935318733528 [NXP]

RISC Microcontroller;
935318733528
型号: 935318733528
厂家: NXP    NXP
描述:

RISC Microcontroller

微控制器 外围集成电路
文件: 总114页 (文件大小:909K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
Data Sheet: Technical Data  
Document Number: MPC5607B  
Rev. 9, 11/2017  
MPC5607B  
MPC5607B Microcontroller  
Data Sheet  
144 LQFP (20 mm x 20 mm)  
208 MAPBGA (17 mm x 17 mm)  
100 LQFP (14 mm x 14mm)  
LQFP176 (24 mm x 24 mm)  
Features  
Up to 10 serial communication interface (LINFlex)  
modules  
Up to 6 enhanced full CAN (FlexCAN) modules with  
configurable buffers  
Single issue, 32-bit CPU core complex (e200z0h)  
Compliant with the Power Architecture® technology  
embedded category  
1 inter-integrated circuit (I2C) interface module  
Up to 149 configurable general purpose pins supporting  
input and output operations (package dependent)  
Real-Time Counter (RTC)  
Clock source from internal 128 kHz or 16 MHz oscillator  
supporting autonomous wakeup with 1 ms resolution with  
maximum timeout of 2 seconds  
Optional support for RTC with clock source from external  
32 kHz crystal oscillator, supporting wakeup with 1 sec  
resolution and maximum timeout of 1 hour  
Up to 8 periodic interrupt timers (PIT) with 32-bit counter  
resolution  
Nexus development interface (NDI) per IEEE-ISTO  
5001-2003 Class Two Plus  
Device/board boundary scan testing supported per Joint  
Test Action Group (JTAG) of IEEE (IEEE 1149.1)  
On-chip voltage regulator (VREG) for regulation of  
input supply for all internal levels  
Enhanced instruction set allowing variable length  
encoding (VLE) for code size footprint reduction.  
With the optional encoding of mixed 16-bit and  
32-bit instructions, it is possible to achieve  
significant code size footprint reduction.  
Up to 1.5 MB on-chip code flash memory supported with  
the flash memory controller  
64 (4 × 16) KB on-chip data flash memory with ECC  
Up to 96 KB on-chip SRAM  
Memory protection unit (MPU) with 8 region descriptors  
and 32-byte region granularity on certain family members  
(Refer to Table 1 for details.)  
Interrupt controller (INTC) capable of handling 204  
selectable-priority interrupt sources  
Frequency modulated phase-locked loop (FMPLL)  
Crossbar switch architecture for concurrent access to  
peripherals, Flash, or RAM from multiple bus masters  
16-channel eDMA controller with multiple transfer  
request sources using DMA multiplexer  
Boot assist module (BAM) supports internal Flash  
programming via a serial link (CAN or SCI)  
Timer supports I/O channels providing a range of 16-bit  
input capture, output compare, and pulse width  
modulation functions (eMIOS)  
2 analog-to-digital converters (ADC): one 10-bit and one  
12-bit  
Cross Trigger Unit to enable synchronization of ADC  
conversions with a timer event from the eMIOS or PIT  
Up to 6 serial peripheral interface (DSPI) modules  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
Table of Contents  
1
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
4.9.1 Program/erase characteristics . . . . . . . . . . . . . 63  
4.9.2 Flash power supply DC characteristics . . . . . . 64  
4.9.3 Start-up/Switch-off timings . . . . . . . . . . . . . . . . 65  
4.10 Electromagnetic compatibility (EMC) characteristics. . 65  
4.10.1 Designing hardened software to avoid noise  
problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Package pinouts and signal descriptions . . . . . . . . . . . . . . . . .8  
3.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2
3
3.2  
. . . . . . . . . . . . Pad configuration during reset phases11  
3.3 Pad configuration during standby mode exit . . . . . . . . .12  
3.4 Voltage supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.5 Pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.6 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.7 Functional port pins . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.8 Nexus 2+ pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
4.1 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . .35  
4.2 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
4.2.1 NVUSRO[PAD3V5V] field description . . . . . . . .35  
4.2.2 NVUSRO[OSCILLATOR_MARGIN] field description  
36  
4.2.3 NVUSRO[WATCHDOG_EN] field description . .36  
4.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . .36  
4.4 Recommended operating conditions . . . . . . . . . . . . . .37  
4.5 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . .40  
4.5.1 External ballast resistor recommendations . . . .40  
4.5.2 Package thermal characteristics . . . . . . . . . . . .40  
4.5.3 Power considerations. . . . . . . . . . . . . . . . . . . . .41  
4.6 I/O pad electrical characteristics. . . . . . . . . . . . . . . . . .42  
4.6.1 I/O pad types . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
4.6.2 I/O input DC characteristics. . . . . . . . . . . . . . . .42  
4.6.3 I/O output DC characteristics. . . . . . . . . . . . . . .43  
4.6.4 Output pin transition times. . . . . . . . . . . . . . . . .46  
4.6.5 I/O pad current specification . . . . . . . . . . . . . . .47  
4.6.6 RESET electrical characteristics . . . . . . . . . . . .54  
4.7 Power management electrical characteristics. . . . . . . .57  
4.7.1 Voltage regulator electrical characteristics . . . .57  
4.7.2 Low voltage detector electrical characteristics .59  
4.8 Power consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
4.9 Flash memory electrical characteristics . . . . . . . . . . . .63  
4.10.2 Electromagnetic interference (EMI) . . . . . . . . . 66  
4.10.3 Absolute maximum ratings (electrical sensitivity)66  
4.11 Fast external crystal oscillator (4 to 16 MHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
4.12 Slow external crystal oscillator (32 kHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
4.13 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . 72  
4.14 Fast internal RC oscillator (16 MHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
4.15 Slow internal RC oscillator (128 kHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
4.16 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . 75  
4.16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
4.16.2 Input impedance and ADC accuracy . . . . . . . . 76  
4.16.3 ADC electrical characteristics . . . . . . . . . . . . . 81  
4.17 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
4.17.1 Current consumption . . . . . . . . . . . . . . . . . . . . 86  
4.17.2 DSPI characteristics. . . . . . . . . . . . . . . . . . . . . 88  
4.17.3 Nexus characteristics . . . . . . . . . . . . . . . . . . . . 94  
4.17.4 JTAG characteristics. . . . . . . . . . . . . . . . . . . . . 95  
Package characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
5.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . 97  
5.1.1 176 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
5.1.2 144 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
5.1.3 100 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
5.1.4 208 MAPBGA. . . . . . . . . . . . . . . . . . . . . . . . . 105  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
4
5
6
7
MPC5607B Microcontroller Data Sheet, Rev. 9  
2
NXP Semiconductors  
Introduction  
1
Introduction  
This document describes the features of the family and options available within the family members, and highlights important  
electrical and physical characteristics of the device.  
1.1  
Description  
This family of 32-bit system-on-chip (SoC) microcontrollers is the latest achievement in integrated automotive application  
controllers. It belongs to an expanding family of automotive-focused products designed to address the next wave of body  
electronics applications within the vehicle.  
The advanced and cost-efficient e200z0h host processor core of this automotive controller family complies with the  
Power Architecture technology and only implements the VLE (variable-length encoding) APU (Auxiliary Processor Unit),  
providing improved code density. It operates at speeds of up to 64 MHz and offers high performance processing optimized for  
low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and  
is supported with software drivers, operating systems and configuration code to assist with users implementations.  
1
Table 1. MPC5607B family comparison  
Feature  
MPC5605B  
MPC5606B  
e200z0h  
Up to 64 MHz  
1 MB  
64 (4 × 16) KB  
80 KB  
MPC5607B  
CPU  
Execution speed2  
Code flash memory  
Data flash memory  
SRAM  
768 KB  
64 KB  
1.5 MB  
96 KB  
MPU  
8-entry  
16 ch  
Yes  
eDMA  
10-bit ADC  
dedicated3  
shared with 12-bit ADC  
12-bit ADC  
7 ch  
15 ch  
29 ch  
15 ch  
19 ch  
Yes  
29 ch  
dedicated4  
shared with 10-bit ADC  
Total timer I/O5 eMIOS  
5 ch  
19 ch  
37 ch,  
16-bit  
64 ch, 16-bit  
Counter / OPWM / ICOC6  
10 ch  
7 ch  
O(I)PWM / OPWFMB /  
OPWMCB / ICOC7  
O(I)PWM / ICOC8  
OPWM / ICOC9  
SCI (LINFlex)  
SPI (DSPI)  
7 ch  
13 ch  
4
14 ch  
33 ch  
8
10  
3
5
6
5
6
1
6
CAN (FlexCAN)  
I2C  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
3
Block diagram  
1
Table 1. MPC5607B family comparison (continued)  
Feature  
MPC5605B  
MPC5606B  
Yes  
MPC5607B  
32 KHz oscillator  
GPIO10  
77  
121  
149  
121  
149  
Debug  
JTAG  
N2+  
Package  
100  
LQFP  
144  
LQFP  
176  
LQFP  
144  
LQFP  
176  
LQFP  
176  
LQFP  
208 MAP  
BGA11  
1
2
3
4
5
6
Feature set dependent on selected peripheral multiplexing; table shows example  
Based on 125 °C ambient operating temperature  
Not shared with 12-bit ADC, but possibly shared with other alternate functions  
Not shared with 10-bit ADC, but possibly shared with other alternate functions  
See the eMIOS section of the chip reference manual for information on the channel configuration and functions.  
Each channel supports a range of modes including Modulus counters, PWM generation, Input Capture, Output  
Compare.  
7
8
9
Each channel supports a range of modes including PWM generation with dead time, Input Capture, Output  
Compare.  
Each channel supports a range of modes including PWM generation, Input Capture, Output Compare, Period and  
Pulse width measurement.  
Each channel supports a range of modes including PWM generation, Input Capture, and Output Compare.  
10 Maximum I/O count based on multiplexing with peripherals  
11 208 MAPBGA available only as development package for Nexus2+  
2
Block diagram  
Figure 1 shows a top-level block diagram of the MPC5607B.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
4
NXP Semiconductors  
Block diagram  
SRAM  
96 KB  
Data Flash  
64 KB  
Code Flash  
1.5 MB  
eDMA  
JTAG  
JTAG Port  
Nexus Port  
(Master)  
Instructions  
SRAM  
Flash  
Controller  
e200z0h  
Nexus 2+  
(Master)  
Nexus  
Controller  
Data  
NMI  
(Slave)  
(Master)  
(Slave)  
SIUL  
Voltage  
Regulator  
Interrupt  
request with  
wakeup  
functionality  
Interrupt requests  
from peripheral  
blocks  
(Slave)  
NMI  
MPU  
Registers  
INTC  
WKPU  
BAM  
Clocks  
CMU  
FMPLL  
RTC  
MC_RGM MC_CGM MC_ME MC_PCU  
SSCM  
STM  
PIT  
SWT  
ECSM  
Peripheral Bridge  
SIUL  
64 ch  
eMIOS  
10 ×  
LINFlex  
6 ×  
DSPI  
6 ×  
FlexCAN  
19 ch 10-bit/12-bit 29 ch 10-bit  
ADC ADC  
2
CTU  
I C  
Reset Control  
Interrupt  
Request  
External  
Interrupt  
Request  
5 ch 12-bit  
ADC  
IMUX  
GPIO &  
Pad Control  
. . .  
. . .  
. . .  
. . .  
. . .  
I/O  
Legend:  
ADC  
BAM  
Analog-to-Digital Converter  
Boot Assist Module  
MC_CGM Clock Generation Module  
MC_ME Mode Entry Module  
CMU  
CTU  
Clock Monitor Unit  
Cross Triggering Unit  
MC_PCU Power Control Unit  
MC_RGM Reset Generation Module  
DSPI  
ECSM  
eDMA  
eMIOS  
Flash  
Deserial Serial Peripheral Interface  
Error Correction Status Module  
Enhanced Direct Memory Access  
Enhanced Modular Input Output System  
Flash memory  
MPU  
NMI  
PIT  
Memory Protection Unit  
Non-Maskable Interrupt  
Periodic Interrupt Timer  
Real-Time Clock  
System Integration Unit Lite  
Static Random-Access Memory  
System Status Configuration Module  
System Timer Module  
Software Watchdog Timer  
Voltage regulator  
Wakeup Unit  
Crossbar switch  
RTC  
SIUL  
SRAM  
SSCM  
STM  
SWT  
VREG  
WKPU  
XBAR  
FlexCAN Controller Area Network  
FMPLL  
GPIO  
Frequency-Modulated Phase-Locked Loop  
General-purpose input/output  
Inter-Integrated Circuit bus  
Internal Multiplexer  
Interrupt Controller  
JTAG controller  
2
I C  
IMUX  
INTC  
JTAG  
LINFlex  
Serial Communication Interface (LIN support)  
Figure 1. MPC5607B block diagram  
Table 2 summarizes the functions of the blocks present on the MPC5607B.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
5
Block diagram  
Table 2. MPC5607B series block summary  
Function  
Block  
Analog-to-digital converter (ADC) Converts analog voltages to digital values  
Boot assist module (BAM)  
A block of read-only memory containing VLE code which is executed according  
to the boot mode of the device  
Clock generation module  
(MC_CGM)  
Provides logic and control required for the generation of system and peripheral  
clocks  
Clock monitor unit (CMU)  
Cross triggering unit (CTU)  
Monitors clock source (internal and external) integrity  
Enables synchronization of ADC conversions with a timer event from the eMIOS  
or from the PIT  
Crossbar switch (XBAR)  
Supports simultaneous connections between two master ports and three slave  
ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus  
width.  
Deserial serial peripheral interface Provides a synchronous serial interface for communication with external devices  
(DSPI)  
Enhanced direct memory access Performs complex data transfers with minimal intervention from a host processor  
(eDMA)  
via “n” programmable channels  
Enhanced modular input output  
system (eMIOS)  
Provides the functionality to generate or measure events  
Error correction status module  
(ECSM)  
Provides a myriad of miscellaneous control functions for the device including  
program-visible information about configuration and revision levels, a reset status  
register, wakeup control for exiting sleep modes, and optional features such as  
information on memory errors reported by error-correcting codes  
Flash memory  
Provides non-volatile storage for program code, constants and variables  
FlexCAN (controller area network) Supports the standard CAN communications protocol  
Frequency-modulated  
Generates high-speed system clocks and supports programmable frequency  
phase-locked loop (FMPLL)  
modulation  
Inter-integrated circuit (I2C) bus  
Two-wire bidirectional serial bus that provides a simple and efficient method of  
data exchange between devices  
Internal multiplexer (IMUX) SIU  
subblock  
Allows flexible mapping of peripheral interface on the different pins of the device  
Interrupt controller (INTC)  
JTAG controller (JTAGC)  
Provides priority-based preemptive scheduling of interrupt requests  
Provides the means to test chip functionality and connectivity while remaining  
transparent to system logic when not in test mode  
LINFlex controller  
Manages a high number of LIN (Local Interconnect Network protocol) messages  
efficiently with a minimum of CPU load  
Memory protection unit (MPU)  
Mode entry module (MC_ME)  
Provides hardware access control for all memory references generated in a  
device  
Provides a mechanism for controlling the device operational mode and  
modetransition sequences in all functional states; also manages the power  
control unit, reset generation module and clock generation module, and holds the  
configuration, control and status registers accessible for applications  
Non-maskable interrupt (NMI)  
Handles external events that must produce an immediate response, such as  
power down detection  
MPC5607B Microcontroller Data Sheet, Rev. 9  
6
NXP Semiconductors  
Block diagram  
Table 2. MPC5607B series block summary (continued)  
Function  
Block  
Periodic interrupt timer (PIT)  
Power control unit (MC_PCU)  
Produces periodic interrupts and triggers  
Reduces the overall power consumption by disconnecting parts of the device  
from the power supply via a power switching device; device components are  
grouped into sections called “power domains” which are controlled by the PCU  
Real-time counter (RTC)  
A free running counter used for time keeping applications, the RTC can be  
configured to generate an interrupt at a predefined interval independent of the  
mode of operation (run mode or low-power mode)  
Reset generation module  
(MC_RGM)  
Centralizes reset sources and manages the device reset sequence of the device  
Static random-access memory  
(SRAM)  
Provides storage for program code, constants, and variables  
System integration unit lite (SIUL) Provides control over all the electrical pad controls and up 32 ports with 16 bits  
of bidirectional, general-purpose input and output signals and supports up to 32  
external interrupts with trigger event configuration  
System status and configuration Provides system configuration and status data (such as memory size and status,  
module (SSCM)  
device mode and security status), device identification data, debug status port  
enable and selection, and bus and peripheral abort enable/disable  
System timer module (STM)  
Provides a set of output compare events to support AUTOSAR (Automotive Open  
System Architecture) and operating system tasks  
Software watchdog timer (SWT) Provides protection from runaway code  
Wakeup unit (WKPU) The wakeup unit supports up to 27 external sources that can generate interrupts  
or wakeup events, of which 1 can cause non-maskable interrupt requests or  
wakeup events.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
7
Package pinouts and signal descriptions  
3
Package pinouts and signal descriptions  
3.1  
Package pinouts  
The available LQFP pinouts and the ballmap are provided in the following figures. For pin signal descriptions, please see  
Table 5.  
Figure 2 shows the MPC5607B in the 176 LQFP package.  
PB[3]  
PC[9]  
PC[14]  
PC[15]  
PJ[4]  
VDD_HV  
VSS_HV  
PH[15]  
PH[13]  
PH[14]  
PI[6]  
PI[7]  
PG[5]  
PG[4]  
PG[3]  
PG[2]  
PA[2]  
PE[0]  
PA[1]  
PE[1]  
PE[8]  
PE[9]  
PE[10]  
1
2
3
4
5
6
7
8
PA[11]  
PA[10]  
PA[9]  
PA[8]  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
PA[7]  
PE[13]  
PF[14]  
PF[15]  
VDD_HV  
VSS_HV  
PG[0]  
PG[1]  
PH[3]  
PH[2]  
PH[1]  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
PH[0]  
PG[12]  
PG[13]  
PA[3]  
PI[13]  
PI[12]  
PI[11]  
PI[10]  
PI[9]  
PI[8]  
PB[15]  
PD[15]  
PB[14]  
PD[14]  
PB[13]  
PD[13]  
PB[12]  
PD[12]  
VDD_HV_ADC1  
VSS_HV_ADC1  
PB[11]  
PD[11]  
PD[10]  
PD[9]  
176 LQFP  
Top view  
PA[0]  
PE[11]  
VSS_HV  
VDD_HV  
VSS_HV  
RESET  
VSS_LV  
VDD_LV  
VDD_BV  
PG[9]  
PG[8]  
PC[11]  
PC[10]  
PG[7]  
PG[6]  
PB[0]  
PB[1]  
PF[9]  
PF[8]  
PF[12]  
98  
97  
96  
95  
94  
93  
92  
91  
PB[7]  
PB[6]  
PB[5]  
VDD_HV_ADC0  
VSS_HV_ADC0  
90  
89  
PC[6]  
Figure 2. 176 LQFP pin configuration  
MPC5607B Microcontroller Data Sheet, Rev. 9  
8
NXP Semiconductors  
Package pinouts and signal descriptions  
Figure 3 shows the MPC5607B in the 144 LQFP package.  
PB[3]  
PC[9]  
PC[14]  
PC[15]  
PG[5]  
PG[4]  
PG[3]  
PG[2]  
PA[2]  
PE[0]  
PA[1]  
PE[1]  
PE[8]  
PE[9]  
PE[10]  
PA[0]  
PE[11]  
VSS_HV  
VDD_HV  
VSS_HV  
RESET  
VSS_LV  
VDD_LV  
VDD_BV  
PG[9]  
1
2
3
4
5
6
7
8
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
PA[11]  
PA[10]  
PA[9]  
PA[8]  
PA[7]  
PE[13]  
PF[14]  
PF[15]  
VDD_HV  
VSS_HV  
PG[0]  
PG[1]  
PH[3]  
PH[2]  
PH[1]  
PH[0]  
PG[12]  
PG[13]  
PA[3]  
PB[15]  
PD[15]  
PB[14]  
PD[14]  
PB[13]  
PD[13]  
PB[12]  
VDD_HV_ADC1  
VSS_HV_ADC1  
PD[11]  
PD[10]  
PD[9]  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
144 LQFP  
Top view  
PG[8]  
PC[11]  
PC[10]  
PG[7]  
PG[6]  
PB[0]  
PB[1]  
PF[9]  
PF[8]  
PF[12]  
PC[6]  
PB[7]  
PB[6]  
PB[5]  
VDD_HV_ADC0  
VSS_HV_ADC0  
Figure 3. 144 LQFP pin configuration  
Figure 4 shows the MPC5607B in the 100 LQFP package.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
9
Package pinouts and signal descriptions  
PB[3]  
PC[9]  
PC[14]  
PC[15]  
PA[2]  
PE[0]  
PA[1]  
PE[1]  
PE[8]  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PA[11]  
PA[10]  
PA[9]  
PA[8]  
PA[7]  
VDD_HV  
VSS_HV  
PA[3]  
PB[15]  
PD[15]  
PB[14]  
PD[14]  
PB[13]  
PD[13]  
9
PE[9]  
PE[10]  
PA[0]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
100 LQFP  
Top view  
PE[11]  
VSS_HV  
VDD_HV  
VSS_HV  
RESET  
VSS_LV  
VDD_LV  
VDD_BV  
PC[11]  
PC[10]  
PB[0]  
PB[12]  
VDD_HV_ADC1  
VSS_HV_ADC1  
PD[11]  
PD[10]  
PD[9]  
PB[7]  
PB[6]  
PB[5]  
VDD_HV_ADC0  
VSS_HV_ADC0  
PB[1]  
PC[6]  
Figure 4. 100 LQFP pin configuration  
Figure 5 shows the MPC5607B in the 208 MAPBGA package.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
10  
NXP Semiconductors  
Package pinouts and signal descriptions  
1
PC[8]  
PC[9]  
PC[14]  
PH[14]  
PG[4]  
PE[0]  
PE[9]  
VSS_HV  
RESET  
EVTI  
2
3
4
5
6
7
8
9
10  
PI[1]  
PI[2]  
PI[3]  
NC  
11  
12  
13  
PE[15]  
PG[15]  
PE[14]  
PG[10]  
PG[1]  
14  
15  
NC  
16  
NC  
PC[13]  
PB[2]  
VDD_HV  
PI[6]  
PH[15]  
PH[13]  
PB[3]  
PC[15]  
PG[3]  
PA[1]  
PJ[4]  
PC[12]  
PE[7]  
PI[7]  
PG[2]  
PE[1]  
PA[0]  
NC  
PH[8]  
PE[6]  
PH[7]  
PH[6]  
PH[4]  
PH[5]  
PE[5]  
PE[4]  
PC[5]  
PC[4]  
PE[3]  
PE[2]  
PC[0]  
PH[9]  
VSS_LV  
PI[0]  
PC[2]  
PC[3]  
PA[5]  
PA[6]  
PI[4]  
PH[11]  
PG[14]  
PE[12]  
PF[14]  
PG[0]  
PH[1]  
A
B
C
D
E
F
A
B
C
D
E
F
PH[10]  
PC[1]  
PG[11]  
PI[5]  
PA[11]  
PA[9]  
PE[13]  
PA[10]  
PA[8]  
PA[7]  
VDD_LV VDD_HV  
PH[12]  
PG[5]  
PA[2]  
PF[15] VDD_HV  
PH[0]  
PH[3]  
PI[13]  
MDO0  
PI[10]  
PA[3]  
PH[2]  
MSEO  
MDO1  
PI[11]  
PG[13]  
PB[14]  
PB[12]  
PD[11]  
PB[7]  
PB[5]  
PB[4]  
16  
PE[8]  
PE[10]  
VSS_HV VSS_HV VSS_HV VSS_HV  
VSS_HV VSS_HV VSS_HV VSS_HV  
VSS_HV VSS_HV VSS_HV VSS_HV  
VSS_HV VSS_HV VSS_HV VSS_HV  
VDD_HV  
MDO3  
PI[8]  
PI[12]  
MDO2  
PI[9]  
G
H
J
G
H
J
PE[11] VDD_HV  
VSS_LV  
NC  
NC  
NC  
VDD_HV  
_ADC1  
VDD_BV VDD_LV  
PG[12]  
PD[15]  
PD[13]  
PD[10]  
K
L
K
L
PG[9]  
PG[7]  
PB[1]  
PF[8]  
PF[12]  
NC  
PG[8]  
PG[6]  
PF[9]  
PJ[3]  
PC[6]  
NC  
NC  
PC[10]  
PB[0]  
PC[7]  
PF[10]  
NC  
EVTO  
PC[11]  
VDD_HV  
PJ[2]  
PB[15]  
PB[13]  
PB[11]  
PD[3]  
PD[4]  
PD[5]  
13  
PD[14]  
PD[12]  
PD[9]  
PB[6]  
M
N
P
R
T
M
N
P
R
T
VSS_HV  
_ADC1  
PJ[0]  
PJ[1]  
PA[4]  
VSS_LV  
VDD_LV  
PA[13]  
PA[12]  
7
EXTAL VDD_HV  
PF[0]  
PF[1]  
PF[3]  
PF[2]  
10  
PF[4]  
PF[5]  
PF[7]  
PF[6]  
11  
VDD_HV  
_ADC0  
PA[14]  
XTAL  
PI[14]  
PI[15]  
8
PB[10]  
PD[0]  
PD[2]  
PD[1]  
12  
VSS_HV  
_ADC0  
PF[11] VDD_HV PA[15]  
XTAL32  
PD[7]  
PD[6]  
EXTAL  
32  
MCKO  
NC  
PF[13]  
PD[8]  
1
2
3
4
5
6
9
14  
15  
NC  
NOTE: The 208 MAPBGA is available only as development package for Nexus 2+.  
= Not connected  
Figure 5. 208 MAPBGA configuration  
3.2  
Pad configuration during reset phases  
All pads have a fixed configuration under reset.  
During the power-up phase, all pads are forced to tristate.  
After power-up phase, all pads are tristate with the following exceptions:  
PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from flash.  
PA[8], PC[0] and PH[9:10] are in input weak pull-up when out of reset.  
RESET pad is driven low by the device till 40 FIRC clock cycles after phase2 completion.  
Minimum phase3 duration is 40 FIRC cycles.  
Nexus output pads (MDO[n], MCKO, EVTO, MSEO) are forced to output.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
11  
Package pinouts and signal descriptions  
3.3  
Pad configuration during standby mode exit  
Pad configuration (input buffer enable, pull enable) for low-power wakeup pads is controlled by both the  
1
SIUL and WKPU modules. During standby exit, all low power pads PA[0,1,2,4,15], PB[1,3,8,9,10] ,  
2
2
3
PC[7,9,11], PD[0,1], PE[0,9,11], PF[9,11,13] , PG[3,5,7,9] , PI[1,3] are configured according to their  
respective configuration done in the WKPU module. All other pads will have the same configuration as  
expected after a reset.  
The TDO pad has been moved into the STANDBY domain in order to allow low-power debug  
handshaking in STANDBY mode. However, no pull-resistor is active on the TDO pad while in STANDBY  
mode. At this time the pad is configured as an input. When no debugger is connected the TDO pad is  
floating causing additional current consumption.  
To avoid the extra consumption TDO must be connected. An external pull-up resistor in the range of  
47–100 kOhms should be added between the TDO pin and VDD. Only if the TDO pin is used as an  
application pin and a pull-up cannot be used should a pull-down resistor with the same value be used  
instead between the TDO pin and GND.  
3.4  
Voltage supply pins  
Voltage supply pins are used to provide power to the device. Three dedicated VDD_LV/VSS_LV supply  
pairs are used for 1.2 V regulator stabilization.  
Table 3. Voltage supply pin descriptions  
Pin number  
Port pin  
Function  
100 LQFP  
144 LQFP  
176 LQFP 208 MAPBGA  
VDD_HV  
Digital supply voltage  
15, 37, 70, 84 19, 51, 100, 6, 27, 59, 85, C2, D9, E16,  
123  
124, 151  
G13, H3, N4,  
N9, R5  
VSS_HV  
Digital ground  
14, 16, 35, 69, 18, 20, 49, 99, 7, 26, 28, 57, G7, G8, G9,  
83  
122  
86, 123, 150 G10, H7, H8,  
H9, H10, J7,  
J8, J9, J10,  
K7, K8, K9,  
K10  
VDD_LV  
VSS_LV  
VDD_BV  
1.2 V decoupling pins. Decoupling  
capacitor must be connected  
between these pins and the nearest  
VSS_LV pin.1  
19, 32, 85  
18, 33, 86  
20  
23, 46, 124  
22, 47, 125  
24  
31, 54, 152  
30, 55, 153  
32  
D8, K4, P7  
C8, J2, N7  
K3  
1.2 V decoupling pins. Decoupling  
capacitor must be connected  
between these pins and the nearest  
VDD_LV pin.1  
Internal regulator supply voltage  
1. PB[8, 9] ports have wakeup functionality in all modes except STANDBY.  
2. PF[9,11,13], PG[3,5,7,9], PI[1,3] are not available in the 100-pin LQFP.  
3. PI[1,3] are not available in the 144-pin LQFP.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
12  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 3. Voltage supply pin descriptions (continued)  
Pin number  
Port pin  
Function  
100 LQFP  
144 LQFP  
176 LQFP 208 MAPBGA  
VSS_HV_ADC0 Reference ground and analog ground  
for the A/D converter 0 (10-bit)  
51  
73  
74  
81  
82  
89  
90  
98  
99  
R15  
P14  
N12  
K13  
VDD_HV_ADC0 Reference voltage and analog supply  
for the A/D converter 0 (10-bit)  
52  
59  
60  
VSS_HV_ADC1 Reference ground and analog ground  
for the A/D converter 1 (12-bit)  
VDD_HV_ADC1 Reference voltage and analog supply  
for the A/D converter 1 (12-bit)  
1
A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable  
voltage (see the recommended operating conditions in the device data sheet).  
3.5  
Pad types  
In the device the following types of pads are available for system pins and functional port pins:  
1
S = Slow  
1 2  
M = Medium  
F = Fast  
1 2  
1
I = Input only with analog feature  
J = Input/Output (‘S’ pad) with analog feature  
X = Oscillator  
3.6  
System pins  
The system pins are listed in Table 4.  
Table 4. System pin descriptions  
Pin number  
208  
MAP  
RESET  
configuration  
Port pin  
Function  
100  
144  
176  
LQFP  
LQFP  
LQFP  
BGA  
1
RESET BidirectionalresetwithSchmitt-Trigger I/O  
characteristics and noise filter.  
M
Input weak  
pull-up after  
RGM PHASE2  
and 40 FIRC  
cycles  
17  
21  
29  
J1  
1. See the I/O pad electrical characteristics in the chip data sheet for details.  
2. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium. The only  
exception is PC[1] which is in medium configuration by default (see the PCR.SRC description in the chip reference manual, Pad  
Configuration Registers (PCR0–PCR148)).  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
13  
Package pinouts and signal descriptions  
Table 4. System pin descriptions (continued)  
Pin number  
208  
MAP  
RESET  
configuration  
Port pin  
Function  
100  
144  
176  
LQFP  
LQFP  
LQFP  
BGA  
1
EXTAL Analog output of the oscillator  
amplifier circuit, when the oscillator is  
not in bypass mode.  
I/O  
X
X
Tristate  
Tristate  
36  
50  
58  
N8  
P8  
Analog input for the clock generator  
when the oscillator is in bypass mode.  
XTAL Analog input of the oscillator amplifier  
circuit. Needs to be grounded if  
I
34  
48  
56  
oscillator bypass mode is used.  
1
208 MAPBGA available only as development package for Nexus2+  
3.7  
Functional port pins  
The functional port pins are listed in Table 5.  
Table 5. Functional port pin descriptions  
Pin number  
208  
MAP  
Port pin  
PCR  
Function  
Peripheral  
100  
144  
176  
LQFP LQFP LQFP  
BGA  
4
Port A  
SIUL I/O  
PA[0]  
PA[1]  
PA[2]  
PCR[0] AF0  
GPIO[0]  
E0UC[0]  
CLKOUT  
E0UC[13]  
WKPU[19]5  
M
S
S
Tristate  
Tristate  
Tristate  
12  
7
16  
11  
9
24  
19  
17  
G4  
F3  
F2  
AF1  
AF2  
AF3  
eMIOS_0 I/O  
MC_CGM  
eMIOS_0 I/O  
O
WKPU  
I
PCR[1] AF0  
GPIO[1]  
E0UC[1]  
NMI6  
SIUL  
I/O  
AF1  
AF2  
AF3  
eMIOS_0 I/O  
WKPU  
WKPU  
I
I
WKPU[2]5  
PCR[2] AF0  
GPIO[2]  
E0UC[2]  
SIUL  
I/O  
5
AF1  
AF2  
AF3  
eMIOS_0 I/O  
ADC_0  
WKPU  
O
I
MA[2]  
WKPU[3]5  
MPC5607B Microcontroller Data Sheet, Rev. 9  
14  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
208  
MAP  
Port pin  
PCR  
Function  
Peripheral  
100  
144  
176  
LQFP LQFP LQFP  
BGA  
4
PA[3]  
PCR[3] AF0  
GPIO[3]  
E0UC[3]  
LIN5TX  
CS4_1  
EIRQ[0]  
ADC1_S[0]  
SIUL  
eMIOS_0 I/O  
LINFlex_5  
DSPI_1  
SIUL  
I/O  
J
Tristate  
Tristate  
68  
29  
90  
43  
114  
51  
K15  
N6  
AF1  
AF2  
AF3  
O
O
I
ADC_1  
I
PA[4]  
PCR[4] AF0  
GPIO[4]  
E0UC[4]  
CS0_1  
LIN5RX  
WKPU[9]5  
SIUL  
eMIOS_0 I/O  
I/O  
S
AF1  
AF2  
AF3  
I/O  
I
DSPI_1  
LINFlex_5  
WKPU  
I
PA[5]  
PA[6]  
PCR[5] AF0  
AF1  
GPIO[5]  
E0UC[5]  
LIN4TX  
SIUL  
eMIOS_0 I/O  
LINFlex_4  
I/O  
M
S
Tristate  
Tristate  
79  
80  
118  
119  
146  
147  
C11  
D11  
AF2  
AF3  
O
PCR[6] AF0  
GPIO[6]  
E0UC[6]  
CS1_1  
EIRQ[1]  
LIN4RX  
SIUL  
eMIOS_0 I/O  
DSPI_1  
SIUL  
I/O  
AF1  
AF2  
AF3  
O
I
LINFlex_4  
I
PA[7]  
PA[8]  
PCR[7] AF0  
GPIO[7]  
E0UC[7]  
LIN3TX  
EIRQ[2]  
ADC1_S[1]  
SIUL  
eMIOS_0 I/O  
LINFlex_3  
SIUL  
ADC_1  
I/O  
J
Tristate  
71  
72  
104  
105  
128  
129  
D16  
C16  
AF1  
AF2  
AF3  
O
I
I
PCR[8] AF0  
GPIO[8]  
E0UC[8]  
E0UC[14]  
EIRQ[3]  
ABS[0]  
LIN3RX  
SIUL  
eMIOS_0 I/O  
eMIOS_0 I/O  
SIUL  
BAM  
I/O  
S
Input,  
weak  
pull-up  
AF1  
AF2  
AF3  
I
I
I
N/A7  
LINFlex_3  
PA[9]  
PCR[9] AF0  
AF1  
GPIO[9]  
E0UC[9]  
CS2_1  
FAB  
SIUL  
eMIOS_0 I/O  
DSPI_1  
BAM  
I/O  
S
Pull-  
down  
73  
106  
130  
C15  
AF2  
O
I
AF3  
N/A7  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
15  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
208  
MAP  
Port pin  
PCR  
Function  
Peripheral  
100  
144  
176  
LQFP LQFP LQFP  
BGA  
4
PA[10] PCR[10] AF0  
GPIO[10]  
E0UC[10]  
SDA  
LIN2TX  
ADC1_S[2]  
SIUL  
I/O  
J
J
Tristate  
Tristate  
74  
75  
107  
108  
131  
132  
B16  
B15  
AF1  
AF2  
AF3  
eMIOS_0 I/O  
I2C_0  
LINFlex_2  
ADC_1  
I/O  
O
I
PA[11] PCR[11] AF0  
GPIO[11]  
E0UC[11]  
SCL  
SIUL  
I/O  
AF1  
AF2  
AF3  
eMIOS_0 I/O  
I2C_0  
I/O  
I
I
I
EIRQ[16]  
LIN2RX  
ADC1_S[3]  
SIUL  
LINFlex_2  
ADC_1  
PA[12] PCR[12] AF0  
GPIO[12]  
E0UC[28]  
CS3_1  
EIRQ[17]  
SIN_0  
SIUL  
eMIOS_0 I/O  
DSPI_1  
SIUL  
DSPI_0  
I/O  
S
Tristate  
31  
45  
53  
T7  
AF1  
AF2  
AF3  
O
I
I
PA[13] PCR[13] AF0  
GPIO[13]  
SOUT_0  
E0UC[29]  
SIUL  
DSPI_0  
eMIOS_0 I/O  
I/O  
O
M
M
Tristate  
Tristate  
30  
28  
44  
42  
52  
50  
R7  
P6  
AF1  
AF2  
AF3  
PA[14] PCR[14] AF0  
GPIO[14]  
SCK_0  
CS0_0  
E0UC[0]  
EIRQ[4]  
SIUL  
DSPI_0  
DSPI_0  
eMIOS_0 I/O  
SIUL  
I/O  
I/O  
I/O  
AF1  
AF2  
AF3  
I
PA[15] PCR[15] AF0  
GPIO[15]  
CS0_0  
SCK_0  
SIUL  
DSPI_0  
DSPI_0  
eMIOS_0 I/O  
WKPU  
I/O  
I/O  
I/O  
M
M
Tristate  
Tristate  
27  
23  
40  
31  
48  
39  
R6  
N3  
AF1  
AF2  
AF3  
E0UC[1]  
WKPU[10]5  
I
Port B  
PB[0]  
PCR[16] AF0  
GPIO[16]  
CAN0TX  
E0UC[30]  
LIN0TX  
SIUL  
FlexCAN_0  
eMIOS_0 I/O  
LINFlex_0  
I/O  
O
AF1  
AF2  
AF3  
O
MPC5607B Microcontroller Data Sheet, Rev. 9  
16  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
208  
MAP  
Port pin  
PCR  
Function  
Peripheral  
100  
144  
176  
LQFP LQFP LQFP  
BGA  
4
PB[1]  
PCR[17] AF0  
GPIO[17]  
SIUL  
eMIOS_0 I/O  
WKPU  
I/O  
S
Tristate  
24  
32  
40  
N1  
AF1  
AF2  
AF3  
E0UC[31]  
WKPU[4]5  
CAN0RX  
LIN0RX  
I
I
I
FlexCAN_0  
LINFlex_0  
PB[2]  
PB[3]  
PCR[18] AF0  
GPIO[18]  
LIN0TX  
SDA  
SIUL  
LINFlex_0  
I2C_0  
I/O  
O
I/O  
M
S
Tristate  
Tristate  
100  
1
144  
1
176  
1
B2  
C3  
AF1  
AF2  
AF3  
E0UC[30]  
eMIOS_0 I/O  
PCR[19] AF0  
GPIO[19]  
E0UC[31]  
SCL  
SIUL I/O  
AF1  
AF2  
AF3  
eMIOS_0 I/O  
I2C_0  
I/O  
I
WKPU[11]5  
LIN0RX  
WKPU  
LINFlex_0  
I
PB[4]  
PB[5]  
PB[6]  
PCR[20] AF0  
I
I
I
I
Tristate  
Tristate  
Tristate  
50  
53  
54  
72  
75  
76  
88  
91  
92  
T16  
R16  
P15  
AF1  
AF2  
AF3  
ADC0_P[0]  
ADC1_P[0]  
GPIO[20]  
ADC_0  
ADC_1  
SIUL  
I
I
PCR[21] AF0  
I
AF1  
AF2  
AF3  
ADC0_P[1]  
ADC1_P[1]  
GPIO[21]  
ADC_0  
ADC_1  
SIUL  
I
I
PCR[22] AF0  
I
AF1  
AF2  
AF3  
ADC0_P[2]  
ADC1_P[2]  
GPIO[22]  
ADC_0  
ADC_1  
SIUL  
I
I
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
17  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
208  
MAP  
Port pin  
PCR  
Function  
Peripheral  
100  
144  
176  
LQFP LQFP LQFP  
BGA  
4
PB[7]  
PCR[23] AF0  
I
I
I
Tristate  
55  
39  
77  
53  
93  
61  
P16  
AF1  
AF2  
AF3  
ADC0_P[3]  
ADC1_P[3]  
GPIO[23]  
ADC_0  
ADC_1  
SIUL  
I
I
PB[8]  
PCR[24] AF0  
GPIO[24]  
SIUL  
I
R9  
AF1  
AF2  
AF3  
I9  
I
OSC32K_XTAL8 OSC32K  
WKPU[25]5  
ADC0_S[0]  
ADC1_S[4]  
WKPU  
ADC_0  
ADC_1  
I
PB[9]  
PCR[25] AF0  
GPIO[25]  
SIUL  
I
I
38  
52  
60  
T9  
AF1  
AF2  
AF3  
I9  
I
OSC32K_EXTAL8 OSC32K  
WKPU[26]5  
ADC0_S[1]  
ADC1_S[5]  
WKPU  
ADC_0  
ADC_1  
I
PB[10] PCR[26] AF0  
GPIO[26]  
SIUL  
I/O  
I
J
Tristate  
40  
54  
62  
P9  
AF1  
AF2  
AF3  
WKPU[8]5  
ADC0_S[2]  
ADC1_S[6]  
WKPU  
ADC_0  
ADC_1  
I
I
PB[11] PCR[27] AF0  
GPIO[27]  
E0UC[3]  
CS0_0  
ADC0_S[3]  
SIUL  
eMIOS_0 I/O  
DSPI_0  
ADC_0  
I/O  
J
J
Tristate  
Tristate  
97  
N13  
M16  
AF1  
AF2  
AF3  
I/O  
I
PB[12] PCR[28] AF0  
GPIO[28]  
E0UC[4]  
CS1_0  
ADC0_X[0]  
SIUL  
eMIOS_0 I/O  
DSPI_0  
ADC_0  
I/O  
61  
83  
101  
AF1  
AF2  
AF3  
O
I
MPC5607B Microcontroller Data Sheet, Rev. 9  
18  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
208  
MAP  
Port pin  
PCR  
Function  
Peripheral  
100  
144  
176  
LQFP LQFP LQFP  
BGA  
4
PB[13] PCR[29] AF0  
GPIO[29]  
E0UC[5]  
CS2_0  
ADC0_X[1]  
SIUL  
eMIOS_0 I/O  
DSPI_0  
ADC_0  
I/O  
J
J
J
Tristate  
Tristate  
Tristate  
63  
65  
67  
85  
87  
89  
103  
105  
107  
M13  
L16  
L13  
AF1  
AF2  
AF3  
O
I
PB[14] PCR[30] AF0  
GPIO[30]  
E0UC[6]  
CS3_0  
ADC0_X[2]  
SIUL  
eMIOS_0 I/O  
DSPI_0  
ADC_0  
I/O  
AF1  
AF2  
AF3  
O
I
PB[15] PCR[31] AF0  
GPIO[31]  
E0UC[7]  
CS4_0  
ADC0_X[3]  
SIUL  
eMIOS_0 I/O  
DSPI_0  
ADC_0  
I/O  
AF1  
AF2  
AF3  
O
I
Port C  
PC[0]10 PCR[32] AF0  
GPIO[32]  
SIUL  
JTAGC  
I/O  
I
M
Input,  
weak  
pull-up  
87  
82  
78  
126  
121  
117  
154  
149  
145  
A8  
C9  
AF1  
AF2  
AF3  
TDI  
PC[1]10 PCR[33] AF0  
GPIO[33]  
TDO  
SIUL  
JTAGC  
I/O F11 Tristate  
O
AF1  
AF2  
AF3  
PC[2]  
PC[3]  
PCR[34] AF0  
GPIO[34]  
SCK_1  
CAN4TX  
DEBUG[0]  
EIRQ[5]  
SIUL  
DSPI_1  
FlexCAN_4  
SSCM  
I/O  
I/O  
O
O
I
M
S
Tristate  
Tristate  
A11  
AF1  
AF2  
AF3  
SIUL  
PCR[35] AF0  
GPIO[35]  
CS0_1  
MA[0]  
DEBUG[1]  
EIRQ[6]  
CAN1RX  
CAN4RX  
SIUL  
DSPI_1  
ADC_0  
SSCM  
SIUL  
I/O  
I/O  
O
O
I
77  
92  
116  
131  
144  
159  
B11  
AF1  
AF2  
AF3  
FlexCAN_1  
FlexCAN_4  
I
I
PC[4]  
PCR[36] AF0  
GPIO[36]  
E1UC[31]  
DEBUG[2]  
EIRQ[18]  
SIN_1  
SIUL  
eMIOS_1 I/O  
SSCM  
SIUL  
I/O  
M
Tristate  
B7  
AF1  
AF2  
AF3  
O
I
I
I
DSPI_1  
FlexCAN_3  
CAN3RX  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
19  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
208  
MAP  
Port pin  
PCR  
Function  
Peripheral  
100  
144  
176  
LQFP LQFP LQFP  
BGA  
4
PC[5]  
PCR[37] AF0  
GPIO[37]  
SOUT_1  
CAN3TX  
DEBUG[3]  
EIRQ[7]  
SIUL  
DSPI_1  
FlexCAN_3  
SSCM  
I/O  
O
O
O
I
M
Tristate  
91  
130  
158  
A7  
AF1  
AF2  
AF3  
SIUL  
PC[6]  
PC[7]  
PCR[38] AF0  
GPIO[38]  
LIN1TX  
E1UC[28]  
DEBUG[4]  
SIUL  
LINFlex_1  
eMIOS_1 I/O  
SSCM  
I/O  
O
S
S
Tristate  
Tristate  
25  
26  
36  
37  
44  
45  
R2  
P3  
AF1  
AF2  
AF3  
O
PCR[39] AF0  
GPIO[39]  
SIUL  
eMIOS_1 I/O  
SSCM  
LINFlex_1  
WKPU  
I/O  
AF1  
AF2  
AF3  
E1UC[29]  
DEBUG[5]  
LIN1RX  
O
I
I
WKPU[12]5  
PC[8]  
PC[9]  
PCR[40] AF0  
GPIO[40]  
LIN2TX  
E0UC[3]  
DEBUG[6]  
SIUL  
LINFlex_2  
eMIOS_0 I/O  
SSCM  
I/O  
O
S
S
Tristate  
Tristate  
99  
2
143  
2
175  
2
A1  
B1  
AF1  
AF2  
AF3  
O
PCR[41] AF0  
GPIO[41]  
E0UC[7]  
DEBUG[7]  
WKPU[13]5  
LIN2RX  
SIUL  
eMIOS_0 I/O  
SSCM  
WKPU  
LINFlex_2  
I/O  
AF1  
AF2  
AF3  
O
I
I
PC[10] PCR[42] AF0  
GPIO[42]  
CAN1TX  
CAN4TX  
MA[1]  
SIUL  
I/O  
O
O
M
S
Tristate  
Tristate  
22  
21  
28  
27  
36  
35  
M3  
M4  
AF1  
AF2  
AF3  
FlexCAN_1  
FlexCAN_4  
ADC_0  
O
PC[11] PCR[43] AF0  
GPIO[43]  
SIUL  
I/O  
O
I
AF1  
AF2  
AF3  
MA[2]  
ADC_0  
WKPU  
FlexCAN_1  
FlexCAN_4  
WKPU[5]5  
CAN1RX  
CAN4RX  
I
I
PC[12] PCR[44] AF0  
GPIO[44]  
E0UC[12]  
SIUL  
eMIOS_0 I/O  
SIUL  
DSPI_2  
I/O  
M
Tristate  
97  
141  
173  
B4  
AF1  
AF2  
AF3  
I
EIRQ[19]  
SIN_2  
I
MPC5607B Microcontroller Data Sheet, Rev. 9  
20  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
208  
MAP  
Port pin  
PCR  
Function  
Peripheral  
100  
144  
176  
LQFP LQFP LQFP  
BGA  
4
PC[13] PCR[45] AF0  
GPIO[45]  
E0UC[13]  
SOUT_2  
SIUL  
eMIOS_0 I/O  
DSPI_2  
I/O  
S
S
Tristate  
Tristate  
98  
3
142  
3
174  
3
A2  
C1  
AF1  
AF2  
AF3  
O
PC[14] PCR[46] AF0  
GPIO[46]  
E0UC[14]  
SCK_2  
SIUL  
eMIOS_0 I/O  
DSPI_2  
SIUL  
I/O  
AF1  
AF2  
AF3  
I/O  
I
EIRQ[8]  
PC[15] PCR[47] AF0  
GPIO[47]  
E0UC[15]  
CS0_2  
SIUL  
eMIOS_0 I/O  
DSPI_2  
SIUL  
I/O  
M
Tristate  
Tristate  
4
4
4
D3  
AF1  
AF2  
AF3  
I/O  
I
EIRQ[20]  
Port D  
PD[0]  
PD[1]  
PCR[48] AF0  
GPIO[48]  
SIUL  
I
I
I
41  
63  
77  
P12  
AF1  
AF2  
AF3  
WKPU[27]5  
ADC0_P[4]  
ADC1_P[4]  
WKPU  
ADC_0  
ADC_1  
I
I
PCR[49] AF0  
GPIO[49]  
SIUL  
I
I
I
Tristate  
42  
64  
78  
T12  
AF1  
AF2  
AF3  
WKPU[28]5  
ADC0_P[5]  
ADC1_P[5]  
WKPU  
ADC_0  
ADC_1  
I
I
PD[2]  
PD[3]  
PCR[50] AF0  
GPIO[50]  
SIUL  
ADC_0  
ADC_1  
I
I
I
I
Tristate  
Tristate  
43  
44  
65  
66  
79  
80  
R12  
P13  
AF1  
AF2  
AF3  
ADC0_P[6]  
ADC1_P[6]  
I
PCR[51] AF0  
GPIO[51]  
SIUL  
ADC_0  
ADC_1  
I
I
AF1  
AF2  
AF3  
ADC0_P[7]  
ADC1_P[7]  
I
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
21  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
208  
MAP  
Port pin  
PCR  
Function  
Peripheral  
100  
144  
176  
LQFP LQFP LQFP  
BGA  
4
PD[4]  
PCR[52] AF0  
GPIO[52]  
SIUL  
ADC_0  
ADC_1  
I
I
I
I
I
I
I
I
I
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
45  
46  
47  
48  
49  
56  
57  
67  
68  
69  
70  
71  
78  
79  
81  
82  
83  
84  
87  
94  
95  
R13  
T13  
T14  
R14  
T15  
N15  
N14  
AF1  
AF2  
AF3  
ADC0_P[8]  
ADC1_P[8]  
I
PD[5]  
PD[6]  
PD[7]  
PD[8]  
PD[9]  
PCR[53] AF0  
GPIO[53]  
SIUL  
ADC_0  
ADC_1  
I
I
AF1  
AF2  
AF3  
ADC0_P[9]  
ADC1_P[9]  
I
PCR[54] AF0  
GPIO[54]  
SIUL  
ADC_0  
ADC_1  
I
I
AF1  
AF2  
AF3  
ADC0_P[10]  
ADC1_P[10]  
I
PCR[55] AF0  
GPIO[55]  
SIUL  
ADC_0  
ADC_1  
I
I
AF1  
AF2  
AF3  
ADC0_P[11]  
ADC1_P[11]  
I
PCR[56] AF0  
GPIO[56]  
SIUL  
ADC_0  
ADC_1  
I
I
AF1  
AF2  
AF3  
ADC0_P[12]  
ADC1_P[12]  
I
PCR[57] AF0  
GPIO[57]  
SIUL  
ADC_0  
ADC_1  
I
I
AF1  
AF2  
AF3  
ADC0_P[13]  
ADC1_P[13]  
I
PD[10] PCR[58] AF0  
GPIO[58]  
SIUL  
ADC_0  
ADC_1  
I
I
AF1  
AF2  
AF3  
ADC0_P[14]  
ADC1_P[14]  
I
MPC5607B Microcontroller Data Sheet, Rev. 9  
22  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
208  
MAP  
Port pin  
PCR  
Function  
Peripheral  
100  
144  
176  
LQFP LQFP LQFP  
BGA  
4
PD[11] PCR[59] AF0  
GPIO[59]  
SIUL  
ADC_0  
ADC_1  
I
I
I
Tristate  
58  
80  
96  
N16  
AF1  
AF2  
AF3  
ADC0_P[15]  
ADC1_P[15]  
I
PD[12] PCR[60] AF0  
GPIO[60]  
CS5_0  
E0UC[24]  
SIUL  
DSPI_0  
eMIOS_0 I/O  
ADC_0  
I/O  
O
J
J
J
J
Tristate  
Tristate  
Tristate  
Tristate  
62  
64  
66  
84  
86  
88  
100  
102  
104  
106  
M15  
M14  
L15  
L14  
AF1  
AF2  
AF3  
I
ADC0_S[4]  
PD[13] PCR[61] AF0  
GPIO[61]  
CS0_1  
E0UC[25]  
SIUL  
DSPI_1  
eMIOS_0 I/O  
ADC_0  
I/O  
I/O  
AF1  
AF2  
AF3  
I
ADC0_S[5]  
PD[14] PCR[62] AF0  
GPIO[62]  
CS1_1  
E0UC[26]  
SIUL  
DSPI_1  
eMIOS_0 I/O  
ADC_0  
I/O  
O
AF1  
AF2  
AF3  
I
ADC0_S[6]  
PD[15] PCR[63] AF0  
GPIO[63]  
CS2_1  
E0UC[27]  
SIUL  
DSPI_1  
eMIOS_0 I/O  
ADC_0  
I/O  
O
AF1  
AF2  
AF3  
I
ADC0_S[7]  
Port E  
PE[0]  
PCR[64] AF0  
GPIO[64]  
E0UC[16]  
SIUL  
eMIOS_0 I/O  
I/O  
S
Tristate  
6
10  
18  
F1  
AF1  
AF2  
AF3  
I
WKPU[6]5  
CAN5RX  
WKPU  
FlexCAN_5  
I
PE[1]  
PE[2]  
PCR[65] AF0  
GPIO[65]  
E0UC[17]  
CAN5TX  
SIUL  
eMIOS_0 I/O  
FlexCAN_5  
I/O  
M
M
Tristate  
Tristate  
8
12  
20  
F4  
D7  
AF1  
AF2  
AF3  
O
PCR[66] AF0  
GPIO[66]  
E0UC[18]  
SIUL  
eMIOS_0 I/O  
SIUL  
DSPI_1  
I/O  
89  
128  
156  
AF1  
AF2  
AF3  
I
EIRQ[21]  
SIN_1  
I
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
23  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
208  
MAP  
Port pin  
PE[3]  
PCR  
Function  
Peripheral  
100  
144  
176  
LQFP LQFP LQFP  
BGA  
4
PCR[67] AF0  
GPIO[67]  
E0UC[19]  
SOUT_1  
SIUL  
eMIOS_0 I/O  
DSPI_1  
I/O  
M
M
Tristate  
Tristate  
90  
93  
129  
132  
157  
160  
C7  
D6  
AF1  
AF2  
AF3  
O
PE[4]  
PCR[68] AF0  
GPIO[68]  
E0UC[20]  
SCK_1  
SIUL  
eMIOS_0 I/O  
DSPI_1  
SIUL  
I/O  
AF1  
AF2  
AF3  
I/O  
I
EIRQ[9]  
PE[5]  
PE[6]  
PCR[69] AF0  
GPIO[69]  
E0UC[21]  
CS0_1  
SIUL  
eMIOS_0 I/O  
DSPI_1  
ADC_0  
I/O  
M
M
Tristate  
Tristate  
94  
95  
133  
139  
161  
167  
C6  
B5  
AF1  
AF2  
AF3  
I/O  
O
MA[2]  
PCR[70] AF0  
GPIO[70]  
E0UC[22]  
CS3_0  
MA[1]  
EIRQ[22]  
SIUL  
eMIOS_0 I/O  
DSPI_0  
ADC_0  
SIUL  
I/O  
AF1  
AF2  
AF3  
O
O
I
PE[7]  
PCR[71] AF0  
GPIO[71]  
E0UC[23]  
CS2_0  
MA[0]  
EIRQ[23]  
SIUL  
eMIOS_0 I/O  
DSPI_0  
ADC_0  
SIUL  
I/O  
M
Tristate  
96  
140  
168  
C4  
AF1  
AF2  
AF3  
O
O
I
PE[8]  
PE[9]  
PCR[72] AF0  
GPIO[72]  
CAN2TX  
E0UC[22]  
CAN3TX  
SIUL  
FlexCAN_2  
eMIOS_0 I/O  
FlexCAN_3  
I/O  
O
M
S
Tristate  
Tristate  
9
13  
14  
21  
22  
G2  
G1  
AF1  
AF2  
AF3  
O
PCR[73] AF0  
GPIO[73]  
SIUL  
eMIOS_0 I/O  
WKPU  
I/O  
10  
AF1  
AF2  
AF3  
E0UC[23]  
WKPU[7]5  
CAN2RX  
CAN3RX  
I
I
I
FlexCAN_2  
FlexCAN_3  
PE[10] PCR[74] AF0  
GPIO[74]  
LIN3TX  
CS3_1  
E1UC[30]  
EIRQ[10]  
SIUL  
LINFlex_3  
DSPI_1  
eMIOS_1 I/O  
SIUL  
I/O  
O
O
S
Tristate  
11  
15  
23  
G3  
AF1  
AF2  
AF3  
I
MPC5607B Microcontroller Data Sheet, Rev. 9  
24  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
208  
MAP  
Port pin  
PCR  
Function  
Peripheral  
100  
144  
176  
LQFP LQFP LQFP  
BGA  
4
PE[11] PCR[75] AF0  
GPIO[75]  
E0UC[24]  
CS4_1  
SIUL  
eMIOS_0 I/O  
DSPI_1  
LINFlex_3  
WKPU  
I/O  
S
J
Tristate  
Tristate  
13  
76  
17  
25  
H2  
AF1  
AF2  
AF3  
O
I
LIN3RX  
WKPU[14]5  
I
PE[12] PCR[76] AF0  
GPIO[76]  
SIUL  
eMIOS_1 I/O  
SIUL  
I/O  
109  
133  
C14  
AF1  
AF2  
AF3  
E1UC[19]12  
EIRQ[11]  
SIN_2  
ADC1_S[7]  
I
I
I
DSPI_2  
ADC_1  
PE[13] PCR[77] AF0  
GPIO[77]  
SOUT_2  
E1UC[20]  
SIUL  
DSPI_2  
eMIOS_1 I/O  
I/O  
O
S
S
Tristate  
Tristate  
103  
112  
127  
136  
D15  
C13  
AF1  
AF2  
AF3  
PE[14] PCR[78] AF0  
GPIO[78]  
SCK_2  
E1UC[21]  
SIUL  
DSPI_2  
eMIOS_1 I/O  
SIUL  
I/O  
I/O  
AF1  
AF2  
AF3  
I
EIRQ[12]  
PE[15] PCR[79] AF0  
GPIO[79]  
CS0_2  
E1UC[22]  
SIUL  
DSPI_2  
eMIOS_1 I/O  
I/O  
I/O  
M
Tristate  
113  
137  
A13  
AF1  
AF2  
AF3  
Port F  
PF[0]  
PF[1]  
PF[2]  
PCR[80] AF0  
GPIO[80]  
E0UC[10]  
CS3_1  
SIUL  
eMIOS_0 I/O  
DSPI_1  
ADC_0  
I/O  
J
J
J
Tristate  
Tristate  
Tristate  
55  
56  
57  
63  
64  
65  
N10  
P10  
T10  
AF1  
AF2  
AF3  
O
I
ADC0_S[8]  
PCR[81] AF0  
GPIO[81]  
E0UC[11]  
CS4_1  
SIUL  
eMIOS_0 I/O  
DSPI_1  
ADC_0  
I/O  
AF1  
AF2  
AF3  
O
I
ADC0_S[9]  
PCR[82] AF0  
GPIO[82]  
E0UC[12]  
CS0_2  
SIUL  
eMIOS_0 I/O  
DSPI_2  
ADC_0  
I/O  
AF1  
AF2  
AF3  
I/O  
I
ADC0_S[10]  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
25  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
208  
MAP  
Port pin  
PCR  
Function  
Peripheral  
100  
144  
176  
LQFP LQFP LQFP  
BGA  
4
PF[3]  
PCR[83] AF0  
GPIO[83]  
E0UC[13]  
CS1_2  
SIUL  
eMIOS_0 I/O  
DSPI_2  
ADC_0  
I/O  
J
J
J
J
J
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
58  
59  
60  
61  
62  
66  
67  
68  
69  
70  
R10  
N11  
P11  
T11  
R11  
AF1  
AF2  
AF3  
O
I
ADC0_S[11]  
PF[4]  
PF[5]  
PF[6]  
PF[7]  
PCR[84] AF0  
GPIO[84]  
E0UC[14]  
CS2_2  
SIUL  
eMIOS_0 I/O  
DSPI_2  
ADC_0  
I/O  
AF1  
AF2  
AF3  
O
I
ADC0_S[12]  
PCR[85] AF0  
GPIO[85]  
E0UC[22]  
CS3_2  
SIUL  
eMIOS_0 I/O  
DSPI_2  
ADC_0  
I/O  
AF1  
AF2  
AF3  
O
I
ADC0_S[13]  
PCR[86] AF0  
GPIO[86]  
E0UC[23]  
CS1_1  
SIUL  
eMIOS_0 I/O  
DSPI_1  
ADC_0  
I/O  
AF1  
AF2  
AF3  
O
I
ADC0_S[14]  
PCR[87] AF0  
GPIO[87]  
CS2_1  
SIUL  
DSPI_1  
I/O  
O
I
AF1  
AF2  
AF3  
ADC0_S[15]  
ADC_0  
PF[8]  
PF[9]  
PCR[88] AF0  
GPIO[88]  
CAN3TX  
CS4_0  
SIUL  
FlexCAN_3  
DSPI_0  
I/O  
O
O
M
S
Tristate  
Tristate  
34  
33  
42  
41  
P1  
N2  
AF1  
AF2  
AF3  
CAN2TX  
FlexCAN_2  
O
PCR[89] AF0  
GPIO[89]  
E1UC[1]  
CS5_0  
SIUL  
eMIOS_1 I/O  
DSPI_0  
WKPU  
I/O  
AF1  
AF2  
AF3  
O
I
I
I
WKPU[22]5  
CAN2RX  
CAN3RX  
FlexCAN_2  
FlexCAN_3  
PF[10] PCR[90] AF0  
GPIO[90]  
CS1_0  
LIN4TX  
E1UC[2]  
SIUL  
DSPI_0  
LINFlex_4  
I/O  
O
O
M
Tristate  
38  
46  
R3  
AF1  
AF2  
AF3  
eMIOS_1 I/O  
MPC5607B Microcontroller Data Sheet, Rev. 9  
26  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
208  
MAP  
Port pin  
PCR  
Function  
Peripheral  
100  
144  
176  
LQFP LQFP LQFP  
BGA  
4
PF[11] PCR[91] AF0  
GPIO[91]  
CS2_0  
SIUL  
DSPI_0  
eMIOS_1 I/O  
WKPU  
LINFlex_4  
I/O  
O
S
Tristate  
39  
47  
R4  
AF1  
AF2  
AF3  
E1UC[3]  
I
I
WKPU[15]5  
LIN4RX  
PF[12] PCR[92] AF0  
GPIO[92]  
E1UC[25]  
LIN5TX  
SIUL  
eMIOS_1 I/O  
LINFlex_5  
I/O  
M
S
Tristate  
Tristate  
35  
41  
43  
49  
R1  
T6  
AF1  
AF2  
AF3  
O
PF[13] PCR[93] AF0  
GPIO[93]  
E1UC[26]  
SIUL  
eMIOS_1 I/O  
I/O  
AF1  
AF2  
AF3  
I
WKPU[16]5  
LIN5RX  
WKPU  
LINFlex_5  
I
PF[14] PCR[94] AF0  
GPIO[94]  
CAN4TX  
E1UC[27]  
CAN1TX  
SIUL  
FlexCAN_4  
eMIOS_1 I/O  
FlexCAN_1  
I/O  
O
M
S
Tristate  
Tristate  
102  
101  
126  
125  
D14  
E15  
AF1  
AF2  
AF3  
O
PF[15] PCR[95] AF0  
GPIO[95]  
E1UC[4]  
SIUL  
eMIOS_1 I/O  
SIUL  
I/O  
AF1  
AF2  
AF3  
I
I
I
EIRQ[13]  
CAN1RX  
CAN4RX  
FlexCAN_1  
FlexCAN_4  
Port G  
PG[0] PCR[96] AF0  
GPIO[96]  
CAN5TX  
E1UC[23]  
SIUL  
FlexCAN_5  
eMIOS_1 I/O  
I/O  
O
M
S
Tristate  
Tristate  
98  
97  
122  
121  
E14  
E13  
AF1  
AF2  
AF3  
PG[1] PCR[97] AF0  
GPIO[97]  
E1UC[24]  
EIRQ[14]  
CAN5RX  
SIUL  
eMIOS_1 I/O  
SIUL  
I/O  
AF1  
AF2  
AF3  
I
I
FlexCAN_5  
PG[2] PCR[98] AF0  
GPIO[98]  
E1UC[11]  
SOUT_3  
SIUL  
eMIOS_1 I/O  
DSPI_3  
I/O  
M
Tristate  
8
16  
E4  
AF1  
AF2  
AF3  
O
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
27  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
208  
MAP  
Port pin  
PCR  
Function  
Peripheral  
100  
144  
176  
LQFP LQFP LQFP  
BGA  
4
PG[3] PCR[99] AF0  
GPIO[99]  
E1UC[12]  
CS0_3  
SIUL  
eMIOS_1 I/O  
DSPI_3  
WKPU  
I/O  
S
Tristate  
7
15  
E3  
AF1  
AF2  
AF3  
I/O  
I
WKPU[17]5  
PG[4] PCR[100] AF0  
GPIO[100]  
E1UC[13]  
SCK_3  
SIUL  
eMIOS_1 I/O  
DSPI_3  
I/O  
M
S
Tristate  
Tristate  
6
5
14  
13  
E1  
E2  
AF1  
AF2  
AF3  
I/O  
PG[5] PCR[101] AF0  
GPIO[101]  
E1UC[14]  
SIUL  
eMIOS_1 I/O  
WKPU  
DSPI_3  
I/O  
AF1  
AF2  
AF3  
I
WKPU[18]5  
SIN_3  
I
PG[6] PCR[102] AF0  
GPIO[102]  
E1UC[15]  
LIN6TX  
SIUL  
eMIOS_1 I/O  
LINFlex_6  
I/O  
M
S
Tristate  
Tristate  
30  
29  
38  
37  
M2  
M1  
AF1  
AF2  
AF3  
O
PG[7] PCR[103] AF0  
GPIO[103]  
E1UC[16]  
E1UC[30]  
SIUL  
eMIOS_1 I/O  
eMIOS_1 I/O  
WKPU  
I/O  
AF1  
AF2  
AF3  
I
I
WKPU[20]5  
LIN6RX  
LINFlex_6  
PG[8] PCR[104] AF0  
GPIO[104]  
E1UC[17]  
LIN7TX  
CS0_2  
EIRQ[15]  
SIUL  
eMIOS_1 I/O  
LINFlex_7  
DSPI_2  
SIUL  
I/O  
S
S
Tristate  
Tristate  
26  
25  
34  
33  
L2  
L1  
AF1  
AF2  
AF3  
O
I/O  
I
PG[9] PCR[105] AF0  
GPIO[105]  
E1UC[18]  
SIUL  
eMIOS_1 I/O  
DSPI_2  
WKPU  
I/O  
AF1  
AF2  
AF3  
I/O  
I
SCK_2  
WKPU[21]5  
LIN7RX  
LINFlex_7  
I
PG[10] PCR[106] AF0  
GPIO[106]  
E0UC[24]  
E1UC[31]  
SIUL  
eMIOS_0 I/O  
eMIOS_1 I/O  
DSPI_4  
I/O  
S
Tristate  
114  
138  
D13  
AF1  
AF2  
AF3  
I
SIN_4  
MPC5607B Microcontroller Data Sheet, Rev. 9  
28  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
208  
MAP  
Port pin  
PCR  
Function  
Peripheral  
100  
144  
176  
LQFP LQFP LQFP  
BGA  
4
PG[11] PCR[107] AF0  
GPIO[107]  
E0UC[25]  
CS0_4  
SIUL  
eMIOS_0 I/O  
DSPI_4  
I/O  
M
M
M
S
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
115  
92  
139  
116  
115  
134  
135  
B12  
K14  
K16  
B14  
B13  
AF1  
AF2  
AF3  
I/O  
PG[12] PCR[108] AF0  
GPIO[108]  
E0UC[26]  
SOUT_4  
SIUL  
eMIOS_0 I/O  
DSPI_4  
I/O  
AF1  
AF2  
AF3  
O
PG[13] PCR[109] AF0  
GPIO[109]  
E0UC[27]  
SCK_4  
SIUL  
eMIOS_0 I/O  
DSPI_4  
I/O  
91  
AF1  
AF2  
AF3  
I/O  
PG[14] PCR[110] AF0  
GPIO[110]  
E1UC[0]  
LIN8TX  
SIUL  
eMIOS_1 I/O  
LINFlex_8  
I/O  
110  
111  
AF1  
AF2  
AF3  
O
PG[15] PCR[111] AF0  
GPIO[111]  
E1UC[1]  
LIN8RX  
SIUL  
eMIOS_1 I/O  
I/O  
M
AF1  
AF2  
AF3  
I
LINFlex_8  
Port H  
PH[0] PCR[112] AF0  
GPIO[112]  
E1UC[2]  
SIN_1  
SIUL  
eMIOS_1 I/O  
DSPI_1  
I/O  
M
Tristate  
93  
117  
F13  
AF1  
AF2  
AF3  
I
PH[1] PCR[113] AF0  
GPIO[113]  
E1UC[3]  
SOUT_1  
SIUL  
eMIOS_1 I/O  
DSPI_1  
I/O  
M
M
M
Tristate  
Tristate  
Tristate  
94  
95  
96  
118  
119  
120  
F14  
F16  
F15  
AF1  
AF2  
AF3  
O
PH[2] PCR[114] AF0  
GPIO[114]  
E1UC[4]  
SCK_1  
SIUL  
eMIOS_1 I/O  
DSPI_1  
I/O  
AF1  
AF2  
AF3  
I/O  
PH[3] PCR[115] AF0  
GPIO[115]  
E1UC[5]  
CS0_1  
SIUL  
eMIOS_1 I/O  
DSPI_1  
I/O  
AF1  
AF2  
AF3  
I/O  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
29  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
208  
MAP  
Port pin  
PCR  
Function  
Peripheral  
100  
144  
176  
LQFP LQFP LQFP  
BGA  
4
PH[4] PCR[116] AF0  
GPIO[116]  
E1UC[6]  
SIUL  
eMIOS_1 I/O  
I/O  
M
S
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
88  
81  
134  
135  
136  
137  
138  
127  
120  
162  
163  
164  
165  
166  
155  
148  
140  
141  
9
A6  
B6  
AF1  
AF2  
AF3  
PH[5] PCR[117] AF0  
GPIO[117]  
E1UC[7]  
SIUL  
eMIOS_1 I/O  
I/O  
AF1  
AF2  
AF3  
PH[6] PCR[118] AF0  
GPIO[118]  
E1UC[8]  
SIUL  
eMIOS_1 I/O  
ADC_0  
I/O  
M
M
M
S
D5  
C5  
A5  
AF1  
AF2  
AF3  
O
MA[2]  
PH[7] PCR[119] AF0  
GPIO[119]  
E1UC[9]  
CS3_2  
SIUL  
eMIOS_1 I/O  
DSPI_2  
ADC_0  
I/O  
AF1  
AF2  
AF3  
O
O
MA[1]  
PH[8] PCR[120] AF0  
GPIO[120]  
E1UC[10]  
CS2_2  
SIUL  
eMIOS_1 I/O  
DSPI_2  
ADC_0  
I/O  
AF1  
AF2  
AF3  
O
O
MA[0]  
PH[9]10 PCR[121] AF0  
GPIO[121]  
SIUL  
JTAGC  
I/O  
I
Input,  
weak  
pull-up  
B8  
AF1  
AF2  
AF3  
TCK  
PH[10]10 PCR[122] AF0  
GPIO[122]  
SIUL  
JTAGC  
I/O  
I
M
M
M
M
Input,  
weak  
pull-up  
B9  
AF1  
AF2  
AF3  
TMS  
PH[11] PCR[123] AF0  
GPIO[123]  
SOUT_3  
CS0_4  
SIUL  
DSPI_3  
DSPI_4  
I/O  
O
I/O  
Tristate  
Tristate  
Tristate  
A14  
D12  
B3  
AF1  
AF2  
AF3  
E1UC[5]  
eMIOS_1 I/O  
PH[12] PCR[124] AF0  
GPIO[124]  
SCK_3  
CS1_4  
SIUL  
DSPI_3  
DSPI_4  
I/O  
I/O  
O
AF1  
AF2  
AF3  
E1UC[25]  
eMIOS_1 I/O  
PH[13] PCR[125] AF0  
GPIO[125]  
SOUT_4  
CS0_3  
SIUL  
DSPI_4  
DSPI_3  
I/O  
O
I/O  
AF1  
AF2  
AF3  
E1UC[26]  
eMIOS_1 I/O  
MPC5607B Microcontroller Data Sheet, Rev. 9  
30  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
208  
MAP  
Port pin  
PCR  
Function  
Peripheral  
100  
144  
176  
LQFP LQFP LQFP  
BGA  
4
PH[14] PCR[126] AF0  
GPIO[126]  
SCK_4  
CS1_3  
SIUL  
DSPI_4  
DSPI_3  
I/O  
I/O  
O
M
M
Tristate  
Tristate  
10  
8
D1  
A3  
AF1  
AF2  
AF3  
E1UC[27]  
eMIOS_1 I/O  
PH[15] PCR[127] AF0  
GPIO[127]  
SOUT_5  
SIUL  
DSPI_5  
I/O  
O
AF1  
AF2  
AF3  
E1UC[17]  
eMIOS_1 I/O  
Port I  
PI[0] PCR[128] AF0  
GPIO[128]  
E0UC[28]  
LIN8TX  
SIUL  
eMIOS_0 I/O  
LINFlex_8  
I/O  
S
S
Tristate  
Tristate  
172  
171  
A9  
AF1  
AF2  
AF3  
O
PI[1] PCR[129] AF0  
GPIO[129]  
E0UC[29]  
SIUL  
eMIOS_0 I/O  
I/O  
A10  
AF1  
AF2  
AF3  
I
WKPU[24]5  
LIN8RX  
WKPU  
LINFlex_8  
I
PI[2] PCR[130] AF0  
GPIO[130]  
E0UC[30]  
LIN9TX  
SIUL  
eMIOS_0 I/O  
LINFlex_9  
I/O  
S
S
Tristate  
Tristate  
170  
169  
B10  
C10  
AF1  
AF2  
AF3  
O
PI[3] PCR[131] AF0  
GPIO[131]  
E0UC[31]  
SIUL  
eMIOS_0 I/O  
I/O  
AF1  
AF2  
AF3  
I
WKPU[23]5  
LIN9RX  
WKPU  
LINFlex_9  
I
PI[4] PCR[132] AF0  
GPIO[132]  
E1UC[28]  
SOUT_4  
SIUL  
eMIOS_1 I/O  
DSPI_4  
I/O  
S
S
S
Tristate  
Tristate  
Tristate  
143  
142  
11  
A12  
C12  
D2  
AF1  
AF2  
AF3  
O
PI[5] PCR[133] AF0  
GPIO[133]  
E1UC[29]  
SCK_4  
SIUL  
eMIOS_1 I/O  
DSPI_4  
I/O  
AF1  
AF2  
AF3  
I/O  
PI[6] PCR[134] AF0  
GPIO[134]  
E1UC[30]  
CS0_4  
SIUL  
eMIOS_1 I/O  
DSPI_4  
I/O  
AF1  
AF2  
AF3  
I/O  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
31  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
208  
MAP  
Port pin  
PCR  
Function  
Peripheral  
100  
144  
176  
LQFP LQFP LQFP  
BGA  
4
PI[7] PCR[135] AF0  
GPIO[135]  
E1UC[31]  
CS1_4  
SIUL  
eMIOS_1 I/O  
DSPI_4  
I/O  
S
J
Tristate  
Tristate  
12  
D3  
AF1  
AF2  
AF3  
O
PI[8] PCR[136] AF0  
GPIO[136]  
SIUL  
ADC_0  
I/O  
I
108  
J13  
AF1  
AF2  
AF3  
ADC0_S[16]  
PI[9] PCR[137] AF0  
GPIO[137]  
SIUL  
ADC_0  
I/O  
I
J
J
J
Tristate  
Tristate  
Tristate  
109  
110  
111  
J14  
J15  
J16  
AF1  
AF2  
AF3  
ADC0_S[17]  
PI[10] PCR[138] AF0  
GPIO[138]  
SIUL  
ADC_0  
I/O  
I
AF1  
AF2  
AF3  
ADC0_S[18]  
PI[11] PCR[139] AF0  
GPIO[139]  
SIUL  
ADC_0  
DSPI_3  
I/O  
I
AF1  
AF2  
AF3  
ADC0_S[19]  
SIN_3  
I
PI[12] PCR[140] AF0  
GPIO[140]  
CS0_3  
SIUL  
DSPI_3  
ADC_0  
I/O  
I/O  
I
J
J
J
Tristate  
Tristate  
Tristate  
112  
113  
76  
G14  
G15  
R8  
AF1  
AF2  
AF3  
ADC0_S[20]  
PI[13] PCR[141] AF0  
GPIO[141]  
CS1_3  
SIUL  
DSPI_3  
ADC_0  
I/O  
O
I
AF1  
AF2  
AF3  
ADC0_S[21]  
PI[14] PCR[142] AF0  
GPIO[142]  
SIUL  
ADC_0  
DSPI_4  
I/O  
I
AF1  
AF2  
AF3  
ADC0_S[22]  
SIN_4  
I
MPC5607B Microcontroller Data Sheet, Rev. 9  
32  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
208  
MAP  
Port pin  
PCR  
Function  
Peripheral  
100  
144  
176  
LQFP LQFP LQFP  
BGA  
4
PI[15] PCR[143] AF0  
GPIO[143]  
CS0_4  
SIUL  
DSPI_4  
ADC_0  
I/O  
I/O  
I
J
Tristate  
75  
T8  
AF1  
AF2  
AF3  
ADC0_S[23]  
Port J  
PJ[0] PCR[144] AF0  
GPIO[144]  
CS1_4  
SIUL  
DSPI_4  
ADC_0  
I/O  
O
I
J
J
Tristate  
Tristate  
74  
73  
N5  
P5  
AF1  
AF2  
AF3  
ADC0_S[24]  
PJ[1] PCR[145] AF0  
GPIO[145]  
SIUL  
——  
ADC_0  
DSPI_5  
I/O  
I
AF1  
AF2  
AF3  
ADC0_S[25]  
SIN_5  
I
PJ[2] PCR[146] AF0  
GPIO[146]  
CS0_5  
SIUL  
DSPI_5  
ADC_0  
I/O  
I/O  
I
J
J
Tristate  
Tristate  
Tristate  
72  
71  
5
P4  
P2  
A4  
AF1  
AF2  
AF3  
ADC0_S[26]  
PJ[3] PCR[147] AF0  
GPIO[147]  
CS1_5  
SIUL  
DSPI_5  
ADC_0  
I/O  
O
I
AF1  
AF2  
AF3  
ADC0_S[27]  
PJ[4] PCR[148] AF0  
GPIO[148]  
SCK_5  
E1UC[18]  
SIUL  
DSPI_5  
eMIOS_1 I/O  
I/O  
I/O  
M
AF1  
AF2  
AF3  
1
2
Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module.  
PCR.PA = 00 AF0; PCR.PA = 01 AF1; PCR.PA = 10 AF2; PCR.PA = 11 AF2. This is intended to  
select the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of  
the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is  
reported as “—”.  
Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by  
setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.  
3
4
5
6
The RESET configuration applies during and after reset.  
208 MAPBGA available only as development package for Nexus2+  
All WKPU pins also support external interrupt capability. See the WKPU chapter for further details.  
NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
33  
Electrical characteristics  
7
“Not applicable” because these functions are available only while the device is booting. Refer to the BAM  
information for details.  
8
9
Value of PCR.IBE bit must be 0  
This wakeup input cannot be used to exit STANDBY mode.  
10 Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.  
PC[0:1] are available as JTAG pins (TDI and TDO respectively).  
PH[9:10] are available as JTAG pins (TCK and TMS respectively).  
It is up to the user to configure these pins as GPIO when needed.  
11 PC[1] is a fast/medium pad but is in medium configuration by default. This pad is in Alternate Function 2 mode after  
reset which has TDO functionality. The reset value of PCR.OBE is ‘1’, but this setting has no impact as long as this  
pad stays in AF2 mode. After configuring this pad as GPIO (PCR.PA = 0), output buffer is enabled as reset value  
of PCR.OBE = 1.  
12 Not available in 100 LQFP package  
3.8  
Nexus 2+ pins  
In the 208 MAPBGA package, eight additional debug pins are available (see Table 6).  
Table 6. Nexus 2+ pin descriptions  
Pin number  
I/O  
direction  
Function  
after reset  
Port pin  
Function  
Pad type  
100  
144  
208 MAP  
BGA1  
LQFP  
LQFP  
MCKO  
MDO0  
MDO1  
MDO2  
MDO3  
EVTI  
Message clock out  
Message data out 0  
Message data out 1  
Message data out 2  
Message data out 3  
Event in  
O
O
O
O
O
I
F
T4  
H15  
H16  
H14  
H13  
K1  
M
M
M
M
M
M
M
Pull-up  
EVTO  
MSEO  
Event out  
O
O
L4  
Message start/end out  
G16  
1
208 MAPBGA available only as development package for Nexus2+  
4
Electrical characteristics  
This section contains electrical characteristics of the device as well as temperature and power  
considerations.  
This product contains devices to protect the inputs against damage due to high static voltages. However,  
it is advisable to take precautions to avoid application of any voltage higher than the specified maximum  
rated voltages.  
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V or V ). This  
DD  
SS  
could be done by the internal pull-up and pull-down, which is provided by the product for most general  
purpose pins.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
34  
NXP Semiconductors  
Electrical characteristics  
The parameters listed in the following tables represent the characteristics of the device and its demands on  
the system.  
In the tables where the device logic provides signals with their respective timing characteristics, the  
symbol “CC” for Controller Characteristics is included in the Symbol column.  
In the tables where the external system must provide signals with their respective timing characteristics to  
the device, the symbol “SR” for System Requirement is included in the Symbol column.  
4.1  
Parameter classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the  
customer a better understanding, the classifications listed in Table 7 are used and the parameters are tagged  
accordingly in the tables where appropriate.  
Table 7. Parameter classifications  
Classification tag  
Tag description  
P
C
Those parameters are guaranteed during production testing on each individual device.  
Those parameters are achieved by the design characterization by measuring a statistically  
relevant sample size across process variations.  
T
Those parameters are achieved by design characterization on a small sample size from typical  
devices under typical conditions unless otherwise noted. All values shown in the typical column  
are within this category.  
D
Those parameters are derived mainly from simulations.  
NOTE  
The classification is shown in the column labeled “C” in the parameter tables where  
appropriate.  
4.2  
NVUSRO register  
Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the device configuration, namely electrical  
parameters such as high voltage supply and oscillator margin, as well as digital functionality (watchdog enable/disable after  
reset).  
For a detailed description of the NVUSRO register, please refer to the device reference manual.  
4.2.1  
NVUSRO[PAD3V5V] field description  
The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 8 shows how NVUSRO[PAD3V5V] controls  
the device configuration.  
1
Table 8. PAD3V5V field description  
Value2  
Description  
0
1
High voltage supply is 5.0 V  
High voltage supply is 3.3 V  
1
See the device reference manual for more information on the NVUSRO register.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
35  
Electrical characteristics  
2
Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.  
4.2.2  
NVUSRO[OSCILLATOR_MARGIN] field description  
The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value.  
Table 9 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.  
1
Table 9. OSCILLATOR_MARGIN field description  
Value2  
Description  
0
1
Low consumption configuration (4 MHz/8 MHz)  
High margin configuration (4 MHz/16 MHz)  
1
2
See the device reference manual for more information on the NVUSRO register.  
Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.  
4.2.3  
NVUSRO[WATCHDOG_EN] field description  
The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value.  
Table 10 shows how NVUSRO[WATCHDOG_EN] controls the device configuration.  
Table 10. WATCHDOG_EN field description  
Value1  
Description  
0
1
Disable after reset  
Enable after reset  
1
Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.  
4.3  
Absolute maximum ratings  
Table 11. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS  
VDD  
SR Digital ground on VSS_HV pins  
0
0
V
V
SR Voltage on VDD_HV pins with respect to  
–0.3  
6.0  
ground (VSS  
)
VSS_LV SR Voltage on VSS_LV (low voltage digital supply)  
V
SS – 0.1 VSS + 0.1  
V
V
pins with respect to ground (VSS  
)
VDD_BV SR Voltage on VDD_BV (regulator supply) pin with  
Relative to VDD  
–0.3  
–0.3  
6.0  
respect to ground (VSS  
)
VDD + 0.3  
VSS_ADC SR Voltage on VSS_HV_ADC0, VSS_HV_ADC1  
(ADC reference) pins with respect to ground  
VSS – 0.1 VSS + 0.1  
V
V
(VSS  
)
VDD_ADC SR Voltage on VDD_HV_ADC0, VDD_HV_ADC1  
(ADC reference) pins with respect to ground  
–0.3  
6.0  
Relative to VDD  
VDD 0.3 VDD + 0.3  
(VSS  
)
MPC5607B Microcontroller Data Sheet, Rev. 9  
36  
NXP Semiconductors  
Electrical characteristics  
Table 11. Absolute maximum ratings (continued)  
Value  
Unit  
Symbol  
Parameter  
Conditions  
Min  
Max  
VIN  
SR Voltage on any GPIO pin with respect to  
Relative to VDD  
–0.3  
6.0  
VDD + 0.3  
10  
V
ground (VSS  
)
IINJPAD SR Injected input current on any pin during  
overload condition  
–10  
mA  
IINJSUM SR Absolute sum of all injected input currents  
during overload condition  
–50  
50  
70  
IAVGSEG SR Sum of all the static I/O current within a supply VDD = 5.0 V 10ꢀ,  
mA  
°C  
segment  
PAD3V5V = 0  
VDD = 3.3 V 10ꢀ,  
64  
PAD3V5V = 1  
TSTORAGE SR Storage temperature  
–55  
150  
NOTE  
Stresses exceeding the recommended absolute maximum ratings may cause permanent  
damage to the device. This is a stress rating only and functional operation of the device at  
these or any other conditions above those indicated in the operational sections of this  
specification are not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability. During overload conditions (V > V or  
IN  
DD  
V
< V ), the voltage on pins with respect to ground (V ) must not exceed the  
IN  
SS SS  
recommended values.  
4.4  
Recommended operating conditions  
Table 12. Recommended operating conditions (3.3 V)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS  
SR Digital ground on VSS_HV pins  
0
0
V
V
1
VDD  
SR Voltage on VDD_HV pins with respect to  
3.0  
3.6  
ground (VSS  
)
2
VSS_LV  
SR Voltage on VSS_LV (low voltage digital  
supply) pins with respect to ground (VSS  
VSS 0.1 VSS + 0.1  
3.0 3.6  
V
V
)
3
VDD_BV  
SR Voltage on VDD_BV pin (regulator supply)  
with respect to ground (VSS  
Relative to VDD  
)
VDD 0.1 VDD + 0.1  
VSS 0.1 VSS + 0.1  
VSS_ADC  
SR Voltage on VSS_HV_ADC0,  
V
V
VSS_HV_ADC1 (ADC reference) pin with  
respect to ground (VSS  
)
3.05  
VDD 0.1 VDD + 0.1  
3.6  
4
VDD_ADC  
SR Voltage on VDD_HV_ADC0,  
VDD_HV_ADC1 (ADC reference) with  
Relative to VDD  
respect to ground (VSS  
)
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
37  
Electrical characteristics  
Table 12. Recommended operating conditions (3.3 V) (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VIN  
SR Voltage on any GPIO pin with respect to  
Relative to VDD  
VSS 0.1  
VDD + 0.1  
5
V
ground (VSS  
)
IINJPAD  
IINJSUM  
TVDD  
SR Injected input current on any pin during  
overload condition  
5  
mA  
SR Absolute sum of all injected input currents  
during overload condition  
50  
50  
SR VDD slope to ensure correct power up6  
3.07  
40  
40  
40  
40  
40  
40  
0.25 V/µs V/s  
TA C-Grade Part SR Ambient temperature under bias  
TJ C-Grade Part SR Junction temperature under bias  
TA V-Grade Part SR Ambient temperature under bias  
TJ V-Grade Part SR Junction temperature under bias  
TA M-Grade Part SR Ambient temperature under bias  
TJ M-Grade Part SR Junction temperature under bias  
fCPU 64 MHz8  
85  
°C  
110  
105  
130  
125  
150  
fCPU 64 MHz8  
fCPU 64 MHz8  
1
2
3
100 nF capacitance needs to be provided between each VDD/VSS pair.  
330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.  
470 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed  
depending on external regulator characteristics). Supply ramp slope on VDD_BV should always be faster or equal  
to slope of VDD_HV. Otherwise, device may enter regulator bypass mode if slope on VDD_BV is slower.  
4
5
100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.  
Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical  
characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL  
device is reset.  
,
6
7
8
Guaranteed by device validation  
Minimum value of TVDD must be guaranteed until VDD reaches 2.6 V (maximum value of VPORH  
)
When the FMPLL uses the frequency modulation with a modulation depth of 4ꢀ from the center spread frequency,  
the maximum value of fCPU is 66.56 MHz.  
Table 13. Recommended operating conditions (5.0 V)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS  
SR Digital ground on VSS_HV pins  
0
0
V
V
1
VDD  
SR Voltage on VDD_HV pins with respect to ground  
Voltage drop2  
4.5  
3.0  
5.5  
5.5  
(VSS  
)
3
VSS_LV  
SR Voltage on VSS_LV (low voltage digital supply)  
VSS 0.1 VSS + 0.1  
V
V
pins with respect to ground (VSS  
)
4
VDD_BV  
SR Voltage on VDD_BV pin (regulator supply) with  
respect to ground (VSS  
4.5  
3.0  
3.0  
5.5  
5.5  
)
Voltage drop2  
Relative to VDD  
VDD + 0.1  
MPC5607B Microcontroller Data Sheet, Rev. 9  
38  
NXP Semiconductors  
Electrical characteristics  
Table 13. Recommended operating conditions (5.0 V) (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS_ADC  
SR Voltage on VSS_HV_ADC0, VSS_HV_ADC1  
(ADC reference) pin with respect to ground (VSS  
VSS 0.1 VSS + 0.1  
V
V
)
5
VDD_ADC  
SR Voltage on VDD_HV_ADC0, VDD_HV_ADC1  
4.5  
3.0  
5.5  
5.5  
(ADC reference) with respect to ground (VSS  
)
Voltage drop2  
Relative to VDD VDD 0.1 VDD + 0.1  
VIN  
SR Voltage on any GPIO pin with respect to ground  
(VSS  
Relative to VDD  
VSS 0.1  
VDD + 0.1  
5
V
)
IINJPAD  
IINJSUM  
TVDD  
SR Injected input current on any pin during overload  
condition  
5  
mA  
SR Absolute sum of all injected input currents during  
overload condition  
50  
50  
SR VDD slope to ensure correct power up6  
3.07  
40  
40  
40  
40  
40  
40  
0.25 V/µs V/s  
TA C-Grade Part SR Ambient temperature under bias  
TJ C-Grade Part SR Junction temperature under bias  
TA V-Grade Part SR Ambient temperature under bias  
TJ V-Grade Part SR Junction temperature under bias  
TA M-Grade Part SR Ambient temperature under bias  
TJ M-Grade Part SR Junction temperature under bias  
fCPU 64 MHz8  
85  
°C  
110  
105  
130  
125  
150  
fCPU 64 MHz8  
fCPU 64 MHz8  
1
100 nF capacitance needs to be provided between each VDD/VSS pair.  
2
Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.0 V. However, certain  
analog electrical characteristics will not be guaranteed to stay within the stated limits.  
3
4
330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.  
470 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed  
depending on external regulator characteristics). While the supply voltage ramps up, the slope on VDD_BV should  
be less than 0.9VDD_HV in order to ensure the device does not enter regulator bypass mode.  
5
6
7
8
100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.  
Guaranteed by device validation  
Minimum value of TVDD must be guaranteed until VDD reaches 2.6 V (maximum value of VPORH  
)
When the FMPLL uses the frequency modulation with a modulation depth of 4ꢀ from the center spread frequency,  
the maximum value of fCPU is 66.56 MHz.  
NOTE  
RAM data retention is guaranteed with V  
not below 1.08 V.  
DD_LV  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
39  
Electrical characteristics  
4.5  
Thermal characteristics  
4.5.1  
External ballast resistor recommendations  
External ballast resistor on V  
pin helps in reducing the overall power dissipation inside the device.  
DD_BV  
This resistor is required only when maximum power consumption exceeds the limit imposed by package  
thermal characteristics.  
As stated in Table 14 LQFP thermal characteristics, considering a thermal resistance of 144 LQFP as  
48.3 °C/W, at ambient temperature T = 125 °C, the junction temperature T will cross 150 °C if the total  
A
j
power dissipation is greater than (150 – 125)/48.3 = 517 mW. Therefore, the total device current I  
DDMAX  
at 125 °C/5.5 V must not exceed 94.1 mA (i.e., PD/VDD). Assuming an average I (V  
) of  
DD DD_HV  
15–20 mA consumption typically during device RUN mode, the LV domain consumption I (V  
)
DD DD_BV  
is thus limited to I  
– I (V  
), i.e., 80 mA.  
DDMAX  
DD DD_HV  
Therefore, respecting the maximum power allowed as explained in 4.5.2, Package thermal characteristics,  
it is recommended to use this resistor only in the 125 °C/5.5 V operating corner as per the following  
guidelines:  
If I (V  
) < 80 mA, then no resistor is required.  
DD DD_BV  
If 80 mA < I (V  
) < 90 mA, then 4 Ω resistor can be used.  
DD DD_BV  
If I (V  
) > 90 mA, then 8 Ω resistor can be used.  
DD DD_BV  
Using resistance in the range of 4–8 Ω, the gain will be around 10–20% of total consumption on V  
.
DD_BV  
For example, if 8 Ω resistor is used, then power consumption when I (V  
) is 110 mA is equivalent  
DD DD_BV  
to power consumption when I (V  
) is 90 mA (approximately) when resistor not used.  
DD DD_BV  
In order to ensure correct power up, the minimum V  
to be guaranteed is 30 ms/V. If the supply ramp  
DD_BV  
is slower than this value, then LVDHV3B monitoring ballast supply V  
pin gets triggered leading to  
DD_BV  
device reset. Until the supply reaches certain threshold, this low voltage detector (LVD) generates  
destructive reset event in the system. This threshold depends on the maximum I (V  
) possible  
DD DD_BV  
across the external resistor.  
4.5.2  
Package thermal characteristics  
1
Table 14. LQFP thermal characteristics  
Value  
Min Typ Max  
Symbol  
C
Parameter  
Conditions2  
Pin count  
Unit  
RθJA CC D Thermal resistance,  
junction-to-ambient natural  
convection3  
Single-layer board — 1s  
100  
144  
176  
100  
144  
176  
64 °C/W  
64  
64  
Four-layer board — 2s2p  
49.7  
48.3  
47.3  
MPC5607B Microcontroller Data Sheet, Rev. 9  
40  
NXP Semiconductors  
Electrical characteristics  
1
Table 14. LQFP thermal characteristics (continued)  
Value  
Unit  
Symbol  
C
Parameter  
Conditions2  
Pin count  
Min Typ Max  
RθJB CC  
Thermal resistance,  
Single-layer board — 1s  
100  
144  
176  
100  
144  
176  
100  
144  
176  
100  
144  
176  
36 °C/W  
38  
junction-to-board4  
38  
Four-layer board — 2s2p  
Single-layer board — 1s  
Four-layer board — 2s2p  
33.6  
33.4  
33.4  
23 °C/W  
23  
RθJC CC  
Thermal resistance,  
junction-to-case5  
23  
19.8  
19.2  
18.8  
1
2
3
Thermal characteristics are targets based on simulation.  
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C.  
Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board  
meets JEDEC specification for this package. When Greek letters are not available, the symbols are typed as RthJA  
and RthJMA  
.
4
5
Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC  
specification for the specified package. When Greek letters are not available, the symbols are typed as RthJB  
.
Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate  
temperature is used for the case temperature. Reported value includes the thermal resistance of the interface  
layer. When Greek letters are not available, the symbols are typed as RthJC  
.
4.5.3  
Power considerations  
The average chip-junction temperature, T , in degrees Celsius, may be calculated using Equation 1:  
J
T = T + (P x R )  
θJA  
Eqn. 1  
J
A
D
Where:  
T is the ambient temperature in °C.  
A
R
is the package junction-to-ambient thermal resistance, in °C/W.  
θJA  
P is the sum of P  
and P (P = P  
+ P ).  
D
INT  
I/O  
D
INT I/O  
P
P
is the product of I and V , expressed in watts. This is the chip internal power.  
DD DD  
INT  
I/O  
represents the power dissipation on input and output pins; user determined.  
Most of the time for the applications, P < P  
and may be neglected. On the other hand, P may be  
I/O  
INT  
I/O  
significant, if the device is configured to continuously drive external modules and/or memories.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
41  
Electrical characteristics  
An approximate relationship between P and T (if P is neglected) is given by:  
D
J
I/O  
P = K / (T + 273 °C)  
Eqn. 2  
Eqn. 3  
D
J
Therefore, solving equations 1 and 2:  
2
K = P x (T + 273 °C) + R  
x P  
D
D
A
θJA  
Where:  
K is a constant for the particular part, which may be determined from Equation 3 by measuring  
P (at equilibrium) for a known T Using this value of K, the values of P and T may be  
D
A.  
D
J
obtained by solving equations 1 and 2 iteratively for any value of T .  
A
4.6  
I/O pad electrical characteristics  
I/O pad types  
4.6.1  
The device provides four main I/O pad types depending on the associated alternate functions:  
Slow pads—are the most common pads, providing a good compromise between transition time and  
low electromagnetic emission.  
Medium pads—provide transition fast enough for the serial communication channels with  
controlled current to reduce electromagnetic emission.  
Fast pads—provide maximum speed. These are used for improved Nexus debugging capability.  
Input only pads—are associated with ADC channels and 32 kHz low power external crystal  
oscillator providing low input leakage.  
Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of  
reducing AC performance.  
4.6.2  
I/O input DC characteristics  
Table 15 provides input DC electrical characteristics as described in Figure 6.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
42  
NXP Semiconductors  
Electrical characteristics  
V
IN  
V
DD  
V
IH  
V
HYS  
V
IL  
PDIx = ‘1  
(GPDI register of SIUL)  
PDIx = ‘0’  
Figure 6. I/O input DC electrical characteristics definition  
Table 15. I/O input DC electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VIH SR P Input high level CMOS (Schmitt  
Trigger)  
0.65VDD  
VDD + 0.4  
V
VIL SR P Input low level CMOS (Schmitt  
Trigger)  
0.4  
0.35VDD  
VHYS CC C Input hysteresis CMOS (Schmitt  
Trigger)  
0.1VDD  
ILKG CC D Digital input leakage  
No injection  
on adjacent  
pin  
TA = 40 °C  
TA = 25 °C  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
2
2
200  
200  
300  
500  
1000  
40  
nA  
D
D
D
P
5
12  
70  
2
WFI SR P Wakeup input filtered pulse  
ns  
ns  
2
WNFI SR P Wakeup input not filtered pulse  
1000  
1
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and  
voltage.  
2
4.6.3  
I/O output DC characteristics  
The following tables provide DC characteristics for bidirectional pads:  
Table 16 provides weak pull figures. Both pull-up and pull-down resistances are supported.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
43  
Electrical characteristics  
Table 17 provides output driver characteristics for I/O pads when in SLOW configuration.  
Table 18 provides output driver characteristics for I/O pads when in MEDIUM configuration.  
Table 19 provides output driver characteristics for I/O pads when in FAST configuration.  
Table 16. I/O pull-up/pull-down DC electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
|IWPU| CC P Weak pull-up current  
VIN = VIL, VDD = 5.0 V 10ꢀ PAD3V5V = 0  
10  
150 µA  
250  
absolute value  
C
PAD3V5V = 12 10  
P
VIN = VIL, VDD = 3.3 V 10ꢀ PAD3V5V = 1  
10  
10  
10  
10  
150  
|IWPD| CC P Weak pull-down current  
VIN = VIH, VDD = 5.0 V 10ꢀ PAD3V5V = 0  
PAD3V5V = 1  
150 µA  
250  
absolute value  
C
P
VIN = VIH, VDD = 3.3 V 10ꢀ PAD3V5V = 1  
150  
1
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
2
Table 17. SLOW configuration output buffer electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VOH CC P Output high level  
SLOW configuration  
Push Pull IOH = 2 mA,  
0.8VDD  
V
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
(recommended)  
C
C
I
OH = 2 mA,  
0.8VDD  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 12  
IOH = 1 mA,  
VDD 0.8  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
(recommended)  
VOL CC P Output low level  
SLOW configuration  
Push Pull IOL = 2 mA,  
0.1VDD  
V
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
(recommended)  
C
C
IOL = 2 mA,  
0.1VDD  
0.5  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 12  
IOL = 1 mA,  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
(recommended)  
1
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
MPC5607B Microcontroller Data Sheet, Rev. 9  
44  
NXP Semiconductors  
Electrical characteristics  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
2
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
Table 18. MEDIUM configuration output buffer electrical characteristics  
Value  
Symbol C  
Parameter  
Conditions1  
Unit  
Min  
Typ Max  
VOH CC C Output high level  
MEDIUM configuration  
Push Pull IOH = 3.8 mA,  
0.8VDD  
V
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
P
IOH = 2 mA,  
0.8VDD  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
(recommended)  
C
C
I
OH = 1 mA,  
0.8VDD  
VDD = 5.0 V 10ꢀ, PAD3V5V = 12  
I
OH = 1 mA,  
DD = 3.3 V 10ꢀ, PAD3V5V = 1  
(recommended)  
VDD 0.8  
V
C
I
OH = 100 µA,  
0.8VDD  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
VOL CC C Output low level  
Push Pull IOL = 3.8 mA,  
0.2VDD  
0.1VDD  
V
MEDIUM configuration  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
P
IOL = 2 mA,  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
(recommended)  
C
C
IOL = 1 mA,  
0.1VDD  
0.5  
VDD = 5.0 V 10ꢀ, PAD3V5V = 12  
IOL = 1 mA,  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
(recommended)  
C
I
OL = 100 µA,  
0.1VDD  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
45  
Electrical characteristics  
Table 19. FAST configuration output buffer electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VOH CC P Output high level Push Pull IOH = 14 mA,  
FAST configuration VDD = 5.0 V 10ꢀ,  
0.8VDD  
V
PAD3V5V = 0  
(recommended)  
C
C
I
V
OH = 7 mA,  
DD = 5.0 V 10ꢀ,  
PAD3V5V = 12  
0.8VDD  
I
V
OH = 11 mA,  
DD = 3.3 V 10ꢀ,  
VDD 0.8  
PAD3V5V = 1  
(recommended)  
VOL CC P Output low level  
FAST configuration  
Push Pull IOL = 14 mA,  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
0.1VDD  
V
(recommended)  
C
C
IOL = 7 mA,  
0.1VDD  
0.5  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 12  
IOL = 11 mA,  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
(recommended)  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
4.6.4  
Output pin transition times  
Table 20. Output pin transition times  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
ttr  
CC D Output transition time output pin2 CL = 25 pF  
SLOW configuration  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
50  
ns  
T
D
D
T
CL = 50 pF  
CL = 100 pF  
CL = 25 pF  
CL = 50 pF  
CL = 100 pF  
100  
125  
50  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
100  
125  
D
MPC5607B Microcontroller Data Sheet, Rev. 9  
46  
NXP Semiconductors  
Electrical characteristics  
Table 20. Output pin transition times (continued)  
Parameter  
Conditions1  
Value  
Unit  
Min Typ Max  
Symbol  
C
ttr  
CC D Output transition time output pin2 CL = 25 pF  
MEDIUM configuration  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
SIUL.PCRx.SRC = 1  
10  
20  
40  
12  
25  
40  
4
ns  
T
D
D
T
CL = 50 pF  
CL = 100 pF  
CL = 25 pF  
CL = 50 pF  
CL = 100 pF  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
SIUL.PCRx.SRC = 1  
D
ttr  
CC D Output transition time output pin2 CL = 25 pF  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
ns  
FAST configuration  
CL = 50 pF  
6
CL = 100 pF  
CL = 25 pF  
CL = 50 pF  
CL = 100 pF  
12  
4
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
7
12  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
CL includes device and package capacitances (CPKG < 5 pF).  
4.6.5  
I/O pad current specification  
The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a  
/V supply pair as described in Table 21.  
V
DD SS  
Table 22 provides I/O consumption figures.  
In order to ensure device reliability, the average current of the I/O on a single segment should remain below  
the I  
maximum value.  
AVGSEG  
Table 21. I/O supply segments  
Supply segment  
Package  
1
2
3
4
5
6
7
8
208  
Equivalent to 176 LQFP segment pad distribution  
MCKO  
MDOn  
/MSEO  
MAPBGA1  
176 LQFP  
144 LQFP  
100 LQFP  
pin7 –  
pin27  
pin28 –  
pin57  
pin59 –  
pin85  
pin86 –  
pin123  
pin124 –  
pin150  
pin151 –  
pin6  
pin20 –  
pin49  
pin51 –  
pin99  
pin100 –  
pin122  
pin 123 –  
pin19  
pin16 –  
pin35  
pin37 –  
pin69  
pin70 –  
pin83  
pin84 –  
pin15  
1
208 MAPBGA available only as development package for Nexus2+  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
47  
Electrical characteristics  
Table 22. I/O consumption  
Conditions1  
Value  
Symbol  
C
Parameter  
Unit  
Min Typ Max  
,2  
ISWTSLW CC D Dynamic I/O current for  
SLOW configuration  
CL = 25 pF  
CL = 25 pF  
CL = 25 pF  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
20 mA  
VDD = 3.3 V 10ꢀ,  
16  
PAD3V5V = 1  
2
ISWTMED CC D Dynamic I/O current for  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
29 mA  
17  
MEDIUM configuration  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
2
ISWTFST CC D Dynamic I/O current for  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
110 mA  
50  
FAST configuration  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
IRMSSLW CC D Root mean square I/O  
current for SLOW  
CL = 25 pF, 2 MHz  
CL = 25 pF, 4 MHz  
CL = 100 pF, 2 MHz  
CL = 25 pF, 2 MHz  
CL = 25 pF, 4 MHz  
CL = 100 pF, 2 MHz  
CL = 25 pF, 13 MHz  
CL = 25 pF, 40 MHz  
CL = 100 pF, 13 MHz  
CL = 25 pF, 13 MHz  
CL = 25 pF, 40 MHz  
CL = 100 pF, 13 MHz  
CL = 25 pF, 40 MHz  
CL = 25 pF, 64 MHz  
CL = 100 pF, 40 MHz  
CL = 25 pF, 40 MHz  
CL = 25 pF, 64 MHz  
CL = 100 pF, 40 MHz  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
2.3 mA  
3.2  
configuration  
6.6  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
1.6  
2.3  
4.7  
IRMSMED CC D Root mean square I/O  
current for MEDIUM  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
6.6 mA  
13.4  
18.3  
5
configuration  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
8.5  
11  
IRMSFST CC D Root mean square I/O  
current for FAST  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
22 mA  
33  
configuration  
56  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
14  
20  
35  
IAVGSEG SR D Sum of all the static I/O  
current within a supply  
segment  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
70 mA  
65  
1
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to125 °C, unless otherwise specified  
Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.  
2
Table 23 provides the weight of concurrent switching I/Os.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
48  
NXP Semiconductors  
Electrical characteristics  
Due to the dynamic current limitations, the sum of the weight of concurrent switching I/Os on a single  
segment must not exceed 100% to ensure device functionality.  
1
Table 23. I/O weight  
176 LQFP  
Weight 5 V Weight 3.3 V  
SRC2 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1  
144/100 LQFP  
Supply segment  
Weight 5 V Weight 3.3 V  
Pad  
176  
144  
100  
LQFP LQFP LQFP  
6
4
4
PB[3]  
PC[9]  
PC[14]  
PC[15]  
PJ[4]  
5ꢀ  
4ꢀ  
4ꢀ  
3ꢀ  
3ꢀ  
2ꢀ  
3ꢀ  
3ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
6ꢀ  
5ꢀ  
4ꢀ  
4ꢀ  
3ꢀ  
3ꢀ  
3ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
13ꢀ  
13ꢀ  
13ꢀ  
12ꢀ  
15ꢀ  
15ꢀ  
15ꢀ  
15ꢀ  
4ꢀ  
4ꢀ  
3ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
3ꢀ  
3ꢀ  
4ꢀ  
4ꢀ  
18ꢀ  
16ꢀ  
4
4
1
PH[15]  
PH[13]  
PH[14]  
PI[6]  
PI[7]  
PG[5]  
PG[4]  
PG[3]  
PG[2]  
PA[2]  
10ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
7ꢀ  
7ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
5ꢀ  
12ꢀ  
11ꢀ  
11ꢀ  
10ꢀ  
10ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
8ꢀ  
8ꢀ  
7ꢀ  
7ꢀ  
6ꢀ  
6ꢀ  
5ꢀ  
13ꢀ  
12ꢀ  
6ꢀ  
5ꢀ  
12ꢀ  
11ꢀ  
PE[0]  
PA[1]  
PE[1]  
PE[8]  
PE[9]  
PE[10]  
PA[0]  
6ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
10ꢀ  
10ꢀ  
9ꢀ  
9ꢀ  
6ꢀ  
5ꢀ  
8ꢀ  
7ꢀ  
PE[11]  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
49  
Electrical characteristics  
Supply segment  
1
Table 23. I/O weight (continued)  
176 LQFP  
144/100 LQFP  
Weight 5 V Weight 3.3 V  
SRC2 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1  
Weight 5 V  
Weight 3.3 V  
Pad  
176  
144  
100  
LQFP LQFP LQFP  
2
1
1
PG[9]  
PG[8]  
PC[11]  
PC[10]  
PG[7]  
PG[6]  
PB[0]  
9ꢀ  
9ꢀ  
10ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
11ꢀ  
11ꢀ  
10ꢀ  
10ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
10ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
11ꢀ  
11ꢀ  
10ꢀ  
10ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
13ꢀ  
12ꢀ  
9ꢀ  
13ꢀ  
12ꢀ  
1
9ꢀ  
9ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
9ꢀ  
14ꢀ  
14ꢀ  
12ꢀ  
12ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
9ꢀ  
14ꢀ  
14ꢀ  
12ꢀ  
12ꢀ  
PB[1]  
1
PF[9]  
PF[8]  
14ꢀ  
15ꢀ  
13ꢀ  
13ꢀ  
14ꢀ  
15ꢀ  
13ꢀ  
13ꢀ  
PF[12]  
PC[6]  
PC[7]  
PF[10]  
PF[11]  
PA[15]  
PF[13]  
PA[14]  
PA[4]  
1
14ꢀ  
12ꢀ  
14ꢀ  
12ꢀ  
8ꢀ  
12ꢀ  
10ꢀ  
8ꢀ  
12ꢀ  
10ꢀ  
1
8ꢀ  
8ꢀ  
8ꢀ  
11ꢀ  
10ꢀ  
8ꢀ  
11ꢀ  
10ꢀ  
7ꢀ  
9ꢀ  
7ꢀ  
9ꢀ  
PA[13]  
PA[12]  
7ꢀ  
10ꢀ  
8ꢀ  
9ꢀ  
7ꢀ  
10ꢀ  
8ꢀ  
9ꢀ  
7ꢀ  
8ꢀ  
7ꢀ  
8ꢀ  
MPC5607B Microcontroller Data Sheet, Rev. 9  
50  
NXP Semiconductors  
Electrical characteristics  
1
Table 23. I/O weight (continued)  
176 LQFP  
144/100 LQFP  
Weight 5 V Weight 3.3 V  
SRC2 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1  
Supply segment  
Weight 5 V  
Weight 3.3 V  
Pad  
176  
144  
100  
LQFP LQFP LQFP  
3
2
2
PB[9]  
PB[8]  
PB[10]  
PF[0]  
PF[1]  
PF[2]  
PF[3]  
PF[4]  
PF[5]  
PF[6]  
PF[7]  
PJ[3]  
PJ[2]  
PJ[1]  
PJ[0]  
PI[15]  
PI[14]  
PD[0]  
PD[1]  
PD[2]  
PD[3]  
PD[4]  
PD[5]  
PD[6]  
PD[7]  
1ꢀ  
1ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
6ꢀ  
6ꢀ  
7ꢀ  
7ꢀ  
8ꢀ  
8ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
1ꢀ  
1ꢀ  
7ꢀ  
8ꢀ  
8ꢀ  
9ꢀ  
9ꢀ  
10ꢀ  
10ꢀ  
11ꢀ  
11ꢀ  
2
2
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
2ꢀ  
2ꢀ  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
51  
Electrical characteristics  
Supply segment  
1
Table 23. I/O weight (continued)  
176 LQFP  
144/100 LQFP  
Weight 5 V Weight 3.3 V  
SRC2 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1  
Weight 5 V  
Weight 3.3 V  
Pad  
176  
144  
100  
LQFP LQFP LQFP  
4
2
2
PD[8]  
PB[4]  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
2ꢀ  
2ꢀ  
2ꢀ  
2ꢀ  
2ꢀ  
2ꢀ  
2ꢀ  
2ꢀ  
PB[5]  
1ꢀ  
1ꢀ  
PB[6]  
1ꢀ  
1ꢀ  
PB[7]  
1ꢀ  
1ꢀ  
PD[9]  
PD[10]  
PD[11]  
PB[11]  
PD[12]  
PB[12]  
PD[13]  
PB[13]  
PD[14]  
PB[14]  
PD[15]  
PB[15]  
PI[8]  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
4
2
2
1ꢀ  
1ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
9ꢀ  
13ꢀ  
13ꢀ  
13ꢀ  
13ꢀ  
13ꢀ  
13ꢀ  
13ꢀ  
13ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
10ꢀ  
7ꢀ  
15ꢀ  
14ꢀ  
14ꢀ  
14ꢀ  
14ꢀ  
13ꢀ  
13ꢀ  
17ꢀ  
17ꢀ  
17ꢀ  
17ꢀ  
16ꢀ  
16ꢀ  
15ꢀ  
2
2
PI[9]  
PI[10]  
PI[11]  
PI[12]  
PI[13]  
PA[3]  
11ꢀ  
10ꢀ  
10ꢀ  
6ꢀ  
6ꢀ  
5ꢀ  
5ꢀ  
4ꢀ  
4ꢀ  
13ꢀ  
12ꢀ  
12ꢀ  
7ꢀ  
7ꢀ  
6ꢀ  
6ꢀ  
5ꢀ  
4ꢀ  
PG[13]  
PG[12]  
PH[0]  
PH[1]  
PH[2]  
PH[3]  
PG[1]  
PG[0]  
9ꢀ  
13ꢀ  
13ꢀ  
8ꢀ  
8ꢀ  
7ꢀ  
7ꢀ  
11ꢀ  
11ꢀ  
7ꢀ  
7ꢀ  
6ꢀ  
6ꢀ  
14ꢀ  
14ꢀ  
9ꢀ  
8ꢀ  
7ꢀ  
7ꢀ  
13ꢀ  
12ꢀ  
8ꢀ  
7ꢀ  
7ꢀ  
6ꢀ  
9ꢀ  
6ꢀ  
6ꢀ  
7ꢀ  
5ꢀ  
6ꢀ  
5ꢀ  
5ꢀ  
4ꢀ  
5ꢀ  
4ꢀ  
5ꢀ  
4ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
MPC5607B Microcontroller Data Sheet, Rev. 9  
52  
NXP Semiconductors  
Electrical characteristics  
1
Table 23. I/O weight (continued)  
176 LQFP  
144/100 LQFP  
Weight 5 V Weight 3.3 V  
SRC2 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1  
Supply segment  
Weight 5 V  
Weight 3.3 V  
Pad  
176  
144  
100  
LQFP LQFP LQFP  
5
3
3
PF[15]  
PF[14]  
PE[13]  
PA[7]  
4ꢀ  
4ꢀ  
4ꢀ  
5ꢀ  
5ꢀ  
6ꢀ  
6ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
6ꢀ  
4ꢀ  
5ꢀ  
5ꢀ  
6ꢀ  
6ꢀ  
7ꢀ  
8ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
7ꢀ  
7ꢀ  
6ꢀ  
6ꢀ  
5ꢀ  
5ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
5ꢀ  
5ꢀ  
6ꢀ  
6ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
7ꢀ  
6ꢀ  
4ꢀ  
5ꢀ  
5ꢀ  
6ꢀ  
6ꢀ  
7ꢀ  
8ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
5ꢀ  
PA[8]  
PA[9]  
PA[10]  
PA[11]  
PE[12]  
PG[14]  
PG[15]  
PE[14]  
PE[15]  
PG[10]  
PG[11]  
PH[11]  
PH[12]  
PI[5]  
3
11ꢀ  
10ꢀ  
11ꢀ  
10ꢀ  
11ꢀ  
10ꢀ  
11ꢀ  
10ꢀ  
11ꢀ  
10ꢀ  
10ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
11ꢀ  
9ꢀ  
3
PI[4]  
PC[3]  
PC[2]  
PA[5]  
6ꢀ  
6ꢀ  
6ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
8ꢀ  
7ꢀ  
7ꢀ  
6ꢀ  
6ꢀ  
5ꢀ  
8ꢀ  
8ꢀ  
7ꢀ  
7ꢀ  
8ꢀ  
8ꢀ  
7ꢀ  
7ꢀ  
PA[6]  
PH[10]  
PC[1]  
7ꢀ  
19ꢀ  
6ꢀ  
13ꢀ  
7ꢀ  
19ꢀ  
6ꢀ  
13ꢀ  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
53  
Electrical characteristics  
Supply segment  
1
Table 23. I/O weight (continued)  
176 LQFP  
144/100 LQFP  
Weight 5 V Weight 3.3 V  
SRC2 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1  
Weight 5 V  
Weight 3.3 V  
Pad  
176  
144  
100  
LQFP LQFP LQFP  
6
4
4
PC[0]  
PH[9]  
PE[2]  
PE[3]  
PC[5]  
PC[4]  
PE[4]  
PE[5]  
PH[4]  
PH[5]  
PH[6]  
PH[7]  
PH[8]  
PE[6]  
PE[7]  
PI[3]  
6ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
9ꢀ  
7ꢀ  
8ꢀ  
8ꢀ  
7ꢀ  
7ꢀ  
10ꢀ  
8ꢀ  
9ꢀ  
8ꢀ  
10ꢀ  
10ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
12ꢀ  
8ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
8ꢀ  
11ꢀ  
12ꢀ  
12ꢀ  
13ꢀ  
13ꢀ  
14ꢀ  
14ꢀ  
9ꢀ  
10ꢀ  
10ꢀ  
11ꢀ  
11ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
9ꢀ  
8ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
11ꢀ  
11ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
13ꢀ  
13ꢀ  
13ꢀ  
14ꢀ  
9ꢀ  
8ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
9ꢀ  
9ꢀ  
4
10ꢀ  
10ꢀ  
10ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
15ꢀ  
15ꢀ  
16ꢀ  
16ꢀ  
16ꢀ  
13ꢀ  
13ꢀ  
14ꢀ  
14ꢀ  
14ꢀ  
4
4
PI[2]  
PI[1]  
PI[0]  
PC[12]  
PC[13]  
PC[8]  
PB[2]  
12ꢀ  
11ꢀ  
12ꢀ  
13ꢀ  
13ꢀ  
13ꢀ  
18ꢀ  
15ꢀ  
15ꢀ  
15ꢀ  
15ꢀ  
16ꢀ  
11ꢀ  
10ꢀ  
18ꢀ  
16ꢀ  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
SRC: “Slew Rate Control” bit in SIU_PCRx  
4.6.6  
RESET electrical characteristics  
The device implements a dedicated bidirectional RESET pin.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
54  
NXP Semiconductors  
Electrical characteristics  
V
DD  
V
DDMIN  
RESET  
V
IH  
V
IL  
device reset forced by RESET  
device start-up phase  
Figure 7. Start-up reset requirements  
VRESET  
hw_rst  
‘1’  
V
DD  
V
IH  
V
IL  
‘0’  
filtered by  
lowpass filter  
unknown reset  
state  
filtered by  
hysteresis  
filtered by  
lowpass filter  
device under hardware reset  
W
W
FRST  
FRST  
W
NFRST  
Figure 8. Noise filtering on reset signal  
Table 24. Reset electrical characteristics  
Value  
Unit  
Symbol  
C
Parameter  
Conditions1  
Min  
Typ  
Max  
VIH  
SR P Input High Level CMOS  
(Schmitt Trigger)  
0.65VDD  
VDD + 0.4  
V
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
55  
Electrical characteristics  
Table 24. Reset electrical characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VIL  
SR P Input low Level CMOS  
(Schmitt Trigger)  
0.4  
0.35VDD  
V
V
V
VHYS CC C Input hysteresis CMOS  
(Schmitt Trigger)  
0.1VDD  
VOL  
CC P Output low level  
Push Pull, IOL = 2 mA,  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
(recommended)  
0.1VDD  
Push Pull, IOL = 1 mA,  
0.1VDD  
0.5  
VDD = 5.0 V 10ꢀ, PAD3V5V = 12  
Push Pull, IOL = 1 mA,  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
(recommended)  
ttr  
CC D Output transition time output CL = 25 pF,  
pin3 MEDIUM configuration  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
10  
20  
40  
12  
25  
40  
ns  
CL = 50 pF,  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
CL = 100 pF,  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
CL = 25 pF,  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
CL = 50 pF,  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
CL = 100 pF,  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
WFRST SR P RESET input filtered pulse  
1000  
10  
40  
ns  
ns  
µA  
WNFRST SR P RESET input not filtered pulse  
|IWPU  
|
CC P Weak pull-up current absolute VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
value  
150  
150  
250  
D
P
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
10  
V
DD = 5.0 V 10ꢀ, PAD3V5V = 14  
10  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of  
the device reference manual).  
3
4
CL includes device and package capacitance (CPKG < 5 pF).  
The configuration PAD3V5 = 1 when VDD = 5 V is only transient configuration during power-up. All pads but RESET  
and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
56  
NXP Semiconductors  
Electrical characteristics  
4.7  
Power management electrical characteristics  
Voltage regulator electrical characteristics  
4.7.1  
The device implements an internal voltage regulator to generate the low voltage core supply V  
from  
DD_LV  
the high voltage ballast supply V  
. The regulator itself is supplied by the common I/O supply V  
.
DD_BV  
DD  
The following supplies are involved:  
HV: High voltage external power supply for voltage regulator module. This must be provided  
externally through V power pin.  
DD  
BV: High voltage external power supply for internal ballast module. This must be provided  
externally through V  
power pin. Voltage values should be aligned with V  
.
DD_BV  
DD  
LV: Low voltage internal power supply for core, FMPLL and Flash digital logic. This is generated  
by the internal voltage regulator but provided outside to connect stability capacitor. It is further  
split into four main domains to ensure noise isolation between critical LV modules within the  
device:  
— LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL  
through double bonding.  
— LV_CFLA: Low voltage supply for code flash module. It is supplied with dedicated ballast and  
shorted to LV_COR through double bonding.  
— LV_DFLA: Low voltage supply for data flash module. It is supplied with dedicated ballast and  
shorted to LV_COR through double bonding.  
— LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
57  
Electrical characteristics  
C
(LV_COR/LV_CFLA)  
REG2  
V
DD  
V
V
DD_LV  
SS_LV  
V
DD_BV  
DD_LVn  
SS_LVn  
V
REF  
V
DD_BV  
V
DD_LV  
DEVICE  
V
Voltage Regulator  
I
V
SS_LV  
V
V
V
V
V
DD  
SS_LV  
DD_LV  
SS  
DEVICE  
C
C
DEC2  
REG3  
(LV_COR/LV_PLL)  
(supply/IO decoupling)  
Figure 9. Voltage regulator capacitance connection  
The internal voltage regulator requires external capacitance (C  
) to be connected to the device in order  
REGn  
to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as  
near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board  
to less than 5 nH.  
Each decoupling capacitor must be placed between each of the three V  
/V  
supply pairs to  
DD_LV SS_LV  
ensure stable voltage (see 4.4, Recommended operating conditions).  
Table 25. Voltage regulator electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
CREGn  
RREG  
SR — Internal voltage regulator external  
capacitance  
200  
500  
nF  
Ω
SR — Stability capacitor equivalent serial  
resistance  
Range:  
0.2  
10 kHz to 20 MHz  
CDEC1  
SR — Decoupling capacitance2 ballast  
VDD_BV/VSS_LV pair:  
VDD_BV = 4.5 V to 5.5 V  
1003  
400  
4704  
nF  
V
V
DD_BV/VSS_LV pair:  
DD_BV = 3 V to 3.6 V  
MPC5607B Microcontroller Data Sheet, Rev. 9  
58  
NXP Semiconductors  
Electrical characteristics  
Table 25. Voltage regulator electrical characteristics (continued)  
Value  
Unit  
Symbol  
C
Parameter  
Conditions1  
Min  
Typ  
Max  
CDEC2  
VMREG  
SR — Decoupling capacitance regulator  
supply  
VDD/VSS pair  
10  
100  
nF  
V
CC T Main regulator output voltage  
P
Before exiting from reset  
1.16  
1.32  
1.28  
After trimming  
IMREG  
SR — Main regulator current provided to  
VDD_LV domain  
150  
mA  
mA  
IMREGINT CC D Main regulator module current  
consumption  
IMREG = 200 mA  
IMREG = 0 mA  
2
1
VLPREG  
ILPREG  
CC P Low-power regulator output voltage After trimming  
1.16  
1.28  
15  
V
SR — Low-power regulator current provided  
to VDD_LV domain  
mA  
ILPREGINT CC D Low-power regulator module current ILPREG = 15 mA;  
5
600  
µA  
consumption  
TA = 55 °C  
ILPREG = 0 mA;  
TA = 55 °C  
VULPREG CC P Ultra low power regulator output  
voltage  
After trimming  
1.16  
1.28  
2
V
IULPREG  
SR — Ultra low power regulator current  
provided to VDD_LV domain  
5
mA  
µA  
IULPREGINT CC D Ultra low power regulator module  
current consumption  
IULPREG = 5 mA;  
TA = 55 °C  
100  
IULPREG = 0 mA;  
TA = 55 °C  
IDD_BV  
CC D In-rush average current on VDD_BV  
during power-up5  
3006 mA  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
This capacitance value is driven by the constraints of the external voltage regulator supplying the VDD_BV voltage. A  
typical value is in the range of 470 nF.  
3
4
This value is acceptable to guarantee operation from 4.5 V to 5.5 V  
External regulator and capacitance circuitry must be capable of providing IDD_BV while maintaining supply VDD_BV in  
operating range.  
5
6
In-rush average current is seen only for short time during power-up and on standby exit (maximum 20 µs, depending  
on external capacitances to be loaded).  
The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must  
be sized accordingly. Refer to IMREG value for minimum amount of current to be provided in cc.  
4.7.2  
Low voltage detector electrical characteristics  
The device implements a power-on reset (POR) module to ensure correct power-up initialization, as well  
as five low voltage detectors (LVDs) to monitor the V and the V  
voltage while device is supplied:  
DD  
DD_LV  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
59  
Electrical characteristics  
POR monitors V during the power-up phase to ensure device is maintained in a safe reset state  
DD  
(refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR in device reference  
manual)  
LVDHV3 monitors V to ensure device reset below minimum functional supply (refer to RGM  
Destructive Event Status (RGM_DES) Register flag F_LVD27 in device reference manual)  
DD  
LVDHV3B monitors V  
to ensure device reset below minimum functional supply (refer to  
DD_BV  
RGM Destructive Event Status (RGM_DES) Register flag F_LVD27_VREG in device reference  
manual)  
LVDHV5 monitors V when application uses device in the 5.0 V ± 10% range (refer to RGM  
Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference manual)  
DD  
LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status (RGM_DES)  
Register flag F_LVD12_PD1 in device reference manual)  
LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status (RGM_DES)  
Register flag F_LVD12_PD0 in device reference manual)  
NOTE  
When enabled, power domain No. 2 is monitored through LVDLVBKP.  
V
DD  
V
V
LVDHVxH  
LVDHVxL  
RESET  
Figure 10. Low voltage detector vs reset  
MPC5607B Microcontroller Data Sheet, Rev. 9  
60  
NXP Semiconductors  
Electrical characteristics  
Table 26. Low voltage detector electrical characteristics  
Value  
Unit  
Symbol  
C
Parameter  
Conditions1  
Min Typ Max  
VPORUP  
VPORH  
SR P Supply for functional POR module  
CC P Power-on reset threshold  
TA = 25 °C,  
after trimming  
1.0  
1.5  
5.5  
2.6  
V
VLVDHV3H CC T LVDHV3 low voltage detector high threshold  
VLVDHV3L CC P LVDHV3 low voltage detector low threshold  
2.95  
2.9  
2.6  
VLVDHV3BH CC P LVDHV3B low voltage detector high threshold  
VLVDHV3BL CC P LVDHV3B low voltage detector low threshold  
VLVDHV5H CC T LVDHV5 low voltage detector high threshold  
2.95  
2.9  
2.6  
4.5  
VLVDHV5L  
CC P LVDHV5 low voltage detector low threshold  
3.8  
1.08  
1.08  
4.4  
VLVDLVCORL CC P LVDLVCOR low voltage detector low threshold  
VLVDLVBKPL CC P LVDLVBKP low voltage detector low threshold  
1.16  
1.16  
1
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
4.8  
Power consumption  
Table 27 provides DC electrical characteristics for significant application modes. These values are  
indicative values; actual consumption depends on the application.  
Table 27. Power consumption on VDD_BV and VDD_HV  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
2
IDDMAX CC D RUN mode maximum average  
current  
115 1403 mA  
4
IDDRUN CC T RUN mode typical average  
fCPU = 8 MHz  
12  
27  
43  
56  
70  
10  
17  
mA  
current5  
T
fCPU = 16 MHz  
fCPU = 32 MHz  
T
P
f
CPU = 48 MHz  
100  
125  
P
fCPU = 64 MHz  
IDDHALT CC C HALT mode current6  
Slow internal RC  
oscillator (128 kHz)  
running  
TA = 25 °C  
18 mA  
28  
P
TA = 125 °C  
IDDSTOP CC P STOP mode current7  
Slow internal RC  
oscillator (128 kHz)  
running  
TA = 25 °C  
TA = 55 °C  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
350 9008 µA  
D
D
D
P
750  
2
7
mA  
4
10  
14  
7
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
61  
Electrical characteristics  
Table 27. Power consumption on VDD_BV and VDD_HV (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
IDDSTDBY2 CC P STANDBY2 mode current9  
Slow internal RC  
oscillator (128 kHz)  
running  
TA = 25 °C  
TA = 55 °C  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
TA = 25 °C  
TA = 55 °C  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
30  
75  
100 µA  
D
D
180 700  
315 1000  
560 1700  
D
P
IDDSTDBY1 CC T STANDBY1 mode current10  
Slow internal RC  
oscillator (128 kHz)  
running  
20  
45  
60  
µA  
D
D
D
D
100 350  
165 500  
280 900  
1
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
2
Running consumption does not include I/Os toggling which is highly dependent on the application. The given value  
is thought to be a worst case value with all peripherals running, and code fetched from code flash while modify  
operation ongoing on data flash. Notice that this value can be significantly reduced by application: switch off not  
used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used  
functions, use low power mode when possible.  
3
Higher current may be sunk by device during power-up and standby exit. Please refer to in-rush average current in  
Table 25.  
4
5
RUN current measured with typical application with accesses on both Flash and RAM.  
Only for the “P” classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and  
LIN in loop back mode, DSPI as Master, PLL as system clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and  
running at max frequency, periodic SW/WDG timer reset enabled.  
6
Data Flash Power Down. Code Flash in Low Power. SIRC 128 kHz and FIRC 16 MHz on. 10 MHz XTAL clock.  
FlexCAN: instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clocks gated. LINFlex:  
instances: 0, 1, 2 ON (clocked but not reception or transmission), instance: 3 to 9 clocks gated. eMIOS: instance:  
0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI:  
instance: 0 (clocked but no communication), instance: 1 to 5 clocks gated. RTC/API ON. PIT ON. STM ON. ADC1  
OFF. ADC0 ON but no conversion except two analog watchdogs.  
7
8
Only for the “P” classification: No clock, FIRC 16 MHz off, SIRC 128 kHz on, PLL off, HPvreg off,  
ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode.  
When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main  
regulator module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction  
temperatures exceeding 125 °C and under these circumstances, it is possible for the current to initially exceed the  
maximum STOP specification by up to 2 mA. After entering stop, the application junction temperature will reduce  
to the ambient level and the main regulator will be automatically switched off when the load current is below 6 mA.  
9
Only for the “P” classification: ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum  
consumption, all possible modules switched off.  
10 ULPreg on, HP/LPVreg off, 8 KB RAM on, device configured for minimum consumption, all possible modules  
switched off.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
62  
NXP Semiconductors  
Electrical characteristics  
4.9  
Flash memory electrical characteristics  
Program/erase characteristics  
4.9.1  
Table 28 shows the program and erase characteristics.  
Table 28. Program and erase specifications  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Initial  
Min Typ1  
Max3  
max2  
tdwprogram CC C Double word (64 bits) program time4  
Code Flash  
Data Flash  
Code Flash  
Data Flash  
Code Flash  
Data Flash  
Code Flash  
Data Flash  
18  
22  
50  
500  
µs  
t16Kpperase  
t32Kpperase  
t128Kpperase  
16 KB block preprogram and erase time  
32 KB block preprogram and erase time  
128 KB block preprogram and erase time  
200 500 5000 ms  
300  
300 600 5000 ms  
400  
600 1300 7500 ms  
800  
tesus  
D Erase Suspend Latency  
30  
30  
µs  
tESRT  
C Erase Suspend Request Rate5  
Code Flash 20  
Data Flash 10  
ms  
1
Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to  
change pending device characterization.  
2
3
Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.  
The maximum program and erase times occur after the specified number of program/erase cycles. These maximum  
values are characterized but not guaranteed.  
4
5
Actual hardware programming times. This does not include software overhead.  
Time between erase suspend resume and the next erase suspend request  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
63  
Electrical characteristics  
Table 29. Flash module life  
Conditions  
Value  
Symbol  
C
Parameter  
Unit  
Min  
Typ  
Max  
P/E  
CC C Number of program/erase  
cycles per block for 16 KB  
blocks over the operating  
temperature range (TJ)  
100,000  
cycles  
P/E  
P/E  
CC C Number of program/erase  
cycles per block for 32 KB  
blocks over the operating  
temperature range (TJ)  
10,000 100,000  
cycles  
cycles  
CC C Number of program/erase  
cycles per block for 128 KB  
blocks over the operating  
temperature range (TJ)  
1,000  
100,000  
Retention CC C Minimum data retention at  
85 °C average ambient  
Blocks with  
0–1,000 P/E cycles  
20  
10  
years  
years  
temperature1  
Blocks with  
1,001–10,000 P/E  
cycles  
Blocks with  
5
years  
10,001–100,000 P/E  
cycles  
1
Ambient temperature averaged over duration of application, not to exceed recommended product operating  
temperature range.  
ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability  
results. Some units will experience single bit corrections throughout the life of the product with no impact  
to product reliability.  
Table 30. Flash read access timing  
Symbol  
fREAD  
C
Parameter  
Conditions1  
Max  
Unit  
CC P Maximum frequency for Flash reading  
2 wait states  
1 wait state  
0 wait states  
64  
40  
20  
MHz  
C
C
1
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
4.9.2  
Flash power supply DC characteristics  
Table 31 shows the power supply DC characteristics on external supply.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
64  
NXP Semiconductors  
Electrical characteristics  
Table 31. Flash power supply DC electrical characteristics  
Conditions1  
Value  
Unit  
Symbol  
Parameter  
Min Typ Max  
ICFREAD CC Sum of the current consumption on Flash module read  
Code Flash  
Data Flash  
Code Flash  
Data Flash  
33 mA  
33  
VDD_HV and VDD_BV on read access fCPU = 64 MHz  
IDFREAD  
ICFMOD CC Sum of the current consumption on Program/Erase  
52 mA  
33  
VDD_HV and VDD_BV on matrix  
modification (program/erase)  
on-going while reading  
Flash registers  
IDFMOD  
fCPU = 64 MHz  
ICFLPW CC Sum of the current consumption on  
Code Flash  
Data Flash  
1.1 mA  
900 µA  
VDD_HV and VDD_BV during Flash low  
IDFLPW  
power mode  
ICFPWD CC Sum of the current consumption on  
Code Flash  
Data Flash  
150 µA  
150  
VDD_HV and VDD_BV during Flash  
IDFPWD  
power down mode  
1
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = –40 to 125 °C, unless otherwise specified  
4.9.3  
Start-up/Switch-off timings  
Table 32. Start-up time/Switch-off time  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
tFLARSTEXIT CC T Delay for Flash module to exit reset mode  
125 µs  
0.5  
tFLALPEXIT  
tFLAPDEXIT  
CC T Delay for Flash module to exit low-power mode  
CC T Delay for Flash module to exit power-down mode  
30  
tFLALPENTRY CC T Delay for Flash module to enter low-power mode  
tFLAPDENTRY CC T Delay for Flash module to enter power-down mode  
0.5  
1.5  
1
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
4.10 Electromagnetic compatibility (EMC) characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
4.10.1 Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical application  
environment and simplified MCU software. It should be noted that good EMC performance is highly  
dependent on the user application and the software in particular.  
Therefore it is recommended that the user apply EMC software optimization and prequalification tests in  
relation with the EMC level requested for the application.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
65  
Electrical characteristics  
Software recommendations The software flowchart must include the management of runaway  
conditions such as:  
— Corrupted program counter  
— Unexpected reset  
— Critical data corruption (control registers...)  
Prequalification trials Most of the common failures (unexpected reset and program counter  
corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins  
for 1 second.  
To complete these trials, ESD stress can be applied directly on the device. When unexpected  
behavior is detected, the software can be hardened to prevent unrecoverable errors occurring.  
4.10.2 Electromagnetic interference (EMI)  
The product is monitored in terms of emission based on a typical application. This emission test conforms  
to the IEC61967-1 standard, which specifies the general conditions for EMI measurements.  
1,2  
Table 33. EMI radiated emission measurement  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min Typ Max  
SR — Scan range  
0.150  
1000 MHz  
fCPU  
SR — Operating frequency  
64  
1.28  
MHz  
V
VDD_LV SR — LV operating voltages  
SEMI CC T Peak level  
VDD = 5 V, TA = 25 °C, No PLL frequency  
18 dBµV  
LQFP144 package  
Test conforming to IEC  
61967-2,  
modulation  
2ꢀ PLL frequency  
modulation  
14 dBµV  
fOSC = 8 MHz/fCPU  
64 MHz  
=
1
2
EMI testing and I/O port waveforms per IEC 61967-1, -2, -4  
For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your  
local marketing representative.  
4.10.3 Absolute maximum ratings (electrical sensitivity)  
Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed  
in order to determine its performance in terms of electrical sensitivity.  
4.10.3.1 Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of  
each sample according to each pin combination. The sample size depends on the number of supply pins in  
the device (3 parts×(n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
66  
NXP Semiconductors  
Electrical characteristics  
1,2  
Table 34. ESD absolute maximum ratings  
Symbol  
Ratings  
Conditions  
TA = 25 °C  
Class  
Max value3  
Unit  
VESD(HBM) Electrostatic discharge voltage  
(Human Body Model)  
H1C  
2000  
V
conforming to AEC-Q100-002  
VESD(MM) Electrostatic discharge voltage  
(Machine Model)  
TA = 25 °C  
conforming to AEC-Q100-003  
M2  
200  
VESD(CDM) Electrostatic discharge voltage  
(Charged Device Model)  
TA = 25 °C  
conforming to AEC-Q100-011  
C3A  
500  
750 (corners)  
1
2
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated  
Circuits.  
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification requirements. Complete DC parametric and functional testing shall be performed per applicable  
device specification at room temperature followed by hot temperature, unless specified otherwise in the device  
specification.  
3
Data based on characterization results, not tested in production  
4.10.3.2 Static latch-up (LU)  
Two complementary static tests are required on six parts to assess the latch-up performance:  
A supply overvoltage is applied to each power supply pin.  
A current injection is applied to each input, output and configurable I/O pin.  
These tests are compliant with the EIA/JESD 78 IC latch-up standard.  
Table 35. Latch-up results  
Symbol  
Parameter  
Conditions  
TA = 125 °C  
Class  
LU  
Static latch-up class  
II level A  
conforming to JESD 78  
4.11 Fast external crystal oscillator (4 to 16 MHz) electrical  
characteristics  
The device provides an oscillator/resonator driver. Figure 11 describes a simple model of the internal  
oscillator driver and provides an example of a connection for an oscillator or a resonator.  
Table 36 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
67  
Electrical characteristics  
EXTAL  
C1  
C2  
EXTAL  
XTAL  
DEVICE  
V
DD  
I
R
EXTAL  
XTAL  
DEVICE  
XTAL  
DEVICE  
Notes:  
1. XTAL/EXTAL must not be directly used to drive external circuits  
2. A series resistor may be required, according to crystal oscillator supplier recommendations.  
Figure 11. Crystal oscillator and resonator connection scheme  
Table 36. Crystal description  
Shunt  
Crystal  
equivalent  
series  
resistance  
ESR Ω  
Crystal  
motional  
capacitance  
(Cm) fF  
Crystal  
motional  
inductance  
(Lm) mH  
Load on  
xtalin/xtalout  
C1 = C2  
capacitance  
between  
xtalout  
Nominal  
frequency  
(MHz)  
NDK crystal  
reference  
(pF)1  
and xtalin  
C02 (pF)  
4
NX8045GB  
NX5032GA  
300  
300  
150  
120  
120  
2.68  
2.46  
2.93  
3.11  
3.90  
591.0  
160.7  
86.6  
21  
17  
15  
15  
10  
2.93  
3.01  
2.91  
2.93  
3.00  
8
10  
12  
16  
56.5  
25.3  
1
2
The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing  
includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.  
The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads,  
package, etc.).  
MPC5607B Microcontroller Data Sheet, Rev. 9  
68  
NXP Semiconductors  
Electrical characteristics  
S_MTRANS bit (ME_GS register)  
1
0
V
XTAL  
1/f  
MXOSC  
V
MXOSC  
90ꢀ  
10ꢀ  
V
MXOSCOP  
T
valid internal clock  
MXOSCSU  
Figure 12. Fast external crystal oscillator (4 to 16 MHz) timing diagram  
Table 37. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
fFXOSC  
SR — Fast external crystal  
oscillator frequency  
4.0  
16.0  
MHz  
gmFXOSC CC C Fast external crystal  
oscillator  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
OSCILLATOR_MARGIN = 0  
2.2  
2.0  
2.7  
2.5  
8.2  
7.4  
9.7  
9.2  
mA/V  
transconductance  
CC P  
CC C  
CC C  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
OSCILLATOR_MARGIN = 0  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
OSCILLATOR_MARGIN = 1  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
OSCILLATOR_MARGIN = 1  
VFXOSC  
CC T Oscillation amplitude at  
EXTAL  
fOSC = 4 MHz,  
OSCILLATOR_MARGIN = 0  
1.3  
1.3  
V
f
OSC = 16 MHz,  
OSCILLATOR_MARGIN = 1  
VFXOSCOP CC C Oscillation operating point  
0.95  
2
3
V
2
IFXOSC  
CC T Fast external crystal  
oscillator consumption  
mA  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
69  
Electrical characteristics  
Table 37. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
tFXOSCSU CC T Fast external crystal  
oscillator start-up time  
fOSC = 4 MHz,  
OSCILLATOR_MARGIN = 0  
6
ms  
f
OSC = 16 MHz,  
1.8  
OSCILLATOR_MARGIN = 1  
VIH  
VIL  
SR P Input high level CMOS  
(Schmitt Trigger)  
Oscillator bypass mode  
0.65VDD  
0.4  
VDD + 0.4  
0.35VDD  
V
V
SR P Input low level CMOS  
(Schmitt Trigger)  
Oscillator bypass mode  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
Stated values take into account only analog module consumption but not the digital contributor (clock tree and  
enabled peripherals).  
4.12 Slow external crystal oscillator (32 kHz) electrical characteristics  
The device provides a low power oscillator/resonator driver.  
OSC32K_EXTAL  
OSC32K_EXTAL  
C1  
C2  
R
P
OSC32K_XTAL  
OSC32K_XTAL  
DEVICE  
DEVICE  
Note: OSC32_XTAL/OSC32_EXTAL must not be directly used to drive external circuits  
Figure 13. Crystal oscillator and resonator connection scheme  
MPC5607B Microcontroller Data Sheet, Rev. 9  
70  
NXP Semiconductors  
Electrical characteristics  
l
C0  
Crystal  
Rm  
Lm  
Cm  
C1  
C2  
C1  
C2  
Figure 14. Equivalent circuit of a quartz crystal  
1
Table 38. Crystal motional characteristics  
Value  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
Lm  
Motional inductance  
Motional capacitance  
18  
11.796  
28  
KH  
fF  
Cm  
2
C1/C2 Load capacitance at OSC32K_XTAL and  
OSC32K_EXTAL with respect to ground2  
pF  
AC coupled at C0 = 2.85 pF4  
AC coupled at C0 = 4.9 pF4  
AC coupled at C0 = 7.0 pF4  
AC coupled at C0 = 9.0 pF4  
65  
50  
35  
30  
kΩ  
3
Rm  
Motional resistance  
1
2
The crystal used is Epson Toyocom MC306.  
This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to  
ground. It includes all the parasitics due to board traces, crystal and package.  
3
4
Maximum ESR (Rm) of the crystal is 50 kΩ  
C0 Includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
71  
Electrical characteristics  
OSCON bit (OSC_CTL register)  
1
0
V
OSC32K_XTAL  
1/f  
LPXOSC32K  
V
LPXOSC32K  
90ꢀ  
10ꢀ  
T
valid internal clock  
LPXOSC32KSU  
Figure 15. Slow external crystal oscillator (32 kHz) timing diagram  
Table 39. Slow external crystal oscillator (32 kHz) electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
fSXOSC  
SR — Slow external crystal oscillator  
frequency  
32  
32.768  
40  
kHz  
VSXOSC  
CC T Oscillation amplitude  
2.1  
2.5  
V
ISXOSCBIAS CC T Oscillation bias current  
µA  
µA  
ISXOSC  
CC T Slow external crystal oscillator  
consumption  
8
tSXOSCSU CC T Slow external crystal oscillator  
start-up time  
22  
s
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified. Values are specified for no  
neighbor GPIO pin activity. If oscillator is enabled (OSC32K_XTAL and OSC32K_EXTAL pins), neighboring pins  
should not toggle.  
Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.  
4.13 FMPLL electrical characteristics  
The device provides a frequency modulated phase locked loop (FMPLL) module to generate a fast system  
clock from the main oscillator driver.  
Table 40. FMPLL electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
fPLLIN SR — FMPLL reference clock2  
4
64  
MHz  
MPC5607B Microcontroller Data Sheet, Rev. 9  
72  
NXP Semiconductors  
Electrical characteristics  
Table 40. FMPLL electrical characteristics (continued)  
Value  
Unit  
Symbol  
C
Parameter  
Conditions1  
Min  
Typ  
Max  
ΔPLLIN SR — FMPLL reference clock duty  
40  
60  
cycle2  
fPLLOUT CC P FMPLL output clock frequency  
16  
64  
MHz  
3
fVCO  
CC P VCO frequency without  
frequency modulation  
256  
512 MHz  
P VCO frequency with frequency  
modulation  
245.76  
532.48  
fCPU SR — System clock frequency  
fFREE CC P Free-running frequency  
tLOCK CC P FMPLL lock time  
40  
64  
MHz  
20  
150 MHz  
Stable oscillator (fPLLIN = 16 MHz)  
fsys maximum  
100  
4
µs  
ΔtSTJIT CC — FMPLL short term jitter4  
ΔtLTJIT CC — FMPLL long term jitter  
–4  
fPLLCLK at 64 MHz, 4000 cycles  
TA = 25 °C  
10  
4
ns  
IPLL  
CC C FMPLL consumption  
mA  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in  
functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and ΔPLLIN  
Frequency modulation is considered 4ꢀ.  
.
3
4
Short term jitter is measured on the clock rising edge at cycle n and n+4.  
4.14 Fast internal RC oscillator (16 MHz) electrical characteristics  
The device provides a 16 MHz main internal RC oscillator. This is used as the default clock at the power-up  
of the device.  
Table 41. Fast internal RC oscillator (16 MHz) electrical characteristics  
Value  
Symbol  
fFIRC  
2,  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
CC P Fast internal RC oscillator high TA = 25 °C, trimmed  
frequency  
12  
16  
20  
MHz  
SR —  
IFIRCRUN  
CC T Fast internal RC oscillator high TA = 25 °C, trimmed  
200  
µA  
µA  
frequency current in running  
mode  
IFIRCPWD CC D Fast internal RC oscillator high TA = 25 °C  
frequency current in power  
10  
down mode  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
73  
Electrical characteristics  
Table 41. Fast internal RC oscillator (16 MHz) electrical characteristics (continued)  
Value  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
IFIRCSTOP CC T Fast internal RC oscillator high TA = 25 °C sysclk = off  
frequency and system clock  
500  
600  
700  
900  
1250  
1.1  
2.0  
µA  
sysclk = 2 MHz  
current in stop mode  
sysclk = 4 MHz  
sysclk = 8 MHz  
sysclk = 16 MHz  
tFIRCSU CC C Fast internal RC oscillator  
start-up time  
VDD = 5.0 V 10ꢀ  
µs  
ΔFIRCPRE CC C Fast internal RC oscillator  
precision after software  
TA = 25 °C  
TA = 25 °C  
1  
1
trimming of fFIRC  
ΔFIRCTRIM CC C Fast internal RC oscillator  
1.6  
trimming step  
ΔFIRCVAR CC C Fast internal RC oscillator  
variation over temperature and  
supply with respect to fFIRC at  
TA = 25 °C in high-frequency  
configuration  
5  
5
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is  
ON.  
4.15 Slow internal RC oscillator (128 kHz) electrical characteristics  
The device provides a 128 kHz low power internal RC oscillator. This can be used as the reference clock  
for the RTC module.  
Table 42. Slow internal RC oscillator (128 kHz) electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
fSIRC  
CC P Slow internal RC oscillator low  
TA = 25 °C, trimmed  
100  
128  
150  
5
kHz  
frequency  
SR —  
2,  
ISIRC  
CC C Slow internal RC oscillator low  
frequency current  
TA = 25 °C, trimmed  
µA  
µs  
tSIRCSU  
CC P Slow internal RC oscillator start-up TA = 25 °C, VDD = 5.0 V 10ꢀ  
time  
2  
8
12  
2
ΔSIRCPRE CC C Slow internal RC oscillator precision TA = 25 °C  
after software trimming of fSIRC  
ΔSIRCTRIM CC C Slow internal RC oscillator trimming  
2.7  
step  
MPC5607B Microcontroller Data Sheet, Rev. 9  
74  
NXP Semiconductors  
Electrical characteristics  
Table 42. Slow internal RC oscillator (128 kHz) electrical characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
ΔSIRCVAR CC C Slow internal RC oscillator variation High frequency configuration  
in temperature and supply with  
10  
10  
respect to fSIRC at TA = 55 °C in high  
frequency configuration  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is  
ON.  
4.16 ADC electrical characteristics  
4.16.1 Introduction  
The device provides two Successive Approximation Register (SAR) analog-to-digital converters (10-bit  
and 12-bit).  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
75  
Electrical characteristics  
Offset Error (E )  
Gain Error (E )  
G
O
1023  
1022  
1021  
1020  
1019  
1 LSB ideal = V  
/ 1024  
DD_ADC  
1018  
(2)  
code out  
7
(1)  
6
5
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(5)  
4
3
(3) Differential non-linearity error (DNL)  
(4) Integral non-linearity error (INL)  
(5) Center of a step of the actual transfer curve  
(4)  
(3)  
2
1
1 LSB (ideal)  
0
1
2
3
4
5
6
7
1017 1018 1019 1020 1021 1022 1023  
(LSB  
V
)
ideal  
in(A)  
Offset Error (E )  
O
Figure 16. ADC_0 characteristic and error definitions  
4.16.2 Input impedance and ADC accuracy  
In the following analysis, the input circuit corresponding to the precise channels is considered.  
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC  
impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can  
be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to  
attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase,  
when the analog signal source is a high-impedance source.  
A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple  
RC filter). The RC filtering may be limited according to the value of source impedance of the transducer  
MPC5607B Microcontroller Data Sheet, Rev. 9  
76  
NXP Semiconductors  
Electrical characteristics  
or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking  
into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input  
impedance of the ADC itself.  
In fact a current sink contributor is represented by the charge sharing effects with the sampling  
capacitance: being C and C substantially two switched capacitances, with a frequency equal to the  
S
p2  
conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a  
conversion rate of 1 MHz, with C +C equal to 3 pF, a resistance of 330 kΩ is obtained (R = 1 /  
S
p2  
EQ  
(f × (C +C )), where f represents the conversion rate at the considered channel). To minimize the error  
c
S
p2  
c
induced by the voltage partitioning between this resistance (sampled voltage on C +C ) and the sum of  
S
p2  
R + R , the external circuit must be designed to respect the Equation 4:  
S
F
Eqn. 4  
R + R  
S
F
1
2
V -------------------- < -- LSB  
A
R
EQ  
Equation 4 generates a constraint for external network design, in particular on a resistive path.  
EXTERNAL CIRCUIT  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Sampling  
Selection  
Source  
Filter  
Current Limiter  
R
R
R
R
R
AD  
S
F
L
SW1  
V
C
C
C
C
S
A
F
P1  
P2  
R
Source Impedance  
Filter Resistance  
Filter Capacitance  
Current Limiter Resistance  
Channel Selection Switch Impedance  
Sampling Switch Impedance  
S
F
F
L
R
C
R
R
R
C
C
SW1  
AD  
P
Pin Capacitance (two contributions, C and C  
Sampling Capacitance  
)
P1  
P2  
S
Figure 17. Input equivalent circuit (precise channels)  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
77  
Electrical characteristics  
EXTERNAL CIRCUIT  
Filter  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Selection  
Extended  
Switch  
Sampling  
Source  
R
Current Limiter  
R
R
R
F
R
L
R
AD  
SW2  
S
SW1  
C
S
C
V
C
F
C
C
P2  
A
P1  
P3  
R
R
C
R
R
R
C
C
Source Impedance  
Filter Resistance  
Filter Capacitance  
Current Limiter Resistance  
Channel Selection Switch Impedance (two contributions R  
Sampling Switch Impedance  
S
F
F
L
and R  
)
SW2  
SW  
AD  
P
SW1  
Pin Capacitance (three contributions, C , C and C )  
Sampling Capacitance  
P1  
P2  
P3  
S
Figure 18. Input equivalent circuit (extended channels)  
A second aspect involving the capacitance network shall be considered. Assuming the three capacitances  
C , C and C are initially charged at the source voltage V (refer to the equivalent circuit reported in  
F
P1  
P2  
A
Figure 17): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch  
close).  
Voltage Transient on CS  
V
CS  
V
A
ΔV < 0.5 LSB  
V
A2  
1
2
τ1 < (RSW + RAD) CS << tS  
V
A1  
τ
2 = RL (CS + CP1 + CP2)  
T
t
S
Figure 19. Transient behavior during sampling phase  
MPC5607B Microcontroller Data Sheet, Rev. 9  
78  
NXP Semiconductors  
Electrical characteristics  
In particular two different transient periods can be distinguished:  
1. A first and quick charge transfer from the internal capacitance C and C to the sampling  
P1  
P2  
capacitance C occurs (C is supposed initially completely discharged): considering a worst case  
S
S
(since the time constant in reality would be faster) in which C is reported in parallel to C (call  
P2  
P1  
C = C + C ), the two capacitances C and C are in series, and the time constant is  
P
P1  
P2  
P
S
Eqn. 5  
C C  
P
S
τ
= (R  
+ R  
) • --------------------  
AD  
1
SW  
C + C  
P
S
Equation 5 can again be simplified considering only C as an additional worst condition. In reality,  
S
the transient is faster, but the A/D converter circuitry has been designed to be robust also in the  
very worst case: the sampling time t is always much longer than the internal time constant:  
S
Eqn. 6  
τ < (R  
+ R  
) C « ts  
AD S  
1
SW  
The charge of C and C is redistributed also on C , determining a new value of the voltage V  
P1  
P2  
S
A1  
on the capacitance according to Equation 7:  
Eqn. 7  
V
(C + C + C ) = V (C + C  
P1 P2 P1  
)
P2  
A1  
S
A
2. A second charge transfer involves also C (that is typically bigger than the on-chip capacitance)  
F
through the resistance R : again considering the worst case in which C and C were in parallel  
L
P2  
S
to C (since the time constant in reality would be faster), the time constant is:  
P1  
Eqn. 8  
τ < R (C + C + C )  
P1 P2  
2
L
S
In this case, the time constant depends on the external circuit: in particular imposing that the  
transient is completed well before the end of sampling time t , a constraints on R sizing is  
s
L
obtained:  
ADC_0 (10-bit)  
Eqn. 9  
8.5 τ = 8.5 R (C + C + C ) < ts  
2
L
S
P1 P2  
ADC_1 (12-bit)  
Eqn. 10  
10 τ = 10 R (C + C + C ) < ts  
2
L
S
P1 P2  
Of course, R shall be sized also according to the current limitation constraints, in combination  
L
with R (source impedance) and R (filter resistance). Being C definitively bigger than C , C  
S
F
F
P1 P2  
and C , then the final voltage V (at the end of the charge transfer transient) will be much higher  
S
A2  
than V . Equation 11 must be respected (charge balance assuming now C already charged at  
A1  
S
V ):  
A1  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
79  
Electrical characteristics  
Eqn. 11  
V
(C + C + C + C ) = V C + V (C + C + C )  
P1 P2 A1 P1 P2  
A2  
S
F
A
F
S
The two transients above are not influenced by the voltage source that, due to the presence of the R C  
F F  
filter, is not able to provide the extra charge to compensate the voltage drop on C with respect to the ideal  
S
source V ; the time constant R C of the filter is very high with respect to the sampling time (t ). The filter  
A
F F  
s
is typically designed to act as antialiasing.  
Analog source bandwidth (VA)  
tc < 2 RFCF (Conversion rate vs. filter pole)  
Noise  
fF = f0 (Anti-aliasing filtering condition)  
2 f0 < fC (Nyquist)  
f0  
f
Anti-aliasing filter (fF = RC filter pole)  
Sampled signal spectrum (fC = Conversion rate)  
fF  
f0  
fC  
f
f
Figure 20. Spectral representation of input signal  
Calling f the bandwidth of the source signal (and as a consequence the cut-off frequency of the  
0
antialiasing filter, f ), according to the Nyquist theorem the conversion rate f must be at least 2f ; it means  
F
C
0
that the constant time of the filter is greater than or at least equal to twice the conversion period (t ). Again  
c
the conversion period t is longer than the sampling time t , which is just a portion of it, even when fixed  
c
s
channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in  
conclusion it is evident that the time constant of the filter R C is definitively much higher than the  
F F  
sampling time t , so the charge level on C cannot be modified by the analog signal source during the time  
s
S
in which the sampling switch is closed.  
The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy  
error due to the voltage drop on C ; from the two charge balance equations above, it is simple to derive  
S
Equation 12 between the ideal and real sampled voltage on C :  
S
Eqn. 12  
V
C
+ C + C  
P2  
----------- = -------------------------------------------------------  
A2  
P1  
F
V
C
+ C + C + C  
A
P1  
P2 S  
F
From this formula, in the worst case (when V is maximum, that is for instance 5 V), assuming to accept  
A
a maximum error of half a count, a constraint is evident on C value:  
F
MPC5607B Microcontroller Data Sheet, Rev. 9  
80  
NXP Semiconductors  
Electrical characteristics  
ADC_0 (10-bit)  
> 2048 C  
Eqn. 13  
C
F
S
ADC_1 (12-bit)  
> 8192 C  
Eqn. 14  
C
F
S
4.16.3 ADC electrical characteristics  
Table 43. ADC input leakage current  
Value  
Unit  
Symbol C  
Parameter  
Conditions  
Min  
Typ  
Max  
ILKG CC D Input leakage current TA = 40 °C No current injection on adjacent pin  
1
1
70  
70  
nA  
D
D
D
P
TA = 25 °C  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
3
100  
200  
400  
8
45  
Table 44. ADC_0 conversion characteristics (10-bit ADC_0)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VSS_ADC0 SR — Voltage on VSS_HV_ADC0  
0.1  
0.1  
V
(ADC_0 reference) pin with  
2
respect to ground (VSS  
)
VDD_ADC0 SR — Voltage on VDD_HV_ADC pin  
(ADC reference) with respect  
VDD 0.1  
VDD + 0.1  
V
to ground (VSS  
)
VAINx  
SR — Analog input voltage3  
VSS_ADC0  
0.1  
VDD_ADC0  
+ 0.1  
V
IADC0pwd SR — ADC_0 consumption in power  
down mode  
50  
µA  
mA  
IADC0run SR — ADC_0 consumption in  
running mode  
5
fADC0 SR — ADC_0 analog frequency  
6
32 + 4ꢀ MHz  
Δ
ADC0_SYS SR — ADC_0 digital clock duty cycle ADCLKSEL = 14  
45  
55  
(ipg_clk)  
tADC0_PU SR — ADC_0 power up delay  
tADC0_S CC T Sampling time5  
1.5  
µs  
µs  
fADC = 32 MHz,  
INPSAMP = 17  
0.5  
f
ADC = 6 MHz,  
42  
INPSAMP = 255  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
81  
Electrical characteristics  
Table 44. ADC_0 conversion characteristics (10-bit ADC_0) (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
tADC0_C CC P Conversion time6  
fADC = 32 MHz,  
INPCMP = 2  
0.625  
µs  
pF  
CS  
CC D ADC_0 input sampling  
capacitance  
3
CP1  
CP2  
CP3  
CC D ADC_0 input pin capacitance 1  
CC D ADC_0 input pin capacitance 2  
CC D ADC_0 input pin capacitance 3  
3
1
1
3
pF  
pF  
pF  
kΩ  
RSW1 CC D Internal resistance of analog  
source  
RSW2 CC D Internal resistance of analog  
source  
5  
5  
2
2
5
5
kΩ  
kΩ  
mA  
RAD  
CC D Internal resistance of analog  
source  
IINJ  
SR — Input current Injection  
Current injection VDD =  
on one ADC_0 3.3 V 10ꢀ  
input, different  
VDD  
5.0 V 10ꢀ  
=
from the  
converted one  
| INL | CC T Absolute integral nonlinearity No overload  
0.5  
0.5  
1.5  
1.0  
LSB  
LSB  
| DNL | CC T Absolute differential  
nonlinearity  
No overload  
| EO  
| EG  
|
CC T Absolute offset error  
2  
3  
0.5  
0.6  
0.6  
2
LSB  
LSB  
LSB  
|
CC T Absolute gain error  
TUEP CC P Total unadjusted error7 for  
Without current injection  
With current injection  
precise channels, input only  
pins  
T
3
TUEX CC T Total unadjusted error7 for  
Without current injection  
With current injection  
3  
4  
1
3
4
LSB  
extended channel  
T
1
2
3
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
Analog and digital VSS must be common (to be tied together externally).  
VAINx may exceed VSS_ADC0 and VDD_ADC0 limits, remaining on absolute maximum ratings, but the results of the  
conversion will be clamped respectively to 0x000 or 0x3FF.  
4
5
Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured  
by internal divider by 2.  
During the sampling time the input capacitance CS can be charged/discharged by the external source. The internal  
resistance of the analog source must allow the capacitance to reach its final voltage level within tADC0_S. After the  
end of the sampling time tADC0_S, changes of the analog input voltage have no effect on the conversion result.  
Values for the sampling clock tADC0_S depend on programming.  
6
7
This parameter does not include the sampling time tADC0_S, but only the time for determining the digital result and  
the time to load the result’s register with the conversion result.  
Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a  
combination of Offset, Gain and Integral Linearity errors.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
82  
NXP Semiconductors  
Electrical characteristics  
Offset Error (E )  
Gain Error (E )  
G
O
4095  
4094  
4093  
4092  
4091  
1 LSB ideal = V  
/ 4096  
DD_ADC  
4090  
(2)  
code out  
7
(1)  
6
5
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(5)  
4
3
(3) Differential non-linearity error (DNL)  
(4) Integral non-linearity error (INL)  
(5) Center of a step of the actual transfer curve  
(4)  
(3)  
2
1
1 LSB (ideal)  
0
1
2
3
4
5
6
7
4090 4091 4092 4093 4094 4095  
V
(LSB  
)
ideal  
in(A)  
Offset Error (E )  
O
Figure 21. ADC_1 characteristic and error definitions  
Table 45. ADC_1 conversion characteristics (12-bit ADC_1)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VSS_ADC1 SR — Voltage on VSS_HV_ADC1  
–0.1  
0.1  
V
(ADC_1 reference) pin with  
2
respect to ground (VSS  
)
VDD_ADC1 SR — VoltageonVDD_HV_ADC1pin  
(ADC_1 reference) with  
VDD – 0.1 — VDD + 0.1  
V
respect to ground (VSS  
)
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
83  
Electrical characteristics  
Table 45. ADC_1 conversion characteristics (12-bit ADC_1) (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VAINx  
SR — Analog input voltage3  
VSS_ADC1  
– 0.1  
VDD_ADC1  
+ 0.1  
V
IADC1pwd SR — ADC_1 consumption in power  
down mode  
50  
µA  
mA  
IADC1run SR — ADC_1consumptioninrunning  
mode  
6
fADC1  
SR — ADC_1 analog frequency  
VDD = 3.3 V  
VDD = 5 V  
3.33  
3.33  
20 + 4ꢀ MHz  
32 + 4ꢀ  
tADC1_PU SR — ADC_1 power up delay  
1.5  
µs  
ns  
tADC1_S CC T Sampling time4  
VDD = 3.3 V  
f
ADC1 = 20 MHz,  
INPSAMP = 12  
600  
Sampling time4  
VDD = 5.0 V  
f
ADC1 = 32 MHz,  
500  
76.2  
76.2  
INPSAMP = 17  
Sampling time4  
VDD = 3.3 V  
fADC1 = 3.33 MHz,  
INPSAMP = 255  
µs  
Sampling time4  
VDD = 5.0 V  
f
ADC1 = 3.33 MHz,  
INPSAMP = 255  
tADC1_C CC P Conversion time5  
VDD = 3.3 V  
f
ADC1 = 20 MHz,  
2.4  
1.5  
µs  
µs  
µs  
µs  
INPCMP = 0  
Conversion time5  
VDD = 5.0 V  
fADC 1 = 32 MHz,  
INPCMP = 0  
Conversion time5  
VDD = 3.3 V  
f
ADC 1 = 13.33 MHz,  
3.6  
3.6  
INPCMP = 0  
Conversion time5  
VDD = 5.0 V  
f
ADC1 = 13.33 MHz,  
INPCMP = 0  
ΔADC1_SYS SR — ADC_1 digital clock duty cycle ADCLKSEL = 16  
45  
55  
5
CS  
CC D ADC_1 input sampling  
capacitance  
pF  
CP1  
CP2  
CC D ADC_1 input pin capacitance 1  
CC D ADC_1 input pin capacitance 2  
CC D ADC_1 input pin capacitance 3  
3
1
pF  
pF  
pF  
kΩ  
CP3  
1.5  
1
RSW1  
CC D Internal resistance of analog  
source  
RSW2  
RAD  
CC D Internal resistance of analog  
source  
2
kΩ  
kΩ  
CC D Internal resistance of analog  
source  
0.3  
MPC5607B Microcontroller Data Sheet, Rev. 9  
84  
NXP Semiconductors  
Electrical characteristics  
Table 45. ADC_1 conversion characteristics (12-bit ADC_1) (continued)  
Value  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
IINJ  
SR — Input current Injection  
Current  
VDD = 3.3 V 10ꢀ  
VDD = 5.0 V 10ꢀ  
–5  
–5  
5
5
mA  
injection on  
one ADC_1  
input, different  
from the  
converted one  
| INLP | CC T Absolute integral nonlinearity – No overload  
Precise channels  
1
3
5
1
LSB  
LSB  
LSB  
| INLX | CC T Absolute integral nonlinearity – No overload  
Extended channels  
1.5  
0.5  
| DNL | CC T Absolute differential  
nonlinearity  
No overload  
| EO |  
| EG |  
CC T Absolute offset error  
–6  
–8  
2
2
6
LSB  
LSB  
LSB  
CC T Absolute gain error  
TUEP7 CC P Total unadjusted error for  
Without current injection  
With current injection  
precise channels, input only  
pins  
T
8
TUEX7 CC T Total unadjusted error for  
Without current injection  
With current injection  
–10  
–12  
10  
12  
LSB  
extended channel  
T
1
2
3
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = –40 to 125 °C, unless otherwise specified  
Analog and digital VSS must be common (to be tied together externally).  
VAINx may exceed VSS_ADC1 and VDD_ADC1 limits, remaining on absolute maximum ratings, but the results of the  
conversion will be clamped respectively to 0x000 or 0xFFF.  
4
During the sampling time the input capacitance CS can be charged/discharged by the external source. The internal  
resistance of the analog source must allow the capacitance to reach its final voltage level within tADC1_S. After the end  
of the sampling time tADC1_S, changes of the analog input voltage have no effect on the conversion result. Values for  
the sampling clock tADC1_S depend on programming.  
5
6
7
This parameter does not include the sampling time tADC1_S, but only the time for determining the digital result and the  
time to load the result’s register with the conversion result.  
Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by  
internal divider by 2.  
Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a  
combination of Offset, Gain and Integral Linearity errors.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
85  
Electrical characteristics  
4.17 On-chip peripherals  
4.17.1 Current consumption  
1
Table 46. On-chip peripherals current consumption  
Symbol  
C
Parameter  
Conditions  
Typical value2 Unit  
IDD_BV(CAN) CC T CAN (FlexCAN)  
supply current on  
Bitrate:  
500 Kbyte/s  
Total (static + dynamic)  
consumption:  
8 * fperiph + 85 µA  
VDD_BV  
• FlexCAN in loop-back  
mode  
• XTAL at 8 MHz used as  
CAN engine clock source  
• Message sending period is  
580 µs  
Bitrate:  
125 Kbyte/s  
8 * fperiph + 27  
IDD_BV(eMIOS) CC T eMIOS supply current Static consumption:  
on VDD_BV • eMIOS channel OFF  
29 * fperiph  
µA  
• Global prescaler enabled  
Dynamic consumption:  
3
• It does not change varying the frequency  
(0.003 mA)  
IDD_BV(SCI) CC T SCI (LINFlex) supply Total (static + dynamic) consumption:  
5 * fperiph + 31 µA  
current on VDD_BV  
• LIN mode  
• Baudrate: 20 Kbyte/s  
IDD_BV(SPI) CC T SPI (DSPI) supply  
current on VDD_BV  
Ballast static consumption (only clocked)  
1
µA  
Ballast dynamic consumption (continuous  
communication):  
16 * fperiph  
• Baudrate: 2 Mbit/s  
Transmission every 8 µs  
• Frame: 16 bits  
IDD_BV  
CC T ADC_0/ADC_1supply VDD = 5.5 V  
current on VDD_BV  
Ballast static consumption  
(no conversion)3  
41 * fperiph  
µA  
(ADC_0/ADC_1)  
Ballast dynamic consumption  
(continuous conversion)3  
46 * fperiph  
IDD_HV_ADC0 CC T ADC_0 supply current VDD = 5.5 V  
on VDD_HV_ADC0  
Analog static consumption  
(no conversion)  
200  
µA  
mA  
µA  
Analog dynamic consumption  
(continuous conversion)  
3
IDD_HV_ADC1 CC T ADC_1 supply current VDD = 5.5 V  
on VDD_HV_ADC1  
Analog static consumption  
(no conversion)  
300 * fperiph  
Analogdynamicconsumption  
(continuous conversion)  
4
mA  
mA  
IDD_HV(FLASH) CC T CFlash + DFlash  
supply current on  
VDD = 5.5 V  
12  
VDD_HV  
IDD_HV(PLL) CC T PLL supply current on VDD = 5.5 V  
VDD_HV  
30 * fperiph  
µA  
MPC5607B Microcontroller Data Sheet, Rev. 9  
86  
NXP Semiconductors  
Electrical characteristics  
1
2
3
Operating conditions: TA = 25 °C, fperiph = 8 MHz to 64 MHz  
fperiph is an absolute value.  
During the conversion, the total current consumption is given from the sum of the static and dynamic consumption,  
i.e., (41 + 46) * fperiph  
.
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
87  
4.17.2 DSPI characteristics  
1
Table 47. DSPI characteristics  
DSPI0/DSPI1/DSPI3/DSPI5  
DSPI2/DSPI4  
No.  
Symbol  
C
Parameter  
Unit  
Min  
Typ  
Max  
Min  
Typ  
Max  
1
tSCK  
SR D SCK cycle time  
Master mode  
(MTFE = 0)  
125  
333  
ns  
D
D
D
Slave mode  
(MTFE = 0)  
125  
83  
333  
125  
125  
Master mode  
(MTFE = 1)  
Slave mode  
(MTFE = 1)  
83  
fDSPI  
SR D DSPI digital controller frequency  
fCPU  
1302  
fCPU  
153  
MHz  
ns  
ΔtCSC CC D Internal delay between pad Master mode  
associated to SCK and pad  
associated to CSn in  
master mode for CSn1->0  
ΔtASC CC D Internal delay between pad Master mode  
associated to SCK and pad  
1303  
1303  
ns  
associated to CSn in  
master mode for CSn1->1  
4
2
3
4
tCSCext SR D CS to SCK delay  
Slave mode  
Slave mode  
Master mode  
Slave mode  
Slave mode  
32  
32  
ns  
ns  
ns  
5
tASCext SR D After SCK delay  
1/fDSPI + 5  
1/fDSPI + 5  
tSDC  
CC D SCK duty cycle  
SR D  
tSCK/2  
tSCK/2  
tSCK/2  
tSCK/2  
5
6
7
8
9
tA  
SR D Slave access time  
7
1/fDSPI + 70  
1/fDSPI + 130  
ns  
ns  
ns  
ns  
ns  
tDI  
SR D Slave SOUT disable time Slave mode  
7
tPCSC SR D PCSx to PCSS time  
tPASC SR D PCSS to PCSx time  
0
0
0
0
tSUI  
SR D Data setup time for inputs Master mode  
Slave mode  
43  
5
145  
5
1
Table 47. DSPI characteristics (continued)  
DSPI0/DSPI1/DSPI3/DSPI5  
DSPI2/DSPI4  
Typ  
No.  
Symbol  
C
Parameter  
Unit  
Min  
Typ  
Max  
Min  
Max  
10  
tHI  
SR D Data hold time for inputs  
Master mode  
Slave mode  
0
26  
0
32  
52  
0
ns  
26  
0
7
11  
12  
tSUO  
CC D Data valid after SCK edge Master mode  
Slave mode  
50  
160  
ns  
ns  
7
tHO  
CC D Data hold time for outputs Master mode  
Slave mode  
8
13  
1
2
Operating conditions: CL = 10 to 50 pF, SlewIN = 3.5 to 15 ns  
Maximum value is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM. A positive value means that SCK  
starts before CSn is asserted. DSPI2 has only SLOW SCK available.  
3
4
5
Maximum value is reached when CSn pad is configured as MEDIUM pad while SCK pad is configured as SLOW. A positive value means that CSn is  
deasserted before SCK. DSPI0 and DSPI1 have only MEDIUM SCK available.  
The tCSC delay value is configurable through a register. When configuring tCSC (using PCSSCK and CSSCK fields in DSPI_CTARx registers), delay  
between internal CS and internal SCK must be higher than ΔtCSC to ensure positive tCSCext  
The tASC delay value is configurable through a register. When configuring tASC (using PASC and ASC fields in DSPI_CTARx registers), delay between  
internal CS and internal SCK must be higher than ΔtASC to ensure positive tASCext  
.
.
6
7
This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of DSPI_MCR register.  
SCK and SOUT are configured as MEDIUM pad.  
Electrical characteristics  
Figure 22. DSPI classic SPI timing — master, CPHA = 0  
2
3
PCSx  
1
4
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
10  
9
Last Data  
SIN  
First Data  
First Data  
Data  
Data  
12  
11  
Last Data  
SOUT  
Note: Numbers shown reference Table 46.  
Figure 23. DSPI classic SPI timing — master, CPHA = 1  
PCSx  
SCK Output  
(CPOL = 0)  
10  
SCK Output  
(CPOL = 1)  
9
First Data  
Data  
Data  
Last Data  
SIN  
12  
11  
SOUT  
Last Data  
First Data  
Note: Numbers shown reference Table 46.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
90  
NXP Semiconductors  
Electrical characteristics  
Figure 24. DSPI classic SPI timing — slave, CPHA = 0  
3
2
SS  
1
4
SCK Input  
(CPOL = 0)  
4
SCK Input  
(CPOL = 1)  
5
First Data  
11  
12  
Data  
6
Last Data  
SOUT  
SIN  
9
10  
Data  
Last Data  
First Data  
Note: Numbers shown reference Table 46.  
Figure 25. DSPI classic SPI timing — slave, CPHA = 1  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
Data  
Data  
SOUT  
SIN  
First Data  
10  
9
Last Data  
First Data  
Note: Numbers shown reference Table 46.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
91  
Electrical characteristics  
Figure 26. DSPI modified transfer format timing — master, CPHA = 0  
3
PCSx  
4
1
2
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
9
10  
SIN  
First Data  
Last Data  
Last Data  
Data  
12  
11  
SOUT  
First Data  
Data  
Note: Numbers shown reference Table 46.  
Figure 27. DSPI modified transfer format timing — master, CPHA = 1  
PCSx  
SCK Output  
(CPOL = 0)  
SCK Output  
(CPOL = 1)  
10  
9
SIN  
Last Data  
First Data  
Data  
12  
Data  
11  
First Data  
Last Data  
SOUT  
Note: Numbers shown reference Table 46.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
92  
NXP Semiconductors  
Electrical characteristics  
Figure 28. DSPI modified transfer format timing — slave, CPHA = 0  
3
2
SS  
1
SCK Input  
(CPOL = 0)  
4
4
SCK Input  
(CPOL = 1)  
12  
11  
6
5
First Data  
9
Data  
Data  
Last Data  
10  
SOUT  
SIN  
Last Data  
First Data  
Note: Numbers shown reference Table 46.  
Figure 29. DSPI modified transfer format timing — slave, CPHA = 1  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
First Data  
10  
Data  
Data  
SOUT  
SIN  
9
First Data  
Last Data  
Note: Numbers shown reference Table 46.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
93  
Electrical characteristics  
8
7
PCSS  
PCSx  
Note: Numbers shown reference Table 46.  
Figure 30. DSPI PCS strobe (PCSS) timing  
4.17.3 Nexus characteristics  
Table 48. Nexus characteristics  
Value  
Typ  
No.  
Symbol  
C
Parameter  
Unit  
Min  
Max  
1
2
3
4
5
6
tTCYC  
tMCYC  
tMDOV  
tMSEOV CC D MCKO low to MSEO_b data valid  
CC D TCK cycle time  
64  
32  
15  
15  
5
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CC D MCKO cycle time  
CC D MCKO low to MDO data valid  
8
tEVTOV  
tNTDIS  
CC D MCKO low to EVTO data valid  
CC D TDI data setup time  
8
tNTMSS CC D TMS data setup time  
tNTDIH CC D TDI data hold time  
tNTMSH CC D TMS data hold time  
7
5
8
9
tTDOV  
tTDOI  
CC D TCK low to TDO data valid  
CC D TCK low to TDO data invalid  
35  
6
MPC5607B Microcontroller Data Sheet, Rev. 9  
94  
NXP Semiconductors  
Electrical characteristics  
TCK  
10  
11  
TMS, TDI  
12  
TDO  
Note: Numbers shown reference Table 48.  
Figure 31. Nexus TDI, TMS, TDO timing  
4.17.4 JTAG characteristics  
Table 49. JTAG characteristics  
Value  
Typ  
No.  
Symbol  
C
Parameter  
Unit  
Max  
Min  
1
2
3
4
5
6
7
tJCYC  
tTDIS  
CC D TCK cycle time  
CC D TDI setup time  
CC D TDI hold time  
64  
15  
5
33  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tTDIH  
tTMSS  
tTMSH  
tTDOV  
tTDOI  
CC D TMS setup time  
CC D TMS hold time  
CC D TCK low to TDO valid  
CC D TCK low to TDO invalid  
15  
5
6
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
95  
Electrical characteristics  
TCK  
2/4  
3/5  
INPUT DATA VALID  
DATA INPUTS  
6
DATA OUTPUTS  
OUTPUT DATA VALID  
7
DATA OUTPUTS  
Note: Numbers shown reference Table 49.  
Figure 32. Timing diagram — JTAG boundary scan  
MPC5607B Microcontroller Data Sheet, Rev. 9  
96  
NXP Semiconductors  
Package characteristics  
5
Package characteristics  
Package mechanical data  
176 LQFP  
5.1  
5.1.1  
Figure 33. 176 LQFP package mechanical drawing (Part 1 of 3)  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
97  
Package characteristics  
Figure 34. 176 LQFP package mechanical drawing (Part 2 of 3)  
MPC5607B Microcontroller Data Sheet, Rev. 9  
98  
NXP Semiconductors  
Package characteristics  
Figure 35. 176 LQFP package mechanical drawing (Part 3 of 3)  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
99  
Package characteristics  
5.1.2  
144 LQFP  
Figure 36. 144 LQFP package mechanical drawing (Part 1 of 2)  
MPC5607B Microcontroller Data Sheet, Rev. 9  
100  
NXP Semiconductors  
Package characteristics  
Figure 37. 144 LQFP package mechanical drawing (Part 2 of 2)  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
101  
Package characteristics  
5.1.3  
100 LQFP  
Figure 38. 100 LQFP package mechanical drawing (Part 1 of 3)  
MPC5607B Microcontroller Data Sheet, Rev. 9  
102  
NXP Semiconductors  
Package characteristics  
Figure 39. 100 LQFP package mechanical drawing (Part 2 of 3)  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
103  
Package characteristics  
Figure 50. 100 LQFP package mechanical drawing (Part 3 of 3)  
MPC5607B Microcontroller Data Sheet, Rev. 9  
104  
NXP Semiconductors  
Package characteristics  
5.1.4  
208 MAPBGA  
Figure 51. 208 MAPBGA package mechanical drawing (Part 1 of 2)  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
105  
Package characteristics  
Figure 52. 208 MAPBGA package mechanical drawing (Part 2 of 2)  
MPC5607B Microcontroller Data Sheet, Rev. 9  
106  
NXP Semiconductors  
Ordering information  
6
Ordering information  
Figure 40. Commercial product code structure  
Example code:  
M
PC  
56  
0
7
B
F1A  
M
LL  
6
R
Qualification Status  
Power Architecture Core  
Automotive Platform  
Core Version  
Flash Size (core dependent)  
Product  
Fab and Mask Indicator  
Temperature spec.  
Package Code  
Frequency  
R = Tape & Reel (blank if Tray)  
Qualification Status  
Flash Size (for z0 core)  
5 = 768 KB  
6 = 1024 KB  
Temperature spec.  
C = -40 to 85 °C  
V = -40 to 105 °C  
M = -40 to 125 °C  
M = general market qualified  
S = Automotive qualified  
P = Engineering samples  
7 = 1.5 MB  
Automotive Platform  
56 = PPC in 90nm  
Product  
B = Body  
Package Code  
LL = 100 LQFP  
LQ = 144 LQFP  
LU = 176 LQFP  
MG = 208 MAPBGA  
Core Version  
0 = e200z0  
Fab and Mask Indicator  
F = ATMC Fab  
1
K = TSMC Fab  
0 = Version of the maskset  
Frequency  
A = Mask set indicator (Blank = 1st  
production maskset, A = 2nd,  
4 = Up to 48 MHz  
6 = Up to 64 MHz  
Note: Not all options are available on all devices.  
1
208 MAPBGA is available only as development package for Nexus2+.  
Appendix A Abbreviations  
Table 53 lists abbreviations used but not defined elsewhere in this document.  
Table 53. Abbreviations  
Abbreviation  
Meaning  
CMOS  
CPHA  
CPOL  
CS  
Complementary metal oxide semiconductor  
Clock phase  
Clock polarity  
Peripheral chip select  
Event out  
EVTO  
MCKO  
MDO  
Message clock out  
Message data out  
MSEO  
MTFE  
SCK  
Message start/end out  
Modified timing format enable  
Serial communications clock  
Serial data out  
SOUT  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
107  
Abbreviations  
Table 53. Abbreviations (continued)  
Meaning  
Abbreviation  
TBD  
TCK  
TDI  
To be defined  
Test clock input  
Test data input  
Test data output  
Test mode select  
TDO  
TMS  
MPC5607B Microcontroller Data Sheet, Rev. 9  
108  
NXP Semiconductors  
Revision history  
7
Revision history  
Table 54 summarizes revisions to this document.  
Table 54. Revision history  
Substantive changes  
Revision  
Date  
1
2
12-Jan-2009 Initial release  
09 Nov-2009 Updated Features  
Replaced 27 IRQs in place of 23  
ADC features  
External Ballast resistor support conditions  
Updated device summary-added 208 BGA details  
Updated block diagram to include WKUP  
Updated block diagram to include 5 ch ADC 12 -bit  
Updated Block summary table  
Updated LQFP 144, 176 and 100 pinouts. Applied new naming convention for ADC  
signals as ADCx_P[x] and ADCx_S[x]  
Section 1, “General description  
Updated MPC5607B device comparison table  
Updated block diagram-aligned with 512k  
Updated block summary-aligned with 512k  
Section 2, “Package pinouts  
Updated 100,144,176,208 packages according to cut2.0 changes  
Added Section 3.5.1, “External ballast resistor recommendations  
Added NVUSRO [WATCHDOG_EN] field description  
Updated Absolute maximum ratings  
Updated LQFP thermal characteristics  
Updated I/O supply segments  
Updated Voltage regulator capacitance connection  
Updated Low voltage monitor electrical characteristics  
Updated Low voltage power domain electrical characteristics  
Updated DC electrical characteristics  
Updated Program/Erase specifications  
Updated Conversion characteristics (10 bit ADC)  
Updated FMPLL electrical characteristics  
Updated Fast RC oscillator electrical characteristics-aligned with MPC5604B  
Updated On-chip peripherals current consumption  
Updated ADC characteristics and error definitions diagram  
Updated ADC conversion characteristics (10 bit and 12 bit)  
Added ADC characteristics and error definitions diagram for 12 bit ADC  
3
25 Jan-2010 Updated Features  
Updated block diagram to connect peripherals to pad I/O  
Updated block summary to include ADC 12-bit  
Updated 144, 176 and 100 pinouts to adjust format issues  
Table 26 Flash module life-retention value changed from 1-5 to 5 yrs  
Minor editing changes  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
109  
Revision history  
Table 54. Revision history (continued)  
Substantive changes  
Revision  
Date  
4
24 Aug 2010 Editorial changes and improvements.  
Updated “Features“ section  
Table 1: updated footnote concerning 208 MAPBGA  
In the block diagram:  
• Added “5ch 12-bit ADC“ block.  
• Updated Legend.  
• Added “Interrupt request with wakeup functionality” as an input to the WKPU block.  
Figure 2: removed alternate functions  
Figure 3: removed alternate functions  
Figure 4: removed alternate functions  
Table 2: added contents concerning the following blocks: CMU, eDMA, ECSM, MC_ME,  
MC_PCU, NMI, SSCM, SWT and WKPU  
Added Section 3.2, Pin muxing  
4, Electrical characteristics: removed “Caution” note  
4.2, NVUSRO register: removed “NVUSRO[WATCHDOG_EN] field description“ section  
Table 11: VIN: removed min value in “relative to VDD” row  
Table 12  
TA C-Grade Part, TJ C-Grade Part, TA V-Grade Part, TJ V-Grade Part, TA M-Grade Part, TJ M-Grade Part  
:
added new rows  
• TVDD: contents merged into one row  
• VDD_BV: changed min value in “relative to VDD” row  
4.5, Thermal characteristics  
4.5.1, External ballast resistor recommendations: added new paragraph about power  
supply  
Table 14: added RθJB and RθJC rows  
• Removed “208 MAPBGA thermal characteristics” table  
Table 15: rewrote parameter description of WFI and WNFI  
4.6.5, I/O pad current specification  
• Removed IDYNSEG information  
• Updated “I/O supply segments” table  
Table 22: removed IDYNSEG row  
Added Table 23  
Table 25  
• Updated all values  
• Removed IVREGREF and IVREDLVD12 rows  
• Added the footnote “The duration of the in-rush current depends on the capacitance  
placed on LV pins. BV decaps must be sized accordingly. Refer to IMREG value for  
minimum amount of current to be provided in cc.to the IDD_BV specification.  
Table 26  
• Updated VPORH min/max value  
• Updated VLVDLVCORL min value  
Updated Table 27  
Table 28  
• Tdwprogram: added initial max value  
• Inserted Teslat row  
Table 29: removed the “To be confirmed” footnote  
In the “Crystal oscillator and resonator connection scheme” figure, removed RP.  
Table 39  
• Removed gmSXOSC row  
• ISXOSCBIAS: added min/typ/max value  
MPC5607B Microcontroller Data Sheet, Rev. 9  
110  
NXP Semiconductors  
Revision history  
Table 54. Revision history (continued)  
Substantive changes  
Revision  
Date  
24 Aug 2010 Table 40:  
4
(cont.)  
(cont.) • Added fVCO row  
• Added ΔtSTJIT row  
Table 41  
• IFIRCPWD: removed row for TA = 55 °C  
• Updated TFIRCSU row  
Table 44: Added two rows: IADC0pwd and IADC0run  
Table 45  
• Added two rows: IADC1pwd and IADC1run  
• Updated values of fADC_1 and tADC1_PU  
• Updated tADC1_C row  
Updated Table 46  
Updated Table 47  
Updated Figure 40  
6, Ordering information: deleted “Orderable part number summary“ table  
5
6
27 Aug 2010 Removed “Preliminary—Subject to Change Without Notice” marking. This data sheet  
contains specifications based on characterization data.  
08 Jul 2011 Editorial and formatting changes throughout  
Replaced instances of “e200z0” with “e200z0h”Device family comparison table:  
• changed LINFlex count for 144-pin LQFP—was ‘6’; is ‘8’  
• changed LINFlex count for 176-pin LQFP—was ‘8’; is ‘10’  
• replaced 105 °C with 125 °C in footnote 2  
MPC5607B block diagram: added GPIO and VREG to legend  
MPC5607B series block summary: added acronym “JTAGC”; in WKPU function changed  
“up to 18 external sources” to “up to 27 external sources”  
144 LQFP pin configuration: for pins 37–72, restored the pin labels that existed prior to  
27 July 2010  
176 LQFP pin configuration: corrected name of pin 4: was EPC[15]; is PC[15]  
Added following sections:  
• Pad configuration during reset phases  
• Pad configuration during standby mode exit  
• Voltage supply pins  
• Pad types  
• System pins  
• Functional port pins  
• Nexus 2+ pins  
Section “NVUSRO register”: edited content to separate configuration into electrical  
parameters and digital functionality; updated footnote describing default value of ‘1’ in  
field descriptions NVUSRO[PAD3V5V] and NVUSRO[OSCILLATOR_MARGIN]  
Added section “NVUSRO[WATCHDOG_EN] field description”  
Tables “Absolute maximum ratings” and “Recommended operating conditions (3.3 V)”:  
replaced “VSS_HV_ADC0, VSS_HV_ADC1” with “VDD_HV_ADC0, VDD_HV_ADC1”  
in VDD_ADC parameter description  
“Recommended operating conditions (5.0 V)” table: replaced “VSS_HV_ADC0,  
VSS_HV_ADC1” with “VDD_HV_ADC0, VDD_HV_ADC1” in VDD_ADC parameter  
description; changed 3.6V to 3.0V in footnote 2  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
111  
Revision history  
Revision  
Table 54. Revision history (continued)  
Substantive changes  
Date  
6
08 Jul 2011 Section “External ballast resistor recommendations”: replaced “low voltage monitor” with  
“low voltage detector (LVD)”  
(cont’d)  
“I/O input DC electrical characteristics” table: updated ILKG characteristics  
“MEDIUM configuration output buffer electrical characteristics” table: changed  
“IOH = 100 µA” to “IOL = 100 µA” in VOL conditions  
I/O weight: updated table (includes replacing instances of bit “SRE” with “SRC”)  
“Reset electrical characteristics” table: updated parameter classification for |IWPU  
|
Updated voltage regulator electrical characteristics  
Section “Low voltage detector electrical characteristics”: changed title (was “Voltage  
monitor electrical characteristics”); changed “as well as four low voltage detectors” to  
“as well as five low voltage detectors”; added event status flag names found in RGM  
chapter of device reference manual to POR module and LVD descriptions; replaced  
instances of “Low voltage monitor” with “Low voltage detector”; updated values for  
VLVDLVBKPL and VLVDLVCORL  
Updated section “Power consumption”  
Section “Program/erase characteristics”: removed table “FLASH_BIU settings vs.  
frequency of operation” and associated introduction  
“Program and erase specifications” table: updated symbols  
PFCRn settings vs. frequency of operation: replaced “FLASH_BIU” with “PFCRn” in table  
title; updated field names and frequencies  
“Flash power supply DC electrical characteristics” table: deleted footnote 2  
Crystal oscillator and resonator connection scheme: inserted footnote about possibly  
requiring a series resistor  
Fast external crystal oscillator (4 to 16 MHz) electrical characteristics: updated parameter  
classification for VFXOSCOP  
Slow external crystal oscillator (32 kHz) electrical characteristics: updated footnote 1  
Section “ADC electrical characteristics”: updated symbols for offset error and gain error  
Section “Input impedance and ADC accuracy”: changed “VA/VA2” to “VA2/VA” in  
Equation 11  
ADC input leakage current: updated ILKG characteristics  
ADC_0 conversion characteristics table: replaced instances of  
“ADCx_conf_sample_input” with “INPSAMP”; replaced instances of  
“ADCx_conf_comp” with “INPCMP  
ADC_1 characteristic and error definitions: replaced “AVDD” with “VDD_ADC  
ADC_1 conversion characteristics table: replaced instances of  
“ADCx_conf_sample_input” with “INPSAMP”; replaced instances of  
“ADCx_conf_comp” with “INPCMP”  
Updated “On-chip peripherals current consumption” table  
MPC5607B Microcontroller Data Sheet, Rev. 9  
112  
NXP Semiconductors  
Revision history  
Table 54. Revision history (continued)  
Substantive changes  
Revision  
Date  
7
13 May 2013 In the cover feature list:  
added “and ECC” at the end of  
“Up to 1.5 MB on-chip code flash memory supported with the flash memory controller”  
added “with ECC” at the end of “Up to 96 KB on-chip SRAM”  
Table 1 (MPC5607B family comparison), updated SCI (LINFlex) values, 8 channels for  
both MPC5605B and MPC5606B 176-pin.  
Table 12 (Recommended operating conditions (3.3 V)), updated conditions of TA values  
and relative footnote.  
Table 13 (Recommended operating conditions (5.0 V)), updated conditions of TA values  
and relative footnote.  
Table 20 (Output pin transition times), replaced Ttr with ttr  
Table 24 (Reset electrical characteristics), replaced Ttr with ttr  
Updated Section 4.16.2, “Input impedance and ADC accuracy  
Table 26 (Low voltage detector electrical characteristics), changed VLVDHV3L(min) and  
VLVDHV3BL(min) from 2.7 V to 2.6 V.  
Table 28 (Program and erase specifications), added footnote about tESRT  
Table 40 (FMPLL electrical characteristics), deleted footnote relative to maximum value  
of fCPU  
Table 44 (ADC_0 conversion characteristics (10-bit ADC_0)), changed IADC0run value  
from 40 mA to 5 mA.  
Table 47 (DSPI characteristics), in the heading row, replaced  
DSPI0/DSPI1/DSPI5/DSPI6 with DSPI0/DSPI1/DSPI3/DSPI5  
8
9
19 Mar 2014 Added “K=TSMC Fab” against the Fab and mask indicator in Figure 40 (Commercial  
product code structure).  
9 Nov 2017 In Table 12 (Recommended operating conditions (3.3 V)) added Min value for TVDD.  
In Table 13 (Recommended operating conditions (5.0 V)) added Min value for TVDD.  
In 6, Ordering information added note “Not all options are available on all devices“.  
MPC5607B Microcontroller Data Sheet, Rev. 9  
NXP Semiconductors  
113  
How to Reach Us:  
Home Page:  
nxp.com  
Information in this document is provided solely to enable system and  
software implementers to use NXP products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any  
integrated circuits based on the information in this document. NXP  
reserves the right to make changes without further notice to any products  
herein.  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suit-  
ability of its products for any particular purpose, nor does NXP assume  
any liability arising out of the application or use of any product or circuit,  
and specifically disclaims any and all liability, including without limita-  
tion consequential or incidental damages. “Typical” parameters that may  
be provided in NXP data sheets and/or specifications can and do vary in  
different applications, and actual performance may vary over time. All  
operating parameters, including “typicals,” must bevalidated for each  
customer application by customer's technical experts. NXP does not con-  
vey any license under its patent rights nor the rights of others. NXP sells  
products pursuant to standard terms and conditions of sale, which can  
befound at the following address: nxp.com/SalesTermsandConditions.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER  
WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE,  
JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE  
PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE,  
MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C.5, CodeTEST,  
CodeWarrior, ColdFire, ColdFire+, C.Ware, the Energy Efficient Solutions logo,  
Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,  
QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore,  
Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC,  
Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and  
UMEMS are trademarks of NXP B.V. All other product or service names are the  
property of their respective owners. Arm, AMBA, Arm Powered, Artisan, Cortex,  
Jazelle, Keil, SecurCore, Thumb, TrustZone, and ÏVision are registered trademarks  
of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9,  
Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON,  
POP, Sensinode, Socrates, ULINK and Versatile are trademarks of Arm Limited  
(or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and  
Java are registered trademarks of Oracle and/or its affiliates. The Power Architec-  
ture and Power.org word marks and the Power and Power.org logos and related  
marks are trademarks and service marks licensed by Power.org.  
© 2017 NXP B.V.  
Document Number: MPC5607B  
Rev. 9  
11/2017  

相关型号:

935318733557

RISC Microcontroller
NXP

935318746557

RISC Microcontroller
NXP

935318758557

Power Supply Support Circuit
NXP

935318789557

RISC Microcontroller
NXP

935318793528

Power Supply Support Circuit
NXP

935318801128

RF Power Field-Effect Transistor
NXP

935318807697

Power Supply Management Circuit
NXP

935318807699

Power Supply Management Circuit
NXP

935318822578

RF Power Field-Effect Transistor
NXP

935318864557

RISC Microcontroller
NXP

935318871518

Multifunction Peripheral
NXP

935318897098

RISC Microcontroller
NXP