flash, NOR Flash and SRAM. The device can be connected to a variety  
of external devices such as high-speed USB2.0 OTG, ATA, MMC/SDIO, and Compact Flash.  
1.1  
Features  
The i.MX35 is designed for automotive infotainment video-enabled applications. It provides low-power  
solutions for applications demanding high-performance multimedia and graphics.  
The i.MX35 is based on the ARM1136 platform, which has the following features:  
ARM1136JF-S processor, version r1p3  
16-Kbyte L1 instruction cache  
16-Kbyte L1 data cache  
128-Kbyte L2 cache, version r0p4  
128 Kbytes of internal SRAM  
Vector floating point unit (VFP11)  
To boost multimedia performance, the following hardware accelerators are integrated:  
Image processing unit (IPU)  
OpenVG 1.1 graphics processing unit (GPU) (not available for the MCIMX351)  
The MCIMX35 provides the following interfaces to external devices (some of these interfaces are muxed  
and not available simultaneously):  
2 controller area network (CAN) interfaces  
2 SDIO/MMC interfaces, 1 SDIO/CE-ATA interface (CE-ATA is not available for the MCIMX351)  
32-bit mobile DDR, DDR2 (4-bank architecture), and SDRAM (up to 133 MHz)  
2 configurable serial peripheral interfaces (CSPI) (up to 52 Mbps each)  
Enhanced serial audio interface (ESAI)  
2 synchronous serial interfaces (SSI)  
Ethernet MAC 10/100 Mbps  
1 USB 2.0 host with ULPI interface or internal full-speed PHY. Up to 480 Mbps if external HS  
PHY is used.  
1 USB 2.0 OTG (up to 480 Mbps) controller with internal high-speed OTG PHY  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
2
Freescale Semiconductor  
Flash controller—MLC/SLC NAND and NOR  
GPIO with interrupt capabilities  
2
3 I C modules (up to 400 Kbytes each)  
JTAG  
Key pin port  
Media local bus (MLB) interface  
Asynchronous sample rate converter (ASRC)  
1-Wire  
Parallel camera sensor (4/8/10/16-bit data port for video color models: YCC, YUV, 30 Mpixels/s)  
Parallel display (primary up to 24-bit, 1024 x 1024)  
Parallel ATA (up to 66 Mbytes) (not available for the MCIMX351)  
PWM  
SPDIF transceiver  
3 UART (up to 4.0 Mbps each)  
1.2  
Ordering Information  
Table 1 provides the ordering information for the i.MX35 processors for automotive applications.  
Table 1. Ordering Information  
Operating  
Temperature  
Range (°C)  
Signal Ball  
Map  
Locations  
Silicon  
Revision  
Description  
Part Number  
Package1  
Speed  
Ball Map  
i.MX351  
i.MX351  
i.MX355  
i.MX355  
i.MX356  
i.MX356  
i.MX351  
i.MX351  
i.MX355  
i.MX355  
i.MX356  
i.MX356  
i.MX356  
MCIMX351AVM4B  
MCIMX351AVM5B  
MCIMX355AVM4B  
MCIMX355AVM5B  
MCIMX356AVM4B  
MCIMX356AVM5B  
MCIMX351AJQ4C  
MCIMX351AJQ5C  
MCIMX355AJQ4C  
MCIMX355AJQ5C  
MCIMX356AJQ4C  
MCIMX356AJQ5C  
SCIMX356BVMB  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2
5284  
5284  
5284  
5284  
5284  
5284  
5284  
5284  
5284  
5284  
5284  
5284  
5284  
400 MHz  
532 MHz2  
400 MHz  
532 MHz2  
400 MHz  
532 MHz2  
400MHz  
532MHz2  
400MHz  
532MHz2  
400MHz  
532MHz2  
532MHz  
–40 to 85  
–40 to 85  
–40 to 85  
–40 to 85  
–40 to 85  
–40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
Table 94  
Table 94  
Table 94  
Table 94  
Table 94  
Table 94  
Table 95  
Table 95  
Table 95  
Table 95  
Table 95  
Table 95  
Table 94  
Table 96  
Table 96  
Table 96  
Table 96  
Table 96  
Table 96  
Table 97  
Table 97  
Table 97  
Table 97  
Table 97  
Table 97  
Table 96  
1
2
Case 5284 is RoHS-compliant, lead-free, MSL = 3, 1.  
532 MHz rated devices meet all specifications of 400 MHz rated devices. A 532 MHz device can be substituted in place of a  
400 MHz device.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
3
The ball map for silicon revision 2.1 is different than the ballmap for silicon revision 2.0. The layout for  
each revision is not compatible, so it is important that the correct ballmap be used to implement the layout.  
See Section 5, “Package Information and Pinout.”  
Table 2 shows the functional differences between the different parts in the i.MX35 family.  
Table 2. Functional Differences in the i.MX35 Parts  
Module  
MCIMX351  
MCIMX353  
MCIMX355  
MCIMX356  
MCIMX357  
I2C (3)  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
CSPI (2)  
SSI/I2S (2)  
ESAI  
SPDIF I/O  
USB HS Host  
USB OTG  
FlexCAN (2)  
MLB  
Ethernet  
1-Wire  
KPP  
SDIO/MMC (2)  
SDIO/Memory Stick  
External Memory Controller (EMC)  
JTAG  
PATA  
CE-ATA  
Image Processing Unit (IPU) (inversion  
and rotation, pre- and post-processing,  
camera interface, blending, display  
controller)  
Open VG graphics acceleration (GPU)  
Yes  
Yes  
Yes  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
4
Freescale Semiconductor  
1.3  
Block Diagram  
Figure 1 is the i.MX35 simplified interface block diagram.  
NOR  
Flash/  
PSRAM  
External Graphics  
Accelerator  
LCD Display 1  
LCD Display 2  
DDR2/SDDR  
RAM  
NAND  
Flash  
Camera  
Sensor  
External Memory  
Interface (EMI)  
Image  
Processing Unit  
(IPU)  
Smart  
DMA  
ARM11  
Platform  
ARM1136 Platform Peripherals  
ARM1136JF-S  
SSI  
HS USBOTG  
SPBA  
VFP  
L1 I/D cache  
L2 cache  
AVIC  
HS USBOTGPHY  
HS USBHost  
FS USBPHY  
AUDMUX  
I2C(3)  
UART(2)  
CSPI  
Peripherals  
ESAI  
GPU 2D  
MSHC  
MAX  
SPDIF  
SSI  
AIPS (2)  
ETM  
eSDHC(3)  
ASRC  
CAN(2)  
MLB  
ECT  
UART  
CSPI  
IOMUX  
GPIO(3)  
Internal  
Memory  
ATA  
FEC  
IIM  
RTICv3  
RNGC  
SCC  
EPIT  
Timers  
RTC  
KPP  
PWM  
WDOG  
GPT  
OWIRE  
3 FuseBox  
Connectivity  
Access  
Audio/Power  
Management  
MMC/SDIO  
or WLAN  
Bluetooth  
Keypad  
JTAG  
Figure 1. i.MX35 Simplified Interface Block Diagram  
2 Functional Description and Application Information  
The i.MX35 consists of the following major subsystems:  
ARM1136 Platform—AP domain  
SDMA Platform and EMI—Shared domain  
2.1  
Application Processor Domain Overview  
The applications processor (AP) and its domain are responsible for running the operating system and  
applications software, providing the user interface, and supplying access to integrated and external  
peripherals. The AP domain is built around an ARM1136JF-S core with 16-Kbyte instruction and data L1  
caches, an MMU, a 128-Kbyte L2 cache, a multiported crossbar switch, and advanced debug and trace  
interfaces.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
5
The i.MX35 core is intended to operate at a maximum frequency of 532 MHz to support the required  
multimedia use cases. Furthermore, an image processing unit (IPU) is integrated into the AP domain to  
offload the ARM11 core from performing functions such as color space conversion, image rotation and  
scaling, graphics overlay, and pre- and post-processing.  
The functionality of AP Domain peripherals includes the user interface; the connectivity, display, security,  
and memory interfaces; and 128 Kbytes of multipurpose SRAM.  
2.2  
Shared Domain Overview  
The shared domain is composed of the shared peripherals, a smart DMA engine (SDMA) and a number of  
miscellaneous modules. For maximum flexibility, some peripherals are directly accessible by the SDMA  
engine.  
The i.MX35 has a hierarchical memory architecture including L1 caches and a unified L2 cache. This  
reduces the bandwidth demands for the external bus and external memory. The external memory  
subsystem supports a flexible external memory system, including support for SDRAM (SDR, DDR2 and  
mobile DDR) and NAND Flash.  
2.3  
Advanced Power Management Overview  
To address the continuing need to reduce power consumption, the following techniques are incorporated  
in the i.MX35:  
Clock gating  
Power gating  
Power-optimized synthesis  
Well biasing  
The insertion of gating into the clock paths allows unused portions of the chip to be disabled. Because  
static CMOS logic consumes only leakage power, significant power savings can be realized.  
“Well biasing” is applying a voltage that is greater than V to the nwells, and one that is lower than V  
DD  
SS  
to the pwells. The effect of applying this well back bias voltage reduces the subthreshold channel leakage.  
For the 90-nm digital process, it is estimated that the subthreshold leakage is reduced by a factor of ten  
over the nominal leakage. Additionally, the supply voltage for internal logic can be reduced from 1.4 V to  
1.22 V.  
2.4  
ARM11 Microprocessor Core  
The CPU of the i.MX35 is the ARM1136JF-S core, based on the ARM v6 architecture. This core supports  
®
®
the ARM Thumb instruction sets, features Jazelle technology (which enables direct execution of Java  
byte codes) and a range of SIMD DSP instructions that operate on 16-bit or 8-bit data values in 32-bit  
registers.  
The ARM1136JF-S processor core features are as follows:  
Integer unit with integral EmbeddedICE logic  
Eight-stage pipeline  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
6
Freescale Semiconductor  
Branch prediction with return stack  
Low-interrupt latency  
Instruction and data memory management units (MMUs), managed using micro TLB structures  
backed by a unified main TLB  
Instruction and data L1 caches, including a non-blocking data cache with hit-under-miss  
Virtually indexed/physically addressed L1 caches  
64-bit interface to both L1 caches  
Write buffer (bypassable)  
High-speed Advanced Micro Bus Architecture (AMBA) L2 interface  
Vector floating point co-processor (VFP) for 3D graphics and hardware acceleration of other  
floating-point applications  
ETM and JTAG-based debug support  
Table 3 summarizes information about the i.MX35 core.  
Table 3. i.MX35 Core  
Core  
Acronym  
Core  
Name  
Integrated Memory  
Features  
Brief Description  
ARM11 or  
ARM1136  
ARM1136 The ARM1136™ platform consists of the ARM1136JF-S core, the ETM  
• 16-Kbyte  
Platform  
real-time debug modules, a 6 × 5 multi-layer AHB crossbar switch (MAX), and  
instruction cache  
• 16-Kbyte data  
cache  
• 128-Kbyte L2  
cache  
a vector floating processor (VFP).  
The i.MX35 provides a high-performance ARM11 microprocessor core and  
highly integrated system functions. The ARM Application Processor (AP) and  
other subsystems address the needs of the personal, wireless, and portable  
product market with integrated peripherals, advanced processor core, and  
power management capabilities.  
• 32-Kbyte ROM  
• 128-Kbyte RAM  
2.5  
Module Inventory  
Table 4 shows an alphabetical listing of the modules in the MCIMX35. For extended descriptions of the  
modules, see the MCIMX35 reference manual.  
Table 4. Digital and Analog Modules  
Block  
Mnemonic  
Block Name  
Domain1  
Subsystem  
Brief Description  
1-WIRE 1-Wire  
interface  
ARM  
ARM1136  
platform  
1-Wire provides the communication line to a 1-Kbit add-only  
memory. the interface can send or receive 1 bit at a time.  
peripherals  
ASRC  
Asynchronous SDMA  
sample rate  
converter  
Connectivity  
peripherals  
The ASRC is designed to convert the sampling rate of a signal  
associated to an input clock into a signal associated to a different  
output clock. It supports a concurrent sample rate conversion of  
about –120 dB THD+N. The sample rate conversion of each  
channel is associated to a pair of incoming and outgoing sampling  
rates.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
7
Table 4. Digital and Analog Modules (continued)  
Block  
Mnemonic  
Block Name  
Domain1  
Subsystem  
Brief Description  
ATA  
ATA module  
SDMA  
Connectivity  
peripherals  
The ATA block is an AT attachment host interface. Its main use is to  
interface with IDE hard disk drives and ATAPI optical disk drives. It  
interfaces with the ATA device over a number of ATA signals.  
AUDMUX Digital audio  
mux  
ARM  
Multimedia  
peripherals  
The AUDMUX is a programmable interconnect for voice, audio, and  
synchronous data routing between host serial interfaces (SSIs) and  
peripheral serial interfaces (audio codecs). The AUDMUX has two  
sets of interfaces: internal ports to on-chip peripherals and external  
ports to off-chip audio devices. Data is routed by configuring the  
appropriate internal and external ports.  
CAN(2)  
CCM  
CAN module  
ARM  
ARM  
Connectivity  
peripherals  
The CAN protocol is primarily designed to be used as a vehicle  
serial data bus running at 1 Mbps.  
Clock control  
module  
Clocks  
This block generates all clocks for the peripherals in the SDMA  
platform. The CCM also manages ARM1136 platform low-power  
modes (WAIT, STOP), disabling peripheral clocks appropriately for  
power conservation, and provides alternate clock sources for the  
ARM1136 and SDMA platforms.  
CSPI(2) Configurable  
serial  
SDMA,  
ARM  
Connectivity  
peripherals  
This module is a serial interface equipped with data FIFOs; each  
master/slave-configurable SPI module is capable of interfacing to  
both serial port interface master and slave devices. The CSPI ready  
(SPI_RDY) and slave select (SS) control signals enable fast data  
communication with fewer software interrupts.  
peripheral  
interface  
ECT  
EMI  
Embedded  
cross trigger  
SDMA,  
ARM  
Debug  
ECT (embedded cross trigger) is an IP for real-time debug  
purposes. It is a programmable matrix allowing several subsystems  
to interact with each other. ECT receives signals required for  
debugging purposes (from cores, peripherals, buses, external  
inputs, and so on) and propagates them (propagation programmed  
through software) to the different debug resources available within  
the SoC.  
External  
memory  
interface  
SDMA  
External  
memory  
interface  
The EMI module provides access to external memory for the ARM  
and other masters. It is composed of the following main  
submodules:  
M3IF—provides arbitration between multiple masters requesting  
access to the external memory.  
SDRAM CTRL—interfaces to mDDR, DDR2 (4-bank architecture  
type), and SDR interfaces.  
NANDFC—provides an interface to NAND Flash memories.  
WEIM—interfaces to NOR Flash and PSRAM.  
EPIT(2)  
Enhanced  
periodic  
interrupt timer  
ARM  
Timer  
peripherals  
Each EPIT is a 32-bit “set-and-forget” timer that starts counting after  
the EPIT is enabled by software. It is capable of providing precise  
interrupts at regular intervals with minimal processor intervention. It  
has a 12-bit prescaler to adjust the input clock frequency to the  
required time setting for the interrupts, and the counter value can be  
programmed on the fly.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
8
Freescale Semiconductor  
Table 4. Digital and Analog Modules (continued)  
Block  
Mnemonic  
Block Name  
Domain1  
Subsystem  
Brief Description  
ESAI  
Enhanced  
serial audio  
interface  
SDMA  
ARM  
Connectivity  
peripherals  
The enhanced serial audio interface (ESAI) provides a full-duplex  
serial port for serial communication with a variety of serial devices,  
including industry-standard codecs, SPDIF transceivers, and other  
DSPs. The ESAI consists of independent transmitter and receiver  
sections, each section with its own clock generator.  
eSDHCv2 Enhanced  
Connectivity  
peripherals  
The eSDHCv2 consists of four main modules: CE-ATA, MMC, SD  
and SDIO. CE-ATA is a hard drive interface that is optimized for  
embedded applications of storage. The MultiMediaCard (MMC) is a  
universal, low-cost, data storage and communication media to  
applications such as electronic toys, organizers, PDAs, and smart  
phones. The secure digital (SD) card is an evolution of MMC and is  
specifically designed to meet the security, capacity, performance,  
and environment requirements inherent in emerging audio and  
video consumer electronic devices. SD cards are categorized into  
Memory and I/O. A memory card enables a copyright protection  
mechanism that complies with the SDMI security standard. SDIO  
cards provide high-speed data I/O (such as wireless LAN via SDIO  
interface) with low power consumption.  
(3)  
secure digital  
host controller  
Note: CE-ATA is not available for the MCIMX351.  
FEC  
Ethernet  
SDMA  
Connectivity  
peripherals  
The Ethernet media access controller (MAC) is designed to support  
both 10 and 100 Mbps Ethernet/IEEE 802.3 networks. An external  
transceiver interface and transceiver function are required to  
complete the interface to the media  
GPIO(3) General  
purpose I/O  
ARM  
ARM  
Pins  
Used for general purpose input/output to external ICs. Each GPIO  
module supports 32 bits of I/O.  
modules  
GPT  
General  
Timer  
peripherals  
Each GPT is a 32-bit free-running or set-and-forget mode timer with  
a programmable prescaler and compare and capture registers. A  
timer counter value can be captured using an external event and can  
be configured to trigger a capture event on either the leading or  
trailing edges of an input pulse. When the timer is configured to  
operate in set-and-forget mode, it is capable of providing precise  
interrupts at regular intervals with minimal processor intervention.  
The counter has output compare logic to provide the status and  
interrupt at comparison. This timer can be configured to run either  
on an external clock or on an internal clock.  
purpose timers  
GPU2D  
Graphics  
processingunit  
2Dv1  
ARM  
Multimedia  
peripherals  
This module accelerates OpenVG and GDI graphics.  
Note: Not available for the MCIMX351.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
9
Table 4. Digital and Analog Modules (continued)  
Block  
Mnemonic  
Block Name  
Domain1  
Subsystem  
Brief Description  
I2C(3)  
I2C module  
ARM  
ARM1136  
platform  
peripherals  
Inter-integrated circuit (I2C) is an industry-standard, bidirectional  
serial bus that provides a simple, efficient method of data exchange,  
minimizing the interconnection between devices. I2C is suitable for  
applications requiring occasional communications over a short  
distance among many devices. The interface operates at up to  
100 kbps with maximum bus loading and timing. The I2C system is  
a true multiple-master bus, with arbitration and collision detection  
that prevent data corruption if multiple devices attempt to control the  
bus simultaneously. This feature supports complex applications with  
multiprocessor control and can be used for rapid testing and  
alignment of end products through external connections to an  
assembly-line computer.  
IIM  
IC  
ARM  
ARM  
Security  
modules  
The IIM provides the primary user-visible mechanism for interfacing  
with on-chip fuse elements. Among the uses for the fuses are  
unique chip identifiers, mask revision numbers, cryptographic keys,  
and various control signals requiring a fixed value.  
identification  
module  
IOMUX  
External  
signals and pin  
multiplexing  
Pins  
Each I/O multiplexer provides a flexible, scalable multiplexing  
solution with the following features:  
• Up to eight output sources multiplexed per pin  
• Up to four destinations for each input pin  
• Unselected input paths held at constant levels for reduced power  
consumption  
IPUv1  
Image  
processing unit  
ARM  
Multimedia  
peripherals  
The IPU supports video and graphics processing functions. It also  
provides the interface for image sensors and displays. The IPU  
performs the following main functions:  
• Preprocessing of data from the sensor or from the external  
system memory  
• Postprocessing of data from the external system memory  
• Post-filtering of data from the system memory with support of the  
MPEG-4 (both deblocking and deringing) and H.264 post-filtering  
algorithms  
• Displaying video and graphics on a synchronous (dumb or  
memory-less) display  
• Displaying video and graphics on an asynchronous (smart)  
display  
Transferring data between IPU sub-modules and to/from the  
system memory with flexible pixel reformatting  
KPP  
MLB  
Keypin port  
ARM  
Connectivity  
peripherals  
Can be used for either keypin matrix scanning or general purpose  
I/O.  
Media local  
bus  
ARM  
Connectivity  
peripherals  
The MLB is designed to interface to an automotive MOST ring.  
OSCAUD OSC audio  
reference  
Analog  
Clock  
The OSCAUDIO oscillator provides a stable frequency reference for  
the PLLs. This oscillator is designed to work in conjunction with an  
external 24.576-MHz crystal.  
oscillator  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
10  
Freescale Semiconductor  
Table 4. Digital and Analog Modules (continued)  
Block  
Mnemonic  
Block Name  
Domain1  
Subsystem  
Brief Description  
OSC24M OSC24M  
24-MHz  
Analog  
SDMA  
Clock  
The signal from the external 24-MHz crystal is the source of the  
CLK24M signal fed into USB PHY as the reference clock and to the  
real time clock (RTC).  
reference  
oscillator  
MPLL  
PPLL  
Digital  
phase-locked  
loops  
Clocks  
DPLLs are used to generate the clocks:  
MCU PLL (MPLL)—programmable  
Peripheral PLL (PPLL)—programmable  
PWM  
RTC  
Pulse-width  
modulator  
ARM  
ARM1136  
platform  
peripherals  
The pulse-width modulator (PWM) is optimized to generate sound  
from stored sample audio images; it can also generate tones.  
Real-time  
clock  
ARM  
Clocks  
Provides the ARM1136 platform with a clock function (days, hours,  
minutes, seconds) and includes alarm, sampling timer, and minute  
stopwatch capabilities.  
SDMA  
Smart DMA  
engine  
SDMA  
System  
controls  
The SDMA provides DMA capabilities inside the processor. It is a  
shared module that implements 32 DMA channels and has an  
interface to connect to the ARM1136 platform subsystem, EMI  
interface, and the peripherals.  
SJC  
Secure JTAG  
controller  
ARM  
Pins  
The secure JTAG controller (SJC) provides debug and test control  
with maximum security.  
SPBA  
SDMA  
peripheral bus  
arbiter  
SDMA  
System  
controls  
The SPBA controls access to the SDMA peripherals. It supports  
shared peripheral ownership and access rights to an owned  
peripheral.  
S/PDIF  
SSI(2)  
Serial audio  
interface  
SDMA  
SDMA,  
Connectivity  
peripherals  
Sony/Philips digital transceiver interface  
Synchronous  
serial interface ARM(2)  
Connectivity  
peripherals  
The SSI is a full-duplex serial port that allows the processor  
connected to it to communicate with a variety of serial protocols,  
including the Freescale Semiconductor SPI standard and the I2C  
sound (I2S) bus standard. The SSIs interface to the AUDMUX for  
flexible audio routing.  
UART(3) Universal  
ARM  
Connectivity  
Each UART provides serial communication capability with external  
devices through an RS-232 cable using the standard RS-232  
non-return-to-zero (NRZ) encoding format. Each module transmits  
and receives characters containing either 7 or 8 bits  
(program-selectable). Each UART can also provide low-speed IrDA  
compatibility through the use of external circuitry that converts  
infrared signals to electrical signals (for reception) or transforms  
electrical signals to signals that drive an infrared LED (for  
transmission).  
asynchronous (UART1,2) peripherals  
receiver/trans  
mitters  
SDMA  
(UART3)  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
11  
Table 4. Digital and Analog Modules (continued)  
Block  
Mnemonic  
Block Name  
Domain1  
Subsystem  
Brief Description  
USBOH High-speed  
USB on-the-go  
SDMA  
ARM  
Connectivity  
peripherals  
The USB module provides high performance USB on-the-go (OTG)  
functionality (up to 480 Mbps), compliant with the USB 2.0  
specification, the OTG supplement, and the ULPI 1.0 low pin count  
specification. The module has DMA capabilities handling data  
transfer between internal buffers and system memory.  
WDOG  
Watchdog  
modules  
Timer  
peripherals  
Each module protects against system failures by providing a method  
of escaping from unexpected events or programming errors. Once  
activated, the timer must be serviced by software on a periodic  
basis. If servicing does not take place, the watchdog times out and  
then either asserts a system reset signal or an interrupt request  
signal, depending on the software configuration.  
1
ARM = ARM1136 platform, SDMA = SDMA platform  
3 Signal Descriptions: Special Function Related Pins  
Some special functional requirements are supported in the device. The details about these special functions  
and the corresponding pin names are listed in Table 5.  
Table 5. Special Function Related Pins  
Function Name  
Pin Name  
Mux Mode  
Detailed Description  
External ARM Clock  
EXT_ARMCLK  
I2C1_CLK  
ALT0  
ALT6  
ALT4  
ALT2  
External clock input for ARM clock.  
External peripheral clock source.  
External Peripheral Clock  
External 32-kHz Clock  
CAPTURE  
External clock input of 32 kHz, used when the internal  
24M Oscillator is powered off, which could be  
configured either from CAPTURE or CSPI1_SS1.  
CSPI1_SS1  
Clock Out  
CLKO  
ALT0  
Clock-out pin from CCM, clock source is controllable  
and can also be used for debug.  
Power Ready  
GPIO1_0  
TX1  
ALT1  
ALT1  
ALT6  
PMIC power-ready signal, which can be configured  
either from GPIO1_0 or TX1.  
Tamper Detect  
GPIO1_1  
Tamper-detect logic is used to issue a security  
violation. This logic is activated if the tamper-detect  
input is asserted. Tamper-detect logic is enabled by the  
bit of IOMUXC_GPRA[2]. After enabling the logic, it is  
impossible to disable it until the next reset.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
12  
Freescale Semiconductor  
4 Electrical Characteristics  
The following sections provide the device-level and module-level electrical characteristics for the i.MX35  
processor.  
4.1  
i.MX35 Chip-Level Conditions  
This section provides the device-level electrical characteristics for the IC. See Table 6 for a quick reference  
to the individual tables and sections.  
Table 6. i.MX35 Chip-Level Conditions  
Characteristics  
Table/Location  
Absolute Maximum Ratings  
i.MX35 Operating Ranges  
Interface Frequency  
Table 7 on page 13  
Table 8 on page 14  
Table 9 on page 15  
CAUTION  
Stresses beyond those listed in Table 7 may cause permanent damage to the  
device. These are stress ratings only. Functional operation of the device at  
these or any other conditions beyond those indicated in Table 8 is not  
implied. Exposure to absolute-maximum-rated conditions for extended  
periods may affect device reliability.  
Table 7. Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
Max.  
Units  
1
Supply voltage (core)  
Supply voltage (I/O)  
Input voltage range  
Storage temperature  
ESD damage immunity:  
VDDmax  
NVCCmax  
VImax  
–0.5  
–0.5  
–0.5  
–40  
1.47  
3.6  
V
V
3.6  
V
Tstorage  
Vesd  
125  
oC  
V
Human Body Model (HBM)  
Charge Device Model (CDM)  
20002  
5003  
1
VDD is also known as QVCC.  
2
3
HBM ESD classification level according to the AEC-Q100-002 standard  
Corner pins max. 750 V  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
13  
4.1.1  
i.MX35 Operating Ranges  
Table 8 provides the recommended operating ranges. The term NVCC in this section refers to the  
associated supply rail of an input or output.  
Table 8. i.MX35 Operating Ranges  
Parameter  
Symbol  
Min.  
Typical  
Max.  
Units  
Core Operating Voltage  
0 < fARM < 400 MHz  
VDD  
1.22  
1.47  
V
Core Operating Voltage  
0 < fARM < 532 MHz  
1.33  
1.47  
V
State Retention Voltage  
EMI1  
1
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.43  
3.43  
3.43  
3.6  
3.6  
3.6  
1.65  
1.65  
3.6  
85  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
oC  
oC  
NVCC_EMI1,2,3  
NVCC_CRM  
NVCC_NANDF  
NVCC_ATA  
1.7  
WTDG, Timer, CCM, CSPI1  
NANDF  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
3.17  
ATA, USB generic  
eSDHC1  
NVCC_SDIO  
NVCC_CSI  
CSI, SDIO2  
JTAG  
NVCC_JTAG  
NVCC_LCDC  
NVCC_MISC  
NVCC_MLB2  
PHY1_VDDA  
LCDC, TTM, I2C1  
I2Sx2,ESAI, I2C2, UART2, UART1, FEC  
MLB  
USB OTG PHY  
USB OTG PHY  
USB OTG PHY  
USB HOST PHY  
OSC24M  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
USBPHY1_VDDA_BIAS 3.17  
USBPHY1_UPLLVDD  
PHY2_VDD  
OSC24M_VDD  
OSC_AUDIO_VDD  
MVDD  
3.17  
3.0  
3.0  
3.0  
1.4  
1.4  
3.0  
–40  
–40  
OSC_AUDIO  
MPLL  
PPLL  
PVDD  
Fusebox program supply voltage  
Operating ambient temperature range  
Junction temperature range  
FUSE_VDD3  
3.6  
TA  
TJ  
105  
1
2
3
EMI I/O interface power supply should be set up according to external memory. For example, if using SDRAM then  
NVCC_EMI1,2,3 should all be set at 3.3 V (typ.). If using MDDR or DDR2, NVC_EMI1,2,3 must be set at 1.8 V (typ.).  
MLB interface I/O pads can be programmed to function as GPIO by setting NVCC_MLB to 1.8 or 3.3 V, but if used as MLB  
pads, NVCC_MLB must be set to 2.5 V in order to be compliant with external MOST devices. NVCC_MLB may be left floating.  
The Fusebox read supply is connected to supply of the full speed USB PHY. FUSE_VDD is only used for programming. It is  
recommended that FUSE_VDD be connected to ground when not being used for programming. FUSE_VDD should be  
supplied by following the power up sequence given in Section 4.3.1, “Powering Up.”  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
14  
Freescale Semiconductor  
4.1.2  
Interface Frequency Limits  
Table 9 provides information on interface frequency limits.  
Table 9. Interface Frequency  
ID  
Parameter  
JTAG TCK Frequency  
Symbol  
fJTAG  
Min.  
DC  
Typ.  
Max.  
Units  
1
5
10  
MHz  
4.2  
Power Modes  
Table 10 provides descriptions of the power modes of the i.MX35 processor.  
Table 10. i.MX35 Power Modes  
QVCC (ARM/L2  
Peripheral)  
OSC24M_VDD  
OSC_AUDO_VDD  
MVDD/PVDD  
Power  
Mode  
Description  
Typ.  
Max.  
Typ.  
Max.  
Typ.  
Max.  
Wait  
VDD1,2,3,4 = 1.1 V (min.)  
ARM is in wait for interrupt mode.  
MAX is active.  
L2 cache is kept powered.  
MCU PLL is on (400 MHz)  
PER PLL is off (can be configured)  
(default: 300 MHz)  
16 mA  
170 mA  
7.2 mA  
14 mA  
1.2 mA  
3 mA  
Module clocks are gated off (can be  
configured by CGR register).  
OSC 24M is ON.  
OSC audio is off (can be configured).  
RNGC internal osc is off.  
Doze  
VDD1,2,3,4 = 1.1 V (min.)  
ARM is in wait for interrupt mode.  
MAX is halted.  
L2 cache is kept powered.  
L2 cache control logic off.  
AWB enabled.  
MCU PLL is on(400 MHz)  
12.4 mA 105 mA  
7.2 mA  
14 mA  
1.2 mA  
3 mA  
PER PLL is off (can be configured).  
(300 Mhz).  
Module clocks are gated off (can be  
configured by CGR register).  
OSC 24M is ON.  
OSC audio is off (can be configured)  
RNGC internal osc is off  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
15  
Table 10. i.MX35 Power Modes (continued)  
QVCC (ARM/L2  
OSC24M_VDD  
OSC_AUDO_VDD  
MVDD/PVDD  
Power  
Mode  
Peripheral)  
Description  
Typ.  
Max.  
Typ.  
Max.  
Typ.  
Max.  
Stop  
VDD1,2,3,4 = 1.1 V (min.)  
ARM is in wait for interrupt mode.  
MAX is halted  
L2 cache is kept powered.  
L2 cache control logic off.  
AWB enabled.  
1.1 mA  
77 mA  
400 µA  
2.2 mA  
1.2 mA  
2.2 mA  
MCU PLL is off.  
PER PLL is off.  
All clocks are gated off.  
OSC 24 MHz is on  
OSC audio is off  
RNGC internal osc is off  
Static  
VDD1,2,3,4 = 1.1 V (min.)  
ARM is in wait for interrupt mode.  
MAX is halted  
L2 cache is kept powered.  
L2 cache control logic off.  
AWB enabled.  
820 µA  
72 mA  
50 µA  
1.7 mA  
24 µA  
35 µA  
MCU PLL is off.  
PER PLL is off.  
All clocks are gated off.  
OSC 24MHz is on  
OSC audio is off  
RNGC internal osc is off  
Note: Typical column: TA = 25 °C  
Note: Maximum column: TA = 85 °C  
4.3  
Supply Power-Up/Power-Down Requirements and Restrictions  
This section provides power-up and power-down sequence guidelines for the i.MX35 processor.  
CAUTION  
Any i.MX35 board design must comply with the power-up and power-down  
sequence guidelines as described in this section to guarantee reliable  
operation of the device. Any deviation from these sequences can result in  
irreversible damage to the i.MX35 processor (worst-case scenario).  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
16  
Freescale Semiconductor  
NOTE  
Deviation from these sequences may also result in one or more of the  
following:  
Excessive current during power-up phase  
Prevent the device from booting  
Programming of unprogrammed fuses  
4.3.1  
Powering Up  
The power-up sequence should be completed as follows:  
1. Assert Power on Reset (POR).  
2. Turn on digital logic domain and IO power supply: VDDn, NVCCx  
3. Wait until VDDn and NVCCx power supplies are stable + 32 μs.  
4. Turn on all other power supplies: PHY1_VDDA, USBPHY1_VDDA_BIAS, PHY2_VDD,  
USBPHY1_UPLLVDD, OSC24M_VDD, OSC_AUDIO_VDD, MVDD, PVDD, FUSEVDD.  
(Always FUSE_VDD should be connected to ground, except when eFuses are to be  
programmed.)  
5. Wait until PHY1_VDDA, USBPHY1_VDDA_BIAS, PHY2_VDD, USBPHY1_UPLLVDD,  
OSC24M_VDD, OSC_AUDIO_VDD, MVDD, PVDD, (FUSEVDD, optional). Power supplies  
are stable + 100 μs.  
6. Deassert the POR signal.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
17  
Figure 2 shows the power-up sequence and timing.  
Figure 2. i.MX35 Power-Up Sequence and Timing  
4.3.2  
Powering Down  
The power-up sequence in reverse order is recommended for powering down. However, all power supplies  
can be shut down at the same time.  
4.4  
Reset Timing  
There are two ways of resetting the i.MX35 using external pins:  
Power On Reset (using the POR_B pin)  
System Reset (using the RESET_IN_B pin)  
4.4.1  
Power On Reset  
POR_B is normally connected to a power management integrated circuit (PMIC). The PMIC asserts  
POR_B while the power supplies are turned on and negates POR_B after the power up sequence is  
finished. See Figure 2.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
18  
Freescale Semiconductor  
Assuming the i.MX35 chip is already fully powered; it is still possible to reset all of the modules to their  
default reset by asserting POR_B for at least 4 CKIL cycles and later de-asserting POR_B. This method  
of resetting the i.MX35 can also be supported by tying the POR_B and RESET_IN_B pins together.  
POR_B  
At least 4 CKIL cycles  
CKIL  
Figure 3. Timing Between POR_B and CKIL for Complete Reset of i.MX35  
4.4.2  
System Reset  
System reset can be achieved by asserting RESET_IN_B for at least 4 CKIL cycles and later negating  
RESET_IN_B. The following modules are not reset upon system reset: RTC, PLLs, CCM, and IIM.  
POR_B pin must be deasserted all the time.  
RESET_IN_B  
At least 4 CKIL cycles  
CKIL  
Figure 4. Timing Between RESET_IN_B and CKIL for i.MX35 System Reboot  
4.5  
Power Characteristics  
The table shows values representing maximum current numbers for the i.MX35 under worst case voltage  
and temperature conditions. These values are derived from the i.MX35 with core clock speeds up to  
532 MHz. Common supplies have been bundled according to the i.MX35 power-up sequence  
requirements. Peak numbers are provided for system designers so that the i.MX35 power supply  
requirements will be satisfied during startup and transient conditions. Freescale recommends that system  
current measurements be taken with customer-specific use-cases to reflect normal operating conditions in  
the end system.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
19  
Table 11. Power Consumption  
Power Supply  
Voltage (V)  
Max Current (mA)  
QVCC  
1.47  
1.65  
1.9  
400  
20  
MVDD, PVDD  
NVCC_EMI1, NVCC_EMI2, NVCC_EMI3, NVCC_LCDC, NVCC_NFC  
FUSE_VDD1  
90  
62  
3.6  
NVCC_MISC, NVCC_CSI, NVCC_SDIO, NVCC_CRM, NVCC_ATA, NVCC_MLB,  
NVCC_JTAG  
3.6  
60  
OSC24M_VDD, OSC_AUDIO_VDD, PHY1_VDDA, PHY2_VDD,  
USBPHY1_UPLLVDD, USBPHY1_VDDA_BIAS  
3.6  
25  
1
This rail is connected to ground; it only needs a voltage if eFuses are to be programmed. FUSE_VDD should be supplied by  
following the power up sequence given in Section 4.3.1, “Powering Up.”  
The method for obtaining max current is as follows:  
1. Measure worst case power consumption on individual rails using directed test on i.MX35.  
2. Correlate worst case power consumption power measurements with worst case power  
consumption simulations.  
3. Combine common voltage rails based on power supply sequencing requirements  
4. Guard band worst case numbers for temperature and process variation. Guard band is based on  
process data and correlated with actual data measured on i.MX35.  
5. The sum of individual rails is greater than real world power consumption, as a real system does  
not typically maximize power consumption on all peripherals simultaneously.  
4.6  
Thermal Characteristics  
The thermal resistance characteristics for the device are given in Table 12. These values were measured  
under the following conditions:  
Two-layer substrate  
Substrate solder mask thickness: 0.025 mm  
Substrate metal thicknesses: 0.016 mm  
Substrate core thickness: 0.200 mm  
Core via I.D: 0.168 mm, Core via plating 0.016 mm.  
Full array map design, but nearly all balls under die are power or ground.  
Die Attach: 0.033 mm non-conductive die attach, k = 0.3 W/m K  
Mold compound: k = 0.9 W/m K  
Table 12. Thermal Resistance Data  
Rating  
Condition  
Symbol  
Value  
Unit  
Junction to ambient1 natural convection  
Junction to ambient1 natural convection  
Single layer board (1s)  
Four layer board (2s2p)  
ReJA  
ReJA  
53  
30  
ºC/W  
ºC/W  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
20  
Freescale Semiconductor  
Table 12. Thermal Resistance Data (continued)  
Condition  
Rating  
Symbol  
Value  
Unit  
Junction to ambient1 (at 200 ft/min)  
Junction to ambient1 (at 200 ft/min)  
Junction to boards2  
Single layer board (1s)  
ReJMA  
ReJMA  
ReJB  
44  
27  
19  
10  
2
ºC/W  
ºC/W  
ºC/W  
ºC/W  
ºC/W  
Four layer board (2s2p)  
Junction to case (top)3  
ReJCtop  
ΨJT  
Junction to package top4  
Natural convection  
1
2
3
4
Junction-to-ambient thermal resistance determined per JEDC JESD51-3 and JESD51-6. Thermal test board meets JEDEC  
specification for this package.  
Junction-to-board thermal resistance determined per JEDC JESD51-8. Thermal test board meets JEDEC specification for this  
package.  
Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used  
for the case temperature. Reported value includes the thermal resistance of the interface layer.  
Thermal characterization parameter indicating the temperature difference between the package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, this thermal characterization parameter is written  
as Psi-JT.  
4.7  
I/O Pin DC Electrical Characteristics  
I/O pins are of two types: GPIO and DDR. DDR pins can be configured in three different drive strength  
modes: mobile DDR, SDRAM, and DDR2. The SDRAM and mobile DDR modes can be further  
customized at three drive strength levels: normal, high, and max.  
Table 13 shows currents for the different DDR pin drive strength modes.  
Table 13. DDR Pin Drive Strength Mode Current Levels  
Drive Mode  
Normal  
High  
Max.  
Mobile DDR (1.8 V)  
SDRAM (1.8 V)  
SDRAM (3.3 V)  
DDR2 (1.8 V)  
3.6 mA  
7.2 mA  
10.8 mA  
6.5 mA  
12 mA  
4 mA  
8 mA  
13.4 mA  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
21  
Table 14 shows the DC electrical characteristics for GPIO, DDR2, mobile DDR, and SDRAM pins. The  
term NVCC refers to the power supply voltage that feeds the I/O of the module in question. For example,  
NVCC for the SD/MMC interface refers to NVCC_SDIO.  
Table 14. I/O Pin DC Electrical Characteristics  
Pin  
DC Electrical Characteristics Symbol  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
GPIO High-level output voltage  
Low-level output voltage  
Voh  
Vol  
Ioh  
Ioh = –1 mA  
Ioh = specified drive  
NVCC – 0.15  
0.8 × NVCC  
V
Iol = 1 mA  
Iol = specified drive  
0.15  
0.2 × NVCC  
V
High-level output current for  
slow mode  
(Voh = 0.8 × NVCC)  
Standard drive  
High drive  
Max. drive  
–2.0  
–4.0  
–8.0  
mA  
High-level output current  
for fast mode  
(Voh = 0.8 × NVCC)  
Ioh  
Iol  
Standard drive  
High drive  
Max. drive  
–4.0  
–6.0  
–8.0  
mA  
mA  
mA  
V
Low-level output current  
for slow mode  
(Voh = 0.2 × NVCC)  
Standard drive  
High drive  
Max. drive  
2.0  
4.0  
8.0  
Low-level output current  
for fast mode  
(Voh = 0.2 × NVCC)  
Iol  
Standard drive  
High drive  
Max. drive  
4.0  
6.0  
8.0  
High-level DC Input  
Voltage with 1.8 V,  
3.3 V NVCC (for digital  
cells in input mode)  
VIH  
0.7 × NVCC  
NVCC  
Low-level DC Input  
Voltage with 1.8 V,  
3.3 V NVCC (for digital  
cells in input mode  
VIL  
–0.3 V  
0.3 × NVCC  
V
Input Hysteresis  
VHYS  
OVDD = 3.3 V  
OVDD = 1.8 V  
410  
330  
mV  
Schmitt trigger VT+  
Schmitt trigger VT–  
VT+  
VT–  
Rpu  
0.5 × NVCC  
22  
V
V
0.5 × NVCC  
Pull-up resistor  
Vi = 0  
kΩ  
(22 kΩ PU)  
Pull-up resistor  
(47 kΩ PU)  
Rpu  
Rpu  
Vi = 0  
Vi = 0  
47  
kΩ  
kΩ  
Pull-up resistor  
100  
(100 kΩ PU)  
Pull-down resistor (100 kΩ PD)  
Rpd  
Vi = NVCC  
100  
kΩ  
kΩ  
External resistance to pull  
keeper up when enabled  
Rkpu  
Ipu > 620 μA  
@ min Vddio = 3.0 V  
4.8  
External resistance to pull  
keeper down when enabled  
Rkpd  
Ipu > 510 μA  
@min Vddio = 3.0 V  
5.9  
kΩ  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
22  
Freescale Semiconductor  
Table 14. I/O Pin DC Electrical Characteristics (continued)  
Pin  
DC Electrical Characteristics Symbol  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
DDR2 High-level output voltage  
Low-level output voltage  
Output min. source current  
Output min. sink current  
DC input logic high  
Voh  
Vol  
NVCC – 0.28  
V
V
0.28  
Ioh  
–13.4  
13.4  
mA  
mA  
V
Iol  
VIH(dc)  
NVCC ÷ 2 +  
NVCC + 0.3  
0.125  
DC input logic low  
VIL(dc)  
Vin(dc)  
–0.3 V  
–0.3  
NVCC ÷ 2 –  
V
V
0.125  
DC input signal voltage  
(for differential signal)  
NVCC + 0.3  
NVCC + 0.6  
DC differential input voltage  
Termination voltage  
Vid(dc)  
Vtt  
0.25  
V
V
NVCC ÷ 2 – NV NVCC ÷ 2 +  
0.04  
CC  
÷ 2  
0.04  
Input current (no  
pull-up/down)  
IIN  
1
μA  
μA  
V
Tri-state I/O supply current  
Icc – N  
VCC  
1
Mobile High-level output voltage  
DDR  
IOH = –1mA  
IOH = specified drive  
NVCC – 0.08  
0.8 × NVCC  
Low-level output voltage  
IOL = 1mA  
IOL = specified drive  
0.08  
0.2 × NVCC  
V
High-level output current  
(Voh = 0.8 × NVCCV)  
Standard drive  
High drive  
–3.6  
–7.2  
mA  
Max. drive  
–10.8  
Low-level output current  
(Vol = 0.2 × NVCCV)  
Standard Drive  
High Drive  
3.6  
7.2  
mA  
Max. Drive  
10.8  
High-Level DC CMOS  
input voltage  
VIH  
VIL  
0.7 × NVCC  
NVCC + 0.3  
0.2 × NVCC  
100  
V
V
Low-Level DC CMOS  
input voltage  
–0.3  
Differential receiver VTH+  
Differential receiver VTH–  
VTH+  
VTH–  
IIN  
–100  
mV  
mV  
μA  
Input current (no  
pull-up/down)  
VI = 0  
VI = NVCC  
1
1
Tri-state I/O supply current  
Icc – N  
VCC  
VI = NVCC or 0  
μA  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
23  
Table 14. I/O Pin DC Electrical Characteristics (continued)  
Pin  
DC Electrical Characteristics Symbol  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
SDR High-level output voltage  
Voh  
Vol  
Ioh  
Iol  
loh = 5.7 mA  
loh = 5.7 mA  
Max. drive  
Max. drive  
OVDD – 0.28  
0.4  
V
V
(1.8 V)  
Low-level output voltage  
5.7  
7.3  
1.4  
–0.3  
High-level output current  
Low-level output current  
High-level DC Input Voltage  
Low-level DC Input Voltage  
mA  
mA  
V
VIH  
VIL  
IIN  
1.98  
0.8  
V
Input current (no  
pull-up/down)  
VI = 0  
VI=NVCC  
150  
80  
μA  
Tri-state I/O supply current  
Icc  
(NVCC)  
VI = OVDD or 0  
VI = VDD or 0  
1180  
1220  
μA  
μA  
V
Tri-state core supply current  
Icc  
(NVCC)  
SDR High-level output voltage  
(3.3 V)  
Voh  
Ioh=specified drive  
(Ioh = –4, –8, –12,  
–16 mA)  
2.4  
Low-level output voltage  
High-level output current  
Vol  
Ioh  
Ioh=specified drive (Ioh = 4,  
8, 12, 16 mA)  
0.4  
V
Standard drive  
High drive  
–4.0  
–8.0  
mA  
Max. drive  
–12.0  
Low-level output current  
Iol  
Standard drive  
High drive  
4.0  
8.0  
mA  
Max. drive  
12.0  
High-level DC Input Voltage  
Low-level DC Input Voltage  
VIH  
VIL  
IIN  
2.0  
–0.3V  
3.6  
0.8  
1
V
V
Input current (no  
pull-up/down)  
VI = 0  
μA  
VI = NVCC  
Tri-state I/O supply current  
Icc  
VI = NVCC or 0  
1
μA  
(NVCC)  
4.8  
I/O Pin AC Electrical Characteristics  
Figure 5 shows the load circuit for output pins.  
From Output  
Under Test  
Test Point  
CL  
CL includes package, probe and jig capacitance  
Figure 5. Load Circuit for Output Pin  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
24  
Freescale Semiconductor  
Figure 6 shows the output pin transition time waveform.  
NVCC  
0V  
80%  
20%  
80%  
20%  
Output (at pin)  
PA1  
PA1  
Figure 6. Output Pin Transition Time Waveform  
4.8.1  
AC Electrical Test Parameter Definitions  
AC electrical characteristics in Table 16 through Table 21 are not applicable for the output open drain  
pull-down driver.  
The dI/dt parameters are measured with the following methodology:  
The zero voltage source is connected between pin and load capacitance.  
The current (through this source) derivative is calculated during output transitions.  
Table 15. AC Requirements of I/O Pins  
Parameter  
Symbol  
VIH(ac)  
VIL(ac)  
Min.  
NVCC ÷ 2 + 0.25  
–0.3  
Max.  
Units  
AC input logic high  
AC input logic low  
NVCC + 0.3  
V
NVCC ÷ 2 – 0.25  
V
Table 16. AC Electrical Characteristics of GPIO Pins in Slow Slew Rate Mode  
[NVCC = 3.0 V–3.6 V]  
Test  
Condition  
Min.  
Rise/Fall  
Max.  
Rise/Fall  
Parameter  
Symbol  
Typ. Rise/Fall  
Units  
Duty cycle  
Fduty  
tps  
40  
60  
%
Output pin slew rate (max. drive)  
25 pF  
50 pF  
0.79/1.12  
0.49/0.73  
1.30/1.77  
0.84/1.23  
2.02/2.58  
1.19/1.58  
V/ns  
Output pin slew rate (high drive)  
tps  
tps  
tdit  
tdit  
tdit  
25 pF  
50 pF  
0.48/0.72  
0.27/0.42  
0.76/1.10  
0.41/0.62  
1.17/1.56  
0.63/0.86  
V/ns  
V/ns  
Output pin slew rate (standard  
drive)  
25 pF  
50 pF  
0.25/0.40  
0.14/0.21  
0.40/0.59  
0.21/0.32  
0.60/0.83  
0.32/0.44  
Output pin di/dt (max. drive)  
25 pF  
50 pF  
15  
16  
36  
38  
76  
80  
mA/ns  
mA/ns  
mA/ns  
Output pin di/dt (high drive)  
25 pF  
50 pF  
8
9
20  
21  
45  
47  
Output pin di/dt (standard  
drive)  
25 pF  
50 pF  
4
4
10  
10  
22  
23  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
25  
Table 17. AC Electrical Characteristics of GPIO Pins in Slow Slew Rate Mode  
[NVCC = 1.65 V–1.95 V]  
Min.  
Rise/Fall  
Max.  
Rise/Fall  
Parameter  
Symbol Test Condition  
Typ.  
Units  
Duty cycle  
Fduty  
tps  
40  
60  
%
Output pin slew rate (max. drive)  
Output pin slew rate (high drive)  
Output pin slew rate (standard drive)  
Output pin di/dt (max. drive)  
25 pF  
50 pF  
0.30/0.42  
0.20/0.29  
0.54/0.73  
0.35/0.50  
0.91/1.20  
0.60/0.80  
V/ns  
tps  
tps  
tdit  
tdit  
tdit  
25 pF  
50 pF  
0.19/0.28  
0.12/0.18  
0.34/0.49  
0.34/0.49  
0.58/0/79  
0.36/0.49  
V/ns  
V/ns  
25 pF  
50 pF  
0.12/0.18  
0.07/0.11  
0.20/0.30  
0.11/0.17  
0.34/0.47  
0.20/0.27  
25 pF  
50 pF  
7
7
21  
22  
56  
58  
mA/ns  
mA/ns  
mA/ns  
Output pin di/dt (high drive)  
25 pF  
50 pF  
5
5
14  
15  
38  
40  
Output pin di/dt (standard  
drive)  
25 pF  
50 pF  
2
2
7
7
18  
19  
Table 18. AC Electrical Characteristics of GPIO Pins in Fast Slew Rate Mode for  
[NVCC = 3.0 V–3.6 V]  
Min.  
rise/fall  
Max.  
Rise/Fall  
Parameter  
Symbol Test Condition  
Typ.  
Units  
Duty cycle  
Fduty  
tps  
40  
60  
%
Output pin slew rate (max. drive)  
Output pin slew rate (high drive)  
Output pin slew rate (standard drive)  
Output pin di/dt (max. drive)  
25 pF  
50 pF  
0.96/1.40  
0.54/0.83  
1.54/2.10  
0.85/1.24  
2.30/3.00  
1.26/1.70  
V/ns  
tps  
tps  
tdit  
tdit  
tdit  
25 pF  
50 pF  
0.76/1.10  
0.41/0.64  
1.19/1.71  
0.63/0.95  
1.78/2.39  
0.95/1.30  
V/ns  
V/ns  
25 pF  
50 pF  
0.52/0.78  
0.28/0.44  
0.80/1.19  
0.43/0.64  
1.20/1.60  
0.63/0.87  
25 pF  
50 pF  
46  
49  
108  
113  
250  
262  
mA/ns  
mA/ns  
mA/ns  
Output pin di/dt (high drive)  
25 pF  
50 pF  
35  
37  
82  
86  
197  
207  
Output pin di/dt (standard  
drive)  
25 pF  
50 pF  
22  
23  
52  
55  
116  
121  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
26  
Freescale Semiconductor  
Table 19. AC Electrical Characteristics, GPIO Pins in Fast Slew Rate Mode  
[NVCC = 1.65 V–1.95 V]  
Min.  
Rise/Fall  
Max.  
Rise/Fall  
Parameter  
Symbol Test Condition  
Typ.  
Units  
Duty cycle  
Fduty  
tps  
40  
60  
%
Output pin slew rate (max. drive)  
Output pin slew rate (high drive)  
Output pin slew rate (standard drive)  
Output pin di/dt (max. drive)  
25 pF  
50 pF  
0.40/0.57  
0.25/0.36  
0.72/0.97  
0.43/0.61  
1.2/1.5  
0.72/0.95  
V/ns  
tps  
tps  
tdit  
tdit  
tdit  
25 pF  
50 pF  
0.38/0.48  
0.20/0.30  
0.59/0.81  
0.34/0.50  
0.98/1.27  
0.56/0.72  
V/ns  
V/ns  
25 pF  
50 pF  
0.23/0.32  
0.13/0.20  
0.40/0.55  
0.23/0.34  
0.66/0.87  
0.38/0.52  
25 pF  
50 pF  
7
7
43  
46  
112  
118  
mA/ns  
mA/ns  
mA/ns  
Output pin di/dt (high drive)  
25 pF  
50 pF  
11  
12  
31  
33  
81  
85  
Output pin di/dt (standard  
drive)  
25 pF  
50 pF  
9
10  
27  
28  
71  
74  
Table 20. AC Electrical Characteristics of GPIO Pins in Slow Slew Rate Mode  
[NVCC = 2.25 V–2.75 V]  
Min.  
Rise/Fall  
Max.  
Rise/Fall  
Parameter  
Symbol Test Condition  
Typ.  
Units  
Duty cycle  
Fduty  
tps  
40  
60  
%
Output pin slew rate (max. drive)  
Output pin slew rate (high drive)  
Output pin slew rate (standard drive)  
25 pF  
40 pF  
50 pF  
0.63/0.85  
0.52/0.67  
0.41/0.59  
1.10/1.40  
0.90/1.10  
0.73/0.99  
1.86/2.20  
1.53/1.73  
1.20/1.50  
V/ns  
tps  
tps  
25 pF  
40 pF  
50 pF  
0.40/0.58  
0.33/0.43  
0.25/0.37  
0.71/0.98  
0.56/0.70  
0.43/0.60  
1.16/1.40  
0.93/1.07  
0.68/0.90  
V/ns  
V/ns  
25 pF  
40 pF  
50 pF  
0.24/0.36  
0.19/0.25  
0.13/0.21  
0.41/0.59  
0.32/0.35  
0.23/0.33  
0.66/0.87  
0.51/0.59  
0.36/0.48  
Output pin di/dt (max. drive)  
Output pin di/dt (high drive)  
tdit  
tdit  
tdit  
25 pF  
50 pF  
22  
23  
62  
65  
148  
151  
mA/ns  
mA/ns  
mA/ns  
25 pF  
50 pF  
15  
16  
42  
44  
102  
107  
Output pin di/dt (standard  
drive)  
25 pF  
50 pF  
7
8
21  
22  
52  
54  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
27  
Table 21. AC Electrical Characteristics of GPIO Pins in Fast Slew Rate Mode  
[NVCC = 2.25 V–2.75 V]  
Test  
Min.  
Max.  
Rise/Fall  
Parameter  
Symbol  
Typ.  
Units Notes  
Condition Rise/Fall  
Duty cycle  
Fduty  
tps  
40  
60  
%
2
Output pin slew rate (max. drive)  
Output pin slew rate (high drive)  
Output pin slew rate (standard drive)  
25 pF  
40 pF  
50 pF  
0.84/1.10 1.45/1.80 2.40/2.80 V/ns  
0.68/0.83 1.14/1.34 1.88/2.06  
0.58/0.72 0.86/1.10 1.40/1.70  
tps  
tps  
25 pF  
40 pF  
50 pF  
0.69/0.96 1.18/1.50 1.90/2.30 V/ns  
0.55/0.69 0.92/1.10 1.49/1.67  
0.40/0.59 0.67/0.95 1.10/1.30  
25 pF  
40 pF  
50 pF  
0.24/0.36 0.80/1.00 1.30/1.60 V/ns  
0.37/0.47 0.62/0.76 1.00/1.14  
0.13/0.21 0.45/0.65 0.70/0.95  
Output pin di/dt (max. drive)  
Output pin di/dt (high drive)  
tdit  
tdit  
tdit  
25 pF  
50 pF  
46  
49  
124  
131  
310  
324  
mA/ns  
mA/ns  
mA/ns  
3
25 pF  
50 pF  
33  
35  
89  
94  
290  
304  
Output pin di/dt (standard  
drive)  
25 pF  
50 pF  
28  
29  
75  
79  
188  
198  
4.8.2  
AC Electrical Characteristics for DDR Pins (DDR2, Mobile DDR, and  
SDRAM Modes)  
Table 22. AC Electrical Characteristics of DDR Type IO Pins in DDR2 Mode  
Min.  
Rise/Fall  
Max.  
Rise/Fall  
Parameter  
Symbol  
Test Condition  
Typ.  
Units  
Duty cycle  
Fduty  
45  
50  
55  
%
Clock frequency  
f
133  
MHz  
V/ns  
Output pin slew rate  
tps  
25 pF  
50 pF  
0.86/0.98  
0.46/054  
1.35/1.5  
0.72/0.81  
2.15/2.19  
1.12/1.16  
Output pin di/dt  
tdit  
25 pF  
50 pF  
65  
70  
157  
167  
373  
396  
mA/ns  
Table 23. AC Requirements of DDR2 Pins  
Parameter1  
Symbol  
VIH(ac)  
VIL(ac)  
Vox(ac)  
Min.  
Max.  
Units  
AC input logic high  
AC input logic low  
NVCC ÷ 2 + 0.25  
–0.3  
NVCC + 0.3  
V
V
V
NVCC ÷ 2 – 0.25  
NVCC ÷ 2 + 0.125  
AC differential cross point voltage for output2  
NVCC ÷ 2 – 0.125  
1
The Jedec SSTL_18 specification (JESD8-15a) for an SSTL interface for class II operation supersedes any specification in this  
document.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
28  
Freescale Semiconductor  
2
The typical value of Vox(ac) is expected to be about 0.5 × NVCC and Vox(ac) is expected to track variation in NVCC. Vox(ac)  
indicates the voltage at which the differential output signal must cross. Cload = 25 pF.  
Table 24. AC Electrical Characteristics of DDR Type IO Pins in mDDR Mode  
Min.  
Rise/Fall  
Max.  
Rise/Fall  
Parameter  
Symbol  
Test Condition  
Typ.  
Units  
Duty cycle  
Fduty  
45  
50  
55  
%
Clock frequency  
f
133  
MHz  
V/ns  
Output pin slew rate (max. drive)  
tps  
25 pF  
50 pF  
0.80/0.92  
0.43/0.50  
1.35/1.50  
0.72/0.81  
2.23/2.27  
1.66/1.68  
Output pin slew rate (high drive)  
Output pin slew rate (standard drive)  
Output pin di/dt (max. drive)  
tps  
tps  
tdit  
tdit  
tdit  
25 pF  
50 pF  
0.37/0.43  
0.19/0.23  
0.62/0.70  
0.33/0.37  
1.03/1.05  
0.75/0.77  
V/ns  
V/ns  
25 pF  
50 pF  
0.18/0.22  
0.10/0.12  
0.31/0.35  
0.16/0.18  
0.51/0.53  
0.38/0.39  
25 pF  
50 pF  
64  
69  
171  
183  
407  
432  
mA/ns  
mA/ns  
mA/ns  
Output pin di/dt (high drive)  
25 pF  
50 pF  
37  
39  
100  
106  
232  
246  
Output pin di/dt (standard drive)  
25 pF  
50 pF  
18  
20  
50  
52  
116  
123  
Table 25. AC Electrical Characteristics of DDR Type IO Pins in SDRAM Mode  
Min.  
Rise/Fall  
Min. Clock  
Frequency  
Max.  
Rise/Fall  
Parameter  
Clock frequency  
Symbol  
Test Condition  
Units  
f
125  
MHz  
V/ns  
Output pin slew rate (max. drive)  
Output pin slew rate (high drive)  
Output pin slew rate (standard drive)  
Output pin di/dt (max. drive)  
tps  
25 pF  
50 pF  
1.11/1.20  
0.97/0.65  
1.74/1.75  
0.92/0.94  
2.42/2.46  
1.39/1.30  
tps  
tps  
tdit  
tdit  
tdit  
25 pF  
50 pF  
0.76/0.80  
0.40/0.43  
1.16/1.19  
0.61/0.63  
1.76/1.66  
0.93/0.87  
V/ns  
V/ns  
25 pF  
50 pF  
0.38/0.41  
0.20/0.22  
0.59/0.60  
0.31/0.32  
0.89/0.82  
0.47/0.43  
25 pF  
50 pF  
89  
94  
198  
209  
398  
421  
mA/ns  
mA/ns  
mA/ns  
Output pin di/dt (high drive)  
25 pF  
50 pF  
59  
62  
132  
139  
265  
279  
Output pin di/dt (standard drive)  
25 pF  
50 pF  
29  
31  
65  
69  
132  
139  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
29  
Table 26. AC Electrical Characteristics of DDR Type IO Pins in SDRAM Mode Max Drive (1.8 V)  
Min.  
Rise/Fall  
Max.  
Rise/Fall  
Parameter  
Clock frequency  
Symbol  
Test Condition  
Typ.  
Units  
f
125  
MHz  
V/ns  
Output pin slew rate (max. drive)1  
tps  
25 pF  
50 pF  
2.83/2.68  
1.59/1.49  
1.84/1.85  
1.03/1.05  
1.21/1.40  
0.70/0.75  
Output pin di/dt (max. drive)2  
didt  
25 pF  
50 pF  
89  
95  
202  
213  
435  
456  
mA/ns  
Input pin transition times3  
trfi  
tpi  
tpi  
1.0 pF  
1.0 pF  
1.0 pF  
0.07/0.08  
0.35/1.17  
1.18/1.99  
0.11/0.12  
0.63/1.53  
1.45/2.35  
0.16/0.20  
1.16/2.04  
1.97/2.85  
ns  
ns  
ns  
Input pin propagation delay, 50%–50%  
Input pin propagation delay, 40%–60%  
1
Min. condition for tps: wcs model, 1.1 V, IO 1.65 V, and 105 °C. tps is measured between VIL to VIH for rising edge and between  
VIH to VIL for falling edge.  
2
3
Max. condition for tdit: bcs model, 1.3 V, IO 1.95 V, and –40 °C.  
Max. condition for tpi and trfi: wcs model, 1.1 V, IO 1.65 V and 105 °C. Min. condition for tpi and trfi: bcs model, 1.3 V, IO 1.95 V  
and –40 °C. Input transition time from pad is 5 ns (20%–80%).  
4.9  
Module-Level AC Electrical Specifications  
This section contains the AC electrical information (including timing specifications) for the modules of  
the i.MX35. The modules are listed in alphabetical order.  
4.9.1  
AUDMUX Electrical Specifications  
The AUDMUX provides a programmable interconnect logic for voice, audio and data routing between  
internal serial interfaces (SSI) and external serial interfaces (audio and voice codecs). The AC timing of  
AUDMUX external pins is hence governed by the SSI module. See the electrical specification for SSI.  
4.9.2  
CSPI AC Electrical Specifications  
The i.MX35 provides two CSPI modules. CSPI ports are multiplexed in the i.MX35 with other pins. See  
the “External Signals and Multiplexing” chapter of the reference manual for more details.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
30  
Freescale Semiconductor  
Figure 7 and Figure 8 depict the master mode and slave mode timings of the CSPI, and Table 27 lists the  
timing parameters.  
SPI_RDY  
CS11  
SSn[3:0]  
CS2  
CS6  
CS1  
CS3  
CS5  
CS3  
CS4  
SCLK  
MOSI  
MISO  
CS2  
CS7 CS8  
CS9  
CS10  
Figure 7. CSPI Master Mode Timing Diagram  
SSn[3:0]  
CS1  
CS5  
CS3  
CS2  
CS6  
CS4  
SCLK  
CS3  
CS2  
CS9  
CS7  
CS10  
MISO  
MOSI  
CS8  
Figure 8. CSPI Slave Mode Timing Diagram  
Table 27. CSPI Interface Timing Parameters  
ID  
Parameter  
Symbol  
Min.  
Max.  
Units  
CS1  
CS2  
CS3  
CS4  
CS5  
CS6  
CS7  
CS8  
CS9  
SCLK cycle time  
tclk  
tSW  
60  
30  
30  
30  
30  
5
7.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK high or low time  
SCLK rise or fall  
tRISE/FALL  
tCSLH  
tSCS  
SSn[3:0] pulse width  
SSn[3:0] lead time (CS setup time)  
SSn[3:0] lag time (CS hold time)  
MOSI setup time  
tHCS  
tSmosi  
tHmosi  
tSmiso  
MOSI hold time  
5
MISO setup time  
5
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
31  
Table 27. CSPI Interface Timing Parameters (continued)  
ID  
Parameter  
Symbol  
Min.  
Max.  
Units  
CS10  
CS11  
MISO hold time  
tHmiso  
tSDRY  
5
5
ns  
ns  
SPI_RDY setup time  
4.9.3  
DPLL Electrical Specifications  
There are three PLLs inside the i.MX35, all based on the same PLL design. The reference clock for these  
PLLs is normally generated from an external 24-MHz crystal connected to an internal oscillator via  
EXTAL24M and XTAL24 pins. It is also possible to connect an external 24-MHz clock directly to  
EXTAL24M, bypassing the internal oscillator.  
DPLL specifications are listed in Table 28.  
Table 28. DPLL Specifications  
Parameter  
Reference clock frequency  
Min. Typ. Max. Unit  
Comments  
10  
24 100  
MHz  
Max. allowed reference clock phase noise  
0.03 2 Tdck1 Fmodulation < 50 kHz  
0.01  
0.15  
50 kHz < Fmodulation 300 Hz  
Fmodulation > 300 KHz  
Frequency lock time (FOL mode or non-integer MF)  
Phase lock time  
80  
μs  
μs  
100  
Max. allowed PL voltage ripple  
150  
100  
150  
mV  
Fmodulation < 50 kHz  
50 kHz < Fmodulation 300 Hz  
Fmodulation > 300 KHz  
1
There are two PLL are used in the i.MX35, MPLL and PPLL. Both are based on same DPLL design.  
If crystals are used instead of external oscillators, they should meed the following specifications:  
Table 29. Clock Input Tolerance  
Parameters  
OSC24M  
OSC_AUDIO  
Normal Frequency  
Frequency Tolerance  
ESR  
24 MHz  
30 ppm  
<80 Ω  
25.576 MHz  
20 ppm (high quality)  
<80 Ω  
Load Capacitance  
Shunt capacitance  
Level of drive  
8 pF-12 pF  
<7 pF  
8 pF-12 pF  
<7 pF  
>150 μW  
>150 μW  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
32  
Freescale Semiconductor  
4.9.4  
Embedded Trace Macrocell (ETM) Electrical Specifications  
ETM is an ARM protocol. The timing specifications in this section are given as a guide for a test point  
access (TPA) that supports TRACECLK frequencies up to 133 MHz.  
Figure 9 depicts the TRACECLK timings of ETM, and Table 30 lists the timing parameters.  
Figure 9. ETM TRACECLK Timing Diagram  
Table 30. ETM TRACECLK Timing Parameters  
ID  
Parameter  
Min.  
Max.  
Unit  
Tcyc  
Twl  
Clock period  
Frequency dependent  
3
ns  
ns  
ns  
ns  
ns  
Low pulse width  
High pulse width  
2
2
Twh  
T
Clock and data rise time  
Clock and data fall time  
r
Tf  
3
Figure 10 depicts the setup and hold requirements of the trace data pins with respect to TRACECLK, and  
Table 31 lists the timing parameters.  
Figure 10. Trace Data Timing Diagram  
Table 31. ETM Trace Data Timing Parameters  
ID  
Parameter  
Min.  
Max.  
Unit  
Ts  
Th  
Data setup  
Data hold  
2
1
ns  
ns  
4.9.4.1  
Half-Rate Clocking Mode  
When half-rate clocking is used, the trace data signals are sampled by the TPA on both the rising and falling  
edges of TRACECLK, where TRACECLK is half the frequency of the clock shown in Figure 10. The same  
T and T parameters from Table 31 still apply with respect to the falling edge of the TRACECLK signal.  
s
h
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
33  
4.9.5  
EMI Electrical Specifications  
This section provides electrical parametrics and timing for the EMI module.  
4.9.5.1 NAND Flash Controller Interface (NFC)  
The i.MX35 NFC supports normal timing mode, using two flash clock cycles for one access of RE and  
WE. AC timings are provided as multiplications of the clock cycle and fixed delay. Figure 11, Figure 12,  
Figure 13, and Figure 14 depict the relative timing requirements among different signals of the NFC at  
module level for normal mode. Table 32 lists the timing parameters.  
NFCLE  
NF2  
NF1  
NF3  
NF4  
NFCE  
NF5  
NFWE  
NFALE  
NF6  
NF7  
NF8  
NF9  
Command  
NFIO[7:0]  
Figure 11. Command Latch Cycle Timing DIagram  
NFCLE  
NFCE  
NF1  
NF4  
NF3  
NF10  
NF11  
NF5  
NF8  
NFWE  
NFALE  
NF7  
NF9  
NF6  
NFIO[7:0]  
Address  
Figure 12. Address Latch Cycle Timing DIagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
34  
Freescale Semiconductor  
NFCLE  
NFCE  
NF1  
NF3  
NF10  
NF11  
NF5  
NF8  
NFWE  
NFALE  
NF7  
NF6  
NF9  
NFIO[15:0]  
Data to NF  
Figure 13. Write Data Latch Cycle Timing DIagram  
NFCLE  
NFCE  
NF14  
NF15  
NF13  
NFRE  
NFRB  
NF17  
NF16  
NF12  
NFIO[15:0]  
Data from NF  
Figure 14. Read Data Latch Cycle Timing DIagram  
1
Table 32. NFC Timing Parameters  
Example Timing for  
Timing  
NFC Clock 33 MHz  
T = NFC Clock Cycle2  
ID  
Parameter  
Symbol  
Unit  
T = 30 ns  
Min.  
Max.  
Min.  
Max.  
NF1 NFCLE setup time  
NF2 NFCLE hold time  
NF3 NFCE setup time  
NF4 NFCE hold time  
tCLS  
tCLH  
tCS  
T – 4.0 ns  
T – 5.0 ns  
T – 2.0 ns  
T – 1.0 ns  
26  
25  
28  
29  
ns  
ns  
ns  
ns  
tCH  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
35  
1
Table 32. NFC Timing Parameters (continued)  
Example Timing for  
NFC Clock 33 MHz  
T = 30 ns  
Timing  
T = NFC Clock Cycle2  
Symbol  
ID  
Parameter  
Unit  
Min.  
T – 1.0 ns  
Max.  
Min.  
Max.  
NF5 NF_WP pulse width  
NF6 NFALE setup time  
NF7 NFALE hold time  
NF8 Data setup time  
tWP  
tALS  
tALH  
tDS  
29  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
T – 4.0 ns  
T – 4.5 ns  
T – 2.0 ns  
T – 5.0 ns  
26  
25.5  
28  
NF9 Data hold time  
tDH  
25  
NF10 Write cycle time  
NF11 NFWE hold time  
NF12 Ready to NFRE low  
NF13 NFRE pulse width  
NF14 READ cycle time  
NF15 NFRE high hold time  
NF16 Data setup on READ  
NF17 Data hold on READ  
tWC  
tWH  
tRR  
2T – 3.0 ns  
T – 5.0 ns  
57  
25  
6T  
180  
44  
54.5  
11  
9
tRP  
1.5T – 1.0 ns  
2T – 5.5 ns  
tRC  
tREH  
tDSR  
tDHR  
0.5T – 4.0 ns  
N/A  
N/A  
0
1
2
The flash clock maximum frequency is 50 MHz.  
Subject to DPLL jitter specification listed in Table 28, "DPLL Specifications," on page 32.  
NOTE  
High is defined as 80% of signal value and low is defined as 20% of signal  
value.  
Timing for HCLK is 133 MHz and internal NFC clock (flash clock) is  
approximately 33 MHz (30 ns). All timings are listed according to this NFC  
clock frequency (multiples of NFC clock phases), except NF16 and NF17,  
which are not NFC clock related.  
4.9.5.2  
Wireless External Interface Module (WEIM)  
All WEIM output control signals may be asserted and deasserted by internal clocks related to the BCLK  
rising edge or falling edge according to the corresponding assertion or negation control fields. The address  
always begins related to BCLK falling edge but may be ended both on rising and falling edge in muxed  
mode according to control register configuration. Output data begins related to BCLK rising edge except  
in muxed mode where both rising and falling edge may be used according to control register configuration.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
36  
Freescale Semiconductor  
Input data, ECB and DTACK all captured according to BCLK rising edge time. Figure 15 depicts the  
timing of the WEIM module, and Table 33 lists the timing parameters.  
WEIM Output Timing  
WE2  
WE3  
WE1  
BCLK  
...  
WE4  
WE6  
WE8  
WE5  
WE7  
WE9  
Address  
CSx_B  
RW_B  
OE_B  
WE10  
WE12  
WE11  
WE13  
EBy_B  
LBA_B  
WE14  
WE16  
WE15  
WE17  
Output Data  
WEIM Input Timing  
BCLK  
WE18  
Input Data  
ECB_B  
WE20  
WE24  
WE22  
WE26  
DTACK_B  
WE27  
Figure 15. WEIM Bus Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
37  
1
Table 33. WEIM Bus Timing Parameters  
Parameter  
ID  
Min.  
Max.  
Unit  
WE1  
WE2  
BCLK cycle time2  
14.5  
7
21  
25  
19  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK low-level width2  
BCLK high-level width2  
WE3  
7
WE4  
Address valid to Clock rise/fall  
Clock rise/fall to address invalid  
Clock rise/fall to CSx_B valid  
Clock rise/fall to CSx_B invalid  
Clock rise/fall to RW_B valid  
Clock rise/fall to RW_B invalid  
Clock rise/fall to OE_B valid  
Clock rise/fall to OE_B invalid  
Clock rise/fall to EBy_B valid  
Clock rise/fall to EBy_B invalid  
Clock rise/fall to LBA_B valid  
Clock rise/fall to LBA_B invalid  
Clock rise/fall to Output Data valid  
Clock rise to Output Data invalid  
Input Data Valid to Clock rise3  
15  
22  
15  
3.6  
8
WE5  
WE6  
WE7  
WE8  
12  
8
WE9  
3
WE10  
WE11  
WE12  
WE13  
WE14  
WE15  
WE16  
WE17  
WE18  
WE19  
7
12  
5.5  
11.5  
10  
20  
1
3.8  
6
6
17.5  
0
5
10  
2.5  
0
1
Input Data Valid to Clock rise, FCE=0 (in the case there is ECB_B asserted  
during access)  
(BCLK/2)  
+ 3.01  
WE19  
Input Data Valid to Clock rise, FCE=0 (in the case there is NO ECB_B  
asserted during access)  
6.9  
ns  
WE20  
WE22  
WE24  
WE26  
WE27  
Clock rise to Input Data invalid3  
ECB_B setup time3  
1
5
ns  
ns  
ns  
ns  
ns  
ECB_B hold time3  
0
DTACK_B setup time  
DTACK_B hold time  
5.4  
–3.2  
1
2
“High” is defined as 80% of signal value, and “low” is defined as 20% of signal value.  
BCLK parameters are measured from the 50% point. For example, “high” is defined as 50% of signal value and “low” is defined  
as 50% of signal value.  
3
Parameters W18, W20, W22, and W24 are tested when FCE=1. i.MX35 does not support FCE=0.  
NOTE  
Test conditions: load capacitance, 25 pF. Recommended drive strength for  
all controls, address, and BCLK is set to maximum drive.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
38  
Freescale Semiconductor  
Recommended drive strength for all controls, address and BCLK is set to  
maximum drive.  
Figure 16 through Figure 21 depict some examples of basic WEIM accesses to external memory devices  
with the timing parameters mentioned in Table 33 for specific control parameter settings.  
BCLK  
WE5  
WE4  
WE6  
V1  
Next Address  
WE7  
Last Valid Address  
ADDR  
CS[x]  
RW  
WE14  
WE15  
LBA  
WE10  
WE12  
WE11  
OE  
WE13  
EB[y]  
WE20, WE21  
V1  
WE18, WE 19  
DATA  
BCLK  
Figure 16. Synchronous Memory Timing Diagram for Read Access—WSC = 1  
WE5  
WE4  
Last Valid Address  
ADDR  
CS[x]  
Next Address  
V1  
WE6  
WE8  
WE7  
WE9  
RW  
LBA  
OE  
WE14  
WE15  
WE13  
WE12  
WE16  
EB[y]  
DATA  
WE17  
V1  
Figure 17. Synchronous Memory Timing Diagram for Write Access—  
WSC = 1, EBWA = 1, EBWN = 1, LBN = 1  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
39  
BCLK  
WE4  
Last Valid Addr  
WE6  
WE5  
Address V1  
Address V2  
ADDR  
CS[x]  
WE7  
RW  
WE14  
WE10  
WE15  
LBA  
WE11  
WE13  
OE  
WE12  
EB[y]  
WE24, WE25  
WE24, WE25  
ECB  
WE22, WE23  
WE20, WE21  
WE22, WE23  
WE20, WE21  
V1  
V2  
Halfword  
V1+2  
V2+2  
Halfword  
DATA  
Halfword Halfword  
WE18, WE19  
WE18, WE19  
Figure 18. Synchronous Memory Timing Diagram for Two Non-Sequential Read Accesses—  
WSC = 2, SYNC = 1, DOL = 0  
BCLK  
WE5  
WE7  
WE9  
WE4  
ADDR  
Last Valid Addr  
Address V1  
WE6  
CS[x]  
WE8  
RW  
WE15  
WE14  
LBA  
OE  
WE13  
WE12  
EB[y]  
WE24, WE25  
WE22, WE23  
ECB  
WE17  
WE17  
WE16  
V1+4 V1+8 V1+12  
V1  
DATA  
WE16  
Figure 19. Synchronous Memory TIming Diagram for Burst Write Access—  
BCS = 1, WSC = 4, SYNC = 1, DOL = 0, PSR = 1  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
40  
Freescale Semiconductor  
BCLK  
WE4  
WE5  
WE17  
WE7  
WE9  
ADDR/  
M_DATA  
Last Valid Addr  
Write Data  
Address V1  
WE16  
WE6  
CS[x]  
RW  
WE8  
Write  
WE14  
WE15  
LBA  
OE  
WE12  
WE13  
EB[y]  
Figure 20. Muxed A/D Mode Timing Diagram for Synchronous Write Access—  
WSC = 7, LBA = 1, LBN = 1, LAH = 1  
BCLK  
WE4  
Last Valid Addr  
WE6  
WE5  
WE20, WE21  
Read Data  
ADDR/  
M_DATA  
Address V1  
WE18, WE19  
CS[x]  
WE7  
RW  
WE14  
WE15  
LBA  
WE10  
WE11  
WE13  
OE  
WE12  
EB[y]  
Figure 21. Muxed A/D Mode Timing Diagram for Synchronous Read Access—  
WSC = 7, LBA = 1, LBN = 1, LAH = 1, OEA = 7  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
41  
Figure 22 through Figure 26, and Table 34 help to determine timing parameters relative chip select (CS)  
state for asynchronous and DTACK WEIM accesses with corresponding WEIM bit fields and the timing  
parameters mentioned above.  
CS[x]  
WE31  
WE32  
ADDR  
Last Valid Address  
Next Address  
Address V1  
RW  
LBA  
OE  
WE39  
WE35  
WE37  
WE40  
WE36  
WE38  
EB[y]  
DATA  
WE44  
V1  
WE43  
Figure 22. Asynchronous Memory Read Access  
CS[x]  
MAXDI  
D(V1)  
WE31  
Addr. V1  
WE32A  
ADDR/  
M_DATA  
WE44  
WE  
WE40  
WE39  
WE35A  
WE37  
LBA  
WE36  
WE38  
OE  
BE[y]  
MAXCO  
Figure 23. Asynchronous A/D muxed Read Access (RWSC = 5)  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
42  
Freescale Semiconductor  
CS[x]  
WE31  
Last Valid Address  
WE32  
WE34  
WE40  
ADDR  
Next Address  
Address V1  
WE33  
RW  
LBA  
OE  
WE39  
WE45  
WE41  
WE46  
BE[y]  
DATA  
WE42  
D(V1)  
Figure 24. Asynchronous Memory Write Access  
CS[x]  
WE41  
WE31  
D(V1)  
Addr. V1  
WE32A  
ADDR/  
M_DATA  
WE42  
WE33  
WE39  
WE34  
RW  
WE40A  
LBA  
OE  
WE45  
WE46  
BE[y]  
WE42  
Figure 25. Asynchronous A/D Mux Write Access  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
43  
CS[x]  
WE31  
WE32  
ADDR  
Last Valid Address  
Next Address  
Address V1  
RW  
LBA  
OE  
WE39  
WE35  
WE37  
WE40  
WE36  
WE38  
EB[y]  
DATA  
WE44  
V1  
WE43  
WE48  
DATA  
WE47  
Figure 26. DTACK Read Access  
Table 34. WEIM Asynchronous Timing Parameters Relative Chip Select Table  
Determination By  
Synchronous Measured  
Parameters1  
Max  
Ref No.  
Parameter  
Min  
(If 133 MHz is  
supported by SoC)  
Unit  
WE31  
CS[x] valid to Address valid  
WE4 – WE6 – CSA2  
WE7 – WE5 – CSN3  
3 – CSA  
3 – CSN  
ns  
ns  
ns  
WE32 Address invalid to CS[x] invalid  
WE32A( CS[x] valid to address invalid WE4 – WE7 + (LBN + LBA + 1 3+ (LBN + LBA +  
muxed  
A/D  
– CSA2)  
1 – CSA)  
WE33  
WE34  
WE35  
CS[x] valid to WE valid  
WE invalid to CS[x] invalid  
CS[x] valid to OE valid  
CS[x] valid to OE valid  
WE8 – WE6 + (WEA – CSA)  
WE7 – WE9 + (WEN – CSN)  
WE10 – WE6 + (OEA – CSA)  
3 + (WEA – CSA)  
3 – (WEN_CSN)  
3 + (OEA – CSA)  
ns  
ns  
ns  
ns  
WE35A  
(muxed  
A/D)  
WE10 – WE6 + (OEA + RLBN  
+ RLBA + ADH + 1 – CSA)  
–3 + (OEA +  
RLBN + RLBA +  
ADH + 1 – CSA)  
3 + (OEA + RLBN +  
RLBA + ADH + 1 –  
CSA)  
WE36  
OE invalid to CS[x] invalid  
WE7 – WE11 + (OEN – CSN)  
3 – (OEN – CSN)  
ns  
ns  
WE37 CS[x] valid to BE[y] valid (read WE12 – WE6 + (RBEA – CSA)  
access)  
3 + (RBEA4 – CSA)  
WE38  
BE[y] invalid to CS[x] invalid WE7 – WE13 + (RBEN – CSN)  
(read access)  
3 – (RBEN5 – CSN)  
ns  
WE39  
WE40  
CS[x] valid to LBA valid  
WE14 – WE6 + (LBA – CSA)  
WE7 – WE15 – CSN  
3 + (LBA – CSA)  
3 – CSN  
ns  
ns  
LBA invalid to CS[x] invalid  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
44  
Freescale Semiconductor  
Table 34. WEIM Asynchronous Timing Parameters Relative Chip Select Table (continued)  
Determination By  
Synchronous Measured  
Parameters1  
Max  
Ref No.  
Parameter  
Min  
(If 133 MHz is  
supported by SoC)  
Unit  
WE40A  
(muxed  
A/D)  
CS[x] valid to LBA invalid  
WE14 – WE6 + (LBN + LBA + 1 3+ (LBN + LBA + 3 + (LBN + LBA + 1 –  
ns  
– CSA)  
1 – CSA)  
CSA)  
WE41 CS[x] valid to Output Data valid  
WE16 – WE6 – WCSA  
3 – WCSA  
ns  
ns  
WE41A CS[x] valid to Output Data valid  
(muxed  
A/D)  
WE16 – WE6 + (WLBN +  
WLBA + ADH + 1 – WCSA)  
3 + (WLBN + WLBA +  
ADH + 1 – WCSA)  
WE42  
Output Data invalid to CS[x]  
Invalid  
WE17 – WE7 – CSN  
3 – CSN  
ns  
ns  
WE43  
Input Data valid to CS[x] invalid MAXCO – MAXCSO + MAXDI  
MAXCO6 –  
MAXCSO7 +  
MAXDI8  
WE44  
WE45  
WE46  
WE47  
CS[x] invalid to Input Data  
invalid  
0
0
ns  
ns  
ns  
ns  
CS[x] valid to BE[y] valid (write WE12 – WE6 + (WBEA – CSA)  
access)  
3 + (WBEA – CSA)  
–3 + (WBEN – CSN)  
BE[y] invalid to CS[x] invalid WE7 – WE13 + (WBEN – CSN)  
(write access)  
DTACK valid to CS[x] invalid MAXCO – MAXCSO + MAXDTI  
MAXCO6 –  
MAXCSO7 +  
MAXDTI9  
WE48  
CS[x] Invalid to DTACK invalid  
0
0
ns  
1
2
3
4
5
6
7
8
9
For the value of parameters WE4–WE21, see column BCD = 0 in Table 33.  
CS Assertion. This bit field determines when the CS signal is asserted during read/write cycles.  
CS Negation. This bit field determines when the CS signal is negated during read/write cycles.  
BE Assertion. This bit field determines when the BE signal is asserted during read cycles.  
BE Negation. This bit field determines when the BE signal is negated during read cycles.  
Output maximum delay from internal driving ADDR/control FFs to chip outputs.  
Output maximum delay from CS[x] internal driving FFs to CS[x] out.  
DATA maximum delay from chip input data to its internal FF.  
DTACK maximum delay from chip dtack input to its internal FF.  
Note: All configuration parameters (CSA, CSN, WBEA, WBEN, LBA, LBN, OEN, OEA, RBEA, and RBEN) are in cycle units.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
45  
4.9.5.3  
ESDCTL Electrical Specifications  
Figure 27 through Figure 35 depict the timings pertaining to the ESDCTL module, which interfaces with  
mobile DDR or SDR SDRAM. Table 35 through Table 45 list the timing parameters.  
SD1  
SDCLK  
SDCLK  
SD2  
SD3  
SD4  
CS  
RAS  
CAS  
SD5  
SD4  
SD5  
SD4  
SD4  
SD5  
SD5  
WE  
ADDR  
DQ  
SD6  
SD7  
ROW/BA  
COL/BA  
SD8  
SD10  
SD9  
Data  
SD4  
DQM  
Note: CKE is high during the read/write cycle.  
Figure 27. SDRAM Read Cycle Timing Diagram  
Table 35. DDR/SDR SDRAM Read Cycle Timing Parameters  
SD5  
ID  
Parameter  
Symbol  
Min.  
Max.  
Unit  
SD1  
SD2  
SD3  
SD4  
SD5  
SD6  
SDRAM clock high-level width  
SDRAM clock low-level width  
SDRAM clock cycle time  
tCH  
tCL  
3.4  
3.4  
7.0  
2.0  
1.8  
2.0  
4.1  
4.1  
ns  
ns  
ns  
ns  
ns  
ns  
tCK  
CS, RAS, CAS, WE, DQM, CKE setup time  
CS, RAS, CAS, WE, DQM, CKE hold time  
Address setup time  
tCMS  
tCMH  
tAS  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
46  
Freescale Semiconductor  
Table 35. DDR/SDR SDRAM Read Cycle Timing Parameters (continued)  
ID  
Parameter  
Symbol  
Min.  
Max.  
Unit  
SD7  
SD8  
Address hold time  
SDRAM access time  
Data out hold time1  
tAH  
tAC  
tOH  
tRC  
1.8  
6.47  
ns  
ns  
SD9  
1.2  
10  
ns  
SD10  
Active to read/write command period  
clock  
1
Timing parameters are relevant only to SDR SDRAM. For the specific DDR SDRAM data related timing parameters, see  
Table 44 and Table 45.  
NOTE  
SDR SDRAM CLK parameters are measured from the 50% point—that is,  
high is defined as 50% of signal value and low is defined as 50% of signal  
value. SD1 + SD2 does not exceed 7.5 ns for 133 MHz.  
The timing parameters are similar to the ones used in SDRAM data  
sheets—that is, Table 35 indicates SDRAM requirements. All output signals  
are driven by the ESDCTL at the negative edge of SDCLK and the  
parameters are measured at maximum memory frequency.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
47  
SD1  
SDCLK  
SDCLK  
SD2  
SD4  
SD3  
CS  
SD5  
RAS  
CAS  
SD4  
SD5  
SD5  
SD4  
SD4  
WE  
SD5  
SD7  
SD6  
BA  
ADDR  
ROW / BA  
COL/BA  
DATA  
SD13  
SD14  
DQ  
DQM  
Figure 28. SDR SDRAM Write Cycle Timing Diagram  
Table 36. SDR SDRAM Write Timing Parameters  
ID  
Parameter  
Symbol  
Min.  
Max.  
Unit  
SD1  
SD2  
SD3  
SD4  
SD5  
SD6  
SD7  
SD13  
SD14  
SDRAM clock high-level width  
SDRAM clock low-level width  
SDRAM clock cycle time  
CS, RAS, CAS, WE, DQM, CKE setup time  
CS, RAS, CAS, WE, DQM, CKE hold time  
Address setup time  
tCH  
tCL  
0.45  
0.45  
7.0  
2.4  
1.4  
2.4  
1.4  
2.4  
1.4  
0.55  
0.55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCK  
tCMS  
tCMH  
tAS  
Address hold time  
tAH  
Data setup time  
tDS  
Data hold time  
tDH  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
48  
Freescale Semiconductor  
NOTE  
Test conditions are: pin voltage 1.7 V–1.95 V, capacitance 15 pF for all pins  
(both DDR and non-DDR pins), drive strength is high (7.2 mA). “High” is  
defined as 80% of signal value and “low” is defined as 20% of signal value.  
SDR SDRAM CLK parameters are measured from the 50% point—that is,  
“high” is defined as 50% of signal value, and “low” is defined as 50% of  
signal value. tCH + tCL will not exceed 7.5 ns for 133 MHz. DDR SDRAM  
CLK parameters are measured at the crossing point of SDCLK and SDCLK  
(inverted clock).  
The timing parameters are similar to the ones used in SDRAM data sheets.  
Table 36 indicates SDRAM requirements. All output signals are driven by  
the ESDCTL at the negative edge of SDCLK, and the parameters are  
measured at maximum memory frequency.  
SD1  
SDCLK  
SDCLK  
SD2  
SD3  
CS  
RAS  
CAS  
SD11  
SD10  
SD10  
WE  
SD7  
SD6  
BA  
ADDR  
ROW/BA  
Figure 29. SDRAM Refresh Timing Diagram  
Table 37. SDRAM Refresh Timing Parameters  
ID  
Parameter  
Symbol  
Min.  
Max.  
Unit  
SD1  
SD2  
SD3  
SD6  
SDRAM clock high-level width  
SDRAM clock low-level width  
SDRAM clock cycle time  
Address setup time  
tCH  
tCL  
tCK  
tAS  
3.4  
3.4  
7.5  
1.8  
4.1  
4.1  
ns  
ns  
ns  
ns  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
49  
Table 37. SDRAM Refresh Timing Parameters (continued)  
ID  
Parameter  
Symbol  
Min.  
Max.  
Unit  
SD7  
SD10  
SD11  
Address hold time  
tAH  
tRP  
tRC  
1.8  
1
4
ns  
Precharge cycle period1  
clock  
clock  
Auto precharge command period1  
2
20  
1
SD10 and SD11 are determined by SDRAM controller register settings.  
NOTE  
SDR SDRAM CLK parameters are measured from the 50% point—that is,  
“high” is defined as 50% of signal value and “low” is defined as 50% of  
signal value.  
The timing parameters are similar to the ones used in SDRAM data sheets.  
Table 37 indicates SDRAM requirements. All output signals are driven by  
the ESDCTL at the negative edge of SDCLK, and the parameters are  
measured at maximum memory frequency.  
SDCLK  
CS  
RAS  
CAS  
WE  
ADDR  
CKE  
BA  
SD16  
SD16  
Don’t care  
Figure 30. SDRAM Self-Refresh Cycle Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
50  
Freescale Semiconductor  
NOTE  
The clock will continue to run unless both CKEs are low. Then the clock will  
be stopped in low state.  
Table 38. SDRAM Self-Refresh Cycle Timing Parameters  
ID  
Parameter  
CKE output delay time  
Symbol  
Min.  
Max.  
Unit  
SD16  
tCKS  
1.8  
ns  
DDR1  
DDR3  
SDCLK  
SDCLK  
DDR2  
DDR4  
CS  
DDR5  
DDR4  
RAS  
CAS  
DDR5  
DDR4  
DDR4  
DDR5  
DDR5  
WE  
CKE  
DDR4  
DDR6  
DDR7  
ADDR  
ROW/BA  
COL/BA  
Figure 31. DDR2 SDRAM Basic Timing Parameters  
Table 39. DDR2 SDRAM Timing Parameter Table  
DDR2-400  
ID  
PARAMETER  
Symbol  
Unit  
Min  
Max  
DDR1 SDRAM clock high-level width  
DDR2 SDRAM clock low-level width  
DDR3 SDRAM clock cycle time  
tCH  
tCL  
tCK  
0.45  
0.45  
7.0  
0.55  
0.55  
8.0  
tCK  
tCK  
ns  
1
DDR4 CS, RAS, CAS, CKE, WE setup time  
tIS  
1.5  
ns  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
51  
Table 39. DDR2 SDRAM Timing Parameter Table  
DDR2-400  
Min  
ID  
PARAMETER  
Symbol  
Unit  
Max  
1
DDR5 CS, RAS, CAS, CKE, WE hold time  
DDR6 Address output setup time  
DDR7 Address output hold time  
tIH  
1.25  
1.5  
ns  
ns  
ns  
1
tIS  
1
tIH  
1.5  
NOTE  
These values are for command/address slew rate of 1 V/ns and SDCLK,  
SDCLK_B differential slew rate of 2 V/ns. For different values, use the  
derating table.  
Table 40. Derating Values for DDR2–400, DDR2–533  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
52  
Freescale Semiconductor  
SDCLK  
SDCLK_B  
DDR21  
DDR20  
DDR22  
DDR23  
DDR18  
DDR19  
DQS (output)  
DDR18  
Data  
DDR17  
DDR17  
Data  
Data  
Data  
Data  
Data  
DM  
Data  
Data  
DQ (output)  
DM  
DM  
DM  
DM  
DM  
DM  
DM  
DQM (output)  
DDR17  
DDR17  
DDR18  
DDR18  
Figure 32. DDR2 SDRAM Write Cycle Timing Diagram  
Table 41. DDR2 SDRAM Write Cycle Parameters  
DDR2-400  
ID  
PARAMETER  
Symbol  
Unit  
Min  
Max  
DDR17 DQ and DQM setup time to DQS (single-ended strobe)  
DDR18 DQ and DQM hold time to DQS (single-ended strobe)  
DDR19 Write cycle DQS falling edge to SDCLK output setup time.  
DDR20 Write cycle DQS falling edge to SDCLK output hold time.  
DDR21 DQS latching rising transitions to associated clock edges  
DDR22 DQS high level width  
tDS1(base)  
tDH1(base)  
tDSS  
0.5  
0.5  
ns  
ns  
0.2  
tCK  
tCK  
tCK  
tCK  
tCK  
tDSH  
0.2  
tDQSS  
–0.25  
0.35  
0.35  
0.25  
tDQSH  
tDQSL  
DDR23 DQS low level width  
NOTE  
These values are for DQ/DM slew rate of 1 V/ns and DQS slew rate of  
1 V/ns. For different values use the derating table.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
53  
Table 42. DDR Single-ended Slew Rate  
NOTE  
SDR SDRAM CLK parameters are measured from the 50% point—that is,  
“high” is defined as 50% of signal value and “low” is defined as 50% of  
signal value. DDR SDRAM CLK parameters are measured at the crossing  
point of SDCLK and SDCLK (inverted clock).  
Test conditions are: Capacitance 15 pF for DDR PADS. Recommended  
drive strength is Medium for SDCLK and High for Address and controls.  
SDCLK  
SDCLK_B  
DDR26  
DQS (input)  
DDR25  
DDR24  
DATA  
DATA  
DATA  
DATA  
DATA  
DATA  
DATA  
DATA  
DQ (input)  
Figure 33. DDR2 SDRAM DQ vs. DQS and SDCLK READ Cycle Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
54  
Freescale Semiconductor  
Table 43. DDR2 SDRAM Read Cycle Parameter Table  
DDR2-400  
Min  
ID  
PARAMETER  
Symbol  
Unit  
Max  
DDR24  
DQS – DQ Skew (defines the Data valid window in  
read cycles related to DQS).  
tDQSQ  
0.35  
ns  
DDR25  
DDR26  
DQS DQ in HOLD time from DQS1  
tQH  
2.925  
–0.5  
ns  
ns  
DQS output access time from SDCLK posedge  
tDQSCK  
0.5  
1The value was calculated for an SDCLK frequency of 133 MHz by the formula tQH = tHP – tQHS = min (tCL,tCH) – tQHS =  
0.45 × tCK – tQHS = 0.45 × 7.5 – 0.45 = 2.925 ns.  
NOTE  
SDRAM CLK and DQS-related parameters are measured from the 50%  
point—that is, “high” is defined as 50% of signal value and “low” is defined  
as 50% of signal value. DDR SDRAM CLK parameters are measured at the  
crossing point of SDCLK and SDCLK (inverted clock).  
Test conditions are: Capacitance 15 pF for DDR PADS. Recommended  
drive strength is Medium for SDCLK and High for Address and controls.  
SDCLK  
SDCLK  
SD20  
SD19  
DQS (output)  
DQ (output)  
SD18  
Data  
SD17  
Data  
SD17  
SD17  
SD18  
Data  
Data  
DM  
Data  
DM  
Data  
Data  
Data  
DM  
DQM (output)  
DM  
DM  
DM  
DM  
DM  
SD17  
SD18  
SD18  
Figure 34. Mobile DDR SDRAM Write Cycle Timing Diagram  
Table 44. Mobile DDR SDRAM Write Cycle Timing Parameters  
1
ID  
Parameter  
Symbol  
Min.  
Max.  
Unit  
SD17 DQ and DQM setup time to DQS  
SD18 DQ and DQM hold time to DQS  
tDS  
tDH  
0.95  
0.95  
1.8  
ns  
ns  
ns  
ns  
SD19 Write cycle DQS falling edge to SDCLK output delay time.  
SD20 Write cycle DQS falling edge to SDCLK output hold time.  
tDSS  
tDSH  
1.8  
1
Test condition: Measured using delay line 5 programmed as follows: ESDCDLY5[15:0] = 0x0703.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
55  
NOTE  
SDRAM CLK and DQS-related parameters are measured from the 50%  
point—that is, “high” is defined as 50% of signal value and “low” is defined  
as 50% of signal value.  
The timing parameters are similar to the ones used in SDRAM data sheets.  
Table 44 indicates SDRAM requirements. All output signals are driven by  
the ESDCTL at the negative edge of SDCLK, and the parameters are  
measured at maximum memory frequency.  
SDCLK  
SDCLK  
SD23  
DQS (input)  
DQ (input)  
SD22  
SD21  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Figure 35. Mobile DDR SDRAM DQ versus DQS and SDCLK Read Cycle Timing Diagram  
Table 45. Mobile DDR SDRAM Read Cycle Timing Parameters  
ID  
Parameter  
Symbol Min. Max. Unit  
SD21 DQS – DQ Skew (defines the Data valid window in read cycles related to DQS).  
SD22 DQS DQ HOLD time from DQS  
tDQSQ  
tQH  
2.3  
0.85 ns  
ns  
ns  
SD23 DQS output access time from SDCLK posedge  
tDQSCK  
6.7  
NOTE  
SDRAM CLK and DQS-related parameters are measured from the 50%  
point—that is, “high” is defined as 50% of signal value, and “low” is defined  
as 50% of signal value.  
The timing parameters are similar to the ones used in SDRAM data sheets.  
Table 45 indicates SDRAM requirements. All output signals are driven by  
the ESDCTL at the negative edge of SDCLK, and the parameters are  
measured at maximum memory frequency.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
56  
Freescale Semiconductor  
4.9.6  
Enhanced Serial Audio Interface (ESAI) Timing Specifications  
The ESAI consists of independent transmitter and receiver sections, each section with its own clock  
generator. Table 46 shows the interface timing values. The number field in the table refers to timing signals  
found in Figure 36 and Figure 37.  
Table 46. Enhanced Serial Audio Interface Timing  
No.  
Characteristics1,2  
Symbol Expression2 Min. Max. Condition3 Unit  
62 Clock cycle4  
tSSICC  
4 × T  
4 × T  
30.0  
30.0  
i ck  
i ck  
ns  
c
c
63 Clock high period  
ns  
2 × T 9.0  
6
• For internal clock  
c
• For external clock  
2 × T  
15  
c
64 Clock low period  
• For internal clock  
ns  
2 × T 9.0  
6
c
• For external clock  
2 × T  
15  
c
65 SCKR rising edge to FSR out (bl) high  
17.0  
7.0  
x ck  
i ck a  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
66 SCKR rising edge to FSR out (bl) low  
67 SCKR rising edge to FSR out (wr) high5  
68 SCKR rising edge to FSR out (wr) low5  
69 SCKR rising edge to FSR out (wl) high  
70 SCKR rising edge to FSR out (wl) low  
17.0  
7.0  
x ck  
i ck a  
19.0  
9.0  
x ck  
i ck a  
19.0  
9.0  
x ck  
i ck a  
16.0  
6.0  
x ck  
i ck a  
17.0  
7.0  
x ck  
i ck a  
71 Data in setup time before SCKR (SCK in synchronous  
mode) falling edge  
12.0  
19.0  
x ck  
i ck  
72 Data in hold time after SCKR falling edge  
73 FSR input (bl, wr) high before SCKR falling edge5  
74 FSR input (wl) high before SCKR falling edge  
75 FSR input hold time after SCKR falling edge  
78 SCKT rising edge to FST out (bl) high  
3.5  
9.0  
x ck  
i ck  
2.0  
12.0  
x ck  
i ck a  
2.0  
12.0  
x ck  
i ck a  
2.5  
8.5  
x ck  
i ck a  
18.0  
8.0  
x ck  
i ck  
79 SCKT rising edge to FST out (bl) low  
20.0  
10.0  
x ck  
i ck  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
57  
Table 46. Enhanced Serial Audio Interface Timing (continued)  
Characteristics1,2 Symbol Expression2 Min. Max. Condition3 Unit  
No.  
80 SCKT rising edge to FST out (wr) high5  
81 SCKT rising edge to FST out (wr) low5  
82 SCKT rising edge to FST out (wl) high  
83 SCKT rising edge to FST out (wl) low  
20.0  
10.0  
x ck  
i ck  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
22.0  
12.0  
x ck  
i ck  
19.0  
9.0  
x ck  
i ck  
20.0  
10.0  
x ck  
i ck  
84 SCKT rising edge to data out enable from high  
impedance  
22.0  
17.0  
x ck  
i ck  
86 SCKT rising edge to data out valid  
18.0  
13.0  
x ck  
i ck  
87 SCKT rising edge to data out high impedance 67  
89 FST input (bl, wr) setup time before SCKT falling edge5  
90 FST input (wl) setup time before SCKT falling edge  
91 FST input hold time after SCKT falling edge  
21.0  
16.0  
x ck  
i ck  
2.0  
18.0  
x ck  
i ck  
2.0  
18.0  
x ck  
i ck  
4.0  
5.0  
x ck  
i ck  
1
i ck = internal clock  
x ck = external clock  
i ck a = internal clock, asynchronous mode  
(asynchronous implies that SCKT and SCKR are two different clocks)  
i ck s = internal clock, synchronous mode  
(synchronous implies that SCKT and SCKR are the same clock)  
2
3
bl = bit length  
wl = word length  
wr = word length relative  
SCKT(SCKT pin) = transmit clock  
SCKR(SCKR pin) = receive clock  
FST(FST pin) = transmit frame sync  
FSR(FSR pin) = receive frame sync  
HCKT(HCKT pin) = transmit high frequency clock  
HCKR(HCKR pin) = receive high frequency clock  
4
5
For the internal clock, the external clock cycle is defined by Icyc and the ESAI control register.  
The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync  
signal waveform, but it spreads from one serial clock before the first bit clock (like the bit length frame sync signal), until the  
second-to-last bit clock of the first word in the frame.  
6
Periodically sampled and not 100% tested.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
58  
Freescale Semiconductor  
62  
63  
64  
SCKT  
(Input/Output)  
78  
79  
FST (Bit)  
Out  
82  
83  
FST (Word)  
Out  
86  
84  
86  
87  
First Bit  
Last Bit  
Data Out  
89  
91  
FST (Bit) In  
91  
90  
FST (Word) In  
Figure 36. ESAI Transmitter Timing  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
59  
62  
63  
64  
SCKR  
(Input/Output)  
65  
66  
FSR (Bit)  
Out  
69  
70  
FSR (Word)  
Out  
72  
71  
Data In  
Last Bit  
First Bit  
75  
73  
FSR (Bit)  
In  
74  
75  
FSR (Word)  
In  
Figure 37. ESAI Receiver Timing  
4.9.7  
eSDHCv2 AC Electrical Specifications  
Figure 38 depicts the timing of eSDHCv2, and Table 47 lists the eSDHCv2 timing characteristics. The  
following definitions apply to values and signals described in Table 47:  
LS: low-speed mode. Low-speed card can tolerate a clock up to 400 kHz.  
FS: full-speed mode. For a full-speed MMC card, the card clock can reach 20 MHz; a full-speed  
SD/SDIO card can reach 25 MHz.  
HS: high-speed mode. For a high-speed MMC card, the card clock can reach 52 MHz; SD/SDIO  
can reach 50 MHz.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
60  
Freescale Semiconductor  
SD4  
SD2  
SD5  
SD1  
SDHCx_CLK  
SD3  
SDHCx_CMD  
SDHCx_DAT_0  
SDHCx_DAT_1  
SD6  
output from eSDHCv2 to card  
output from card to eSDHCv2  
SDHCx_DAT_7  
SD7  
SD8  
SDHCx_CMD  
SDHCx_DAT_0  
SDHCx_DAT_1  
SDHCx_DAT_7  
Figure 38. eSDHCv2 Timing  
Table 47. eSDHCv2 Interface Timing Specification  
ID  
Card Input Clock  
Parameter  
Symbols Min. Max. Unit  
1
SD1 Clock frequency (Low Speed)  
Clock frequency (SD/SDIO Full Speed/High Speed)  
Clock frequency (MMC Full Speed/High Speed)  
Clock frequency (Identification Mode)  
SD2 Clock Low time  
fPP  
fPP  
fPP  
0
0
0
400 kHz  
25/50 MHz  
20/52 MHz  
2
3
fOD  
tWL  
100 400 kHz  
7
7
3
ns  
ns  
ns  
ns  
SD3 Clock high time  
tWH  
tTLH  
tTHL  
SD4 Clock rise time  
SD5 Clock fall time  
3
eSDHC Output/Card Inputs CMD, DAT (Reference to CLK)  
SD6 eSDHC output delay  
tOD  
–3  
3
ns  
eSDHC Input/Card Outputs CMD, DAT (Reference to CLK)  
SD7 eSDHC input setup time  
tISU  
5
ns  
ns  
4
SD8 eSDHC input hold time  
tIH  
2.5  
1
In low-speed mode, the card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.  
2
3
4
In normal-speed mode for the SD/SDIO card, clock frequency can be any value between 0–25 MHz. In high-speed mode,  
clock frequency can be any value between 0–50 MHz.  
In normal-speed mode for MMC card, clock frequency can be any value between 0 and 20 MHz. In high-speed mode, clock  
frequency can be any value between 0–52 MHz.  
To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
61  
4.9.8  
Fast Ethernet Controller (FEC) AC Electrical Specifications  
This section describes the electrical information of the FEC module. The FEC is designed to support both  
10- and 100-Mbps Ethernet networks. An external transceiver interface and transceiver function are  
required to complete the interface to the media. The FEC supports the 10/100 Mbps Media Independent  
Interface (MII) using a total of 18 pins. The 10-Mbps 7-wire interface that is restricted to a 10-Mbps data  
rate uses seven of the MII pins for connection to an external Ethernet transceiver.  
4.9.8.1  
FEC AC Timing  
This section describes the AC timing specifications of the FEC. The MII signals are compatible with  
transceivers operating at a voltage of 3.3 V.  
4.9.8.2  
MII Receive Signal Timing  
The MII receive timing signals consist of FEC_RXD[3:0], FEC_RX_DV, FEC_RX_ER, and  
FEC_RX_CLK. The receiver functions correctly up to a FEC_RX_CLK maximum frequency of  
25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency  
must exceed twice the FEC_RX_CLK frequency. Table 48 lists MII receive channel timings.  
Table 48. MII Receive Signal Timing  
Num.  
Characteristic1  
Min.  
Max.  
Unit  
M1  
M2  
M3  
M4  
FEC_RXD[3:0], FEC_RX_DV, FEC_RX_ER to FEC_RX_CLK setup  
FEC_RX_CLK to FEC_RXD[3:0], FEC_RX_DV, FEC_RX_ER hold  
FEC_RX_CLK pulse width high  
5
ns  
5
ns  
35%  
35%  
65%  
65%  
FEC_RX_CLK period  
FEC_RX_CLK period  
FEC_RX_CLK pulse width low  
1 FEC_RX_DV, FEC_RX_CLK, and FEC_RXD0 have the same timing when in 10 Mbps 7-wire interface mode.  
Figure 39 shows the MII receive signal timings listed in Table 48.  
M3  
FEC_RX_CLK (input)  
M4  
FEC_RXD[3:0] (inputs)  
FEC_RX_DV  
FEC_RX_ER  
M1  
M2  
Figure 39. MII Receive Signal Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
62  
Freescale Semiconductor  
4.9.8.3  
MII Transmit Signal Timing  
The transmitter timing signals consist of FEC_TXD[3:0], FEC_TX_EN, FEC_TX_ER, and  
FEC_TX_CLK. The transmitter functions correctly up to a FEC_TX_CLK maximum frequency of  
25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency  
must exceed twice the FEC_TX_CLK frequency. Table 49 lists MII transmit channel timings.  
Table 49. MII Transmit Signal Timing  
Num  
Characteristic1  
Min.  
Max.  
Unit  
M5  
FEC_TX_CLK to FEC_TXD[3:0], FEC_TX_EN, FEC_TX_ER  
invalid  
5
ns  
M6  
FEC_TX_CLK to FEC_TXD[3:0], FEC_TX_EN, FEC_TX_ER  
valid  
20  
ns  
M7  
M8  
FEC_TX_CLK pulse width high  
FEC_TX_CLK pulse width low  
35%  
35%  
65%  
65%  
FEC_TX_CLK period  
FEC_TX_CLK period  
1 FEC_TX_EN, FEC_TX_CLK, and FEC_TXD0 have the same timing when in 10 Mbps 7-wire interface mode.  
Figure 40 shows the MII transmit signal timings listed in Table 49.  
M7  
FEC_TX_CLK (input)  
M5  
M8  
FEC_TXD[3:0] (outputs)  
FEC_TX_EN  
FEC_TX_ER  
M6  
Figure 40. MII Transmit Signal Timing Diagram  
4.9.8.4  
MII Asynchronous Inputs Signal Timing  
The MII asynchronous timing signals are FEC_CRS and FEC_COL. Table 50 lists MII asynchronous  
inputs signal timing.  
Table 50. MII Asynch Inputs Signal Timing  
Num  
Characteristic  
Min.  
Max.  
Unit  
M91  
FEC_CRS to FEC_COL minimum pulse width  
1.5  
FEC_TX_CLK period  
1 FEC_COL has the same timing in 10 Mbit 7-wire interface mode.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
63  
Figure 41 shows MII asynchronous input timings listed in Table 50.  
FEC_CRS, FEC_COL  
M9  
Figure 41. MII Asynch Inputs Timing Diagram  
4.9.8.5  
MII Serial Management Channel Timing  
Serial management channel timing is accomplished using FEC_MDIO and FEC_MDC. The FEC  
functions correctly with a maximum MDC frequency of 2.5 MHz. Table 51 lists MII serial management  
channel timings.  
The MDC frequency should be equal to or less than 2.5 MHz to be compliant with the IEEE 802.3 MII  
specification. However the FEC can function correctly with a maximum MDC frequency of 15 MHz.  
Table 51. MII Transmit Signal Timing  
Num  
Characteristic  
Min.  
Max.  
Units  
M10  
FEC_MDC falling edge to FEC_MDIO output invalid (minimum  
propagation delay)  
0
ns  
M11  
FEC_MDC falling edge to FEC_MDIO output valid (max.  
propagation delay)  
5
ns  
M12  
M13  
M14  
M15  
FEC_MDIO (input) to FEC_MDC rising edge setup  
FEC_MDIO (input) to FEC_MDC rising edge hold  
FEC_MDC pulse width high  
18  
0
ns  
ns  
40%  
40%  
60%  
60%  
FEC_MDC period  
FEC_MDC period  
FEC_MDC pulse width low  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
64  
Freescale Semiconductor  
Figure 42 shows MII serial management channel timings listed in Table 51.  
M14  
M15  
FEC_MDC (output)  
M10  
FEC_MDIO (output)  
M11  
FEC_MDIO (input)  
M12  
M13  
Figure 42. MII Serial Management Channel Timing Diagram  
4.9.9  
FIR Electrical Specifications  
®
FIR implements asynchronous infrared protocols (FIR, MIR) defined by IrDA (Infrared Data  
®
Association). Refer to the IrDA website for details on FIR and MIR protocols.  
4.9.10 FlexCAN Module AC Electrical Specifications  
The electrical characteristics are related to the CAN transceiver outside the chip. The i.MX35 has two  
CAN modules available for systems design. Tx and Rx ports for both modules are multiplexed with other  
I/O pins. Refer to the IOMUX chapter of the MCIMX35 Multimedia Applications Processor Reference  
Manual to see which pins expose Tx and Rx pins; these ports are named TXCAN and RXCAN,  
respectively.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
65  
4.9.11 I2C AC Electrical Specifications  
2
This section describes the electrical characteristics of the I C module.  
2
4.9.11.1 I C Module Timing  
2
2
Figure 43 depicts the timing of the I C module. Table 52 lists the I C module timing parameters.  
IC11  
IC9  
IC10  
I2DAT  
I2CLK  
IC7  
IC4  
IC2  
IC3  
IC8  
IC10  
IC6  
IC11  
STOP  
START  
START  
START  
IC5  
IC1  
2
Figure 43. I C Bus Timing Diagram  
2
Table 52. I C Module Timing Parameters  
Standard Mode  
Fast Mode  
Min.  
ID  
Parameter  
Unit  
Min.  
Max.  
Max.  
IC1 I2CLK cycle time  
10  
4.0  
4.0  
01  
2.5  
0.6  
0.6  
01  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
μs  
ns  
ns  
pF  
IC2 Hold time (repeated) START condition  
IC3 Set-up time for STOP condition  
IC4 Data hold time  
3.452  
0.92  
IC5 HIGH Period of I2CLK Clock  
4.0  
4.7  
4.7  
250  
4.7  
0.6  
1.3  
0.6  
1003  
1.3  
IC6 LOW Period of the I2CLK Clock  
IC7 Set-up time for a repeated START condition  
IC8 Data set-up time  
IC9 Bus free time between a STOP and START condition  
IC10 Rise time of both I2DAT and I2CLK signals  
IC11 Fall time of both I2DAT and I2CLK signals  
IC12 Capacitive load for each bus line (Cb)  
1000  
300  
400  
300  
300  
400  
1
A device must internally provide a hold time of at least 300 ns for the I2DAT signal in order to bridge the undefined region of  
the falling edge of I2CLK.  
2
3
The maximum hold time has to be met only if the device does not stretch the LOW period (ID IC6) of the I2CLK signal.  
A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement of set-up time (ID IC7) of  
250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the I2CLK signal.  
If such a device does stretch the LOW period of the I2CLK signal, it must output the next data bit to the I2DAT line  
max_rise_time (ID No IC10) + data_setup_time (ID No IC8) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus  
specification) before the I2CLK line is released.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
66  
Freescale Semiconductor  
4.9.12 IPU—Sensor Interfaces  
This section contains a list of supported camera sensors, a functional description, and the electrical  
characteristics.  
4.9.12.1 Supported Camera Sensors  
Table 53 lists the known supported camera sensors at the time of publication.  
1
Table 53. Supported Camera Sensors  
Vendor  
Model  
Conexant  
Agilant  
CX11646, CX204902, CX204502  
HDCP–2010, ADCS–10212, ADCS–10212  
TC90A70  
Toshiba  
ICMedia  
iMagic  
ICM202A, ICM1022  
IM8801  
Transchip  
Fujitsu  
TC5600, TC5600J, TC5640, TC5700, TC6000  
MB86S02A  
Micron  
MI-SOC–0133  
Matsushita  
STMicro  
OmniVision  
Sharp  
MN39980  
W6411, W6500, W65012, W66002, W65522, STV09742  
OV7620, OV6630, OV2640  
LZ0P3714 (CCD)  
Motorola  
MC30300 (Python)2, SCM200142, SCM201142, SCM221142, SCM200272  
LM96182  
National Semiconductor  
1
Freescale Semiconductor does not recommend one supplier over another and in no way suggests that these are the only  
camera suppliers.  
2
These sensors have not been validated at the time of publication.  
4.9.12.2 Functional Description  
There are three timing modes supported by the IPU.  
4.9.12.2.1  
Pseudo BT.656 Video Mode  
Smart camera sensors, which typically include image processing capability, support video mode transfer  
operations. They use an embedded timing syntax to replace the SENSB_VSYNC and SENSB_HSYNC  
signals. The timing syntax is defined by the BT.656 standard.  
This operation mode follows the recommendations of the ITU BT.656 specifications. The only control  
signal used is SENSB_PIX_CLK. Start-of-frame and active-line signals are embedded in the data stream.  
An active line starts with a SAV code and ends with an EAV code. In some cases, digital blanking is  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
67  
inserted in between EAV and SAV code. The CSI decodes and filters out the timing coding from the data  
stream, thus recovering SENSB_VSYNC and SENSB_HSYNC signals for internal use.  
4.9.12.2.2  
Gated Clock Mode  
The SENSB_VSYNC, SENSB_HSYNC, and SENSB_PIX_CLK signals are used in this mode. See  
Figure 44.  
Active Line  
Start of Frame  
nth frame  
n+1th frame  
SENSB_VSYNC  
SENSB_HSYNC  
SENSB_PIX_CLK  
invalid  
invalid  
SENSB_DATA[9:0]  
1st byte  
1st byte  
Figure 44. Gated Clock Mode Timing Diagram  
A frame starts with a rising edge on SENSB_VSYNC (all the timing corresponds to straight polarity of the  
corresponding signals). Then SENSB_HSYNC goes to high and hold for the entire line. The pixel clock  
is valid as long as SENSB_HSYNC is high. Data is latched at the rising edge of the valid pixel clocks.  
SENSB_HSYNC goes to low at the end of the line. Pixel clocks then become invalid and the CSI stops  
receiving data from the stream. For the next line, the SENSB_HSYNC timing repeats. For the next frame,  
the SENSB_VSYNC timing repeats.  
4.9.12.2.3  
Non-Gated Clock Mode  
The timing is the same as the gated-clock mode (described in Section 4.9.12.2.2, “Gated Clock Mode”),  
except for the SENSB_HSYNC signal, which is not used. See Figure 45. All incoming pixel clocks are  
valid and will cause data to be latched into the input FIFO. The SENSB_PIX_CLK signal is inactive (states  
low) until valid data is going to be transmitted over the bus.  
Start of Frame  
nth frame  
n+1th frame  
SENSB_VSYNC  
SENSB_PIX_CLK  
invalid  
invalid  
SENSB_DATA[7:0]  
1st byte  
1st byte  
Figure 45. Non-Gated Clock Mode Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
68  
Freescale Semiconductor  
The timing described in Figure 45 is that of a Motorola sensor. Some other sensors may have slightly  
different timing. The CSI can be programmed to support rising/falling-edge triggered SENSB_VSYNC;  
active-high/low SENSB_HSYNC; and rising/falling-edge triggered SENSB_PIX_CLK.  
4.9.12.3 Electrical Characteristics  
Figure 46 depicts the sensor interface timing, and Table 54 lists the timing parameters.  
1/IP1  
SENSB_MCLK  
(Sensor Input)  
SENSB_PIX_CLK  
(Sensor Output)  
1/IP4  
IP2  
IP3  
SENSB_DATA,  
SENSB_VSYNC,  
SENSB_HSYNC  
Figure 46. Sensor Interface Timing Diagram  
Table 54. Sensor Interface Timing Parameters  
ID  
Parameter  
Symbol  
Min.  
Max.  
Units  
IP1  
IP2  
IP3  
IP4  
Sensor input clock frequency  
Data and control setup time  
Fmck  
Tsu  
0.01  
5
133  
MHz  
ns  
Data and control holdup time  
Thd  
3
ns  
Sensor output (pixel) clock frequency  
Fpck  
0.01  
133  
MHz  
4.9.13 IPUDisplay Interfaces  
This section describes the following types of display interfaces:  
Section 4.9.13.1, “Synchronous Interfaces”  
Section 4.9.13.2, “Interface to Sharp HR-TFT Panels”  
Section 4.9.13.3, “Synchronous Interface to Dual-Port Smart Displays”  
Section 4.9.13.4, “Asynchronous Interfaces”  
Section 4.9.13.5, “Serial Interfaces, Functional Description”  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
69  
4.9.13.1 Synchronous Interfaces  
This section discusses the interfaces to active matrix TFT LCD panels, Sharp HR-TFT, and dual-port smart  
displays.  
4.9.13.1.4  
Interface to Active Matrix TFT LCD Panels, Functional Description  
Figure 47 depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure,  
signals are shown with negative polarity. The sequence of events for active matrix interface timing is as  
follows:  
DISPB_D3_CLK latches data into the panel on its negative edge (when positive polarity is  
selected). In active mode, DISPB_D3_CLK runs continuously.  
DISPB_D3_HSYNC causes the panel to start a new line.  
DISPB_D3_VSYNC causes the panel to start a new frame. It always encompasses at least one  
HSYNC pulse.  
DISPB_D3_DRDY acts like an output enable signal to the CRT display. This output enables the  
data to be shifted to the display. When disabled, the data is invalid and the trace is off.  
DISPB_D3_VSYNC  
DISPB_D3_HSYNC  
LINE 1  
LINE 2  
LINE 3  
LINE 4  
LINE n – 1 LINE n  
DISPB_D3_HSYNC  
DISPB_D3_DRDY  
1
2
3
m – 1  
m
DISPB_D3_CLK  
DISPB_D3_DATA  
Figure 47. Interface Timing Diagram for TFT (Active Matrix) Panels  
4.9.13.1.5  
Interface to Active Matrix TFT LCD Panels, Electrical Characteristics  
Figure 48 depicts the horizontal timing (timing of one line), including both the horizontal sync pulse and  
the data. All figure parameters shown are programmable. The timing images correspond to inverse polarity  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
70  
Freescale Semiconductor  
of the DISPB_D3_CLK signal and active-low polarity of the DISPB_D3_HSYNC, DISPB_D3_VSYNC  
and DISPB_D3_DRDY signals.  
IP7  
IP6  
IP9  
IP10  
IP8  
IP5  
Start of line  
DISPB_D3_CLK  
DISPB_D3_HSYNC  
DISPB_D3_DRDY  
DISPB_D3_DATA  
Figure 48. TFT Panels Timing Diagram—Horizontal Sync Pulse  
Figure 49 depicts the vertical timing (timing of one frame). All figure parameters shown are  
programmable.  
End of frame  
Start of frame  
IP13  
DISPB_D3_VSYNC  
DISPB_D3_HSYNC  
DISPB_D3_DRDY  
IP15  
IP11  
IP14  
IP12  
Figure 49. TFT Panels Timing Diagram—Vertical Sync Pulse  
Table 55 shows timing parameters of signals presented in Figure 48 and Figure 49.  
Table 55. Synchronous Display Interface Timing Parameters—Pixel Level  
ID  
Parameter  
Symbol  
Value  
Units  
IP5  
IP6  
IP7  
IP8  
Display interface clock period  
Display pixel clock period  
Screen width  
Tdicp  
Tdpcp  
Tsw  
Tdicp1  
ns  
ns  
ns  
ns  
(DISP3_IF_CLK_CNT_D + 1) × Tdicp  
(SCREEN_WIDTH + 1) × Tdpcp  
(H_SYNC_WIDTH + 1) × Tdpcp  
HSYNC width  
Thsw  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
71  
Table 55. Synchronous Display Interface Timing Parameters—Pixel Level (continued)  
ID  
Parameter  
Symbol  
Value  
Units  
IP9  
Horizontal blank interval 1  
Horizontal blank interval 2  
HSYNC delay  
Thbi1  
Thbi2  
Thsd  
Tsh  
BGXP × Tdpcp  
ns  
ns  
ns  
ns  
ns  
IP10  
IP11  
IP12  
IP13  
(SCREEN_WIDTH – BGXP – FW) × Tdpcp  
H_SYNC_DELAY × Tdpcp  
Screen height  
(SCREEN_HEIGHT + 1) × Tsw  
VSYNC width  
Tvsw  
if V_SYNC_WIDTH_L = 0 than  
(V_SYNC_WIDTH + 1) × Tdpcp  
else  
(V_SYNC_WIDTH + 1) × Tsw  
IP14  
IP15  
Vertical blank interval 1  
Vertical blank interval 2  
Tvbi1  
Tvbi2  
BGYP × Tsw  
ns  
ns  
(SCREEN_HEIGHT – BGYP – FH) × Tsw  
1
Display interface clock period immediate value  
Display interface clock period average value.  
DISP3_IF_CLK_PER_WR  
-----------------------------------------------------------------  
Tdicp = T  
HSP_CLK  
HSP_CLK_PERIOD  
Figure 50 depicts the synchronous display interface timing for access level, and Table 56 lists the timing  
parameters. The DISP3_IF_CLK_DOWN_WR and DISP3_IF_CLK_UP_WR parameters are set via the  
DI_DISP3_TIME_CONF Register.  
IP20  
DISPB_D3_VSYNC  
DISPB_D3_HSYNC  
DISPB_D3_DRDY  
other controls  
DISPB_D3_CLK  
IP18  
IP16  
IP17  
IP19  
DISPB_DATA  
Figure 50. Synchronous Display Interface Timing Diagram—Access Level  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
72  
Freescale Semiconductor  
Table 56. Synchronous Display Interface Timing Parameters—Access Level  
ID  
Parameter  
Symbol  
Min.  
Typ.1  
Max.  
Units  
IP16 Display interface clock low time  
IP17 Display interface clock high time  
Tckl  
Tdicd – Tdicu – 1.5  
Tdicd2 – Tdicu3  
Tdicd – Tdicu + 1.5  
ns  
ns  
Tckh Tdicp – Tdicd +  
Tdicu – 1.5  
Tdicp – Tdicd +  
Tdicu  
Tdicp – Tdicd +  
Tdicu + 1.5  
IP18 Data setup time  
IP19 Data holdup time  
Tdsu Tdicd – 3.5  
Tdicu  
ns  
ns  
ns  
Tdhd Tdicp – Tdicd – 3.5  
Tcsu Tdicd – 3.5  
Tdicp – Tdicu  
Tdicu  
IP20 Control signals setup time to  
display interface clock  
1
The exact conditions have not been finalized, but will likely match the current customer requirement for their specific display.  
These conditions may be device specific.  
2
Display interface clock down time  
1
2
2 DISP3_IF_CLK_DOWN_WR  
--  
--------------------------------------------------------------------------------  
ceil  
Tdicd =  
T
HSP_CLK  
HSP_CLK_PERIOD  
3
Display interface clock up time  
1
2
2 DISP3_IF_CLK_UP_WR  
---------------------------------------------------------------------  
ceil  
--  
Tdicu =  
T
HSP_CLK  
HSP_CLK_PERIOD  
where CEIL(X) rounds the elements of X to the nearest integers toward infinity.  
4.9.13.2 Interface to Sharp HR-TFT Panels  
Figure 51 depicts the Sharp HR-TFT panel interface timing, and Table 57 lists the timing parameters. The  
CLS_RISE_DELAY, CLS_FALL_DELAY, PS_FALL_DELAY, PS_RISE_DELAY,  
REV_TOGGLE_DELAY parameters are defined in the SDC_SHARP_CONF_1 and  
SDC_SHARP_CONF_2 registers. For other Sharp interface timing characteristics, refer to  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
73  
Section 4.9.13.1.5, “Interface to Active Matrix TFT LCD Panels, Electrical Characteristics.” The timing  
images correspond to straight polarity of the Sharp signals.  
Horizontal timing  
DISPB_D3_CLK  
D1 D2  
D320  
DISPB_D3_DATA  
DISPB_D3_SPL  
IP21  
1 DISPB_D3_CLK period  
DISPB_D3_HSYNC  
IP23  
IP22  
DISPB_D3_CLS  
DISPB_D3_PS  
IP24  
IP25  
IP26  
DISPB_D3_REV  
Example is drawn with FW + 1 = 320 pixel/line, FH + 1 = 240 lines.  
SPL pulse width is fixed and aligned to the first data of the line.  
REV toggles every HSYNC period.  
Figure 51. Sharp HR-TFT Panel Interface Timing Diagram—Pixel Level  
Table 57. Sharp Synchronous Display Interface Timing Parameters—Pixel Level  
ID  
Parameter  
SPL rise time  
Symbol  
Value  
Units  
IP21  
IP22  
IP23  
IP24  
IP25  
IP26  
Tsplr  
Tclsr  
Tclsf  
Tpsf  
Tpsr  
Trev  
(BGXP – 1) × Tdpcp  
ns  
ns  
ns  
ns  
ns  
ns  
CLS rise time  
CLS_RISE_DELAY × Tdpcp  
CLS_FALL_DELAY × Tdpcp  
PS_FALL_DELAY × Tdpcp  
PS_RISE_DELAY × Tdpcp  
REV_TOGGLE_DELAY × Tdpcp  
CLS fall time  
CLS rise and PS fall time  
PS rise time  
REV toggle time  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
74  
Freescale Semiconductor  
4.9.13.3 Synchronous Interface to Dual-Port Smart Displays  
Functionality and electrical characteristics of the synchronous interface to dual-port smart displays are  
identical to parameters of the synchronous interface. See Section 4.9.13.1.5, “Interface to Active Matrix  
TFT LCD Panels, Electrical Characteristics.”  
4.9.13.3.6  
Interface to a TV Encoder—Functional Description  
The interface has an 8-bit data bus, transferring a single 8-bit value (Y/U/V) in each cycle. The bits  
D7–D0 of the value are mapped to bits LD17–LD10 of the data bus, respectively. Figure 52 depicts the  
interface timing.  
The frequency of the clock DISPB_D3_CLK is 27 MHz.  
The DISPB_D3_HSYNC, DISPB_D3_VSYNC and DISPB_D3_DRDY signals are active low.  
The transition to the next row is marked by the negative edge of the DISPB_D3_HSYNC signal. It  
remains low for a single clock cycle.  
The transition to the next field/frame is marked by the negative edge of the DISPB_D3_VSYNC  
signal. It remains low for at least one clock cycle.  
— At a transition to an odd field (of the next frame), the negative edges of DISPB_D3_VSYNC  
and DISPB_D3_HSYNC coincide.  
— At a transition to an even field (of the same frame), they do not coincide.  
The active intervals—during which data is transferred—are marked by the DISPB_D3_HSYNC  
signal being high.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
75  
DISPB_D3_CLK  
DISPB_D3_HSYNC  
DISPB_D3_VSYNC  
DISPB_D3_DRDY  
DISPB_DATA  
Cb  
Y
Cr  
Y
3
Cb  
Y
Cr  
Pixel Data Timing  
523  
524  
525  
1
2
4
5
6
10  
DISPB_D3_HSYNC  
DISPB_D3_DRDY  
DISPB_D3_VSYNC  
Even Field  
262 263  
Odd Field  
268 269  
261  
264  
265  
266  
267  
273  
DISPB_D3_HSYNC  
DISPB_D3_DRDY  
DISPB_D3_VSYNC  
Even Field  
Odd Field  
Line and Field Timing - NTSC  
621  
622  
623  
624  
625  
1
2
3
4
23  
DISPB_D3_HSYNC  
DISPB_D3_DRDY  
DISPB_D3_VSYNC  
Even Field  
Odd Field  
315  
308  
309  
310  
311  
312  
313  
314  
316  
336  
DISPB_D3_HSYNC  
DISPB_D3_DRDY  
DISPB_D3_VSYNC  
Even Field  
Odd Field  
Line and Field Timing - PAL  
Figure 52. TV Encoder Interface Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
76  
Freescale Semiconductor  
4.9.13.3.7  
Interface to a TV Encoder, Electrical Characteristics  
The timing characteristics of the TV encoder interface are identical to the synchronous display  
characteristics. See Section 4.9.13.1.5, “Interface to Active Matrix TFT LCD Panels, Electrical  
Characteristics.”  
4.9.13.4 Asynchronous Interfaces  
This section discusses the asynchronous parallel and serial interfaces.  
4.9.13.4.8  
Parallel Interfaces, Functional Description  
The IPU supports the following asynchronous parallel interfaces:  
System 80 interface  
— Type 1 (sampling with the chip select signal) with and without byte enable signals.  
— Type 2 (sampling with the read and write signals) with and without byte enable signals.  
System 68k interface  
— Type 1 (sampling with the chip select signal) with or without byte enable signals.  
— Type 2 (sampling with the read and write signals) with or without byte enable signals.  
For each of four system interfaces, there are three burst modes:  
1. Burst mode without a separate clock—The burst length is defined by the corresponding parameters  
of the IDMAC (when data is transferred from the system memory) or by the HBURST signal (when  
the MCU directly accesses the display via the slave AHB bus). For system 80 and system 68k type  
1 interfaces, data is sampled by the CS signal and other control signals change only when transfer  
direction is changed during the burst. For type 2 interfaces, data is sampled by the WR/RD signals  
(system 80) or by the ENABLE signal (system 68k), and the CS signal stays active during the  
whole burst.  
2. Burst mode with the separate clock DISPB_BCLK—In this mode, data is sampled with the  
DISPB_BCLK clock. The CS signal stays active during whole burst transfer. Other controls are  
changed simultaneously with data when the bus state (read, write or wait) is altered. The CS  
signals and other controls move to non-active state after burst has been completed.  
3. Single access mode—In this mode, slave AHB and DMA burst are broken to single accesses. The  
data is sampled with CS or other controls according to the interface type as described above. All  
controls (including CS) become non-active for one display interface clock after each access. This  
mode corresponds to the ATI single access mode.  
Both system 80 and system 68k interfaces are supported for all described modes as depicted in Figure 53,  
Figure 54, Figure 55, and Figure 56. These timing images correspond to active-low DISPB_Dn_CS,  
DISPB_Dn_WR and DISPB_Dn_RD signals.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
77  
Additionally, the IPU allows a programmable pause between two bursts. The pause is defined in the  
HSP_CLK cycles. It allows the prevention of timing violation between two sequential bursts or two  
accesses to different displays. The range of this pause is from 4 to 19 HSP_CLK cycles.  
DISPB_D#_CS  
DISPB_PAR_RS  
DISPB_WR  
DISPB_RD  
DISPB_DATA  
Burst access mode with sampling by CS signal  
DISPB_BCLK  
DISPB_D#_CS  
DISPB_PAR_RS  
DISPB_WR  
DISPB_RD  
DISPB_DATA  
Burst access mode with sampling by separate burst clock (BCLK)  
DISPB_D#_CS  
DISPB_PAR_RS  
DISPB_WR  
DISPB_RD  
DISPB_DATA  
Single access mode (all control signals are not active for one display interface clock after each display access)  
Figure 53. Asynchronous Parallel System 80 Interface (Type 1) Burst Mode Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
78  
Freescale Semiconductor  
DISPB_D#_CS  
DISPB_PAR_RS  
DISPB_WR  
DISPB_RD  
DISPB_DATA  
Burst access mode with sampling by WR/RD signals  
DISPB_BCLK  
DISPB_D#_CS  
DISPB_PAR_RS  
DISPB_WR  
DISPB_RD  
DISPB_DATA  
Burst access mode with sampling by separate burst clock (BCLK)  
DISPB_D#_CS  
DISPB_PAR_RS  
DISPB_WR  
DISPB_RD  
DISPB_DATA  
Single access mode (all control signals are not active for one display interface clock after each display access)  
Figure 54. Asynchronous Parallel System 80 Interface (Type 2) Burst Mode Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
79  
DISPB_D#_CS  
DISPB_PAR_RS  
DISPB_WR  
(READ/WRITE)  
DISPB_RD  
(ENABLE)  
DISPB_DATA  
Burst access mode with sampling by CS signal  
DISPB_BCLK  
DISPB_D#_CS  
DISPB_PAR_RS  
DISPB_WR  
(READ/WRITE)  
DISPB_RD  
(ENABLE)  
DISPB_DATA  
Burst access mode with sampling by separate burst clock (BCLK)  
DISPB_D#_CS  
DISPB_PAR_RS  
DISPB_WR  
(READ/WRITE)  
DISPB_RD  
(ENABLE)  
DISPB_DATA  
Single access mode (all control signals are not active for one display interface clock after each display access)  
Figure 55. Asynchronous Parallel System 68k Interface (Type 1) Burst Mode Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
80  
Freescale Semiconductor  
DISPB_D#_CS  
DISPB_PAR_RS  
DISPB_WR  
(READ/WRITE)  
DISPB_RD  
(ENABLE)  
DISPB_DATA  
Burst access mode with sampling by ENABLE signal  
DISPB_BCLK  
DISPB_D#_CS  
DISPB_PAR_RS  
DISPB_WR  
(READ/WRITE)  
DISPB_RD  
(ENABLE)  
DISPB_DATA  
Burst access mode with sampling by separate burst clock (BCLK)  
DISPB_D#_CS  
DISPB_PAR_RS  
DISPB_WR  
(READ/WRITE)  
DISPB_RD  
(ENABLE)  
DISPB_DATA  
Single access mode (all control signals are not active for one display interface clock after each display access)  
Figure 56. Asynchronous Parallel System 68k Interface (Type 2) Burst Mode TIming Diagram  
Display read operation can be performed with wait states when each read access takes up to 4 display  
interface clock cycles according to the DISP0_RD_WAIT_ST parameter in the  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
81  
DI_DISPn_TIME_CONF_3 registers (n = 0,1,2). Figure 57 shows the timing of the parallel interface with  
read wait states.  
WRITE OPERATION  
DISP0_RD_WAIT_ST=00  
READ OPERATION  
DISPB_D#_CS  
DISPB_RD  
DISPB_WR  
DISPB_PAR_RS  
DISPB_DATA  
DISP0_RD_WAIT_ST=01  
DISPB_D#_CS  
DISPB_RD  
DISPB_WR  
DISPB_PAR_RS  
DISPB_DATA  
DISP0_RD_WAIT_ST=10  
DISPB_D#_CS  
DISPB_RD  
DISPB_WR  
DISPB_PAR_RS  
DISPB_DATA  
Figure 57. Parallel Interface Timing Diagram—Read Wait States  
4.9.13.4.9  
Parallel Interfaces, Electrical Characteristics  
Figure 58, Figure 60, Figure 59, and Figure 61 depict timing of asynchronous parallel interfaces based on  
the system 80 and system 68k interfaces. Table 58 lists the timing parameters at display access level. All  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
82  
Freescale Semiconductor  
timing images are based on active low control signals (signal polarity is controlled via the  
DI_DISP_SIG_POL register).  
IP28, IP27  
DISPB_PAR_RS  
DISPB_RD (READ_L)  
DISPB_DATA[17]  
(READ_H)  
IP35, IP33  
IP36, IP34  
IP32, IP30  
DISPB_D#_CS  
DISPB_WR (WRITE_L)  
DISPB_DATA[16]  
(WRITE_H)  
IP31, IP29  
read point  
Read Data  
IP38  
IP37  
DISPB_DATA  
(Input)  
IP40  
IP39  
DISPB_DATA  
(Output)  
IP46,IP44  
IP47  
IP45, IP43  
IP42, IP41  
Figure 58. Asynchronous Parallel System 80 Interface (Type 1) Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
83  
IP28, IP27  
DISPB_PAR_RS  
DISPB_D#_CS  
IP35, IP33  
IP36, IP34  
DISPB_RD (READ_L)  
DISPB_DATA[17]  
(READ_H)  
DISPB_WR (WRITE_L)  
DISPB_DATA[16]  
(WRITE_H)  
IP31, IP29  
IP32, IP30  
read point  
IP38  
IP37  
DISPB_DATA  
(Input)  
Read Data  
IP39  
IP40  
DISPB_DATA  
(Output)  
IP46,IP44  
IP47  
IP45, IP43  
IP42, IP41  
Figure 59. Asynchronous Parallel System 80 Interface (Type 2) Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
84  
Freescale Semiconductor  
IP28, IP27  
DISPB_PAR_RS  
DISPB_RD (ENABLE_L)  
DISPB_DATA[17]  
(ENABLE_H)  
IP35,IP33  
IP36, IP34  
DISPB_D#_CS  
DISPB_WR  
(READ/WRITE)  
IP31, IP29  
IP32, IP30  
read point  
IP38  
IP37  
DISPB_DATA  
(Input)  
Read Data  
IP39  
IP40  
DISPB_DATA  
(Output)  
IP46,IP44  
IP47  
IP45, IP43  
IP42, IP41  
Figure 60. Asynchronous Parallel System 68k Interface (Type 1) Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
85  
IP28, IP27  
DISPB_PAR_RS  
DISPB_D#_CS  
IP35,IP33  
IP36, IP34  
DISPB_RD (ENABLE_L)  
DISPB_DATA[17]  
(ENABLE_H)  
DISPB_WR  
(READ/WRITE)  
IP32, IP30  
IP31, IP29  
read point  
IP38  
IP37  
DISPB_DATA  
(Input)  
Read Data  
IP39  
IP40  
DISPB_DATA  
(Output)  
IP46,IP44  
IP47  
IP45, IP43  
IP42, IP41  
Figure 61. Asynchronous Parallel System 68k Interface (Type 2) Timing Diagram  
Table 58. Asynchronous Parallel Interface Timing Parameters—Access Level  
ID  
Parameter  
Symbol  
Min.  
Typ.1  
Tdicpr2  
Tdicpw3  
Max.  
Tdicpr + 1.5  
Tdicpw + 1.5  
Units  
IP27 Read system cycle time  
IP28 Write system cycle time  
IP29 Read low pulse width  
IP30 Read high pulse width  
Tcycr Tdicpr – 1.5  
Tcycw Tdicpw – 1.5  
ns  
ns  
ns  
ns  
Trl  
Tdicdr – Tdicur – 1.5  
Tdicdr4 – Tdicur5 Tdicdr – Tdicur + 1.5  
Trh  
Tdicpr – Tdicdr +  
Tdicur – 1.5  
Tdicpr – Tdicdr + Tdicpr – Tdicdr + Tdicur  
Tdicur  
+ 1.5  
IP31 Write low pulse width  
IP32 Write high pulse width  
Twl  
Tdicdw – Tdicuw  
– 1.5  
Tdicdw6 –  
Tdicuw7  
Tdicdw – Tdicuw + 1.5  
ns  
ns  
Twh  
Tdicpw – Tdicdw +  
Tdicuw – 1.5  
Tdicpw – Tdicdw Tdicpw – Tdicdw +  
+ Tdicuw  
Tdicuw + 1.5  
IP33 Controls setup time for read  
IP34 Controls hold time for read  
Tdcsr Tdicur – 1.5  
Tdicur  
ns  
ns  
Tdchr Tdicpr – Tdicdr – 1.5  
Tdicpr – Tdicdr  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
86  
Freescale Semiconductor  
Table 58. Asynchronous Parallel Interface Timing Parameters—Access Level (continued)  
ID  
Parameter  
Symbol  
Min.  
Typ.1  
Tdicuw  
Max.  
Units  
IP35 Controls setup time for write  
IP36 Controls hold time for write  
IP37 Slave device data delay8  
Tdcsw Tdicuw – 1.5  
ns  
ns  
Tdchw Tdicpw – Tdicdw – 1.5  
Tdicpw – Tdicdw  
Tracc  
0
Tdrp9 – Tlbd10 – Tdicur – ns  
1.5  
IP38 Slave device data hold time8  
Troh  
Tdrp – Tlbd – Tdicdr  
+ 1.5  
Tdicpr – Tdicdr – 1.5  
ns  
IP39 Write data setup time  
IP40 Write data hold time  
IP41 Read period2  
Tds  
Tdh  
Tdicdw – 1.5  
Tdicdw  
Tdicpw – Tdicdw  
Tdicpr  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Tdicpw – Tdicdw – 1.5  
Tdicpr Tdicpr – 1.5  
Tdicpw Tdicpw – 1.5  
Tdicdr Tdicdr – 1.5  
Tdicur Tdicur – 1.5  
Tdicdw Tdicdw – 1.5  
Tdicuw Tdicuw – 1.5  
Tdrp Tdrp – 1.5  
Tdicpr + 1.5  
Tdicpw + 1.5  
Tdicdr + 1.5  
Tdicur + 1.5  
Tdicdw + 1.5  
Tdicuw + 1.5  
Tdrp + 1.5  
IP42 Write period3  
Tdicpw  
Tdicdr  
IP43 Read down time4  
IP44 Read up time5  
IP45 Write down time6  
IP46 Write up time7  
Tdicur  
Tdicdw  
Tdicuw  
Tdrp  
IP47 Read time point9  
1The exact conditions have not been finalized, but will likely match the current customer requirement for their specific display.  
These conditions may be device-specific.  
2
Display interface clock period value for read:  
DISP#_IF_CLK_PER_RD  
HSP_CLK_PERIOD  
----------------------------------------------------------------  
ceil  
Tdicpr = T  
HSP_CLK  
3
Display interface clock period value for write:  
DISP#_IF_CLK_PER_WR  
HSP_CLK_PERIOD  
-----------------------------------------------------------------  
ceil  
Tdicpw = T  
HSP_CLK  
4
Display interface clock down time for read:  
1
2
2 DISP#_IF_CLK_DOWN_RD  
--  
-------------------------------------------------------------------------------  
ceil  
HSP_CLK  
Tdicdr =  
T
HSP_CLK_PERIOD  
5
6
7
Display interface clock up time for read:  
1
2
2 DISP#_IF_CLK_UP_RD  
--  
--------------------------------------------------------------------  
ceil  
HSP_CLK  
Tdicur =  
T
HSP_CLK_PERIOD  
Display interface clock down time for write:  
1
2
2 DISP#_IF_CLK_DOWN_WR  
--  
--------------------------------------------------------------------------------  
ceil  
HSP_CLK  
Tdicdw =  
T
HSP_CLK_PERIOD  
Display interface clock up time for write:  
1
2
2 DISP#_IF_CLK_UP_WR  
--  
---------------------------------------------------------------------  
ceil  
HSP_CLK  
Tdicuw =  
T
HSP_CLK_PERIOD  
8
This parameter is a requirement to the display connected to the IPU  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
87  
9
Data read point  
DISP#_READ_EN  
HSP_CLK_PERIOD  
--------------------------------------------------  
ceil  
Tdrp = T  
HSP_CLK  
10 Loopback delay Tlbd is the cumulative propagation delay of read controls and read data. It includes an IPU output delay, a  
device – level output delay, board delays, a device – level input delay, an IPU input delay. This value is device specific.  
The following parameters are programmed via the DI_DISP#_TIME_CONF_1,  
DI_DISP#_TIME_CONF_2, and DI_HSP_CLK_PER registers:  
DISP#_IF_CLK_PER_WR, DISP#_IF_CLK_PER_RD  
HSP_CLK_PERIOD  
DISP#_IF_CLK_DOWN_WR  
DISP#_IF_CLK_UP_WR  
DISP#_IF_CLK_DOWN_RD  
DISP#_IF_CLK_UP_RD  
DISP#_READ_EN  
4.9.13.5 Serial Interfaces, Functional Description  
The IPU supports the following types of asynchronous serial interfaces:  
3-wire (with bidirectional data line)  
4-wire (with separate data input and output lines)  
5-wire type 1 (with sampling RS by the serial clock)  
5-wire type 2 (with sampling RS by the chip select signal)  
Figure 62 depicts timing of the 3-wire serial interface. The timing images correspond to active-low  
DISPB_D#_CS signal and the straight polarity of the DISPB_SD_D_CLK signal.  
For this interface, a bidirectional data line is used outside the device. The IPU still uses separate input and  
output data lines (IPP_IND_DISPB_SD_D and IPP_DO_DISPB_SD_D). The I/O mux connects the  
internal data lines to the bidirectional external line according to the IPP_OBE_DISPB_SD_D signal  
provided by the IPU.  
Each data transfer can be preceded by an optional preamble with programmable length and contents. The  
preamble is followed by read/write (RW) and address (RS) bits. The order of the these bits is  
programmable. The RW bit can be disabled. The following data can consist of one word or of a whole  
burst. The interface parameters are controlled by the DI_SER_DISPn_CONF registers (n = 1, 2).  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
88  
Freescale Semiconductor  
1 display IF  
clock cycle  
1 display IF  
clock cycle  
DISPB_D#_CS  
DISPB_SD_D_CLK  
DISPB_SD_D  
RW  
RS  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Input or output data  
Preamble  
Figure 62. 3-Wire Serial Interface Timing Diagram  
Figure 63 depicts timing of the 4-wire serial interface. For this interface, there are separate input and output  
data lines both inside and outside the device.  
Write  
1 display IF  
clock cycle  
1 display IF  
clock cycle  
DISPB_D#_CS  
DISPB_SD_D_CLK  
DISPB_SD_D  
(Output)  
RW  
RS  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Preamble  
Output data  
DISPB_SD_D  
(Input)  
Read  
1 display IF  
clock cycle  
1 display IF  
clock cycle  
DISPB_D#_CS  
DISPB_SD_D_CLK  
DISPB_SD_D  
(Output)  
RW  
RS  
Preamble  
DISPB_SD_D  
(Input)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Input data  
Figure 63. 4-Wire Serial Interface Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
89  
Figure 64 depicts timing of the 5-wire serial interface (Type 1). For this interface, a separate RS line is  
added. When a burst is transmitted within a single active chip select interval, the RS can be changed at  
boundaries of words.  
Write  
1 display IF  
clock cycle  
1 display IF  
clock cycle  
DISPB_D#_CS  
DISPB_SD_D_CLK  
DISPB_SD_D  
RW  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(Output)  
Preamble  
Output data  
DISPB_SD_D  
(Input)  
DISPB_SER_RS  
Read  
1 display IF  
clock cycle  
1 display IF  
clock cycle  
DISPB_D#_CS  
DISPB_SD_D_CLK  
DISPB_SD_D  
(Output)  
RW  
Preamble  
DISPB_SD_D  
(Input)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Input data  
DISPB_SER_RS  
Figure 64. 5-Wire Serial Interface (Type 1) Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
90  
Freescale Semiconductor  
Figure 65 depicts timing of the 5-wire serial interface (Type 2). For this interface, a separate RS line is  
added. When a burst is transmitted within a single active chip select interval, the RS can be changed at  
boundaries of words.  
Write  
1 display IF  
clock cycle  
1 display IF  
clock cycle  
DISPB_D#_CS  
DISPB_SD_D_CLK  
DISPB_SD_D  
(Output)  
RW  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Output data  
Preamble  
DISPB_SD_D  
(Input)  
1 display IF  
clock cycle  
DISPB_SER_RS  
Read  
1 display IF  
clock cycle  
1 display IF  
clock cycle  
DISPB_D#_CS  
DISPB_SD_D_CLK  
DISPB_SD_D  
(Output)  
RW  
Preamble  
DISPB_SD_D  
(Input)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Input data  
1 display IF  
clock cycle  
DISPB_SER_RS  
Figure 65. 5-Wire Serial Interface (Type 2) Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
91  
4.9.13.5.10 Serial Interfaces, Electrical Characteristics  
Figure 66 depicts timing of the serial interface. Table 59 lists the timing parameters at display access level.  
IP49, IP48  
DISPB_SER_RS  
IP56,IP54  
IP57, IP55  
DISPB_SD_D_CLK  
IP51, IP53  
IP50, IP52  
read point  
IP59  
IP58  
DISPB_DATA  
(Input)  
Read Data  
IP60  
IP61  
DISPB_DATA  
(Output)  
IP67,IP65  
IP47  
IP64, IP66  
IP62, IP63  
Figure 66. Asynchronous Serial Interface Timing Diagram  
Table 59. Asynchronous Serial Interface Timing Parameters—Access Level  
Typ.1  
Tdicpr2  
Tdicpw3  
ID  
Parameter  
Symbol  
Min.  
Max.  
Tdicpr + 1.5  
Tdicpw + 1.5  
Units  
IP48 Read system cycle time  
IP49 Write system cycle time  
IP50 Read clock low pulse width  
IP51 Read clock high pulse width  
Tcycr Tdicpr – 1.5  
Tcycw Tdicpw – 1.5  
ns  
ns  
ns  
ns  
Trl  
Tdicdr – Tdicur – 1.5  
Tdicdr4 – Tdicur5 Tdicdr – Tdicur + 1.5  
Trh  
Tdicpr – Tdicdr + Tdicur Tdicpr – Tdicdr + Tdicpr – Tdicdr + Tdicur  
– 1.5  
Tdicur  
+ 1.5  
IP52 Write clock low pulse width  
IP53 Write clock high pulse width  
IP54 Controls setup time for read  
Twl  
Tdicdw – Tdicuw – 1.5  
Tdicdw6 –  
Tdicuw7  
Tdicdw – Tdicuw + 1.5  
ns  
ns  
ns  
Twh  
Tdicpw – Tdicdw +  
Tdicuw – 1.5  
Tdicpw – Tdicdw Tdicpw – Tdicdw +  
+ Tdicuw  
Tdicuw + 1.5  
Tdcsr Tdicur – 1.5  
Tdicur  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
92  
Freescale Semiconductor  
Table 59. Asynchronous Serial Interface Timing Parameters—Access Level (continued)  
ID  
IP55 Controls hold time for read  
IP56 Controls setup time for write Tdcsw Tdicuw – 1.5  
Parameter  
Symbol  
Min.  
Typ.1  
Max.  
Units  
Tdchr Tdicpr – Tdicdr – 1.5  
Tdicpr – Tdicdr  
Tdicuw  
ns  
ns  
ns  
ns  
IP57 Controls hold time for write  
IP58 Slave device data delay8  
Tdchw Tdicpw – Tdicdw – 1.5  
Tdicpw – Tdicdw  
Tracc  
0
Tdrp9 – Tlbd10 – Tdicur  
– 1.5  
IP59 Slave device data hold time8  
Troh  
Tdrp – Tlbd – Tdicdr  
+ 1.5  
Tdicpr – Tdicdr – 1.5  
ns  
IP60 Write data setup time  
IP61 Write data hold time  
IP62 Read period2  
Tds  
Tdh  
Tdicdw – 1.5  
Tdicdw  
Tdicpw – Tdicdw  
Tdicpr  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Tdicpw – Tdicdw – 1.5  
Tdicpr Tdicpr – 1.5  
Tdicpw Tdicpw – 1.5  
Tdicdr Tdicdr – 1.5  
Tdicur Tdicur – 1.5  
Tdicdw Tdicdw – 1.5  
Tdicuw Tdicuw – 1.5  
Tdrp Tdrp – 1.5  
Tdicpr + 1.5  
Tdicpw + 1.5  
Tdicdr + 1.5  
Tdicur + 1.5  
Tdicdw + 1.5  
Tdicuw + 1.5  
Tdrp + 1.5  
IP63 Write period3  
Tdicpw  
Tdicdr  
IP64 Read down time4  
IP65 Read up time5  
IP66 Write down time6  
IP67 Write up time7  
Tdicur  
Tdicdw  
Tdicuw  
Tdrp  
IP68 Read time point9  
1
The exact conditions have not been finalized, but will likely match the current customer requirement for their specific display.  
These conditions may be device specific.  
2
Display interface clock period value for read:  
DISP#_IF_CLK_PER_RD  
HSP_CLK_PERIOD  
----------------------------------------------------------------  
ceil  
Tdicpr = T  
HSP_CLK  
3
4
5
6
7
8
Display interface clock period value for write:  
DISP#_IF_CLK_PER_WR  
HSP_CLK_PERIOD  
-----------------------------------------------------------------  
ceil  
Tdicpw = T  
HSP_CLK  
Display interface clock down time for read:  
1
2
2 DISP#_IF_CLK_DOWN_RD  
--  
-------------------------------------------------------------------------------  
ceil  
HSP_CLK  
Tdicdr =  
T
HSP_CLK_PERIOD  
Display interface clock up time for read:  
1
2
2 DISP#_IF_CLK_UP_RD  
--  
--------------------------------------------------------------------  
ceil  
HSP_CLK  
Tdicur =  
T
HSP_CLK_PERIOD  
Display interface clock down time for write:  
1
2
2 DISP#_IF_CLK_DOWN_WR  
--  
--------------------------------------------------------------------------------  
ceil  
HSP_CLK  
Tdicdw =  
T
HSP_CLK_PERIOD  
Display interface clock up time for write:  
1
2
2 DISP#_IF_CLK_UP_WR  
--  
---------------------------------------------------------------------  
ceil  
HSP_CLK  
Tdicuw =  
T
HSP_CLK_PERIOD  
This parameter is a requirement to the display connected to the IPU.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
93  
9
Data read point:  
DISP#_READ_EN  
HSP_CLK_PERIOD  
--------------------------------------------------  
ceil  
Tdrp = T  
HSP_CLK  
10 Loopback delay Tlbd is the cumulative propagation delay of read controls and read data. It includes an IPU output delay, a  
device-level output delay, board delays, a device-level input delay, and an IPU input delay. This value is device specific.  
The following parameters are programmed via the DI_DISP#_TIME_CONF_1,  
DI_DISP#_TIME_CONF_2, and DI_HSP_CLK_PER registers:  
DISP#_IF_CLK_PER_WR  
DISP#_IF_CLK_PER_RD  
HSP_CLK_PERIOD  
DISP#_IF_CLK_DOWN_WR  
DISP#_IF_CLK_UP_WR  
DISP#_IF_CLK_DOWN_RD  
DISP#_IF_CLK_UP_RD  
DISP#_READ_EN  
4.9.14 Memory Stick Host Controller (MSHC)  
Figure 67, Figure 68, and Figure 69 depict the MSHC timings, and Table 60 and Table 61 list the timing  
parameters.  
tSCLKc  
tSCLKwh  
tSCLKwl  
MSHC_SCLK  
tSCLKr  
tSCLKf  
Figure 67. MSHC_CLK Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
94  
Freescale Semiconductor  
tSCLKc  
MSHC_SCLK  
MSHC_BS  
tBSsu  
tBSh  
tDsu  
tDh  
MSHC_DATA  
(Output)  
tDd  
MSHC_DATA  
(Intput)  
Figure 68. Transfer Operation Timing Diagram (Serial)  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
95  
tSCLKc  
MSHC_SCLK  
MSHC_BS  
tBSsu  
tBSh  
tDsu  
tDh  
MSHC_DATA  
(Output)  
tDd  
MSHC_DATA  
(Input)  
Figure 69. Transfer Operation Timing Diagram (Parallel)  
NOTE  
The memory stick host controller is designed to meet the timing  
requirements per Sony's Memory Stick Pro Format Specifications. Tables in  
this section detail the specifications’ requirements for parallel and serial  
modes, and not the i.MX35 timing.  
1
Table 60. Serial Interface Timing Parameters  
Standards  
Signal  
Parameter  
Symbol  
Unit  
Min.  
Max.  
MSHC_SCLK  
Cycle  
H pulse length  
L pulse length  
Rise time  
tSCLKc  
tSCLKwh  
tSCLKwl  
tSCLKr  
tSCLKf  
tBSsu  
50  
15  
15  
5
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Fall time  
MSHC_BS  
Setup time  
Hold time  
tBSh  
5
i.MX35 Applications Processors for Automotive Products, Rev. 10  
96  
Freescale Semiconductor  
1
Table 60. Serial Interface Timing Parameters (continued)  
Standards  
Signal  
Parameter  
Symbol  
Unit  
Min.  
Max.  
MSHC_DATA  
Setup time  
Hold time  
tDsu  
tDh  
5
5
15  
ns  
ns  
ns  
Output delay time  
tDd  
1
Timing is guaranteed for NVCC from 2.7 V through 3.1 V and up to a maximum overdrive NVCC of 3.3 V. See NVCC  
restrictions described in Table 61.  
1
Table 61. Parallel Interface Timing Parameters  
Standards  
Signal  
Parameter  
Symbol  
Unit  
Min.  
Max.  
MSHC_SCLK  
Cycle  
H pulse length  
L pulse length  
Rise time  
tSCLKc  
tSCLKwh  
tSCLKwl  
tSCLKr  
tSCLKf  
tBSsu  
tBSh  
25  
5
10  
10  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5
8
Fall time  
MSHC_BS  
Setup time  
Hold time  
1
MSHC_DATA  
Setup time  
Hold time  
tDsu  
8
tDh  
1
Output delay time  
tDd  
1
Timing is guaranteed for NVCC from 2.7 V through 3.1 V and up to a maximum overdrive NVCC of 3.3 V. See the NVCC  
restrictions described in Table 8.  
4.9.15 MediaLB Controller Electrical Specifications  
This section describes the electrical information of the MediaLB Controller module.  
Table 62. MLB 256/512 Fs Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Comment  
MLBCLK operating frequency1  
fmck  
11.264  
MHz  
Min: 256 × Fs at 44.0 kHz  
Typ: 256 × Fs at 48.0 kHz  
Typ: 512 × Fs at 48.0 kHz  
Max: 512 × Fs at 48.1 kHz  
Max: 512 × Fs PLL unlocked  
12.288  
24.576  
24.6272  
25.600  
MLBCLK rise time  
tmckr  
3
ns  
VIL TO VIH  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
97  
Table 62. MLB 256/512 Fs Timing Parameters (continued)  
Parameter  
MLB fall time  
Symbol  
Min  
Typ  
Max  
Units  
Comment  
tmckf  
tmckc  
3
ns  
ns  
VIH TO VIL  
MLBCLK cycle time  
81  
40  
256 × Fs  
512 × Fs  
MLBCLK low time  
tmckl  
31.5  
30  
37  
35.5  
ns  
ns  
ns  
ns  
256 × Fs  
256 × Fs PLL unlocked  
14.5  
14  
17  
16.5  
512 × Fs  
512 × Fs PLL unlocked  
MLBCLK high time  
tmckh  
31.5  
30  
38  
36.5  
256 × Fs  
256 × Fs PLL unlocked  
14.5  
14  
17  
16.5  
512 × Fs  
512 × Fs PLL unlocked  
MLBCLK pulse width variation  
tmpwv  
tdsmcf  
1
2
ns pp  
ns  
Note2  
MLBSIG/MLBDAT input valid to  
MLBCLK falling  
MLBSIG/MLBDAT input hold  
from MLBCLK low  
tdhmcf  
tmcfdz  
tmdzh  
0
0
4
tmckl  
ns  
ns  
ns  
MLBSIG/MLBDAT output high  
impedance from MLBCLK low  
Bus Hold Time  
Note3  
1
2
The MLB controller can shut off MLBCLK to place MediaLB in a low-power state.  
Pulse width variation is measured at 1.25 V by triggering on one edge of MLBCLK and measuring the spread on the other  
edge, measured in ns peak-to-peak (pp)  
3
The board must be designed to insure that the high-impedance bus does not leave the logic state of the final driven bit for this  
time period. Therefore, coupling must be minimized while meeting the maximum capacitive load listed.  
Ground = 0.0 V; load capacitance = 40 pF; MediaLB speed = 1024 Fs; Fs = 48 kHz; all timing parameters  
specified from the valid voltage threshold as listed below unless otherwise noted.  
Table 63. MLB Device 1024Fs Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Comment  
MLBCLK Operating  
Frequency1  
fmck  
45.056  
MHz  
Min: 1024 × Fs at 44.0 kHz  
Typ: 1024 × Fs at 48.0 kHz  
Max: 1024 × Fs at 48.1 kHz  
Max: 1024 × Fs PLL unlocked  
49.152  
49.2544  
51.200  
MLBCLK rise time  
MLB fall time  
tmckr  
tmckf  
tmckc  
tmckl  
1
1
ns  
ns  
ns  
ns  
VIL TO VIH  
VIH TO VIL  
MLBCLK cycle time  
MLBCLK low time  
20.3  
6.5  
6.1  
7.7  
7.3  
PLL unlocked  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
98  
Freescale Semiconductor  
Table 63. MLB Device 1024Fs Timing Parameters (continued)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Comment  
MLBCLK high time  
tmckh  
9.7  
9.3  
10.6  
10.2  
ns  
PLL unlocked  
MLBCLK pulse width variation  
tmpwv  
tdsmcf  
1
0.7  
ns pp  
ns  
Note2  
MLBSIG/MLBDAT input valid  
to MLBCLK falling  
MLBSIG/MLBDAT input hold  
from MLBCLK low  
tdhmcf  
tmcfdz  
tmdzh  
0
0
2
tmckl  
ns  
ns  
ns  
MLBSIG/MLBDAT output high  
impedance from MLBCLK low  
Bus Hold Time  
Note3  
1
2
The MLB Controller can shut off MLBCLK to place MediaLB in a low-power state.  
Pulse width variation is measured at 1.25 V by triggering on one edge of MLBCLK and measuring the spread on the other edge,  
measured in ns peak-to-peak (pp)  
3
The board must be designed to insure that the high-impedance bus does not leave the logic state of the final driven bit for this  
time period. Therefore, coupling must be minimized while meeting the maximum capacitive load listed.  
4.9.16 1-Wire Timing Specifications  
Figure 70 depicts the RPP timing, and Table 64 lists the RPP timing parameters.  
1-WIRE Tx  
DS2502 Tx  
“Presence Pulse”  
“Reset Pulse”  
OW2  
1-Wire bus  
(BATT_LINE)  
OW3  
OW1  
OW4  
Figure 70. Reset and Presence Pulses (RPP) Timing Diagram  
Table 64. RPP Sequence Delay Comparisons Timing Parameters  
ID  
OW1  
Parameters  
Symbol  
Min.  
480  
Typ.  
Max.  
Units  
Reset time low  
tRSTL  
tPDH  
tPDL  
511  
60  
µs  
µs  
µs  
µs  
OW2  
OW3  
OW4  
Presence detect high  
Presence detect low  
Reset time high  
15  
60  
240  
tRSTH  
480  
512  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
99  
Figure 71 depicts write 0 sequence timing, and Table 65 lists the timing parameters.  
OW6  
1-Wire bus  
(BATT_LINE)  
OW5  
Figure 71. Write 0 Sequence Timing Diagram  
Table 65. WR0 Sequence Timing Parameters  
ID  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
OW5  
OW6  
Write 0 low time  
Transmission time slot  
tWR0_low  
tSLOT  
60  
100  
117  
120  
120  
µs  
µs  
OW5  
Figure 72 shows write 1 sequence timing, and Figure 73 depicts the read sequence timing. Table 66 lists  
the timing parameters.  
OW8  
1-Wire bus  
(BATT_LINE)  
OW7  
Figure 72. Write 1 Sequence Timing Diagram  
OW8  
1-Wire bus  
(BATT_LINE)  
OW7  
OW9  
Figure 73. Read Sequence Timing Diagram  
Table 66. WR1/RD Timing Parameters  
ID  
Parameter  
Write 1/read low time  
Symbol  
Min.  
Typ.  
Max.  
Units  
OW7  
OW8  
OW9  
tLOW1  
tSLOT  
1
5
15  
120  
45  
µs  
µs  
µs  
Transmission time slot  
Release time  
60  
15  
117  
tRELEASE  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
100  
Freescale Semiconductor  
4.9.17 Parallel ATA Module AC Electrical Specifications  
The parallel ATA module can work on PIO/multiword DMA/ultra-DMA transfer modes (not available for  
the MCIMX351). Each transfer mode has a different data transfer rate, Ultra DMA mode 4 data transfer  
rate is up to 100 MBps.  
The parallel ATA module interface consists of a total of 29 pins. Some pins have different functions in  
different transfer modes. There are various requirements for timing relationships among the function pins,  
in compliance with the ATA/ATAPI-6 specification, and these requirements are configurable by the ATA  
module registers.  
4.9.17.1 General Timing Requirements  
Table 67 and Figure 74 define the AC characteristics of the interface signals on all data transfer modes.  
Table 67. AC Characteristics of All Interface Signals  
ID  
Parameter  
Symbol  
Min.  
Max.  
Unit  
1
SI1 Rising edge slew rate for any signal on the ATA interface1  
SI2 Falling edge slew rate for any signal on the ATA interface1  
SI3 Host interface signal capacitance at the host connector  
Srise  
1.25  
1.25  
20  
V/ns  
V/ns  
pF  
1
Sfall  
Chost  
1
SRISE and SFALL meet this requirement when measured at the sender’s connector from 10–90% of full signal amplitude with  
all capacitive loads from 15 pF through 40 pF, where all signals have the same capacitive load value.  
ATA Interface Signals  
SI2  
SI1  
Figure 74. ATA Interface Signals Timing Diagram  
4.9.17.2 ATA Electrical Specifications (ATA Bus, Bus Buffers)  
This section discusses ATA parameters. For a detailed description, refer to the ATA-6 specification.  
Level shifters are required for 3.3-V or 5.0-V compatibility on the ATA interface.  
The use of bus buffers introduces delays on the bus and introduces skew between signal lines. These factors  
make it difficult to operate the bus at the highest speed (UDMA-5) when bus buffers are used. Use of bus  
buffers is not recommended if fast UDMA mode is required.  
The ATA specification imposes a slew rate limit on the ATA bus. According to this limit, any signal driven  
on the bus should have a slew rate between 0.4 and 1.2 V/ns with a 40 pF load. Few vendors of bus buffers  
specify the slew rate of the outgoing signals.  
When bus buffers are used the ata_data bus buffer is bidirectional, and uses the direction control signal  
ata_buffer_en. When ata_buffer_en is asserted, the bus should drive from host to device. When  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
101  
ata_buffer_en is negated, the bus drives from device to host. Steering of the signal is such that contention  
on the host and device tri-state buses is always avoided.  
4.9.17.3 Timing Parameters  
Table 68 shows the parameters used in the timing equations. These parameters depend on the  
implementation of the ATA interface on silicon, the bus buffer used, the cable delay, and the cable skew.  
Table 68. ATA Timing Parameters  
Value/  
Name  
Description  
Contributing Factor1  
T
Bus clock period (ipg_clk_ata)  
Peripheral clock  
frequency  
ti_ds Set-up time ata_data to ata_iordy edge (UDMA-in only)  
15 ns  
10 ns  
7 ns  
5 ns  
4 ns  
UDMA0  
UDMA1  
UDMA2, UDMA3  
UDMA4  
UDMA5  
ti_dh Hold time ata_iordy edge to ata_data (UDMA-in only)  
5.0 ns  
4.6 ns  
UDMA0, UDMA1, UDMA2, UDMA3, UDMA4  
UDMA5  
tco  
tsu  
Propagation delay bus clock L-to-H to  
ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_dior, ata_diow, ata_dmack, ata_data,  
ata_buffer_en  
12.0 ns  
Set-up time ata_data to bus clock L-to-H  
8.5 ns  
8.5 ns  
2.5 ns  
7 ns  
tsui Set-up time ata_iordy to bus clock H-to-L  
thi Hold time ata_iordy to bus clock H to L  
tskew1 Maximum difference in propagation delay bus clock L-to-H to any of following signals  
ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_dior, ata_diow, ata_dmack, ata_data  
(write), ata_buffer_en  
tskew2 Maximum difference in buffer propagation delay for any of following signals  
ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_dior, ata_diow, ata_dmack, ata_data  
(write), ata_buffer_en  
Transceiver  
Transceiver  
tskew3 Maximum difference in buffer propagation delay for any of following signals ata_iordy,  
ata_data (read)  
tbuf Maximum buffer propagation delay  
Transceiver  
Cable  
tcable1 Cable propagation delay for ata_data  
tcable2 Cable propagation delay for control signals ata_dior, ata_diow, ata_iordy, ata_dmack  
tskew4 Maximum difference in cable propagation delay between ata_iordy and ata_data (read)  
Cable  
Cable  
tskew5 Maximum difference in cable propagation delay between (ata_dior, ata_diow, ata_dmack)  
and ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_data(write)  
Cable  
tskew6 Maximum difference in cable propagation delay without accounting for ground bounce  
Cable  
1
Values provided where applicable.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
102  
Freescale Semiconductor  
4.9.17.4 PIO Mode Timing  
Figure 75 shows timing for PIO read, and Table 69 lists the timing parameters for PIO read.  
Figure 75. PIO Read Timing Diagram  
Table 69. PIO Read Timing Parameters  
ATA  
Parameter  
Parameter from  
Figure 75  
Controlling  
Variable  
Value  
t1  
t2  
t9  
t5  
t1  
t2r  
t9  
t1 (min.) = time_1 × T – (tskew1 + tskew2 + tskew5)  
t2 min.) = time_2r × T – (tskew1 + tskew2 + tskew5)  
t9 (min.) = time_9 × T – (tskew1 + tskew2 + tskew6)  
t5 (min.) = tco + tsu + tbuf + tbuf + tcable1 + tcable2  
time_1  
time_2r  
time_3  
t5  
If not met, increase  
time_2  
t6  
tA  
trd  
t6  
tA  
0
tA (min.) = (1.5 + time_ax) × T – (tco + tsui + tcable2 + tcable2 + 2 × tbuf)  
time_ax  
trd1  
trd1 (max.) = (–trd) + (tskew3 + tskew4)  
time_pio_rdx  
trd1 (min.) = (time_pio_rdx – 0.5) × T – (tsu + thi)  
(time_pio_rdx – 0.5) × T > tsu + thi + tskew3 + tskew4  
t0  
t0 (min.) = (time_1 + time_2 + time_9) × T  
time_1, time_2r, time_9  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
103  
Figure 76 shows timing for PIO write, and Table 70 lists the timing parameters for PIO write.  
Figure 76. PIO Write Timing Diagram  
Table 70. PIO Write Timing Parameters  
Parameter  
ATA  
Parameter  
Controlling  
Variable  
from  
Value  
Figure 76  
t1  
t2  
t9  
t3  
t1  
t2w  
t9  
t1 (min.) = time_1 × T – (tskew1 + tskew2 + tskew5)  
t2 (min.) = time_2w × T – (tskew1 + tskew2 + tskew5)  
t9 (min.) = time_9 × T – (tskew1 + tskew2 + tskew6)  
t3 (min.) = (time_2w – time_on) × T – (tskew1 + tskew2 +tskew5)  
time_1  
time_2w  
time_9  
If not met, increase  
time_2w  
t4  
tA  
t0  
t4  
tA  
t4 (min.) = time_4 × T – tskew1  
time_4  
tA = (1.5 + time_ax) × T – (tco + tsui + tcable2 + tcable2 + 2*tbuf)  
t0(min.) = (time_1 + time_2 + time_9) × T  
time_ax  
time_1, time_2r,  
time_9  
Avoid bus contention when switching buffer on by making ton long enough.  
Avoid bus contention when switching buffer off by making toff long enough.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
104  
Freescale Semiconductor  
Figure 77 shows timing for MDMA read, and Figure 78 shows timing for MDMA write. Table 71 lists the  
timing parameters for MDMA read and write.  
Figure 77. MDMA Read Timing Diagram  
Figure 78. MDMA Write Timing Diagram  
Table 71. MDMA Read and Write Timing Parameters  
Parameter  
ATA  
Parameter  
from  
Figure 77,  
Figure 78  
Controlling  
Variable  
Value  
tm, ti  
tm  
td, td1  
tk  
tm (min.) = ti (min.) = time_m × T – (tskew1 + tskew2 + tskew5)  
td1.(min.) = td (min.) = time_d × T – (tskew1 + tskew2 + tskew6)  
tk.(min.) = time_k × T – (tskew1 + tskew2 + tskew6)  
t0 (min.) = (time_d + time_k) × T  
time_m  
time_d  
td  
tk  
time_k  
t0  
time_d, time_k  
time_d  
tg(read)  
tgr  
tgr (min. – read) = tco + tsu + tbuf + tbuf + tcable1 + tcable2  
tgr.(min. – drive) = td – te(drive)  
tf(read)  
tg(write)  
tf(write)  
tL  
tfr  
tfr (min. – drive) = 0  
time_d  
tg (min. – write) = time_d × T – (tskew1 + tskew2 + tskew5)  
tf (min. – write) = time_k × T – (tskew1 + tskew2 + tskew6)  
tL (max.) = (time_d + time_k–2) × T – (tsu + tco + 2 × tbuf + 2 × tcable2)  
time_k  
time_d, time_k  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
105  
Table 71. MDMA Read and Write Timing Parameters (continued)  
Parameter  
ATA  
Parameter  
from  
Figure 77,  
Figure 78  
Controlling  
Variable  
Value  
tn, tj  
tkjn  
tn = tj = tkjn = (max.(time_k,. time_jn) × T – (tskew1 + tskew2 + tskew6)  
time_jn  
ton  
toff  
ton = time_on × T – tskew1  
toff = time_off × T – tskew1  
4.9.17.5 UDMA-In Timing  
Figure 79 shows timing when the UDMA-in transfer starts, Figure 80 shows timing when the UDMA-in  
host terminates transfer, Figure 81 shows timing when the UDMA-in device terminates transfer, and  
Table 72 lists the timing parameters for the UDMA-in burst.  
Figure 79. UDMA-In Transfer Starts Timing Diagram  
Figure 80. UDMA-In Host Terminates Transfer Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
106  
Freescale Semiconductor  
Figure 81. UDMA-In Device Terminates Transfer Timing Diagram  
Table 72. UDMA-In Burst Timing Parameters  
Parameters  
from  
ATA  
Parameter  
Figure 79,  
Figure 80,  
Figure 81  
Description  
Controlling Variable  
tack  
tenv  
tack  
tenv  
tack (min.) = (time_ack × T) – (tskew1 + tskew2)  
time_ack  
time_env  
tenv (min.) = (time_env × T) – (tskew1 + tskew2)  
tenv (max.) = (time_env × T) + (tskew1 + tskew2)  
tds  
tdh  
tds1  
tdh1  
tc1  
tds – (tskew3) – ti_ds > 0  
tskew3, ti_ds, ti_dh  
should be low enough  
tdh – (tskew3) – ti_dh > 0  
tcyc  
trp  
(tcyc – tskew > T  
T big enough  
time_rp  
trp  
trp (min.) = time_rp × T – (tskew1 + tskew2 + tskew6)  
(time_rp × T) – (tco + tsu + 3T + 2 × tbuf + 2 × tcable2) > trfs (drive)  
tmli1 (min.) = (time_mlix + 0.4) × T  
tzah (min.) = (time_zah + 0.4) × T  
tx11  
tmli1  
tzah  
tdzfs  
tcvh  
time_rp  
tmli  
tzah  
tdzfs  
tcvh  
time_mlix  
time_zah  
time_dzfs  
time_cvh  
tdzfs = (time_dzfs × T) – (tskew1 + tskew2)  
tcvh = (time_cvh × T) – (tskew1 + tskew2)  
ton  
toff  
ton = time_on × T – tskew1  
toff = time_off × T – tskew1  
1
There is a special timing requirement in the ATA host that requires the internal DIOW to go high three clocks after the last active  
edge on the DSTROBE signal. The equation given on this line tries to capture this constraint.  
2. Make ton and toff large enough to avoid bus contention.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
107  
4.9.17.6 UDMA-Out Timing  
Figure 82 shows timing when the UDMA-out transfer starts, Figure 83 shows timing when the UDMA-out  
host terminates transfer, Figure 84 shows timing when the UDMA-out device terminates transfer, and  
Table 73 lists the timing parameters for the UDMA-out burst.  
Figure 82. UDMA-Out Transfer Starts Timing Diagram  
Figure 83. UDMA-Out Host Terminates Transfer Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
108  
Freescale Semiconductor  
Figure 84. UDMA-Out Device Terminates Transfer Timing Diagram  
Table 73. UDMA-Out Burst Timing Parameters  
Parameter  
from  
ATA  
Parameter  
Controlling  
Variable  
Figure 82,  
Figure 83,  
Figure 84  
Value  
tack  
tenv  
tack  
tenv  
tack (min.) = (time_ack × T) – (tskew1 + tskew2)  
time_ack  
time_env  
tenv (min.) = (time_env × T) – (tskew1 + tskew2)  
tenv (max.) = (time_env × T) + (tskew1 + tskew2)  
tdvs  
tdvh  
tcyc  
t2cyc  
trfs1  
tdvs  
tdvh  
tcyc  
tdvs = (time_dvs ×T) – (tskew1 + tskew2)  
tdvs = (time_dvh × T) – (tskew1 + tskew2)  
tcyc = time_cyc × T – (tskew1 + tskew2)  
t2cyc = time_cyc × 2 × T  
time_dvs  
time_dvh  
time_cyc  
time_cyc  
trfs  
trfs = 1.6 × T + tsui + tco + tbuf + tbuf  
tdzfs = time_dzfs × T – (tskew1)  
tss = time_ss × T – (tskew1 + tskew2)  
tdzfs_mli = max. (time_dzfs, time_mli) × T – (tskew1 + tskew2)  
tli1 > 0  
tdzfs  
tss  
time_dzfs  
time_ss  
tss  
tmli  
tli  
tdzfs_mli  
tli1  
tli  
tli2  
tli2 > 0  
tli  
tli3  
tli3 > 0  
tcvh  
tcvh  
tcvh = (time_cvh × T) – (tskew1 + tskew2)  
time_cvh  
ton  
toff  
ton = time_on × T – tskew1  
toff = time_off × T – tskew1  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
109  
4.9.18 Parallel Interface (ULPI) Timing  
Electrical and timing specifications of the parallel interface are presented in the subsequent sections.  
Table 74. Signal Definitions—Parallel Interface  
Name  
Direction  
Signal Description  
USB_Clk  
Interface clock. All interface signals are synchronous to the clock.  
In  
I/O  
In  
USB_Data[7:0]  
USB_Dir  
Bidirectional data bus, driven low by the link during idle. Bus ownership is determined by Dir.  
Direction. Control the direction of the data bus.  
USB_Stp  
Stop. The link asserts this signal for 1 clock cycle to stop the data stream currently on the bus.  
Next. The PHY asserts this signal to throttle the data.  
Out  
In  
USB_Nxt  
USB_Clk  
US15  
US16  
USB_Stp  
US15  
US16  
USB_Data  
US17  
US17  
USB_Dir/Nxt  
Figure 85. USB Transmit/Receive Waveform in Parallel Mode  
Table 75. USB Timing Specification in VP_VM Unidirectional Mode  
Conditions /  
Reference Signal  
ID  
Parameter  
Min.  
Max.  
Unit  
US15 USB_TXOE_B  
US16 USB_DAT_VP  
US17 USB_SE0_VM  
6.0  
0.0  
9.0  
ns  
ns  
ns  
10 pF  
10 pF  
10 pF  
4.9.19 PWM Electrical Specifications  
This section describes the electrical information of the PWM. The PWM can be programmed to select one  
of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before  
being input to the counter. The output is available at the pulse-width modulator output (PWMO) external  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
110  
Freescale Semiconductor  
pin. The modulated signal of the module is observed at this pin. It can be viewed as a clock signal whose  
period and duty cycle can be varied with different settings of the PWM. The smallest period is two ipg_clk  
periods with duty cycle of 50 percent.  
4.9.20 SJC Electrical Specifications  
This section details the electrical characteristics for the SJC module. Figure 86 depicts the SJC test clock  
input timing. Figure 87 depicts the SJC boundary scan timing, Figure 88 depicts the SJC test access port,  
Figure 89 depicts the SJC TRST timing, and Table 76 lists the SJC timing parameters.  
SJ1  
SJ2  
VM  
SJ2  
VM  
TCK  
(Input)  
VIH  
VIL  
SJ3  
SJ3  
Figure 86. Test Clock Input Timing Diagram  
TCK  
(Input)  
VIH  
SJ5  
Input Data Valid  
VIL  
SJ4  
Data  
Inputs  
SJ6  
Data  
Outputs  
Output Data Valid  
SJ7  
SJ6  
Data  
Outputs  
Data  
Outputs  
Output Data Valid  
Figure 87. Boundary Scan (JTAG) Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
111  
TCK  
(Input)  
VIH  
VIL  
SJ8  
Input Data Valid  
SJ9  
TDI  
TMS  
(Input)  
SJ10  
SJ11  
SJ10  
TDO  
Output Data Valid  
(Output)  
TDO  
(Output)  
TDO  
(Output)  
Output Data Valid  
Figure 88. Test Access Port Timing Diagram  
TCK  
(Input)  
SJ13  
TRST  
(Input)  
SJ12  
Figure 89. TRST Timing Diagram  
Table 76. SJC Timing Parameters  
Parameter  
All Frequencies  
ID  
Unit  
Min.  
Max.  
SJ1 TCK cycle time  
1001  
40  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
SJ2 TCK clock pulse width measured at VM  
SJ3 TCK rise and fall times  
SJ4 Boundary scan input data set-up time  
SJ5 Boundary scan input data hold time  
SJ6 TCK low to output data valid  
SJ7 TCK low to output high impedance  
SJ8 TMS, TDI data set-up time  
10  
50  
50  
50  
44  
10  
50  
SJ9 TMS, TDI data hold time  
SJ10 TCK low to TDO data valid  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
112  
Freescale Semiconductor  
Table 76. SJC Timing Parameters (continued)  
Parameter  
All Frequencies  
Min. Max.  
44  
ID  
Unit  
SJ11 TCK low to TDO high impedance  
SJ12 TRST assert time  
ns  
ns  
ns  
100  
40  
SJ13 TRST set-up time to TCK low  
1
2
On cases where SDMA TAP is put in the chain, the max. TCK frequency is limited by max. ratio of 1:8 of SDMA core frequency  
to TCK limitation. This implies max. frequency of 8.25 MHz (or 121.2 ns) for 66 MHz IPG clock.  
VM = mid point voltage  
4.9.21 SPDIF Timing  
SPDIF data is sent using bi-phase marking code. When encoding, the SPDIF data signal is modulated by  
a clock that is twice the bit rate of the data signal.  
Figure 90 shows SPDIF timing parameters, including the timing of the modulating Rx clock (SRCK) for  
SPDIF in Rx mode and the timing of the modulating Tx clock (STCLK). for SPDIF in Tx mode.  
Table 77. SPDIF Timing Parameters  
Timing Parameter Range  
Parameters  
Symbol  
Units  
Min.  
Max.  
SPDIFIN Skew: asynchronous inputs, no specs apply  
SPDIFOUT output (Load = 50 pf)  
0.7  
ns  
ns  
1.5  
24.2  
31.3  
• Skew  
Transition rising  
Transition falling  
SPDIFOUT1 output (Load = 30 pf)  
1.5  
13.6  
18.0  
ns  
• Skew  
Transition rising  
Transition falling  
Modulating Rx clock (SRCK) period  
SRCK high period  
srckp  
srckph  
srckpl  
stclkp  
stclkph  
stclkpl  
40.0  
16.0  
16.0  
40.0  
16.0  
16.0  
ns  
ns  
ns  
ns  
ns  
ns  
SRCK low period  
Modulating Tx clock (STCLK) period  
STCLK high period  
STCLK low period  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
113  
srckp  
srckpl  
VM  
srckph  
VM  
SRCK  
(Output)  
Figure 90. SRCK Timing  
stclkp  
stclkpl  
VM  
stclkph  
VM  
STCLK  
(Input)  
Figure 91. STCLK Timing  
4.9.22 SSI Electrical Specifications  
This section describes electrical characteristics of the SSI.  
NOTE  
All of the timing for the SSI is given for a non-inverted serial clock  
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync  
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have  
been inverted, all the timing remains valid by inverting the clock signal  
STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables  
and in the figures.  
All timing is on AUDMUX signals when SSI is being used for data  
transfer.  
“Tx” and “Rx” refer to the transmit and receive sections of the SSI,  
respectively.  
For internal frame sync operations using the external clock, the FS  
timing will be the same as that of Tx Data (for example, during AC97  
mode of operation).  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
114  
Freescale Semiconductor  
4.9.22.1 SSI Transmitter Timing with Internal Clock  
Figure 92 depicts the SSI transmitter timing with internal clock, and Table 78 lists the timing parameters.  
SS1  
SS5  
SS4  
SS3  
SS2  
AD1_TXC  
(Output)  
SS8  
SS6  
AD1_TXFS (bl)  
(Output)  
SS10  
SS12  
AD1_TXFS (wl)  
(Output)  
SS14  
SS17  
SS15  
SS16  
SS18  
AD1_TXD  
(Output)  
SS43  
SS42  
SS19  
AD1_RXD  
(Input)  
Note: SRXD Input in Synchronous mode only  
SS1  
SS3  
SS5  
SS4  
SS2  
DAM1_T_CLK  
(Output)  
SS8  
SS6  
DAM1_T_FS (bl)  
(Output)  
SS10  
SS12  
DAM1_T_FS (wl)  
(Output)  
SS14  
SS17  
SS15  
SS18  
SS16  
DAM1_TXD  
(Output)  
SS43  
SS42  
SS19  
DAM1_RXD  
(Input)  
Note: SRXD Input in Synchronous mode only  
Figure 92. SSI Transmitter with Internal Clock Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
115  
Table 78. SSI Transmitter with Internal Clock Timing Parameters  
ID  
Parameter  
Min.  
Max.  
Unit  
Internal Clock Operation  
SS1  
SS2  
(Tx/Rx) CK clock period  
81.4  
36.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Tx/Rx) CK clock high period  
(Tx/Rx) CK clock rise time  
(Tx/Rx) CK clock low period  
(Tx/Rx) CK clock fall time  
(Tx) CK high to FS (bl) high  
(Tx) CK high to FS (bl) low  
(Tx) CK high to FS (wl) high  
(Tx) CK high to FS (wl) low  
(Tx/Rx) Internal FS rise time  
(Tx/Rx) Internal FS fall time  
SS3  
6
SS4  
36.0  
SS5  
6
SS6  
15.0  
15.0  
15.0  
15.0  
6
SS8  
SS10  
SS12  
SS14  
SS15  
SS16  
SS17  
SS18  
SS19  
6
(Tx) CK high to STXD valid from high impedance  
(Tx) CK high to STXD high/low  
15.0  
15.0  
15.0  
6
(Tx) CK high to STXD high impedance  
STXD rise/fall time  
Synchronous Internal Clock Operation  
SS42  
SS43  
SS52  
SRXD setup before (Tx) CK falling  
SRXD hold after (Tx) CK falling  
Loading  
10.0  
0
25  
ns  
ns  
pF  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
116  
Freescale Semiconductor  
4.9.22.2 SSI Receiver Timing with Internal Clock  
Figure 93 depicts the SSI receiver timing with internal clock. Table 79 lists the timing parameters shown  
in Figure 93.  
SS1  
SS3  
SS5  
SS4  
SS2  
AD1_TXC  
(Output)  
SS9  
SS7  
AD1_TXFS (bl)  
(Output)  
SS11  
SS13  
AD1_TXFS (wl)  
(Output)  
SS20  
SS21  
AD1_RXD  
(Input)  
SS51  
SS50  
SS47  
SS49  
SS3  
SS48  
AD1_RXC  
(Output)  
SS1  
SS7  
SS5  
SS4  
SS2  
DAM1_T_CLK  
(Output)  
SS9  
DAM1_T_FS (bl)  
(Output)  
SS11  
SS13  
DAM1_T_FS (wl)  
(Output)  
SS20  
SS21  
DAM1_RXD  
(Input)  
SS47  
SS51  
SS50  
SS49  
SS48  
DAM1_R_CLK  
(Output)  
Figure 93. SSI Receiver with Internal Clock Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
117  
Table 79. SSI Receiver with Internal Clock Timing Parameters  
ID  
Parameter  
Internal Clock Operation  
Min.  
Max.  
Unit  
SS1  
SS2  
(Tx/Rx) CK clock period  
81.4  
36.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Tx/Rx) CK clock high period  
(Tx/Rx) CK clock rise time  
(Tx/Rx) CK clock low period  
(Tx/Rx) CK clock fall time  
(Rx) CK high to FS (bl) high  
(Rx) CK high to FS (bl) low  
(Rx) CK high to FS (wl) high  
(Rx) CK high to FS (wl) low  
SS3  
6
SS4  
36.0  
SS5  
6
SS7  
15.0  
15.0  
15.0  
15.0  
SS9  
SS11  
SS13  
SS20  
SS21  
SRXD setup time before (Rx) CK low  
SRXD hold time after (Rx) CK low  
10.0  
0
Oversampling Clock Operation  
SS47  
SS48  
SS49  
SS50  
SS51  
Oversampling clock period  
Oversampling clock high period  
Oversampling clock rise time  
Oversampling clock low period  
Oversampling clock fall time  
15.04  
6
3
ns  
ns  
ns  
ns  
ns  
6
3
i.MX35 Applications Processors for Automotive Products, Rev. 10  
118  
Freescale Semiconductor  
4.9.22.3 SSI Transmitter Timing with External Clock  
Figure 94 depicts the SSI transmitter timing with external clock, and Table 80 lists the timing parameters.  
SS22  
SS23  
SS25  
SS26  
SS24  
AD1_TXC  
(Input)  
SS27  
SS29  
AD1_TXFS (bl)  
(Input)  
SS33  
SS31  
AD1_TXFS (wl)  
(Input)  
SS39  
SS37  
SS38  
AD1_TXD  
(Output)  
SS45  
SS44  
AD1_RXD  
(Input)  
SS46  
Note: SRXD Input in Synchronous mode only  
SS22  
SS26  
SS25  
SS24  
SS23  
DAM1_T_CLK  
(Input)  
SS29  
SS27  
DAM1_T_FS (bl)  
(Input)  
SS33  
SS31  
DAM1_T_FS (wl)  
(Input)  
SS39  
SS37  
SS38  
DAM1_TXD  
(Output)  
SS45  
SS44  
DAM1_RXD  
(Input)  
SS46  
Note: SRXD Input in Synchronous mode only  
Figure 94. SSI Transmitter with External Clock Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
119  
Table 80. SSI Transmitter with External Clock Timing Parameters  
ID  
Parameter  
External Clock Operation  
Min.  
Max.  
Unit  
SS22  
SS23  
SS24  
SS25  
SS26  
SS27  
SS29  
SS31  
SS33  
SS37  
SS38  
SS39  
(Tx/Rx) CK clock period  
81.4  
36.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Tx/Rx) CK clock high period  
(Tx/Rx) CK clock rise time  
(Tx/Rx) CK clock low period  
(Tx/Rx) CK clock fall time  
(Tx) CK high to FS (bl) high  
(Tx) CK high to FS (bl) low  
(Tx) CK high to FS (wl) high  
(Tx) CK high to FS (wl) low  
6.0  
36.0  
6.0  
15.0  
–10.0  
10.0  
–10.0  
10.0  
15.0  
(Tx) CK high to STXD valid from high impedance  
(Tx) CK high to STXD high/low  
15.0  
15.0  
15.0  
(Tx) CK high to STXD high impedance  
Synchronous External Clock Operation  
SS44  
SS45  
SS46  
SRXD setup before (Tx) CK falling  
SRXD hold after (Tx) CK falling  
SRXD rise/fall time  
10.0  
2.0  
ns  
ns  
ns  
6.0  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
120  
Freescale Semiconductor  
4.9.22.4 SSI Receiver Timing with External Clock  
Figure 95 depicts the SSI receiver timing with external clock, and Table 81 lists the timing parameters.  
SS22  
SS26  
SS25  
SS24  
SS23  
AD1_TXC  
(Input)  
SS30  
SS28  
AD1_TXFS (bl)  
(Input)  
SS32  
SS35  
SS34  
AD1_TXFS (wl)  
(Input)  
SS41  
SS36  
SS40  
AD1_RXD  
(Input)  
SS22  
SS24  
SS26  
SS25  
SS23  
DAM1_T_CLK  
(Input)  
SS30  
SS28  
DAM1_T_FS (bl)  
(Input)  
SS32  
SS35  
SS34  
DAM1_T_FS (wl)  
(Input)  
SS41  
SS36  
SS40  
DAM1_RXD  
(Input)  
Figure 95. SSI Receiver with External Clock Timing Diagram  
Table 81. SSI Receiver with External Clock Timing Parameters  
ID  
Parameter  
External Clock Operation  
Min.  
Max.  
Unit  
SS22  
SS23  
SS24  
(Tx/Rx) CK clock period  
81.4  
36.0  
ns  
ns  
ns  
(Tx/Rx) CK clock high period  
(Tx/Rx) CK clock rise time  
6.0  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
121  
Table 81. SSI Receiver with External Clock Timing Parameters (continued)  
ID  
Parameter  
Min.  
Max.  
Unit  
SS25  
SS26  
SS28  
SS30  
SS32  
SS34  
SS35  
SS36  
SS40  
SS41  
(Tx/Rx) CK clock low period  
(Tx/Rx) CK clock fall time  
(Rx) CK high to FS (bl) high  
(Rx) CK high to FS (bl) low  
(Rx) CK high to FS (wl) high  
(Rx) CK high to FS (wl) low  
(Tx/Rx) External FS rise time  
(Tx/Rx) External FS fall time  
36.0  
6.0  
15.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–10.0  
10.0  
–10.0  
10.0  
15.0  
6.0  
6.0  
SRXD setup time before (Rx) CK low  
SRXD hold time after (Rx) CK low  
10.0  
2.0  
4.9.23 UART Electrical  
This section describes the electrical information of the UART module.  
4.9.23.1 UART RS-232 Serial Mode Timing  
The following subsections give the UART transmit and receive timings in RS-232 serial mode.  
4.9.23.1.11 UART Transmitter  
Figure 96 depicts the transmit timing of UART in RS-232 serial mode, with 8 data bit/1 stop bit format.  
Table 82 lists the UART RS-232 serial mode transmit timing characteristics.  
Possible  
UA1  
UA1  
Bit 3  
Parity  
Bit  
Next  
Start  
Bit  
Start  
Bit  
TXD  
(output)  
STOP  
BIT  
Bit 7  
Bit 0  
Bit 1  
Bit 2  
Bit 4  
Bit 5  
Bit 6  
Par Bit  
UA1  
UA1  
Figure 96. UART RS-232 Serial Mode Transmit Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
122  
Freescale Semiconductor  
Table 82. RS-232 Serial Mode Transmit Timing Parameters  
ID  
Parameter  
Transmit Bit Time  
Symbol  
Min.  
Max.  
Units  
1
UA1  
tTbit  
1/Fbaud_rate  
1/Fbaud_rate  
+
2
T
T
ref_clk  
ref_clk  
1
2
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.  
ref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).  
T
4.9.23.1.12 UART Receiver  
Figure 97 depicts the RS-232 serial mode receive timing, with 8 data bit/1 stop bit format. Table 83 lists  
serial mode receive timing characteristics.  
Possible  
UA2  
Parity  
Bit  
UA2  
Bit 3  
Next  
Start  
Bit  
Start  
Bit  
RXD  
(input)  
STOP  
BIT  
Bit 7  
Bit 0  
Bit 1  
Bit 2  
Bit 4  
Bit 5  
Bit 6  
Par Bit  
UA2  
UA2  
Figure 97. UART RS-232 Serial Mode Receive Timing Diagram  
Table 83. RS-232 Serial Mode Receive Timing Parameters  
ID  
Parameter  
Symbol  
Min.  
Max.  
Units  
Receive Bit Time1  
tRbit  
1/Fbaud_rate  
1/Fbaud_rate +  
2
UA2  
1/(16 × Fbaud_rate  
)
1/(16 × Fbaud_rate)  
1
2
The UART receiver can tolerate 1/(16 × Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not  
exceed 3/(16 × Fbaud_rate).  
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency) ÷ 16.  
4.9.23.2 UART IrDA Mode Timing  
The following subsections give the UART transmit and receive timings in IrDA mode.  
4.9.23.2.13 UART IrDA Mode Transmitter  
Figure 98 depicts the UART IrDA mode transmit timing, with 8 data bit/1 stop bit format. Table 84 lists  
the transmit timing characteristics.  
UA4  
UA3  
UA3  
UA3  
UA3  
TXD  
(output)  
Start  
Bit  
STOP  
BIT  
Bit 0  
Bit 1  
Possible  
Parity  
Bit  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Figure 98. UART IrDA Mode Transmit Timing Diagram  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
123  
Table 84. IrDA Mode Transmit Timing Parameters  
ID  
Parameter  
Symbol  
Min.  
Max.  
Units  
1
UA3  
Transmit bit time in IrDA mode  
tTIRbit  
1/Fbaud_rate  
1/Fbaud_rate + T  
ref_clk  
2
T
ref_clk  
UA4  
Transmit IR pulse duration  
tTIRpulse (3/16) × (1/Fbaud_rate) (3/16) × (1/Fbaud_rate  
– T + T  
)
ref_clk  
ref_clk  
1
2
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.  
ref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).  
T
4.9.23.2.14 UART IrDA Mode Receiver  
Figure 99 depicts the UART IrDA mode receive timing, with 8 data bit/1 stop bit format. Table 85 lists the  
receive timing characteristics.  
UA6  
UA5  
UA5  
UA5  
UA5  
RXD  
(input)  
Start  
Bit  
STOP  
BIT  
Bit 0  
Bit 1  
Possible  
Parity  
Bit  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Figure 99. UART IrDA Mode Receive Timing Diagram  
Table 85. IrDA Mode Receive Timing Parameters  
ID  
Parameter  
Symbol  
Min.  
Max.  
Units  
Receive bit time1 in IrDA mode  
tRIRbit  
1/Fbaud_rate  
1/Fbaud_rate  
1/(16 × Fbaud_rate)  
+
2
UA5  
1/(16 × Fbaud_rate  
)
UA6  
Receive IR pulse duration  
tRIRpulse  
1.41 us  
(5/16) × (1/Fbaud_rate  
)
1
2
The UART receiver can tolerate 1/(16 × Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not  
exceed 3/(16 × Fbaud_rate).  
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency) ÷ 16.  
4.9.24 USB Electrical Specifications  
In order to support four different serial interfaces, the USB serial transceiver can be configured to operate  
in one of four modes:  
DAT_SE0 bidirectional, 3-wire mode  
DAT_SE0 unidirectional, 6-wire mode  
VP_VM bidirectional, 4-wire mode  
VP_VM unidirectional, 6-wire mode  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
124  
Freescale Semiconductor  
4.9.24.1 DAT_SE0 Bidirectional Mode  
Table 86 defines the signals for DAT_SE0 bidirectional mode. Figure 100 and Figure 101 show the  
transmit and receive waveforms respectively.  
Table 86. Signal Definitions—DAT_SE0 Bidirectional Mode  
Name  
Direction  
Signal Description  
Out  
USB_TXOE_B  
Transmit enable, active low  
Out  
In  
Tx data when USB_TXOE_B is low  
Differential Rx data when USB_TXOE_B is high  
USB_DAT_VP  
USB_SE0_VM  
Out  
In  
SE0 drive when USB_TXOE_B is low  
SE0 Rx indicator when USB_TXOE_B is high  
Transmit  
US3  
USB_TXOE_B  
USB_DAT_VP  
USB_SE0_VM  
US1  
US4  
US2  
Figure 100. USB Transmit Waveform in DAT_SE0 Bidirectional Mode  
Receive  
USB_TXOE_B  
USB_DAT_VP  
US7  
US8  
USB_SE0_VM  
Figure 101. USB Receive Waveform in DAT_SE0 Bidirectional Mode  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
125  
Table 87 describes the port timing specification in DAT_SE0 bidirectional mode.  
Table 87. Port Timing Specification in DAT_SE0 Bidirectional Mode  
No.  
Parameter  
Signal Name  
Direction  
Min. Max. Unit  
Conditions/Reference Signal  
US1 Tx rise/fall time  
US2 Tx rise/fall time  
US3 Tx rise/fall time  
US4 Tx duty cycle  
US7 Rx rise/fall time  
US8 Rx rise/fall time  
USB_DAT_VP  
USB_SE0_VM  
USB_TXOE_B  
USB_DAT_VP  
USB_DAT_VP  
USB_SE0_VM  
Out  
Out  
Out  
Out  
In  
5.0  
5.0  
ns  
ns  
ns  
%
50 pF  
50 pF  
50 pF  
5.0  
49.0  
51.0  
3.0  
ns  
ns  
35 pF  
35 pF  
In  
3.0  
4.9.24.2 DAT_SE0 Unidirectional Mode  
Table 88 defines the signals for DAT_SE0 unidirectional mode. Figure 102 and Figure 103 show the  
transmit and receive waveforms respectively.  
Table 88. Signal Definitions—DAT_SE0 Unidirectional Mode  
Name  
Direction  
Signal Description  
USB_TXOE_B  
USB_DAT_VP  
USB_SE0_VM  
USB_VP1  
Out  
Out  
Out  
In  
Transmit enable, active low  
Tx data when USB_TXOE_B is low  
SE0 drive when USB_TXOE_B is low  
Buffered data on DP when USB_TXOE_B is high  
Buffered data on DM when USB_TXOE_B is high  
Differential Rx data when USB_TXOE_B is high  
USB_VM1  
In  
USB_RCV  
In  
Transmit  
US11  
USB_TXOE_B  
USB_DAT_VP  
USB_SE0_VM  
US9  
US10  
US12  
Figure 102. USB Transmit Waveform in DAT_SE0 Unidirectional Mode  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
126  
Freescale Semiconductor  
Receive  
USB_TXOE_B  
USB_VP1  
USB_RCV  
US15/US17  
US16  
USB_VM1  
Figure 103. USB Receive Waveform in DAT_SE0 Unidirectional Mode  
Table 89 describes the port timing specification in DAT_SE0 unidirectional mode.  
Table 89. USB Port Timing Specification in DAT_SE0 Unidirectional Mode  
Signal  
Source  
Condition/  
Reference Signal  
No.  
Parameter  
Signal Name  
Min.  
Max.  
Unit  
US9  
Tx rise/fall time  
Tx rise/fall time  
Tx rise/fall time  
Tx duty cycle  
USB_DAT_VP  
USB_SE0_VM  
USB_TXOE_B  
USB_DAT_VP  
USB_VP1  
Out  
Out  
Out  
Out  
In  
5.0  
5.0  
5.0  
51.0  
3.0  
3.0  
3.0  
ns  
ns  
ns  
%
50 pF  
50 pF  
50 pF  
US10  
US11  
US12  
US15  
US16  
US17  
49.0  
Rx rise/fall time  
Rx rise/fall time  
Rx rise/fall time  
ns  
ns  
ns  
35 pF  
35 pF  
35 pF  
USB_VM1  
In  
USB_RCV  
In  
4.9.24.3 VP_VM Bidirectional Mode  
Table 90 defines the signals for VP_VM bidirectional mode. Figure 104 and Figure 105 show the transmit  
and receive waveforms respectively.  
Table 90. Signal Definitions—VP_VM Bidirectional Mode  
Name  
USB_TXOE_B  
Direction  
Signal Description  
Out  
Transmit enable, active low  
USB_DAT_VP  
USB_SE0_VM  
USB_RCV  
Out (Tx)  
In (Rx)  
Tx VP data when USB_TXOE_B is low  
Rx VP data when USB_TXOE_B is high  
Out (Tx)  
In (Rx)  
Tx VM data when USB_TXOE_B low  
Rx VM data when USB_TXOE_B high  
In  
Differential Rx data  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
127  
Transmit  
US20  
USB_TXOE_B  
USB_DAT_VP  
USB_SE0_VM  
US18  
US21  
US19  
US22  
US22  
Figure 104. USB Transmit Waveform in VP_VM Bidirectional Mode  
Receive  
US26  
USB_DAT_VP  
USB_SE0_VM  
USB_RCV  
US27  
US28  
US29  
Figure 105. USB Receive Waveform in VP_VM Bidirectional Mode  
Table 91 describes the port timing specification in VP_VM bidirectional mode.  
Table 91. USB Port Timing Specification in VP_VM Bidirectional Mode  
Condition/  
Reference Signal  
No.  
Parameter  
Signal Name  
USB_DAT_VP  
Direction  
Min.  
Max.  
Unit  
US18  
US19  
US20  
US21  
US22  
US26  
US27  
Tx rise/fall time  
Tx rise/fall time  
Tx rise/fall time  
Tx duty cycle  
Tx overlap  
Out  
Out  
Out  
Out  
Out  
In  
5.0  
5.0  
ns  
ns  
ns  
%
50 pF  
50 pF  
USB_SE0_VM  
USB_TXOE_B  
USB_DAT_VP  
USB_SE0_VM  
USB_DAT_VP  
USB_SE0_VM  
5.0  
50 pF  
49.0  
–3.0  
51.0  
+3.0  
3.0  
ns  
ns  
ns  
USB_DAT_VP  
35 pF  
Rx rise/fall time  
Rx rise/fall time  
In  
3.0  
35 pF  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
128  
Freescale Semiconductor  
Table 91. USB Port Timing Specification in VP_VM Bidirectional Mode (continued)  
Condition/  
Reference Signal  
No.  
Parameter  
Signal Name  
Direction  
Min.  
Max.  
Unit  
US28  
US29  
Rx skew  
Rx skew  
USB_DAT_VP  
USB_RCV  
In  
In  
–4.0  
–6.0  
+4.0  
+2.0  
ns  
ns  
USB_SE0_VM  
USB_DAT_VP  
4.9.24.4 VP_VM Unidirectional Mode  
Table 92 defines the signals for VP_VM unidirectional mode. Figure 106 and Figure 107 show the  
transmit and receive waveforms respectively.  
Table 92. Signal Definitions—VP_VM Unidirectional Mode  
Name  
Direction  
Signal Description  
USB_TXOE_B  
USB_DAT_VP  
USB_SE0_VM  
USB_VP1  
Out  
Out  
Out  
In  
Transmit enable, active low  
Tx VP data when USB_TXOE_B is low  
Tx VM data when USB_TXOE_B is low  
Rx VP data when USB_TXOE_B is high  
Rx VM data when USB_TXOE_B is high  
Differential Rx data  
USB_VM1  
In  
USB_RCV  
In  
Transmit  
US32  
USB_TXOE_B  
USB_DAT_VP  
USB_SE0_VM  
US30  
US33  
US31  
US34  
US34  
Figure 106. USB Transmit Waveform in VP_VM Unidirectional Mode  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
129  
Receive  
USB_TXOE_B  
USB_VP1  
US38  
USB_VM1  
USB_RCV  
US40  
US39  
US41  
Figure 107. USB Receive Waveform in VP_VM Unidirectional Mode  
Table 93 describes the port timing specification in VP_VM unidirectional mode.  
Table 93. USB Timing Specification in VP_VM Unidirectional Mode  
No.  
Parameter  
Signal  
Direction  
Out  
Out  
Out  
Out  
Out  
In  
Min. Max. Unit  
Conditions/Reference Signal  
Tx rise/fall time  
USB_DAT_VP  
US30  
US31  
US32  
US33  
US34  
US38  
US39  
US40  
US41  
5.0  
5.0  
ns  
ns  
ns  
%
50 pF  
50 pF  
Tx rise/fall time  
Tx rise/fall time  
Tx duty cycle  
Tx overlap  
USB_SE0_VM  
USB_TXOE_B  
USB_DAT_VP  
USB_SE0_VM  
USB_VP1  
5.0  
50 pF  
49.0  
–3.0  
51.0  
+3.0  
3.0  
ns  
ns  
ns  
ns  
ns  
USB_DAT_VP  
35 pF  
Rx rise/fall time  
Rx rise/fall time  
Rx skew  
USB_VM1  
In  
3.0  
35 pF  
USB_VP1  
In  
–4.0  
–6.0  
+4.0  
+2.0  
USB_VM1  
USB_VP1  
Rx skew  
USB_RCV  
In  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
130  
Freescale Semiconductor  
5 Package Information and Pinout  
This section includes the following:  
Mechanical package drawing  
Pin/contact assignment information  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
131  
5.1  
MAPBGA Production Package 1568-01, 17 × 17 mm, 0.8 Pitch  
See Figure 108 for the package drawing and dimensions of the production package.  
Figure 108. Production Package: Mechanical Drawing  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
132  
Freescale Semiconductor  
5.2  
MAPBGA Signal Assignments  
Table 94 and Table 95 list MAPBGA signals, alphabetized by signal name, for silicon revisions 2.0 and  
2.1, respectively. Table 96 and Table 97 show the signal assignment on the i.MX35 ball map for silicon  
revisions 2.0 and 2.1, respectively. The ball map for silicon revision 2.1 is different than the ballmap for  
silicon revision 2.0. The layout for each revision is not compatible, so it is important that the correct  
ballmap be used to implement the layout.  
Table 94. Silicon Revision 2.0 Signal Ball Map Locations  
Signal ID  
Ball Location  
Signal ID  
Ball Location  
A0  
A5  
D7  
F15  
D5  
F6  
ATA_DATA71  
ATA_DATA81  
ATA_DATA91  
ATA_DIOR1  
ATA_DIOW1  
ATA_DMACK1  
ATA_DMARQ1  
ATA_INTRQ1  
ATA_IORDY1  
ATA_RESET_B1  
BCLK  
Y3  
U4  
A1  
A10  
W3  
A11  
Y6  
A12  
W6  
A13  
A14  
B3  
V6  
D14  
D15  
D13  
D12  
E11  
D11  
E7  
T3  
A15  
V2  
A16  
U6  
A17  
T6  
A18  
E14  
W10  
U9  
A19  
BOOT_MODE0  
BOOT_MODE1  
CAPTURE  
CAS  
A2  
A20  
D10  
E10  
D9  
E9  
V12  
E16  
Y10  
T10  
V10  
T12  
L16  
F17  
E19  
B20  
C19  
E18  
F19  
V16  
T15  
W16  
V15  
U14  
Y16  
U15  
W17  
V14  
W15  
Y15  
A21  
A22  
CLK_MODE0  
CLK_MODE1  
CLKO  
A23  
A24  
D8  
E8  
A25  
COMPARE  
CONTRAST1  
CS0  
A3  
C6  
D6  
B5  
A4  
A5  
CS1  
A6  
C5  
A4  
CS2  
A7  
CS3  
A8  
B4  
CS4  
A9  
A3  
CS5  
ATA_BUFF_EN1  
ATA_CS01  
ATA_CS11  
ATA_DA01  
ATA_DA11  
ATA_DA21  
ATA_DATA01  
ATA_DATA11  
ATA_DATA101  
ATA_DATA111  
ATA_DATA121  
T5  
CSI_D101  
CSI_D111  
CSI_D121  
CSI_D131  
CSI_D141  
CSI_D151  
CSI_D81  
V7  
T7  
R4  
V1  
R5  
Y5  
W5  
V3  
CSI_D91  
CSI_HSYNC1  
CSI_MCLK1  
CSI_PIXCLK1  
Y2  
U3  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
133  
Table 94. Silicon Revision 2.0 Signal Ball Map Locations (continued)  
Signal ID  
Ball Location  
Signal ID  
Ball Location  
ATA_DATA131  
ATA_DATA141  
ATA_DATA151  
ATA_DATA21  
ATA_DATA3  
ATA_DATA4  
ATA_DATA5  
ATA_DATA6  
CTS2  
W2  
W1  
T4  
CSI_VSYNC1  
CSPI1_MISO  
CSPI1_MOSI  
CSPI1_SCLK  
CSPI1_SPI_RDY  
CSPI1_SS0  
CSPI1_SS1  
CTS1  
T14  
V9  
W9  
W8  
T8  
V5  
U5  
Y4  
Y8  
W4  
V4  
U8  
R3  
G5  
FEC_TDATA0  
FEC_TDATA1  
FEC_TDATA2  
FEC_TDATA3  
FEC_TX_CLK  
FEC_TX_EN  
FEC_TX_ERR  
FSR  
P5  
D0  
A2  
M4  
D1  
D4  
M5  
D10  
D2  
L6  
D11  
E6  
P4  
D12  
E3  
T1  
D13  
F5  
N4  
D14  
D1  
K5  
D15  
E2  
FST  
J1  
D2  
B2  
FUSE_VDD  
FUSE_VSS  
GPIO1_0  
GPIO1_1  
GPIO2_0  
GPIO3_0  
HCKR  
P13  
M11  
T11  
Y11  
U11  
V11  
K2  
D3  
E5  
D3_CLS1  
D3_DRDY1  
D3_FPSHIFT1  
D3_HSYNC1  
D3_REV1  
D3_SPL1  
D3_VSYNC1  
D4  
L17  
L20  
L15  
L18  
M17  
M18  
M19  
C3  
HCKT  
J5  
I2C1_CLK  
I2C1_DAT  
I2C2_CLK  
I2C2_DAT  
LBA  
M20  
N17  
L3  
D5  
B1  
D6  
D3  
M1  
D7  
C2  
D20  
F20  
G18  
H20  
J18  
J16  
J19  
J17  
J20  
K14  
K19  
K18  
K20  
G17  
K16  
K17  
K15  
D8  
C1  
LD01  
D9  
E4  
LD11  
DE_B  
W19  
B19  
D17  
D16  
C18  
F18  
F16  
D19  
V8  
LD101  
DQM0  
LD111  
DQM1  
LD121  
DQM2  
LD131  
DQM3  
LD141  
EB0  
LD151  
EB1  
LD161  
ECB  
LD171  
EXT_ARMCLK  
EXTAL_AUDIO  
EXTAL24M  
FEC_COL  
FEC_CRS  
FEC_MDC  
LD181  
W20  
T20  
P3  
LD191  
LD21  
LD201  
N5  
LD211  
R1  
LD221  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
134  
Freescale Semiconductor  
Table 94. Silicon Revision 2.0 Signal Ball Map Locations (continued)  
Signal ID  
Ball Location  
Signal ID  
Ball Location  
FEC_MDIO  
FEC_RDATA0  
FEC_RDATA1  
FEC_RDATA2  
FEC_RDATA3  
FEC_RX_CLK  
FEC_RX_DV  
FEC_RX_ERR  
MA10  
P1  
P2  
LD231  
LD31  
L19  
G16  
G19  
H16  
H18  
G20  
H17  
H19  
G12  
F13  
F14  
G14  
P16  
H14  
J14  
L14  
M14  
K6  
N2  
LD41  
M3  
N1  
LD51  
LD61  
R2  
LD71  
T2  
LD81  
N3  
LD91  
C4  
NVCC_EMI2  
NVCC_EMI2  
NVCC_EMI2  
NVCC_EMI3  
NVCC_JTAG  
NVCC_LCDC  
NVCC_LCDC  
NVCC_LCDC  
NVCC_LCDC  
NVCC_MISC  
NVCC_MISC  
NVCC_MISC  
NVCC_MLB  
NVCC_NFC  
NVCC_NFC  
NVCC_NFC  
NVCC_SDIO  
OE  
MGND  
N11  
W13  
Y13  
W12  
P11  
G3  
MLB_CLK  
MLB_DAT  
MLB_SIG  
MVDD  
NF_CE0  
NFALE  
F2  
NFCLE  
E1  
NFRB  
F3  
NFRE_B  
F1  
K7  
NFWE_B  
G2  
L8  
NFWP_B  
F4  
R10  
G6  
NGND_ATA  
NGND_ATA  
NGND_ATA  
NGND_CRM  
NGND_CSI  
NGND_EMI1  
NGND_EMI1  
NGND_EMI1  
NGND_EMI2  
NGND_EMI3  
NGND_EMI3  
NGND_JTAG  
NGND_LCDC  
NGND_LCDC  
NGND_MISC  
NGND_MISC  
NGND_MLB  
NGND_NFC  
NGND_SDIO  
NVCC_ATA  
NVCC_ATA  
NVCC_ATA  
NVCC_ATA  
NVCC_CRM  
NVCC_CSI  
M9  
P9  
H6  
L10  
L11  
N10  
H8  
H7  
P14  
E20  
V20  
U19  
T19  
T18  
M12  
M15  
N20  
N16  
P20  
R13  
P12  
W11  
Y9  
OSC_AUDIO_VDD  
OSC_AUDIO_VSS  
OSC24M_VDD  
OSC24M_VSS  
PGND  
H10  
J10  
J11  
J12  
K12  
M13  
K11  
L12  
M7  
K8  
PHY1_VDDA  
PHY1_VDDA  
PHY1_VSSA  
PHY1_VSSA  
PHY2_VDD  
PHY2_VSS  
POR_B  
M10  
K9  
POWER_FAIL  
PVDD  
N12  
N6  
N13  
E15  
U10  
U18  
U1  
RAS  
P6  
RESET_IN_B  
RTCK  
P7  
P8  
RTS1  
R9  
RTS2  
G1  
R11  
RW  
C20  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
135  
Table 94. Silicon Revision 2.0 Signal Ball Map Locations (continued)  
Signal ID  
Ball Location  
Signal ID  
Ball Location  
NVCC_EMI1  
NVCC_EMI1  
NVCC_EMI1  
NVCC_EMI1  
NVCC_EMI1  
NVCC_EMI1  
NVCC_EMI1  
NVCC_EMI1  
SD1_CLK  
SD1_CMD  
SD1_DATA0  
SD1_DATA1  
SD1_DATA2  
SD1_DATA3  
SD10  
G7  
G8  
RXD1  
RXD2  
U2  
H3  
G9  
SCK4  
L4  
H9  
SCK5  
L5  
F10  
G10  
F11  
G11  
V18  
Y19  
R14  
U16  
W18  
V17  
A15  
B15  
C13  
B14  
A14  
B13  
C12  
C11  
A12  
B12  
B18  
W14  
U13  
V13  
T13  
Y14  
U12  
B11  
A11  
C10  
B10  
A9  
SCKR  
K3  
SCKT  
J4  
SD0  
C17  
A19  
E12  
E13  
B17  
A13  
A10  
C7  
SD1  
SDCLK  
SDCLK_B  
SDQS0  
SDQS1  
SDQS2  
SDQS3  
SDWE  
G15  
U17  
L1  
SD11  
SJC_MOD  
SRXD4  
SD12  
SD13  
SRXD5  
K4  
SD14  
STXD4  
M2  
K1  
SD15  
STXD5  
SD16  
STXFS4  
L2  
SD17  
STXFS5  
J6  
SD18  
TCK  
R17  
P15  
R15  
Y7  
SD19  
TDI  
SD2  
TDO  
SD2_CLK  
SD2_CMD  
SD2_DATA0  
SD2_DATA1  
SD2_DATA2  
SD2_DATA3  
SD20  
TEST_MODE  
TMS  
R16  
T16  
M16  
G4  
TRSTB  
TTM_PIN  
TX0  
TX1  
H1  
TX2_RX3  
TX3_RX2  
TX4_RX1  
TX5_RX0  
TXD1  
H5  
SD21  
J2  
SD22  
H4  
SD23  
J3  
SD24  
R6  
SD25  
C9  
TXD2  
H2  
SD26  
B9  
USBOTG_OC  
USBOTG_PWR  
USBPHY1_DM  
USBPHY1_DP  
USBPHY1_RREF  
USBPHY1_UID  
USBPHY1_UPLLGND  
USBPHY1_UPLLVDD  
USBPHY1_UPLLVDD  
U7  
SD27  
A8  
W7  
N19  
P19  
R19  
N18  
N14  
N15  
P17  
SD28  
B8  
SD29  
C8  
SD3  
C16  
A7  
SD30  
SD31  
B7  
SD4  
A18  
C15  
SD5  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
136  
Freescale Semiconductor  
Table 94. Silicon Revision 2.0 Signal Ball Map Locations (continued)  
Signal ID  
Ball Location  
Signal ID  
Ball Location  
SD6  
SD7  
A17  
B16  
C14  
A16  
A6  
USBPHY1_VBUS  
P18  
R20  
R18  
Y17  
Y18  
M6  
USBPHY1_VDDA_BIAS  
SD8  
USBPHY1_VSSA_BIAS  
SD9  
USBPHY2_DM  
USBPHY2_DP  
VDD  
SDBA0  
SDBA1  
SDCKE0  
SDCKE1  
VDD  
B6  
D18  
E17  
L7  
VDD  
F7  
VDD  
J7  
VSS  
L9  
VDD  
N7  
VSS  
N9  
VDD  
R7  
VSS  
K10  
P10  
H11  
H12  
H13  
J13  
K13  
L13  
T17  
A20  
Y20  
T9  
VDD  
F8  
VSS  
VDD  
R8  
VSS  
VDD  
F9  
VSS  
VDD  
F12  
R12  
G13  
H15  
J15  
A1  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VSS  
VSS  
VSS  
Y1  
VSS  
VSS  
J8  
VSTBY  
WDOG_RST  
XTAL_AUDIO  
XTAL24M  
VSS  
M8  
N8  
Y12  
V19  
U20  
VSS  
VSS  
J9  
1
Not available for the MCIMX351.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
137  
Table 95. Silicon Revision 2.1 Signal Ball Map Locations  
Signal ID  
Ball Location  
Signal ID  
Ball Location  
A0  
A1  
A5  
D7  
F15  
D5  
F6  
ATA_DATA7  
ATA_DATA8  
ATA_DATA9  
ATA_DIOR  
ATA_DIOW  
ATA_DMACK  
ATA_DMARQ  
ATA_INTRQ  
ATA_IORDY  
ATA_RESET_B  
SDQS0  
Y3  
U4  
A10  
W3  
Y6  
A11  
A12  
W6  
V6  
A13  
B3  
A14  
D14  
D15  
D13  
D12  
E11  
D11  
E7  
T3  
A15  
V2  
A16  
U6  
A18  
T6  
SDQS1  
A19  
E14  
W10  
U9  
BOOT_MODE0  
BOOT_MODE1  
CAPTURE  
RAS  
A2  
A21  
D10  
E10  
D9  
E9  
V12  
E16  
Y10  
T10  
V10  
T12  
L16  
F17  
E19  
B20  
C19  
E18  
F19  
V16  
T15  
W16  
V15  
U14  
Y16  
U15  
W17  
V14  
W15  
Y15  
T14  
V9  
SDQS2  
A22  
CLK_MODE0  
CLK_MODE1  
CLKO  
SDQS3  
A24  
D8  
E8  
A25  
COMPARE  
CONTRAST  
CS0  
A3  
C6  
D6  
B5  
A4  
A5  
CS1  
A6  
C5  
A4  
CS2  
A7  
CS3  
A8  
B4  
CS4  
A9  
A3  
CS5  
ATA_BUFF_EN1  
ATA_CS0  
ATA_CS1  
ATA_DA0  
ATA_DA1  
ATA_DA2  
ATA_DATA0  
ATA_DATA1  
ATA_DATA10  
ATA_DATA11  
ATA_DATA12  
ATA_DATA13  
ATA_DATA14  
ATA_DATA15  
ATA_DATA2  
ATA_DATA3  
ATA_DATA4  
ATA_DATA5  
ATA_DATA6  
T5  
CSI_D10  
V7  
CSI_D11  
T7  
CSI_D12  
R4  
V1  
CSI_D13  
CSI_D14  
R5  
Y5  
CSI_D15  
CSI_D8  
W5  
V3  
CSI_D9  
CSI_HSYNC  
CSI_MCLK  
CSI_PIXCLK  
CSI_VSYNC  
CSPI1_MISO  
CSPI1_MOSI  
CSPI1_SCLK  
CSPI1_SPI_RDY  
CSPI1_SS0  
CSPI1_SS1  
CTS1  
Y2  
U3  
W2  
W1  
T4  
W9  
W8  
T8  
V5  
U5  
Y4  
Y8  
W4  
V4  
U8  
R3  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
138  
Freescale Semiconductor  
Table 95. Silicon Revision 2.1 Signal Ball Map Locations (continued)  
Signal ID  
Ball Location  
Signal ID  
Ball Location  
CTS2  
D0  
G5  
A2  
FEC_TDATA0  
FEC_TDATA1  
FEC_TDATA2  
FEC_TDATA3  
FEC_TX_CLK  
FEC_TX_EN  
FEC_TX_ERR  
FSR  
P5  
M4  
D1  
D4  
M5  
D10  
D2  
L6  
D11  
E6  
P4  
D12  
E3  
T1  
D13  
F5  
N4  
D14  
D1  
K5  
D15  
E2  
FST  
J1  
D2  
B2  
FUSE_VDD  
FUSE_VSS  
GPIO1_0  
GPIO1_1  
GPIO2_0  
GPIO3_0  
HCKR  
P13  
M11  
T11  
Y11  
U11  
V11  
K2  
D3  
E5  
D3_CLS  
D3_DRDY  
D3_FPSHIFT  
D3_HSYNC  
D3_REV  
D3_SPL  
D3_VSYNC  
D4  
L17  
L20  
L15  
L18  
M17  
M18  
M19  
C3  
HCKT  
J5  
I2C1_CLK  
I2C1_DAT  
I2C2_CLK  
I2C2_DAT  
LBA  
M20  
N17  
L3  
D5  
B1  
D6  
D3  
M1  
D7  
C2  
D20  
F20  
G18  
H20  
J18  
J16  
J19  
J17  
J20  
K14  
K19  
K18  
K20  
G17  
K16  
K17  
K15  
L19  
G16  
G19  
H16  
H18  
G20  
H17  
H19  
D8  
C1  
LD0  
D9  
E4  
LD1  
DE_B  
W19  
B19  
D17  
D16  
C18  
F18  
F16  
D19  
V8  
LD10  
DQM0  
LD11  
SDCKE1  
DQM2  
LD12  
LD13  
DQM3  
LD14  
EB0  
LD15  
EB1  
LD16  
ECB  
LD17  
EXT_ARMCLK  
EXTAL_AUDIO  
EXTAL24M  
FEC_COL  
FEC_CRS  
FEC_MDC  
FEC_MDIO  
FEC_RDATA0  
FEC_RDATA1  
FEC_RDATA2  
FEC_RDATA3  
FEC_RX_CLK  
FEC_RX_DV  
FEC_RX_ERR  
LD18  
W20  
T20  
P3  
LD19  
LD2  
LD20  
N5  
LD21  
R1  
LD22  
P1  
LD23  
P2  
LD3  
N2  
LD4  
M3  
N1  
LD5  
LD6  
R2  
LD7  
T2  
LD8  
N3  
LD9  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
139  
Table 95. Silicon Revision 2.1 Signal Ball Map Locations (continued)  
Signal ID  
Ball Location  
Signal ID  
Ball Location  
MA10  
C4  
N11  
W13  
Y13  
W12  
P11  
G3  
NVCC_EMI2  
NVCC_EMI2  
VSS  
G12  
F13  
F14  
G14  
P16  
H14  
J14  
L14  
M14  
K6  
MGND  
MLB_CLK  
MLB_DAT  
NVCC_EMI3  
NVCC_JTAG  
NVCC_LCDC  
NVCC_LCDC  
NVCC_LCDC  
NVCC_LCDC  
NVCC_MISC  
NVCC_MISC  
NVCC_MISC  
NVCC_MLB  
NVCC_NFC  
NVCC_NFC  
NVCC_NFC  
NVCC_SDIO  
OE  
MLB_SIG  
MVDD  
NF_CE0  
NFALE  
F2  
NFCLE  
E1  
NFRB  
F3  
NFRE_B  
F1  
K7  
NFWE_B  
G2  
L8  
NFWP_B  
F4  
R10  
G6  
NGND_ATA  
NGND_ATA  
NGND_ATA  
NGND_CRM  
NGND_CSI  
NGND_EMI1  
NVCC_EMI1  
NGND_EMI1  
NGND_EMI2  
NGND_EMI3  
NGND_EMI3  
NGND_JTAG  
NGND_LCDC  
NGND_LCDC  
NGND_MISC  
NGND_MISC  
NGND_MLB  
NGND_NFC  
NGND_SDIO  
NVCC_ATA  
NVCC_ATA  
NVCC_ATA  
NVCC_ATA  
NVCC_CRM  
NVCC_CSI  
NVCC_EMI1  
NVCC_EMI1  
NVCC_EMI1  
NVCC_EMI1  
NGND_EMI1  
NVCC_EMI1  
NVCC_EMI1  
NVCC_EMI1  
M9  
P9  
H6  
L10  
L11  
N10  
H8  
H7  
P14  
E20  
V20  
U19  
T19  
T18  
M12  
M15  
N20  
N16  
P20  
R13  
P12  
W11  
Y9  
OSC_AUDIO_VDD  
OSC_AUDIO_VSS  
OSC24M_VDD  
OSC24M_VSS  
PGND  
H10  
J10  
J11  
J12  
K12  
M13  
K11  
L12  
M7  
PHY1_VDDA  
PHY1_VDDA  
PHY1_VSSA  
PHY1_VSSA  
PHY2_VDD  
PHY2_VSS  
POR_B  
K8  
M10  
K9  
POWER_FAIL  
PVDD  
N12  
N6  
N13  
E15  
U10  
U18  
U1  
BCLK  
P6  
RESET_IN_B  
RTCK  
P7  
P8  
RTS1  
R9  
RTS2  
G1  
R11  
G7  
RW  
C20  
U2  
RXD1  
G8  
RXD2  
H3  
G9  
SCK4  
L4  
H9  
SCK5  
L5  
F10  
G10  
F11  
G11  
SCKR  
K3  
SCKT  
J4  
DQM1  
C17  
A19  
SD1  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
140  
Freescale Semiconductor  
Table 95. Silicon Revision 2.1 Signal Ball Map Locations (continued)  
Signal ID  
Ball Location  
Signal ID  
Ball Location  
SD1_CLK  
SD1_CMD  
SD1_DATA0  
SD1_DATA1  
SD1_DATA2  
SD1_DATA3  
SD10  
V18  
Y19  
R14  
U16  
W18  
V17  
A15  
B15  
C13  
B14  
A14  
B13  
C12  
C11  
A12  
B12  
B18  
W14  
U13  
V13  
T13  
Y14  
U12  
B11  
A11  
C10  
B10  
A9  
SDCLK  
SDCLK_B  
SD0  
E12  
E13  
B17  
A13  
A10  
C7  
SD15  
SD23  
A23  
SDWE  
G15  
U17  
L1  
SD11  
SJC_MOD  
SRXD4  
A17  
SD13  
SRXD5  
K4  
SD14  
STXD4  
M2  
SD12  
STXD5  
K1  
SD16  
STXFS4  
L2  
SD17  
STXFS5  
J6  
SD18  
TCK  
R17  
P15  
R15  
Y7  
SD19  
TDI  
SD2  
TDO  
SD2_CLK  
SD2_CMD  
SD2_DATA0  
SD2_DATA1  
SD2_DATA2  
SD2_DATA3  
SD20  
TEST_MODE  
TMS  
R16  
T16  
M16  
G4  
TRSTB  
TTM_PIN  
TX0  
TX1  
H1  
TX2_RX3  
TX3_RX2  
TX4_RX1  
TX5_RX0  
TXD1  
H5  
SD21  
J2  
A20  
H4  
SD22  
J3  
SD24  
R6  
SD25  
C9  
TXD2  
H2  
SD26  
B9  
USBOTG_OC  
USBOTG_PWR  
USBPHY1_DM  
USBPHY1_DP  
USBPHY1_RREF  
USBPHY1_UID  
USBPHY1_UPLLGND  
USBPHY1_UPLLVDD  
USBPHY1_UPLLVDD  
USBPHY1_VBUS  
USBPHY1_VDDA_BIAS  
USBPHY1_VSSA_BIAS  
USBPHY2_DM  
USBPHY2_DP  
VDD  
U7  
SD27  
A8  
W7  
N19  
P19  
R19  
N18  
N14  
N15  
P17  
P18  
R20  
R18  
Y17  
Y18  
M6  
SD28  
B8  
SD29  
C8  
SD3  
C16  
A7  
SD30  
SD31  
B7  
SD4  
A18  
C15  
A17  
B16  
C14  
A16  
A6  
SD5  
SD6  
SD7  
SD8  
SD9  
SDBA0  
SDBA1  
SDCKE0  
CAS  
B6  
D18  
E17  
VDD  
F7  
VDD  
J7  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
141  
Table 95. Silicon Revision 2.1 Signal Ball Map Locations (continued)  
Signal ID  
Ball Location  
Signal ID  
Ball Location  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
L7  
N7  
R7  
F8  
VSS  
VSS  
L9  
N9  
VSS  
K10  
P10  
H11  
H12  
H13  
J13  
K13  
L13  
T17  
A20  
Y20  
T9  
VSS  
R8  
F9  
VSS  
VSS  
F12  
R12  
G13  
H15  
J15  
A1  
NVCC_EMI2  
VSS  
VSS  
VSS  
VSS  
VSS  
Y1  
VSS  
J8  
VSTBY  
WDOG_RST  
XTAL_AUDIO  
XTAL24M  
M8  
N8  
J9  
Y12  
V19  
U20  
1
Not available for the MCIMX351.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
142  
Freescale Semiconductor  
1
Table 96. Silicon Revision 2.0 Ball Map—17 x 17, 0.8 mm Pitch  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
A
B
C
D
E
VSS  
D0  
A9  
A7  
A0  
SDB SD3 SD2 SD2 SDQ SD2 SD1 SDQ SD1 SD1 SD9 SD6 SD4 SD1 VSS  
A0 S2 S1  
A
B
C
D
E
0
7
4
1
8
4
0
D5  
D8  
D2  
D7  
A13  
D4  
A8  
A5  
A6  
SDB SD3 SD2 SD2 SD2 SD2 SD1 SD1 SD1 SD1 SD7 SDQ SD2 DQM CS2  
A1  
1
8
6
3
0
9
5
3
1
S0  
0
MA1  
0
A3  
SDQ SD2 SD2 SD2 SD1 SD1 SD1 SD8 SD5 SD3 SD0 DQM CS3 RW  
S3  
A1  
9
5
2
7
6
2
3
D14 D10  
D6  
D1  
A11  
D3  
A4  
A24  
A22  
A20  
A19  
A17  
A16  
A14  
A15 DQM DQM SDC ECB LBA  
2
1
KE0  
NFC D15 D12  
LE  
D9  
D11  
A2  
A25  
A23  
A21  
A18 SDC SDC BCL RAS CAS SDC CS4 CS1  
OE  
LK  
LK_  
B
K
KE1  
F
G
H
J
NFR NFA NFR NFW D13 A12 VDD VDD VDD NVC NVC VDD NVC NVC A10 EB1 CS0 EB0 CS5 LD0  
E_B LE P_B C_E C_E C_E C_E  
MI1 MI1 MI2 MI2  
F
G
H
J
B
RTS NFW NF_ TX0 CTS NVC NVC NVC NVC NVC NVC NVC VDD NVC SDW LD3 LD2 LD1 LD4 LD7  
2
E_B CE0  
2
C_N C_E C_E C_E C_E C_E C_E  
FC MI1 MI1 MI1  
MI1 MI1 MI2  
C_E  
MI3  
E
TX1 TXD RXD TX4_ TX2_ NVC NVC NGN NVC NGN VSS VSS VSS NVC VDD LD5 LD8 LD6 LD9 LD10  
2
2
RX1 RX3 C_N C_N D_E C_E D_E  
C_L  
CDC  
FC FC MI1 MI1 MI1  
FST TX3_ TX5_ SCK HCK STX VDD VSS VSS NGN NGN NGN VSS NVC VDD LD12 LD14 LD11 LD13 LD15  
RX2 RX0  
T
T
FS5  
D_E D_E D_E  
MI1 MI2 MI3  
C_L  
CDC  
K
L
STX HCK SCK SRX FSR NVC NVC NGN NGN VSS NGN NGN VSS LD16 LD22 LD20 LD21 LD18 LD17 LD19  
K
L
D5  
R
R
D5  
C_MI C_MI D_MI D_N  
SC  
SC SC FC  
D_L D_E  
CDC MI3  
SRX STX I2C2 SCK SCK FEC VDD NVC VSS NGN NGN NGN VSS NVC D3_ CON D3_ D3_ LD23 D3_  
D4  
FS4 _CL  
4
5
_TD  
C_MI  
D_A D_C D_L  
C_L FPS TRA CLS HSY  
DRD  
K
ATA3  
SC  
TA RM CDC  
CDC HIFT ST NC  
Y
M
N
I2C2 STX FEC FEC FEC VDD NGN VSS NGN NGN FUS PGN NGN NVC PHY TTM D3_ D3_ D3_ I2C1  
M
N
_DAT D4  
_RD _TD _TD  
ATA2 ATA1 ATA2  
D_MI  
SC  
D_A D_M E_V  
TA LB SS  
D
D_JT C_L 1_V _PIN REV SPL VSY _CL  
AG CDC DDA  
NC  
K
FEC FEC FEC FEC FEC NVC VDD VSS VSS NGN MGN NGN PVD USB USB PHY I2C1 USB USB PHY  
_RD _RD _RX _TX_ _CR C_A  
D_C  
SI  
D
D_S  
DIO  
D
PHY PHY 1_V _DAT PHY PHY 1_V  
ATA3 ATA1 _ER ERR  
R
S
TA  
1_U 1_U SSA  
PLL PLLV  
1_UI 1_D DDA  
D
M
GND DD  
P
R
FEC FEC FEC FEC FEC NVC NVC NVC NGN VSS MVD PHY FUS NVC TDI NVC USB USB USB PHY  
_MDI _RD _CO _TX_ _TD C_A C_A C_A D_A 2_V E_V C_S C_JT PHY PHY PHY 1_V  
ATA0 CLK ATA0 TA TA TA TA SS DD DIO AG 1_U 1_V 1_D SSA  
P
R
D
O
L
PLLV BUS  
DD  
P
FEC FEC CTS ATA_ ATA_ TXD VDD VDD NVC NVC NVC VDD PHY SD1 TDO TMS TCK USB USB USB  
_MD _RX  
1
DA0 DA2  
1
C_C C_M C_C  
RM LB SI  
2_V _DAT  
DD A0  
PHY PHY PHY  
1_V 1_R 1_V  
SSA REF DDA  
C
_CL  
K
_BIA  
S
_BIA  
S
T
FEC FEC ATA_ ATA_ ATA_ ATA_ ATA_ CSPI VST CLK GPI COM SD2 CSI_ CSI_ TRS VSS OSC OSC EXT  
_TX_ _RX DMA DATA BUF RES CS1 1_S BY _MO O1_ PAR _DAT VSY D11  
TB 24M 24M AL24  
DE1  
A1 NC _VS _VD  
T
EN  
_DV  
RQ  
15  
F_E ET_  
PI_R  
DY  
0
E
M
N
B
S
D
U
RTS RXD ATA_ ATA_ ATA_ ATA_ USB CSPI BOO RES GPI SD2 SD2 CSI_ CSI_ SD1 SJC RTC OSC XTAL  
U
1
1
DATA DATA DATA IOR OTG 1_S T_M ET_I O2_ _DAT _CM D14  
D8 _DAT _MO  
K
_AU 24M  
12  
8
3
DY  
_OC  
S1  
ODE N_B  
1
0
A3  
D
A1  
D
DIO_  
VSS  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
143  
1
Table 96. Silicon Revision 2.0 Ball Map—17 x 17, 0.8 mm Pitch (continued)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
V
W
Y
ATA_ ATA_ ATA_ ATA_ ATA_ ATA_ ATA_ EXT CSPI CLK GPI CAP SD2 CSI_ CSI_ CSI_ SD1 SD1 XTAL OSC  
V
W
Y
DA1 INTR DATA DATA DATA DMA CS0 _AR 1_MI  
O3_ TUR _DAT HSY D13 D10 _DAT _CL _AU _AU  
O
Q
10  
6
2
CK  
MCL  
K
SO  
0
E
A0  
NC  
A3  
K
DIO DIO_  
VDD  
ATA_ ATA_ ATA_ ATA_ ATA_ ATA_ USB CSPI CSPI BOO POR MLB MLB SD2 CSI_ CSI_ CSI_ SD1 DE_ EXT  
DATA DATA DATA DATA DATA DIO OTG 1_S 1_M T_M  
14 13  
_PW CLK OSI ODE  
_B  
_SIG _CL _CL MCL D12  
D9 _DAT  
A2  
B
AL_  
AUDI  
O
9
5
1
W
K
K
K
R
0
VSS ATA_ ATA_ ATA_ ATA_ ATA_ TES CSPI POW CLK GPI  
DATA DATA DATA DATA DIO T_M 1_S ER_ _MO O1_ OG_ _DAT _DAT PIXC D15 PHY PHY _CM  
11  
ODE S0 FAIL DE0  
RST A2 LK 2_D 2_D  
WD MLB SD2 CSI_ CSI_ USB USB SD1 VSS  
7
4
0
R
1
D
M
P
1
See Table 95 for pins unavailable in the MCIMX351 SoC.  
Table 97. Silicon Revision 2.1 Ball Map—17 x 17, 0.8 mm Pitch  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
A
B
GND  
D0  
A9  
A7  
A0  
SDB SD30 SD27 SD24 SD23 SD21 SD18 SD15 SD14 SD10 SD9 SD6 SD4 SD1 GND  
A0  
A
B
C
D
E
F
D5  
D8  
D2  
D7  
A13  
D4  
A8  
A5  
A6  
SDB SD31 SD28 SD26 SD22 SD20 SD19 SD12 SD13 SD11 SD7 SD0 SD2 DQM CS2  
A1  
0
C
D
E
F
MA1  
0
A3  
A23 SD29 SD25 A20 SD17 SD16 A17  
SD8 SD5 SD3 DQM DQM CS3  
RW  
1
3
D14  
D10  
D6  
D1  
A11  
D3  
A4  
A1  
A2  
A24  
A22  
A21  
A19  
A18  
A16  
A14  
A15 DQM SDC SDC ECB LBA  
KE1 KE0  
2
NFC D15  
LE  
D12  
D9  
D11  
A25 SDQ SDQ SDQ SDC SDC SDQ BCL RAS CAS CS4 CS1  
S3 S2 S1 LK LK_B S0  
OE  
K
NFR NFAL NFR NFW D13  
E_B P_B  
A12 VDD VDD VDD GND NVC VDD NVC GND A10  
EB1 CS0 EB0 CS5 LD0  
E
B
7
7
7
C_E  
MI1  
7
C_E  
MI2  
G
H
J
RTS NFW NF_  
E_B CE0  
TX0 CTS NVC NVC NVC NVC NVC NVC NVC VDD NVC SDW LD3  
LD2  
LD8  
LD1  
LD6  
LD4  
LD7  
G
H
J
2
2
C_N C_E C_E C_E C_E C_E C_E  
FC MI1 MI1 MI1 MI1 MI1 MI2  
6
C_E  
MI3  
E
TX1 TXD RXD TX4_ TX2_ NVC NVC GND NVC NVC GND GND NVC NVC VDD LD5  
LD9 LD10  
2
2
RX1 RX3 C_N C_N  
C_E C_E  
MI1 MI1  
C_E C_L  
MI2 CDC  
5
FC FC  
FST TX3_ TX5_ SCK HCK STX VDD GND GND GND GND GND GND NVC VDD LD12 LD14 LD11 LD13 LD15  
RX2 RX0  
T
T
FS5  
1
C_L  
5
CDC  
K
L
STX HCK SCK SRX FSR NVC NVC GND GND GND GND GND GND LD16 LD22 LD20 LD21 LD18 LD17 LD19  
D5 D5 C_MI C_MI  
SC SC  
K
L
R
R
SRX STX I2C2 SCK SCK FEC VDD NVC GND GND GND GND GND NVC D3_F CON D3_  
D3_ LD23 D3_  
D4  
FS4 _CLK  
4
5
_TDA  
TA3  
2
C_MI  
SC  
C_L PSHI TRA CLS HSY  
CDC FT ST NC  
DRD  
Y
M
N
I2C2 STX FEC FEC FEC VDD GND GND GND GND FUS PGN GND NVC PHY TTM D3_ D3_S D3_V I2C1  
M
N
_DAT  
D4  
_RD _TDA _TDA  
ATA2 TA1 TA2  
2
E_V  
SS  
D
C_L 1_VD _PAD REV  
CDC DA  
PL  
SYN _CLK  
C
FEC FEC FEC FEC FEC NVC VDD GND GND GND MGN GND PVD USB USB PHY I2C1 USB USB PHY  
_RD _RD _RX_ _TX_ _CR C_AT PHY PHY 1_VS _DAT PHY PHY 1_VD  
ATA3 ATA1 ERR ERR  
3
D
D
S
A
1_UP 1_UP SA  
LLG LLVD  
1_UI 1_D  
DA  
D
M
ND  
D
i.MX35 Applications Processors for Automotive Products, Rev. 10  
144  
Freescale Semiconductor  
Table 97. Silicon Revision 2.1 Ball Map—17 x 17, 0.8 mm Pitch (continued)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P
R
FEC FEC FEC FEC FEC NVC NVC NVC GND GND MVD PHY FUS NVC  
_MDI _RD _CO _TX_ _TDA C_AT C_AT C_AT 2_VS E_V C_S  
ATA0 CLK TA0 DD DIO  
TDI  
NVC USB USB USB PHY  
C_JT PHY PHY PHY 1_VS  
AG 1_UP 1_VB 1_DP SA  
P
R
D
O
L
A
A
A
S
LLVD  
D
US  
FEC FEC CTS ATA_ ATA_ TXD VDD VDD NVC NVC NVC VDD PHY SD1_ TDO TMS TCK USB USB USB  
_MD _RX_  
1
DA0 DA2  
1
3
3
C_C C_M C_C  
RM LB SI  
4
2_VD DATA  
PHY PHY PHY  
1_VS 1_R 1_VD  
SA_ REF DA_  
C
CLK  
D
0
BIAS  
BIAS  
T
U
V
FEC FEC ATA_ ATA_ ATA_ ATA_ ATA_ CSPI VST CLK_ GPIO COM SD2_ CSI_ CSI_ TRS GND OSC OSC EXTA  
T
U
V
_TX_ _RX_ DMA DATA BUF RES CS1 1_SP BY  
MOD 1_0  
E1  
PAR DATA VSY D11  
NC  
TB  
24M_ 24M_ L24M  
VSS VDD  
EN  
DV  
RQ  
15  
F_E ET_B  
N
I_RD  
Y
E
1
RTS RXD ATA_ ATA_ ATA_ ATA_ USB CSPI BOO RES GPIO SD2_ SD2_ CSI_ CSI_ SD1_ SJC_ RTC OSC XTAL  
1
1
DATA DATA DATA IORD OTG 1_SS T_M ET_I 2_0 DATA CMD D14  
D8  
DATA MOD  
1
K
_AU 24M  
DIO_  
12  
8
3
Y
_OC  
1
ODE N_B  
3
1
VSS  
ATA_ ATA_ ATA_ ATA_ ATA_ ATA_ ATA_ EXT_ CSPI CLK GPIO CAP SD2_ CSI_ CSI_ CSI_ SD1_ SD1_ XTAL OSC  
DA1 INTR DATA DATA DATA DMA CS0 ARM 1_MI  
3_0 TUR DATA HSY D13 D10 DATA CLK _AU _AU  
10 CK  
CLK SO  
NC  
O
Q
6
2
E
0
3
DIO DIO_  
VDD  
W
Y
ATA_ ATA_ ATA_ ATA_ ATA_ ATA_ USB CSPI CSPI BOO POR MLB MLB SD2_ CSI_ CSI_ CSI_ SD1_ DE_ EXTA  
W
Y
DATA DATA DATA DATA DATA DIO OTG 1_SC 1_M T_M  
_B  
_SIG _CLK CLK MCL D12  
K
D9  
DATA  
2
B
L_AU  
DIO  
14  
13  
9
5
1
W
_PW  
R
LK  
OSI ODE  
0
GND ATA_ ATA_ ATA_ ATA_ ATA_ TES CSPI POW CLK_ GPIO WDO MLB SD2_ CSI_ CSI_ USB USB SD1_ GND  
DATA DATA DATA DATA DIOR T_M 1_SS ER_ MOD 1_1 G_R _DAT DATA PIXC D15 PHY PHY CMD  
11  
7
4
0
ODE  
0
FAIL  
E0  
ST  
2
LK  
2_D 2_DP  
M
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
6 Product Documentation  
All related product documentation for the i.MX35 processor is located at http://www.freescale.com/imx.  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
Freescale Semiconductor  
145  
7 Revision History  
Table 98 shows the revision history of this document. Note: There were no revisions of this document  
between revision 1 and revision 4 or between revision 6 and revision 7.  
Table 98. i.MX35 Data Sheet Revision History  
Revision  
Number  
Date  
Substantive Change(s)  
10  
06/2012  
• In Table 2, "Functional Differences in the i.MX35 Parts," on page 4, added two columns for part  
numbers MCIMX353 and MCIMX357.  
• Added Table 29, "Clock Input Tolerance," on page 32 in Section 4.9.3, “DPLL Electrical  
Specifications.”  
• Updated Table 39, "DDR2 SDRAM Timing Parameter Table," on page 51 for DDR2-400 values.  
• Updated Table 41, "DDR2 SDRAM Write Cycle Parameters," on page 53 for DDR2-400 values.  
• Added Table 15, "AC Requirements of I/O Pins," on page 25.  
• Updated WE4 parameter in Table 33, "WEIM Bus Timing Parameters," on page 38.  
9
8
6
08/2010  
04/2010  
• Updated Table 32, “NFC Timing Parameters.”  
• Updated Table 33, “WEIM Bus Timing Parameters.”  
• Updated Table 1, “Ordering Information.”  
• Updated Table 14, “I/O Pin DC Electrical Characteristics.”  
10/21/2009 • Added information for silicon rev. 2.1  
• Updated Table 1, “Ordering Information.”  
• Added Table 95, “Silicon Revision 2.1 Signal Ball Map Locations.”  
• Added Table 97, “Silicon Revision 2.1 Ball Map—17 x 17, 0.8 mm Pitch.”  
5
4
08/06/2009 • Filled in TBDs in Table 14.  
• Revised Figure 15 and Table 33 by removing FCE = 0 and FCE = 1. Added footnote 3 to the table.  
• Added Table 26, “AC Electrical Characteristics of DDR Type IO Pins in SDRAM Mode Max Drive  
(1.8 V).”  
04/30/2009 Note: There were no revisions of this document between revision 1 and revision 4.  
• In Section 4.3.1, “Powering Up,reverse positions of steps 5 and 6.  
• Updated values in Table 10, “i.MX35 Power Modes.”  
• Added Section 4.4, “Reset Timing.”  
• In Section 4.8.2, “AC Electrical Characteristics for DDR Pins (DDR2, Mobile DDR, and SDRAM  
Modes),removed Slow Slew rate tables, relabeled Table 24, “AC Electrical Characteristics of DDR  
Type IO Pins in mDDR Mode,and Table 25, “AC Electrical Characteristics of DDR Type IO Pins in  
SDRAM Mode,to exclude mention of slew rate.  
• In Section 4.9.5.2, “Wireless External Interface Module (WEIM),modified Figure 16, “Synchronous  
Memory Timing Diagram for Read Access—WSC = 1,through Figure 21, “Muxed A/D Mode Timing  
Diagram for Synchronous Read Access— WSC = 7, LBA = 1, LBN = 1, LAH = 1, OEA = 7.”  
• In Section 4.9.6, “Enhanced Serial Audio Interface (ESAI) Timing Specifications,modified  
Figure 36, “ESAI Transmitter Timing,and Figure 37, “ESAI Receiver Timing,to remove extraneous  
signals. Removed a note from Figure 36, “ESAI Transmitter Timing.”  
1
0
12/2008  
• Updated Section 4.3.1, “Powering Up.”  
• Section 4.7, “Module-Level AC Electrical Specifications”: Updated NFC, SDRAM and mDDR  
SDRAM timing. Inserted DDR2 SDRAM timing.  
10/2008 Initial public release  
i.MX35 Applications Processors for Automotive Products, Rev. 10  
146  
Freescale Semiconductor  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or  
+1-480-768-2130  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku  
Tokyo 153-0064  
Japan  
0120 191014 or  
+81 3 5437 9125  
support.japan@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
For Literature Requests Only:  
Freescale Semiconductor  
Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800 441-2447 or  
Freescale and the Freescale logo are trademarks of Freescale  
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service  
names are the property of their respective owners. ARM is the registered  
trademark of ARM Limited. ARM1136JF-S is the trademark of ARM Limited.  
+1-303-675-2140  
© 2012 Freescale Semiconductor, Inc.  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor  
@hibbertgroup.com  
Document Number: MCIMX35SR2AEC  
Rev. 10  
06/2012  

相关型号:

935314173574

Microcontroller
NXP

935314192575

Analog Circuit
NXP

935314219557

Microcontroller
NXP

935314224557

Microcontroller
NXP

935314228518

Interface Circuit
NXP

935314228574

Interface Circuit
NXP

935314256518

Microprocessor Circuit
NXP

935314325518

Analog Circuit
NXP

935314325574

Analog Circuit
NXP

935314336534

Microcontroller
NXP

935314373574

Analog Circuit
NXP

935314393528

RF and Baseband Circuit
NXP