935314766557 [NXP]

Microcontroller;
935314766557
型号: 935314766557
厂家: NXP    NXP
描述:

Microcontroller

微控制器 外围集成电路
文件: 总65页 (文件大小:1248K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number MCF51QU128  
Rev. 5, 03/2015  
Freescale Semiconductor  
Data Sheet: Technical Data  
MCF51QU128  
MCF51QU128  
Supports the MCF51QU128VLH,  
MCF51QU128VHS, MCF51QU64VLF,  
MCF51QU64VHS, MCF51QU32VHS,  
MCF51QU32VFM  
Features  
• Security and integrity  
– Hardware CRC module to support fast cyclic  
redundancy checks  
– 128-bit unique identification (ID) number per chip  
• Operating characteristics  
– Voltage range: 1.71 V to 3.6 V  
– Flash write voltage range: 1.71 V to 3.6 V  
– Temperature range (ambient): -40°C to 105°C  
• Analog  
– 12-bit SAR ADC  
– 12-bit DAC  
– Analog comparator (CMP) containing a 6-bit DAC  
and programmable reference input  
– Voltage reference (VREF)  
• Core  
– Up to 50 MHz V1 ColdFire CPU  
– Dhrystone 2.1 performance: 1.10 DMIPS per MHz  
when executing from internal RAM, 0.99 DMIPS  
per MHz when executing from flash memory  
• Timers  
• System  
– Programmable delay block (PDB)  
– Motor control/general purpose/PWM timers (FTM)  
– 16-bit low-power timers (LPTMRs)  
– 16-bit modulo timer (MTIM)  
– DMA controller with four programmable channels  
– Integrated ColdFire DEBUG_Rev_B+ interface with  
single-wire BDM connection  
• Power management  
– Carrier modulator transmitter (CMT)  
– 10 low power modes to provide power optimization  
based on application requirements  
– Low-leakage wakeup unit (LLWU)  
– Voltage regulator (VREG)  
• Communication interfaces  
– UARTs with Smart Card support and FIFO  
– SPI modules, one with FIFO  
– Inter-Integrated Circuit (I2C) modules  
• Clocks  
• Human-machine interface  
– Crystal oscillators (two, each with range options): 1  
kHz to 32 kHz (low), 1 MHz to 8 MHz (medium), 8  
MHz to 32 MHz (high)  
– Up to 48 EGPIO pins  
– Up to 16 rapid general purpose I/O (RGPIO) pins  
– Low-power hardware touch sensor interface (TSI)  
– Interrupt request pin (IRQ)  
– Multipurpose clock generator (MCG)  
• Memories and memory interfaces  
– Flash memory, FlexNVM, FlexRAM, and RAM  
– Serial programming interface (EzPort)  
– Mini-FlexBus external bus interface  
© 2010–2015 Freescale Semiconductor, Inc.  
Table of Contents  
1 Ordering parts.......................................................................................3  
5.4 Thermal specifications.................................................................20  
5.4.1 Thermal operating requirements.................................... 20  
5.4.2 Thermal attributes.......................................................... 20  
6 Peripheral operating requirements and behaviors................................ 21  
6.1 Core modules............................................................................... 21  
6.1.1 Debug specifications...................................................... 21  
6.2 System modules........................................................................... 21  
6.2.1 VREG electrical specifications...................................... 21  
6.3 Clock modules............................................................................. 22  
6.3.1 MCG specifications........................................................22  
6.3.2 Oscillator electrical specifications................................. 24  
6.4 Memories and memory interfaces................................................26  
6.4.1 Flash electrical specifications........................................ 26  
6.4.2 EzPort Switching Specifications....................................29  
6.4.3 Mini-Flexbus Switching Specifications......................... 30  
6.5 Security and integrity modules.................................................... 33  
6.6 Analog..........................................................................................34  
6.6.1 ADC electrical specifications.........................................34  
6.6.2 CMP and 6-bit DAC electrical specifications................37  
6.6.3 12-bit DAC electrical characteristics............................. 39  
6.6.4 Voltage reference electrical specifications.....................42  
6.7 Timers.......................................................................................... 43  
6.8 Communication interfaces........................................................... 44  
6.8.1 SPI switching specifications.......................................... 44  
6.9 Human-machine interfaces (HMI)...............................................47  
6.9.1 TSI electrical specifications........................................... 47  
7 Dimensions...........................................................................................48  
7.1 Obtaining package dimensions.................................................... 48  
8 Pinout................................................................................................... 49  
8.1 Signal Multiplexing and Pin Assignments...................................49  
8.2 Pinout diagrams........................................................................... 51  
8.3 Module-by-module signals.......................................................... 55  
9 Revision History...................................................................................64  
1.1 Determining valid orderable parts............................................... 3  
2 Part identification................................................................................. 3  
2.1 Description...................................................................................3  
2.2 Format..........................................................................................3  
2.3 Fields............................................................................................3  
2.4 Example....................................................................................... 4  
3 Terminology and guidelines.................................................................4  
3.1 Definition: Operating requirement...............................................4  
3.2 Definition: Operating behavior....................................................4  
3.3 Definition: Attribute.................................................................... 5  
3.4 Definition: Rating........................................................................ 5  
3.5 Result of exceeding a rating.........................................................6  
3.6 Relationship between ratings and operating requirements.......... 6  
3.7 Guidelines for ratings and operating requirements......................6  
3.8 Definition: Typical value.............................................................7  
4 Ratings..................................................................................................8  
4.1 Thermal handling ratings.............................................................8  
4.2 Moisture handling ratings............................................................ 8  
4.3 ESD handling ratings...................................................................8  
4.4 Voltage and current operating ratings..........................................8  
5 General................................................................................................. 9  
5.1 Typical Value Conditions............................................................ 9  
5.2 Nonswitching electrical specifications........................................ 9  
5.2.1 Voltage and Current Operating Requirements...............9  
5.2.2 LVD and POR operating requirements..........................10  
5.2.3 Voltage and current operating behaviors....................... 11  
5.2.4 Power mode transition operating behaviors...................12  
5.2.5 Power consumption operating behaviors....................... 12  
5.2.6 EMC radiated emissions operating behaviors................16  
5.2.7 Designing with radiated emissions in mind................... 17  
5.2.8 Capacitance attributes.................................................... 17  
5.3 Switching electrical specifications...............................................17  
5.3.1 General Switching Specifications.................................. 18  
MCF51QU128, Rev. 5, 03/2015  
2
Freescale Semiconductor, Inc.  
Ordering parts  
1 Ordering parts  
1.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable part  
numbers for this device:  
1. Go to www.freescale.com.  
2. Perform a part number search for the following partial device numbers: PCF51QU  
and MCF51QU.  
2 Part identification  
2.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
2.2 Format  
Part numbers for this device have the following format:  
Q CCCC DD MMM T PP  
2.3 Fields  
This table lists the possible values for each field in the part number (not all combinations  
are valid):  
Field  
Description  
Qualification status  
Values  
Q
• M = Fully qualified, general market  
flow  
• P = Prequalification  
CCCC  
DD  
Core code  
CF51 = ColdFire V1  
JF, JU, QF, QH, QM, QU  
• 32 = 32 KB  
Device number  
Memory size (program flash memory)1  
MMM  
Table continues on the next page...  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
3
Terminology and guidelines  
Field  
Description  
Values  
• 64 = 64 KB  
• 128 = 128 KB  
V = –40 to 105  
T
Temperature range, ambient (°C)  
Package identifier  
PP  
• FM = 32 QFN (5 mm x 5 mm)  
• HS = 44 Laminate QFN (5 mm x 5  
mm)  
• LF = 48 LQFP (7 mm x 7 mm)  
• LH = 64 LQFP (10 mm x 10 mm)  
1. All parts also have FlexNVM, FlexRAM, and RAM.  
2.4 Example  
This is an example part number:  
MCF51QU128VLH  
3 Terminology and guidelines  
3.1 Definition: Operating requirement  
An operating requirement is a specified value or range of values for a technical  
characteristic that you must guarantee during operation to avoid incorrect operation and  
possibly decreasing the useful life of the chip.  
3.1.1 Example  
This is an example of an operating requirement:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
0.9  
1.1  
V
3.2 Definition: Operating behavior  
Unless otherwise specified, an operating behavior is a specified value or range of values  
for a technical characteristic that are guaranteed during operation if you meet the  
operating requirements and any other specified conditions.  
MCF51QU128, Rev. 5, 03/2015  
4
Freescale Semiconductor, Inc.  
Terminology and guidelines  
3.2.1 Example  
This is an example of an operating behavior:  
Symbol  
Description  
Min.  
Max.  
Unit  
IWP  
Digital I/O weak pullup/ 10  
pulldown current  
130  
µA  
3.3 Definition: Attribute  
An attribute is a specified value or range of values for a technical characteristic that are  
guaranteed, regardless of whether you meet the operating requirements.  
3.3.1 Example  
This is an example of an attribute:  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance:  
digital pins  
7
pF  
3.4 Definition: Rating  
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,  
may cause permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
3.4.1 Example  
This is an example of an operating rating:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
–0.3  
1.2  
V
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
5
Terminology and guidelines  
3.5 Result of exceeding a rating  
40  
30  
The likelihood of permanent chip failure increases rapidly as  
soon as a characteristic begins to exceed one of its operating ratings.  
20  
10  
0
Operating rating  
Measured characteristic  
3.6 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- No permanent failure  
- Correct operation  
- No permanent failure  
Expected permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Possible decreased life  
- Possible incorrect operation  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
3.7 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
MCF51QU128, Rev. 5, 03/2015  
6
Freescale Semiconductor, Inc.  
Terminology and guidelines  
3.8 Definition: Typical value  
A typical value is a specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Given the typical manufacturing process, is representative of that characteristic  
during operation when you meet the typical-value conditions or other specified  
conditions  
Typical values are provided as design guidelines and are neither tested nor guaranteed.  
3.8.1 Example 1  
This is an example of an operating behavior that includes a typical value:  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IWP  
Digital I/O weak  
pullup/pulldown  
current  
10  
70  
130  
µA  
3.8.2 Example 2  
This is an example of a chart that shows typical values for various voltage and  
temperature conditions:  
5000  
4500  
4000  
TJ  
3500  
150 °C  
3000  
105 °C  
2500  
25 °C  
2000  
–40 °C  
1500  
1000  
500  
0
0.90  
0.95  
1.00  
1.05  
1.10  
VDD (V)  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
7
Ratings  
4 Ratings  
4.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
260  
245  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
Solder temperature, leaded  
1
2
TSDR  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
4.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
4.3 ESD handling ratings  
Symbol  
VHBM  
VCDM  
ILAT  
Description  
Min.  
-2000  
-500  
Max.  
+2000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
Electrostatic discharge voltage, charged-device model  
Latch-up current at ambient temperature of 105°C  
1
2
3
V
-100  
+100  
mA  
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
4.4 Voltage and current operating ratings  
MCF51QU128, Rev. 5, 03/2015  
8
Freescale Semiconductor, Inc.  
General  
Unit  
Symbol  
VDD  
IDD  
Description  
Min.  
–0.3  
Max.  
3.8  
Digital supply voltage  
V
mA  
V
Digital supply current  
120  
VDIO  
VAIO  
ID  
Digital input voltage (except RESET, EXTAL, and XTAL)  
Analog, RESET, EXTAL, and XTAL input voltage  
–0.3  
–0.3  
–25  
VDD + 0.3  
VDD + 0.3  
25  
V
Instantaneous maximum current single pin limit (applies to all  
port pins)  
mA  
VDDA  
Analog supply voltage  
Regulator input  
VDD – 0.3  
–0.3  
VDD + 0.3  
6.0  
V
V
VREGIN  
5 General  
5.1 Typical Value Conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Symbol  
Description  
Ambient temperature  
3.3 V supply voltage  
Value  
Unit  
TA  
25  
°C  
V
VDD  
3.3  
5.2 Nonswitching electrical specifications  
5.2.1 Voltage and Current Operating Requirements  
Table 1. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.71  
Max.  
3.6  
3.6  
0.1  
0.1  
Unit  
V
Notes  
Supply voltage  
VDDA  
Analog supply voltage  
1.71  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
–0.1  
V
–0.1  
V
VIH  
Input high voltage  
0.7 × VDD  
0.75 × VDD  
V
1
2
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
V
VIL  
Input low voltage  
0.35 × VDD  
V
Table continues on the next page...  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
9
Nonswitching electrical specifications  
Table 1. Voltage and current operating requirements (continued)  
Symbol  
Description  
• 2.7 V ≤ VDD ≤ 3.6 V  
Min.  
Max.  
Unit  
Notes  
0.3 × VDD  
V
• 1.7 V ≤ VDD ≤ 2.7 V  
IIC  
DC injection current — single pin  
• VIN > VDD  
0
0
2
mA  
mA  
3
–0.2  
• VIN < VSS  
DC injection current — total MCU limit, includes sum of  
all stressed pins  
• VIN > VDD  
0
0
25  
–5  
mA  
mA  
3
• VIN < VSS  
VRAM  
VDD voltage required to retain RAM  
1.2  
V
1. The device always interprets an input as a 1 when the input is greater than or equal to VIH (min.) and less than or equal to  
VIH (max.), regardless of whether input hysteresis is turned on.  
2. The device always interprets an input as a 0 when the input is less than or equal to VIL (max.) and greater than or equal to  
VIL (min.), regardless of whether input hysteresis is turned on.  
3. All functional non-supply pins are internally clamped to VSS and VDD. Input must be current limited to the value specified.  
To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp  
voltages, then use the larger of the two values. Power supply must maintain regulation within operating VDD range during  
instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the  
injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external  
VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not  
consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall  
power consumption).  
5.2.2 LVD and POR operating requirements  
Table 2. LVD and POR operating requirements  
Symbol Description  
Min.  
0.8  
Typ.  
1.1  
Max.  
1.5  
Unit  
V
Notes  
VPOR  
Falling VDD POR detect voltage  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV=01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV=00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
2.78  
2.88  
2.98  
3.08  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
80  
mV  
V
Falling low-voltage detect threshold — low range  
(LVDV=00)  
1.54  
1.60  
1.66  
Low-voltage warning thresholds — low range  
1
VLVW1L  
1.74  
1.80  
1.86  
V
Table continues on the next page...  
MCF51QU128, Rev. 5, 03/2015  
10  
Freescale Semiconductor, Inc.  
Nonswitching electrical specifications  
Table 2. LVD and POR operating requirements (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VLVW2L  
VLVW3L  
VLVW4L  
• Level 1 falling (LVWV=00)  
1.84  
1.90  
1.96  
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
1.94  
2.04  
2.00  
2.10  
2.06  
2.16  
V
V
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
60  
mV  
VBG  
tLPO  
Bandgap voltage reference  
Internal low power oscillator period  
factory trimmed  
0.97  
900  
1.00  
1.03  
V
1000  
1100  
μs  
1. Rising thresholds are falling threshold + hysteresis voltage  
5.2.3 Voltage and current operating behaviors  
Table 3. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOH  
Output high voltage — high drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = - 9 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3 mA  
VDD – 0.5  
VDD – 0.5  
V
V
Output high voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6 mA  
VDD – 0.5  
VDD – 0.5  
V
V
IOHT  
VOL  
Output high current total for all ports  
Output low voltage — high drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 9 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3 mA  
100  
mA  
0.5  
0.5  
V
V
Output low voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6 mA  
0.5  
0.5  
V
V
IOLT  
IIN  
Output low current total for all ports  
Input leakage current (per pin)  
• @ full temperature range  
• @ 25 °C  
100  
mA  
1.0  
0.1  
μA  
μA  
1
IOZ  
IOZ  
Hi-Z (off-state) leakage current (per pin)  
Total Hi-Z (off-state) leakage current (all input pins)  
Internal pullup resistors  
22  
22  
1
4
μA  
μA  
kΩ  
kΩ  
RPU  
RPD  
50  
50  
2
3
Internal pulldown resistors  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
11  
Nonswitching electrical specifications  
1. Tested by ganged leakage method  
2. Measured at Vinput = VSS  
3. Measured at Vinput = VDD  
5.2.4 Power mode transition operating behaviors  
All specifications except tPOR and VLLSx-RUN recovery times in the following table  
assume this clock configuration:  
• CPU and system clocks = 50 MHz  
• Bus clock (and flash and Mini-FlexBus clocks) = 25 MHz  
Table 4. Power mode transition operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
tPOR  
After a POR event, amount of time from the point VDD  
reaches 1.71 V to execution of the first instruction  
across the operating temperature range of the chip.  
300 1.71  
V/(VDD slew  
rate)  
μs  
1
• 1.71 V/(VDD slew rate) ≤ 300 μs  
• 1.71 V/(VDD slew rate) > 300 μs  
• VLLS1 RUN  
• VLLS2 RUN  
• VLLS3 RUN  
• LLS RUN  
1, 2  
1, 2  
1, 2  
2
132  
92  
μs  
μs  
μs  
μs  
μs  
μs  
92  
7.5  
5.5  
5.5  
• VLPS RUN  
• STOP RUN  
2
2
1. Normal boot (FTFL_FOPT[LPBOOT] is 1)  
2. The wakeup time includes the execution time for a small amount of firmware used to produce a GPIO clear event. Wakeup  
time is measured from the falling edge of the external wakeup event to the falling edge of a GPIO clear performed by  
software.  
5.2.5 Power consumption operating behaviors  
Table 5. Power consumption operating behaviors  
Symbol  
IDDA  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Analog supply current  
See note  
mA  
1
2
IDD_RUN  
Run mode current — all peripheral clocks  
disabled, code executing from RAM  
13  
13  
mA  
mA  
16  
• @ 1.8 V  
• @ 3.0 V  
Table continues on the next page...  
MCF51QU128, Rev. 5, 03/2015  
12  
Freescale Semiconductor, Inc.  
Nonswitching electrical specifications  
Table 5. Power consumption operating behaviors (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_RUN  
Run mode current — all peripheral clocks  
disabled, code executing from flash memory with  
page buffering disabled  
2
14.3  
14.5  
mA  
mA  
17.9  
• @ 1.8 V  
• @ 3.0 V  
IDD_RUN  
Run mode current — all peripheral clocks  
enabled, code executing from RAM, exercising  
flash memory  
3
4
20  
20  
23.5  
25  
mA  
mA  
• @ 1.8 V  
• @ 3.0 V  
IDD_WAIT  
IDD_STOP  
Wait mode current at 3.0 V — all peripheral  
clocks disabled  
5.8  
6.8  
mA  
Stop mode current at 3.0 V  
• @ –40 to 25 °C  
0.34  
0.90  
0.41  
1.8  
mA  
mA  
• @ 105 °C  
IDD_VLPR  
IDD_VLPR  
Very low-power run mode current at 3.0 V — all  
peripheral clocks disabled  
0.63  
0.78  
0.15  
1.32  
1.46  
0.62  
mA  
mA  
5
6
Very low-power run mode current at 3.0 V — all  
peripheral clocks enabled  
IDD_VLPW  
IDD_VLPS  
Very low-power wait mode current at 3.0 V  
mA  
μA  
7
8
Very low-power stop mode current at 3.0 V  
• @ –40 to 25 °C  
19  
45  
145  
312  
• @ 105 °C  
IDD_LLS  
IDD_VLLS3  
IDD_VLLS2  
IDD_VLLS1  
IDD_RTC  
Low leakage stop mode current at 3.0 V  
• @ –40 to 25 °C  
8,9,10  
8,9,10  
8,9  
3.0  
4.8  
μA  
μA  
53.3  
157  
• @ 105 °C  
Very low-leakage stop mode 3 current at 3.0 V  
• @ –40 to 25 °C  
1.8  
3.3  
μA  
μA  
39.2  
115  
• @ 105 °C  
Very low-leakage stop mode 2 current at 3.0 V  
• @ –40 to 25 °C  
1.6  
2.8  
65  
μA  
μA  
22.2  
• @ 105 °C  
Very low-leakage stop mode 1 current at 3.0 V  
• @ –40 to 25 °C  
8,9  
1.4  
2.6  
50  
μA  
μA  
17.6  
• @ 105 °C  
Average current adder for real-time clock function  
• @ –40 to 25 °C  
11  
0.7  
μA  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
13  
Nonswitching electrical specifications  
1. The analog supply current is the sum of the active current for each of the analog modules on the device. See each  
module's specification for its supply current.  
2. 50 MHz core and system clocks, and 25 MHz bus clock. MCG configured for FEI mode. All peripheral clocks disabled.  
3. 50 MHz core and system clocks, and 25 MHz bus clock. MCG configured for FEI mode. All peripheral clocks enabled, but  
peripherals are not in active operation.  
4. 50 MHz core and system clocks, and 25 MHz bus clock. MCG configured for FEI mode.  
5. 2 MHz core and system clocks, and 1 MHz bus clock. MCG configured for BLPE mode. All peripheral clocks disabled.  
Code executing from flash memory.  
6. 2 MHz core and system clocks, and 1 MHz bus clock. MCG configured for BLPE mode. All peripheral clocks enabled, but  
peripherals are not in active operation. Code executing from flash memory.  
7. 2 MHz core and system clocks, and 1 MHz bus clock. MCG configured for BLPE mode. All peripheral clocks disabled.  
8. OSC clocks disabled.  
9. All pads disabled.  
10. Data reflects devices with 32 KB of RAM. For devices with 16 KB of RAM, power consumption is reduced by 500 nA. For  
devices with 8 KB of RAM, power consumption is reduced by 750 nA.  
11. RTC function current includes LPTMR with OSC enabled with 32.768 kHz crystal at 3.0 V  
5.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• MCG in FBE mode, except for 50 MHz core (FEI mode)  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFL  
• For the ALLON curve, all peripheral clocks are enabled, but peripherals are not in  
active operation  
• Voltage Regulator disabled  
• No GPIOs toggled  
• Code execution from flash memory with cache enabled  
MCF51QU128, Rev. 5, 03/2015  
14  
Freescale Semiconductor, Inc.  
Nonswitching electrical specifications  
Figure 1. Run mode supply current vs. core frequency  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
15  
Nonswitching electrical specifications  
Figure 2. VLPR mode supply current vs. core frequency  
5.2.6 EMC radiated emissions operating behaviors  
Table 6. EMC radiated emissions operating behaviors  
Symbol  
Description  
Frequency  
band (MHz)  
Typ.  
Unit  
Notes  
VRE1  
VRE2  
Radiated emissions voltage, band 1  
Radiated emissions voltage, band 2  
Radiated emissions voltage, band 3  
Radiated emissions voltage, band 4  
IEC level  
0.15–50  
50–150  
20  
19  
17  
16  
L
dBμV  
1, 2  
VRE3  
150–500  
500–1000  
0.15–1000  
VRE4  
VRE_IEC  
2, 3  
MCF51QU128, Rev. 5, 03/2015  
16  
Freescale Semiconductor, Inc.  
Nonswitching electrical specifications  
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement  
of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and  
Definitions, and IEC Standard 61967-2, Integrated Circuits - Measurement of  
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated  
Emissions—TEM Cell and Wideband TEM Cell Method.  
2. VDD = 3 V, TA = 25 °C, fOSC = 32 kHz (crystal), fBUS = 24 MHz  
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated  
Emissions—TEM Cell and Wideband TEM Cell Method  
5.2.7 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.freescale.com.  
2. Perform a keyword search for “EMC design.”  
5.2.8 Capacitance attributes  
Table 7. Capacitance attributes  
Symbol  
CIN_A  
Description  
Min.  
Max.  
Unit  
pF  
Input capacitance: analog pins  
Input capacitance: digital pins  
7
7
CIN_D  
pF  
5.3 Switching electrical specifications  
Table 8. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Normal run mode  
fSYS  
fBUS  
System and core clock  
Bus clock  
50  
25  
25  
25  
MHz  
MHz  
MHz  
MHz  
FB_CLK Mini-FlexBus clock  
1
fLPTMR  
LPTMR clock  
VLPR mode  
fSYS  
fBUS  
System and core clock  
Bus clock  
2
1
MHz  
MHz  
MHz  
MHz  
FB_CLK Mini-FlexBus clock  
fLPTMR  
LPTMR clock2  
1
1
25  
1. When the Mini-FlexBus is enabled, its clock frequency is always the same as the bus clock frequency.  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
17  
Nonswitching electrical specifications  
2. A maximum frequency of 25 MHz for the LPTMR in VLPR mode is possible when the LPTMR is configured for pulse  
counting mode and is driven externally via the LPTMR_ALT1, LPTMR_ALT2, or LPTMR_ALT3 pin.  
5.3.1 General Switching Specifications  
These general purpose specifications apply to all signals configured for EGPIO, MTIM,  
CMT, PDB, IRQ, and I2C signals. The conditions are 50 pf load, VDD = 1.71 V to 3.6 V,  
and full temperature range. The GPIO are set for high drive, no slew rate control, and no  
input filter, digital or analog, unless otherwise specified.  
Table 9. EGPIO General Control Timing  
Symbol  
G1  
Description  
Min.  
Max.  
Unit  
Bus clock from CLK_OUT pin high to GPIO output valid  
1
32  
ns  
ns  
G2  
Bus clock from CLK_OUT pin high to GPIO output invalid  
(output hold)  
G3  
G4  
GPIO input valid to bus clock high  
28  
4
ns  
ns  
Bus clock from CLK_OUT pin high to GPIO input invalid  
GPIO pin interrupt pulse width (digital glitch filter disabled)  
Synchronous path1  
1.5  
Bus  
clock  
cycles  
GPIO pin interrupt pulse width (digital glitch filter disabled,  
analog filter enabled)  
100  
50  
ns  
ns  
ns  
Asynchronous path2  
GPIO pin interrupt pulse width (digital glitch filter disabled,  
analog filter disabled)  
Asynchronous path2  
External reset pulse width (digital glitch filter disabled)  
Mode select (MS) hold time after reset deassertion  
100  
2
Bus  
clock  
cycles  
1. The greater synchronous and asynchronous timing must be met.  
2. This is the shortest pulse that is guaranteed to be recognized.  
MCF51QU128, Rev. 5, 03/2015  
18  
Freescale Semiconductor, Inc.  
Nonswitching electrical specifications  
Bus clock  
G1  
G2  
Data outputs  
Data inputs  
G3  
G4  
Figure 3. EGPIO timing diagram  
The following general purpose specifications apply to all signals configured for RGPIO,  
FTM, and UART. The conditions are 25 pf load, VDD = 3.6 V to 1.71 V, and full  
temperature range. The GPIO are set for high drive, no slew rate control, and no input  
filter, digital or analog, unless otherwise specified.  
Table 10. RGPIO General Control Timing  
Symbol  
R1  
Description  
Min.  
Max.  
Unit  
CPUCLK from CLK_OUT pin high to GPIO output valid  
1
16  
ns  
ns  
R2  
CPUCLK from CLK_OUT pin high to GPIO output invalid  
(output hold)  
R3  
R4  
GPIO input valid to bus clock high  
17  
2
ns  
ns  
CPUCLK from CLK_OUT pin high to GPIO input invalid  
Bus clock  
R1  
R2  
Data outputs  
R3  
R4  
Data inputs  
Figure 4. RGPIO timing diagram  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
19  
Thermal specifications  
5.4 Thermal specifications  
5.4.1 Thermal operating requirements  
Table 11. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
115  
Unit  
°C  
Die junction temperature  
Ambient temperature  
TA  
105  
°C  
5.4.2 Thermal attributes  
Board type Symbol  
Description  
64 LQFP 48 LQFP  
44  
32 QFN Unit Notes  
Laminate  
QFN  
Single-layer RθJA  
(1s)  
Thermal resistance, junction to  
ambient (natural convection)  
73  
79  
55  
66  
48  
34  
108  
98  
33  
81  
28  
13  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1
1
1
1
2
Four-layer  
(2s2p)  
RθJA  
Thermal resistance, junction to  
ambient (natural convection)  
54  
61  
48  
37  
69  
91  
63  
44  
Single-layer RθJMA  
(1s)  
Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
Four-layer  
(2s2p)  
RθJMA  
Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
RθJB  
Thermal resistance, junction to  
board  
RθJC  
Thermal resistance, junction to case 20  
20  
31  
2.2  
6.0  
°C/W  
°C/W  
3
4
ΨJT  
Thermal characterization parameter, 5.0  
junction to package top outside  
center (natural convection)  
4.0  
6.0  
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions  
—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method  
Environmental Conditions—Forced Convection (Moving Air).  
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions  
—Junction-to-Board.  
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate  
temperature used for the case temperature. The value includes the thermal resistance of the interface material between  
the top of the package and the cold plate.  
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions  
—Natural Convection (Still Air).  
MCF51QU128, Rev. 5, 03/2015  
20  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
6 Peripheral operating requirements and behaviors  
6.1 Core modules  
6.1.1 Debug specifications  
Table 12. Background debug mode (BDM) timing  
Number  
Symbol  
tMSSU  
Description  
Min.  
Max.  
Unit  
1
2
BKGD/MS setup time after issuing background  
debug force reset to enter user mode or BDM  
500  
ns  
µs  
tMSH  
BKGD/MS hold time after issuing background  
debug force reset to enter user mode or BDM1  
100  
1. To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of tMSH after  
VDD rises above VLVD  
.
6.2 System modules  
6.2.1 VREG electrical specifications  
Table 13. VREG electrical specifications  
Symbol Description  
Min.  
2.7  
Typ.1  
Max.  
5.5  
Unit  
V
Notes  
VREGIN Input supply voltage  
IDDon  
IDDstby  
IDDoff  
Quiescent current — Run mode, load current  
equal zero, input supply (VREGIN) > 3.6 V  
120  
186  
μA  
Quiescent current — Standby mode, load current  
equal zero  
1.1  
10  
μA  
Quiescent current — Shutdown mode  
650  
4
nA  
μA  
• VREGIN = 5.0 V and temperature=25 °C  
• Across operating voltage and temperature  
ILOADrun Maximum load current — Run mode  
ILOADstby Maximum load current — Standby mode  
120  
1
mA  
mA  
VReg33out Regulator output voltage — Input supply  
(VREGIN) > 3.6 V  
• Run mode  
3
3.3  
2.8  
3.6  
3.6  
V
V
• Standby mode  
2.1  
Table continues on the next page...  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
21  
Clock modules  
Table 13. VREG electrical specifications (continued)  
Symbol Description  
Min.  
Typ.1  
Max.  
Unit  
Notes  
VReg33out Regulator output voltage — Input supply  
(VREGIN) < 3.6 V, pass-through mode  
2.1  
3.6  
V
2
COUT  
ESR  
External output capacitor  
1.76  
1
2.2  
8.16  
100  
μF  
External output capacitor equivalent series  
resistance  
mΩ  
ILIM  
Short circuit current  
290  
mA  
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.  
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad  
.
6.3 Clock modules  
6.3.1 MCG specifications  
Table 14. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft Internal reference frequency (slow clock) —  
32.768  
kHz  
factory trimmed at nominal VDD and 25 °C  
fints_t  
Internal reference frequency (slow clock) — user  
trimmed  
31.25  
38.214  
0.6  
kHz  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM and SCFTRIM  
0.3  
%fdco  
1
1
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM only  
0.2  
0.5  
%fdco  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over voltage and temperature  
10  
%fdco  
%fdco  
1
1
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0–70°C  
1.0  
4.5  
fintf_ft  
fintf_t  
floc_low  
floc_high  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25°C  
3
3.3  
4
5
MHz  
MHz  
kHz  
kHz  
Internal reference frequency (fast clock) — user  
trimmed at nominal VDD and 25 °C  
Loss of external clock minimum frequency —  
RANGE = 00  
(3/5) x  
fints_t  
Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
FLL  
ffll_ref  
FLL reference frequency range  
31.25  
39.0625  
kHz  
Table continues on the next page...  
MCF51QU128, Rev. 5, 03/2015  
22  
Freescale Semiconductor, Inc.  
Clock modules  
Table 14. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fdco  
DCO output  
frequency range  
Low range (DRS=00)  
640 × ffll_ref  
20  
20.97  
25  
MHz  
2, 3  
Mid range (DRS=01)  
1280 × ffll_ref  
40  
60  
80  
41.94  
62.91  
83.89  
23.99  
47.97  
71.99  
95.98  
50  
75  
100  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
ps  
Mid-high range (DRS=10)  
1920 × ffll_ref  
High range (DRS=11)  
2560 × ffll_ref  
fdco_t_DMX32 DCO output  
frequency  
Low range (DRS=00)  
732 × ffll_ref  
4, 5  
Mid range (DRS=01)  
1464 × ffll_ref  
Mid-high range (DRS=10)  
2197 × ffll_ref  
High range (DRS=11)  
2929 × ffll_ref  
Jcyc_fll  
FLL period jitter  
180  
150  
• fDCO = 48 MHz  
• fDCO = 98 MHz  
tfll_acquire FLL target frequency acquisition time  
1
ms  
6
PLL  
fvco  
Ipll  
VCO operating frequency  
48.0  
100  
MHz  
µA  
PLL operating current  
7
7
1060  
• PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref  
2 MHz, VDIV multiplier = 48)  
=
=
Ipll  
PLL operating current  
600  
µA  
• PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref  
2 MHz, VDIV multiplier = 24)  
fpll_ref  
PLL reference frequency range  
PLL period jitter (RMS)  
• fvco = 48 MHz  
2.0  
4.0  
MHz  
Jcyc_pll  
8
8
120  
50  
ps  
ps  
• fvco = 100 MHz  
Jacc_pll  
PLL accumulated jitter over 1µs (RMS)  
• fvco = 48 MHz  
1350  
600  
ps  
ps  
• fvco = 100 MHz  
Dlock  
Dunl  
Lock entry frequency tolerance  
Lock exit frequency tolerance  
Lock detector detection time  
1.49  
4.47  
2.98  
5.97  
150 × 10-6  
+ 1075(1/  
%
%
s
tpll_lock  
9
fpll_ref  
)
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
23  
Clock modules  
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.  
3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation  
(Δfdco_t) over voltage and temperature should be considered.  
4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.  
5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
7. Excludes any oscillator currents that are also consuming power while PLL is in operation.  
8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of  
each PCB and results will vary.  
9. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled  
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes  
it is already running.  
6.3.2 Oscillator electrical specifications  
6.3.2.1 Oscillator DC electrical specifications  
Table 15. Oscillator DC electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDOSC  
Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
500  
200  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
μA  
mA  
mA  
• 1 MHz  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
• 24 MHz  
• 32 MHz  
1.5  
IDDOSC  
Supply current — high-gain mode (HGO=1)  
1
• 32 kHz  
25  
300  
400  
500  
2.5  
3
μA  
μA  
• 1 MHz  
• 4 MHz  
μA  
• 8 MHz (RANGE=01)  
• 16 MHz  
μA  
mA  
mA  
mA  
• 24 MHz  
• 32 MHz  
4
Cx  
Cy  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
Table continues on the next page...  
MCF51QU128, Rev. 5, 03/2015  
24  
Freescale Semiconductor, Inc.  
Clock modules  
Table 15. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
RF Feedback resistor — low-frequency, low-power  
MΩ  
2, 4  
mode (HGO=0)  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
MΩ  
MΩ  
MΩ  
kΩ  
Feedback resistor — high-frequency, low-power  
mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
1
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Series resistor — low-frequency, high-gain mode  
(HGO=1)  
200  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
kΩ  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
• 1 MHz resonator  
• 2 MHz resonator  
• 4 MHz resonator  
• 8 MHz resonator  
• 16 MHz resonator  
• 20 MHz resonator  
• 32 MHz resonator  
6.6  
3.3  
0
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
V
0
0
0
0
5
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
VDD  
0.6  
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation  
3. Cx and Cy can be provided by using either integrated capacitors or external components.  
4. When low-power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any  
other device.  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
25  
Memories and memory interfaces  
6.3.2.2 Oscillator frequency specifications  
Table 16. Oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal or resonator frequency — low-  
frequency mode (MCG_C2[RANGE]=00)  
Min.  
Typ.  
Max.  
Unit  
Notes  
32  
40  
kHz  
fosc_hi_1 Oscillator crystal or resonator frequency — high-  
frequency mode (low range)  
1
8
8
MHz  
MHz  
(MCG_C2[RANGE]=01)  
fosc_hi_2 Oscillator crystal or resonator frequency — high  
frequency mode (high range)  
32  
(MCG_C2[RANGE]=1x)  
fec_extal  
tdc_extal  
tcst  
Input clock frequency (external clock mode)  
Input clock duty cycle (external clock mode)  
40  
50  
50  
60  
MHz  
%
1, 2  
3, 4  
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
750  
ms  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
250  
0.6  
ms  
ms  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
1
ms  
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.  
2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by  
FRDIV, it remains within the limits of the DCO input clock frequency.  
3. Proper PC board layout procedures must be followed to achieve specifications.  
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register  
being set.  
6.4 Memories and memory interfaces  
6.4.1 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
6.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps are  
active and do not include command overhead.  
MCF51QU128, Rev. 5, 03/2015  
26  
Freescale Semiconductor, Inc.  
Memories and memory interfaces  
Table 17. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
13  
Max.  
18  
Unit  
μs  
Notes  
thvpgm4  
Longword Program high-voltage time  
1
thversscr Sector Erase high-voltage time  
thversblk32k Erase Block high-voltage time for 32 KB  
thversblk128k Erase Block high-voltage time for 128 KB  
113  
452  
1808  
ms  
ms  
ms  
52  
1
208  
1
1. Maximum time based on expectations at cycling end-of-life.  
6.4.1.2 Flash timing specifications — commands  
Table 18. Flash command timing specifications  
Symbol Description  
Read 1s Block execution time  
Min.  
Typ.  
Max.  
Unit  
Notes  
1
trd1blk32k  
• 32 KB data flash  
0.5  
1.7  
ms  
ms  
trd1blk128k  
• 128 KB program flash  
trd1sec1k Read 1s Section execution time (flash sector)  
65  
60  
45  
μs  
μs  
μs  
μs  
1
1
tpgmchk  
trdrsrc  
Program Check execution time  
Read Resource execution time  
Program Longword execution time  
Erase Flash Block execution time  
• 32 KB data flash  
30  
1
tpgm4  
145  
2
tersblk32k  
55  
465  
ms  
ms  
tersblk128k  
• 128 KB program flash  
220  
1850  
tersscr  
Erase Flash Sector execution time  
Program Section execution time  
• 512 bytes flash  
14  
114  
ms  
2
tpgmsec512  
tpgmsec1k  
4.7  
9.3  
ms  
ms  
• 1 KB flash  
trd1all  
Read 1s All Blocks execution time  
Read Once execution time  
1.8  
25  
ms  
μs  
μs  
ms  
μs  
1
1
trdonce  
tpgmonce Program Once execution time  
65  
275  
2
tersall  
Erase All Blocks execution time  
2350  
30  
tvfykey  
Verify Backdoor Access Key execution time  
Program Partition for EEPROM execution time  
• 32 KB FlexNVM  
1
tpgmpart32k  
70  
ms  
Set FlexRAM Function execution time:  
• Control Code 0xFF  
tsetramff  
tsetram8k  
tsetram32k  
50  
0.3  
0.7  
μs  
ms  
ms  
• 8 KB EEPROM backup  
• 32 KB EEPROM backup  
0.5  
1.0  
Byte-write to FlexRAM for EEPROM operation  
Table continues on the next page...  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
27  
Memories and memory interfaces  
Table 18. Flash command timing specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
teewr8bers Byte-write to erased FlexRAM location execution  
time  
175  
260  
μs  
3
Byte-write to FlexRAM execution time:  
teewr8b8k  
teewr8b16k  
teewr8b32k  
• 8 KB EEPROM backup  
• 16 KB EEPROM backup  
• 32 KB EEPROM backup  
340  
385  
475  
1700  
1800  
2000  
μs  
μs  
μs  
Word-write to FlexRAM for EEPROM operation  
teewr16bers Word-write to erased FlexRAM location  
execution time  
175  
260  
μs  
Word-write to FlexRAM execution time:  
teewr16b8k  
teewr16b16k  
teewr16b32k  
• 8 KB EEPROM backup  
• 16 KB EEPROM backup  
• 32 KB EEPROM backup  
340  
385  
475  
1700  
1800  
2000  
μs  
μs  
μs  
Longword-write to FlexRAM for EEPROM operation  
teewr32bers Longword-write to erased FlexRAM location  
execution time  
360  
540  
μs  
Longword-write to FlexRAM execution time:  
teewr32b8k  
teewr32b16k  
teewr32b32k  
• 8 KB EEPROM backup  
• 16 KB EEPROM backup  
• 32 KB EEPROM backup  
545  
630  
810  
1950  
2050  
2250  
μs  
μs  
μs  
1. Assumes 25 MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.  
6.4.1.3 Flash high voltage current behaviors  
Table 19. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
2.5  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
6.4.1.4 Reliability specifications  
Table 20. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
Table continues on the next page...  
MCF51QU128, Rev. 5, 03/2015  
28  
Freescale Semiconductor, Inc.  
Memories and memory interfaces  
Table 20. NVM reliability specifications (continued)  
Symbol Description  
Min.  
5
Typ.1  
Max.  
Unit  
years  
years  
years  
cycles  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
tnvmretp100 Data retention after up to 100 cycles  
nnvmcycp Cycling endurance  
50  
2
2
2
3
20  
100  
100  
50 K  
15  
10 K  
Data Flash  
tnvmretd10k Data retention after up to 10 K cycles  
tnvmretd1k Data retention after up to 1 K cycles  
tnvmretd100 Data retention after up to 100 cycles  
nnvmcycd Cycling endurance  
5
50  
years  
years  
years  
cycles  
2
2
2
3
20  
100  
100  
50 K  
15  
10 K  
FlexRAM as EEPROM  
tnvmretee100 Data retention up to 100% of write endurance  
tnvmretee10 Data retention up to 10% of write endurance  
tnvmretee1 Data retention up to 1% of write endurance  
5
50  
years  
years  
years  
2
2
2
4
20  
15  
100  
100  
Write endurance  
nnvmwree16  
35 K  
315 K  
1.27 M  
10 M  
175 K  
1.6 M  
6.4 M  
50 M  
writes  
writes  
writes  
writes  
writes  
• EEPROM backup to FlexRAM ratio = 16  
nnvmwree128  
• EEPROM backup to FlexRAM ratio = 128  
nnvmwree512  
• EEPROM backup to FlexRAM ratio = 512  
nnvmwree4k  
• EEPROM backup to FlexRAM ratio = 4096  
nnvmwree8k  
20 M  
100 M  
• EEPROM backup to FlexRAM ratio = 8192  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant  
25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering  
Bulletin EB619.  
2. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant  
25°C use profile. Engineering Bulletin EB618 does not apply to this technology.  
3. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 125 °C.  
4. Write endurance represents the number of writes to each FlexRAM location at –40 °C ≤Tj ≤ 125 °C influenced by the  
cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup. Minimum and typical  
values assume all byte-writes to FlexRAM.  
6.4.2 EzPort Switching Specifications  
All timing is shown with respect to a maximum pin load of 50 pF and input signal  
transitions of 3 ns.  
Table 21. EzPort switching specifications  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
Unit  
V
Operating voltage  
EP1  
EZP_CK frequency of operation (all commands except  
READ)  
fSYS/2  
MHz  
EP1a  
EZP_CK frequency of operation (READ command)  
fSYS/8  
MHz  
Table continues on the next page...  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
29  
Memories and memory interfaces  
Table 21. EzPort switching specifications (continued)  
Num  
EP2  
EP3  
EP4  
EP5  
EP6  
EP7  
EP8  
EP9  
Description  
Min.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
EZP_CS negation to next EZP_CS assertion  
EZP_CS input valid to EZP_CK high (setup)  
EZP_CK high to EZP_CS input invalid (hold)  
EZP_D input valid to EZP_CK high (setup)  
EZP_CK high to EZP_D input invalid (hold)  
EZP_CK low to EZP_Q output valid (setup)  
EZP_CK low to EZP_Q output invalid (hold)  
EZP_CS negation to EZP_Q tri-state  
2 x tEZP_CK  
15  
0.0  
15  
0.0  
25  
0.0  
12  
EZP_CK  
EP2  
EP3  
EP4  
EZP_CS  
EP9  
EP8  
EP7  
EZP_Q (output)  
EZP_D (input)  
EP5  
EP6  
Figure 5. EzPort Timing Diagram  
6.4.3 Mini-Flexbus Switching Specifications  
All processor bus timings are synchronous; input setup/hold and output delay are given in  
respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be  
the same as the internal system bus frequency or an integer divider of that frequency.  
MCF51QU128, Rev. 5, 03/2015  
30  
Freescale Semiconductor, Inc.  
Memories and memory interfaces  
The following timing numbers indicate when data is latched or driven onto the external  
bus, relative to the Mini-Flexbus output clock (FB_CLK). All other timing relationships  
can be derived from these values.  
Table 22. Flexbus switching specifications  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
25  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
Clock period  
MHz  
ns  
FB1  
FB2  
FB3  
FB4  
FB5  
40  
Address, data, and control output valid  
Address, data, and control output hold  
Data and FB_TA input setup  
Data and FB_TA input hold  
20  
ns  
1
1
2
2
1
ns  
20  
ns  
10  
ns  
1. Specification is valid for all FB_AD[31:0], FB_CSn, FB_OE, FB_R/W, and FB_TS.  
2. Specification is valid for all FB_AD[31:0].  
Note  
The following diagrams refer to signal names that may not be  
included on your particular device. Ignore these extraneous  
signals.  
Also, ignore the AA=0 portions of the diagrams because this  
setting is not supported in the Mini-FlexBus.  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
31  
Memories and memory interfaces  
FB1  
FB_CLK  
FB3  
FB5  
FB_A[Y]  
Address  
FB4  
FB2  
Address  
Data  
FB_D[X]  
FB_RW  
FB_TS  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
Figure 6. Mini-FlexBus read timing diagram  
MCF51QU128, Rev. 5, 03/2015  
32  
Freescale Semiconductor, Inc.  
Memories and memory interfaces  
FB1  
FB_CLK  
FB_A[Y]  
FB_D[X]  
FB_RW  
FB_TS  
FB2  
FB3  
Address  
Address  
Data  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
Figure 7. Mini-FlexBus write timing diagram  
6.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
33  
Analog  
6.6 Analog  
6.6.1 ADC electrical specifications  
All ADC channels meet the 12-bit single-ended accuracy specifications.  
6.6.1.1 12-bit ADC operating conditions  
Table 23. 12-bit ADC operating conditions  
Symbol Description  
Conditions  
Min.  
1.71  
-100  
-100  
1.13  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
ΔVDDA  
ΔVSSA  
VREFH  
Supply voltage  
Supply voltage  
Ground voltage  
Absolute  
2
Delta to VDD (VDD – VDDA  
)
0
+100  
+100  
VDDA  
mV  
mV  
V
Delta to VSS (VSS – VSSA  
)
0
2
ADC reference  
voltage high  
VDDA  
VREFL  
ADC reference  
voltage low  
VSSA  
VSSA  
VSSA  
V
VADIN  
CADIN  
Input voltage  
VREFL  
4
VREFH  
5
V
Input capacitance  
• 8-bit / 10-bit / 12-bit  
modes  
pF  
RADIN  
RAS  
Input series  
resistance  
2
5
kΩ  
3
Analog source  
resistance  
(external)  
12-bit modes  
fADCK < 4 MHz  
5
kΩ  
fADCK  
Crate  
ADC conversion ≤ 12-bit mode  
clock frequency  
1.0  
18.0  
MHz  
4
ADC conversion ≤ 12-bit modes  
rate  
No ADC hardware averaging  
20.000  
818.330  
Ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS/CAS  
time constant should be kept to < 1 ns.  
4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
MCF51QU128, Rev. 5, 03/2015  
34  
Freescale Semiconductor, Inc.  
Analog  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 8. ADC input impedance equivalency diagram  
6.6.1.2 12-bit ADC electrical characteristics  
Table 24. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
7.3  
6.1  
9.5  
Unit  
mA  
Notes  
IDDA_ADC Supply current  
3
ADC  
asynchronous  
• ADLPC = 1, ADHSC = 0  
• ADLPC = 1, ADHSC = 1  
• ADLPC = 0, ADHSC = 0  
• ADLPC = 0, ADHSC = 1  
2.4  
4.0  
5.2  
6.2  
MHz  
MHz  
MHz  
MHz  
tADACK =  
1/fADACK  
3.0  
clock source  
fADACK  
2.4  
4.4  
Sample Time  
See Reference Manual chapter for sample times  
TUE  
DNL  
Total unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
LSB4  
5
5
1.4  
Differential non-  
linearity  
• 12-bit modes  
• <12-bit modes  
• 12-bit modes  
• <12-bit modes  
0.7  
0.2  
1.0  
0.5  
–1.1 to  
+1.9  
–0.3 to 0.5  
INL  
Integral non-  
linearity  
–2.7 to  
+1.9  
LSB4  
5
–0.7 to  
+0.5  
Table continues on the next page...  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
35  
Analog  
Table 24. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
–5.4  
–1.8  
0.5  
Unit  
Notes  
EFS  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• 12-bit modes  
–4  
LSB4  
VADIN  
VDDA  
=
5
–1.4  
EQ  
EIL  
Quantization  
error  
LSB4  
mV  
Input leakage  
error  
IIn × RAS  
IIn =  
leakage  
current  
(refer to  
the MCU's  
voltage  
and current  
operating  
ratings)  
Temp sensor  
slope  
–40°C to 25°C  
25 to 105°C  
25 °C  
1.695  
1.713  
716  
mV/°C  
mV  
6
VTEMP25 Temp sensor  
voltage  
6
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1  
MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. ADC conversion clock < 3 MHz  
Typical ADC 12-bit Single Ended ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
11.9  
11.8  
11.7  
11.6  
11.5  
11.4  
11.3  
11.2  
11.1  
11  
10.9  
10.8  
10.7  
10.6  
10.5  
10.4  
10.3  
Hardware Averaging Disabled  
Averaging of 8 samples  
10.2  
10.1  
10  
Averaging of 32 samples  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
ADC Clock Frequency (MHz)  
Figure 9. Typical ENOB vs. ADC_CLK for 12-bit single-ended mode  
MCF51QU128, Rev. 5, 03/2015  
36  
Freescale Semiconductor, Inc.  
Analog  
6.6.2 CMP and 6-bit DAC electrical specifications  
Table 25. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
VH  
5
mV  
mV  
mV  
mV  
10  
20  
30  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
VDD – 0.5  
50  
250  
7
0.5  
200  
600  
40  
V
V
Output low  
Propagation delay, high-speed mode (EN=1, PMODE=1)  
Propagation delay, low-speed mode (EN=1, PMODE=0)  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
20  
ns  
tDLS  
80  
ns  
μs  
IDAC6b  
INL  
μA  
LSB3  
LSB  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
37  
Analog  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
HYSTCTR  
Setting  
00  
01  
10  
11  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 10. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
MCF51QU128, Rev. 5, 03/2015  
38  
Freescale Semiconductor, Inc.  
12-bit DAC electrical characteristics  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 11. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
6.6.3 12-bit DAC electrical characteristics  
6.6.3.1 12-bit DAC operating requirements  
Table 26. 12-bit DAC operating requirements  
Symbol  
VDDA  
VDACR  
CL  
Desciption  
Min.  
1.71  
1.13  
Max.  
3.6  
3.6  
100  
1
Unit  
V
Notes  
Supply voltage  
Reference voltage  
Output load capacitance  
Output load current  
V
1
2
pF  
mA  
IL  
1. The DAC reference can be selected to be VDDA or VREFH  
.
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
39  
12-bit DAC electrical characteristics  
6.6.3.2 12-bit DAC operating behaviors  
Table 27. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
450  
μA  
P
IDDA_DACH Supply current — high-speed mode  
100  
15  
0.7  
1000  
200  
30  
μA  
μs  
P
tDACLP Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
1
1
1
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
μs  
tCCDACLP Code-to-code settling time (0xBF8 to 0xC08)  
— low-power mode and high-speed mode  
1
μs  
Vdacoutl DAC output voltage range low — high-speed  
mode, no load, DAC set to 0x000  
100  
VDACR  
8
mV  
mV  
LSB  
LSB  
LSB  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
INL  
DNL  
DNL  
Integral non-linearity error — high speed  
mode  
2
3
4
Differential non-linearity error — VDACR > 2  
V
1
Differential non-linearity error — VDACR  
VREF_OUT  
=
1
VOFFSET Offset error  
EG Gain error  
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V  
60  
0.4  
0.1  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
TCO  
TGE  
Rop  
SR  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Output resistance (load = 3 kΩ)  
Slew rate -80hF7Fh80h  
3.7  
μV/C  
%FSR/C  
Ω
6
0.000421  
250  
V/μs  
• High power (SPHP  
• Low power (SPLP  
)
1.2  
1.7  
)
0.05  
0.12  
CT  
Channel to channel cross talk  
3dB bandwidth  
-80  
dB  
BW  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0 + 100 mV to VDACR −100 mV  
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV  
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V  
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV  
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to  
0x800, temperature range is across the full range of the device  
MCF51QU128, Rev. 5, 03/2015  
40  
Freescale Semiconductor, Inc.  
12-bit DAC electrical characteristics  
8
6
4
2
0
-2  
-4  
-6  
-8  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Digital Code  
Figure 12. Typical INL error vs. digital code  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
41  
12-bit DAC electrical characteristics  
1.499  
1.4985  
1.498  
1.4975  
1.497  
1.4965  
1.496  
-40  
55  
85  
25  
105  
125  
Temperature °C  
Figure 13. Offset at half scale vs. temperature  
6.6.4 Voltage reference electrical specifications  
Table 28. VREF full-range operating requirements  
Symbol  
VDDA  
CL  
Description  
Min.  
Max.  
Unit  
Notes  
Supply voltage  
1.71  
3.6  
V
1
Output load capacitance  
100  
nF  
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
Table 29. VREF full-range operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim at  
1.1965  
1.2  
1.2027  
V
nominal VDDA and temperature=25C  
Vout  
Voltage reference output — factory trim  
1.144  
1.266  
V
Table continues on the next page...  
MCF51QU128, Rev. 5, 03/2015  
42  
Freescale Semiconductor, Inc.  
12-bit DAC electrical characteristics  
Table 29. VREF full-range operating behaviors (continued)  
Symbol Description  
Min.  
1.198  
Typ.  
Max.  
1.202  
Unit  
V
Notes  
Vout  
Vstep  
Vtdrift  
Voltage reference output — user trim  
Voltage reference trim step  
0.5  
mV  
mV  
Temperature drift (Vmax -Vmin across the full  
temperature range)  
80  
Ibg  
Ihp  
Bandgap only current  
80  
1
µA  
mA  
mV  
High-power buffer current  
ΔVLOAD Load regulation  
• current = + 1.0 mA  
1
2
5
• current = - 1.0 mA  
Tstup  
Buffer startup time  
2
100  
µs  
Vvdrift  
Voltage drift (Vmax -Vmin across the full voltage  
range)  
mV  
1. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
Table 30. VREF limited-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TA  
Temperature  
0
50  
°C  
Table 31. VREF limited-range operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim  
1.173  
1.225  
V
6.7 Timers  
See General Switching Specifications.  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
43  
Communication interfaces  
6.8 Communication interfaces  
6.8.1 SPI switching specifications  
The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and  
slave operations. Many of the transfer attributes are programmable. The following tables  
provide timing characteristics for classic SPI timing modes. See the SPI chapter of the  
chip's Reference Manual for information about the modified transfer formats used for  
communicating with slower peripheral devices.  
All timing is shown with respect to 20% VDD and 70% VDD, unless noted, as well as  
input signal transitions of 3 ns and a 50 pF maximum load on all SPI pins. All timing  
assumes slew rate control is disabled and high drive strength is enabled for SPI output  
pins.  
Table 32. SPI master mode timing  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Comment  
1
fop  
Frequency of operation  
fBUS/2048  
fBUS/2  
Hz  
fBUS is the  
bus clock  
as defined  
in Table 8.  
2
tSPSCK  
SPSCK period  
2 x tBUS 2048 x tBUS  
ns  
tBUS = 1/  
fBUS  
3
4
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
5
tWSPSCK Clock (SPSCK) high or low time  
tBUS - 30 1024 x tBUS  
6
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
21  
0
ns  
7
ns  
8
tv  
0
25  
ns  
9
tHO  
tRI  
ns  
10  
tBUS - 25  
ns  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
MCF51QU128, Rev. 5, 03/2015  
44  
Freescale Semiconductor, Inc.  
Communication interfaces  
1
SS  
(OUTPUT)  
3
2
10  
10  
11  
11  
4
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
8
MSB IN  
LSB IN  
9
MOSI  
(OUTPUT)  
2
BIT 6 . . . 1  
MSB OUT  
LSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 14. SPI master mode timing (CPHA=0)  
1
SS  
(OUTPUT)  
2
10  
10  
11  
11  
4
3
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
LSB IN  
MSB IN  
9
8
MOSI  
(OUTPUT)  
2
PORT DATA  
BIT 6 . . . 1  
MASTER MSB OUT  
PORT DATA  
MASTER LSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 15. SPI master mode timing (CPHA=1)  
Table 33. SPI slave mode timing  
Num.  
Symbol Description  
Min.  
Max.  
fBUS/4  
Unit  
Comment  
1
fop  
Frequency of operation  
0
Hz  
fBUS is the  
bus clock  
as defined  
in Table 8.  
2
tSPSCK  
SPSCK period  
4 x tBUS  
ns  
tBUS = 1/  
fBUS  
Table continues on the next page...  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
45  
Communication interfaces  
Table 33. SPI slave mode timing (continued)  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
tBUS  
tBUS  
ns  
Comment  
3
4
5
6
7
8
tLead  
tLag  
Enable lead time  
Enable lag time  
1
1
tBUS - 30  
19.5  
0
tWSPSCK Clock (SPSCK) high or low time  
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
ns  
ns  
tBUS  
ns  
Time to  
data active  
from high-  
impedance  
state  
9
tdis  
Slave MISO disable time  
tBUS  
ns  
Hold time  
to high-  
impedance  
state  
10  
11  
12  
tv  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
0
27  
ns  
ns  
ns  
tHO  
tRI  
tBUS - 25  
tFI  
Fall time input  
13  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
SS  
(INPUT)  
2
12  
12  
13  
13  
4
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
3
SPSCK  
(CPOL=1)  
(INPUT)  
9
8
10  
11  
11  
see  
note  
SEE  
NOTE  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE MSB  
7
SLAVE LSB OUT  
6
MOSI  
(INPUT)  
LSB IN  
MSB IN  
BIT 6 . . . 1  
NOTE: Not defined  
Figure 16. SPI slave mode timing (CPHA=0)  
MCF51QU128, Rev. 5, 03/2015  
46  
Freescale Semiconductor, Inc.  
Human-machine interfaces (HMI)  
SS  
(INPUT)  
4
2
12  
12  
13  
13  
3
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
SPSCK  
(CPOL=1)  
(INPUT)  
11  
9
10  
SLAVE MSB OUT  
see  
note  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
8
6
7
MOSI  
(INPUT)  
MSB IN  
NOTE: Not defined  
Figure 17. SPI slave mode timing (CPHA=1)  
6.9 Human-machine interfaces (HMI)  
6.9.1 TSI electrical specifications  
Table 34. TSI electrical specifications  
Symbol Description  
VDDTSI Operating voltage  
CELE Target electrode capacitance range  
Min.  
1.71  
1
Typ.  
Max.  
3.6  
Unit  
V
Notes  
20  
500  
14  
pF  
1
2
3
fREFmax Reference oscillator frequency  
fELEmax Electrode oscillator frequency  
5.5  
0.5  
1
MHz  
MHz  
pF  
4.0  
CREF  
VDELTA  
IREF  
Internal reference capacitor  
Oscillator delta voltage  
0.5  
100  
1.2  
600  
760  
mV  
μA  
4
Reference oscillator current source base current  
• 1uA setting (REFCHRG=0)  
3 , 5  
1.133  
36  
1.5  
50  
• 32uA setting (REFCHRG=31)  
IELE  
Electrode oscillator current source base current  
• 1uA setting (EXTCHRG=0)  
μA  
3 , 6  
1.133  
36  
1.5  
50  
• 32uA setting (EXTCHRG=31)  
Pres5  
Electrode capacitance measurement precision  
8.3333  
8.3333  
8.3333  
12.5  
38400  
38400  
38400  
fF/count  
fF/count  
fF/count  
fF/count  
bits  
7
8
Pres20 Electrode capacitance measurement precision  
Pres100 Electrode capacitance measurement precision  
MaxSens Maximum sensitivity  
9
0.003  
10  
Res  
Resolution  
16  
TCon20  
Response time @ 20 pF  
8
15  
25  
μs  
11  
Table continues on the next page...  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
47  
Dimensions  
Table 34. TSI electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
55  
Max.  
Unit  
μA  
Notes  
ITSI_RUN Current added in run mode  
ITSI_LP  
Low power mode current adder  
1.3  
2.5  
μA  
12  
1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.  
2. CAPTRM=7, DELVOL=7, and fixed external capacitance of 20 pF.  
3. CAPTRM=0, DELVOL=2, and fixed external capacitance of 20 pF.  
4. CAPTRM=0, EXTCHRG=9, and fixed external capacitance of 20 pF.  
5. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.  
6. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.  
7. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; Iext = 16.  
8. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; Iext = 16.  
9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; Iext = 16.  
10. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes, it is equal to (Cref  
* Iext)/( Iref * PS * NSCN). Sensitivity depends on the configuration used. The typical value listed is based on the following  
configuration: Iext = 5 μA, EXTCHRG = 4, PS = 128, NSCN = 2, Iref = 16 μA, REFCHRG = 15, Cref = 1.0 pF. The minimum  
sensitivity describes the smallest possible capacitance that can be measured by a single count (this is the best sensitivity  
but is described as a minimum because it’s the smallest number). The minimum sensitivity parameter is based on the  
following configuration: Iext = 1 μA, EXTCHRG = 0, PS = 128, NSCN = 32, Iref = 32 μA, REFCHRG = 31, Cref= 0.5 pF  
11. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1  
electrode, DELVOL = 2, EXTCHRG = 15.  
12. CAPTRM=7, DELVOL=2, REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and  
fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window.  
7 Dimensions  
7.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to www.freescale.com and perform a keyword search for  
the drawing’s document number:  
If you want the drawing for this package  
32-pin QFN  
Then use this document number  
98ARE10566D  
44-pin Laminate QFN  
48-pin LQFP  
98ASA00239D  
98ASH00962A  
98ASS23234W  
64-pin LQFP  
MCF51QU128, Rev. 5, 03/2015  
48  
Freescale Semiconductor, Inc.  
Pinout  
8 Pinout  
8.1 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Mux Control module is  
responsible for selecting which ALT functionality is available on each pin.  
NOTE  
• On PTB0, EZP_MS_b is active only during reset. Refer to  
the detailed boot description.  
• PTC1 is open drain.  
64-  
pin  
48-  
pin  
44-  
pin  
32-  
pin  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
EP  
Exposed Pad Exposed die  
attach pad.  
Connection to  
VSS is  
recommende  
d.  
EP  
VSS  
Exposed die  
attach pads  
are  
connected  
internally to  
VSS. External  
connection to  
VSS is  
recommende  
d.  
1
2
3
4
5
1
VDD  
VDD  
VSS  
VSS  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
PTC6  
UART0_TX  
UART0_RX  
I2C0_SCL  
I2C0_SDA  
I2C1_SDA  
RGPIO6  
RGPIO7  
RGPIO8  
SPI1_MOSI  
SPI1_MISO  
SPI1_SCLK  
FBa_AD11  
FBa_AD12  
FBa_AD13  
PTC7  
PTD0  
UART0_  
CTS_b  
6
2
Disabled  
Disabled  
PTD1  
UART0_  
RTS_b  
I2C1_SCL  
RGPIO9  
SPI1_SS  
SPI0_SS  
FBa_AD14  
7
8
3
4
5
6
7
1
2
3
4
5
1
2
3
4
5
Disabled  
Disabled  
Disabled  
Disabled  
ADC0_SE2  
Disabled  
Disabled  
Disabled  
Disabled  
ADC0_SE2  
PTA0  
PTA1  
PTA2  
PTA3  
PTA4  
I2C2_SCL  
I2C2_SDA  
FTM1_CH0  
FTM1_CH1  
FTM1_CH2  
FTM1_CH3  
FTM1_CH4  
FBa_AD15  
FBa_AD16  
9
UART1_TX  
UART1_RX  
SPI1_SS  
10  
11  
SPI1_SCLK  
SPI1_MISO  
EZP_CLK  
EZP_DI  
UART1_  
CTS_b  
I2C2_SCL  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
49  
Pinout  
64-  
pin  
48-  
pin  
44-  
pin  
32-  
pin  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
12  
8
6
6
ADC0_SE3  
ADC0_SE3  
PTA5  
UART1_  
RTS_b  
I2C2_SDA  
FTM1_CH5  
SPI1_MOSI  
CLKOUT  
EZP_DO  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
9
7
7
VDDA  
VDDA  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
8
8
VREFH  
VREFH  
9
VREF_OUT  
VREFL  
VREF_OUT  
VREFL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
VSSA  
VSSA  
9
DAC0_OUT  
ADC0_SE0  
ADC0_SE1  
VREGIN  
VOUT33  
VSS  
DAC0_OUT  
ADC0_SE0  
ADC0_SE1  
VREGIN  
VOUT33  
VSS  
10  
11  
12  
13  
14  
15  
VDD  
VDD  
ADC0_SE8/  
TSI0_CH0  
ADC0_SE8/  
TSI0_CH0  
PTA6  
PTD2  
LPTMR_  
ALT1  
FTM_FLT1  
FTM0_CH0  
FTM0_CH1  
FBa_D7  
FBa_D6  
FBa_AD17  
26  
27  
28  
29  
30  
31  
32  
33  
22  
23  
24  
20  
21  
22  
16  
ADC0_SE9/  
TSI0_CH1  
ADC0_SE9/  
TSI0_CH1  
FTM0_QD_  
PHA  
RGPIO10  
RGPIO11  
RGPIO12  
RGPIO13  
ADC0_SE10/ ADC0_SE10/ PTD3  
TSI0_CH2 TSI0_CH2  
FTM0_QD_  
PHB  
FBa_AD0  
FBa_D7  
FBa_D6  
FBa_D5  
FBa_D4  
FBa_D3  
FBa_D2  
FBa_D1  
ADC0_SE11/ ADC0_SE11/ PTD4  
TSI0_CH3 TSI0_CH3  
ADC0_SE12/ ADC0_SE12/ PTD5  
TSI0_CH4 TSI0_CH4  
ADC0_SE13/ ADC0_SE13/ PTA7  
TSI0_CH5 TSI0_CH5  
UART0_TX  
UART0_RX  
FTM0_QD_  
PHA  
ADC0_SE14/ ADC0_SE14/ PTD6  
TSI0_CH6 TSI0_CH6  
RGPIO14  
I2C3_SCL  
I2C3_SDA  
ADC0_SE15/ ADC0_SE15/ PTD7  
TSI0_CH7  
UART0_  
CTS_b  
RGPIO15  
TSI0_CH7  
TSI0_CH8  
TSI0_CH8  
PTE0  
UART0_  
RTS_b  
34  
35  
TSI0_CH9  
TSI0_CH9  
Disabled  
PTE1  
PTB0  
SPI0_SS  
FTM_FLT0  
FTM_FLT2  
25  
23  
17  
IRQ/  
EZP_MS_b  
I2C0_SCL  
I2C0_SDA  
IRQ/  
EZP_MS_b  
EZP_CS_b  
36  
26  
24  
18  
TSI0_CH10  
TSI0_CH10  
PTB1  
SPI0_SCLK  
LPTMR_  
ALT2  
FTM0_QD_  
PHB  
FB_CLKOUT  
37  
38  
TSI0_CH11  
TSI0_CH11  
PTE2  
I2C3_SCL  
I2C3_SDA  
FBa_D0  
ADC0_SE16/ ADC0_SE16/ PTE3  
TSI0_CH12 TSI0_CH12  
SPI0_MOSI  
SPI0_MISO  
SPI0_MOSI  
FBa_OE_b  
39  
40  
41  
27  
28  
29  
25  
26  
19  
20  
ADC0_SE17/ ADC0_SE17/ PTB2  
TSI0_CH13 TSI0_CH13  
FBa_CS0_b  
FBa_ALE  
FBa_AD1  
ADC0_SE18/ ADC0_SE18/ PTB3  
TSI0_CH14 TSI0_CH14  
FBa_CS1_b  
ADC0_SE19/ ADC0_SE19/ PTE4  
TSI0_CH15 TSI0_CH15  
UART0_  
RTS_b  
LPTMR_  
ALT3  
SPI1_SS  
MCF51QU128, Rev. 5, 03/2015  
50  
Freescale Semiconductor, Inc.  
Pinout  
64-  
pin  
48-  
pin  
44-  
pin  
32-  
pin  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
I2C1_SCL  
I2C1_SDA  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
42  
30  
ADC0_SE20  
ADC0_SE20  
PTE5  
UART0_  
CTS_b  
SPI1_SCLK  
FBa_AD2  
43  
44  
ADC0_SE21  
ADC0_SE22  
ADC0_SE21  
ADC0_SE22  
PTE6  
PTE7  
UART0_RX  
UART0_TX  
SPI1_MISO  
SPI1_MOSI  
FBa_AD3  
FBa_AD4  
31  
27  
PDB0_  
EXTRG  
FBa_RW_b  
45  
32  
28  
21  
BKGD/  
MS  
Disabled  
PTB4  
BKGD/  
MS  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
33  
34  
35  
36  
37  
38  
39  
40  
41  
29  
30  
31  
32  
33  
34  
35  
36  
37  
22  
23  
24  
25  
26  
27  
28  
29  
XTAL2  
XTAL2  
PTB5  
PTB6  
EXTAL2  
VDD  
EXTAL2  
VDD  
VSS  
VSS  
EXTAL1  
XTAL1  
EXTAL1  
XTAL1  
PTB7  
PTC0  
PTC1  
PTF0  
PTF1  
PTF2  
PTF3  
PTC2  
I2C1_SDA  
I2C1_SCL  
TMR_CLKIN1  
TMR_CLKIN0 RGPIO0  
RESET_b  
CMP0_IN0  
Disabled  
CMP0_IN1  
CMP0_IN2  
CMP0_IN3  
Disabled  
CMP0_IN0  
Disabled  
CMP0_IN1  
CMP0_IN2  
CMP0_IN3  
RESET_b  
SPI0_SS  
FBa_AD5  
FBa_AD6  
FBa_AD7  
FBa_AD8  
FBa_AD18  
SPI0_SCLK  
SPI0_MISO  
SPI0_MOSI  
CMP0_OUT  
RGPIO1  
RGPIO2  
UART1_  
RTS_b  
SPI1_SS  
58  
42  
38  
Disabled  
Disabled  
PTF4  
UART1_  
CTS_b  
SPI1_SCLK  
FBa_D3  
FBa_AD19  
59  
60  
61  
43  
44  
45  
39  
40  
41  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
PTF5  
PTF6  
PTF7  
UART1_RX  
UART1_TX  
SPI1_MISO  
SPI1_MOSI  
FBa_D2  
FBa_D1  
FBa_D0  
FBa_RW_b  
FBa_AD9  
UART0_  
RTS_b  
SPI0_SS  
FBa_AD10  
62  
63  
64  
46  
47  
48  
42  
43  
44  
30  
31  
32  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
PTC3  
PTC4  
PTC5  
UART0_  
CTS_b  
RGPIO3  
RGPIO4  
RGPIO5  
SPI0_SCLK  
SPI0_MISO  
SPI0_MOSI  
CLKOUT  
UART0_RX  
PDB0_  
EXTRG  
UART0_TX  
CMT_IRO  
8.2 Pinout diagrams  
The following diagrams show pinouts for the 64-pin, 48-pin, 44-pin, and 32-pin  
packages. These diagrams are representations for ease of reference. See the package  
drawings for mechanical details.  
For each pin, the diagrams show the default function or (when disabled is the default) the  
ALT1 signal for a GPIO function. However, many signals may be multiplexed onto a  
single pin.  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
51  
Pinout  
VDD  
VSS  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VDD  
2
EXTAL2  
PTC6  
3
XTAL2  
PTC7  
4
BKGD/MS  
PTD0  
5
ADC0_SE22  
PTD1  
6
ADC0_SE21  
PTA0  
7
ADC0_SE20  
PTA1  
8
ADC0_SE19/TSI0_CH15  
ADC0_SE18/TSI0_CH14  
ADC0_SE17/TSI0_CH13  
ADC0_SE16/TSI0_CH12  
TSI0_CH11  
PTA2  
9
PTA3  
10  
11  
12  
13  
14  
15  
16  
ADC0_SE2  
ADC0_SE3  
VDDA  
TSI0_CH10  
VREFH  
VREF_OUT  
VREFL  
IRQ/EZP_MS_b  
TSI0_CH9  
TSI0_CH8  
Figure 18. 64-pin LQFP  
MCF51QU128, Rev. 5, 03/2015  
52  
Freescale Semiconductor, Inc.  
Pinout  
VSS  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PTD0  
PTD1  
1
2
VDD  
EXTAL2  
PTA0  
3
XTAL2  
PTA1  
4
BKGD/MS  
PTA2  
5
ADC0_SE22  
ADC0_SE20  
ADC0_SE19/TSI0_CH15  
ADC0_SE18/TSI0_CH14  
ADC0_SE17/TSI0_CH13  
TSI0_CH10  
PTA3  
6
ADC0_SE2  
ADC0_SE3  
VDDA  
7
8
9
VREFH  
VREF_OUT  
VREFL  
10  
11  
12  
IRQ/EZP_MS_b  
Figure 19. 48-pin LQFP  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
53  
Pinout  
PTA0  
PTA1  
1
3
5
7
9
33 EXTAL1  
2
4
32  
30  
28  
26  
24  
VSS  
PTA2  
31 VDD  
PTA3  
EXTAL2  
ADC0_SE2  
ADC0_SE3  
VDDA  
29 XTAL2  
EXPOSED  
PADS  
6
BKGD/MS  
27 ADC0_SE22  
ADC0_SE18/TSI0_CH14  
25 ADC0_SE17/TSI0_CH13  
TSI0_CH10  
VREFH  
8
VREF_OUT  
VREFL  
10  
VSSA 11  
23 IRQ/EZP_MS_b  
Figure 20. 44-pin Laminate QFN  
MCF51QU128, Rev. 5, 03/2015  
54  
Freescale Semiconductor, Inc.  
Pinout  
VDD  
PTA0  
PTA1  
24  
23  
22  
21  
20  
19  
1
2
3
4
5
6
7
8
EXTAL2  
XTAL2  
PTA2  
BKGD/MS  
PTA3  
EXPOSED  
PAD  
ADC0_SE18/TSI0_CH14  
ADC0_SE17/TSI0_CH13  
TSI0_CH10  
ADC0_SE2  
ADC0_SE3  
VDDA  
18  
17  
VSSA  
IRQ/EZP_MS_b  
Figure 21. 32-pin QFN  
8.3 Module-by-module signals  
NOTE  
• On PTB0, EZP_MS_b is active only during reset. Refer to  
the detailed boot description.  
• PTC1 is open drain.  
Table 35. Module signals by GPIO port and pin  
64-pin  
48-pin  
44-pin  
32-pin  
Port  
Module signal(s)  
Power and ground  
1
VDD  
VDD  
24  
20  
18  
Table continues on the next page...  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
55  
Pinout  
Table 35. Module signals by GPIO port and pin (continued)  
64-pin  
48  
48-pin  
44-pin  
32-pin  
Port  
Module signal(s)  
35  
31  
24  
VDD  
VSS  
VSS  
VSS  
2
23  
19  
36  
17  
32  
14  
25  
49  
System  
45  
12  
62  
10  
11  
12  
35  
32  
8
28  
6
21  
6
PTB4  
PTA5  
PTC3  
PTA3  
PTA4  
PTA5  
PTB0  
BKGD/MS  
CLKOUT  
CLKOUT  
EZP_CLK  
EZP_DI  
46  
6
42  
4
30  
4
7
5
5
8
6
6
EZP_DO  
25  
23  
17  
IRQ/EZP_MS_b,  
EZP_CS_b  
52  
39  
35  
28  
PTC1  
RESET_b  
OSC  
50  
47  
51  
46  
37  
34  
38  
33  
33  
30  
34  
29  
26  
23  
27  
22  
PTB7  
PTB6  
PTC0  
PTB5  
EXTAL1  
EXTAL2  
XTAL1  
XTAL2  
LLWU  
4
PTC7  
PTD1  
PTA5  
PTA7  
PTD7  
PTB0  
PTB1  
PTB2  
PTE7  
PTB4  
PTF2  
PTF3  
PTC2  
PTF5  
PTC3  
PTC4  
LLWU_P0  
LLWU_P1  
LLWU_P2  
LLWU_P3  
LLWU_P4  
LLWU_P5  
LLWU_P6  
LLWU_P7  
LLWU_P8  
LLWU_P9  
LLWU_P10  
LLWU_P11  
LLWU_P12  
LLWU_P13  
LLWU_P14  
LLWU_P15  
6
2
8
12  
30  
32  
35  
36  
39  
44  
45  
55  
56  
57  
59  
62  
63  
6
6
23  
21  
16  
25  
26  
27  
31  
32  
23  
24  
25  
27  
28  
17  
18  
19  
21  
29  
40  
41  
43  
46  
47  
36  
37  
39  
42  
43  
30  
31  
RGPIO  
51  
56  
57  
38  
40  
41  
34  
36  
37  
27  
PTC0  
PTF3  
PTC2  
RGPIO0  
RGPIO1  
RGPIO2  
29  
Table continues on the next page...  
MCF51QU128, Rev. 5, 03/2015  
56  
Freescale Semiconductor, Inc.  
Pinout  
Table 35. Module signals by GPIO port and pin (continued)  
64-pin  
62  
63  
64  
3
48-pin  
46  
44-pin  
42  
32-pin  
30  
Port  
PTC3  
PTC4  
PTC5  
PTC6  
PTC7  
PTD0  
PTD1  
PTD2  
PTD3  
PTD4  
PTD5  
PTD6  
PTD7  
Module signal(s)  
RGPIO3  
47  
43  
31  
RGPIO4  
48  
44  
32  
RGPIO5  
RGPIO6  
4
RGPIO7  
5
1
2
RGPIO8  
6
RGPIO9  
26  
27  
28  
29  
31  
32  
RGPIO10  
RGPIO11  
RGPIO12  
RGPIO13  
RGPIO14  
RGPIO15  
22  
24  
20  
22  
LPTMR  
25  
36  
41  
21  
26  
29  
19  
24  
15  
18  
PTA6  
PTB1  
PTE4  
LPTMR_ALT1  
LPTMR_ALT2  
LPTMR_ALT3  
LPTMR-TOD  
50  
47  
25  
36  
41  
51  
46  
37  
34  
21  
26  
29  
38  
33  
33  
30  
19  
24  
26  
23  
15  
18  
PTB7  
PTB6  
PTA6  
PTB1  
PTE4  
PTC0  
PTB5  
EXTAL1  
EXTAL2  
LPTMR_ALT1  
LPTMR_ALT2  
LPTMR_ALT3  
XTAL1  
34  
29  
27  
22  
XTAL2  
PTA  
7
3
4
1
2
1
2
PTA0  
PTA1  
PTA2  
PTA3  
PTA4  
PTA5  
PTA6  
PTA7  
PTA0  
PTA1  
PTA2  
PTA3  
PTA4  
PTA5  
PTA6  
PTA7  
8
9
5
3
3
10  
11  
12  
25  
30  
6
4
4
7
5
5
8
6
6
21  
23  
19  
21  
15  
16  
PTB  
35  
36  
39  
40  
25  
26  
27  
28  
23  
24  
25  
26  
17  
18  
19  
20  
PTB0  
PTB1  
PTB2  
PTB3  
PTB0  
PTB1  
PTB2  
PTB3  
Table continues on the next page...  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
57  
Pinout  
Table 35. Module signals by GPIO port and pin (continued)  
64-pin  
45  
48-pin  
32  
44-pin  
28  
32-pin  
21  
Port  
PTB4  
PTB5  
PTB6  
PTB7  
Module signal(s)  
PTB4  
46  
33  
29  
22  
PTB5  
47  
34  
30  
23  
PTB6  
50  
37  
33  
26  
PTB7  
PTC  
PTD  
PTE  
PTF  
51  
52  
57  
62  
63  
64  
3
38  
39  
41  
46  
47  
48  
34  
35  
37  
42  
43  
44  
27  
28  
29  
30  
31  
32  
PTC0  
PTC1  
PTC2  
PTC3  
PTC4  
PTC5  
PTC6  
PTC7  
PTC0  
PTC1  
PTC2  
PTC3  
PTC4  
PTC5  
PTC6  
PTC7  
4
5
1
2
PTD0  
PTD1  
PTD2  
PTD3  
PTD4  
PTD5  
PTD6  
PTD7  
PTD0  
PTD1  
PTD2  
PTD3  
PTD4  
PTD5  
PTD6  
PTD7  
6
26  
27  
28  
29  
31  
32  
22  
24  
20  
22  
33  
34  
38  
39  
41  
42  
43  
44  
PTE0  
PTE1  
PTE3  
PTB2  
PTE4  
PTE5  
PTE6  
PTE7  
PTE0  
PTE1  
PTE2  
PTE3  
PTE4  
PTE5  
PTE6  
PTE7  
27  
29  
30  
25  
27  
19  
31  
53  
54  
55  
56  
58  
59  
60  
PTF0  
PTF1  
PTF2  
PTF3  
PTF4  
PTF5  
PTF6  
PTF0  
PTF1  
PTF2  
PTF3  
PTF4  
PTF5  
PTF6  
40  
42  
43  
44  
36  
38  
39  
40  
Table continues on the next page...  
MCF51QU128, Rev. 5, 03/2015  
58  
Freescale Semiconductor, Inc.  
Pinout  
Table 35. Module signals by GPIO port and pin (continued)  
64-pin  
48-pin  
44-pin  
32-pin  
Port  
Module signal(s)  
61  
45  
41  
PTF7  
PTF7  
5 V VREG  
ADC0  
22  
21  
18  
17  
16  
15  
13  
12  
VOUT33  
VREGIN  
11  
12  
25  
26  
27  
28  
29  
30  
31  
32  
38  
39  
40  
41  
42  
43  
44  
13  
14  
16  
17  
7
8
5
6
5
6
PTA4  
PTA5  
PTA6  
PTD2  
PTD3  
PTD4  
PTD5  
PTA7  
PTD6  
PTD7  
PTE3  
PTB2  
PTB3  
PTE4  
PTE5  
PTE6  
PTE7  
ADC0_SE2  
ADC0_SE3  
ADC0_SE8  
ADC0_SE9  
ADC0_SE10  
ADC0_SE11  
ADC0_SE12  
ADC0_SE13  
ADC0_SE14  
ADC0_SE15  
ADC0_SE16  
ADC0_SE17  
ADC0_SE18  
ADC0_SE19  
ADC0_SE20  
ADC0_SE21  
ADC0_SE22  
VDDA  
21  
19  
15  
22  
20  
23  
24  
21  
22  
16  
27  
28  
29  
30  
25  
26  
19  
20  
31  
9
27  
7
7
10  
12  
13  
8
VREFH  
10  
11  
VREFL  
8
9
VSSA  
DAC0  
VREF  
CMP0  
18  
15  
14  
11  
12  
9
DAC0_OUT  
VREF_OUT  
53  
55  
56  
57  
54  
PTF0  
PTF2  
PTF3  
PTC2  
PTF1  
CMP0_IN0  
CMP0_IN1  
CMP0_IN2  
CMP0_IN3  
CMP0_OUT  
40  
41  
36  
37  
29  
32  
CMT  
TSI0  
64  
48  
44  
PTC5  
CMT_IRO  
Table continues on the next page...  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
59  
Pinout  
Table 35. Module signals by GPIO port and pin (continued)  
64-pin  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
36  
37  
38  
39  
40  
41  
48-pin  
44-pin  
32-pin  
Port  
PTA6  
PTD2  
PTD3  
PTD4  
PTD5  
PTA7  
PTD6  
PTD7  
PTE0  
PTE1  
PTB1  
PTE2  
PTE3  
PTB2  
PTB3  
PTE4  
Module signal(s)  
TSI0_CH0  
TSI0_CH1  
TSI0_CH2  
TSI0_CH3  
TSI0_CH4  
TSI0_CH5  
TSI0_CH6  
TSI0_CH7  
TSI0_CH8  
TSI0_CH9  
TSI0_CH10  
TSI0_CH11  
TSI0_CH12  
TSI0_CH13  
TSI0_CH14  
TSI0_CH15  
21  
19  
15  
22  
20  
23  
24  
21  
22  
16  
18  
26  
24  
27  
28  
29  
25  
26  
19  
20  
PDB0  
FTM0  
44  
63  
31  
47  
27  
43  
PTE7  
PTC4  
PDB0_EXTRG  
PDB0_EXTRG  
31  
34  
25  
36  
PTE1  
PTA6  
PTB1  
FTM_FLT0  
FTM_FLT1  
21  
26  
19  
24  
15  
18  
FTM_FLT2 /  
FTM0_QD_PHB  
26  
27  
PTD2  
PTD3  
FTM0_CH0/  
FTM0_QD_PHA  
22  
20  
FTM0_CH1 /  
FTM0_QD_PHB  
30  
51  
50  
23  
38  
37  
21  
34  
33  
16  
27  
26  
PTA7  
PTC0  
PTB7  
FTM0_QD_PHA  
TMR_CLKIN0  
TMR_CLKIN1  
FTM1  
34  
25  
36  
7
PTE1  
PTA6  
PTB1  
PTA0  
PTA1  
PTA2  
PTA3  
PTA4  
FTM_FLT0  
FTM_FLT1  
FTM_FLT2  
FTM1_CH0  
FTM1_CH1  
FTM1_CH2  
FTM1_CH3  
FTM1_CH4  
21  
26  
3
19  
24  
1
15  
18  
1
8
4
2
2
9
5
3
3
10  
11  
6
4
4
7
5
5
Table continues on the next page...  
MCF51QU128, Rev. 5, 03/2015  
60  
Freescale Semiconductor, Inc.  
Pinout  
Table 35. Module signals by GPIO port and pin (continued)  
64-pin  
12  
48-pin  
8
44-pin  
6
32-pin  
6
Port  
PTA5  
PTC0  
PTB7  
Module signal(s)  
FTM1_CH5  
51  
38  
34  
27  
TMR_CLKIN0  
TMR_CLKIN1  
50  
37  
33  
26  
MTIM  
51  
50  
38  
37  
34  
33  
27  
26  
PTC0  
PTB7  
TMR_CLKIN0  
TMR_CLKIN1  
Mini-FlexBus  
36  
27  
41  
42  
43  
44  
53  
54  
55  
56  
60  
61  
3
26  
22  
29  
30  
24  
20  
18  
PTB1  
PTD3  
PTE4  
PTE5  
PTE6  
PTE7  
PTF0  
PTF1  
PTF2  
PTF3  
PTF6  
PTF7  
PTC6  
PTC7  
PTD0  
PTD1  
PTA0  
PTA1  
PTA6  
PTC2  
PTF4  
PTB3  
PTB2  
PTE2  
PTE1  
PTE0  
PTD7  
PTD6  
PTA7  
PTD5  
PTD4  
PTE3  
FB_CLKOUT  
FBa_AD0  
FBa_AD1  
FBa_AD2  
FBa_AD3  
FBa_AD4  
FBa_AD5  
FBa_AD6  
FBa_AD7  
FBa_AD8  
FBa_AD9  
FBa_AD10  
FBa_AD11  
FBa_AD12  
FBa_AD13  
FBa_AD14  
FBa_AD15  
FBa_AD16  
FBa_AD17  
FBa_AD18  
FBa_AD19  
FBa_ALE  
FBa_CS0_b  
FBa_D0  
31  
27  
40  
44  
45  
36  
40  
41  
4
5
1
2
6
7
3
1
1
2
8
4
2
25  
57  
58  
40  
39  
37  
34  
33  
32  
31  
30  
29  
28  
38  
21  
41  
42  
28  
27  
19  
37  
38  
26  
25  
15  
29  
20  
19  
FBa_D1  
FBa_D2  
FBa_D3  
24  
23  
22  
21  
FBa_D4  
16  
FBa_D5  
FBa_D6  
FBa_D7  
FBa_OE_b  
Table continues on the next page...  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
61  
Pinout  
Table 35. Module signals by GPIO port and pin (continued)  
64-pin  
48-pin  
44-pin  
32-pin  
Port  
Module signal(s)  
59  
43  
39  
PTF5  
FBa_RW_b  
DATA_BUS  
8
4
2
2
PTA1  
PTB2  
PTF7  
PTF6  
PTF5  
PTF4  
PTD6  
PTA7  
PTD3  
PTA6  
PTE7  
FBa_AD16  
FBa_CS0_b  
FBa_D0  
39  
61  
60  
59  
58  
31  
30  
27  
25  
44  
27  
45  
44  
43  
42  
24  
23  
22  
21  
31  
25  
41  
40  
39  
38  
22  
21  
20  
19  
27  
19  
FBa_D1  
FBa_D2  
FBa_D3  
FBa_D4  
16  
15  
FBa_D5  
FBa_D6  
FBa_D7  
FBa_RW_b  
I2C0 and I2C1  
3
PTC6  
PTB0  
PTC7  
PTB1  
PTD1  
PTE5  
PTC0  
PTD0  
PTE6  
PTB7  
I2C0_SCL  
I2C0_SCL  
I2C0_SDA  
I2C0_SDA  
I2C1_SCL  
I2C1_SCL  
I2C1_SCL  
I2C1_SDA  
I2C1_SDA  
I2C1_SDA  
35  
4
25  
23  
24  
17  
18  
36  
6
26  
2
42  
51  
5
30  
38  
1
34  
33  
27  
26  
43  
50  
37  
I2C2 and I2C3  
7
3
7
4
8
1
5
2
6
1
5
2
6
PTA0  
PTA4  
PTA1  
PTA5  
PTD7  
PTE2  
PTE0  
PTE3  
I2C2_SCL  
I2C2_SCL  
I2C2_SDA  
I2C2_SDA  
I2C3_SCL  
I2C3_SCL  
I2C3_SDA  
I2C3_SDA  
11  
8
12  
32  
37  
33  
38  
SPI0  
39  
55  
63  
38  
40  
27  
47  
28  
25  
43  
26  
19  
31  
20  
PTB2  
PTF2  
PTC4  
PTE3  
PTB3  
SPI0_MISO  
SPI0_MISO  
SPI0_MISO  
SPI0_MOSI  
SPI0_MOSI  
Table continues on the next page...  
MCF51QU128, Rev. 5, 03/2015  
62  
Freescale Semiconductor, Inc.  
Pinout  
Table 35. Module signals by GPIO port and pin (continued)  
64-pin  
56  
48-pin  
40  
44-pin  
36  
32-pin  
Port  
PTF3  
PTC5  
PTB1  
PTF1  
PTC3  
PTA0  
PTE1  
PTF0  
PTF7  
Module signal(s)  
SPI0_MOSI  
SPI0_MOSI  
SPI0_SCLK  
SPI0_SCLK  
SPI0_SCLK  
SPI0_SS  
64  
48  
44  
32  
18  
36  
26  
24  
54  
62  
46  
3
42  
1
30  
1
7
34  
SPI0_SS  
53  
SPI0_SS  
61  
45  
41  
SPI0_SS  
SPI1  
4
PTC7  
PTA4  
PTE6  
PTF5  
PTC6  
PTA5  
PTE7  
PTF6  
PTD0  
PTA3  
PTE5  
PTF4  
PTD1  
PTA2  
PTE4  
PTC2  
SPI1_MISO  
SPI1_MISO  
SPI1_MISO  
SPI1_MISO  
SPI1_MOSI  
SPI1_MOSI  
SPI1_MOSI  
SPI1_MOSI  
SPI1_SCLK  
SPI1_SCLK  
SPI1_SCLK  
SPI1_SCLK  
SPI1_SS  
11  
43  
59  
3
7
5
5
6
4
43  
39  
12  
44  
60  
5
8
31  
44  
1
6
27  
40  
10  
42  
58  
6
6
4
38  
3
30  
42  
2
9
5
3
SPI1_SS  
41  
57  
29  
41  
SPI1_SS  
37  
29  
SPI1_SS  
UART0  
5
1
PTD0  
PTD7  
PTE5  
PTC3  
PTD1  
PTE0  
PTE4  
PTF7  
PTC7  
PTD6  
PTE6  
PTC4  
UART0_CTS_b  
UART0_CTS_b  
UART0_CTS_b  
UART0_CTS_b  
UART0_RTS_b  
UART0_RTS_b  
UART0_RTS_b  
UART0_RTS_b  
UART0_RX  
32  
42  
62  
6
30  
46  
2
42  
30  
33  
41  
61  
4
29  
45  
41  
22  
43  
31  
43  
63  
24  
47  
UART0_RX  
UART0_RX  
31  
UART0_RX  
Table continues on the next page...  
MCF51QU128, Rev. 5, 03/2015  
Freescale Semiconductor, Inc.  
63  
Revision History  
Table 35. Module signals by GPIO port and pin (continued)  
64-pin  
3
48-pin  
44-pin  
32-pin  
Port  
PTC6  
PTA7  
PTE7  
PTC5  
Module signal(s)  
UART0_TX  
30  
23  
31  
48  
21  
27  
44  
16  
UART0_TX  
44  
UART0_TX  
64  
32  
UART0_TX  
UART1  
11  
58  
12  
57  
10  
59  
9
7
42  
8
5
38  
6
5
PTA4  
PTF4  
PTA5  
PTC2  
PTA3  
PTF5  
PTA2  
PTF6  
UART1_CTS_b  
UART1_CTS_b  
UART1_RTS_b  
UART1_RTS_b  
UART1_RX  
6
29  
4
41  
6
37  
4
43  
5
39  
3
UART1_RX  
3
UART1_TX  
60  
44  
40  
UART1_TX  
9 Revision History  
The following table summarizes content changes since the previous release of this  
document.  
Table 36. Revision History  
Rev. No.  
Date  
Substantial Changes  
5
03/2015  
• Updated the value and description in Power mode transition operating behaviors  
• Updated the maximum value of ffll_ref in MCG specs  
• 12-bit ADC characteristics: Updated the values of temperature sensor slope for -40°C to 25°C  
and 25°C to 105°C  
• Updated the minimum and typical values of Vout in VREF full-range operating behaviors  
• Updated the maximum internal reference frequency and maximum FLL reference frequency  
range in MCG specifications  
• Updated the values of Temperature sensor voltage in 12-bit ADC characteristics  
• Removed the temperature parameter from VREF full-range operating requirements table  
• Removed Write endurance to FlexRAM for EEPROM section  
• Removed ADC calculator tool footnote from ADC operating conditions  
MCF51QU128, Rev. 5, 03/2015  
64  
Freescale Semiconductor, Inc.  
Information in this document is provided solely to enable system and  
software implementers to use Freescale products. There are no express  
or implied copyright licenses granted hereunder to design or fabricate  
any integrated circuits based on the information in this document.  
Freescale reserves the right to make changes without further notice to  
any products herein.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale makes no warranty, representation, or guarantee regarding  
the suitability of its products for any particular purpose, nor does  
Freescale assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability,  
including without limitation consequential or incidental damages.  
“Typical” parameters that may be provided in Freescale data sheets  
and/or specifications can and do vary in different applications, and  
actual performance may vary over time. All operating parameters,  
including “typicals,” must be validated for each customer application by  
customer's technical experts. Freescale does not convey any license  
under its patent rights nor the rights of others. Freescale sells products  
pursuant to standard terms and conditions of sale, which can be found  
at the following address: freescale.com/SalesTermsandConditions.  
Freescale, the Freescale logo, and ColdFire+ are trademarks of  
Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other  
product or service names are the property of their respective owners. All  
rights reserved.  
© 2010–2015 Freescale Semiconductor, Inc.  
Document Number MCF51QU128  
Revision 5, 03/2015  

相关型号:

935314775528

RISC Microcontroller
NXP

935314775557

RISC Microcontroller
NXP

935314781557

RISC Microcontroller
NXP

935314783557

Microcontroller
NXP

935314794557

RISC Microcontroller
NXP

935314795528

RISC Microcontroller
NXP

935314795557

RISC Microcontroller
NXP

935314802528

Microcontroller
NXP

935314805528

RISC Microcontroller
NXP

935314807528

Microcontroller
NXP

935314808557

Microcontroller
NXP

935314809528

RISC Microcontroller
NXP