935314884557 [NXP]

RISC Microcontroller;
935314884557
型号: 935314884557
厂家: NXP    NXP
描述:

RISC Microcontroller

微控制器 外围集成电路
文件: 总37页 (文件大小:844K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number MKE02P64M20SF0  
Rev. 6, 01/2019  
NXP Semiconductors  
Data Sheet: Technical Data  
MKE02P64M20SF0  
KE02 Sub-Family Data Sheet  
Supports the following:  
MKE02Z16VLC2(R),  
MKE02Z32VLC2(R),  
MKE02Z64VLC2(R),  
MKE02Z16VLD2(R),  
MKE02Z32VLD2(R),  
MKE02Z64VLD2(R),  
MKE02Z32VLH2(R),  
MKE02Z64VLH2(R),  
MKE02Z32VQH2(R), and  
MKE02Z64VQH2(R)  
Key features  
• System peripherals  
– Power management module (PMC) with three power  
modes: Run, Wait, Stop  
– Low-voltage detection (LVD) with reset or interrupt,  
selectable trip points  
– Watchdog with independent clock source (WDOG)  
– Programmable cyclic redundancy check module  
(CRC)  
– Serial wire debug interface (SWD)  
– Bit manipulation engine (BME)  
• Operating characteristics  
– Voltage range: 2.7 to 5.5 V  
– Flash write voltage range: 2.7 to 5.5 V  
– Temperature range (ambient): -40 to 105°C  
• Performance  
– Up to 20 MHz Arm® Cortex-M0+ core  
– Single cycle 32-bit x 32-bit multiplier  
– Single cycle I/O access port  
• Memories and memory interfaces  
– Up to 64 KB flash  
• Security and integrity modules  
– 64-bit unique identification (ID) number per chip  
– Up to 256 B EEPROM  
– Up to 4 KB RAM  
• Human-machine interface  
– Up to 57 general-purpose input/output (GPIO)  
– Two up to 8-bit keyboard interrupt modules (KBI)  
– External interrupt (IRQ)  
• Clocks  
– Oscillator (OSC) - supports 32.768 kHz crystal or 4  
MHz to 20 MHz crystal or ceramic resonator; choice  
of low power or high gain oscillators  
– Internal clock source (ICS) - internal FLL with  
internal or external reference, 31.25 kHz pre-  
trimmed internal reference for 16 MHz system clock  
(able to be trimmed for up to 20 MHz system clock)  
– Internal 1 kHz low-power oscillator (LPO)  
• Analog modules  
– One up to 16-channel 12-bit SAR ADC, operation in  
Stop mode, optional hardware trigger (ADC)  
– Two analog comparators containing a 6-bit DAC  
and programmable reference input (ACMP)  
• Timers  
– One 6-channel FlexTimer/PWM (FTM)  
– Two 2-channel FlexTimer/PWM (FTM)  
– One 2-channel periodic interrupt timer (PIT)  
– One real-time clock (RTC)  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
• Communication interfaces  
– Two SPI modules (SPI)  
– Up to three UART modules (UART)  
– One I2C module (I2C)  
• Package options  
– 64-pin QFP/LQFP  
– 44-pin LQFP  
– 32-pin LQFP  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
2
NXP Semiconductors  
Table of Contents  
1 Ordering parts.......................................................................................4  
5.2.2 FTM module timing....................................................... 17  
5.3 Thermal specifications.................................................................18  
5.3.1 Thermal operating requirements.................................... 18  
5.3.2 Thermal characteristics.................................................. 18  
6 Peripheral operating requirements and behaviors................................ 20  
6.1 Core modules............................................................................... 20  
6.1.1 SWD electricals .............................................................20  
6.2 External oscillator (OSC) and ICS characteristics.......................21  
6.3 NVM specifications..................................................................... 23  
6.4 Analog..........................................................................................24  
6.4.1 ADC characteristics....................................................... 24  
6.4.2 Analog comparator (ACMP) electricals.........................27  
6.5 Communication interfaces........................................................... 27  
6.5.1 SPI switching specifications.......................................... 27  
7 Dimensions...........................................................................................31  
7.1 Obtaining package dimensions.................................................... 31  
8 Pinout................................................................................................... 32  
8.1 Signal multiplexing and pin assignments.................................... 32  
8.2 Device pin assignment.................................................................34  
9 Revision history....................................................................................35  
1.1 Determining valid orderable parts............................................... 4  
2 Part identification................................................................................. 4  
2.1 Description...................................................................................4  
2.2 Format..........................................................................................4  
2.3 Fields............................................................................................4  
2.4 Example....................................................................................... 5  
3 Parameter classification........................................................................5  
4 Ratings..................................................................................................6  
4.1 Thermal handling ratings.............................................................6  
4.2 Moisture handling ratings............................................................ 6  
4.3 ESD handling ratings...................................................................6  
4.4 Voltage and current operating ratings..........................................7  
5 General................................................................................................. 7  
5.1 Nonswitching electrical specifications........................................ 7  
5.1.1 DC characteristics.......................................................... 7  
5.1.2 Supply current characteristics........................................ 14  
5.1.3 EMC performance..........................................................15  
5.2 Switching specifications.............................................................. 16  
5.2.1 Control timing................................................................ 16  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
NXP Semiconductors  
3
Ordering parts  
1 Ordering parts  
1.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable part  
numbers for this device, go to nxp.com and perform a part number search for the  
following device numbers: KE02Z.  
2 Part identification  
2.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
2.2 Format  
Part numbers for this device have the following format:  
Q KE## A FFF R T PP CC N  
2.3 Fields  
This table lists the possible values for each field in the part number (not all combinations  
are valid):  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
KE##  
A
Kinetis family  
Key attribute  
• KE02  
• Z = M0+ core  
FFF  
Program flash memory size  
• 16 = 16 KB  
• 32 = 32 KB  
• 64 = 64 KB  
R
Silicon revision  
• (Blank) = Main  
• A = Revision after main  
Table continues on the next page...  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
4
NXP Semiconductors  
Parameter classification  
Values  
Field  
T
Description  
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
PP  
• LC = 32 LQFP (7 mm x 7 mm)  
• LD = 44 LQFP (10 mm x 10 mm)  
• QH = 64 QFP (14 mm x 14 mm)  
• LH = 64 LQFP (10 mm x 10 mm)  
CC  
N
Maximum CPU frequency (MHz)  
Packaging type  
• 2 = 20 MHz  
• R = Tape and reel  
• (Blank) = Trays  
2.4 Example  
This is an example part number:  
MKE02Z64VQH2  
3 Parameter classification  
The electrical parameters shown in this supplement are guaranteed by various methods.  
To give the customer a better understanding, the following classification is used and the  
parameters are tagged accordingly in the tables where appropriate:  
Table 1. Parameter classifications  
P
C
Those parameters are guaranteed during production testing on each individual device.  
Those parameters are achieved by the design characterization by measuring a statistically relevant sample size  
across process variations.  
T
Those parameters are achieved by design characterization on a small sample size from typical devices under  
typical conditions unless otherwise noted. All values shown in the typical column are within this category.  
D
Those parameters are derived mainly from simulations.  
NOTE  
The classification is shown in the column labeled “C” in the  
parameter tables where appropriate.  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
NXP Semiconductors  
5
Ratings  
4 Ratings  
4.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
4.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
4.3 ESD handling ratings  
Symbol  
VHBM  
VCDM  
ILAT  
Description  
Min.  
–6000  
–500  
–100  
Max.  
+6000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
Electrostatic discharge voltage, charged-device model  
Latch-up current at ambient temperature of 125°C  
1
2
3
V
+100  
mA  
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78D, IC Latch-up Test.  
• Test was performed at 125 °C case temperature (Class II).  
• I/O pins pass 100 mA I-test with IDD current limit at 800 mA.  
• I/O pins pass +60/-100 mA I-test with IDD current limit at 1000 mA.  
• Supply groups pass 1.5 Vccmax  
.
• RESET pin was only tested with negative I-test due to product conditioning requirement.  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
6
NXP Semiconductors  
General  
4.4 Voltage and current operating ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the  
maxima is not guaranteed. Stress beyond the limits specified in the following table may  
affect device reliability or cause permanent damage to the device. For functional  
operating conditions, refer to the remaining tables in this document.  
This device contains circuitry protecting against damage due to high static voltage or  
electrical fields; however, it is advised that normal precautions be taken to avoid  
application of any voltages higher than maximum-rated voltages to this high-impedance  
circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate  
logic voltage level (for instance, either VSS or VDD) or the programmable pullup resistor  
associated with the pin is enabled.  
Table 2. Voltage and current operating ratings  
Symbol  
VDD  
Description  
Min.  
–0.3  
Max.  
Unit  
V
Digital supply voltage  
6.0  
IDD  
Maximum current into VDD  
Input voltage except true open drain pins  
Input voltage of true open drain pins  
120  
VDD + 0.31  
mA  
V
VIN  
–0.3  
–0.3  
–25  
6
V
ID  
Instantaneous maximum current single pin limit (applies to all  
port pins)  
25  
mA  
VDDA  
Analog supply voltage  
VDD – 0.3  
VDD + 0.3  
V
1. Maximum rating of VDD also applies to VIN.  
5 General  
5.1 Nonswitching electrical specifications  
5.1.1 DC characteristics  
This section includes information about power supply requirements and I/O pin  
characteristics.  
Table 3. DC characteristics  
Symbol  
C
Descriptions  
Operating voltage2  
Table continues on the next page...  
Min  
Typical1  
Max  
Unit  
2.7  
5.5  
V
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
NXP Semiconductors  
7
Nonswitching electrical specifications  
Table 3. DC characteristics (continued)  
Symbol  
C
P
Descriptions  
Min  
Typical1  
Max  
Unit  
V
VOH  
Output All I/O pins, except PTA2 5 V, Iload = –5 mA  
VDD – 0.8  
VDD – 0.8  
high  
voltage  
and PTA3, standard-  
drive strength  
C
3 V, Iload = –2.5 mA  
V
P
C
D
High current drive pins, 5 V, Iload = –20 mA  
VDD – 0.8  
VDD – 0.8  
V
V
high-drive strength3  
3 V, Iload = –10 mA  
IOHT  
Output Max total IOH for all ports  
5 V  
3 V  
–100  
–60  
mA  
high  
current  
VOL  
P
C
P
C
D
Output  
low  
voltage  
All I/O pins, standard-  
drive strength  
5 V, Iload = 5 mA  
3 V, Iload = 2.5 mA  
5 V, Iload =20 mA  
3 V, Iload = 10 mA  
5 V  
0.8  
0.8  
0.8  
0.8  
100  
60  
V
V
High current drive pins,  
high-drive strength3  
V
V
IOLT  
VIH  
VIL  
Output Max total IOL for all ports  
low  
current  
mA  
3 V  
P
P
Input  
high  
voltage  
All digital inputs  
All digital inputs  
4.5≤VDD<5.5 V  
2.7≤VDD<4.5 V  
0.65 × VDD  
0.70 × VDD  
V
V
Input low  
voltage  
4.5≤VDD<5.5 V  
2.7≤VDD<4.5 V  
0.35 ×  
VDD  
0.30 ×  
VDD  
Vhys  
C
P
C
Input  
hysteresi  
s
All digital inputs  
0.06 × VDD  
mV  
µA  
µA  
|IIn|  
Input  
Per pin (pins in high  
VIN = VDD or VSS  
VIN = VDD or VSS  
0.1  
1
leakage impedance input mode)  
current  
|IINTOT  
|
Total  
Pins in high impedance  
input mode  
2
leakage  
combine  
d for all  
port pins  
RPU  
P
Pullup  
resistors  
All digital inputs, when  
enabled (all I/O pins  
other than PTA2 and  
PTA3)  
30.0  
30.0  
50.0  
60.0  
kΩ  
4
RPU  
P
D
Pullup  
resistors  
PTA2 and PTA3 pins  
kΩ  
IIC  
DC  
Single pin limit  
VIN < VSS, VIN  
VDD  
>
-2  
-5  
2
mA  
injection  
Total MCU limit, includes  
sum of all stressed pins  
25  
current5,  
6, 7  
CIn  
C
C
Input capacitance, all pins  
RAM retention voltage  
7
pF  
V
VRAM  
2.0  
1. Typical values are measured at 25 °C. Characterized, not tested.  
2. Max power supply ramp rate is 500 V/ms.  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
8
NXP Semiconductors  
Nonswitching electrical specifications  
3. Only PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0, and PTH1 support high current output.  
4. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured  
externally on the pin.  
5. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to VSS and VDD. PTA2 and PTA3 are true  
open drain I/O pins that are internally clamped to VSS  
.
6. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor,  
calculate resistance values for positive and negative clamp voltages, then use the larger value.  
7. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If the positive injection current (VIn > VDD) is higher than IDD, the injection current may flow out of VDD and could  
result in external power supply going out of regulation. Ensure that external VDD load will shunt current higher than  
maximum injection current when the MCU is not consuming power, such as when no system clock is present, or clock rate  
is very low (which would reduce overall power consumption).  
Table 4. LVD and POR specification  
Symbol  
VPOR  
C
D
C
Description  
Min  
1.5  
4.2  
Typ  
1.75  
4.3  
Max  
2.0  
Unit  
V
POR re-arm voltage1  
VLVDH  
Falling low-voltage detect  
threshold—high range (LVDV  
= 1)2  
4.4  
V
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
VHYSH  
C
C
C
C
C
C
Falling low- Level 1 falling  
4.3  
4.5  
4.6  
4.7  
4.4  
4.5  
4.5  
4.6  
4.7  
4.8  
V
V
voltage  
warning  
threshold—  
high range  
(LVWV = 00)  
Level 2 falling  
(LVWV = 01)  
Level 3 falling  
(LVWV = 10)  
4.6  
V
Level 4 falling  
(LVWV = 11)  
4.7  
V
High range low-voltage  
detect/warning hysteresis  
100  
2.61  
mV  
V
VLVDL  
Falling low-voltage detect  
threshold—low range (LVDV  
= 0)  
2.56  
2.66  
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
VHYSDL  
VHYSWL  
VBG  
C
C
C
C
C
C
P
Falling low- Level 1 falling  
2.62  
2.72  
2.82  
2.92  
2.7  
2.8  
2.9  
3.0  
40  
2.78  
2.88  
2.98  
3.08  
V
V
voltage  
warning  
threshold—  
low range  
(LVWV = 00)  
Level 2 falling  
(LVWV = 01)  
Level 3 falling  
(LVWV = 10)  
V
Level 4 falling  
(LVWV = 11)  
V
Low range low-voltage detect  
hysteresis  
mV  
mV  
V
Low range low-voltage  
warning hysteresis  
Buffered bandgap output 3  
80  
1.14  
1.16  
1.18  
1. Maximum is highest voltage that POR is guaranteed.  
2. Rising thresholds are falling threshold + hysteresis.  
3. voltage Factory trimmed at VDD = 5.0 V, Temp = 25 °C  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
NXP Semiconductors  
9
Nonswitching electrical specifications  
VDD-VOH(V)  
IOH(mA)  
Figure 1. Typical VDD-VOH Vs. IOH (standard drive strength) (VDD = 5 V)  
VDD-VOH(V)  
IOH(mA)  
Figure 2. Typical VDD-VOH Vs. IOH (standard drive strength) (VDD = 3 V)  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
10  
NXP Semiconductors  
Nonswitching electrical specifications  
VDD-VOH(V)  
IOH(mA)  
Figure 3. Typical VDD-VOH Vs. IOH (high drive strength) (VDD = 5 V)  
VDD-VOH(V)  
IOH(mA)  
Figure 4. Typical VDD-VOH Vs. IOH (high drive strength) (VDD = 3 V)  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
NXP Semiconductors  
11  
Nonswitching electrical specifications  
VOL(V)  
IOL(mA)  
Figure 5. Typical VOL Vs. IOL (standard drive strength) (VDD = 5 V)  
VOL(V)  
IOL(mA)  
Figure 6. Typical VOL Vs. IOL (standard drive strength) (VDD = 3 V)  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
12  
NXP Semiconductors  
Nonswitching electrical specifications  
VOL(V)  
IOL(mA)  
Figure 7. Typical VOL Vs. IOL (high drive strength) (VDD = 5 V)  
VOL(V)  
IOL(mA)  
Figure 8. Typical VOL Vs. IOL (high drive strength) (VDD = 3 V)  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
NXP Semiconductors  
13  
Nonswitching electrical specifications  
5.1.2 Supply current characteristics  
This section includes information about power supply current in various operating modes.  
Table 5. Supply current characteristics  
C
Parameter  
Symbol  
Core/Bus  
Freq  
VDD (V)  
Typical1  
Max2  
Unit  
Temp  
C
C
Run supply current FEI  
mode, all modules clocks  
enabled; run from flash  
RIDD  
20/20 MHz  
10/10 MHz  
1/1 MHz  
5
6.7  
4.5  
1.5  
6.6  
4.4  
1.45  
5.3  
3.7  
1.5  
5.3  
3.7  
1.4  
9
mA  
–40 to 105 °C  
C
C
20/20 MHz  
10/10 MHz  
1/1 MHz  
3
5
3
5
3
5
3
5
3
C
C
Run supply current FEI  
mode, all modules clocks  
disabled; run from flash  
RIDD  
RIDD  
RIDD  
WIDD  
SIDD  
20/20 MHz  
10/10 MHz  
1/1 MHz  
mA  
mA  
mA  
mA  
µA  
–40 to 105 °C  
–40 to 105 °C  
–40 to 105 °C  
–40 to 105 °C  
C
C
20/20 MHz  
10/10 MHz  
1/1 MHz  
P
C
Run supply current FBE  
mode, all modules clocks  
enabled; run from RAM  
20/20 MHz  
10/10 MHz  
1/1 MHz  
14.8  
5.2  
1.45  
8.8  
5.1  
1.4  
8
P
C
20/20 MHz  
10/10 MHz  
1/1 MHz  
11.8  
P
C
Run supply current FBE  
mode, all modules clocks  
disabled; run from RAM  
20/20 MHz  
10/10 MHz  
1/1 MHz  
12.3  
4.4  
1.35  
7.8  
4.2  
1.3  
5.5  
3.5  
1.4  
5.4  
3.4  
1.4  
2
P
C
20/20 MHz  
10/10 MHz  
1/1 MHz  
9.2  
P
C
Wait mode current FEI  
mode, all modules clocks  
enabled  
20/20 MHz  
20/10 MHz  
1/1 MHz  
C
20/20 MHz  
10/10 MHz  
1/1 MHz  
P
P
Stop mode supply current  
no clocks active (except 1  
kHz LPO clock)3  
5
3
85  
80  
–40 to 105 °C  
–40 to 105 °C  
1.9  
Table continues on the next page...  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
14  
NXP Semiconductors  
Nonswitching electrical specifications  
Table 5. Supply current characteristics (continued)  
C
Parameter  
Symbol  
Core/Bus  
Freq  
VDD (V)  
Typical1  
Max2  
Unit  
Temp  
C
ADC adder to Stop  
ADLPC = 1  
5
86 (64-, 44-  
pin  
packages)  
µA  
–40 to 105 °C  
ADLSMP = 1  
ADCO = 1  
42 (32-pin  
package)  
C
3
82 (64-, 44-  
pin  
packages)  
MODE = 10B  
ADICLK = 11B  
41 (32-pin  
package)  
C
C
C
C
ACMP adder to Stop  
LVD adder to stop4  
5
3
5
3
12  
12  
µA  
µA  
–40 to 105 °C  
–40 to 105 °C  
128  
124  
1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.  
2. The Max current is observed at high temperature of 105 °C.  
3. RTC adder causes IDD to increase typically by less than 1 µA; RTC clock source is 1 kHz LPO clock.  
4. LVD is periodically woken up from Stop by 5% duty cycle. The period is equal to or less than 2 ms.  
5.1.3 EMC performance  
Electromagnetic compatibility (EMC) performance is highly dependent on the  
environment in which the MCU resides. Board design and layout, circuit topology  
choices, location and characteristics of external components as well as MCU software  
operation play a significant role in EMC performance. The system designer must consult  
the following applications notes, available on nxp.com for advice and guidance  
specifically targeted at optimizing EMC performance.  
• AN2321: Designing for Board Level Electromagnetic Compatibility  
• AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS  
Microcontrollers  
• AN1263: Designing for Electromagnetic Compatibility with Single-Chip  
Microcontrollers  
• AN2764: Improving the Transient Immunity Performance of Microcontroller-Based  
Applications  
• AN1259: System Design and Layout Techniques for Noise Reduction in MCU-  
Based Systems  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
NXP Semiconductors  
15  
Switching specifications  
5.1.3.1 EMC radiated emissions operating behaviors  
Table 6. EMC radiated emissions operating behaviors for 64-pin QFP package  
Symbol  
Description  
Frequency  
band (MHz)  
Typ.  
Unit  
Notes  
VRE1  
VRE2  
Radiated emissions voltage, band 1  
Radiated emissions voltage, band 2  
Radiated emissions voltage, band 3  
Radiated emissions voltage, band 4  
IEC level  
0.15–50  
50–150  
14  
15  
3
dBμV  
dBμV  
dBμV  
dBμV  
1, 2  
VRE3  
150–500  
500–1000  
0.15–1000  
VRE4  
4
VRE_IEC  
M
2, 3  
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150  
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of  
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported  
emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the  
measured orientations in each frequency range.  
2. VDD = 5.0 V, TA = 25 °C, fOSC = 10 MHz (crystal), fBUS = 20 MHz  
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method  
5.2 Switching specifications  
5.2.1 Control timing  
Table 7. Control timing  
Num  
C
D
P
P
D
Rating  
System and core clock  
Bus frequency (tcyc = 1/fBus  
Symbol  
fSys  
Min  
DC  
Typical1  
Max  
20  
Unit  
MHz  
MHz  
KHz  
ns  
1
2
3
4
)
fBus  
DC  
20  
Internal low power oscillator frequency  
External reset pulse width2  
fLPO  
0.67  
1.5 ×  
tcyc  
1.0  
1.25  
textrst  
5
6
D
D
Reset low drive  
trstdrv  
tILIH  
34 × tcyc  
100  
ns  
ns  
IRQ pulse width  
Asynchronous  
path2  
D
D
Synchronous path3  
tIHIL  
tILIH  
1.5 × tcyc  
100  
ns  
ns  
7
8
Keyboard interrupt pulse  
width  
Asynchronous  
path2  
D
C
C
Synchronous path  
tIHIL  
tRise  
tFall  
1.5 × tcyc  
10.2  
9.5  
ns  
ns  
ns  
Port rise and fall time -  
Normal drive strength  
(load = 50 pF)4  
C
C
Port rise and fall time -  
high drive strength (load =  
50 pF)4  
tRise  
tFall  
5.4  
4.6  
ns  
ns  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
16  
NXP Semiconductors  
Switching specifications  
1. Typical values are based on characterization data at VDD = 5.0 V, 25 °C unless otherwise stated.  
2. This is the shortest pulse that is guaranteed to be recognized as a RESET pin request.  
3. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.  
4. Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range -40 °C to 105 °C.  
textrst  
RESET_b pin  
Figure 9. Reset timing  
tIHIL  
KBIPx  
IRQ/KBIPx  
tILIH  
Figure 10. KBIPx timing  
5.2.2 FTM module timing  
Synchronizer circuits determine the shortest input pulses that can be recognized or the  
fastest clock that can be used as the optional external source to the timer counter. These  
synchronizers operate from the current bus rate clock.  
Table 8. FTM input timing  
C
Function  
Symbol  
Min  
Max  
Unit  
D
External clock  
frequency  
fTCLK  
0
fBus/4  
Hz  
D
D
D
D
External clock  
period  
tTCLK  
tclkh  
4
tcyc  
tcyc  
tcyc  
tcyc  
External clock high  
time  
1.5  
1.5  
1.5  
External clock low  
time  
tclkl  
Input capture pulse  
width  
tICPW  
tTCLK  
tclkh  
TCLK  
tclkl  
Figure 11. Timer external clock  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
NXP Semiconductors  
17  
Thermal specifications  
tICPW  
FTMCHn  
FTMCHn  
tICPW  
Figure 12. Timer input capture pulse  
5.3 Thermal specifications  
5.3.1 Thermal operating requirements  
Table 9. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
°C  
Notes  
Die junction temperature  
Ambient temperature  
TA  
105  
°C  
1
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed maximum TJ. The simplest method to  
determine TJ is: TJ = TA + θJA x chip power dissipation  
5.3.2 Thermal characteristics  
This section provides information about operating temperature range, power dissipation,  
and package thermal resistance. Power dissipation on I/O pins is usually small compared  
to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-  
determined rather than being controlled by the MCU design. To take PI/O into account in  
power calculations, determine the difference between actual pin voltage and VSS or VDD  
and multiply by the pin current for each I/O pin. Except in cases of unusually high pin  
current (heavy loads), the difference between pin voltage and VSS or VDD will be very  
small.  
Table 10. Thermal attributes  
Board type  
Symbol  
Description  
64  
64 QFP  
44  
32  
Unit  
Notes  
LQFP  
LQFP  
LQFP  
Single-layer (1S)  
RθJA  
Thermal resistance, junction  
to ambient (natural  
convection)  
71  
61  
75  
86  
°C/W  
1, 2  
Four-layer (2s2p)  
RθJA  
Thermal resistance, junction  
to ambient (natural  
convection)  
53  
47  
53  
57  
°C/W  
1, 3  
Table continues on the next page...  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
18  
NXP Semiconductors  
Thermal specifications  
Table 10. Thermal attributes (continued)  
Board type  
Symbol  
Description  
64  
64 QFP  
44  
32  
Unit  
Notes  
LQFP  
LQFP  
LQFP  
Single-layer (1S)  
RθJMA Thermal resistance, junction  
to ambient (200 ft./min. air  
speed)  
59  
50  
62  
72  
°C/W  
1, 3  
Four-layer (2s2p)  
RθJMA Thermal resistance, junction  
to ambient (200 ft./min. air  
speed)  
46  
41  
47  
51  
°C/W  
1, 3  
RθJB  
RθJC  
ΨJT  
Thermal resistance, junction  
to board  
35  
20  
5
32  
23  
8
34  
20  
5
33  
24  
6
°C/W  
°C/W  
°C/W  
4
5
6
Thermal resistance, junction  
to case  
Thermal characterization  
parameter, junction to  
package top outside center  
(natural convection)  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.  
3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization.  
The average chip-junction temperature (TJ) in °C can be obtained from:  
TJ = TA + (PD × θJA)  
Where:  
TA = Ambient temperature, °C  
θJA = Package thermal resistance, junction-to-ambient, °C/W  
PD = Pint + PI/O  
Pint = IDD × VDD, Watts - chip internal power  
PI/O = Power dissipation on input and output pins - user determined  
For most applications, PI/O << Pint and can be neglected. An approximate relationship  
between PD and TJ (if PI/O is neglected) is:  
PD = K ÷ (TJ + 273 °C)  
Solving the equations above for K gives:  
K = PD × (TA + 273 °C) + θJA × (PD)2  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
NXP Semiconductors  
19  
Peripheral operating requirements and behaviors  
where K is a constant pertaining to the particular part. K can be determined by measuring  
PD (at equilibrium) for an known TA. Using this value of K, the values of PD and TJ can  
be obtained by solving the above equations iteratively for any value of TA.  
6 Peripheral operating requirements and behaviors  
6.1 Core modules  
6.1.1 SWD electricals  
Table 11. SWD full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
2.7  
5.5  
V
J1  
SWD_CLK frequency of operation  
• Serial wire debug  
0
20  
MHz  
ns  
J2  
J3  
SWD_CLK cycle period  
SWD_CLK clock pulse width  
• Serial wire debug  
1/J1  
20  
ns  
J4  
J9  
SWD_CLK rise and fall times  
10  
3
3
ns  
ns  
ns  
ns  
ns  
SWD_DIO input data setup time to SWD_CLK rise  
SWD_DIO input data hold time after SWD_CLK rise  
SWD_CLK high to SWD_DIO data valid  
SWD_CLK high to SWD_DIO high-Z  
35  
J10  
J11  
J12  
5
J2  
J4  
J3  
J3  
SWD_CLK (input)  
J4  
Figure 13. Serial wire clock input timing  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
20  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
SWD_CLK  
SWD_DIO  
SWD_DIO  
SWD_DIO  
SWD_DIO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
Output data valid  
Figure 14. Serial wire data timing  
6.2 External oscillator (OSC) and ICS characteristics  
Table 12. OSC and ICS specifications (temperature range = -40 to 105 °C ambient)  
Num  
C
C
C
Characteristic  
Low range (RANGE = 0)  
High range (RANGE = 1)  
Symbol  
Min  
31.25  
4
Typical1  
32.768  
Max  
39.0625  
20  
Unit  
kHz  
1
Crystal or  
resonator  
frequency  
flo  
fhi  
MHz  
2
3
D
D
Load capacitors  
C1, C2  
RF  
See Note2  
Feedback  
resistor  
Low Frequency, Low-Power  
Mode3  
MΩ  
MΩ  
MΩ  
MΩ  
Low Frequency, High-Gain  
Mode  
10  
1
High Frequency, Low-  
Power Mode  
High Frequency, High-Gain  
Mode  
1
2
4
5
D
D
Series resistor -  
Low Frequency  
Low-Power Mode 3  
High-Gain Mode  
Low-Power Mode3  
RS  
0
200  
0
kΩ  
kΩ  
kΩ  
2
Series resistor -  
High Frequency  
RS  
Table continues on the next page...  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
NXP Semiconductors  
21  
Peripheral operating requirements and behaviors  
Table 12. OSC and ICS specifications (temperature range = -40 to 105 °C ambient)  
(continued)  
Num  
C
D
D
D
Characteristic  
4 MHz  
Symbol  
Min  
Typical1  
Max  
Unit  
kΩ  
Series resistor -  
High  
0
0
0
8 MHz  
kΩ  
Frequency,  
High-Gain Mode  
16 MHz  
kΩ  
6
C
C
C
C
Crystal start-up  
time low range  
= 32.768 kHz  
crystal; High  
range = 20 MHz  
crystal4,5  
Low range, low power  
Low range, high gain  
High range, low power  
High range, high gain  
tCSTL  
1000  
800  
3
ms  
ms  
ms  
ms  
tCSTH  
1.5  
7
8
T
P
Internal reference start-up time  
tIRST  
fint_t  
20  
50  
µs  
Internal reference clock (IRC) frequency trim  
range  
31.25  
39.0625  
kHz  
9
P
Internal  
T = 25 °C, VDD = 5 V  
fint_ft  
31.25  
kHz  
reference clock  
frequency,  
factory trimmed,  
10  
11  
P
P
DCO output  
frequency range  
FLL reference = fint_t, flo,  
or fhi/RDIV  
fdco  
16  
20  
MHz  
%
Factory trimmed  
internal  
T = 25 °C, VDD = 5 V  
Δfint_ft  
-0.5  
0.5  
oscillator  
accuracy6  
12  
13  
C
C
Deviation of IRC Over temperature range  
Δfint_t  
Δfint_t  
-1  
0.5  
0.5  
%
%
over  
from -40 °C to 105°C  
temperature  
when trimmed  
at T = 25 °C,  
VDD = 5 V  
Over temperature range  
from 0 °C to 105°C  
-0.5  
Frequency  
accuracy of  
DCO output  
using factory  
trim value  
Over temperature range  
from -40 °C to 105°C  
Δfdco_ft  
Δfdco_ft  
-1.5  
-1  
1
1
Over temperature range  
from 0 °C to 105°C  
14  
15  
C
C
FLL acquisition time4,7  
tAcquire  
CJitter  
2
ms  
Long term jitter of DCO output clock  
(averaged over 2 ms interval)8  
0.02  
0.2  
%fdco  
1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.  
2. See crystal or resonator manufacturer's recommendation.  
3. Load capacitors (C1,C2), feedback resistor (RF) and series resistor (RS) are incorporated internally when RANGE = HGO =  
0.  
4. This parameter is characterized and not tested on each device.  
5. Proper PC board layout procedures must be followed to achieve specifications.  
6. The accuracy is for factory trimmed deviation when performing trim process in NXP, however, the reflow process may  
cause an extra 0.5% drift at the room temperature.  
7. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or  
changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as  
the reference, this specification assumes it is already running.  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
22  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
8. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBus  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage  
for a given interval.  
OSC  
EXTAL  
XTAL  
RS  
RF  
Crystal or Resonator  
C1  
C2  
Figure 15. Typical crystal or resonator circuit  
6.3 NVM specifications  
This section provides details about program/erase times and program/erase endurance for  
the flash and EEPROM memories.  
Table 13. Flash and EEPROM characteristics  
C
Characteristic  
Symbol  
Min1  
Typical2  
Max3  
Unit4  
D
Supply voltage for program/erase –40  
°C to 105 °C  
Vprog/erase  
2.7  
5.5  
V
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
Supply voltage for read operation  
NVM Bus frequency  
VRead  
fNVMBUS  
fNVMOP  
tVFYALL  
tRD1BLK  
tRD1BLK  
tRD1SEC  
tDRD1SEC  
tRDONCE  
tPGM2  
2.7  
1
5.5  
25  
V
MHz  
MHz  
tcyc  
tcyc  
tcyc  
tcyc  
tcyc  
tcyc  
ms  
ms  
ms  
ms  
ms  
ms  
NVM Operating frequency  
Erase Verify All Blocks  
Erase Verify Flash Block  
Erase Verify EEPROM Block  
Erase Verify Flash Section  
Erase Verify EEPROM Section  
Read Once  
0.8  
1
1.05  
17338  
16913  
810  
484  
555  
450  
Program Flash (2 word)  
Program Flash (4 word)  
Program Once  
0.12  
0.20  
0.20  
0.10  
0.17  
0.25  
0.12  
0.21  
0.21  
0.10  
0.18  
0.26  
0.29  
0.46  
0.21  
0.27  
0.43  
0.60  
tPGM4  
tPGMONCE  
tDPGM1  
tDPGM2  
tDPGM3  
Program EEPROM (1 Byte)  
Program EEPROM (2 Byte)  
Program EEPROM (3 Byte)  
Table continues on the next page...  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
NXP Semiconductors  
23  
Peripheral operating requirements and behaviors  
Table 13. Flash and EEPROM characteristics  
(continued)  
C
D
D
D
D
D
D
D
D
C
Characteristic  
Symbol  
tDPGM4  
tERSALL  
tERSBLK  
tERSPG  
Min1  
0.32  
96.01  
95.98  
19.10  
4.81  
96.01  
Typical2  
Max3  
0.77  
Unit4  
ms  
Program EEPROM (4 Byte)  
Erase All Blocks  
0.33  
100.78  
100.75  
20.05  
5.05  
101.49  
101.44  
20.08  
20.57  
101.48  
464  
ms  
Erase Flash Block  
ms  
Erase Flash Sector  
ms  
Erase EEPROM Sector  
Unsecure Flash  
tDERSPG  
tUNSECU  
tVFYKEY  
tMLOADU  
nFLPE  
ms  
100.78  
ms  
Verify Backdoor Access Key  
Set User Margin Level  
tcyc  
407  
tcyc  
FLASH Program/erase endurance TL to  
TH = -40 °C to 105 °C  
10 k  
100 k  
Cycles  
C
C
EEPROM Program/erase endurance TL  
to TH = -40 °C to 105 °C  
nFLPE  
tD_ret  
50 k  
15  
500 k  
100  
Cycles  
years  
Data retention at an average junction  
temperature of TJavg = 85°C after up to  
10,000 program/erase cycles  
1. Minimum times are based on maximum fNVMOP and maximum fNVMBUS  
2. Typical times are based on typical fNVMOP and maximum fNVMBUS  
3. Maximum times are based on typical fNVMOP and typical fNVMBUS plus aging  
4. tcyc = 1 / fNVMBUS  
Program and erase operations do not require any special power sources other than the  
normal VDD supply. For more detailed information about program/erase operations, see  
the Flash Memory Module section in the reference manual.  
6.4 Analog  
6.4.1 ADC characteristics  
Table 14. 5 V 12-bit ADC operating conditions  
Characteri  
stic  
Conditions  
Symbol  
Min  
Typ1  
Max  
Unit  
Comment  
Reference  
potential  
• Low  
• High  
VREFL  
VREFH  
VDDA  
VSSA  
VDDA  
2.7  
0
VSSA  
VDDA  
5.5  
V
Supply  
voltage  
Absolute  
V
Delta to VDD (VDD-VDDA  
Delta to VSS (VSS-VSSA  
)
ΔVDDA  
ΔVSSA  
-100  
-100  
+100  
+100  
mV  
mV  
Ground  
voltage  
)
0
Input  
VADIN  
VREFL  
VREFH  
V
voltage  
Table continues on the next page...  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
24  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 14. 5 V 12-bit ADC operating conditions (continued)  
Characteri  
stic  
Conditions  
Symbol  
CADIN  
RADIN  
RAS  
Min  
Typ1  
4.5  
3
Max  
5.5  
5
Unit  
Comment  
Input  
capacitance  
pF  
Input  
resistance  
kΩ  
Analog  
source  
resistance  
12-bit mode  
fADCK > 4 MHz  
fADCK < 4 MHz  
kΩ  
External to  
MCU  
2
5
10-bit mode  
fADCK > 4 MHz  
fADCK < 4 MHz  
5
10  
10  
8-bit mode  
(all valid fADCK  
)
ADC  
conversion  
clock  
High speed (ADLPC=0)  
Low power (ADLPC=1)  
fADCK  
0.4  
0.4  
8.0  
4.0  
MHz  
frequency  
1. Typical values assume VDDA = 5.0 V, Temp = 25°C, fADCK=1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
z ADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
R AS  
R ADIN  
protection  
v ADIN  
C AS  
v AS  
R ADIN  
R ADIN  
R ADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
C ADIN  
Figure 16. ADC input impedance equivalency diagram  
Table 15. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Characteristic  
Conditions  
C
Symbol  
Min  
Typ1  
Max  
Unit  
Supply current  
T
IDDA  
133  
µA  
Table continues on the next page...  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
NXP Semiconductors  
25  
Peripheral operating requirements and behaviors  
Table 15. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Characteristic  
Conditions  
C
Symbol  
Min  
Typ1  
Max  
Unit  
ADLPC = 1  
ADLSMP = 1  
ADCO = 1  
Supply current  
ADLPC = 1  
ADLSMP = 0  
ADCO = 1  
T
IDDA  
218  
µA  
Supply current  
ADLPC = 0  
ADLSMP = 1  
ADCO = 1  
T
T
IDDA  
327  
582  
µA  
µA  
Supply current  
ADLPC = 0  
ADLSMP = 0  
ADCO = 1  
IDDA  
990  
Supply current  
Stop, reset, module  
off  
T
P
IDDA  
2
0.011  
3.3  
2
1
5
µA  
ADC asynchronous High speed (ADLPC  
clock source  
fADACK  
MHz  
= 0)  
Low power (ADLPC  
= 1)  
1.25  
3.3  
Conversion time  
(including sample  
time)  
Short sample  
(ADLSMP = 0)  
T
T
tADC  
20  
ADCK  
cycles  
Long sample  
(ADLSMP = 1)  
40  
Sample time  
Short sample  
(ADLSMP = 0)  
tADS  
3.5  
23.5  
ADCK  
cycles  
Long sample  
(ADLSMP = 1)  
Total unadjusted  
Error2  
12-bit mode3  
10-bit mode  
8-bit mode  
T
P
T
T
P
T
T
T
T
C
P
T
ETUE  
DNL  
INL  
3.6  
1.5  
LSB4  
LSB4  
LSB4  
LSB4  
2.0  
1.0  
0.7  
Differential Non-  
Liniarity  
12-bit mode  
10-bit mode5  
8-bit mode5  
1.0  
0.25  
0.15  
1.0  
0.5  
0.25  
Integral Non-Linearity 12-bit mode3  
10-bit mode  
0.3  
0.5  
0.25  
8-bit mode  
0.15  
2.0  
Zero-scale error6  
12-bit mode  
10-bit mode  
8-bit mode  
EZS  
0.25  
0.65  
1.0  
1.0  
Table continues on the next page...  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
26  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 15. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Characteristic  
Conditions  
12-bit mode  
10-bit mode  
8-bit mode  
C
T
Symbol  
Min  
Typ1  
Max  
Unit  
Full-scale error7  
EFS  
2.5  
LSB4  
T
0.5  
1.0  
1.0  
0.5  
T
0.5  
Quantization error  
≤12 bit modes  
D
D
D
EQ  
EIL  
m
LSB4  
mV  
Input leakage error8 all modes  
Temp sensor slope -40 °C–25 °C  
25 °C–125 °C  
Temp sensor voltage 25 °C  
IIn * RAS  
3.266  
3.638  
1.396  
mV/°C  
D
VTEMP25  
V
1. Typical values assume VDDA = 5.0 V, Temp = 25 °C, fADCK=1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. Includes quantization  
3. This parameter is valid for the temperature range of 25 °C to 50 °C.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes  
6. VADIN = VSSA  
7. VADIN = VDDA  
8. IIn = leakage current (refer to DC characteristics)  
6.4.2 Analog comparator (ACMP) electricals  
Table 16. Comparator electrical specifications  
C
D
T
Characteristic  
Supply voltage  
Symbol  
VDDA  
IDDA  
VAIN  
VAIO  
VH  
Min  
2.7  
Typical  
Max  
5.5  
20  
Unit  
V
Supply current (Operation mode)  
Analog input voltage  
10  
µA  
V
D
P
C
C
T
VSS - 0.3  
VDDA  
40  
Analog input offset voltage  
Analog comparator hysteresis (HYST=0)  
Analog comparator hysteresis (HYST=1)  
Supply current (Off mode)  
Propagation Delay  
mV  
mV  
mV  
nA  
µs  
15  
20  
VH  
20  
30  
IDDAOFF  
tD  
60  
C
0.4  
1
6.5 Communication interfaces  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
NXP Semiconductors  
27  
Peripheral operating requirements and behaviors  
6.5.1 SPI switching specifications  
The serial peripheral interface (SPI) provides a synchronous serial bus with master and  
slave operations. Many of the transfer attributes are programmable. The following tables  
provide timing characteristics for classic SPI timing modes. See the SPI chapter of the  
chip's reference manual for information about the modified transfer formats used for  
communicating with slower peripheral devices. All timing is shown with respect to 20%  
VDD and 80% VDD, unless noted, and 25 pF load on all SPI pins. All timing assumes  
high-drive strength is enabled for SPI output pins.  
Table 17. SPI master mode timing  
Nu  
m.  
Symbol Description  
Min.  
Max.  
Unit  
Comment  
1
fop  
Frequency of operation  
fBus/2048  
fBus/2  
Hz  
fBus is the bus  
clock  
2
3
tSPSCK  
tLead  
tLag  
SPSCK period  
Enable lead time  
Enable lag time  
2 x tBus  
2048 x tBus  
ns  
tSPSCK  
tSPSCK  
ns  
tBus = 1/fBus  
1/2  
4
1/2  
5
tWSPSCK Clock (SPSCK) high or low time  
tBus – 30  
1024 x tBus  
6
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
8
8
ns  
7
ns  
8
tv  
20  
25  
ns  
9
tHO  
tRI  
ns  
10  
tBus – 25  
ns  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
28  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
1
SS  
(OUTPUT)  
3
2
10  
10  
11  
11  
4
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
8
MSB IN  
LSB IN  
9
MOSI  
(OUTPUT)  
2
BIT 6 . . . 1  
MSB OUT  
LSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 17. SPI master mode timing (CPHA=0)  
1
SS  
(OUTPUT)  
2
10  
10  
11  
11  
4
3
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
LSB IN  
MSB IN  
9
8
MOSI  
(OUTPUT)  
2
PORT DATA  
BIT 6 . . . 1  
MASTER MSB OUT  
PORT DATA  
MASTER LSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 18. SPI master mode timing (CPHA=1)  
Table 18. SPI slave mode timing  
Nu  
m.  
Symbol  
Description  
Min.  
Max.  
Unit  
Comment  
1
fop  
Frequency of operation  
0
fBus/4  
Hz  
fBus is the bus clock as  
defined in Control timing.  
2
3
tSPSCK  
tLead  
SPSCK period  
4 x tBus  
1
ns  
tBus = 1/fBus  
Enable lead time  
tBus  
Table continues on the next page...  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
NXP Semiconductors  
29  
Peripheral operating requirements and behaviors  
Table 18. SPI slave mode timing (continued)  
Nu  
m.  
Symbol  
Description  
Min.  
Max.  
Unit  
Comment  
4
5
6
7
8
tLag  
Enable lag time  
1
tBus - 30  
15  
tBus  
ns  
ns  
ns  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
25  
tBus  
Time to data active from  
high-impedance state  
9
tdis  
Slave MISO disable time  
tBus  
ns  
Hold time to high-  
impedance state  
10  
11  
12  
tv  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
0
25  
ns  
ns  
ns  
tHO  
tRI  
tBus - 25  
tFI  
Fall time input  
13  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
SS  
(INPUT)  
2
12  
13  
13  
4
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
3
12  
SPSCK  
(CPOL=1)  
(INPUT)  
9
8
10  
11  
11  
see  
note  
SEE  
NOTE  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE MSB  
7
SLAVE LSB OUT  
6
MOSI  
(INPUT)  
LSB IN  
MSB IN  
BIT 6 . . . 1  
NOTE: Not defined  
Figure 19. SPI slave mode timing (CPHA = 0)  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
30  
NXP Semiconductors  
Dimensions  
SS  
(INPUT)  
4
2
12  
12  
13  
13  
3
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
SPSCK  
(CPOL=1)  
(INPUT)  
11  
9
10  
SLAVE MSB OUT  
see  
note  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
8
6
7
MOSI  
(INPUT)  
MSB IN  
NOTE: Not defined  
Figure 20. SPI slave mode timing (CPHA=1)  
7 Dimensions  
7.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to nxp.com and perform a keyword search for the  
drawing’s document number:  
If you want the drawing for this package  
Then use this document number  
98ASH70029A  
32-pin LQFP  
44-pin LQFP  
64-pin QFP  
64-pin LQFP  
98ASS23225W  
98ASB42844B  
98ASS23234W  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
NXP Semiconductors  
31  
Pinout  
8 Pinout  
8.1 Signal multiplexing and pin assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is responsible  
for selecting which ALT functionality is available on each pin.  
Table 19. Pin availability by package pin-count  
Pin Number  
44-LQFP  
Lowest Priority <-- --> Highest  
64-QFP/  
LQFP  
32-LQFP  
Port Pin  
Alt 1  
Alt 2  
Alt 3  
Alt 4  
1
1
2
1
2
PTD11  
PTD01  
PTH7  
PTH6  
PTE7  
PTH2  
KBI1_P1  
FTM2_CH3  
SPI1_MOSI  
2
KBI1_P0  
FTM2_CH2  
SPI1_SCK  
3
3
3
4
FTM2_CLK  
BUSOUT  
5
FTM1_CH1  
FTM1_CH0  
VDD  
6
4
7
5
8
6
4
VDDA  
VREFH2  
VREFL  
VSS3  
9
7
5
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
8
6
VSSA  
9
7
PTB7  
PTB6  
I2C0_SCL  
I2C0_SDA  
EXTAL  
XTAL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
8
9
VSS  
PTH11  
PTH01  
PTE6  
PTE5  
PTB51  
PTB41  
PTC3  
PTC2  
PTD7  
PTD6  
PTD5  
PTC1  
PTC0  
PTF7  
FTM2_CH1  
FTM2_CH0  
FTM2_CH5  
FTM2_CH4  
FTM2_CH3  
FTM2_CH2  
KBI1_P7  
KBI1_P6  
KBI1_P5  
SPI0_PCS0  
SPI0_MISO  
ACMP1_OUT  
10  
11  
12  
13  
14  
NMI  
ACMP1_IN2  
ADC0_SE11  
ADC0_SE10  
UART2_TX  
UART2_RX  
FTM2_CH1  
FTM2_CH0  
ADC0_SE9  
ADC0_SE8  
ADC0_SE15  
Table continues on the next page...  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
32  
NXP Semiconductors  
Pinout  
Table 19. Pin availability by package pin-count (continued)  
Pin Number  
Lowest Priority <-- --> Highest  
64-QFP/  
LQFP  
44-LQFP  
32-LQFP  
Port Pin  
Alt 1  
Alt 2  
Alt 3  
Alt 4  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
PTF6  
PTF5  
PTF4  
PTB3  
PTB2  
PTB1  
PTB0  
PTF3  
PTF2  
PTA7  
PTA6  
PTE4  
ADC0_SE14  
ADC0_SE13  
ADC0_SE12  
KBI0_P7  
SPI0_MOSI  
SPI0_SCK  
UART0_TX  
UART0_RX  
FTM0_CH1  
ADC0_SE7  
KBI0_P6  
FTM0_CH0  
ADC0_SE6  
KBI0_P5  
ADC0_SE5  
KBI0_P4  
ADC0_SE4  
FTM2_FLT2  
FTM2_FLT1  
ACMP1_IN1  
ADC0_SE3  
ACMP1_IN0  
ADC0_SE2  
VSS  
VDD  
PTF1  
PTF0  
PTD4  
PTD3  
PTD2  
PTA34  
PTA24  
PTA1  
PTA0  
PTC7  
PTC6  
PTE3  
PTE2  
PTG3  
PTG2  
PTG1  
PTG0  
PTE11  
PTE01  
PTC5  
PTC4  
PTA5  
PTA4  
KBI1_P4  
KBI1_P3  
KBI1_P2  
KBI0_P3  
KBI0_P2  
KBI0_P1  
KBI0_P0  
SPI1_PCS0  
SPI1_MISO  
UART0_TX  
UART0_RX  
FTM0_CH1  
FTM0_CH0  
UART1_TX  
UART1_RX  
SPI0_PCS0  
SPI0_MISO  
I2C0_SCL  
I2C0_SDA  
ACMP0_IN1  
ADC0_SE1  
ACMP0_IN0  
ADC0_SE0  
SPI0_MOSI  
SPI0_SCK  
FTM1_CH1  
FTM1_CH0  
FTM0_CLK  
ACMP0_OUT  
FTM1_CLK  
RTCO  
SWD_CLK  
RESET  
SWD_DIO  
RTCO  
IRQ  
ACMP0_IN2  
1. This is a high-current drive pin when operated as output.  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
NXP Semiconductors  
33  
Pinout  
2. VREFH and VDDA are internally connected.  
3. VSSA and VSS are internally connected.  
4. This is a true open-drain pin when operated as output.  
Note  
When an alternative function is first enabled, it is possible to  
get a spurious edge to the module. User software must clear any  
associated flags before interrupts are enabled. Table 19  
illustrates the priority if multiple modules are enabled. The  
highest priority module will have control over the pin. Selecting  
a higher priority pin function with a lower priority function  
already enabled can cause spurious edges to the lower priority  
module. Disable all modules that share a pin before enabling  
another module.  
8.2 Device pin assignment  
2
2
1
1
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PTA2  
PTA3  
PTD1  
PTD0  
PTH7  
PTH6  
3
PTD2  
PTD3  
PTD4  
PTF0  
PTF1  
VDD  
4
PTE7  
5
6
PTH2  
VDD  
7
8
VDDA/VREFH  
VREFL  
9
VSS  
VSSA/VSS  
10  
11  
12  
13  
14  
15  
16  
PTE4  
PTA6  
PTA7  
PTF2  
PTF3  
PTB0  
PTB1  
PTB7  
PTB6  
VSS  
1
PTH1  
1
PTH0  
PTE6  
Pins in bold are not available on less pin-count packages.  
1. High source/sink current pins  
2. True open drain pins  
Figure 21. 64-pin QFP/LQFP packages  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
34  
NXP Semiconductors  
Revision history  
2
1
1
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
1
2
PTA2  
PTD1  
PTD0  
PTA32  
PTD2  
PTD3  
PTD4  
VDD  
3
PTE7  
4
PTH2  
5
VDD  
VDDA/VREFH  
6
7
VREFL  
VSS  
VSSA/VSS  
8
PTA6  
PTA7  
PTB0  
PTB1  
9
PTB7  
PTB6  
10  
11  
VSS  
Pins in bold are not available on less pin-count packages.  
1. High source/sink current pins  
2. True open drain pins  
Figure 22. 44-pin LQFP package  
1
2
PTD1  
PTD0  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
PTA2  
1
PTA32  
PTD2  
PTD3  
PTA6  
PTA7  
PTB0  
PTB1  
VDD  
VDDA/VREFH  
VREFL  
VSSA/VSS  
PTB7  
PTB6  
1. High source/sink current pins  
2. True open drain pins  
Figure 23. 32-pin LQFP package  
9 Revision history  
The following table provides a revision history for this document.  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
NXP Semiconductors  
35  
Revision history  
Table 20. Revision history  
Rev. No.  
Date  
Substantial Changes  
3
4
07/2013  
10/2014  
Initial public release.  
• Updated all the VDDAD to VDDA, VSSAD to VSSA  
• Updated the features of OSC, ICS, UART, KBI and ADC in the front  
page  
• Updated ILAT and VCDM in the ESD handling ratings  
• Added VIN and removed VDIO, VAIO in the Voltage and current  
operating ratings  
• Updated DC characteristics  
• Added the item of ACMP adder to Stop and a note to the Max. in  
Supply current characteristics  
• Added EMC radiated emissions operating behaviors  
• Added fSys and a note to tIHIL in the Control timing  
• Added a new section of Thermal operating requirements  
• Updated J1, J10 and J11 in the SWD electricals  
• Updated External oscillator (OSC) and ICS characteristics  
• Added reference potential and a note to the ETUE and EZS in ADC  
characteristics  
• Updated SPI switching specifications  
5
6
07/2016  
01/2019  
• Updated the Typical value of ETUE in 12-bit mode and added a note  
to the 12-bit mode of ETUE and INL in the ADC characteristics.  
• Added a footnote of "Max power suppply ramp rate is 500 V/ms." to  
Operating voltage in the DC characteristics.  
• Added a footnote to the Δfint_ft in the External oscillator (OSC) and  
ICS characteristics  
KE02 Sub-Family Data Sheet, Rev. 6, 01/2019  
36  
NXP Semiconductors  
Information in this document is provided solely to enable system and software implementers to use  
NXP products. There are no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits based on the information in this document. NXP reserves the right to  
make changes without further notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any  
particular purpose, nor does NXP assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets  
and/or specifications can and do vary in different applications, and actual performance may vary over  
time. All operating parameters, including "typicals," must be validated for each customer application  
by customer's technical experts. NXP does not convey any license under its patent rights nor the  
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to unidentified  
vulnerabilities. Customers are responsible for the design and operation of their applications and  
products to reduce the effect of these vulnerabilities on customer's applications and products, and  
NXP accepts no liability for any vulnerability that is discovered. Customers should implement  
appropriate design and operating safeguards to minimize the risks associated with their applications  
and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE  
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,  
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C5, CodeTEST, CodeWarrior,  
ColdFire, ColdFire+, CWare, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,  
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,  
the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,  
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS  
are trademarks of NXP B.V. All other product or service names are the property of their respective  
owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,  
CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,  
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,  
ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its  
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of  
patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered  
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the  
Power and Power.org logos and related marks are trademarks and service marks licensed by  
Power.org.  
©2013-2019 NXP B.V.  
Document Number MKE02P64M20SF0  
Revision 6, 01/2019  

相关型号:

935314887528

RISC Microcontroller
NXP

935314887557

RISC Microcontroller
NXP

935314896557

Microcontroller
NXP

935314904518

Microprocessor Circuit
NXP

935314904557

Microprocessor Circuit
NXP

935314921557

Microcontroller
NXP

935314935557

Multifunction Peripheral
NXP

935314938528

RISC Microcontroller
NXP

935314995528

Microcontroller
NXP

935314995557

Microcontroller
NXP

935314997128

RF Power Field-Effect Transistor
NXP

935314997178

RF Power Field-Effect Transistor
NXP