935324297557 [NXP]

Microcontroller;
935324297557
型号: 935324297557
厂家: NXP    NXP
描述:

Microcontroller

微控制器 外围集成电路
文件: 总106页 (文件大小:2381K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Technical Data  
Document Number: MC56F8006  
Rev. 4, 06/2011  
MC56F8006/MC56F8002  
48-pin LQFP  
Case: 932-03  
7 x 7 mm2  
32-pin LQFP  
Case: 873A-03  
7 x 7 mm2  
28-pin SOIC  
Case: 751F-05  
7.5 x 18 mm2  
MC56F8006/MC56F8002  
Digital Signal Controller  
32-pin PSDIP  
Case: 1376-02  
9 x 28.5 mm2  
This document applies to parts marked with 2M53M.  
RAM. Program flash memory can be independently bulk  
erased or erased in small pages of 512 bytes (256 words).  
The 56F8006/56F8002 is a member of the 56800E core-based  
family of digital signal controllers (DSCs). It combines, on a  
single chip, the processing power of a DSP and the  
functionality of a microcontroller with a flexible set of  
peripherals to create a cost-effective solution. Because of its  
low cost, configuration flexibility, and compact program  
code, the 56F8006/56F8002 is well-suited for many  
applications. It includes many peripherals that are especially  
useful for cost-sensitive applications, including:  
• Industrial control  
On-chip features include:  
• Up to 32 MIPS at 32 MHz core frequency  
• DSP and MCU functionality in a unified, C-efficient  
architecture  
• On-chip memory  
– 56F8006: 16 KB (8K x 16) flash memory  
– 56F8002: 12 KB (6K x 16) flash memory  
– 2 KB (1K x 16) unified data/program RAM  
• One 6-channel PWM module  
• Home appliances  
• Smart sensors  
• Two 28-channel, 12-bit analog-to-digital converters  
(ADCs)  
• Fire and security systems  
• Switched-mode power supply and power management  
• Power metering  
• Two programmable gain amplifiers (PGA) with gain up to  
32x  
• Three analog comparators  
• Motor control (ACIM, BLDC, PMSM, SR, and stepper)  
• Handheld power tools  
• Arc detection  
• One programmable interval timer (PIT)  
• One high-speed serial communication interface (SCI) with  
LIN slave functionality  
• Medical device/equipment  
• Instrumentation  
• Lighting ballast  
• One serial peripheral interface (SPI)  
• One 16-bit dual timer (2 x 16 bit timers)  
• One programmable delay block (PDB)  
2
• One SMBus compatible inter-integrated circuit (I C) port  
• One real time counter (RTC)  
The 56800E core is based on a dual Harvard-style architecture  
consisting of three execution units operating in parallel, allowing  
as many as six operations per instruction cycle. The MCU-style  
programming model and optimized instruction set allow  
straightforward generation of efficient, compact DSP and control  
code. The instruction set is also highly efficient for C compilers  
to enable rapid development of optimized control applications.  
The 56F8006/56F8002 supports program execution from internal  
memories. Two data operands can be accessed from the on-chip  
data RAM per instruction cycle. The 56F8006/56F8002 also  
offers up to 40 general-purpose input/output (GPIO) lines,  
depending on peripheral configuration.  
• Computer operating properly (COP)/watchdog  
• Two on-chip relaxation oscillators — 1 kHz and 8 MHz  
(400 kHz at standby mode)  
• Crystal oscillator  
• Integrated power-on reset (POR) and low-voltage interrupt  
(LVI) module  
• JTAG/enhanced on-chip emulation (OnCE™) for  
unobtrusive, real-time debugging  
• Up to 40 GPIO lines  
• 28-pin SOIC, 32-pin LQFP, 32-pin PSDIP, and 48-pin  
LQFP packages  
The 56F8006/56F8002 digital signal controller includes up to  
16 KB of program flash and 2 KB of unified data/program  
Freescale reserves the right to change the detail specifications as may be required to permit  
improvements in the design of its products.  
© Freescale Semiconductor, Inc., 2009–2011. All rights reserved.  
Table of Contents  
1
2
3
MC56F8006/MC56F8002 Family Configuration . . . . . . . . . . . .3  
8.1 General Characteristics. . . . . . . . . . . . . . . . . . . . . . . . 41  
8.2 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . 42  
8.3 Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . 43  
8.4 Recommended Operating Conditions . . . . . . . . . . . . . 45  
8.5 DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . 46  
8.6 Supply Current Characteristics . . . . . . . . . . . . . . . . . . 51  
8.7 Flash Memory Characteristics. . . . . . . . . . . . . . . . . . . 53  
8.8 External Clock Operation Timing. . . . . . . . . . . . . . . . . 53  
8.9 Phase Locked Loop Timing . . . . . . . . . . . . . . . . . . . . . 54  
8.10 Relaxation Oscillator Timing . . . . . . . . . . . . . . . . . . . . 54  
8.11 Reset, Stop, Wait, Mode Select, and Interrupt Timing. 56  
8.12 External Oscillator (XOSC) Characteristics. . . . . . . . . 56  
8.13 AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . 57  
8.14 COP Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
8.15 PGA Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
8.16 ADC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
8.17 HSCMP Specifications . . . . . . . . . . . . . . . . . . . . . . . . 68  
8.18 Optimize Power Consumption . . . . . . . . . . . . . . . . . . . 68  
Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
9.1 Thermal Design Considerations . . . . . . . . . . . . . . . . . 70  
9.2 Electrical Design Considerations. . . . . . . . . . . . . . . . . 71  
9.3 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
3.1 56F8006/56F8002 Features . . . . . . . . . . . . . . . . . . . . . .4  
3.2 Award-Winning Development Environment. . . . . . . . . . .8  
3.3 Architecture Block Diagram. . . . . . . . . . . . . . . . . . . . . . .9  
3.4 Product Documentation . . . . . . . . . . . . . . . . . . . . . . . .11  
Signal/Connection Descriptions . . . . . . . . . . . . . . . . . . . . . . .11  
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
4.2 Pin Assignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
4.3 56F8006/56F8002 Signal Pins . . . . . . . . . . . . . . . . . . .17  
Memory Maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
5.2 Program Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
5.3 Data Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
5.4 Interrupt Vector Table and Reset Vector . . . . . . . . . . . .31  
5.5 Peripheral Memory-Mapped Registers . . . . . . . . . . . . .32  
5.6 EOnCE Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . .33  
General System Control Information . . . . . . . . . . . . . . . . . . .34  
6.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
6.2 Power Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
6.3 Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
6.4 On-chip Clock Synthesis. . . . . . . . . . . . . . . . . . . . . . . .34  
6.5 Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
6.6 System Integration Module (SIM) . . . . . . . . . . . . . . . . .37  
6.7 PWM, PDB, PGA, and ADC Connections. . . . . . . . . . .38  
6.8 Joint Test Action Group (JTAG)/Enhanced On-Chip  
Emulator (EOnCE) . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
4
5
6
9
10 Package Mechanical Outline Drawings. . . . . . . . . . . . . . . . . 73  
10.1 28-pin SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . 73  
10.2 32-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
10.3 48-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
10.4 32-Pin PSDIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
11 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Appendix A  
7
8
Security Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
7.1 Operation with Security Enabled. . . . . . . . . . . . . . . . . .40  
7.2 Flash Access Lock and Unlock Mechanisms . . . . . . . .40  
7.3 Product Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Interrupt Vector Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Appendix B  
Peripheral Register Memory Map and Reset Value . . . . . . . 86  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
2
Freescale Semiconductor  
MC56F8006/MC56F8002 Family Configuration  
1
MC56F8006/MC56F8002 Family Configuration  
MC56F8006/MC56F8002 device comparison in Table 1.  
Table 1. MC56F8006 Series Device Comparison  
MC56F8006  
MC56F8002  
Feature  
28-pin  
32-pin  
48-pin  
28-pin  
Flash memory size (Kbytes)  
16  
12  
RAM size (Kbytes)  
2
3
2
Analog comparators (ACMP)  
Analog-to-digital converters (ADC)  
Unshielded ADC inputs  
6
9
7
7
6
9
Shielded ADC inputs  
11  
18  
17  
24  
Total number of ADC input pins1  
Programmable gain amplifiers (PGA)  
Pulse-width modulator (PWM) outputs  
PWM fault inputs  
15  
15  
2
6
3
4
4
3
Inter-integrated circuit (IIC)  
1
1
1
1
1
2
1
Serial peripheral interface (SPI)  
High speed serial communications interface (SCI)  
Programmable interrupt timer (PIT)  
Programmable delay block (PDB)  
16-bit multi-purpose timers (TMR)  
Real-time counter (RTC)  
Computer operating properly (COP) timer  
Phase-locked loop (PLL)  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1 kHz on-chip oscillator  
8 MHz (400 kHz at standby mode) on-chip ROSC  
Crystal oscillator  
Power management controller (PMC)  
IEEE 1149.1 Joint Test Action Group (JTAG) interface  
Enhanced on-chip emulator (EOnCE) IEEE 1149.1 Joint  
Test Action Group (JTAG) interface  
1
Some ADC inputs share the same pin. See Table 4.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
3
Block Diagram  
2
Block Diagram  
Figure 1 shows a top-level block diagram of the MC56F8006/MC56F8002 digital signal controller. Package options for this  
family are described later in this document. Italics indicate a 56F8002 device parameter.  
V
V
V
V
DD  
SS  
DDA SSA  
RESET  
4
3
3
JTAG/EOnCE  
Port or GPIOD  
Digital Reg  
Low-Voltage  
Supervisor  
Analog Reg  
PWM  
6
PWM Outputs  
PMC  
16-Bit 56800E Core  
3
Fault Inputs  
Data ALU 16 x 16 + 36 36-Bit MAC  
Three 16-bit Input Registers  
Four 36-bit Accumulators  
Program Controller  
and Hardware  
Looping Unit  
Address  
Generation Unit  
Bit  
Manipulation  
Unit  
programmable  
delay block  
PAB  
PDB  
CDBR  
CDBW  
ADCA  
24 Total  
PGA/ADC  
ADCB  
R/W Control  
XDB2  
XAB1  
XAB2  
Memory  
Flash Memory  
16 Kbytes flash  
12 Kbytes flash  
2
2
CMP0  
System Bus  
Control  
CMP  
PAB  
PDB  
CDBR  
or  
GPIOD  
CMP1  
Unified Data /  
Program RAM  
2KB  
CDBW  
PIT  
2
CMP2  
GPIO are  
muxed with  
all other func  
pins.  
IPBus Bridge  
Note: All pins  
40  
are muxed with  
other peripheral  
pins.  
Power  
Dual GP Timer  
Management  
Controller  
4
RTC  
2
System  
ROSC  
Clock  
Interrupt  
Controller  
SCI  
SPI  
I C  
COP/  
Watchdog  
Integration  
Generator*  
OSC  
Module  
2
2
2
4
Crystal  
Oscillator  
Figure 1. MC56F8006/MC56F8002 Block Diagram  
3
Overview  
3.1  
56F8006/56F8002 Features  
3.1.1  
Core  
Efficient 16-bit 56800E family digital signal controller (DSC) engine with dual Harvard architecture  
As many as 32 million instructions per second (MIPS) at 32 MHz core frequency  
155 basic instructions in conjunction with up to 20 address modes  
Single-cycle 16 16-bit parallel multiplier-accumulator (MAC)  
Four 36-bit accumulators, including extension bits  
32-bit arithmetic and logic multi-bit shifter  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
4
Freescale Semiconductor  
Overview  
Parallel instruction set with unique DSP addressing modes  
Hardware DO and REP loops  
Three internal address buses  
Four internal data buses  
Instruction set supports DSP and controller functions  
Controller-style addressing modes and instructions for compact code  
Efficient C compiler and local variable support  
Software subroutine and interrupt stack with depth limited only by memory  
JTAG/enhanced on-chip emulation (EOnCE) for unobtrusive, processor speed–independent, real-time debugging  
3.1.2  
Operation Range  
1.8 V to 3.6 V operation (power supplies and I/O)  
From power-on-reset: approximately 1.9 V to 3.6 V  
Ambient temperature operating range:  
— –40 °C to 125 °C  
3.1.3  
Memory  
Dual Harvard architecture permits as many as three simultaneous accesses to program and data memory  
Flash security and protection that prevent unauthorized users from gaining access to the internal flash  
On-chip memory  
— 16 KB of program flash for 56F8006 and 12 KB of program flash for 56F8002  
— 2 KB of unified data/program RAM  
EEPROM emulation capability using flash  
3.1.4  
Interrupt Controller  
Five interrupt priority levels  
— Three user programmable priority levels for each interrupt source: Level 0, 1, 2  
— Unmaskable level 3 interrupts include: illegal instruction, hardware stack overflow, misaligned data access, SWI3  
instruction. Maskable level 3 interrupts include: EOnCE step counter, EOnCE breakpoint unit, EOnCE trace  
buffer  
— Lowest-priority software interrupt: level LP  
Allow nested interrupt that higher priority level interrupt request can interrupt lower priority interrupt subroutine  
The masking of interrupt priority level is managed by the 56800E core  
One programmable fast interrupt that can be assigned to any interrupt source  
Notification to system integration module (SIM) to restart clock out of wait and stop states  
Ability to relocate interrupt vector table  
3.1.5  
Peripheral Highlights  
One multi-function, six-output pulse width modulator (PWM) module  
— Up to 96 MHz PWM operating clock  
— 15 bits of resolution  
— Center-aligned and edge-aligned PWM signal mode  
— Phase shifting PWM pulse generation  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
5
Overview  
— Four programmable fault inputs with programmable digital filter  
— Double-buffered PWM registers  
— Separate deadtime insertions for rising and falling edges  
— Separate top and bottom pulse-width correction by means of software  
— Asymmetric PWM output within both Center Aligned and Edge Aligned operation  
— Separate top and bottom polarity control  
— Each complementary PWM signal pair allows selection of a PWM supply source from:  
PWM generator  
Internal timers  
Analog comparator outputs  
Two independent 12-bit analog-to-digital converters (ADCs)  
— 2 x 14 channel external inputs plus seven internal inputs  
— Support simultaneous and software triggering conversions  
— ADC conversions can be synchronized by PWM and PDB modules  
— Sampling rate up to 400 KSPS for 10- or 12-bit conversion result; 470 KSPS for 8-bit conversion result  
— Two 16-word result registers  
Two programmable gain amplifier (PGAs)  
— Each PGA is designed to amplify and convert differential signals to a single-ended value fed to one of the ADC  
inputs  
— 1X, 2X, 4X, 8X, 16X, or 32X gain  
— Software and hardware triggers are available  
— Integrated sample/hold circuit  
— Includes additional calibration features:  
Offset calibration eliminates any errors in the internal reference used to generate the VDDA/2 output center  
point  
Gain calibration can be used to verify the gain of the overall datapath  
Both features require software correction of the ADC result  
Three analog comparators (CMPs)  
— Selectable input source includes external pins, internal DACs  
— Programmable output polarity  
— Output can drive timer input, PWM fault input, PWM source, external pin output, and trigger ADCs  
— Output falling and rising edge detection able to generate interrupts  
One dual channel 16-bit multi-purpose timer module (TMR)  
— Two independent 16-bit counter/timers with cascading capability  
— Up to 96 MHz operating clock  
— Each timer has capture and compare and quadrature decoder capability  
— Up to 12 operating modes  
— Four external inputs and two external outputs  
One serial communication interface (SCI) with LIN slave functionality  
— Up to 96 MHz operating clock  
— Full-duplex or single-wire operation  
— Programmable 8- or 9- bit data format  
— Two receiver wakeup methods:  
Idle line  
Address mark  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
6
Freescale Semiconductor  
Overview  
— 1/16 bit-time noise detection  
One serial peripheral interface (SPI)  
— Full-duplex operation  
— Master and slave modes  
— Programmable length transactions (2 to 16 bits)  
— Programmable transmit and receive shift order (MSB as first or last bit transmitted)  
— Maximum slave module frequency = module clock frequency/2  
2
One inter-integrated Circuit (I C) port  
— Operates up to 400 kbps  
— Supports master and slave operation  
— Supports 10-bit address mode and broadcasting mode  
— Supports SMBus, Version 2  
One 16-bit programmable interval timer (PIT)  
— 16 bit counter with programmable counter modulo  
— Interrupt capability  
One 16-bit programmable delay block (PDB)  
— 16 bit counter with programmable counter modulo and delay time  
— Counter is initiated by positive transition of internal or external trigger pulse  
— Supports two independently controlled delay pulses used to synchronize PGA and ADC conversions with input  
trigger event  
— Two PDB outputs can be ORed together to schedule two conversions from one input trigger event  
— PDB outputs can be can be used to schedule precise edge placement for a pulsed output that generates the control  
signal for the CMP windowing comparison  
— Supports continuous or single shot mode  
— Bypass mode supported  
Computer operating properly (COP)/watchdog timer capable of selecting different clock sources  
— Programmable prescaler and timeout period  
— Programmable wait, stop, and partial powerdown mode operation  
— Causes loss of reference reset 128 cycles after loss of reference clock to the PLL is detected  
— Choice of clock sources from four sources in support of EN60730 and IEC61508:  
On-chip relaxation oscillator  
External crystal oscillator/external clock source  
System clock (IPBus up to 32 MHz)  
On-chip low power 1 kHz oscillator  
Real-timer counter (RTC)  
— 8-bit up-counter  
— Three software selectable clock sources  
External crystal oscillator/external clock source  
On-chip low-power 1 kHz oscillator  
System bus (IPBus up to 32 MHz)  
— Can signal the device to exit power down mode  
Phase lock loop (PLL) provides a high-speed clock to the core and peripherals  
— Provides 3x system clock to PWM and dual timer and SCI  
— Loss of lock interrupt  
— Loss of reference clock interrupt  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
7
Overview  
Clock sources  
— On-chip relaxation oscillator with two user selectable frequencies: 400 kHz for low speed mode, 8 MHz for  
normal operation  
— On-chip low-power 1 kHz oscillator can be selected as clock source to the RTC and/or COP  
— External clock: crystal oscillator, ceramic resonator, and external clock source  
Power management controller (PMC)  
— On-chip regulator for digital and analog circuitry to lower cost and reduce noise  
— Integrated power-on reset (POR)  
— Low-voltage interrupt with a user selectable trip voltage of 1.81 V or 2.31 V  
— User selectable brown-out reset  
— Run, wait, and stop modes  
— Low-power run, wait, and stop modes  
— Partial power down mode  
Up to 40 general-purpose I/O (GPIO) pins  
— Individual control for each pin to be in peripheral or GPIO mode  
— Individual input/output direction control for each pin in GPIO mode  
— Hysteresis and configurable pullup device on all input pins  
— Configurable slew rate and drive strength and optional input low pass filters on all output pins  
— 20 mA sink/source current  
JTAG/EOnCE debug programming interface for real-time debugging  
— IEEE 1149.1 Joint Test Action Group (JTAG) interface  
— EOnCE interface for real-time debugging  
3.1.6  
Power Saving Features  
Three low power modes  
— Low-speed run, wait, and stop modes: 200 kHz IP bus clock provided by ROSC  
— Low-power run, wait, and stop modes: clock provided by external 32–38.4 kHz crystal  
— Partial power down mode  
Low power external oscillator can be used in any low-power mode to provide accurate clock to active peripherals  
Low power real time counter for use in run, wait, and stop modes with internal and external clock sources  
32 s typical wakeup time from partial power down modes  
Each peripheral can be individually disabled to save power  
3.2  
Award-Winning Development Environment  
TM  
Processor Expert (PE) provides a Rapid Application Design (RAD) tool that combines easy-to-use component-based  
software application creation with an expert knowledge system.  
The CodeWarrior Integrated Development Environment is a sophisticated tool for code navigation, compiling, and debugging.  
A complete set of evaluation modules (EVMs), demonstration board kit, and development system cards support concurrent  
engineering. Together, PE, CodeWarrior, and EVMs create a complete, scalable tools solution for easy, fast, and efficient  
development.  
2
A full set of programmable peripherals — PWM, PGAs, ADCs, SCI, SPI, I C, PIT, timers, and analog comparators — supports  
various applications. Each peripheral can be independently shut down to save power. Any pin in these peripherals can also be  
used as general-purpose input/outputs (GPIOs).  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
8
Freescale Semiconductor  
Overview  
3.3  
Architecture Block Diagram  
The 56F8006/56F8002’s architecture is shown in Figure 2 and Figure 3. Figure 2 illustrates how the 56800E system buses  
communicate with internal memories and the IPBus interface and the internal connections among each unit of the 56800E core.  
Figure 3 shows the peripherals and control blocks connected to the IPBus bridge. Please see the system integration module  
(SIM) section in the MC56F8006 Reference Manual for information about which signals are multiplexed with those of other  
peripherals.  
DSP56800E Core  
Program Control Unit  
ALU1  
ALU2  
Address  
Generation  
Unit  
PC  
LA  
LA2  
HWS0  
HWS1  
FIRA  
Instruction  
Decoder  
R0  
R1  
(AGU)  
R2  
R3  
R4  
R5  
N
Interrupt  
Unit  
Program  
Memory  
M01  
N3  
OMR  
SR  
LC  
LC2  
Looping  
Unit  
SP  
FISR  
XAB1  
XAB2  
PAB  
Data/  
Program  
RAM  
PDB  
CDBW  
CDBR  
XDB2  
A2  
B2  
C2  
D2  
A1  
B1  
C1  
D1  
Y1  
Y0  
X0  
A0  
B0  
C0  
D0  
Bit-  
Manipulation  
Unit  
IPBus  
Interface  
Y
Data  
Enhanced  
OnCE™  
Arithmetic  
Logic Unit  
(ALU)  
JTAG TAP  
MAC and ALU Multi-Bit Shifter  
Figure 2. 56800E Core Block Diagram  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
9
Overview  
IPBus Bridge  
RTC  
GPIOA7  
GPIOA6  
GPIOA5  
GPIOA4  
GPIOA3  
GPIOA2  
GPIOA1  
GPIOA0  
COP  
System  
Clock  
Second Clcok source  
Crystal  
RESTE  
COSC  
ROSC  
OCCS  
SIM  
GPIOB7  
GPIOB6  
GPIOB5  
GPIOB4  
GPIOB3  
GPIOB2  
GPIOB1  
GPIOB0  
PMC  
1KHz  
INTC  
SPI  
SCI  
I2C  
GPIOC7  
GPIOC6  
GPIOC5  
GPIOC4  
GPIOC3  
GPIOC2  
GPIOC1  
GPIOC0  
Dual Timer (TMR)  
PWM  
PWM Synch  
PWM Input Mux  
GPIOD3  
GPIOD2  
GPIOD1  
GPIOD0  
CMP0  
CMP1  
GPIOE7  
GPIOE6  
GPIOE5  
GPIOE4  
GPIOE3  
GPIOE2  
GPIOE1  
GPIOE0  
CMP2  
PGA0  
PDB  
Trigger A  
ADCA  
PreTrigger A  
ANA15  
GPIOF3  
GPIOF2  
GPIOF1  
GPIOF0  
Trigger B  
ADCB  
PreTrigger B  
ANB15  
PGA1  
Figure 3. Peripheral Subsystem  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
10  
Freescale Semiconductor  
Signal/Connection Descriptions  
3.4  
Product Documentation  
The documents listed in Table 2 are required for a complete description and proper design with the 56F8006/56F8002.  
Documentation is available from local Freescale distributors, Freescale Semiconductor sales offices, Freescale Literature  
Distribution Centers, or online at http://www.freescale.com.  
Table 2. 56F8006/56F8002 Device Documentation  
Topic  
Description  
Order Number  
DSP56800E Reference Detailed description of the 56800E family architecture,  
DSP56800ERM  
Manual  
16-bit digital signal controller core processor, and the  
instruction set  
56F800x Peripheral  
Reference Manual  
Detailed description of peripherals of the 56F8006 and  
56F8002 devices  
MC56F8006RM  
TBD  
56F80x Serial Bootloader Detailed description of the Serial Bootloader in the  
User Guide  
56F800x family of devices  
56F8006/56F8002  
Technical Data Sheet  
Electrical and timing specifications, pin descriptions, and  
package descriptions (this document)  
MC56F8006  
MC56F8006E  
56F8006/56F8002 Errata Details any chip issues that might be present  
4
Signal/Connection Descriptions  
4.1  
Introduction  
The input and output signals of the 56F8006/56F8002 are organized into functional groups, as detailed in Table 3. Table 4  
summarizes all device pins. In Table 4, each table row describes the signal or signals present on a pin, sorted by pin number.  
Table 3. Functional Group Pin Allocations  
Number of Pins Number of Pins Number of Pins Number of Pins  
Functional Group  
in 28 SOIC  
in 32 LQFP  
in 32 PSDIP  
in 48 LQFP  
Power Inputs (VDD, VDDA  
)
2
3
2
3
2
3
4
4
Ground (VSS, VSSA  
Reset1  
)
1
1
1
1
Pulse Width Modulator (PWM) Ports1  
Serial Peripheral Interface (SPI) Ports1  
Serial Communications Interface 0 (SCI) Ports1  
Inter-Integrated Circuit Interface (I2C) Ports1  
Analog-to-Digital Converter (ADC) Inputs1  
High Speed Analog Comparator Inputs1  
Programmable Gain Amplifiers (PGA)1  
Dual Timer Module (TMR) Ports1  
10  
5
12  
7
12  
7
12  
7
4
5
5
5
6
7
7
7
16  
13  
4
18  
15  
4
18  
15  
4
24  
25  
4
8
10  
5
10  
5
10  
1
Programmable Delay Block (PDB)1  
Clock1  
5
5
JTAG/Enhanced On-Chip Emulation (EOnCE1)  
4
4
4
4
1
Pins may be shared with other peripherals. See Table 4.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
11  
Signal/Connection Descriptions  
In Table 4, peripheral pins in bold identify reset state.  
Table 4. 56F8006/56F8002 Pins  
Pin Number  
Peripherals  
Pin Name  
Power  
and JTAG Misc.  
Ground  
28  
32  
32  
48  
Dual  
Timer  
2
GPIO  
I C  
SCI  
SPI  
ADC  
PGA  
COMP  
PWM  
SOIC LQFP PSDIP LQFP  
1
1
1
26  
27  
1
2
3
4
29  
30  
31  
32  
1
2
3
GPIOB6/RXD/SDA/ANA13  
and CMP0_P2/CLKIN  
B6  
B1  
B7  
SDA RXD  
SDA  
ANA13  
ANA12  
ANA11  
CMP0_P2  
CMP2_P3  
CMP2_M3  
CLKIN  
GPIOB1/SS/SDA/ANA12  
SS  
andCMP2_P3  
GPIOB7/TXD/SCL/ANA11  
SCL  
TXD  
and CMP2_M3  
4
5
6
GPIOB5/T1/FAULT3/SCLK  
B5  
E0  
E1  
SCLK  
T1  
FAULT3  
GPIOE0  
1
GPIOE1/ANB9 and  
ANB9  
CMP0_P1  
CMP0_P1  
1
28  
1
5
6
7
1
2
3
7
8
ANB8 and PGA1+ and  
CMP0_M2/GPIOC4  
C4  
E2  
C5  
C7  
C6  
ANB8 PGA1+ CMP0_M2  
1
GPIOE2/ANB7 and  
ANB7  
CMP0_M1  
CMP0_M1  
1
9
ANB6 and PGA1– and  
CMP0_P4/GPIOC5  
ANB6 PGA1– CMP0_P4  
1
10  
11  
GPIOC7/ANB5 and  
ANB5  
ANB4  
CMP1_M2  
CMP1_P1  
CMP1_M2  
1
2
ANB4 and  
PWM2  
CMP1_P1/GPIOC6/PWM2  
3
4
8
9
4
5
12  
13  
14  
V
V
V
V
DDA  
SSA  
DDA  
SSA  
1
GPIOE3/ANA10 and  
E3  
C2  
E5  
C1  
E4  
C0  
ANA10  
CMP2_M1  
CMP2_M1  
1
5
6
10  
11  
6
7
15  
16  
17  
18  
19  
ANA9 and PGA0– and  
CMP2_P4/GPIOC2  
ANA9 PGA0– CMP2_P4  
1
GPIOE5/ANA8 and  
ANA8  
CMP2_P1  
CMP2_P1  
1
ANA7 and PGA0+ and  
CMP2_M2/GPIOC1  
ANA7 PGA0+ CMP2_M2  
1
GPIOE4/ANA6 and  
CMP2_P2  
ANA6  
ANA5  
CMP2_P2  
CMP1_M1  
1
7
8
12  
13  
8
9
ANA5 and  
CMP1_M1/GPIOC0/FAULT0  
FAULT0  
20  
21  
22  
V
V
SS  
DD  
SS  
V
V
DD  
1
9
14  
10  
TCK/GPIOD2/ANA4 and  
D2  
ANA4  
CMP1_P2,  
TCK  
CMP1_P2/CMP2_OUT  
CMP2_OUT  
10  
11  
15  
16  
11  
12  
23  
24  
RESET/GPIOA7  
A7  
B3  
RESET  
1
1
GPIOB3/MOSI/TIN3/ANA3  
and  
ANB3/PWM5/CMP1_OUT  
MOSI ANA3  
and  
CMP1_OUT TIN3 PWM5  
ANB3  
17  
18  
19  
13  
14  
15  
25  
26  
GPIOB2/MISO/TIN2/ANA2  
and ANB2/CMP0_OUT  
B2  
A6  
B4  
MISO ANA2  
and  
CMP0_OUT TIN2  
ANB2  
12  
13  
GPIOA6/FAULT0/ANA1 and  
ANB1/SCL/TXD/CLKO_1  
SCL  
TXD  
ANA1  
and  
ANB1  
FAULT0  
CLKO_1  
CLKO_0  
27 GPIOB4/T0/CLKO_0/MISO/  
SDA RXD MISO ANA0  
T0  
SDA/RXD/ANA0 and ANB0  
and  
ANB0  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
12  
Freescale Semiconductor  
Signal/Connection Descriptions  
Table 4. 56F8006/56F8002 Pins (continued)  
Pin Number  
32 32  
Peripherals  
Pin Name  
Power  
Dual  
28  
48  
2
GPIO  
I C  
SCI  
SPI  
ADC  
PGA  
COMP  
PWM  
and JTAG Misc.  
SOIC LQFP PSDIP LQFP  
Timer  
Ground  
28  
GPIOE6  
E6  
A5  
14  
20  
16  
29  
GPIOA5/PWM5/FAULT2 or  
TIN3 PWM5,  
FAULT2  
EXT_SYNC/TIN3  
or EXT_  
SYNC  
30  
31  
V
V
SS  
SS  
V
V
DD  
DD  
15  
16  
21  
22  
17  
18  
32 GPIOB0/SCLK/SCL/ANB13/  
B0  
SCL  
SDA  
SCLK ANB13  
T1  
PWM3  
PWM3/T1  
33 GPIOA4/PWM4/SDA/FAULT1 A4  
TIN2 PWM4,  
FAULT1  
/TIN2  
34  
35  
GPIOE7/CMP1_M3  
GPIOA2/PWM2  
E7  
A2  
A3  
F0  
CMP1_M3  
23  
24  
25  
26  
27  
19  
20  
21  
22  
23  
PWM2  
PWM3  
17  
18  
19  
20  
36 GPIOA3/PWM3/TXD/EXTAL  
TXD  
EXTAL  
XTAL  
37  
38  
39  
40  
41  
42  
43  
44  
45  
GPIOF0/XTAL  
V
V
DD  
DD  
V
V
SS  
SS  
GPIOF1/CMP1_P3  
GPIOF2/CMP0_M3  
GPIOF3/CMP0_P3  
GPIOA1/PWM1  
F1  
F2  
F3  
A1  
A0  
D0  
CMP1_P3  
CMP0_M3  
CMP0_P3  
21  
22  
23  
28  
29  
30  
24  
25  
26  
PWM1  
PWM0  
GPIOA0/PWM0  
TDI/GPIOD0/ANB12/SS/  
SS  
ANB12  
CMP0_OUT TIN2  
TDI  
TIN2/CMP0_OUT  
46  
47  
48  
GPIOC3/EXT_TRIGGER  
C3  
D3  
D1  
EXT_  
TRGGER  
24  
25  
31  
32  
27  
28  
TMS/GPIOD3/ANB11/T1/  
ANB11  
ANB10  
CMP1_OUT  
CMP2_OUT  
T1  
T0  
TMS  
TDO  
CMP1_OUT  
TDO/GPIOD1/ANB10/T0/  
CMP2_OUT  
1
Shielded ADC input.  
4.2  
Pin Assignment  
MC56F8006 and MC56F8002 28-pin small outline IC (28SOIC) assignment is shown in Figure 4; MC56F8006 32-pin  
low-profile quad flat pack (32LQFP) is shown in Figure 5; MC56F8006 32-pin plastic shrink dual in-line package (PSDIP) is  
shown in Figure 6; MC56F8006 48-pin low-profile quad flat pack (48LQFP) is shown in Figure 7.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
13  
Signal/Connection Descriptions  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
ANB6 & PGA1– & CMP0_P4/GPIOC5  
ANB8 & PGA1+ & CMP0_M2/GPIOC4  
GPIOB1/SS/SDA/ANA12 & CMP2_P3  
GPIOB6/RXD/SDA/ANA13 & CMP0_P2/CLKIN  
TDO/GPIOD1/ANB10/T0/CMP2_OUT  
TMS/GPIOD3/ANB11/T1/CMP1_OUT  
TDI/GPIOD0/ANB12/SS/TIN2/CMP0_OUT  
GPIOA0/PWM0  
ANB4 & CMP1_P1/GPIOC6/PWM2  
V
3
DDA  
4
V
SSA  
5
ANA9 & PGA0– & CMP2_P4/GPIOC2  
ANA7 & PGA0+ & CMP2_M2/GPIOC1  
ANA5 and CMP1_M1/GPIOC0/FAULT0  
6
7
GPIOA1/PWM1  
8
V
SS  
V
V
9
SS  
DD  
TCK/GPIOD2/ANA4 & CMP1_P2/CMP2_OUT  
RESET/GPIOA7  
10  
11  
12  
13  
14  
GPIOF0/XTAL  
GPIOB3/MOSI/TIN3/ANA3 & ANB3/PWM5/CMP1_OUT  
GPIOA6/FAULT0/ANA1 & ANB1/SCL/TXD/CLKO_1  
GPIOB4/T0/CLKO_0/MISO/SDA/RXD/ANA0 & ANB0  
GPIOA5/PWM5/FAULT2 or EXT_SYNC/TIN3  
GPIOA3/PWM3/TXD/EXTAL  
GPIOA4/PWM4/SDA/FAULT1/TIN2  
GPIOB0/SCLK/SCL/ANB13/PWM3/T1  
Figure 4. Top View, MC56F8006/MC56F8002 28-Pin SOIC Package  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
14  
Freescale Semiconductor  
Signal/Connection Descriptions  
GPIOB6/RXD/SDA/ANA13 & CMP0_P2/CLKIN  
GPIOB1/SS/SDA/ANA12 & CMP2_P3  
GPIOB7/TXD/SCL/ANA11 & CMP2_M3  
GPIOB5/T1/FAULT3/SCLK  
GPIOA3/PWM3/TXD/EXTAL  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
GPIOA2/PWM2  
ORIENTATION  
MARK  
GPIOA4/PWM4/SDA/FAULT1/TIN2  
GPIOB0/SCLK/SCL/ANB13/PWM3/T1  
ANB8 and PGA1+ & CMP0_M2/GPIOC4  
ANB6 and PGA1– & CMP0_P4/GPIOC5  
ANB4 & CMP1_P1/GPIOC6/PWM2  
GPIOA5/PWM5/FAULT2 or EXT_SYNC/TIN3  
GPIOB4/T0/CLKO_0/MISO/SDA/RXD/ANA0 & ANB0  
GPIOA6/FAULT0/ANA1 & ANB1/SCL/TXD/CLKO_1  
GPIOB2/MISO/TIN2/ANA2 & ANB2/CMP0_OUT  
V
DDA  
Figure 5. Top View, MC56F8006 32-Pin LQFP Package  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
15  
Signal/Connection Descriptions  
'0)/"ꢄꢌ4ꢀꢌ&!5,4ꢂꢌ3#,+  
'0)/"ꢆꢌ48$ꢌ3#,ꢌ!.!ꢀꢀ ꢋ #-0ꢁ?-ꢂ  
'0)/"ꢀꢌ33ꢌ3$!ꢌ!.!ꢀꢁ ꢋ #-0ꢁ?0ꢂ  
'0)/"ꢅꢌ28$ꢌ3$!ꢌ!.!ꢀꢂ ꢋ #-0ꢉ?0ꢁꢌ#,+).  
4$/ꢌ'0)/$ꢀꢌ!."ꢀꢉꢌ4ꢉꢌ#-0ꢁ?/54  
4-3ꢌ'0)/$ꢂꢌ!."ꢀꢀꢌ4ꢀꢌ#-0ꢀ?/54  
4$)ꢌ'0)/$ꢉꢌ!."ꢀꢁꢌ33ꢌ4).ꢁꢌ#-0ꢉ?/54  
'0)/!ꢉꢌ07-ꢉ  
!."ꢇ AND 0'!ꢀꢊ ꢋ #-0ꢉ?-ꢁꢌ'0)/#ꢃ  
ꢂꢁ  
ꢂꢀ  
ꢂꢉ  
ꢁꢈ  
ꢁꢇ  
ꢁꢆ  
ꢁꢅ  
ꢁꢄ  
ꢁꢃ  
ꢁꢂ  
ꢁꢁ  
ꢁꢀ  
ꢁꢉ  
ꢀꢈ  
ꢀꢇ  
ꢀꢆ  
!."ꢅ AND 0'!ꢀn ꢋ #-0ꢉ?0ꢃꢌ'0)/#ꢄ  
!."ꢃ ꢋ #-0ꢀ?0ꢀꢌ'0)/#ꢅꢌ07-ꢁ  
6$$!  
633!  
!.!ꢈ ꢋ 0'!ꢉn ꢋ #-0ꢁ?0ꢃꢌ'0)/#ꢁ  
!.!ꢆ ꢋ 0'!ꢉꢊ ꢋ #-0ꢁ?-ꢁꢌ'0)/#ꢀ  
!.!ꢄ ꢋ #-0ꢀ?-ꢀꢌ'0)/#ꢉꢌ&!5,4ꢉ  
633  
'0)/!ꢀꢌ07-ꢀ  
633  
4#+ꢌ'0)/$ꢁꢌ!.!ꢃ ꢋ #-0ꢀ?0ꢁꢌ#-0ꢁ?/54  
2%3%4ꢌ'0)/!ꢆ  
ꢀꢉ  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
ꢀꢅ  
6$$  
'0)/&ꢉꢌ84!,  
'0)/"ꢂꢌ-/3)ꢌ4).ꢂꢌ!.!ꢂ ꢋ !."ꢂꢌ07-ꢄꢌ#-0ꢀ?/54  
'0)/"ꢁꢌ-)3/ꢌ4).ꢁꢌ!.!ꢁ ꢋ !."ꢁꢌ#-0ꢉ?/54  
'0)/!ꢅꢌ&!5,4ꢉꢌ!.!ꢀ ꢋ !."ꢀꢌ3#,ꢌ48$ꢌ#,+/?ꢀ  
'0)/"ꢃꢌ4ꢉꢌ#,+/?ꢉꢌ-)3/ꢌ3$!ꢌ28$ꢌ!.!ꢉ ꢋ !."ꢉ  
'0)/!ꢄꢌ07-ꢄꢌ&!5,4ꢁ OR %84?39.#ꢌ4).ꢂ  
'0)/!ꢂꢌ07-ꢂꢌ48$ꢌ%84!,  
'0)/!ꢁꢌ07-ꢁ  
'0)/!ꢃꢌ07-ꢃꢌ3$!ꢌ&!5,4ꢀꢌ4).ꢁ  
'0)/"ꢉꢌ3#,+ꢌ3#,ꢌ!."ꢀꢂꢌ07-ꢂꢌ4ꢀ  
Figure 6. Top View, MC56F8006 32-Pin PSDIP Package  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
16  
Freescale Semiconductor  
Signal/Connection Descriptions  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
GPIOA3/PWM3/TXD/EXTAL  
1
GPIOB6/RXD/SDA/ANA13 & CMP0_P2/CLKIN  
GPIOB1/SS/SDA/ANA12 & CMP2_P3  
GPIOB7/TXD/SCL/ANA11 & CMP2_M3  
GPIOB5/T1/FAULT3/SCLK  
2
GPIOA2/PWM2  
GPIOE7/CMP1_M3  
3
Orientation Mark  
GPIOA4/PWM4/SDA/FAULT1/TIN2  
GPIOB0/SCLK/SCL/ANB13/PWM3/T1  
4
5
GPIOE0  
V
GPIOE1/ANB9 & CMP0_P1  
6
DD  
Vss  
ANB8 and PGA1+ & CMP0_M2/GPIOC4  
GPIOE2/ANB7 & CMP0_M1  
7
GPIOA5/PWM5/FAULT2 or EXT_SYNC/TIN3  
GPIOE6  
8
ANB6 and PGA1– & CMP0_P4/GPIOC5  
GPIOC7/ANB5 & CMP1_M2  
9
GPIOB4/T0/CLKO_0/MISO/SDA/RXD/ANA0 & ANB0  
GPIOA6/FAULT0/ANA1 & ANB1/SCL/TXD/CLKO_1  
GPIOB2/MISO/TIN2/ANA2 & ANB2/CMP0_OUT  
10  
11  
12  
ANB4 & CMP1_P1/GPIOC6/PWM2  
V
DDA  
Figure 7. Top View, MC56F8006 48-Pin LQFP Package  
4.3  
56F8006/56F8002 Signal Pins  
After reset, each pin is configured for its primary function (listed first). Any alternate functionality must be programmed via the  
GPIO module’s peripheral enable registers (GPIO_x_PER) and SIM module’s (GPS_xn) GPIO peripheral select registers. If  
CLKIN or XTAL is selected as device external clock input, the CLK_MOD bit in the OCCS oscillator control register (OSCTL)  
needs to be set too. EXT_SEL bit in OSCTL selects CLKIN or XTAL.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
17  
Signal/Connection Descriptions  
Table 5. 56F8006/56F8002 Signal and Package Information  
32  
PSDI  
P
State  
During  
Reset  
Signal  
Name  
28  
32  
48  
LQFP  
Type  
Signal Description  
SOIC LQFP  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VDDA  
21  
31  
38  
20  
30  
39  
12  
Supply  
Supply I/O Power — This pin supplies 3.3 V power to the chip I/O interface.  
19  
8
26  
13  
22  
9
Supply  
Supply I/O Ground — These pins provide ground for chip I/O interface.  
20  
3
27  
8
23  
4
Supply  
Supply  
Input  
Supply Analog Power — This pin supplies 3.3 V power to the analog  
modules. It must be connected to a clean analog power supply.  
VSSA  
4
9
5
13  
23  
Supply Analog Ground — This pin supplies an analog ground to the analog  
modules. It must be connected to a clean power supply.  
RESET  
10  
15  
11  
Input, Reset — This input is a direct hardware reset on the processor.  
internal When RESET is asserted low, the device is initialized and placed in  
pullup the reset state. A Schmitt-trigger input is used for noise immunity.  
enabled The internal reset signal is deasserted synchronous with the  
internal clocks after a fixed number of internal clocks.  
(GPIOA7)  
GPIOA0  
Input/  
Output  
Port A GPIO — This GPIO pin can be individually programmed as  
an input or output pin. RESET functionality is disabled in this mode  
and the chip can be reset only via POR, COP reset, or software  
reset.  
After reset, the default state is RESET.  
22  
21  
29  
28  
23  
25  
24  
19  
44  
43  
35  
Input/  
Output  
Input, Port A GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin.  
pullup  
enabled  
(PWM0)  
GPIOA1  
Output  
PWM0 — The PWM channel 0.  
After reset, the default state is GPIOA0.  
Input/  
Output  
Input, Port A GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin.  
pullup  
enabled  
(PWM1)  
GPIOA2  
Output  
PWM1 — The PWM channel 1.  
After reset, the default state is GPIOA1.  
Input/  
Input, Port A GPIO — This GPIO pin can be individually programmed as  
Output  
internal an input or output pin.  
pullup  
enabled  
(PWM2)  
Output  
PWM2 — The PWM channel 2.  
After reset, the default state is GPIOA2.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
18  
Freescale Semiconductor  
Signal/Connection Descriptions  
Table 5. 56F8006/56F8002 Signal and Package Information (continued)  
32  
PSDI  
P
State  
During  
Reset  
Signal  
Name  
28  
32  
48  
LQFP  
Type  
Signal Description  
SOIC LQFP  
GPIOA3  
17  
24  
20  
36  
Input/  
Input, Port A GPIO — This GPIO pin can be individually programmed as  
Output  
internal an input or output pin.  
pullup  
enabled  
(PWM3)  
(TXD)  
Output  
Output  
PWM3 — The PWM channel 3.  
TXD — The SCI transmit data output or transmit/receive in single  
wire operation.  
(EXTAL)  
Analog  
Input  
EXTAL — External Crystal Oscillator Input. This input can be  
connected to a 32.768 kHz or 1–16 MHz external crystal or ceramic  
resonator. When used to supply a source to the internal PLL, the  
crystal/resonator must be in the 4 MHz to 8 MHz range. Tie this pin  
low or configure as GPIO if XTAL is being driven by an external  
clock source.  
If using a 32.768 kHz crystal, place the crystal as close as possible  
to device pins to speed startup.  
After reset, the default state is GPIOA3.  
GPIOA4  
16  
22  
18  
33  
Input/  
Output  
Input, Port A GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin.  
pullup  
(PWM4)  
(SDA)  
Output  
enabled PWM4 — The PWM channel 4.  
Input/Open-  
drain  
SDA — The I2C serial data line.  
Output  
(FAULT1)  
(TIN2)  
Input  
Input  
FAULT1 — PWM fault input 1used for disabling selected PWM  
outputs in cases where fault conditions originate off-chip.  
TIN2 — Dual timer module channel 2 input  
After reset, the default state is GPIOA4.  
GPIOA5  
(PWM5)  
14  
20  
16  
29  
Input/  
Output  
Input, Port A GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin.  
pullup  
Output  
enabled PWM5 — The PWM channel 5.  
(FAULT2/  
EXT_SYNC)  
Input/  
Output  
FAULT2 — PWM fault input 2 used for disabling selected PWM  
outputs in cases where fault conditions originate off-chip.  
EXT_SYNC — When not being used as a fault input, this pin can be  
used to receive a pulse to reset the PWM counter or to generate a  
positive pulse at the start of every PWM cycle.  
(TIN3)  
Input  
TIN3 — Dual timer module channel 3 input  
After reset, the default state is GPIOA5.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
19  
Signal/Connection Descriptions  
Table 5. 56F8006/56F8002 Signal and Package Information (continued)  
32  
PSDI  
P
State  
During  
Reset  
Signal  
Name  
28  
32  
48  
LQFP  
Type  
Signal Description  
SOIC LQFP  
GPIOA6  
12  
18  
14  
26  
Input/  
Output  
Input, Port A GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin.  
pullup  
(FAULT0)  
Input  
enabled FAULT0 — PWM fault input 0 used for disabling selected PWM  
outputs in cases where fault conditions originate off-chip.  
(ANA1 &  
ANB1)  
Analog  
Input  
ANA1 and ANB1 — Analog input to channel 1 of ADCA and ADCB.  
SCL — The I2C serial clock  
(SCL)  
Input/Open-  
drain  
Output  
TXD — The SCI transmit data output or transmit/receive in single  
wire operation.  
(TXD)  
Output  
Output  
CLKO_1 — This is a buffered clock output; the clock source is  
selected by clockout select (CLKOSEL) bits in the clock output  
select register (CLKOUT) in the SIM.  
(CLKO_1)  
When used as an analog input, the signal goes to the ANA1 and  
ANB1.  
After reset, the default state is GPIOA6.  
GPIOB0  
(SCLK)  
15  
21  
17  
32  
Input/  
Output  
Input, Port B GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin.  
pullup  
enabled SCLK — The SPI serial clock. In master mode, this pin serves as  
an output, clocking slaved listeners. In slave mode, this pin serves  
as the data clock input.  
Input/  
Output  
(SCL)  
Input/Open-  
drain  
SCL — The I2C serial clock.  
Output  
(ANB13)  
Analog  
Input  
ANB13 — Analog input to channel 13 of ADCB  
(PWM3)  
(T1)  
Output  
PWM3 — The PWM channel 3.  
Input/  
Output  
T1 — Dual timer module channel 1 input/output.  
After reset, the default state is GPIOB0.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
20  
Freescale Semiconductor  
Signal/Connection Descriptions  
Table 5. 56F8006/56F8002 Signal and Package Information (continued)  
32  
PSDI  
P
State  
During  
Reset  
Signal  
Name  
28  
32  
48  
LQFP  
Type  
Signal Description  
SOIC LQFP  
GPIOB1  
27  
2
30  
2
Input/  
Output  
Input, Port B GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin.  
pullup  
(SS)  
Input/  
Output  
enabled SS — SS is used in slave mode to indicate to the SPI module that  
the current transfer is to be received.  
(SDA)  
Input/Open-  
drain  
SDA — The I2C serial data line.  
Output  
(ANA12 and  
CMP2_P3)  
Analog  
input  
ANA12 and CMP2_P3 — Analog input to channel 12 of ADCA and  
Positive input 3 of analog comparator 2.  
When used as an analog input, the signal goes to the ANA12 and  
CMP2_P3.  
After reset, the default state is GPIOB1.  
GPIOB2  
(MISO)  
17  
13  
25  
Input/  
Output  
Input, Port B GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin.  
pullup  
enabled MISO — Master in/slave out. In master mode, this pin serves as the  
data input. In slave mode, this pin serves as the data output. The  
MISO line of a slave device is placed in the high-impedance state if  
the slave device is not selected.  
Input/  
Output  
(TIN2)  
Input/  
TIN2 — Dual timer module channel 2 input.  
Output  
(ANA2 and  
ANB2)  
Analog  
Input  
ANA2 and ANB2 — Analog input to channel 2 of ADCA and ADCB.  
CMP0_OUT— Analog comparator 0 output.  
(CMP0_  
OUT)  
Output  
When used as an analog input, the signal goes to the ANA2 and  
ANB2.  
After reset, the default state is GPIOB2.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
21  
Signal/Connection Descriptions  
Table 5. 56F8006/56F8002 Signal and Package Information (continued)  
32  
PSDI  
P
State  
During  
Reset  
Signal  
Name  
28  
32  
48  
LQFP  
Type  
Signal Description  
SOIC LQFP  
GPIOB3  
(MOSI)  
(TIN3)  
11  
16  
12  
24  
Input/  
Output  
Input, Port B GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin.  
pullup  
enabled MOSI — Master out/slave in. In master mode, this pin serves as the  
data output. In slave mode, this pin serves as the data input.  
Input/  
Output  
Input/  
TIN3 — Dual timer module channel 3 input.  
Output  
(ANA3 and  
ANB3)  
Input  
ANA3 and ANB3 — Analog input to channel 3 of ADCA and ADCB.  
PWM5 — The PWM channel 5.  
(PWM5)  
Output  
Output  
CMP1_OUT— Analog comparator 1 output.  
(CMP1_  
OUT  
When used as an analog input, the signal goes to the ANA3 and  
ANB3.  
After reset, the default state is GPIOB3.  
GPIOB4  
(T0)  
13  
19  
15  
27  
Input/  
Output  
Input, Port B GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin.  
pullup  
Input/  
enabled T0 — Dual timer module channel 0 input/output.  
Output  
(CLKO_0)  
Output  
CLKO_0 — This is a buffered clock output; the clock source is  
selected by clockout select (CLKOSEL) bits in the clock output  
select register (CLKOUT) of the SIM.  
(MISO)  
Input/  
Output  
MISO — Master in/slave out. In master mode, this pin serves as the  
data input. In slave mode, this pin serves as the data output. The  
MISO line of a slave device is placed in the high-impedance state if  
the slave device is not selected.  
(SDA)  
(RXD)  
Input/Open-  
drain  
SDA — The I2C serial data line.  
Output  
Input  
RXD — The SCI receive data input.  
(ANA0 and  
ANB0)  
Analog  
Input  
ANA0 and ANB0 — Analog input to channel 0 of ADCA and ADCB.  
When used as an analog input, the signal goes to the ANA0 and  
ANB0.  
After reset, the default state is GPIOB4.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
22  
Freescale Semiconductor  
Signal/Connection Descriptions  
Table 5. 56F8006/56F8002 Signal and Package Information (continued)  
32  
PSDI  
P
State  
During  
Reset  
Signal  
Name  
28  
32  
48  
LQFP  
Type  
Signal Description  
SOIC LQFP  
GPIOB5  
4
32  
4
Input/  
Output  
Input, Port B GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin.  
pullup  
(T1)  
Input/  
enabled T1 — Dual timer module channel 1 input/output.  
Output  
(FAULT3)  
(SCLK)  
Input  
Input  
FAULT3 — PWM fault input 3 used for disabling selected PWM  
outputs in cases where fault conditions originate off-chip.  
SCLK — SPI serial clock. In master mode, this pin serves as an  
output, clocking slaved listeners. In slave mode, this pin serves as  
the data clock input.  
After reset, the default state is GPIOB5.  
GPIOB6  
(SDA)  
26  
1
29  
1
Input/  
Output  
Input, Port B GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin.  
pullup  
Input/Open- enabled SDA — The I2C serial data line.  
drain  
Output  
(ANA13 and  
CMP0_P2)  
Analog  
Input  
ANA13 and CMP0_P2 — Analog input to channel 13 of ADCA and  
positive input 2 of analog comparator 0.  
(CLKIN)  
Input  
External Clock Input — This pin serves as an external clock input.  
When used as an analog input, the signal goes to the ANA13 and  
CMP0_P2.  
After reset, the default state is GPIOB6.  
GPIOB7  
(TXD)  
3
31  
3
Input/  
Output  
Input, Port B GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin.  
pullup  
enabled TXD — The SCI transmit data output or transmit/receive in single  
wire operation.  
Input/  
Output  
(SCL)  
Input/Open-  
drain  
SCL — The I2C serial clock.  
Output  
(ANA11 and  
CMP2_M3)  
Analog  
Input  
ANA11 and CMP2_M3 — Analog input to channel 11 of ADCA and  
negative input 3 of analog comparator 2.  
When used as an analog input, the signal goes to the ANA11 and  
CMP2_M3.  
After reset, the default state is GPIOB7.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
23  
Signal/Connection Descriptions  
Table 5. 56F8006/56F8002 Signal and Package Information (continued)  
32  
PSDI  
P
State  
During  
Reset  
Signal  
Name  
28  
32  
48  
LQFP  
Type  
Signal Description  
SOIC LQFP  
ANA5 and  
CMP1_M1  
7
12  
8
19  
Analog  
Input  
Analog ANA5 and CMP1_M1— Analog input to channel 5 of ADCA and  
Input negative input 1 of analog comparator 1.  
(GPIOC0)  
(FAULT0)  
Analog  
Input  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Input  
FAULT0 — PWM fault input 0 is used for disabling selected PWM  
outputs in cases where fault conditions originate off-chip.  
When used as an analog input, the signal goes to the ANA5 and  
CMP1_M1.  
After reset, the default state is ANA5 and CMP1_M1.  
ANA7 and  
PGA0+ and  
CMP2_M2  
6
11  
7
17  
15  
46  
Analog  
Input  
Analog ANA7 and PGA0+ and CMP2_M2 — Analog input to channel 7 of  
Input ADCA and PGA0 positive input and negative input 2 of analog  
comparator 2.  
(GPIOC1)  
Input/  
Output  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
When used as an analog input, The signal goes to the ANA7 and  
PGA0+ and CMP2_M2.  
After reset, the default state is ANA7 and PGA0+ and CMP2_M2.  
ANA9 and  
PGA0– and  
CMP2_P4  
5
10  
6
Analog  
Input  
Analog ANA9 and PGA0– and CMP2_P4 — Analog input to channel 9 of  
Input ADCA and PGA0 negative input and positive input 4 of analog  
comparator 2.  
(GPIOC2)  
Input/  
Output  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
When used as an analog input, The signal goes to the ANA9 and  
PGA0– and CMP2_P4.  
After reset, the default state is ANA9 and PGA0– and CMP2_P4.  
GPIOC3  
Input/  
Output  
Input, Port C GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin.  
pullup  
(EXT_  
Input  
enabled EXT_TRIGGER — PDB external trigger input.  
TRIGGER)  
After reset, the default state is GPIOC3.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
24  
Freescale Semiconductor  
Signal/Connection Descriptions  
Table 5. 56F8006/56F8002 Signal and Package Information (continued)  
32  
PSDI  
P
State  
During  
Reset  
Signal  
Name  
28  
32  
48  
LQFP  
Type  
Signal Description  
SOIC LQFP  
ANB8 and  
PGA1+ and  
CMP0_M2  
28  
5
6
7
1
2
3
7
Analog  
Input  
Analog ANB8 and PGA1+ and CMP0_M2 — Analog input to channel 8 of  
Input ADCB and PGA1 positive input and negative input 2 of analog  
comparator 0.  
(GPIOC4)  
Input/  
Output  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
When used as an analog input, the signal goes to the ANB8 and  
PGA1+ and CMP0_M2.  
After reset, the default state is ANB8 and PGA1+ and CMP0_M2.  
ANB6 and  
PGA1– and  
CMP0_P4  
1
9
Input/  
Output  
Analog ANB6 and PGA1– and CMP0_P4 — Analog input to channel 6 of  
Input ADCB and PGA1 negative input and positive input 4 of analog  
comparator 0.  
(GPIOC5)  
Analog  
Input  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
When used as an analog input, the signal goes to the ANB6 and  
PGA1– and CMP0_P4.  
After reset, the default state is ANB6 and PGA1– and CMP0_P4.  
ANB4 and  
CMP1_P1  
2
11  
Analog  
Input  
Analog ANB4 and CMP1_P1 — Analog input to channel 4 of ADCB and  
Input positive input 1 of analog comparator 1.  
(GPIOC6)  
(PWM2)  
Input/  
Output  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
PWM2 — The PWM channel 2.  
When used as an analog input, the signal goes to the ANB4 and  
CMP1_P1.  
After reset, the default state is ANB4 and CMP1_P1.  
GPIOC7  
10  
Input/  
Input, Port C GPIO — This GPIO pin can be individually programmed as  
Output  
internal an input or output pin.  
pullup  
enabled  
(ANB5 and  
CMP1_M2)  
Analog  
Input  
ANB5 and CMP1_M2 — Analog input to channel 5 of ADCB and  
negative input 2 of analog comparator 1.  
After reset, the default state is GPIOC7.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
25  
Signal/Connection Descriptions  
Table 5. 56F8006/56F8002 Signal and Package Information (continued)  
32  
PSDI  
P
State  
During  
Reset  
Signal  
Name  
28  
32  
48  
LQFP  
Type  
Signal Description  
SOIC LQFP  
TDI  
23  
30  
26  
45  
Input  
Input, Test Data Input — This input pin provides a serial input data stream  
internal to the JTAG/EOnCE port. It is sampled on the rising edge of TCK  
pullup and has an on-chip pullup resistor.  
enabled  
(GPIOD0)  
(ANB12)  
(SS)  
Input/  
Output  
Port D GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Analog  
Input  
ANB12 — Analog input to channel 12 of ADCB  
Input  
SS — SS is used in slave mode to indicate to the SPI module that  
the current transfer is to be received.  
(TIN2)  
Input  
TIN2 — Dual timer module channel 2 input.  
CMP1_OUT — Analog comparator 1 output.  
After reset, the default state is TDI.  
(CMP0_  
OUT)  
Output  
TDO  
25  
32  
28  
48  
Output  
Output, Test Data Output — This three-stateable output pin provides a serial  
tri-stated, output data stream from the JTAG/EOnCE port. It is driven in the  
internal shift-IR and shift-DR controller states, and changes on the falling  
pullup edge of TCK.  
enabled  
(GPIOD1)  
(ANB10)  
(T0)  
Input/  
Output  
Port D GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Analog  
Input  
ANB10 — Analog input to channel 10 of ADCB.  
T0 — Dual timer module channel 0 input/output.  
Input/  
Output  
(CMP2_  
OUT)  
Output  
Input  
CMP2_OUT — Analog comparator 2 output.  
After reset, the default state is TDO.  
TCK  
9
14  
10  
22  
Input, Test Clock Input — This input pin provides a gated clock to  
internal synchronize the test logic and shift serial data to the JTAG/EOnCE  
pullup port. The pin is connected internally to a pullup resistor. A  
enabled Schmitt-trigger input is used for noise immunity.  
(GPIOD2)  
Input/  
Output  
Port D GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
(ANA4 and  
CMP1_P2)  
Analog  
Input  
ANA4 and CMP1_P2 — Analog input to channel 4 of ADCA and  
positive input 2 of analog comparator 1.  
(CMP2_  
OUT)  
Output  
CMP2_OUT — Analog comparator 2 output.  
After reset, the default state is TCK.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
26  
Freescale Semiconductor  
Signal/Connection Descriptions  
Table 5. 56F8006/56F8002 Signal and Package Information (continued)  
32  
PSDI  
P
State  
During  
Reset  
Signal  
Name  
28  
32  
48  
LQFP  
Type  
Signal Description  
SOIC LQFP  
TMS  
24  
31  
27  
47  
Input  
Input, Test Mode Select Input — This input pin is used to sequence the  
internal JTAG TAP controller’s state machine. It is sampled on the rising  
pullup edge of TCK and has an on-chip pullup resistor.  
enabled  
(GPIOD3)  
(ANB11)  
(T1)  
Input/  
Output  
Port D GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Analog  
Input  
ANB11 — Analog input to channel 11 of ADCB.  
T1 — Dual timer module channel 1 input/output.  
Input/  
Output  
(CMP1_  
OUT)  
Output  
CMP1_OUT — Analog comparator 2 output.  
After reset, the default state is TMS.  
Always tie the TMS pin to VDD through a 2.2 kresistor.  
GPIOE0  
GPIOE1  
5
6
Input/  
Output  
Input, Port E GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin.  
pullup  
enabled After reset, the default state is GPIOE0.  
Input/  
Output  
Input, Port E GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin.  
pullup  
(ANB9 and  
CMP0_P1)  
Analog  
Input  
enabled ANB9 and CMP0_P1 — Analog input to channel 9 of ADCB and  
positive input 1 of analog comparator 0.  
After reset, the default state is GPIOE1.  
GPIOE2  
8
Input/  
Output  
Input, Port E GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin.  
pullup  
(ANB7 and  
CMP0_M1)  
Analog  
Input  
enabled ANB7 and CMP0_M1 — Analog input to channel 7 of ADCB and  
negative input 1 of analog comparator 0.  
After reset, the default state is GPIOE2.  
GPIOE3  
14  
18  
Input/  
Output  
Input, Port E GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin.  
pullup  
enabled ANA10 and CMP2_M1 — Analog input to channel 10 of ADCA and  
negative input 1 of analog comparator 2.  
(ANA10 and  
CMP2_M1)  
Analog  
Input  
After reset, the default state is GPIOE3.  
GPIOE4  
Input/  
Output  
Input, Port E GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin.  
pullup  
(ANA6 and  
CMP2_P2)  
Analog  
Input  
enabled ANA6 and CMP2_P2 — Analog input to channel 6 of ADCA and  
positive input 2 of analog comparator 2.  
After reset, the default state is GPIOE4.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
27  
Signal/Connection Descriptions  
Table 5. 56F8006/56F8002 Signal and Package Information (continued)  
32  
PSDI  
P
State  
During  
Reset  
Signal  
Name  
28  
32  
48  
LQFP  
Type  
Signal Description  
SOIC LQFP  
GPIOE5  
16  
Input/  
Output  
Input, Port E GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin.  
pullup  
(ANA8 and  
CMP2_P1)  
Analog  
Input  
enabled ANA8 and CMP2_P1— Analog input to channel 8 of ADCA and  
positive input 1 of analog comparator 2.  
After reset, the default state is GPIOE5.  
GPIOE6  
28  
34  
Input/  
Output  
Input, Port E GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin.  
pullup  
enable After reset, the default state is GPIOE6.  
GPIOE7  
Input/  
Input, Port E GPIO — This GPIO pin can be individually programmed as  
Output  
internal an input or output pin  
pullup  
(CMP1_M3)  
Analog  
Input  
enabled CMP1_M3 — Analog input to both negative input 3 of analog  
comparator 1.  
After reset, the default state is GPIOE7.  
GPIOF0  
(XTAL)  
18  
25  
21  
37  
Input/  
Output  
Input, Port F GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin.  
pullup  
enabled XTAL — External Crystal Oscillator Output. This output connects  
the internal crystal oscillator output to an external crystal or ceramic  
resonator.  
Analog  
Input/  
Output  
After reset, the default state is GPIOF0.  
GPIOF1  
40  
41  
42  
Input/  
Output  
Input, Port F GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin  
pullup  
enabled CMP1_P3 — Analog input to both positive input 3 of analog  
comparator 1.  
(CMP1_P3)  
Analog  
Input  
After reset, the default state is GPIOF1  
GPIOF2  
Input/  
Output  
Input, Port F GPIO — This GPIO pin can be individually programmed as  
internal an input or output pin.  
pullup  
enabled CMP0_M3 — Analog input to both negative input 3 of analog  
comparator 0.  
(CMP0_M3)  
Analog  
Input  
After reset, the default state is GPIOF2.  
GPIOF3  
Input/  
Input, Port F GPIO — This GPIO pin can be individually programmed as  
Output  
internal an input or output pin.  
pullup  
(CMP0_P3)  
Analog  
Input  
enabled CMP0_P3 — Analog input to both positive input 3 of analog  
comparator 0.  
After reset, the default state is GPIOF3.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
28  
Freescale Semiconductor  
Memory Maps  
5
Memory Maps  
5.1  
Introduction  
The 56F8006/56F8002 device is based on the 56800E core. It uses a dual Harvard-style architecture with two independent  
memory spaces for Data and Program. On-chip RAM is shared by both data and program spaces and flash memory is used only  
in program space.  
This section provides memory maps for:  
Program address space, including the interrupt vector table  
Data address space, including the EOnCE memory and peripheral memory maps  
On-chip memory sizes for the device are summarized in Table 6. Flash memories’ restrictions are identified in the “Use  
Restrictions” column of Table 6.  
Table 6. Chip Memory Configurations  
On-Chip Memory  
56F8006  
56F8002  
Use Restrictions  
Program Flash  
(PFLASH)  
8K x 16  
or  
6K x 16  
or  
Erase/program via flash interface unit and word writes to CDBW  
16 KB  
12 KB  
Unified RAM (RAM)  
1K x 16  
or  
1K x 16  
or  
Usable by the program and data memory spaces  
2 KB  
2 KB  
5.2  
Program Map  
The 56F8006/56F8002 series provide up to 16 KB on-chip flash memory. It primarily accesses through the program memory  
buses (PAB; PDB). PAB is used to select program memory addresses; instruction fetches are performed over PDB. Data can be  
read and written to program memory space through primary data memory buses: CDBW for data write and CDBR for data read.  
Accessing program memory space over the data memory buses takes longer access time compared to accessing data memory  
space. The special MOVE instructions are provided to support these accesses. The benefit is that non time critical constants or  
tables can be stored and accessed in program memory.  
The program memory map is shown in Table 7 and Table 8.  
1
Table 7. Program Memory Map for 56F8006 at Reset  
Begin/End Address  
Memory Allocation  
P: 0x1F FFFF  
P: 0x00 8800  
RESERVED  
P: 0x00 83FF  
P: 0x00 8000  
On-Chip RAM2: 2 KB  
RESERVED  
P: 0x00 7FFF  
P: 0x00 2000  
P: 0x00 1FFF  
P: 0x00 0000  
• Internal program flash: 16 KB  
• Interrupt vector table locates from 0x00 0000 to 0x00 0065  
• COP reset address = 0x00 0002  
• Boot location = 0x00 0000  
1
2
All addresses are 16-bit word addresses.  
This RAM is shared with data space starting at address X: 0x00 0000; see Figure 8.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
29  
Memory Maps  
1
Table 8. Program Memory Map for 56F8002 at Reset (continued)  
Begin/End Address Memory Allocation  
P: 0x1F FFFF  
P: 0x00 8800  
RESERVED  
P: 0x00 83FF  
P: 0x00 8000  
On-Chip RAM2: 2 KB  
RESERVED  
P: 0x00 7FFF  
P: 0x00 2000  
P: 0x00 1FFF  
P: 0x00 0800  
• Internal program flash: 12 KB  
• Interrupt vector table locates from 0x00 0800 to 0x00 0865  
• COP reset address = 0x00 0802  
• Boot location = 0x00 0800  
P: 0x00 07FF  
P: 0x00 0000  
RESERVED  
1
All addresses are 16-bit word addresses.  
2
This RAM is shared with data space starting at address X: 0x00 0000; see Figure 9.  
5.3  
Data Map  
The 56F8006/56F8002 series contain a dual access memory. It can be accessed from core primary data buses (XAB1; CDBW;  
CDBR) and secondary data buses (XAB2; XDB2). Addresses in data memory are selected on the XAB1 and XAB2 buses. Byte,  
word, and long data transfers occur on the 32-bit CDBR and CDBW buses. A second 16-bit read operation can be performed  
in parallel on the XDB2 bus.  
Peripheral registers and on-chip JTAG/EOnCE controller registers are memory-mapped into data memory access. A special  
direct address mode is supported for accessing a first 64-location in data memory by using a single word instruction.  
The data memory map is shown in Table 9.  
1
Table 9. Data Memory Map  
Begin/End Address  
Memory Allocation  
X:0xFF FFFF  
X:0xFF FF00  
EOnCE  
256 locations allocated  
X:0xFF FEFF  
X:0x01 0000  
RESERVED  
X:0x00 FFFF  
X:0x00 F000  
On-Chip Peripherals  
4096 locations allocated  
X:0x00 EFFF  
X:0x00 8800  
RESERVED  
RESERVED  
RESERVED  
X:0x00 87FF  
X:0x00 8000  
X:0x00 7FFF  
X:0x00 0400  
X:0x00 03FF  
X:0x00 0000  
On-Chip Data RAM  
2 KB2  
1
2
All addresses are 16-bit word addresses.  
This RAM is shared with Program space starting at P: 0x00 8000. See Figure 8 and  
Figure 9.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
30  
Freescale Semiconductor  
Memory Maps  
On-chip RAM is also mapped into program space starting at P: 0x00 8000. This makes for easier online reprogramming of  
on-chip flash.  
Program  
Data  
EOnCE  
0xFF FF00  
Reserved  
Reserved  
0x00 8400  
0x00 8000  
RAM  
0x01 0000  
0x00 F000  
0x00 0400  
0x00 0000  
Peripherals  
Reserved  
RAM  
Dual Port RAM  
Reserved  
Flash  
0x00 2000  
0x00 0000  
Figure 8. 56F8006 Dual Port RAM Map  
Program  
Data  
EOnCE  
0xFF FF00  
Reserved  
Reserved  
0x00 8400  
0x00 8000  
RAM  
0x01 0000  
0x00 F000  
0x00 0400  
0x00 0000  
Peripherals  
Reserved  
RAM  
Reserved  
Dual Port RAM  
0x00 2000  
Flash  
0x00 0800  
0x00 0000  
Reserved  
Figure 9. 56F8002 Dual Port RAM Map  
5.4  
Interrupt Vector Table and Reset Vector  
The location of the vector table is determined by the vector base address register (VBA). The value in this register is used as  
the upper 14 bits of the interrupt vector VAB[20:0]. The lower seven bits are determined based on the highest priority interrupt  
and are then appended onto VBA before presenting the full VAB to the core. Please see the MC56F8006 Peripheral Reference  
Manual for detail. The reset startup addresses of 56F8002 and 56F8006 are different.  
56F8006 startup address is located at 0x00 0000. The reset value of VBA is reset to a value of 0x0000 that corresponds  
to address 0x00 0000  
56F8002 startup address is located at 0x00 0800. The reset value of VBA is reset to a value of 0x0010 that corresponds  
to address 0x00 0800  
By default, the chip reset address and COP reset address correspond to vector 0 and 1 of the interrupt vector table. In these  
instances, the first two locations in the vector table must contain branch or JMP instructions. All other entries must contain JSR  
instructions.  
The highest number vector, a user assignable vector USER6 (vector 50), can be defined as a fast interrupt if the instruction  
located in this vector location is not a JSR or BSR instruction. Please see section 9.3.3.3 of DSP56800E 16-Bit Core Reference  
Manual for detail.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
31  
Memory Maps  
Table 43 provides the 56F8006/56F8002’s reset and interrupt priority structure, including on-chip peripherals.  
5.5  
Peripheral Memory-Mapped Registers  
The locations of on-chip peripheral registers are part of the data memory map on the 56800E series. These locations may be  
accessed with the same addressing modes used for ordinary data memory, except all peripheral registers should be read or  
written using word accesses only.  
Table 10 summarizes the base addresses for the set of peripherals on the 56F8006/56F8002 devices. Peripherals are listed in  
order of the base address.  
Table 10. Data Memory Peripheral Base Address Map Summary  
Peripheral  
Prefix  
Base Address  
Dual Channel Timer  
PWM Module  
TMR  
PWM  
INTC  
ADCA  
ADCB  
PGA0  
PGA1  
SCI  
X:0x00 F000  
X:0x00 F020  
X:0x00 F040  
X:0x00 F060  
X:0x00 F080  
X:0x00 F0A0  
X:0x00 F0C0  
X:0x00 F0E0  
X:0x00 F100  
X:0x00 F120  
X:0x00 F140  
X:0x00 F160  
X:0x00 F180  
X:0x00 F1A0  
X:0x00 F1C0  
X:0x00 F1E0  
X:0x00 F200  
X:0x00 F220  
X:0x00 F240  
X:0x00 F260  
X:0x00 F280  
X:0x00 F2A0  
X:0x00 F2C0  
X:0x00 F2E0  
X:0x00 F300  
X:0x00 F320  
X:0x00 F400  
Interrupt Controller  
ADCA  
ADCB  
Programmable Gain Amplifier 0  
Programmable Gain Amplifier 1  
SCI  
SPI  
SPI  
I2C  
I2C  
Computer Operating Properly  
On-Chip Clock Synthesis  
GPIO Port A  
COP  
OCCS  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
GPIOF  
SIM  
GPIO Port B  
GPIO Port C  
GPIO Port D  
GPIO Port E  
GPIO Port F  
System Integration Module  
Power Management Controller  
Analog Comparator 0  
Analog Comparator 1  
Analog Comparator 2  
Programmable Interval Timer  
Programmable Delay Block  
Real Timer Clock  
Flash Memory Interface  
PMC  
CMP0  
CMP1  
CMP2  
PIT  
PDB  
RTC  
FM  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
32  
Freescale Semiconductor  
Memory Maps  
5.6  
EOnCE Memory Map  
Control registers of the EOnCE are located at the top of data memory space. These locations are fixed by the 56F800E core.  
These registers can also be accessed through JTAG port if flash security is not set. Table 11 lists all EOnCE registers necessary  
to access or control the EOnCE.  
Table 11. EOnCE Memory Map  
Address  
Register Acronym  
Register Name  
X:0xFF FFFF  
OTX1/ORX1  
Transmit Register Upper Word  
Receive Register Upper Word  
X:0xFF FFFE  
OTX/ORX  
(32 bits)  
Transmit Register  
Receive Register  
X:0xFF FFFD  
X:0xFF FFFC  
OTXRXSR  
OCLSR  
Transmit and Receive Status and Control Register  
Core Lock/Unlock Status Register  
Reserved  
X:0xFF FFFB–  
X:0xFF FFA1  
X:0xFF FFA0  
OCR  
Control Register  
X:0xFF FF9F–  
X:0xFF FF9E  
OSCNTR  
(24 bits)  
Instruction Step Counter  
X:0xFF FF9D  
X:0xFF FF9C  
X:0xFF FF9B  
X:0xFF FF9A  
OSR  
Status Register  
OBASE  
OTBCR  
OTBPR  
Peripheral Base Address Register  
Trace Buffer Control Register  
Trace Buffer Pointer Register  
Trace Buffer Register Stages  
X:0xFF FF99–  
X:0xFF FF98  
OTB  
(21–24 bits/stage)  
X:0xFF FF97–  
X:0xFF FF96  
OBCR  
(24 bits)  
Breakpoint Unit Control Register  
Breakpoint Unit Address Register 1  
Breakpoint Unit Address Register 2  
Breakpoint Unit Mask Register 2  
X:0xFF FF95–  
X:0xFF FF94  
OBAR1  
(24 bits)  
X:0xFF FF93–  
X:0xFF FF92  
OBAR2 (32 bits)  
X:0xFF FF91–  
X:0xFF FF90  
OBMSK (32 bits)  
X:0xFF FF8F  
X:0xFF FF8E  
X:0xFF FF8D  
X:0xFF FF8C  
X:0xFF FF8B  
X:0xFF FF8A  
Reserved  
EOnCE Breakpoint Unit Counter  
Reserved  
OBCNTR  
OESCR  
Reserved  
Reserved  
External Signal Control Register  
Reserved  
X:0xFF FF89 –  
X:0xFF FF00  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
33  
General System Control Information  
6
General System Control Information  
6.1  
Overview  
This section discusses power pins, reset sources, interrupt sources, clock sources, the system integration module (SIM), ADC  
synchronization, and JTAG/EOnCE interfaces.  
6.2  
Power Pins  
V
, V and V  
, V  
are the primary power supply pins for the devices. This voltage source supplies power to all on-chip  
DD SS  
DDA SSA  
peripherals, I/O buffer circuitry and to internal voltage regulators. Device has multiple internal voltages provide regulated  
lower-voltage source for the peripherals, core, memory, and on-chip relaxation oscillators.  
Typically, there are at least two separate capacitors across the power pins to bypass the glitches and provide bulk charge storage.  
In this case, there should be a bulk electrolytic or tantalum capacitor, such as a 10 F tantalum capacitor, to provide bulk charge  
storage for the overall system and a 0.1 F ceramic bypass capacitor located as near to the device power pins as practical to  
suppress high-frequency noise. Each pin must have a bypass capacitor for best noise suppression.  
V
and V are the analog power supply pins for the device. This voltage source supplies power to the ADC, PGA, and  
SSA  
DDA  
CMP modules. A 0.1 F ceramic bypass capacitor should be located as near to the device V  
and V  
pins as practical to  
DDA  
SSA  
suppress high-frequency noise. V  
and V  
are also the voltage reference high and voltage reference low inputs,  
DDA  
SSA  
respectively, for the ADC module.  
6.3  
Reset  
Resetting the device provides a way to start processing from a known set of initial conditions. During reset, most control and  
status registers are forced to initial values and the program counter is loaded from the reset vector. On-chip peripheral modules  
are disabled and I/O pins are initially configured as the reset status shown in Table 5. The 56F8006/56F8002 has the following  
sources for reset:  
Power-on reset (POR)  
Partial power down reset (PPD)  
Low-voltage detect (LVD)  
External pin reset (EXTR)  
Computer operating properly loss of reference reset (COP_LOR)  
Computer operating properly time-out reset (COP_CPU)  
Software Reset (SWR)  
Each of these sources has an associated bit in the reset status register (RSTAT) in the system integration module (SIM).  
The external pin reset function is shared with an GPIO port A7 on the RESET/GPIOA7 pin. The reset function is enabled  
following any reset of the device. Bit 7 of GPIOA_PER register must be cleared to use this pin as an GPIO port pin. When  
enabled as the RESET pin, an internal pullup device is automatically enabled.  
6.4  
On-chip Clock Synthesis  
The on-chip clock synthesis (OCCS) module allows designers using an internal relaxation oscillator, an external crystal, or an  
external clock to run 56F8000 family devices at user-selectable frequencies up to 32 MHz.  
The features of OCCS module include:  
Ability to power down the internal relaxation oscillator or crystal oscillator  
Ability to put the internal relaxation oscillator into standby mode  
Ability to power down the PLL  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
34  
Freescale Semiconductor  
General System Control Information  
Provides a 3X system clock that operates at three times the system clock to PWM, timer, and SCI modules  
Safety shutdown feature is available if the PLL reference clock is lost  
Can be driven from an external clock source  
The clock generation module provides the programming interface for the PLL, internal relaxation oscillator, and crystal  
oscillator. It also provides a postscaler to divide clock frequency down by 1, 2, 4, 8, 16, 32, 64, 128, 256 before feeding to the  
SIM. The SIM is responsible for further dividing these frequencies by two, which ensures a 50% duty cycle in the system clock  
output. For detail, see the OCCS chapter in the MC56F8006 Peripheral Reference Manual.  
6.4.1  
Internal Clock Source  
An internal relaxation oscillator can supply the reference frequency when an external frequency source or crystal is not used. It  
is optimized for accuracy and programmability while providing several power-saving configurations that accommodate  
different operating conditions. The internal relaxation oscillator has little temperature and voltage variability. To optimize  
power, the internal relaxation oscillator supports a run state (8 MHz), standby state (400 kHz), and a power-down state.  
During a boot or reset sequence, the relaxation oscillator is enabled by default (the PRECS bit in the PLLCR word is set to 0).  
Application code can then also switch to the external clock source and power down the internal oscillator, if desired. If a  
changeover between internal and external clock sources is required at power-on, ensure that the clock source is not switched  
until the desired external clock source is enabled and stable.  
To compensate for variances in the device manufacturing process, the accuracy of the relaxation oscillator can be incrementally  
adjusted to within + 0.078% of 8 MHz by trimming an internal capacitor. Bits 0–9 of the OSCTL (oscillator control) register  
allow you to set in an additional offset (trim) to this preset value to increase or decrease capacitance. Each unit added or  
subtracted changes the output frequency by about 0.078% of 8 MHz, allowing incremental adjustment until the desired  
frequency accuracy is achieved.  
The center frequency of the internal oscillator is calibrated at the factory to 8 MHz and the TRIM value is stored in the flash  
information block and loaded to the FMOPT1 register at reset. When using the relaxation oscillator, the boot code should read  
the FMOPT1 register and set this value as OSCTL TRIM. For further information, see the MC56F8006 Peripheral Reference  
Manual.  
6.4.2  
Crystal Oscillator/Ceramic Resonator  
The internal crystal oscillator circuit is designed to interface with a parallel-resonant crystal resonator in the frequency range,  
specified for the external crystal, of 32.768 kHz (Typ) or 1–16 MHz. A ceramic resonator can be substituted for the 1–16 MHz  
range. When used to supply a source to the internal PLL, the recommended crystal/resonator is in the 4 MHz to 8 MHz  
(recommend 8 MHz) range to achieve optimized PLL performance. Oscillator circuits are shown in Figure 10, Figure 11, and  
Figure 12. Follow the crystal suppliers recommendations when selecting a crystal, because crystal parameters determine the  
component values required to provide maximum stability and reliable start-up. The load capacitance values used in the  
oscillator circuit design should include all stray layout capacitances. The crystal and associated components should be mounted  
as near as possible to the EXTAL and XTAL pins to minimize output distortion and start-up stabilization time. When using  
low-frequency, low-power mode, the only external component is the crystal itself. In the other oscillator modes, load capacitors  
(Cx, Cy) and feedback resistor (R ) are required. In addition, a series resistor (R ) may be used in high-gain modes.  
F
S
Recommended component values are listed in Table 28.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
35  
General System Control Information  
56F8002/56F8006  
XTAL  
EXTAL  
Crystal Frequency = 32–38.4 kHz  
Figure 10. Typical Crystal Oscillator Circuit: Low-Range, Low-Power Mode  
56F8002/56F8006  
XTAL  
EXTAL  
Crystal Frequency = 1–16 MHz  
RF  
C1  
C2  
Figure 11. Typical Crystal or Ceramic Resonator Circuit: High-Range, Low-Power Mode  
56F8002/56F8006  
XTAL  
EXTAL  
RS  
Low Range: Crystal Frequency = 32–38.4 kHz  
or  
High Range: Crystal Frequency = 1–16 MHz  
RF  
C1  
C2  
Figure 12. Typical Crystal or Ceramic Resonator Circuit: Low Range and High Range, High-Gain Mode  
6.4.3  
External Clock Input — Crystal Oscillator Option  
The recommended method of connecting an external clock is illustrated in Figure 13. The external clock source is connected to  
XTAL and the EXTAL pin is grounded or configured as GPIO while CLK_MOD bit in OSCTL register is set. The external  
clock input must be generated using a relatively low impedance driver with maximum frequency less than 8 MHz.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
36  
Freescale Semiconductor  
General System Control Information  
56F8006/56F8002  
CLK_MOD = 1  
XTAL  
EXTAL  
External Clock  
(<50 MHz)  
GND or GPIO  
Figure 13. Connecting an External Clock Signal Using XTAL  
6.4.4  
Alternate External Clock Input  
The recommended method of connecting an external clock is illustrated in Figure 14. The external clock source is connected  
to GPIOB6/RXD/SDA/ANA13 and CMP0_P2/CLKIN while EXT_SEL bit in OSCTL register is set and corresponding bits in  
GPIOB_PER register GPIO module and GPSB1 register in the system integration module (SIM) are set to the correct values.  
The external clock input must be generated using a relatively low impedance driver with maximum frequency not greater than  
64 MHz.  
EXT_SEL = 1;  
56F8002/56F8006  
GPIO_B_PER[6] = 0;  
GPS_B6 = 11  
GPIOB6/RXD/SDA/ANA13 and CMP0_P2/CLKIN  
External Clock (64 MHz)  
Figure 14. Connecting an External Clock Signal Using GPIO  
6.5  
Interrupt Controller  
The 56F8006/56F8002 interrupt controller (INTC) module arbitrates the various interrupt requests (IRQs). The INTC signals  
to the 56800E core when an interrupt of sufficient priority exists and what address to jump to to service this interrupt.  
The interrupt controller contains registers that allow up to three interrupt sources to be set to priority level 1 and other up to  
three interrupt sources to be set to priority level 2. By default, all peripheral interrupt sources are set to priority level 0. Next,  
all of the interrupt requests of a given level are priority encoded to determine the lowest numeric value of the active interrupt  
requests for that level. Within a given priority level, the lowest vector number is the highest priority and the highest vector  
number is the lowest.  
The highest vector number, a user assignable vector USER6 (vector 50), can be defined as a fast interrupt if the instruction  
located in this vector location is not a JSR or BSR instruction. Please see section 9.3.3.3 of DSP56800E 16-Bit Core Reference  
Manual for detail.  
6.6  
System Integration Module (SIM)  
The SIM module is a system catchall for the glue logic that ties together the system-on-chip. It controls distribution of resets  
and clocks and provides a number of control features including the pin muxing control; inter-module connection control (for  
example connecting comparator output to PWM fault input); individual peripheral enable/disable; PWM, timer, and SCI clock  
rate control; enabling peripheral operation in stop mode; port configuration overwrite protection. For further information, see  
the MC56F8006 Peripheral Reference Manual.  
The SIM is responsible for the following functions:  
Chip reset sequencing  
Core and peripheral clock control and distribution  
Stop/wait mode control  
System status control  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
37  
General System Control Information  
Registers containing the JTAG ID of the chip  
Controls for programmable peripheral and GPIO connections  
Peripheral clocks for TMR and PWM and SCI with a high-speed (3X) option  
Power-saving clock gating for peripherals  
Controls the enable/disable functions of large regulator standby mode with write protection capability  
Permits selected peripherals to run in stop mode to generate stop recovery interrupts  
Controls for programmable peripheral and GPIO connections  
Software chip reset  
I/O short address base location control  
Peripheral protection control to provide runaway code protection for safety-critical applications  
Controls output of internal clock sources to CLKO pin  
Four general-purpose software control registers are reset only at power-on  
Peripherals stop mode clocking control  
6.7  
PWM, PDB, PGA, and ADC Connections  
The comparators, timers, and PWM_reload_sync output can be connected to the programmable delay block (PDB) trigger input.  
The PDB pre-trigger A and trigger A outputs are connected to the ADCA and PGA0 hardware trigger inputs. The PDB  
pre-trigger B and trigger B outputs are connected to the ADCB and PGA1 hardware trigger inputs. When the input trigger of  
PDB is asserted, PDB trigger and pre-trigger outputs are asserted after a delay of a pre-programmed period. See the MC56F8006  
Peripheral Reference Manual for additional information.  
CMP0 CMP1 CMP2 PWM  
EXT TMR0 TMR1  
SW  
Trigger0  
Trigger1  
Trigger2  
Trigger3  
Trigger4  
Trigger5  
Trigger6  
Trigger7  
System  
Clock  
Programmable Delay Block (PDB)  
Pre-  
Pre-  
TriggerA  
TriggerA  
TriggerB TriggerB  
SSEL[1]  
SSEL[1]  
SSEL[0]  
SSEL[0]  
ADCA  
Trigger  
ADCB  
Trigger  
ADCA  
ADCB  
ADHWT  
ANA15  
ADHWT  
ANB15  
ANB6  
ANA7 ANA9  
ANB8  
PGA0 Controller  
PGA1 Controller  
Figure 15. Synchronization of ADC, PDB  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
38  
Freescale Semiconductor  
Security Features  
Each ADC contains a temperature sensor. Outputs of temperature sensors, PGAs, on-chip regulators and VDDA are internally  
routed to ADC inputs.  
Internal PGA0 output available on ANA15  
Internal PGA0 positive input calibration voltage available on ANA16  
Internal PGA0 negative input calibration voltage available on ANA17  
Internal PGA1 output available on ANB15  
Internal PGA1 positive input calibration voltage available on ANB16  
Internal PGA1 negative input calibration voltage available on ANB17  
ADCA temperature sensor available on ANA26  
ADCB temperature sensor available on ANB26  
Output of on-chip digital voltage regulator is routed to ANA24  
Output of on-chip analog voltage regulator is routed to ANA25  
Output of on-chip small voltage regulator for ROSC is routed to ANB24  
Output of on-chip small voltage regulator for PLL is routed to ANB25  
VDDA is routed to ANA27 and ANB27  
6.8  
Joint Test Action Group (JTAG)/Enhanced On-Chip Emulator  
(EOnCE)  
The DSP56800E Family includes extensive integrated support for application software development and real-time debugging.  
Two modules, the Enhanced On-Chip Emulation module (EOnCE) and the core test access port (TAP, commonly called the  
JTAG port), work together to provide these capabilities. Both are accessed through a common 4-pin JTAG/EOnCE interface.  
These modules allow you to insert the 56F8006/56F8002 into a target system while retaining debug control. This capability is  
especially important for devices without an external bus, because it eliminates the need for a costly cable to bring out the  
footprint of the chip, as is required by a traditional emulator system.  
The DSP56800E EOnCE module is a Freescale-designed module used to develop and debug application software used with the  
chip. This module allows non-intrusive interaction with the CPU and is accessible through the pins of the JTAG interface or by  
software program control of the DSP56800E core. Among the many features of the EOnCE module is the support for data  
communication between the controller and the host software development and debug systems in real-time program execution.  
Other features allow for hardware breakpoints, the monitoring and tracking of program execution, and the ability to examine  
and modify the contents of registers, memory, and on-chip peripherals, all in a special debug environment. No user-accessible  
resources need to be sacrificed to perform debugging operations.  
The DSP56800E JTAG port is used to provide an interface for the EOnCE module to the DSP JTAG pins. Joint Test Action  
Group (JTAG) boundary scan is an IEEE 1149.1 standard methodology enabling access to test features using a test access port  
(TAP). A JTAG boundary scan consists of a TAP controller and boundary scan registers. Please contact your Freescale sales  
representative or authorized distributor for device-specific BSDL information.  
NOTE  
In normal operation, an external pullup on the TMS pin is highly recommend to place the  
JTAG state machine in reset state if this pin is not configured as GPIO.  
7
Security Features  
The 56F8006/56F8002 offers security features intended to prevent unauthorized users from reading the contents of the flash  
memory (FM) array. The 56F8006/56F8002’s flash security consists of several hardware interlocks that prevent unauthorized  
users from gaining access to the flash array.  
After flash security is set, an authorized user can be enabled to access on-chip memory if a user-defined software subroutine,  
which reads and transfers the contents of internal memory via peripherals, is included in the application software. This  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
39  
Security Features  
application software could communicate over a serial port, for example, to validate the authenticity of the requested access, then  
grant it until the next device reset. The inclusion of such a back door technique is at the discretion of the system designer.  
7.1  
Operation with Security Enabled  
After you have programmed flash with the application code, or as part of the programming of the flash with the application  
code, the 56F8006/56F8002 can be secured by programming the security word, 0x0002, into program memory location 0x00  
1FF7. This can also be effected by use of the CodeWarrior IDE menu flash lock command. This nonvolatile word keeps the  
device secured after reset, caused, for example, by a power-down of the device. Refer to the flash memory chapter in the  
MC56F8006 Peripheral Reference Manual for detail. When flash security mode is enabled, the 56F8006/56F8002 disables the  
core EOnCE debug capabilities. Normal program execution is otherwise unaffected.  
7.2  
Flash Access Lock and Unlock Mechanisms  
There are several methods that effectively lock or unlock the on-chip flash.  
7.2.1  
Disabling EOnCE Access  
On-chip flash can be read by issuing commands across the EOnCE port, which is the debug interface for the 56800E CPU. The  
TCK, TMS, TDO, and TDI pins comprise a JTAG interface onto which the EOnCE port functionality is mapped. When the  
device boots, the chip-level JTAG TAP (test access port) is active and provides the chip’s boundary scan capability and access  
to the ID register, but proper implementation of flash security blocks any attempt to access the internal flash memory via the  
EOnCE port when security is enabled. This protection is effective when the device comes out of reset, even prior to the  
execution of any code at startup.  
7.2.2  
Flash Lockout Recovery Using JTAG  
If the device is secured, one lockout recovery mechanism is the complete erasure of the internal flash contents, including the  
configuration field, thus disabling security (the protection register is cleared). This does not compromise security, as the entire  
contents of your secured code stored in flash are erased before security is disabled on the device on the next reset or power-up  
sequence.  
To start the lockout recovery sequence via JTAG, the JTAG public instruction (LOCKOUT_RECOVERY) must first be shifted  
into the chip-level TAP controller’s instruction register. After the LOCKOUT_RECOVERY instruction has been shifted into  
the instruction register, the clock divider value must be shifted into the corresponding 7-bit data register. After the data register  
has been updated, you must transition the TAP controller into the RUN-TEST/IDLE state for the lockout sequence to  
commence. The controller must remain in this state until the erase sequence is complete. Refer to the MC56F8006 Peripheral  
Reference Manual for detail, or contact Freescale.  
NOTE  
After the lockout recovery sequence has completed, you must reset the JTAG TAP  
controller and device to return to normal unsecured operation. Power-on reset resets both  
too.  
7.2.3  
Flash Lockout Recovery Using CodeWarrior  
CodeWarrior can unlock a device by selecting the Debug menu, then selecting DSP56800E, followed by Unlock Flash. Another  
mechanism is also built into CodeWarrior using the device’s memory configuration file. The command  
Unlock_Flash_on_Connect 1” in the .cfg file accomplishes the same task as using the Debug menu.  
This lockout recovery mechanism is the complete erasure of the internal flash contents, including the configuration field, thus  
disabling security (the protection register is cleared).  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
40  
Freescale Semiconductor  
Specifications  
7.2.4  
Flash Lockout Recovery without Mass Erase  
7.2.4.1  
Without Presenting Back Door Access Keys to the Flash Unit  
A user can un-secure a secured device by programming the word 0x0000 into program flash location 0x00 1FF7. After  
completing the programming, the JTAG TAP controller and the device must be reset to return to normal unsecured operation.  
You are responsible for directing the device to invoke the flash programming subroutine to reprogram the word 0x0000 into  
program flash location 0x00 1FF7. This is done by, for example, toggling a specific pin or downloading a user-defined key  
through serial interfaces.  
NOTE  
Flash contents can be programmed only from 1s to 0s.  
7.2.4.2  
Presenting Back Door Access Key to the Flash Unit  
It is possible to temporarily bypass the security through a back door access scheme, using a 4-word key, to temporarily unlock  
of the flash. A back door access requires support from the embedded software. This software would typically permit an external  
user to enter a four word code through one of the communications interfaces and then use it to attempt the unlock sequence. If  
your input matches the four word code stored at location 0x00 1FFC–0x00 1FFF in the flash memory, the part immediately  
becomes unsecured (at runtime) and you can access internal memory via JTAG/EOnCE port. Refer to the MC56F8006  
Peripheral Reference Manual for detail. The key must be entered in four consecutive accesses to the flash, so this routine should  
be designed to run in RAM.  
7.3  
Product Analysis  
The recommended method of unsecuring a secured device for product analysis of field failures is via the method described in  
Section 7.2.4.2, “Presenting Back Door Access Key to the Flash Unit.” The customer would need to supply technical support  
with the details of the protocol to access the subroutines in flash memory. An alternative method for performing analysis on a  
secured device would be to mass-erase and reprogram the flash with the original code, but modify the security word or not  
program the security word.  
8
Specifications  
8.1  
General Characteristics  
The 56F8006/56F8002 is fabricated in high-density low power and low leakage CMOS with a maximum voltage of 3.6 V digital  
inputs during normal operation without causing damage.  
Absolute maximum ratings in Table 12 are stress ratings only, and functional operation at the maximum is not guaranteed. Stress  
beyond these ratings may affect device reliability or cause permanent damage to the device.  
Unless otherwise stated, all specifications within this chapter apply over the temperature range of –40ºC to 105ºC ambient  
temperature over the following supply ranges: V = V  
= 0V, V = V  
= 3.0–3.6 V, CL < 50 pF, f = 32 MHz  
SS  
SSA  
DD  
DDA OP  
CAUTION  
This device contains protective circuitry to guard against damage due to high static voltage  
or electrical fields. However, normal precautions are advised to avoid application of any  
voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of  
operation is enhanced if unused inputs are tied to an appropriate voltage level.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
41  
Specifications  
8.2  
Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the  
limits specified Table 12 may affect device reliability or cause permanent damage to the device. For functional operating  
conditions, refer to the remaining tables in this section.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, take normal  
precautions to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability  
of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V or V ) or the  
SS  
DD  
programmable pullup resistor associated with the pin is enabled.  
Table 12. Absolute Maximum Ratings  
(VSS = 0 V, VSSA = 0 V)  
Characteristic  
Symbol  
Notes  
Min  
Max  
Unit  
Supply Voltage Range  
Analog Supply Voltage Range  
Voltage difference VDD to VDDA  
Voltage difference VSS to VSSA  
Digital Input Voltage Range  
VDD  
VDDA  
VDD  
VSS  
VIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
TBD  
–0.3  
3.8  
3.6  
V
V
0.3  
V
0.3  
V
Pin Groups 1, 2  
Pin Group 4  
VDD+0.3  
TBD  
3.6  
V
Oscillator Voltage Range  
VOSC  
VINA  
VIC  
V
Analog Input Voltage Range  
Pin Group 3  
V
Input clamp current, per pin (VIN < 0)1 2 3  
Output clamp current, per pin (VO < 0)1 2 3  
–25.0  
–20.0  
VDD  
mA  
mA  
V
VOC  
Output Voltage Range  
VOUT  
Pin Group 1  
–0.3  
(Normal Push-Pull mode)  
Ambient Temperature  
Industrial  
TA  
–40  
–55  
105  
150  
°C  
°C  
Storage Temperature Range  
(Extended Industrial)  
TSTG  
1
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate  
resistance values for positive (VDD) and negative (VSS) clamp voltages, then use the larger of the two resistance values.  
2
3
All functional non-supply pins are internally clamped to VSS and VDD  
.
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result  
in external power supply going out of regulation. Ensure external VDD loads shunt current greater than maximum injection  
current. This is the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present or if the  
clock rate is low (which would reduce overall power consumption).  
8.2.1  
ESD Protection and Latch-Up Immunity  
Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, use  
normal handling precautions to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices  
can withstand exposure to reasonable levels of static without suffering any permanent damage.  
All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During  
the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM), and the  
charge device model (CDM).  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
42  
Freescale Semiconductor  
Specifications  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete  
DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot  
temperature, unless specified otherwise in the device specification.  
Table 13. ESD and Latch-up Test Conditions  
Model  
Description  
Symbol  
Value  
Unit  
Series Resistance  
Storage Capacitance  
R1  
C
1500  
100  
3
Human  
Body  
pF  
Number of Pulses per Pin  
Series Resistance  
R1  
C
0
Machine  
Latch-up  
Storage Capacitance  
200  
3
pF  
Number of Pulses per Pin  
Minimum inpUt Voltage Limit  
Maximum Input Voltage Limit  
–2.5  
7.5  
V
V
Table 14. 56F8006/56F8002 ESD Protection  
Characteristic 1  
Min  
Typ  
Max  
Unit  
ESD for Human Body Model (HBM)  
ESD for Machine Model (MM)  
2000  
200  
V
V
ESD for Charge Device Model (CDM)  
750  
V
Latch-up current at TA= 85oC (ILAT  
)
100  
mA  
1
Parameter is achieved by design characterization on a small sample size from typical devices un-  
der typical conditions unless otherwise noted.  
8.3  
Thermal Characteristics  
This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power  
dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and  
it is user-determined rather than being controlled by the MCU design. To take P into account in power calculations, determine  
I/O  
the difference between actual pin voltage and V or V and multiply by the pin current for each I/O pin. Except in cases of  
SS  
DD  
unusually high pin current (heavy loads), the difference between pin voltage and V or V will be very small.  
SS  
DD  
Table 15. 28SOIC Package Thermal Characteristics  
Value  
(LQFP)  
Characteristic  
Comments  
Symbol  
Unit  
Junction to ambient  
Natural convection  
Single layer board  
(1s)  
RJA  
RJMA  
RJMA  
70  
47  
55  
°C/W  
°C/W  
°C/W  
Junction to ambient  
Natural convection  
Four layer board  
(2s2p)  
Junction to ambient  
(@200 ft/min)  
Single layer board  
(1s)  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
43  
Specifications  
Table 15. 28SOIC Package Thermal Characteristics (continued)  
Value  
Characteristic  
Comments  
Symbol  
Unit  
(LQFP)  
Junction to ambient  
(@200 ft/min)  
Four layer board  
(2s2p)  
RJMA  
42  
°C/W  
Junction to board  
Junction to case  
RJB  
RJC  
JT  
23  
26  
9
°C/W  
°C/W  
°C/W  
Junction to package top  
Natural Convection  
Table 16. 32LQFP Package Thermal Characteristics  
Value  
(LQFP)  
Characteristic  
Comments  
Symbol  
Unit  
Junction to ambient  
Natural convection  
Single layer board  
(1s)  
RJA  
84  
56  
70  
49  
°C/W  
°C/W  
°C/W  
°C/W  
Junction to ambient  
Natural convection  
Four layer board  
(2s2p)  
RJMA  
RJMA  
RJMA  
Junction to ambient  
(@200 ft/min)  
Single layer board  
(1s)  
Junction to ambient  
(@200 ft/min)  
Four layer board  
(2s2p)  
Junction to board  
Junction to case  
RJB  
RJC  
JT  
33  
20  
4
°C/W  
°C/W  
°C/W  
Junction to package top  
Natural convection  
Table 17. 32PSDIP Package Thermal Characteristics  
Value  
(LQFP)  
Characteristic  
Comments  
Symbol  
Unit  
Junction to ambient  
Natural convection  
Single layer board  
(1s)  
RJA  
56  
41  
45  
36  
°C/W  
°C/W  
°C/W  
°C/W  
Junction to ambient  
Natural convection  
Four layer board  
(2s2p)  
RJMA  
RJMA  
RJMA  
Junction to ambient  
(@200 ft/min)  
Single layer board  
(1s)  
Junction to ambient  
(@200 ft/min)  
Four layer board  
(2s2p)  
Junction to board  
Junction to case  
RJB  
RJC  
JT  
18  
24  
10  
°C/W  
°C/W  
°C/W  
Junction to package top  
Natural convection  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
44  
Freescale Semiconductor  
Specifications  
Table 18. 48LQFP Package Thermal Characteristics  
Value  
(LQFP)  
Characteristic  
Comments  
Symbol  
Unit  
Junction to ambient  
Natural convection  
Single layer board  
(1s)  
RJA  
79  
55  
66  
48  
°C/W  
°C/W  
°C/W  
°C/W  
Junction to ambient  
Natural convection  
Four layer board  
(2s2p)  
RJMA  
RJMA  
RJMA  
Junction to ambient  
(@200 ft/min)  
Single layer board  
(1s)  
Junction to ambient  
(@200 ft/min)  
Four layer board  
(2s2p)  
Junction to board  
Junction to case  
RJB  
RJC  
JT  
34  
20  
4
°C/W  
°C/W  
°C/W  
Junction to package top  
Natural Convection  
NOTE  
Junction-to-ambient thermal resistance determined per JEDEC JESD51–3 and JESD51–6.  
Thermal test board meets JEDEC specification for this package.  
Junction-to-board thermal resistance determined per JEDEC JESD51–8. Thermal test  
board meets JEDEC specification for the specified package.  
Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1.  
The cold plate temperature is used for the case temperature. Reported value includes the  
thermal resistance of the interface layer.  
Thermal characterization parameter indicating the temperature difference between the  
package top and the junction temperature per JEDEC JESD51–2. When Greek letters are  
not available, the thermal characterization parameter is written as Psi-JT  
Junction temperature is a function of die size, on-chip power dissipation, package thermal  
resistance, mounting site (board) temperature, ambient temperature, air flow, power  
dissipation of other components on the board, and board thermal resistance.  
See Section 9.1, “Thermal Design Considerations,” for more detail on thermal design  
considerations.  
8.4  
Recommended Operating Conditions  
This section includes information about recommended operating conditions.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
45  
Specifications  
Table 19. Recommended Operating Conditions  
(V  
= 0 V, V  
= 0 V, V = 0 V)  
REFL x  
SSA  
SS  
Characteristic  
Symbol  
Notes  
Min  
Typ  
Max  
Unit  
Supply voltage  
VDD, VDDA  
VDD  
3
3.3  
0
3.6  
0.1  
0.1  
V
V
V
Voltage difference VDD to VDDA  
Voltage difference VSS to VSSA  
–0.1  
–0.1  
VSS  
0
Device Clock Frequency  
Using relaxation oscillator  
Using external clock source  
FSYSCLK  
1
0
32  
32  
MHz  
Input Voltage High (digital inputs)  
Input Voltage Low (digital inputs)  
Oscillator Input Voltage High  
VIH  
VIL  
Pin Groups 1, 2  
Pin Groups 1, 2  
Pin Group 4  
2.0  
–0.3  
2.0  
VDD  
0.8  
V
V
V
VIHOSC  
VDDA + 0.3  
XTAL driven by an external clock source  
Oscillator Input Voltage Low  
VILOSC  
IOH  
Pin Group 4  
–0.3  
0.8  
V
Output Source Current High at VOH min.)1  
When programmed for low drive strength  
When programmed for high drive strength  
Pin Group 1  
Pin Group 1  
–4  
–8  
mA  
Output Source Current Low (at VOL max.)1  
When programmed for low drive strength  
When programmed for high drive strength  
IOL  
Pin Groups 1, 2  
Pin Groups 1, 2  
4
8
mA  
°C  
Ambient Operating Temperature (Extended  
Industrial)  
TA  
–40  
105  
Flash Endurance  
NF  
TA = –40°Cto 125°C  
10,000  
cycles  
(Program Erase Cycles)  
Flash Data Retention  
tR  
TJ 85°C avg  
TJ 85°C avg  
15  
20  
years  
years  
Flash Data Retention with <100  
Program/Erase Cycles  
tFLRET  
1
Total chip source or sink current cannot exceed 75 mA.  
Table 20. Default Mode  
Pin Group 1  
Pin Group 2  
GPIO, TDI, TDO, TMS, TCK  
SCL, SDA  
ADC and Comparator  
Analog Inputs and PGA  
Inputs  
Pin Group 3  
Pin Group 4  
XTAL, EXTAL  
8.5  
DC Electrical Characteristics  
This section includes information about power supply requirements and I/O pin characteristics.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
46  
Freescale Semiconductor  
Specifications  
Table 21. DC Characteristics  
Ambient  
temperature  
operating  
range  
Characteristic  
Symbol  
Condition  
Min  
Typ1  
Max  
Unit  
Operating Voltage  
1.82  
3.6  
V
V
Output high  
voltage  
All I/O pins, VOH  
low-drive strength  
1.8 V, ILoad = –2 mA  
VDD – 0.5  
All I/O pins,  
high-drive strength  
2.7 V, ILoad = –10 mA VDD – 0.5  
2.3 V, ILoad = –6 mA  
1.8 V, ILoad = –3 mA  
VDD – 0.5  
VDD – 0.5  
Output high  
current  
Max total IOH for all IOHT  
ports  
100  
mA  
V
Output low  
voltage  
All I/O pins, VOL  
low-drive strength  
1.8 V, ILoad = 2 mA  
0.5  
All I/O pins,  
high-drive strength  
2.7 V, ILoad = 10 mA  
2.3 V, ILoad = 6 mA  
1.8 V, ILoad = 3 mA  
0.5  
0.5  
0.5  
100  
Output low  
current  
Max total IOL for all IOLT  
ports  
mA  
V
Input high  
voltage  
all digital inputs  
VIH  
VDD 2.7 V  
VDD 1.8 V  
VDD 2.7 V  
VDD 1.8 V  
0.70 x VDD  
—40 C ~  
+125 C  
0.85 x VDD  
0.35 x VDD  
0.30 x VDD  
Input low voltage  
all digital inputs  
VIL  
0.06 x VDD  
Input hysteresis  
all digital inputs Vhys  
mV  
Input leakage  
current  
all input only pins  
(Per pin)  
|IIn|  
VIn = VDD or VSS  
VIn = VDD or VSS  
1
A  
Hi-Z (off-state)  
leakage current  
all input/output |IOZ  
|
1
A  
k  
(per pin)  
Pullup resistors  
all digital inputs, when RPU  
enabled  
17.5  
52.5  
DC injection  
current 3, 4, 5  
Single pin limit  
IIC  
VIn < VSS, VIn > VDD  
–0.2  
–5  
0.2  
5
mA  
mA  
Total MCU limit, includes  
sum of all stressed pins  
Input Capacitance, all pins  
RAM retention voltage  
POR re-arm voltage6  
POR re-arm time  
CIn  
0.6  
1.4  
8
pF  
V
VRAM  
VPOR  
tPOR  
1.0  
1.79  
0.9  
10  
V
s  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
47  
Specifications  
Table 21. DC Characteristics (continued)  
Ambient  
temperature  
operating  
range  
Characteristic  
Symbol  
Condition  
Min  
Typ1  
Max  
Unit  
8
Low-voltage detection threshold —  
high range7  
VLVDH  
VDD falling  
2.31  
2.16  
2.38  
2.23  
1.8  
2.34  
2.3  
2.36  
2.48  
2.47  
2.49  
1.87  
N/A  
V
–40 C ~  
105 C  
—40 C ~  
+125 C  
VDD rising  
VDD falling  
2.44  
2.39  
1.84  
N/A  
1.93  
2.62  
2.61  
2.67  
2.66  
50  
–40 C ~  
105 C  
—40 C ~  
+125 C  
Low-voltage detection threshold —  
low range7  
VLVDL  
V
V
–40 C ~  
105 C  
N/A  
1.88  
2.58  
2.5  
—40 C ~  
+125 C  
VDD rising  
1.96  
2.71  
2.74  
2.74  
2.79  
–40 C ~  
105 C  
9
Low-voltage warning threshold  
VLVW  
VDD falling  
–40 C ~  
105 C  
—40 C ~  
+125 C  
VDD rising  
2.59  
2.51  
–40 C ~  
105 C  
—40 C ~  
+125 C  
Low-voltage inhibit reset/recover  
hysteresis7  
Vhys  
VBG  
mV  
V
—40 C ~  
+105 C  
Bandgap Voltage Reference10  
1.15  
1.14  
1.17  
1.18  
–40 C ~  
105 C  
—40 C ~  
+125 C  
1
2
Typical values are measured at 25 C. Characterized, not tested  
As the supply voltage rises, the LVD circuit holds the MCU in reset until the supply has risen above VLVDL. If the system clock  
frequency < 16 MHz, VDD can be 1.7 V to 3.6 V.  
3
4
All functional non-supply pins are internally clamped to VSS and VDD  
.
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate  
resistance values for positive and negative clamp voltages, then use the larger of the two values.  
5
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result  
in external power supply going out of regulation. Ensure external VDD load shunts current greater than maximum injection current.  
This is the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present or if clock rate is low  
(which would reduce overall power consumption).  
6
7
Maximum is highest voltage that POR is guaranteed.  
Low voltage detection and warning limits measured at 32 MHz bus frequency. This characteristic is not applicable to devices with  
a temperature range from –40 C to 125 C. Please see the PMC chapter in the reference manual for details.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
48  
Freescale Semiconductor  
Specifications  
8
9
Runs at 32 MHz bus frequency.  
Both Low Voltage Warning (LVW) and Out Of Regulation (OOR) sample the same input source. The OOR flag is a stick bit which  
is in the PMC_SCR register.  
10 Factory trimmed at VDD = 3.3 V, Temp = 25 C.  
PULLUP RESISTOR TYPICALS  
40  
PULLDOWN RESISTOR TYPICALS  
85C  
40  
35  
30  
25  
20  
85C  
25C  
25C  
–40C  
–40C  
35  
30  
25  
20  
1.8  
2
2.2 2.4 2.6 2.8  
DD (V)  
3
3.2 3.4 3.6  
1.8  
2.3  
2.8  
VDD (V)  
3.3  
3.6  
V
Figure 16. Pullup and Pulldown Typical Resistor Values  
TYPICAL VOL VS IOL AT VDD = 3.0 V  
TYPICAL VOL VS VDD  
0.2  
0.15  
0.1  
1.2  
85  
C
25C  
1
0.8  
0.6  
0.4  
0.2  
0
–40C  
85  
25  
–40  
C, IOL = 2 mA  
0.05  
0
C, IOL = 2 mA  
C, IOL = 2 mA  
1
2
3
4
0
5
10  
IOL (mA)  
15  
20  
VDD (V)  
Figure 17. Typical Low-Side Driver (Sink) Characteristics Low Drive (GPIO_x_DRIVEn = 0)  
TYPICAL VOL VS VDD  
TYPICAL VOL VS IOL AT VDD = 3.0 V  
1
0.4  
0.3  
0.2  
0.1  
85C  
85C  
25C  
25C  
0.8  
–40C  
–40C  
0.6  
0.4  
0.2  
IOL = 10 mA  
IOL = 6 mA  
I
OL = 3 mA  
0
0
0
10  
20  
30  
1
2
3
4
VDD (V)  
I
OL (mA)  
Figure 18. Typical Low-Side Driver (Sink) Characteristics — High Drive (GPIO_x_DRIVEn = 1)  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
49  
Specifications  
TYPICAL VDD – VOH VS IOH AT VDD = 3.0 V  
TYPICAL VDD – VOH VS VDD AT SPEC IOH  
1.2  
1
0.25  
0.2  
0.15  
0.1  
0.05  
0
85  
C
85C, IOH = 2 mA  
25C  
25  
C, IOH = 2 mA  
–40C  
–40  
C, IOH = 2 mA  
0.8  
0.6  
0.4  
0.2  
0
0
–5  
–10  
OH (mA))  
–15  
–20  
1
2
3
4
VDD (V)  
I
Figure 19. Typical High-Side (Source) Characteristics Low Drive (GPIO_x_DRIVEn = 0)  
TYPICAL VDD – VOH VS VDD AT SPEC IOH  
0.4  
85C  
25C  
TYPICAL VDD – VOH VS IOH AT VDD = 3.0 V  
–40C  
0.3  
0.2  
0.1  
0.8  
0.6  
0.4  
0.2  
0
85C  
25C  
–40C  
IOH = –10 mA  
IOH = –6 mA  
IOH = –3 mA  
0
0
–5  
–10  
–15  
–20  
–25  
–30  
1
2
3
4
IOH (mA)  
VDD (V)  
Figure 20. Typical High-Side (Source) Characteristics — High Drive (GPIO_x_DRIVEn = 1)  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
50  
Freescale Semiconductor  
Specifications  
8.6  
Supply Current Characteristics  
Table 22. Supply Current Consumption  
Typical @ 3.3 V,  
25 °C  
Maximum @ 3.6 V,  
105 °C  
Maximum @ 3.6 V,  
125 °C  
Mode  
Conditions  
1
1
1
IDD  
IDDA  
IDD  
IDDA  
IDD  
IDDA  
Run  
32 MHz device clock;  
41.52 mA 1.71 mA  
53 mA  
2.7 mA  
53 mA  
2.9 mA  
relaxation oscillator (ROSC) in high speed  
mode;  
PLL engaged;  
All peripheral modules enabled. TMR and  
PWM using 1X clock;  
continuous MAC instructions with fetches  
from program flash;  
ADC/DAC powered on and clocked;  
comparator powered on.  
LSrun 2  
LPrun 3  
Wait  
200 kHz device clock;  
relaxation oscillator (ROSC) in standby  
mode;  
PLL disabled  
All peripheral modules disabled and clock  
gated off;  
340.75 A 1.70 mA  
166.30 A 1.74 mA  
19.3 mA 1.78 mA  
480 A  
390 A  
28 mA  
2.5 mA  
3.4 mA  
2.7 mA  
495 A  
399 A  
28 mA  
2.6 mA  
3.8 mA  
2.8 mA  
simple loop with fetches from program flash;  
32.768 kHz device clock;  
Clocked by a 32.768 kHz external crystal  
relaxation oscillator (ROSC) in power down;  
PLL disabled  
All peripheral modules disabled and clock  
gated off;  
simple loop with fetches from program flash;  
32 MHz device clock  
relaxation oscillator (ROSC) in high speed  
mode  
PLL engaged;  
All non-communication peripherals enabled  
and running;  
all communication peripherals disabled but  
clocked;  
processor core in wait state  
LSwait 2  
200 kHz device clock;  
relaxation oscillator (ROSC) in standby  
mode;  
265.42 A 1.70 mA  
380 A  
2.5 mA  
398 A  
2.6 mA  
PLL disabled;  
All peripheral modules disabled and clock  
gated off;  
processor core in wait state  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
51  
Specifications  
Mode  
Table 22. Supply Current Consumption (continued)  
Typical @ 3.3 V,  
25 °C  
Maximum @ 3.6 V,  
105 °C  
Maximum @ 3.6 V,  
125 °C  
Conditions  
1
1
1
IDD  
IDDA  
IDD  
IDDA  
IDD  
IDDA  
LPwait 3  
32.768 kHz device clock;  
157.55 A 1.57 mA  
8.21 mA 65.51 A  
194.69 A 65.51 A  
2.77 A 13.99 nA  
879.72 nA 11.56 nA  
380 A  
9.8 mA  
340 A  
45 A  
3.4 mA  
398 A  
3.6 mA  
Clocked by a 32.768 kHz external crystal  
oscillator in power down;  
PLL disabled;  
All peripheral modules disabled and clock  
gated off;  
processor core in wait state  
Stop  
32 MHz device clock  
relaxation oscillator (ROSC) in high speed  
mode;  
130 A 10.3 mA 132 A  
PLL engaged;  
all peripheral module and core clocks are off;  
ADC/DAC/comparator powered off;  
processor core in stop state  
LSstop 2 200 kHz device clock;  
relaxation oscillator (ROSC) in standby  
120 A  
357 A  
123 A  
mode;  
PLL disabled;  
all peripheral modules disabled and clock  
gated off;  
processor core in stop state.  
LPstop 2 32.768 kHz device clock;  
3.0 A  
58 A  
3.6 A  
Clocked by a 32.768 kHz external crystal  
relaxation oscillator (ROSC) in power down;  
PLL disabled;  
all peripheral modules disabled and clock  
gated off;  
processor core in stop state.  
PPD 4 with 32.768 kHz clock fed on XTAL  
XOSC  
18 A  
14 A  
14 A  
2.4 A  
2.4 A  
2.4 A  
22 A  
17 A  
17 A  
3.0 A  
2.8 mA  
2.8 A  
RTC or COP monitoring XOSC (but no  
wakeup)  
processor core in stop state  
PPD with LP RTC or COP monitoring LP oscillator (but no 499.15 nA 13.9 nA  
oscillator wakeup);  
(1 kHz)  
enabled  
processor core in stop state.  
PPD with no RTC and LP oscillator are disabled;  
494.04 nA 12.88 nA  
clock  
processor core in stop state.  
monitoring  
1
2
3
4
No output switching; all ports configured as inputs; all inputs low; no DC loads.  
Low speed mode: LPR (lower voltage regulator control bit) = 0 and voltage regulator is in full regulation. Characterization only.  
Low power mode: LPR (lower voltage regulator control bit) = 1; the voltage regulator is put into standby.  
Partial power down mode: PPDE (partial power down enable bit) = 1; power management controller (PMC) enters partial power  
down mode the next time that the STOP command is executed.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
52  
Freescale Semiconductor  
Specifications  
8.7  
Flash Memory Characteristics  
Table 23. Flash Timing Parameters  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Program time1  
Erase time 2  
tprog  
terase  
tme  
20  
20  
40  
s  
ms  
ms  
Mass erase time  
100  
1
There is additional overhead that is part of the programming sequence. See the MC56F8006 Peripheral Reference  
Manual for detail.  
2
Specifies page erase time. There are 512 bytes per page in the program flash memory.  
8.8  
External Clock Operation Timing  
1
Table 24. External Clock Operation Timing Requirements  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Frequency of operation (external clock driver)2  
Clock pulse width3  
fosc  
tPW  
trise  
tfall  
Vih  
Vil  
6.25  
64  
MHz  
ns  
ns  
ns  
V
External clock input rise time4  
3
3
External clock input fall time5  
Input high voltage overdrive by an external clock  
Input high voltage overdrive by an external clock  
Parameters listed are guaranteed by design.  
0.85VDD  
0.3VDD  
V
1
2
3
4
5
See Figure 21 for detail on using the recommended connection of an external clock driver.  
The chip may not function if the high or low pulse width is smaller than 6.25 ns.  
External clock input rise time is measured from 10% to 90%.  
External clock input fall time is measured from 90% to 10%.  
VIH  
External  
Clock  
90%  
50%  
10%  
90%  
50%  
10%  
tfall  
VIL  
trise  
tPW  
tPW  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Figure 21. External Clock Timing  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
53  
Specifications  
8.9  
Phase Locked Loop Timing  
Table 25. Phase Locked Loop Timing  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
PLL input reference frequency1  
PLL output frequency2  
PLL lock time3 4  
fref  
fop  
4
120  
8
MHz  
MHz  
µs  
192  
40  
tplls  
100  
0.37  
Accumulated jitter using an 8 MHz external crystal as the PLL source5  
JA  
%
Cycle-to-cycle jitter  
tjitterpll  
350  
ps  
1
An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work correctly. The  
PLL is optimized for 8 MHz input.  
2
3
4
5
The core system clock operates at 1/6 of the PLL output frequency.  
This is the time required after the PLL is enabled to ensure reliable operation.  
From powerdown to powerup state at 32 MHz system clock state.  
This is measured on the CLKO signal (programmed as system clock) over 264 system clocks at 32 MHz system clock  
frequency and using an 8 MHz oscillator frequency.  
8.10 Relaxation Oscillator Timing  
Table 26. Relaxation Oscillator Timing  
Characteristic  
Symbol Minimum Typical  
Maximum  
Unit  
Relaxation oscillator output frequency1  
Normal Mode  
fop  
8.05  
400  
MHz  
kHz  
Standby Mode  
Relaxation oscillator stabilization time2  
troscs  
1
3
ms  
ps  
Cycle-to-cycle jitter. This is measured on the CLKO signal tjitterrosc  
(programmed prescaler_clock) over 264 clocks3  
400  
Variation over temperature –40 C to 105 C4  
Variation over temperature 0 C to 105 C5  
Variation over temperature –40 C to 125 C4  
–3.0 to +2.0  
–2.0 to +2.0  
–3.5 to +3.0  
%
%
%
1
Output frequency after factory trim.  
2
3
4
This is the time required from standby to normal mode transition.  
JA is required to meet QSCI requirements.  
See Figure 22. The power supply VDD must be greater than or equal to 2.6 V. Below 2.6 V, the maximum variation  
over the whole temperature and whole voltage range from 1.8 V to 2.6 V will be +/-16%.  
5
This data is only applied to devices with temperature range from –40 C to 105 C.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
54  
Freescale Semiconductor  
Specifications  
Degrees C (Junction)  
Figure 22. Relaxation Oscillator Temperature Variation (Typical) After Trim for devices with temperature  
operating range from –40 C to 105 C  
Figure 23. Relaxation Oscillator Temperature Variation (Typical) After Trim for devices with temperature  
operating range from –40 C to 125 C  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
55  
Specifications  
8.11 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
NOTE  
All address and data buses described here are internal.  
1,2  
Table 27. Reset, Stop, Wait, Mode Select, and Interrupt Timing  
Characteristic  
Symbol  
Typical Min  
Typical Max  
Unit  
See Figure  
Minimum RESET Assertion Duration  
Minimum GPIO pin Assertion for Interrupt  
RESET deassertion to First Address Fetch  
tRA  
tIW  
tRDA  
tIF  
4T  
ns  
ns  
ns  
ns  
Figure 24  
2T  
96TOSC + 64T  
97TOSC + 65T  
6T  
Delay from Interrupt Assertion to Fetch of first  
instruction (exiting Stop)  
1
2
In the formulas, T = system clock cycle and Tosc = oscillator clock cycle. For an operating frequency of 32 MHz, T = 31.25 ns.  
At 4 MHz (used coming out of reset and stop modes), T = 250 ns.  
Parameters listed are guaranteed by design.  
GPIO pin  
(Input)  
tIW  
Figure 24. GPIO Interrupt Timing (Negative Edge-Sensitive)  
8.12 External Oscillator (XOSC) Characteristics  
Reference Figure 10, and Figure 11, and Figure 12 for crystal or resonator circuits.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
56  
Freescale Semiconductor  
Specifications  
Unit  
Table 28. Crystal Oscillator Characteristics  
Characteristic  
Symbol  
Min  
Typ1  
Max  
Oscillator crystal or resonator (PRECS = 1, CLK_MOD = 0)  
Low range (RANGE = 0)  
flo  
fhi  
fhi  
32  
1
1
38.4  
16  
8
kHz  
MHz  
MHz  
High range (RANGE = 1), high gain (COHL =0)  
High range (RANGE = 1), low power (COHL =1)  
Load capacitors  
C1,C2  
See Note2  
See Note3  
Low range (RANGE=0), low power (COHL =1)  
Other oscillator settings  
Feedback resistor  
RF  
M  
k  
Low range, low power (RANGE=0, COHL =1)2  
Low range, high gain (RANGE=0, COHL =0)  
High range (RANGE=1, COHL=X)  
10  
1
Series resistor  
RS  
Low range, low power (RANGE = 0, COHL =1)2  
0
100  
0
Low range, high gain (RANGE = 0, COHL =0)  
High range, low power (RANGE = 1, COHL =1)  
High range, high gain (RANGE = 1,COHL =0)  
8 MHz  
4 MHz  
1 MHz  
0
0
0
0
10  
20  
Crystal start-up time 4  
Low range, low power  
Low range, high gain  
High range, low power  
High range, high gain  
t
TBD  
TBD  
TBD  
TBD  
ms  
CSTL  
t
CSTH  
Square wave input clock frequency (PRECS = 1, CLK_MOD = 1)  
fxtal  
50.0  
MHz  
1
2
Data in Typical column was characterized at 3.0 V, 25C or is typical recommended value.  
Load capacitors (C1,C2), feedback resistor (RF) and series resistor (RS) are incorporated internally when  
RANGE=HGO=0.  
3
4
See crystal or resonator manufacturer’s recommendation.  
Proper PC board layout procedures must be followed to achieve specifications.  
8.13 AC Electrical Characteristics  
Tests are conducted using the input levels specified in Table 22. Unless otherwise specified, propagation delays are measured  
from the 50% to the 50% point, and rise and fall times are measured between the 10% and 90% points, as shown in Figure 25.  
Low  
High  
VIH  
90%  
50%  
10%  
Midpoint1  
Input Signal  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH – VIL)/2.  
Figure 25. Input Signal Measurement References  
Figure 26 shows the definitions of the following signal states:  
Active state, when a bus or signal is driven, and enters a low impedance state  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
57  
Specifications  
Tri-stated, when a bus or signal is placed in a high impedance state  
Data Valid state, when a signal level has reached V or V  
OL  
OH  
Data Invalid state, when a signal level is in transition between V and V  
OL  
OH  
Data1 Valid  
Data1  
Data2 Valid  
Data2  
Data3 Valid  
Data3  
Data  
Three-stated  
Data Invalid State  
Data Active  
Data Active  
Figure 26. Signal States  
8.13.1 Serial Peripheral Interface (SPI) Timing  
1
Table 29. SPI Timing  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Cycle time  
Master  
Slave  
tC  
Figure 27,  
Figure 28,  
Figure 29,  
Figure 30  
125  
62.5  
ns  
ns  
Enable lead time  
Master  
tELD  
tELG  
tCH  
Figure 30  
31  
ns  
ns  
Slave  
Enable lag time  
Master  
Figure 30  
125  
ns  
ns  
Slave  
Clock (SCK) high time  
Figure 27,  
Figure 28,  
Figure 29,  
Figure 30  
Master  
Slave  
50  
31  
ns  
ns  
Clock (SCK) low time  
Master  
tCL  
Figure 30  
50  
31  
ns  
ns  
Slave  
Data set-up time required for inputs  
tDS  
Figure 27,  
Figure 28,  
Figure 29,  
Figure 30  
Master  
Slave  
20  
0
ns  
ns  
Data hold time required for inputs  
tDH  
Figure 27,  
Figure 28,  
Figure 29,  
Figure 30  
Master  
Slave  
0
2
ns  
ns  
Access time (time to data active from high-impedance  
tA  
Figure 30  
state)  
Slave  
4.8  
3.7  
15  
ns  
ns  
Disable time (hold time to high-impedance state)  
Slave  
tD  
Figure 30  
15.2  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
58  
Freescale Semiconductor  
Specifications  
1
Table 29. SPI Timing (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Data valid for outputs  
Master  
Slave (after enable edge)  
tDV  
Figure 27,  
Figure 28,  
Figure 29,  
Figure 30  
4.5  
20.4  
ns  
ns  
Data invalid  
Master  
tDI  
tR  
tF  
Figure 27,  
Figure 28,  
Figure 29,  
Figure 30  
0
0
ns  
ns  
Slave  
Rise time  
Master  
Slave  
Figure 27,  
Figure 28,  
Figure 29,  
Figure 30  
11.5  
10.0  
ns  
ns  
Fall time  
Master  
Slave  
Figure 27,  
Figure 28,  
Figure 29,  
Figure 30  
9.7  
9.0  
ns  
ns  
1
Parameters listed are guaranteed by design.  
SS  
(Input)  
SS is held high on master  
tC  
tR  
tF  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tF  
tR  
tCL  
SCLK (CPOL = 1)  
(Output)  
tDH  
tCH  
tDS  
MISO  
MSB in  
tDI  
Bits 14–1  
LSB in  
tDI(ref)  
(Input)  
tDV  
Bits 14–1  
MOSI  
(Output)  
Master MSB out  
tF  
Master LSB out  
tR  
Figure 27. SPI Master Timing (CPHA = 0)  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
59  
Specifications  
SS  
(Input)  
SS is held High on master  
tF  
tC  
tR  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tF  
tCL  
SCLK (CPOL = 1)  
(Output)  
tCH  
tDS  
tR  
tDH  
MISO  
MSB in  
tDI  
Bits 14–1  
LSB in  
(Input)  
tDV(ref)  
tDV  
Bits 14– 1  
tDI(ref)  
MOSI  
(Output)  
Master MSB out  
tF  
Master LSB out  
tR  
Figure 28. SPI Master Timing (CPHA = 1)  
SS  
(Input)  
tC  
tF  
tELG  
tCL  
tR  
SCLK (CPOL = 0)  
(Input)  
tCH  
tELD  
tCL  
SCLK (CPOL = 1)  
(Input)  
tCH  
tF  
tA  
tR  
tD  
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
tDV  
Slave LSB out  
tDI  
tDS  
tDI  
tDH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 29. SPI Slave Timing (CPHA = 0)  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
60  
Freescale Semiconductor  
Specifications  
SS  
(Input)  
tF  
tC  
tR  
tCL  
SCLK (CPOL = 0)  
(Input)  
tCH  
tELG  
tELD  
tCL  
SCLK (CPOL = 1)  
(Input)  
tDV  
tCH  
tR  
tD  
tA  
tF  
MISO  
Slave MSB out  
MSB in  
Bits 14–1  
tDV  
Slave LSB out  
(Output)  
tDS  
tDI  
tDH  
MOSI  
(Input)  
Bits 14–1  
LSB in  
Figure 30. SPI Slave Timing (CPHA = 1)  
8.13.2 Serial Communication Interface (SCI) Timing  
1
Table 30. SCI Timing  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Baud rate2  
BR  
(fMAX/16)  
1.04/BR  
1.04/BR  
Mbps  
ns  
RXD pulse width  
TXD pulse width  
RXDPW  
TXDPW  
0.965/BR  
0.965/BR  
Figure 31  
Figure 32  
ns  
LIN Slave Mode  
Deviation of slave node clock from  
nominal clock rate before  
synchronization  
FTOL_UNSYNCH  
FTOL_SYNCH  
TBREAK  
–14  
–2  
14  
2
%
%
Deviation of slave node clock relative to  
the master node clock after  
synchronization  
Minimum break character length  
13  
11  
Master node  
bit periods  
Slave node  
bit periods  
1
2
Parameters listed are guaranteed by design.  
fMAX is the frequency of operation of the SCI in MHz, which can be selected system clock (max. 32 MHz) or 3x system clock  
(max. 96 MHz) for the 56F8006/56F8002 device.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
61  
Specifications  
RXD  
SCI receive  
data pin  
(Input)  
RXDPW  
Figure 31. RXD Pulse Width  
TXD  
SCI receive  
data pin  
TXDPW  
(Input)  
Figure 32. TXD Pulse Width  
8.13.3 Inter-Integrated Circuit Interface (I2C) Timing  
2
Table 31. I C Timing  
Standard Mode  
Minimum Maximum  
Characteristic  
Symbol  
Unit  
SCL Clock Frequency  
fSCL  
0
100  
MHz  
Hold time (repeated) START condition.  
tHD; STA  
4.0  
s  
After this period, the first clock pulse is generated.  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
tSU; STA  
tHD; DAT  
tSU; DAT  
tr  
4.7  
4.0  
4.7  
01  
s  
s  
s  
s  
ns  
ns  
ns  
s  
s  
ns  
Set-up time for a repeated START condition  
Data hold time for I2C bus devices  
3.452  
Data set-up time  
250  
Rise time of SDA and SCL signals  
1000  
300  
Fall time of SDA and SCL signals  
tf  
Set-up time for STOP condition  
tSU; STO  
tBUF  
4.0  
4.7  
N/A  
Bus free time between STOP and START condition  
Pulse width of spikes that must be suppressed by the input filter  
tSP  
N/A  
1
2
The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves  
acknowledge this address byte, a negative hold time can result, depending on the edge rates of the SDA and SCL lines.  
The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
62  
Freescale Semiconductor  
Specifications  
SDA  
SCL  
tSU; DAT  
tf  
tr  
tBUF  
tf  
tr  
tHD; STA  
tSP  
tLOW  
tSU; STA  
tHD; STA  
tSU; STO  
S
SR  
P
S
tHD; DAT  
tHIGH  
2
Figure 33. Timing Definition for Standard Mode Devices on the I C Bus  
8.13.4 JTAG Timing  
Table 32. JTAG Timing  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
TCK frequency of operation1  
TCK clock pulse width  
fOP  
tPW  
tDS  
tDH  
tDV  
tTS  
DC  
50  
5
SYS_CLK/8  
MHz  
ns  
Figure 34  
Figure 34  
Figure 35  
Figure 35  
Figure 35  
Figure 35  
30  
30  
TMS, TDI data set-up time  
TMS, TDI data hold time  
TCK low to TDO data valid  
ns  
5
ns  
ns  
TCK low to TDO tri-state  
ns  
1
TCK frequency of operation must be less than 1/8 the processor rate.  
1/fOP  
tPW  
VM  
tPW  
VIH  
VM  
TCK  
(Input)  
VIL  
Figure 34. Test Clock Input Timing Diagram  
VM = VIL + (VIH – VIL)/2  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
63  
Specifications  
TCK  
(Input)  
tDS  
tDH  
TDI  
TMS  
Input Data Valid  
(Input)  
tDV  
TDO  
(Output)  
Output Data Valid  
tTS  
TDO  
(Output)  
Figure 35. Test Access Port Timing Diagram  
8.13.5 Dual Timer Timing  
1, 2  
Table 33. Timer Timing  
Min  
Characteristic  
Symbol  
Max  
Unit  
See Figure  
Timer input period  
Timer input high/low period  
Timer output period  
PIN  
2T + 6  
1T + 3  
125  
ns  
ns  
ns  
ns  
Figure 36  
Figure 36  
Figure 36  
Figure 36  
PINHL  
POUT  
Timer output high/low period  
POUTHL  
50  
1
In the formulas listed, T = the clock cycle. For 32 MHz operation, T = 31.25ns.  
2. Parameters listed are guaranteed by design.  
Timer Inputs  
PINHL  
PINHL  
PIN  
Timer Outputs  
POUTHL  
POUTHL  
POUT  
Figure 36. Timer Timing  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
64  
Freescale Semiconductor  
Specifications  
8.14 COP Specifications  
Table 34. COP Specifications  
Parameter  
Symbol  
Min  
500  
Typ  
Max  
Unit  
Oscillator output frequency  
LPFosc  
IDD  
1000  
TBD  
1500  
Hz  
nA  
Oscillator current consumption in partial power down mode  
8.15 PGA Specifications  
Table 35. PGA Specifications  
Parameter  
Symbol  
Min  
Max  
Unit  
Digital logic inputs amplitude (_2p5 signal)  
DC analog input level (@ VDD = avdd3p3)  
V2p5  
VIL  
2.75  
V
V
0
PGA S/H stage enabled (BP=0)  
VDD  
PGA S/H stage disabled (BP=1)  
VDD – 0.5  
Max differential input voltage (@ Gain and VDD = avdd3p3)  
VDIFFMAX  
(VDD – 1) x 0.5/gain  
V
Linearity (@ voltage gain)  
1x  
2x  
4x  
1 – 1/2 LSB  
2 – 1/2 LSB  
4 – 1 LSB  
1 + 1/2 LSB  
2 + 1/2 LSB  
4 + 1 LSB  
LV  
V/V  
8x  
8 – 1 LSB  
8 + 1 LSB  
16x  
32x  
16 – 4 LSB  
32 – 4 LSB  
16 + 4 LSB  
32 + 4 LSB  
Gain error (@ voltage gain)  
1x  
2x  
4x  
AV  
1%  
V/V  
8x  
16x  
32x  
Sampling frequency (pga_clk_2p5)  
normal mode (pga_lp_2p5 asserted) SFmax  
low power mode (pga_lp_2p5 negated)  
8
4
MHz  
Hz  
Input signal bandwidth  
Motor Control mode (BP=0) BWmax  
General Purpose mode (BP=1)  
PGA sampling rate/2  
PGA sampling rate/8  
Internal voltage doubler clock frequency(pga_clk_doubler_2p5) VDclk  
100  
–40  
2000  
125  
kHz  
oC  
Operating temperature  
T
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
65  
Specifications  
8.16 ADC Specifications  
Table 36. ADC Operating Conditions  
Characteristic  
Conditions  
Symb  
Min  
Typ1  
Max  
Unit  
Comment  
2
3
Input voltage  
VADIN  
CADIN  
VREFL  
VREFH  
5.5  
V
Input  
4.5  
pF  
capacitance  
Input resistance  
RADIN  
RAS  
5
7
k  
k  
Analog source 12-bit mode  
resistance fADCK > 4 MHz  
fADCK < 4 MHz  
External to MCU  
2
5
10-bit mode  
ADCK > 4 MHz  
f
5
10  
fADCK < 4 MHz  
8-bit mode (all valid fADCK  
)
10  
8.0  
4.0  
ADC conversion High speed (ADLPC=0)  
fADCK  
0.4  
0.4  
MHz  
clock freq.  
Low power (ADLPC=1)  
1
Typical values assume VDDAD = 3.0 V, Temp = 25C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2
3
VREFL = VSSA  
VREFH = VDDA  
Simplified  
Input Pin Equivalent  
ZADIN  
Circuit  
Simplified  
Channel Select  
Circuit  
Pad  
leakage  
due to  
input  
protection  
ZAS  
ADC SAR  
Engine  
RAS  
RADIN  
+
VADIN  
CAS  
VAS  
+
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 37. ADC Input Impedance Equivalency Diagram  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
66  
Freescale Semiconductor  
Specifications  
Comment  
Table 37. ADC Characteristics (V  
= V  
, V  
= V  
)
SSA  
REFH  
Min  
DDA  
REFL  
Characteristic  
Conditions  
Symb  
Typ1  
Max  
Unit  
Supply current  
ADLPC=1  
ADLSMP=1  
ADCO=1  
IDDAD  
120  
202  
A  
Supply current  
ADLPC=1  
ADLSMP=0  
ADCO=1  
IDDAD  
IDDAD  
IDDAD  
1
A  
Supply current  
ADLPC=0  
ADLSMP=1  
ADCO=1  
288  
A  
Supply current  
ADLPC=0  
ADLSMP=0  
ADCO=1  
0.532  
mA  
MHz  
ADC  
asynchronous  
clock source  
High speed (ADLPC=0)  
Low power (ADLPC=1)  
fADACK  
2
3.3  
2
5
tADACK =  
1/fADACK  
1.25  
3.3  
Conversion time Short sample (ADLSMP=0)  
tADC  
20  
40  
ADCK  
cycles  
(including  
Long sample (ADLSMP=1)  
sample time)  
Sample time  
Short sample (ADLSMP=0)  
Long sample (ADLSMP=1)  
12-bit mode  
tADS  
DNL  
3.5  
23.5  
1.75  
0.5  
0.3  
1.5  
0.5  
0.3  
–1 to 0  
ADCK  
cycles  
Differential  
Non-linearity  
LSB2  
LSB2  
LSB2  
LSB2  
10-bit mode3  
8-bit mode3  
1.0  
0.5  
Integral  
non-linearity  
12-bit mode  
INL  
EQ  
EIL  
10-bit mode  
1.0  
0.5  
8-bit mode  
Quantization  
error  
12-bit mode  
10-bit mode  
0.5  
0.5  
8-bit mode  
Input leakage  
error  
12-bit mode  
2  
Pad leakage4 *  
RAS  
10-bit mode  
0.2  
0.1  
1.646  
1.769  
701.2  
4  
8-bit mode  
1.2  
Temp sensor  
slope  
–40C–25C  
25C–125C  
25C  
m
mV/C  
Temp sensor  
voltage  
VTEMP25  
mV  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
67  
Specifications  
1
Typical values assume VDDA = 3.0 V, Temp = 25C, fADCK=1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2
3
4
1 LSB = (VREFH – VREFL)/2N  
Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes  
Based on input pad leakage current. Refer to pad electricals.  
8.17 HSCMP Specifications  
Table 38. HSCMP Specifications  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Supply voltage  
VPWR  
1.8  
3.6  
V
Supply current, high speed mode (EN=1,  
IDDAHS  
150  
10  
A  
PMODE=1, VDDA VLVI_trip  
)
Supply current, low speed mode (EN=1,  
PMODE=0)  
IDDALS  
A  
Supply current, off mode (EN=0,)  
Analog input voltage  
IDDAOFF  
VAIN  
100  
VDDA + 0.01  
40  
nA  
V
VSSA – 0.01  
3.0  
Analog input offset voltage  
Analog comparator hysteresis  
VAIO  
VH  
mV  
mV  
ns  
20.0  
1
Propagation Delay, high speed mode (EN=1,  
PMODE=1), 2.4 V < VDDA < 3.6 V  
tDHSN  
70  
70  
140  
2
Propagation Delay, High Speed Mode (EN=1,  
PMODE=1), 1.8 V < VDDA < 2.4 V  
tDHSB  
249  
600  
600  
ns  
ns  
ns  
3
Propagation Delay, Low Speed Mode (EN=1,  
PMODE=0), 2.4 V < VDDA < 3.6 V  
tAINIT  
400  
400  
4
Propagation Delay, Low Speed Mode (EN=1,  
PMODE=0), 1.8 V < VDDA < 2.4 V  
tAINIT  
1
2
3
4
Measured with an input waveform that switches 30 mV above and below the reference, to the CMPO output pin. VDDA  
VLVI_WARNING => LVI_WARNING NOT ASSERTED.  
>
<
>
<
Measured with an input waveform that switches 30mV above and below the reference, to the CMPO output pin. VDDA  
VLVI_WARNING => LVI_WARNING ASSERTED.  
Measured with an input waveform that switches 30mV above and below the reference, to the CMPO output pin. VDDA  
VLVI_WARNING => LVI_WARNING NOT ASSERTED.  
Measured with an input waveform that switches 30mV above and below the reference, to the CMPO output pin. VDDA  
VLVI_WARNING => LVI_WARNING ASSERTED.  
8.18 Optimize Power Consumption  
See Section 8.6, “Supply Current Characteristics,” for a list of I requirements for the 56F8006/56F8002. This section  
DD  
provides additional detail that can be used to optimize power consumption for a given application.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
68  
Freescale Semiconductor  
Specifications  
Power consumption is given by the following equation:  
Eqn. 1  
Total power =  
A:  
internal [static component]  
+B: internal [state-dependent component]  
+C:  
+D:  
+E:  
internal [dynamic component]  
external [dynamic component]  
external [static component]  
A, the internal [static] component, is comprised of the DC bias currents for the oscillator, leakage currents, PLL, and voltage  
references. These sources operate independently of processor state or operating frequency.  
B, the internal [state-dependent] component, reflects the supply current required by certain on-chip resources only when those  
resources are in use. These include RAM, flash memory, and the ADCs.  
2
C, the internal [dynamic] component, is classic C*V *F CMOS power dissipation corresponding to the 56800E core and  
standard cell logic.  
D, the external [dynamic] component, reflects power dissipated on-chip as a result of capacitive loading on the external pins of  
2
the chip. This is also commonly described as C*V *F, although simulations on two of the I/O cell types used on the 56800E  
reveal that the power-versus-load curve does have a non-zero Y-intercept.  
Table 39. I/O Loading Coefficients at 10 MHz  
Intercept  
Slope  
8 mA drive  
4 mA drive  
1.3  
0.11 mW/pF  
0.11 mW/pF  
1.15 mW  
Power due to capacitive loading on output pins is (first order) a function of the capacitive load and frequency at which the  
outputs change. Table 39 provides coefficients for calculating power dissipated in the I/O cells as a function of capacitive load.  
In these cases:  
TotalPower = ((Intercept + Slope*Cload)*frequency/10 MHz)  
Eqn. 2  
where:  
Summation is performed over all output pins with capacitive loads  
Total power is expressed in mW  
C
is expressed in pF  
load  
Because of the low duty cycle on most device pins, power dissipation due to capacitive loads was found to be fairly low when  
averaged over a period of time.  
E, the external [static component], reflects the effects of placing resistive loads on the outputs of the device. Sum the total of  
2
all V /R or IV to arrive at the resistive load contribution to power. Assume V = 0.5 for the purposes of these rough calculations.  
For instance, if there is a total of eight PWM outputs driving 10 mA into LEDs, then P = 8*0.5*0.01 = 40 mW.  
In previous discussions, power consumption due to parasitics associated with pure input pins is ignored, as it is assumed to be  
negligible.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
69  
Design Considerations  
9
Design Considerations  
9.1  
Thermal Design Considerations  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
x P )  
Eqn. 3  
J
A
J  
D
where:  
TA  
RJ  
PD  
=
=
=
Ambient temperature for the package (oC)  
Junction-to-ambient thermal resistance (oC/W)  
Power dissipation in the package (W)  
The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy estimation of thermal  
performance. Unfortunately, there are two values in common usage: the value determined on a single-layer board and the value  
obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which  
value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a  
single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal  
planes is usually appropriate if the board has low-power dissipation and the components are well separated.  
When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal resistance and a  
case-to-ambient thermal resistance:  
R
= R  
+ R  
CA  
Eqn. 4  
JA  
JC  
where:  
RJA  
RJC  
RCA  
=
=
=
Package junction-to-ambient thermal resistance (°C/W)  
Package junction-to-case thermal resistance (°C/W)  
Package case-to-ambient thermal resistance (°C/W)  
R
is device related and cannot be adjusted. You control the thermal environment to change the case to ambient thermal  
JC  
resistance, R  
. For instance, you can change the size of the heat sink, the air flow around the device, the interface material,  
CA  
the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding  
the device.  
To determine the junction temperature of the device in the application when heat sinks are not used, the thermal characterization  
parameter () can be used to determine the junction temperature with a measurement of the temperature at the top center of  
JT  
the package case using the following equation:  
T = T + (x P )  
Eqn. 5  
J
T
JT  
D
where:  
TT  
JT  
PD  
=
=
=
Thermocouple temperature on top of package (oC)  
Thermal characterization parameter (oC/W)  
Power dissipation in package (W)  
The thermal characterization parameter is measured per JESD51–2 specification using a 40-gauge type T thermocouple epoxied  
to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the  
package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
70  
Freescale Semiconductor  
Design Considerations  
junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects  
of the thermocouple wire.  
When heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case  
of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimizing the size of  
the clearance is important to minimize the change in thermal performance caused by removing part of the thermal interface to  
the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature  
and then back-calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this  
case temperature, the junction temperature is determined from the junction-to-case thermal resistance.  
9.2  
Electrical Design Considerations  
CAUTION  
This device contains protective circuitry to guard against damage due to high static voltage  
or electrical fields. However, take normal precautions to avoid application of any voltages  
higher than maximum-rated voltages to this high-impedance circuit. Reliability of  
operation is enhanced if unused inputs are tied to an appropriate voltage level.  
Use the following list of considerations to assure correct operation of the 56F8006/56F8002:  
Provide a low-impedance path from the board power supply to each V pin on the 56F8006/56F8002 and from the  
DD  
board ground to each V (GND) pin.  
SS  
The minimum bypass requirement is to place 0.01–0.1µF capacitors positioned as near as possible to the package  
supply pins. The recommended bypass configuration is to place one bypass capacitor on each of the V /V pairs,  
DD SS  
including V  
/V  
Ceramic and tantalum capacitors tend to provide better tolerances.  
DDA SSA.  
Ensure that capacitor leads and associated printed circuit traces that connect to the chip V and V (GND) pins are  
DD SS  
as short as possible.  
Bypass the V and V with approximately 100 µF, plus the number of 0.1 µF ceramic capacitors.  
DD  
SS  
PCB trace lengths should be minimal for high-frequency signals.  
Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance. This is  
especially critical in systems with higher capacitive loads that could create higher transient currents in the V and  
DD  
V
circuits.  
SS  
Take special care to minimize noise levels on the V , V  
, and V  
pins.  
SSA  
REF DDA  
Using separate power planes for V and V  
and separate ground planes for V and V  
are recommended.  
SSA  
DD  
DDA  
SS  
Connect the separate analog and digital power and ground planes as near as possible to power supply outputs. If an  
analog circuit and digital circuit are powered by the same power supply, you should connect a small inductor or ferrite  
bead in serial with V  
and V  
traces.  
DDA  
SSA  
Physically separate analog components from noisy digital components by ground planes. Do not place an analog trace  
in parallel with digital traces. Place an analog ground trace around an analog signal trace to isolate it from digital traces.  
2
Because the flash memory is programmed through the JTAG/EOnCE port, SPI, SCI, or I C, the designer should  
provide an interface to this port if in-circuit flash programming is desired.  
If desired, connect an external RC circuit to the RESET pin. The resistor value should be in the range of 4.7 k–10 k;  
the capacitor value should be in the range of 0.22 µF–4.7 µF.  
Configuring the RESET pin to GPIO output in normal operation in a high-noise environment may help to improve the  
performance of noise transient immunity.  
Add a 2.2 kexternal pullup on the TMS pin of the JTAG port to keep EOnCE in a restate during normal operation if  
JTAG converter is not present.  
During reset and after reset but before I/O initialization, all I/O pins are at input state with internal pullup enabled. The  
typical value of internal pullup is around 33 k. These internal pullups can be disabled by software.  
To eliminate PCB trace impedance effect, each ADC input should have a no less than 33 pF 10 RC filter.  
External clamp diodes on analog input pins are recommended.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
71  
Design Considerations  
9.3  
Ordering Information  
Table 40 lists the pertinent information needed to place an order. Consult a Freescale Semiconductor sales office or authorized  
distributor to determine availability and to order devices.  
Table 40. 56F8006/56F8002 Ordering Information  
Ambient  
Temperature  
Range  
Supply  
Voltage  
Pin  
Count  
Frequency  
(MHz)  
Device  
Package Type  
Order Number  
MC56F8002 1.8–3.6 V  
MC56F8006 1.8–3.6 V  
MC56F8006 1.8–3.6 V  
MC56F8006 1.8–3.6 V  
MC56F8006 1.8–3.6 V  
Small Outline IC (SOIC)  
Small Outline IC (SOIC)  
28  
28  
32  
48  
32  
32  
32  
32  
32  
32  
–40° to + 105° C MC56F8002VWL  
–40° to + 125° C MC56F8002MWL1  
–40° to + 105° C MC56F8006VWL  
–40° to + 125° C MC56F8006MWL1  
Low-Profile Quad Flat Pack  
(LQFP)  
–40° to + 105° C MC56F8006VLC  
–40° to + 125° C MC56F8006MLC1  
Low-Profile Quad Flat Pack  
(LQFP)  
–40° to + 105° C MC56F8006VLF  
–40° to + 125° C MC56F8006MLF1  
Plastic Shrink Dual In-line  
Package (PSDIP)  
–40° to + 105° C MC56F8006VBM  
1
This package is RoHS compliant.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
72  
Freescale Semiconductor  
Package Mechanical Outline Drawings  
10 Package Mechanical Outline Drawings  
10.1 28-pin SOIC Package  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
73  
Package Mechanical Outline Drawings  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
74  
Freescale Semiconductor  
Package Mechanical Outline Drawings  
Figure 38. 56F8006/56F8002 28-Pin SOIC Mechanical Information  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
75  
Package Mechanical Outline Drawings  
10.2 32-pin LQFP  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
76  
Freescale Semiconductor  
Package Mechanical Outline Drawings  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
77  
Package Mechanical Outline Drawings  
Figure 39. 56F8006/56F8002 32-Pin LQFP Mechanical Information  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
78  
Freescale Semiconductor  
Package Mechanical Outline Drawings  
10.3 48-pin LQFP  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
79  
Package Mechanical Outline Drawings  
Figure 40. 56F8006/56F8002 48-Pin LQFP Mechanical Information  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
80  
Freescale Semiconductor  
Package Mechanical Outline Drawings  
10.4 32-Pin PSDIP  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
81  
Package Mechanical Outline Drawings  
Figure 41. 56F8006/56F8002 32-Pin PSDIP Mechanical Information  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
82  
Freescale Semiconductor  
Revision History  
11 Revision History  
Table 41 lists major changes between versions of the MC56F8006 document.  
Table 41. Changes Between Revisions 2 and 3  
Location  
Introduction on page 1  
Description  
Added part marking for devices covered by this document  
Section 6.7, “PWM, PDB, PGA, and ADC Updated routing details for ANB24 and ANB25  
Connections,on page 38  
Table 12 on page 42  
Table 21 on page 47  
Removed row about open drain mode (GPIO supports only push-pull mode)  
Updated specifications for low-voltage detection threshold (high and low range) and  
low-voltage warning threshold  
Table 22 on page 51  
Updated all Supply Current Consumption specifications  
Table 26 and Figure 22 on page 55  
Table 31 on page 62  
Updated ROSC variation over temperature specifications (both ranges)  
Removed I2C fast mode specifications and footnote about setup time if the TX FIFO  
is empty (fast mode and FIFO not supported)  
Appendix B on page 86  
Table 44 on page 86  
Added note explaining ADC and GPIO naming conventions  
For I2C_SMB_CSR, clarified that bits 7 and 6 are reserved  
Table 42. Changes Between Revisions 3 and 4  
Description  
Location  
Throughout document.  
Added information for 32-pin PSDIP device and devices with temperature range  
from –40 C to + 125 C.  
Appendix A  
Interrupt Vector Table  
Table 43 provides the 56F8006/56F8002’s reset and interrupt priority structure, including on-chip peripherals. The table is  
organized with higher-priority vectors at the top and lower-priority interrupts lower in the table. As indicated, the priority of an  
interrupt can be assigned to different levels, allowing some control over interrupt priorities. All level 3 interrupts are serviced  
before level 2 and so on. For a selected priority level, the lowest vector number has the highest priority.  
The location of the vector table is determined by the vector base address (VBA). Please see the MC56F8006 Peripheral  
Reference Manual for detail.  
By default, the chip reset address and COP reset address correspond to vector 0 and 1 of the interrupt vector table. In these  
instances, the first two locations in the vector table must contain branch or JMP instructions. All other entries must contain JSR  
instructions.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
83  
Interrupt Vector Table  
1
Table 43. Interrupt Vector Table Contents  
Vector  
Number Encoding  
User  
Priority  
Level  
Vector Base  
Address +  
Peripheral  
Interrupt Function  
Core  
Core  
Core  
Core  
Core  
Core  
Core  
Core  
Core  
Core  
PMC  
PLL  
P:0x00  
P:0x02  
P:0x04  
P:0x06  
P:0x08  
P:0x0A  
P:0x0C  
P:0x0E  
P:0x10  
P:0x12  
P:0x14  
P:0x16  
P:0x18  
P:0x1A  
P:0x1C  
P:0x1E  
P:0x20  
P:0x22  
P:0x24  
P:0x26  
P:0x28  
P:0x2A  
P:0x2C  
P:0x2E  
P:0x30  
P:0x32  
P:0x34  
P:0x36  
P:0x38  
P:0x3A  
P:0x3C  
P:0x3E  
P:0x40  
P:0x42  
Reserved for Reset Overlay2  
Reserved for COP Reset Overlay  
Illegal Instruction  
2
N/A  
N/A  
3
3
3
3
3
3
3
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
HW Stack Overflow  
4
N/A  
Misaligned Long Word Access  
EOnCE Step Counter  
5
N/A  
6
N/A  
EOnCE Breakpoint Unit  
EOnCE Trace Buffer  
7
N/A  
9
N/A  
EOnCE Transmit Register Empty  
EOnCE Receive Register Full  
Low-Voltage Detector  
9
N/A  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
29  
30  
33  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
Phase-Locked Loop Loss of Locks and Loss of Clock  
ADCA Conversion Complete  
ADCB Conversion Complete  
Reload PWM and/or PWM Faults  
Comparator 0 Rising/Falling Flag  
Comparator 1 Rising/Falling Flag  
Comparator 2 Rising/Falling Flag  
Flash Memory Access Status  
SPI Receiver Full  
ADCA  
ADCB  
PWM  
CMP0  
CMP1  
CMP2  
FM  
SPI  
SPI  
SPI Transmitter Empty  
SCI  
SCI Transmitter Empty/Idle  
SCI Receiver Full/Overrun/Errors  
I2C Interrupt  
SCI  
I2C  
PIT  
Interval Timer Interrupt  
TMR0  
TMR1  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
GPIOF  
RTC  
Dual Timer, Channel 0 Interrupt  
Dual Timer, Channel 1 Interrupt  
GPIOA Interrupt  
GPIOB Interrupt  
GPIOC Interrupt  
GPIOD Interrupt  
GPIOE Interrupt  
GPIOF Interrupt  
Real Time Clock  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
84  
Freescale Semiconductor  
Interrupt Vector Table  
1
Table 43. Interrupt Vector Table Contents (continued)  
Vector  
Number Encoding  
User  
Priority  
Level  
Vector Base  
Address +  
Peripheral  
Interrupt Function  
Reserved  
34- 39  
0x22-0x27  
0
P:0x44 -  
P:0x4E  
Reserved  
core  
core  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0
1
2
3
-1  
1
1
1
2
2
2
P:0x50  
P:0x52  
P:0x54  
P:0x56  
P:0x58  
P:0x5A  
P:0x5C  
P:0x5E  
P:0x60  
P:0x62  
P:0x64  
SW Interrupt 0  
SW Interrupt 1  
core  
SW Interrupt 2  
core  
SW Interrupt 3  
SWILP  
USER1  
USER2  
USER3  
USER4  
USER5  
USER6 3  
SW Interrupt Low Priority  
User Programmable Priority Level 1 Interrupt  
User Programmable Priority Level 1 Interrupt  
User Programmable Priority Level 1 Interrupt  
User Programmable Priority Level 2 Interrupt  
User Programmable Priority Level 2 Interrupt  
User Programmable Priority Level 2 Interrupt  
1
2
3
Two words are allocated for each entry in the vector table. This does not allow the full address range to be referenced from  
the vector table, providing only 19 bits of address.  
If the VBA is set to the reset value, the first two locations of the vector table overlay the chip reset addresses because the  
reset address would match the base of this vector table.  
USER6 vector can be defined as a fast interrupt if the instruction located in this vector location is not a JSR or BSR instruction.  
Please see section 9.3.3.3 of DSP56800E 16-Bit Core Reference Manual for detail.  
MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4  
Freescale Semiconductor  
85  
Appendix B  
Peripheral Register Memory Map and Reset Value  
NOTE  
In Table 44, ADC0 stands for ADCA, ADC1 stands for ADCB, and GPIOn is the same as GPIO_n (for example,  
GPIOA_PUR is the same as GPIO_A_PUR).  
Table 44. Detailed Peripheral Memory Map  
Offset Reset  
Bit  
Bit  
0
Addr. Value Periph. Register  
(Hex) (Hex)  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
15  
TMR0_  
COMP1  
00  
01  
02  
03  
04  
05  
0000 TMR0  
0000 TMR0  
0000 TMR0  
0000 TMR0  
0000 TMR0  
0000 TMR0  
COMPARISON_1  
COMPARISON_2  
CAPTURE  
LOAD  
TMR0_  
COMP2  
TMR0_  
CAPT  
TMR0_  
LOAD  
TMR0_  
HOLD  
HOLD  
TMR0_  
CNTR  
COUNTER  
TMR0_  
CTRL  
06  
07  
0000 TMR0  
0000 TMR0  
CM  
PCS  
SCS  
DIR  
OM  
TMR0_  
SCTRL  
CAPTURE_  
MODE  
TCF  
TOF  
IEF IEFIE IPS  
VAL  
OPS OEN  
TMR0_  
CMPLD1  
08  
09  
0000 TMR0  
0000 TMR0  
COMPARATOR_LOAD_1  
COMPARATOR_LOAD_2  
TMR0_  
CMPLD2  
Table 44. Detailed Peripheral Memory Map (continued)  
Offset Reset  
Addr. Value Periph. Register  
(Hex) (Hex)  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
TMR0_  
CSCTRL  
0A  
0000 TMR0  
DBG_EN  
0
0
0
0
0
TCF2 TCF1  
CL2  
CL1  
TMR0_  
FILT  
0B  
0C–0E  
0F  
0000 TMR0  
0
0
0
0
0
0
0
0
FILT_CNT  
FILT_PER  
0
TMR0 Reserved  
RESERVED  
TMR_  
ENBL  
000F TMR0  
0000 TMR1  
0000 TMR1  
0000 TMR1  
0000 TMR1  
0000 TMR1  
0000 TMR1  
0
0
0
0
0
0
0
ENBL  
TMR1_  
COMP1  
10  
11  
12  
13  
14  
15  
COMPARISON_1  
COMPARISON_2  
CAPTURE  
LOAD  
TMR1_  
COMP2  
TMR1_  
CAPT  
TMR1_  
LOAD  
TMR1_  
HOLD  
HOLD  
TMR1_  
CNTR  
COUNTER  
TMR1_  
CTRL  
16  
17  
0000 TMR1  
0000 TMR1  
CM  
PCS  
SCS  
DIR  
OM  
TMR1_  
SCTRL  
CAPTURE_  
MODE  
TCF  
TOF  
IEF IEFIE IPS  
VAL  
OPS OEN  
TMR1_  
CMPLD1  
18  
19  
0000 TMR1  
0000 TMR1  
COMPARATOR_LOAD_1  
COMPARATOR_LOAD_2  
TMR1_  
CMPLD2  
Table 44. Detailed Peripheral Memory Map (continued)  
Offset Reset  
Addr. Value Periph. Register  
(Hex) (Hex)  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
TMR1_  
CSCTRL  
1A  
0000 TMR1  
DBG_EN  
0
0
0
0
0
TCF2 TCF1  
CL2  
CL1  
TMR1_  
FILT  
1B  
0000 TMR1  
0
0
0
0
FILT_CNT  
FILT_PER  
1C–1F  
TMR1 Reserved  
RESERVED  
PWM_  
PWM  
20  
0000  
LDFQ  
HALF  
PRSC  
ISENS  
CTRL  
PWM_  
PWM  
21  
22  
0000  
0000  
0
0
0
0
0
FIE3  
FIE2  
FIE1  
FIE0  
FCTRL  
PWM_  
PWM  
FLTACK  
PWM_  
PWM  
23  
0000  
0
0
OUT  
PWM_  
PWM  
24  
25  
26  
27  
28  
0000  
0000  
0000  
0000  
0000  
0
0
CR  
CNTR  
PWM_  
PWM  
PWMCM  
CMOD  
PWM_  
PWM  
PMVAL  
VAL0  
PWM_  
PWM  
PMVAL  
PMVAL  
VAL1  
PWM_  
PWM  
VAL2  
Table 44. Detailed Peripheral Memory Map (continued)  
Offset Reset  
Addr. Value Periph. Register  
(Hex) (Hex)  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
PWM_  
VAL3  
29  
2A  
2B  
2C  
2D  
2E  
2F  
0000  
0000  
0000  
PWM  
PWM  
PWM  
PMVAL  
PWM_  
VAL4  
PMVAL  
PMVAL  
PWM_  
VAL5  
PWM_  
DTIM0  
0FFF PWM  
0FFF PWM  
FFFF PWM  
00FF PWM  
0
0
0
0
0
0
0
0
PWMDT0  
PWMDT1  
PWM_  
DTIM1  
PWM_  
DMAP1  
DISMAP_15_0  
0
PWM_  
DMAP2  
0
0
0
0
0
0
0
0
0
DISMAP_23_16  
PWM_  
CNFG  
30  
31  
0000  
0000  
PWM  
PWM  
EDG  
0
0
WP  
PWM_  
CCTRL  
nBX  
0
0
VLMODE  
0
PWM_  
PORT  
32  
33  
00-U1 PWM  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PORT  
PWM_  
ICCTRL  
0000  
0000  
PWM  
PWM  
PEC2 PEC1 PEC0 ICC2 ICC1 ICC0  
PWM_  
SCTRL  
34  
0
0
0
SRC2  
0
SRC1  
0
Table 44. Detailed Peripheral Memory Map (continued)  
Offset Reset  
Addr. Value Periph. Register  
(Hex) (Hex)  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
PWM_  
SYNC  
35  
0000  
PWM  
SYNC_WINDOW  
PWM_  
FFILT0  
36  
37  
38  
0000  
0000  
0000  
PWM  
PWM  
PWM  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FILT0_CNT  
FILT1_CNT  
FILT2_CNT  
FILT3_CNT  
FILT0_PER  
FILT1_PER  
FILT2_PER  
FILT3_PER  
PWM_  
FFILT1  
PWM_  
FFILT2  
PWM_  
FFILT3  
39  
0000  
PWM  
PWM  
3B–3F  
Reserved  
RESERVED  
INTC_  
ICSR  
40  
0000  
INTC  
INT  
IPIC  
VAB  
BKPT  
INTC_  
VBA  
41  
42  
43  
0000  
0000  
0000  
INTC  
INTC  
INTC  
0
0
0
0
0
0
0
0
VECTOR_BASE_ADDRESS  
INTC_  
IAR0  
USER2  
0
0
0
0
0
USER1  
INTC_  
IAR1  
USER4  
USER6  
USER3  
USER5  
INTC_  
IAR2  
44  
0000  
INTC  
INTC  
0
45–5F  
Reserved  
RESERVED  
ADC0_  
ADCSC1A  
60  
001F ADC0  
0
0
0
0
0
0
0
0
AIEN  
ADCH  
Table 44. Detailed Peripheral Memory Map (continued)  
Offset Reset  
Addr. Value Periph. Register  
(Hex) (Hex)  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
ADC0_  
ADCSC2  
61  
0000 ADC0  
ADC0  
0
0
0
0
0
0
0
0
0
0
0
0
ECC  
REFSEL  
ADICLK  
62–65  
Reserved  
RESERVED  
0
ADC0_  
ADCCFG  
66  
0000 ADC0  
0
0
0
0
0
0
0
0
0
0
0
0
ADIV  
MODE  
67–69  
6A  
ADC0  
Reserved  
RESERVED  
0
ADC0_  
ADCSC1B  
001F ADC0  
0000 ADC0  
0000 ADC0  
0
0
0
AIEN  
ADCH  
ADC0_  
ADCRA  
6B  
0
0
0
0
0
0
ADC0_  
ADCRB  
6C  
6D–6F  
80  
ADC0  
Reserved  
RESERVED  
0
ADC1_  
ADCSC1A  
001F ADC1  
0000 ADC1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AIEN  
ADCH  
ECC  
ADC1_  
ADCSC2  
81  
0
0
0
0
REFSEL  
ADICLK  
82–85  
ADC1  
Reserved  
RESERVED  
ADC1_  
ADCCFG  
86  
0000 ADC1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ADIV  
MODE  
87–89  
8A  
ADC1  
Reserved  
RESERVED  
0
ADC1_  
ADCSC1B  
001F ADC1  
AIEN  
ADCH  
Table 44. Detailed Peripheral Memory Map (continued)  
Offset Reset  
Addr. Value Periph. Register  
(Hex) (Hex)  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
ADC1_  
ADCRA  
8B  
8C  
0000 ADC1  
0000 ADC1  
0
0
0
0
0
0
0
0
ADC1_  
ADCRB  
8D–8F  
A0  
ADC1  
Reserved  
RESERVED  
PGA0_  
CNTL0  
0000 PGA0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TM  
GAINSEL  
LP  
EN  
PGA0_  
CNTL1  
A1  
0002 PGA0  
0
0
0
CALMODE  
CPD  
PGA0_  
CNTL2  
A2  
A3  
000E PGA0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
NUM_CLK_GS  
ADIV  
0000 PGA0 PGA0_STS  
0
0
0
A4–BF  
C0  
PGA0  
Reserved  
RESERVED  
PGA1_  
CNTL0  
0000 PGA1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TM  
GAINSEL  
LP  
EN  
PGA1_  
CNTL1  
C1  
C2  
0002 PGA1  
0
0
CALMODE  
CPD  
PGA1_  
CNTL2  
000E PGA1  
0
0
0
0
0
0
0
0
0
0
NUM_CLK_GS  
ADIV  
Table 44. Detailed Peripheral Memory Map (continued)  
Offset Reset  
Addr. Value Periph. Register  
(Hex) (Hex)  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
C3  
0000 PGA1 PGA1_STS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C4–DF  
E0  
PGA1  
SCI  
Reserved  
RESERVED  
0200  
SCI_RATE  
SBR  
PE  
FRAC_SBR  
SCI_  
CTRL1  
E1  
E2  
E3  
0000  
0000  
C000  
SCI  
SCI  
SCI  
SWAI  
0
M
0
POL  
0
PT  
0
TEIE TIIE RFIE REIE TE  
RE RWU SBK  
SCI_  
CTRL2  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SCI_STAT  
OR  
0
NF  
0
FE  
0
PF  
LSE  
RAF  
E4  
0000  
SCI  
SCI  
SCI_DATA  
Reserved  
0
SPR  
0
0
RECEIVE_TRANSMIT_DATA  
E5–FF  
RESERVED  
SPI_  
SCTRL  
00  
01  
6141  
000F  
SPI  
SPI  
DSO  
BD2X  
SPE  
SPTE  
SPI_  
DSCTRL  
WOM  
0
SPR3  
DS  
02  
03  
0000  
0000  
SPI  
SPI  
SPI  
I2C  
SPI_DRCV R15 R14 R13 R12 R11 R10  
R9  
T9  
R8  
T8  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI_DXMIT T15  
Reserved  
T14  
T13  
T12  
T11  
T10  
04–1F  
20  
RESERVED  
0000  
I2C_ADDR  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AD7 AD6 AD5 AD4 AD3 AD2 AD1  
MULT ICR  
0
I2C_  
FREQDIV  
21  
0000  
I2C  
Table 44. Detailed Peripheral Memory Map (continued)  
Offset Reset  
Addr. Value Periph. Register  
(Hex) (Hex)  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
22  
0000  
I2C  
I2C_CR1  
0
0
0
0
0
0
0
0
IICIE MST  
TX TXAK RSTA  
0
0
23  
24  
0080  
0000  
I2C  
I2C  
I2C_SR  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TCF IAAS  
ARBL  
DATA  
0
SRW IICIF  
I2C_DATA  
25  
0000  
I2C  
I2C_CR2  
0
0
0
0
0
0
0
0
0
0
0
AD10 AD9 AD8  
I2C_SMB_  
CSR  
26  
0000  
I2C  
0
0
0
0
0
0
0
0
SLTF SHTF  
0
0
0
I2C_  
ADDR2  
27  
28  
0000  
0000  
I2C  
I2C  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SAD7 SAD6 SAD5 SAD4 SAD3 SAD2 SAD1  
I2C_SLT1  
29  
0000  
I2C  
I2C  
I2C_SLT2  
Reserved  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
30–3F  
RESERVED  
COP_  
CTRL  
40  
41  
0302  
FFFF  
COP  
COP  
PSS  
0
CLKSEL  
CEN CWP  
COP_  
TOUT  
TIMEOUT  
COP_  
CNTR  
42  
FFFF  
COP  
COP  
COUNT_SERVICE  
RESERVED  
43–5F  
Reserved  
Table 44. Detailed Peripheral Memory Map (continued)  
Offset Reset  
Addr. Value Periph. Register  
(Hex) (Hex)  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
OCCS_  
CTRL  
60  
61  
0011 OCCS  
2000 OCCS  
PLLIE1  
PLLIE0  
0
0
0
0
0
0
0
0
0
ZSRC  
OCCS_  
DIVBY  
LORTP  
COD  
0
0
0
0
0
0
OCCS_  
STAT  
62  
64  
0015 OCCS  
LOCI  
0
0
0
0
0
LCK1 LCK0  
0
ZSRC  
OCCS_  
OCTRL  
1611 OCCS  
0000 OCCS  
TRIM  
OCCS_  
CLKCHKR  
65  
66  
REFERENCE_CNT  
OCCS_  
CLKCHKT  
0000 OCCS  
0000 OCCS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TARGET_CNT  
OSCEP  
OCCS_  
PROT  
67  
68–7F  
80  
0
FRQEP  
PLLEP  
OCCS Reserved  
RESERVED  
GPIOA_  
PUR  
00FF GPIOA  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PU  
D
81  
0000 GPIOA GPIOA_DR  
GPIOA_  
0000 GPIOA  
DDR  
82  
DD  
GPIOA_  
0080 GPIOA  
PER  
83  
84  
0
0
0
0
0
0
0
0
PE  
GPIOA Reserved  
RESERVED  
Table 44. Detailed Peripheral Memory Map (continued)  
Offset Reset  
Addr. Value Periph. Register  
(Hex) (Hex)  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
GPIOA_  
IENR  
85  
86  
87  
0000 GPIOA  
0000 GPIOA  
0000 GPIOA  
0000 GPIOA  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IEN  
IPOL  
IP  
GPIOA_  
IPOLR  
GPIOA_  
IPR  
GPIOA_  
IESR  
88  
89  
8A  
IES  
GPIOA Reserved  
RESERVED  
0
GPIOA_  
RAWDATA  
0000 GPIOA  
0000 GPIOA  
0
0
0
0
0
0
0
RAWDATA  
GPIOA_  
DRIVE  
8B  
8C  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DRIVE  
IFE  
00FF GPIOA GPIOA_IFE  
0
GPIOA_  
0000 GPIOA  
SLEW  
8D  
0
SLEW  
8E–9F  
A0  
GPIOA Reserved  
RESERVED  
GPIOB_  
PUR  
00FF GPIOB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PUR  
DR  
A1  
0000 GPIOB GPIOB_DR  
GPIOB_  
0000 GPIOB  
DDR  
A2  
DDR  
GPIOB_  
0080 GPIOB  
PER  
A3  
A4  
A5  
0
0
0
0
0
0
0
0
PER  
GPIOB Reserved  
RESERVED  
0
GPIOB_  
IENR  
0000 GPIOB  
0000 GPIOB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IENR  
GPIOB_  
IPOLR  
A6  
0
IPOLR  
Table 44. Detailed Peripheral Memory Map (continued)  
Offset Reset  
Addr. Value Periph. Register  
(Hex) (Hex)  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
GPIOB_  
IPR  
A7  
0000 GPIOB  
0000 GPIOB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IPR  
GPIOB_  
IESR  
A8  
A9  
AA  
IESR  
GPIOB Reserved  
RESERVED  
0
GPIOB_  
RAWDATA  
0000 GPIOB  
0000 GPIOB  
0
0
0
0
0
0
0
RAWDATA  
GPIOB_  
DRIVE  
AB  
AC  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DRIVE  
IFE  
00FF GPIOB GPIOB_IFE  
0
GPIOB_  
0000 GPIOB  
SLEW  
AD  
0
SLEW  
AE–BF  
C0  
GPIOB Reserved  
RESERVED  
GPIOC_  
PUR  
00FF GPIOC  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PUR  
DR  
C1  
0000 GPIOC GPIOC_DR  
GPIOC_  
0000 GPIOC  
DDR  
C2  
DDR  
GPIOC_  
0080 GPIOC  
PER  
C3  
C4  
C5  
0
0
0
0
0
0
0
0
PER  
GPIOC Reserved  
RESERVED  
0
GPIOC_  
IENR  
0000 GPIOC  
0000 GPIOC  
0000 GPIOC  
0000 GPIOC  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IENR  
IPOLR  
IPR  
GPIOC_  
IPOLR  
C6  
C7  
C8  
0
0
0
GPIOC_  
IPR  
GPIOC_  
IESR  
IESR  
Table 44. Detailed Peripheral Memory Map (continued)  
Offset Reset  
Addr. Value Periph. Register  
(Hex) (Hex)  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
C9  
CA  
GPIOC Reserved  
GPIOC_  
RESERVED  
0
0000 GPIOC  
0000 GPIOC  
00FF GPIOC  
0000 GPIOC  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RAWDATA  
DRIVE  
IFE  
RAWDATA  
GPIOC_  
DRIVE  
CB  
CC  
0
0
GPIOC_  
IFE  
GPIOC_  
SLEW  
CD  
CE–DF  
E0  
0
SLEW  
GPIOC Reserved  
RESERVED  
GPIOD_  
PUR  
00FF GPIOD  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PUR  
DR  
E1  
0000 GPIOD GPIOD_DR  
GPIOD_  
0000 GPIOD  
DDR  
E2  
DDR  
GPIOD_  
0080 GPIOD  
PER  
E3  
E4  
E5  
0
0
0
0
0
0
0
0
0
0
0
0
PER  
GPIOD Reserved  
RESERVED  
GPIOD_  
IENR  
0000 GPIOD  
0000 GPIOD  
0000 GPIOD  
0000 GPIOD  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IENR  
GPIOD_  
IPOLR  
E6  
E7  
IPOLR  
IPR  
GPIOD_  
IPR  
GPIOD_  
IESR  
E8  
E9  
EA  
IESR  
GPIOD Reserved  
RESERVED  
GPIOD_  
RAWDATA  
0000 GPIOD  
0
0
0
0
0
0
0
0
0
0
0
0
RAWDATA  
Table 44. Detailed Peripheral Memory Map (continued)  
Offset Reset  
Addr. Value Periph. Register  
(Hex) (Hex)  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
GPIOD_  
DRIVE  
EB  
EC  
0000 GPIOD  
00FF GPIOD  
0000 GPIOD  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DRIVE  
GPIOD_  
IFE  
IFE  
GPIOD_  
SLEW  
ED  
EE–9F  
00  
SLEW  
GPIOD Reserved  
RESERVED  
GPIOE_  
PUR  
00FF GPIOE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PUR  
DR  
01  
0000 GPIOE GPIOE_DR  
GPIOE_  
0000 GPIOE  
DDR  
02  
DDR  
GPIOE_  
0080 GPIOE  
PER  
03  
04  
05  
0
0
0
0
0
0
0
0
PER  
GPIOE Reserved  
RESERVED  
0
GPIOE_  
IENR  
0000 GPIOE  
0000 GPIOE  
0000 GPIOE  
0000 GPIOE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IENR  
GPIOE_  
IPOLR  
06  
07  
0
0
IPOLR  
IPR  
GPIOE_  
IPR  
GPIOE_  
IESR  
08  
09  
0A  
0
IESR  
GPIOE Reserved  
RESERVED  
0
GPIOE_  
RAWDATA  
0000 GPIOE  
0000 GPIOE  
0
0
0
0
0
0
0
RAWDATA  
GPIOE_  
DRIVE  
0B  
0C  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DRIVE  
IFE  
00FF GPIOE GPIOE_IFE  
Table 44. Detailed Peripheral Memory Map (continued)  
Offset Reset  
Addr. Value Periph. Register  
(Hex) (Hex)  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
GPIOE_  
SLEW  
0D  
0E–1F  
20  
0000 GPIOE  
0
0
0
0
0
0
0
0
SLEW  
GPIOE Reserved  
RESERVED  
GPIOF_  
PUR  
00FF GPIOF  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PUR  
DR  
21  
0000 GPIOF GPIOF_DR  
GPIOF_  
0000 GPIOF  
DDR  
22  
DDR  
GPIOF_  
0080 GPIOF  
PER  
23  
24  
25  
0
0
0
0
0
0
0
0
0
0
0
0
PER  
GPIOF Reserved  
RESERVED  
GPIOF_  
IENR  
0000 GPIOF  
0000 GPIOF  
0000 GPIOF  
0000 GPIOF  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IENR  
GPIOF_  
IPOLR  
26  
27  
IPOLR  
IPR  
GPIOF_  
IPR  
GPIOF_  
IESR  
28  
29  
2A  
IESR  
GPIOF Reserved  
RESERVED  
GPIOF_  
RAWDATA  
0000 GPIOF  
0000 GPIOF  
0
0
0
0
0
0
0
0
0
0
0
0
RAWDATA  
GPIOF_  
DRIVE  
2B  
2C  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DRIVE  
IFE  
00FF GPIOF GPIOF_IFE  
GPIOF_  
0000 GPIOF  
SLEW  
2D  
SLEW  
2E–3F  
GPIOF Reserved  
RESERVED  
Table 44. Detailed Peripheral Memory Map (continued)  
Offset Reset  
Addr. Value Periph. Register  
(Hex) (Hex)  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
STOP_  
DISABLE  
WAIT_  
DISABLE  
40  
41  
0000  
0001  
SIM  
SIM  
SIM_CTRL  
0
0
0
0
0
0
0
0
0
0
0
SIM_  
RSTAT  
0
0
0
0
0
0
0
0
SWR  
LVDR PPD POR  
SIM_  
MSHID  
42  
43  
01F2  
601D  
SIM  
SIM  
SIM_MSH_ID  
SIM_LSH_ID  
SIM_  
LSHID  
SIM_  
CLKOUT  
45  
46  
2020  
0000  
SIM  
SIM  
0
0
0
0
0
0
CLKOSEL1  
0
0
0
0
0
CLKOSEL0  
SIM_PCR  
0
0
0
0
0
0
0
0
47  
48  
0000  
0000  
SIM  
SIM  
SIM_PCE  
SIM_SDR  
I2C  
I2C  
SCI  
SCI  
SPI PWM COP PDB PIT  
SPI PWM COP PDB PIT  
TA1  
TA0  
TA1  
0
TA0  
0
49  
4A  
4B  
F000  
0000  
0000  
SIM  
SIM  
SIM  
SIM_ISAL  
SIM_PROT  
SIM_GPSA  
ADDR_15_6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PCEP  
GIPSP  
GPS_A3  
GPS_A6  
GPS_A5  
GPS_A4  
SIM_  
GPSB0  
4C  
4D  
0000  
0000  
SIM  
SIM  
GPS_B5  
GPS_B4  
0
GPS_B3  
0
GPS_B2  
0
0
GPS_B1  
GPS_B0  
SIM_  
GPSB1  
0
0
0
0
0
0
0
0
GPS_B7  
GPS_B6  
Table 44. Detailed Peripheral Memory Map (continued)  
Offset Reset  
Addr. Value Periph. Register  
(Hex) (Hex)  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
4E  
4F  
0000  
0000  
SIM  
SIM  
SIM_GPSC  
SIM_GPSD  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
GPS_D3  
GPS_D2  
GPS_D1  
IPS_PSRC1  
IPS_T1  
GPS_D0  
50  
0000  
SIM  
SIM_IPS0  
0
0
0
0
0
IPS_PSRC2  
IPS_PSRC0  
IPS_T0  
51  
0000  
SIM  
SIM  
SIM_IPS1  
Reserved  
IPS_C2_WS  
IPS_C1_WS  
IPS_C0_WS  
RESERVED  
52–5F  
60  
61  
0208  
PMC PMC_SCR  
PMC PMC_CR2  
LVDF  
LPR LPRS  
LVDE LVLS  
TRIM  
PROT  
00--2  
0
0
0
0
0
0
0
LPO_TRIM  
7F  
80  
PMC  
Reserved  
RESERVED  
CMP0_  
CR0  
0000 CMP0  
0000 CMP0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FILTER_CNT  
PMC  
MMC  
CMP0_  
CR1  
81  
SE  
WE  
0
INV COS OPE  
EN  
CMP0_  
FPR  
82  
83  
0000 CMP0  
0000 CMP0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FILT_PER  
CMP0_  
SCR  
0
0
0
IER  
IEF CFR CFF  
84–9F  
A0  
CMP0 Reserved  
CMP1_  
RESERVED  
0000 CMP1  
0
0
0
0
0
0
0
0
0
FILTER_CNT  
PMC  
MMC  
CR0  
Table 44. Detailed Peripheral Memory Map (continued)  
Offset Reset  
Addr. Value Periph. Register  
(Hex) (Hex)  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
CMP1_  
CR1  
A1  
0000 CMP1  
0
0
0
0
0
0
0
0
SE  
WE  
0
INV COS OPE  
EN  
CMP1_  
FPR  
A2  
A3  
0000 CMP1  
0000 CMP1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FILT_PER  
CMP1_  
SCR  
0
0
0
IER  
IEF CFR CFF  
A4–BF  
C0  
CMP1 Reserved  
CMP2_  
RESERVED  
0000 CMP2  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FILTER_CNT  
PMC  
MMC  
CR0  
CMP2_  
CR1  
C1  
C2  
0000 CMP2  
SE  
WE  
0
INV COS OPE  
EN  
CMP2_  
FPR  
0000 CMP2  
0000 CMP2  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FILT_PER  
CMP2_  
SCR  
C3  
0
0
0
IER  
IEF CFR CFF  
C4–DF  
CMP2 Reserved  
RESERVED  
E0  
0000  
PIT  
PIT_CTRL  
0
0
0
0
0
0
0
0
0
PRESCALER  
PRF PRIE  
E1  
E2  
0000  
0000  
PIT  
PIT  
PIT  
PIT_MOD  
PIT_CNTR  
Reserved  
MODULO_VALUE  
COUNTER_VALUE  
RESERVED  
E3–FF  
00  
01  
0000  
0000  
PDB  
PDB  
PDB_SCR  
PRESCALER  
0
AOS  
0
BOS  
TRIGSEL  
ENA ENB  
PDB_  
DELAYA  
DELAYA  
Table 44. Detailed Peripheral Memory Map (continued)  
Offset Reset  
Addr. Value Periph. Register  
(Hex) (Hex)  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
PDB_  
DELAYB  
02  
03  
04  
0000  
FFFF  
FFFF  
PDB  
DELAYB  
MOD  
PDB PDB_MOD  
PDB_  
PDB  
COUNT  
COUNT  
05–1F  
20  
PDB  
RTC  
RTC  
RTC  
RTC  
Reserved  
RTC_SC  
RESERVED  
0000  
0000  
0000  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RTIF  
RTCLKS  
RTIE  
RTCPS  
21  
RTC_CNT  
RTC_MOD  
Reserved  
RTCCNT  
RTCMOD  
22  
23–FF  
RESERVED  
FM_  
CLKDIV  
00  
01  
0000  
0000  
HFM  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DIV  
HFM FM_CNFG  
HFM FM_SECHI  
AEIE  
CCIE  
0
0
0
LBTS BTS  
03  
04  
-0003  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FM_  
HFM  
0000  
0
0
0
SEC  
SECLO  
06–0F  
10  
HFM  
Reserved  
FM_PROT  
Reserved  
RESERVED  
PROTECT  
FFFF6 HFM  
11  
HFM  
RESERVED  
13  
14  
00C0  
0000  
HFM FM_USTAT  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CCIF  
0
0
0
HFM  
FM_CMD  
0
0
CMD  
Table 44. Detailed Peripheral Memory Map (continued)  
Offset Reset  
Addr. Value Periph. Register  
(Hex) (Hex)  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
17  
18  
19  
1A  
1B  
0000  
HFM  
HFM  
HFM  
Reserved  
FM_DATA  
Reserved  
FM_OPT0  
FM_OPT1  
RESERVED  
FMDATA  
RESERVED  
IFR_OPT0  
IFR_OPT1  
FFFF4 HFM  
FFFF5 HFM  
FM_  
TSTSIG  
1D  
FFFF6 HFM  
TST_AREA_SIG  
RESERVED  
1E–3F  
HFM  
Reserved  
1
2
3
The binary reset value of this register is 0000 0000 0UUU UUUU, where U represents an undefined value. Spaces have been added to the value for clarity.  
The binary reset value of this register is 0000 0000 111NC NC NC NC NC. Spaces have been added to the value for clarity.  
The binary reset value of this register is FS00 0000 0000 0000, where F indicates that the reset state is loaded from the flash array during reset, and where S  
indicates that the reset state is determined by the security state of the module. Spaces have been added to the value for clarity.  
4
5
6
The reset state is loaded from the flash array during reset.  
The reset state is loaded from the flash array during reset.  
The reset state is loaded from the flash array during reset.  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Semiconductor was negligent regarding the design or manufacture of the part.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Beijing 100022  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2009–2011. All rights reserved.  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MC56F8006  
Rev. 4  
06/2011  

相关型号:

935324354557

Microcontroller
NXP

935324358557

RISC Microprocessor
NXP

935324452528

Microcontroller
NXP

935324452557

Microcontroller
NXP

935324461518

Microcontroller
NXP

935324461574

Microcontroller
NXP

935324463518

RISC Microcontroller
NXP

935324463557

RISC Microcontroller
NXP

935324465557

RISC Microcontroller
NXP

935324485557

Microprocessor
NXP

935324495557

RISC Microcontroller
NXP

935324544557

RISC Microcontroller
NXP