935324621557 [NXP]

Microprocessor Circuit;
935324621557
型号: 935324621557
厂家: NXP    NXP
描述:

Microprocessor Circuit

外围集成电路
文件: 总67页 (文件大小:1131K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MKW01Z128  
Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
Data Sheet: Technical Data  
MKW01Z128  
MKW01Z128  
Package Information  
Ordering Information  
MKW01Z128  
Highly-integrated, cost-effective  
single-package solution for  
sub-1 GHz applications  
Device  
Device Marking  
Package  
MKW01Z128CHN MKW01Z128CHN  
60 LGA  
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
3 Software Solutions . . . . . . . . . . . . . . . . . . . . . 5  
4 Smart Radio Sub-1 GHz Wireless Node . . . . 5  
5 MKW01 Pin Assignments and Connections 9  
6 System and Power Management . . . . . . . . 15  
7 Development Environment . . . . . . . . . . . . . 20  
8 System Electrical Specification . . . . . . . . . 20  
9 Typical Applications Circuit . . . . . . . . . . . . 25  
10Mechanical Drawings . . . . . . . . . . . . . . . . . . 28  
Appendix AMKW01 MCU Section Data Sheet 30  
1 Introduction  
The MKW01 device is highly-integrated, cost-effective,  
smart radio, sub-1 GHz wireless node solution composed  
of a transceiver supporting FSK, GFSK, MSK, or OOK  
modulations with a low-power ARM® Cortex M0+  
CPU. The highly integrated RF transceiver operates over  
a wide frequency range including 315 MHz, 433 MHz,  
470 MHz, 868 MHz, 915 MHz, 928 MHz, and 955 MHz  
in the license-free Industrial, Scientific and Medical  
(ISM) frequency bands. This configuration allows users  
to minimize the use of external components.  
The MKW01 is targeted for the following low-power  
wireless applications:  
Automated Meter Reading  
Wireless Sensor Networks  
Home and Building Automation  
Wireless Alarm and Security Systems  
Industrial Monitoring and Control  
Freescale supplements the MKW01 with tools and  
software that include hardware evaluation and  
© 2013-2016 Freescale Semiconductor, Inc. All rights reserved.  
development boards, software development IDE and applications, drivers, custom PHY usable with  
Freescale’s IEEE 802.15.4 compatible MAC and SMAC.  
2 Features  
This section provides a simplified block diagram and highlights MKW01 features.  
2.1  
Block Diagram  
Figure 1 shows a simplified block diagram of the MKW01.  
Kinetis MKW01 Wireless MCU  
Memory  
Sub-1 GHz Transceiver  
Core  
System  
DMA  
ARM Cortex-M0+  
48 MHz  
RF Transmitter and  
Receiver  
128 KB Flash  
Low-Leakage  
Wake-Up Unit  
16 KB RAM  
Interrupt  
Controller  
PLL  
Synthesizer  
Debug  
Interfaces  
32 MHz  
Oscillator  
Packet Engine  
(AES)  
66 Byte  
FIFO  
Interfaces  
Clocks  
Analog  
Timers  
2x I2C  
Six-Channel  
Timer/PWM (TPM)  
Phase-Locked  
Loop  
12-bit DAC  
3x UART  
1x SPI  
Periodic  
Interrupt  
Timers  
Frequency-  
Locked Loop  
16-bit ADC  
Reference  
Oscillators  
Analog  
Comparator  
Low-Power  
Timer  
GPIOs  
Real-Time Clock  
32-bit Timer  
Internal Reference  
Clocks  
Touch Sensing  
Figure 1. MKW01 Simplified Block Diagram  
2.2  
Features Summary  
RF Transceiver Features  
— Operating Voltage from 1.8V to 3.6V.  
— Programmable bit rate up to 600kbps (FSK)  
— High Sensitivity: down to -120 dBm at 1.2 kbps  
— High Selectivity: 16-tap FIR Channel Filter  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
2
Freescale Semiconductor, Inc.  
— Bullet-proof front end: IIP3 = -18 dBm, IIP2 = +35 dBm, 80 dB Blocking Immunity, no Image  
Frequency response  
— Low current: Rx = 16mA, 100nA register retention  
— Programmable Pout : -18 to +17 dBm in 1 dB steps  
— Constant RF performance over voltage range of chip  
— Fully integrated synthesizer with a resolution of 61 Hz  
— FSK, GFSK, MSK, GMSK and OOK modulations  
— Built-in Bit Synchronizer performing Clock recovery  
— Incoming Sync Word Recognition  
— Automatic RF Sense with ultra-fast AFC  
— Packet engine with CRC, AES-128 encryption and 66-byte FIFO  
— Built-in temperature sensor and Low battery indicator  
— 32 MHz crystal oscillator clock source  
— Dedicated I/O’s for connection with an external 32 kHz crystal  
— Can be configured to be compliant with the relevant sections of numerous world-wide  
standards, including but not limited to: ARIB-T108 and T67, FCC 15.231, 15.247, and 15.249,  
EN54-25, and ETSI 300 220.  
MCU Features  
System:  
— 48 MHz Max. Central Processor Unit (CPU) frequency  
— 24 MHz Max. Bus frequency  
Vectored Interrupt Controller (NVIC) with 32 core-vectored interrupts with 4 programmable  
interrupt priority levels  
— Asynchronous Wake-up Interrupt Controller (AWIC)  
— 4 channel Direct Memory Access (DMA)  
— DMA request multiplex  
— Non Maskable Interrupt (NMI)  
— COP Watchdog  
— Low leakage Wake-up Unit (LLWU)  
— Debug and Trace  
– 2-pin Serial Wire Debug (SWD)  
— 80-bit wide ID number  
Memory:  
— 128 KB P-Flash with 64 byte flash cache  
— 16 KB RAM  
Clocks:  
— External crystal oscillator or resonator:  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
3
– 32 - 40 kHz low range, low power or full swing  
– 3 MHz - 32 MHz high range, low power or full swing  
— DC - 48 MHz external square wave input clock  
— Internal clock references:  
– 31.25 kHz to 39.063 kHz oscillator with +/– 1.5% max. deviation from 0 to +70C  
– 4 MHz oscillator with +/– 3% max. deviation across temperature  
– 1 kHz oscillator  
— Phase Locked Loop (PLL) with up to 100 MHz VCO  
— Frequency Locked Loop (FLL):  
– Low range: 20 - 25 MHz  
– Mid range: 40 - 48 MHz  
Analog:  
— Power Management Controller (PMC) with low voltage warning (LVW) and detect with  
selectable trip points.  
— 16-bit analog to digital converter  
– 11 single ended channels available  
– 2 status, control and results registers  
– DMA support  
— 1 High Speed Comparator (HSCMP) with internal 6-bit digital to analog converters (DAC)  
— One 12-bit DAC with DMA support and 2 word data buffer  
Timers:  
— Six channel Timer/PWM (TPM)  
— Periodic interrupt timers  
— 16-bit low-power timer (LPTMR) can be configured to operate as a time counter or as a pulse  
counter, across all power modes, including the low-leakage modes  
— Real-time clock 32-bit timer  
Wired Communication Interface:  
— One Serial Peripheral Interface (SPI) available externally  
2
— Two Inter-Integrated Circuits (I C) with DMA support  
— Three Universal Asynchronous Receiver / Transmitter (UART) with DMA Support  
– UART0 supports standard features plus:  
• TxD pin can be configured as pseudo open drain for 1-wire half-duplex  
• x4 to x32 oversampling  
• Functional in VLPS mode  
• LIN slave operation  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
4
Freescale Semiconductor, Inc.  
– UART1 and UART2 support standard features  
Human Machine Interface (HMI)  
— General Purpose Input/Output (GPIO) supporting:  
– Default to disabled (no leakage)  
– 4 pins with 18 mA high current drive capability  
– Hysteresis and configurable pull up device on all input pins  
– Slew rate and drive strength fixed on all output pins  
– Single cycle GPIO control via IOPORT  
— Touch Sensor Inputs (TSI)  
– 9-channel  
– Selectable single channel wakeup source available in all modes  
– DMA support  
— Pin Interrupt  
1.8 V to 3.6 V operating voltage with on-chip voltage regulators  
Temperature range of –40C to 85C  
60-pin LGA (8x8 mm) package  
3 Software Solutions  
Freescale will support the MKW01x128 platform with several software solutions:  
A radio utility GUI will be available that allows testing of various features and setting registers. A  
connectivity test firmware will allow a limited set of testing controlled with a terminal emulator on  
any computer.  
SMAC (Simple Media Access Controller) — This codebase provides simple communication and  
test apps based on drivers/PHY utilities available as source code. This environment is useful for  
hardware and RF debug, hardware standards certification, and developing proprietary applications.  
Additional software will be available through 3rd party providers.  
4 Smart Radio Sub-1 GHz Wireless Node  
The MKW01 brings together a transceiver chip and an MCU chip on a single substrate to provide a small  
footprint, cost-effective sub-1 GHz wireless node. The transceiver is controlled by the MCU through a  
dedicated SPI interface. The SPI bus interface and some status signals are connected in-package the  
substrate to eliminate the need for external connections. The SPI supports bit order swapping providing  
hardware support for bit endianess reducing processing overhead.  
4.1  
RF Transceiver  
The transceiver (see Figure 2) is a single-chip integrated circuit ideally suited for today's high performance  
ISM band RF applications. Its advanced features set, including state of the art packet engine, greatly  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
5
simplifies system design while the high level of integration reduces the external RF component bill of  
material (BOM) to a handful of passive de-coupling and matching components. It is intended for use as a  
high-performance, low-cost FSK, GFSK, MSK, GMSK, and OOK RF transceiver for robust, frequency  
agile, half-duplex bi-directional RF links.  
The MKW01 is intended for applications over a wide frequency range, including the 433 MHz, the  
868 MHz European, and the 902-928 MHz North American ISM bands. Coupled with a link budget in  
excess of 135 dB, the transceiver advanced system features include a 66 byte TX/RX FIFO, configurable  
automatic packet handler, listen mode, temperature sensor and configurable DIO’s which greatly enhance  
system flexibility while at the same time significantly reducing MCU requirements. The transceiver  
complies with both ETSI and FCC regulatory requirements.  
Figure 2. MKW01 Transceiver Block Diagram  
The major RF communication parameters of the MKW01 transceiver are programmable and most can be  
dynamically set. This feature offers the unique advantage of programmable narrow-band and wide-band  
communication modes without the need to modify external components. The transceiver is also optimized  
for low power consumption while offering high RF output power and channelized operation.  
4.2  
ARM ® 32-bit Cortex M0+ CPU  
The in-package MCU integrated circuit features an ARM ® Cortex M0+ CPU, up to 16 KB RAM, 128  
KB Flash memory, and a rich set of peripherals (see Section 2.2, “Features Summary”). The RF transceiver  
is controlled through the MCU SPI port which is dedicated to the RF device interface. Two of the  
transceiver status IO lines are also directly connected to the MCU GPIO to monitor the transceiver  
operation. In addition, the transceiver reset and additional status can be connected to the MCU through  
external connections.  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
6
Freescale Semiconductor, Inc.  
Operational modes of the MKW01 are determined by the software running on the MCU. The MCU itself  
has a run mode as well as an array of low power modes that are coordinated by the PMC. The MCU in turn  
set the operational modes of the transceiver which include sleep, standby, and radio operational modes.  
Two common application scenarios are:  
Low power, battery-operated standalone wireless node - a common example of this configuration  
would be a remote sensor monitor. The wireless node programmed for standalone operation,  
typically has a low active-mode duty cycle, and is designed for long battery life, i.e., lowest power.  
Communication channel to a higher level controller - in this example, the wireless node  
implements the lower levels of a communications stack and is subordinate to the primary  
controller. Typically the MKW01 is connected to the controller through a command channel  
implemented via a UART/SCI port or other serial communication port.  
4.3  
System Clock Configuration  
The MKW01 device allows for various system clock configurations:  
Pins 46 & 47 are provided to input a 32 or 30 MHz crystal for the transceiver reference clock source  
(required) as shown in Figure 3.  
The transceiver can be programmed to provide a programmable frequency clock output (DIO5  
which alternates as CLKOUT, pin 54) that can be used as an external source to the CPU (see  
Figure 3 and Figure 4). As a result, a single crystal system clock solution is possible where the  
transceiver reference clock source. Routing CLKOUT to the MCU without dividing it is  
recommended, but it can be divided by 2, 4, 8, 16 and 32.  
The MCU provides a trimmable internal reference clock and also supports an external clock  
source. An optional on-chip frequency locked loop (FLL) can be used with either clock source to  
support a CPU clock as high as 48 MHz at 3.6 V.  
Pins 16 and 15 are available to provide an external 32.768 kHz external clock source for the MCU.  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
7
Figure 3. MKW01 Single Crystal System Clock Connection  
Figure 4. MKW01 Two Crystal System Clock Connection  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
8
Freescale Semiconductor, Inc.  
5 MKW01 Pin Assignments and Connections  
Figure 5 shows the MKW01 pinout.  
Figure 5. MKW01 Pinout (Top View)  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
9
5.1  
Pin Definitions  
Table 1 details the MKW01 pinout and functionality.  
Table 1. Pin Function Description (Sheet 1 of 5)  
Pin  
Pin Name1  
Type  
Description  
Functionality  
1
2
3
4
5
VREFH  
VREFL  
VSSA  
VSS  
Input  
Input  
MCU high reference voltage for ADC  
MCU low reference voltage for ADC  
Power Input MCU ADC Ground  
Power Input MCU Ground  
Connect to ground  
Connect to ground  
PTE16/ADC0_DP1/ADCO_S Digital Input / MCU Port E Bit 16 / ADC0 Single Ended  
E1/SPI0_PCS0/TPM/UART2_ Output  
TX  
analog channel input DP1/ ADC0 Single  
Ended analog channel input SE1 / SPI  
module 0 PCS0 / TPM module Clock In 0 /  
UART2_TX  
6
PTE17/ADC0_DM1/ADCO_S Digital Input / MCU Port E Bit 17 / ADC0 Single Ended  
E5a/SPI0_SCK/  
TPM_CLKIN1/UART2_RX/  
LPTMR0_ALT3  
Output  
analog channel input DM1/ ADC0 Single  
Ended analog channel input 5a / SPI  
module 0 SCK / TPM module Clock In 1 /  
UART2_RX / Low Power Timer Module 0  
ALT3  
7
8
9
PTE18/ADC0_DP2/ADC0_SE Digital Input / MCU Port E Bit 18 / ADC0 Single Ended  
2/SPI0_MOSI/IIC0_SDA/SPI0 Output  
_MISO  
analog channel input DP2/ ADC0 Single  
Ended analog channel input 2 / SPI module  
0 MOSI / IIC0 Bus Data / SPI module 0  
MISO  
PTE19/ADC0_DM2/  
Digital Input / MCU Port E Bit 19 / ADC0 Single Ended  
ADC0_SE6a/SPI0_MISO  
/IIC0_SCL/ SPI0_MOSI  
Output  
analog channel input DM2/ ADC0 Single  
Ended analog channel input 6a / SPI  
module 0 MISO / IIC0 Bus Clock / SPI  
module 0 MOSI  
PTE30/DAC0_OUT/  
ADCO_SE23/  
CMP0_IN4/TPM0_CH3/TPM_  
CLKIN1  
Digit-l Input / MCU Port E Bit 30 / DAC0 Output/ ADC0  
Output  
Single Ended analog channel input 23 /  
Comparator 0 Analog Voltage Input 4/ TPM  
Timer module 0 Channel 3 / TPM module  
Clock In 1  
10  
11  
12  
PTA0/SWD_CLK/TSI0_CH1/T Digital Input / MCU Port A Bit 0 / Serial Wire Data Clock  
PM0_CH5  
Output  
/ Touch Screen Interface Channel 1/ TPM  
module 0 Channel 5  
PTA3/SWD_DIO/TSI0_CH4/  
IIC1_SCL/TPM0_CH0  
Digital Input / MCU Port A Bit 3 / Serial Wire Data DIO /  
Output  
Touch Screen Interface Channel 4 / IIC1  
Bus Clock / TPM module 0 Channel 0  
PTA4/NMI_b/TSI0_CH5/  
IIC1_SDA/TPM0_CH1  
Digital Input / MCU Port A Bit 4/ / Non Maskable  
Output  
Interrupt_ b/Touch Screen Interface  
Channel 5 /IIC1 Bus Data / TPM module 0  
Channel 1  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
10  
Freescale Semiconductor, Inc.  
Table 1. Pin Function Description (Sheet 2 of 5)  
Type Description  
PTA2/TSI0_CH3/UART0_TX/ Digital Input / MCU Port A Bit 2/Touch Screen Interface  
Pin  
Pin Name1  
Functionality  
13  
TPM2_CH1  
Output  
Channel 3/UART module 0 Transmit / TPM  
module 2 Channel 1  
14  
15  
16  
17  
PTA1/TSI0_CH2/UART0_RX/ Digital Input / MCU Port A Bit 1/Touch Screen Interface  
TPM2_CH0  
Output  
Channel 2/UART module 0 Receive / TPM  
module Channel 0  
PTA18/EXTAL0/UART1_RX/  
TPM_CLKIN0  
Digital Input / MCU Port A Bit 18 / EXTAL0/ UART  
Output module 1 Receive / TPM module Clock In 0  
PTA19/XTAL0/UART1_TX/TP Digital Input / MCU Port A Bit 19 / XTAL0/ UART module  
M_CLKIN1/LPTMR0_ALT1  
Output  
1 Transmit / TPM module Clock In 1  
/Low Power Timer module 0 ALT1  
PTB0/ADC0_SE8/TSI0_CH0/ Digital Input / MCU Port B Bit 0 / ADC0 Single Ended  
LLWU_P5/IIC0_SCL/  
TPM1_CH0  
Output  
analog channel input SE8 / Touch Screen  
Interface Channel 0/ Low Leakage Wake  
Up Port 5 / IIC0 Bus Clock / TPM module 1  
Channel 0  
18  
19  
PTB1/ADCO_SE9/TSI0_CH6/ Digital Input / MCU Port B Bit 1 / ADC0 Single Ended  
IIC0_SDA/ TPM1_CH1  
Output  
analog channel input SE9 / Touch Screen  
Interface Channel 6 / IIC0 Bus Data / TPM  
module 1 Channel 1  
VDD  
VSS  
Power Input MCU VDD supply input  
Connect to system VDD  
supply  
20  
21  
Power Input MCU Ground  
Connect to ground  
PTB2/ADC0_SE12/TSI0_CH7 Digital  
/IIC0_SCL/TPM2_CH0  
MCU Port B Bit 2 / ADC0 Single Ended  
Input/Output analog channel input SE12 / Touch Screen  
Interface Channel 7 / IIC0 Bus Clock / TPM  
Timer module 2 Channel 0  
22  
23  
24  
PTB17/TSI0_CH10/SPI1_MIS Digital  
O/UART0_TX/TPM_CLKIN1/ Input/Output Channel 10/SPI1 MOSI or MISO/UART0  
SPI1_MOSI TX / TPM timer clock  
MCU Port B Bit 17 / Touch Screen Interface  
PTC4/LLWU_P8/SPI0_PCS0/ Digital Input / MCU Port C bit 4 / Low leakage Wake Up  
UART1_TX/TPM0_CH3  
Output  
port 8 / SPI0 Chip Select / UART1 TX /  
TPM Timer module 0 channel 3  
PTC1/ADC0_SE15/TSI0_CH1 Digital Input MCU Port C Bit 1 /ADC0 Single Ended  
4/LLWU_P6/RTC_CLKIN/  
IIC1_SCL/TPM0_CH0  
Output /  
analog channel input SE15/ Touch Screen  
Analog Input Interface Channel 14/ Low Leakage Wake  
Up Port 6 / Real Time Counter Clock Input/  
IC1 Bus Clock/ TPM module 0 Channel 0  
25  
PTC2/ADC0_SE11/TSI0_CH1 Digital Input / MCU Port C Bit 2 / ADC0 Single Ended  
5/IIC1_SDA/TPM0_CH1 Output / analog channel input SE11/ / Touch Screen  
Analog Input Interface Channel 15 / IIC1 Bus Data / TPM  
module 0 Channel 1  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
11  
Table 1. Pin Function Description (Sheet 3 of 5)  
Type Description  
PTC3/LLWU_P7/UART1_RX/ Digital Input / MCU Port C Bit 3 / Low Leakage Wake Up  
Pin  
Pin Name1  
Functionality  
26  
TPM0_CH2/CLKOUTa  
Output  
Port 7 / UART module 1 Receive / TPM  
module 0 Channel 2/ Clock OutA  
27  
28  
29  
PTD4/LLWU_P14/SPI1_PCS0 Digital Input / MCU Port D Bit 4 / Low Leak Wake Up Port  
/UART2_RX/TPM0_CH4  
Output  
14/ SPI module 1 PCS0 / UART2 Receiver  
input / TPM module 0 Channel 4  
PTD5/ADC0_SE6b/SPI1_SC Digital Input / MCU Port D bit 5 / ADC0 Single Ended  
K/UART2_TX/TPM0_CH5 Output / analog channel input SE6b / SPI1 clock /  
Analog Input UART2 TX / TPM module 0 Channel 5  
PTD6/ADC0_SE7b/LLWU_P1 Digital Input / MCU Port D bit 6 / ADC0 Single Ended  
5/SPI1_MOSI/UART0_RX/SPI Output / analog channel input SE7b / Low leakage  
1_MISO  
Analog Input Wake Up port 15 / SPI1 MOSI / UART0 RX  
/ SPI module 1 MISO  
30  
31  
NC  
No Connect  
PTD7/SPI0_MISO/UART0_TX Digital  
MCU Port D Bit 7 / SPI module 0 MISO /  
/SPI1_MOSI  
Input/Output UART module 0 Transmit / SPI module 1  
MOSI  
32  
PTE0/SPI1_MISO/UART1_TX Digital  
MCU Port E Bit 0 / SPI module 1 MISO /  
/RTC_CLKOUT/CMP0_OUT/ Input/Output UART module 1 Transmit / Real Time  
IIC1_SDA  
Counter Clock Output / Comparator 0  
Analog voltage Output / IIC1 Bus Data  
33  
34  
PTA20/RESETB  
Digital  
Input/Output  
MCU Port A Bit 20/MCU RESET  
PTE1 / SPI1_MOSI /  
UART1_RX /SPI1_MISO /  
IIC1_SCL  
Digital  
MCU Port E Bit 1 / SPI module 1 MOSI /  
Input/Output UART module 1 RX / SPI1_MISO /  
IIC1_SCL  
35  
VBAT2 (RF)  
Power Input Transceiver VDD  
Connect to system VDD  
supply  
36  
37  
GND/SCAN (RF)  
RXTX (RF)  
Power Input Transceiver Ground  
Connect to ground  
Connect to ground  
Connect to ground  
Digital  
Output  
Transceiver Rx / Tx RF Switch Control  
Output; high when in TX  
38  
39  
GND_PA2 (RF)  
RFIO (RF)  
Power Input Transceiver RF Ground  
RF Input /  
Output  
Transceiver RF Input / Output  
40  
41  
GND_PA1 (RF)  
Power Input Transceiver RF Ground  
PA_BOOST (RF)  
RF Output  
Transceiver Optional High-Power PA  
Output  
42  
43  
VR_PA (RF)  
VBAT1 (RF)  
Power  
Output  
Transceiver regulated output voltage for  
VR_PA use.  
De-coupling cap  
suggested.  
Power Input Transceiver VDD for RF circuitry  
Connect to system VDD  
supply  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
12  
Freescale Semiconductor, Inc.  
Table 1. Pin Function Description (Sheet 4 of 5)  
Pin  
Pin Name1  
VR_ANA (RF)  
Type  
Power  
Description  
Functionality  
44  
Transceiver regulated output voltage for  
analog circuitry.  
Decouple to ground with  
100 nF capacitor  
Output  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
VR_DIG (RF)  
XTA (RF)  
Power  
Output  
Transceiver regulated output voltage for  
digital circuitry.  
Decouple to ground with  
100 nF capacitor  
Xtal Osc  
Transceiver crystal reference oscillator  
Connect to 32 MHz  
crystal and load capacitor  
XTB (RF)  
Xtal Osc  
Transceiver crystal reference oscillator  
Connect to 32 MHz  
crystal and load capacitor  
RESET (RF)  
DIO0/PTE2/SPI1_SCK  
Digital Input Transceiver hardware reset input  
Typically driven from  
MCU GPIO  
Digital  
Internally connected to Transceiver GPIO MCU IO and Transceiver  
Input/Output bit 0 and MCU Port E bit 2 / SPI1 clock  
IO connected in-package  
DIO1/PTE3/SPI1_MISO/SPI1 Digital  
_MOSI  
Internally connected to Transceiver GPIO MCU IO and Transceiver  
Input/Output bit 1 and MCU Port E bit 3 /SPI1 in or out IO connected in-package  
DIO2  
Digital  
Input/Output  
Transceiver GPIO Bit 2  
Transceiver GPIO Bit 3  
Transceiver GPIO Bit 4  
Transceiver GPIO Bit 5 / ClkOut  
DIO3  
Digital  
Input/Output  
DIO4  
Digital  
Input/Output  
DIO5/CLKOUT  
Digital  
Input/Output  
Commonly programmed  
as ClkOut to supply MCU  
clock; connect to Pin 15  
55  
56  
VDD  
Power Input MCU VDD supply  
Power Input MCU Analog supply  
Connect to VDD supply  
VDDAD  
Connect to Analog  
supply  
57  
58  
59  
MISO/PTC7/SPI0_MISO/SPI0 Digital  
Internal SPI data connection from  
• MCU IO and  
Transceiver IO  
connected in-package  
• MCU IO must be  
configured for this  
connection  
_MOSI  
Input/Output Transceiver MISO bit 1 to MCU SPI0 (Port  
C bit 7 )  
NSS/PTD0/SPI0_PCS0  
Digital  
Internal SPI select connection between  
• MCU IO and  
Transceiver IO  
connected in-package  
• MCU IO must be  
configured for this  
connection  
Input/Output Transceiver NSS and MCU SPI0 (Port D bit  
0)  
SCK/PTC5/SPI0_SCK  
Digital  
Internal SPI clock connection between  
• MCU IO and  
Input/Output Transceiver SCK and MCU SPI0 (port C bit  
5)  
Transceiver IO  
connected in-package  
• MCU IO must be  
configured for this  
connection  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
13  
Table 1. Pin Function Description (Sheet 5 of 5)  
Type Description  
Digital Internal SPI data connection to Transceiver • MCU IO and  
Pin  
Pin Name1  
Functionality  
60  
MOSI/PTC6/SPI0_MOSI/  
SPI0_MISO  
Input/Output MOSI bit 1 to MCU SPI0 (Port C bit 6 )  
Transceiver IO  
connected in-package  
• MCU IO must be  
configured for this  
connection  
FLAG VSS  
Power input External package flag. Common VSS  
Connect to ground.  
1
Refer to ADD Table 1-3 for additional pin-out information on default and alternate setting selections.  
5.2  
Internal Functional Interconnects  
The MCU provides control to the transceiver through the SPI Port and receives status from the transceiver  
from the DIOx pins. Certain interconnects between the devices are routed on chip. In addition, the signals  
are brought out to external pads.  
Table 2. MKW01 Internal Functional Interconnects  
Transceiver  
Pin  
MCU Signal  
Description  
Signal  
49 DIO0/PTE2/SPI1_  
SCK  
DIO0  
Transceiver DIO0 can be programmed to provide status to the MCU  
50 DIO1/PTE3/SPI1_  
MISO/SPI1_MOSI  
DIO1  
Transceiver DIO1 can be programmed to provide status to the MCU  
SPI data from transceiver to MCU  
SPI chip select  
57 MISO/PTC7/SPI0_  
MISO/SPI0_MOSI  
MISO  
58 NSS/PTD0/SPI0_  
PCS0  
NSS  
SCK  
MOSI  
59 SCK/PTC5/SPI0_  
SCK  
SPI Clock  
60 MOSI/PTC6/SPI0_  
MOSI/SPI0_MISO  
SPI data from MCU to transceiver  
NOTE  
As shown in Table 2, the MCU SPI Port pin selection must be  
configured by software.  
The transceiver DIO pins must be programmed to provide desired status.  
Enhanced performance can be achieved by additionally routing some  
DIO pins externally to other GPIO pins.  
5.3  
External Functional Interconnects  
In addition to the in-package device interconnection, other external connections between the MCU and the  
transceiver are common:  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
14  
Freescale Semiconductor, Inc.  
1. Freescale recommends driving/controlling the transceiver reset from an MCU GPIO - This allows  
overriding control of the transceiver from the system application.  
2. The other DIO2-DIO4 status and RXTX signals can prove useful for monitoring the transceiver  
operation - the DIO2-DIO4 signals must be programmed to provide operational status. All signals  
must be connected externally to appropriate MCU GPIO for this function.  
6 System and Power Management  
The MKW01 consists of an independent transceiver and MCU. The MCU controls the transceiver through  
programming of the SPI Port, and sets its operational mode through this control channel. Total current  
draw for the MKW01 is dependent on the operation mode of both devices where different modes allow for  
different levels of power-down. Some additional features supported are:  
Transceiver Sleep with MCU set at the lowest power state.  
The transceiver mode selection being independent of the MCU’s mode selection.  
The transceiver uses/powers-up the transmitter or receiver only as required.  
MCU peripheral control clock gating being disabled on a module-by-module basis to provide  
lowest power.  
RTC can be used as wake-up timer.  
LLWU (Low Leakage Wake-up Unit) available.  
6.1  
MCU Power Modes  
The MCU has 9 different modes of operation to allow the user to optimize power consumption for the level  
of functionality needed. Depending on the STOP requirements of the user application, a variety of STOP  
modes are available that provide state retention, partial power down or full power down of certain logic  
and/or memory. I/O states are held in all modes of operation. Table 3 outlines the various available power  
modes of MCU operation.  
For each RUN mode there is a corresponding WAIT and STOP mode. WAIT modes are similiar to ARM  
sleep modes. STOP modes (VLPS, STOP) are similiar to ARM sleep deep mode. The very low power run  
(VLPR) operating mode can greatly reduce runtime power when the maximum bus frequency is not  
required to handle application needs. The 3 primary modes of operation are RUN, WAIT and STOP. The  
WFI instruction invokes both WAIT and STOP modes for the MCU. The primary modes are augmented  
in a number of ways to provide lower power based on application needs.  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
15  
Table 3. MCU power modes  
Description  
Normal  
Recovery  
Method  
Chip Power  
Mode  
Core Mode  
Normal run  
Allows maximum performance of chip. Default mode out of reset;  
onchip voltage regulator is on.  
Run  
Normal Wait - via Allows peripherals to function while the core is in sleep mode,  
Sleep  
Interrupt  
WFI  
reducing power. NVIC remains sensitive to interrupts;  
peripherals continue to be clocked.  
Normal Stop - via Places chip in static state. Lowest power mode that retains all  
Sleep Deep  
Run  
Interrupt  
WFI  
registers while maintaining LVD protection. NVIC is disabled;  
AWIC is used to wake up from interrupt; peripheral clocks are  
stopped.  
VLPR (Very Low On-chip voltage regulator is in a low power mode that supplies  
Power Run)  
only enough power to run the chip at a reduced frequency.  
Reduced frequency Flash access mode (1 MHz); LVD off; in  
BLPI clock mode, the fast internal reference oscillator is  
available to provide a low power nominal 4 MHz source for the  
core with the nominal bus and flash clock required to be <800  
kHz; alternatively, BLPE clock mode can be used with an  
external clock or the crystal oscillator providing the clock source.  
VLPW (Very Low Same as VLPR but with the core in sleep mode to further reduce  
Power Wait) -via power; NVIC remains sensitive to interrupts (FCLK = ON).  
Sleep  
Interrupt  
Interrupt  
WFI  
On-chip voltage regulator is in a low power mode that supplies  
only enough power to run the chip at a reduced frequency.  
VLPS (Very Low Places chip in static state with LVD operation off. Lowest power  
Power Stop)-via mode with ADC and pin interrupts functional. Peripheral clocks  
Sleep Deep  
WFI  
are stopped, but OSC, LPTMR, RTC, CMP, TSI can be used.  
TPM and UART can optionally be enabled if their clock source is  
enabled. NVIC is disabled (FCLK = OFF); AWIC is used to wake  
up from interrupt. On-chip voltage regulator is in a low power  
mode that supplies only enough power to run the chip at a  
reduced frequency. All SRAM is operating (content retained and  
I/O states held).  
LLS (Low  
State retention power mode. Most peripherals are in state  
Sleep Deep  
Wakeup  
Leakage Stop) retention mode (with clocks stopped), but OSC, LLWU, LPTMR,  
RTC, CMP,, TSI can be used. NVIC is disabled; LLWU is used to  
wake up.  
Interrupt1  
NOTE: The LLWU interrupt must not be masked by the interrupt  
controller to avoid a scenario where the system does not fully exit  
stop mode on an LLS recovery.  
All SRAM is operating (content retained and I/O states held).  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
16  
Freescale Semiconductor, Inc.  
Table 3. MCU power modes  
Description  
Normal  
Recovery  
Method  
Chip Power  
Mode  
Core Mode  
VLLS3 (Very  
Most peripherals are disabled (with clocks stopped), but OSC,  
Sleep Deep  
Wakeup  
Reset2  
Low Leakage LLWU, LPTMR, RTC, CMP, TSI can be used. NVIC is disabled;  
Stop3)  
LLWU is used to wake up.  
SRAM_U and SRAM_L remain powered on (content retained  
and I/O states held).  
VLLS1 (Very  
Most peripherals are disabled (with clocks stopped), but OSC,  
Sleep Deep  
Sleep Deep  
Wakeup  
Reset2  
Low Leakage LLWU, LPTMR, RTC, CMP, TSI can be used. NVIC is disabled;  
Stop1)  
LLWU is used to wake up. All of SRAM_U and SRAM_L are  
powered off.  
VLLS0 (Very  
Most peripherals are disabled (with clocks stopped), but LLWU,  
Wakeup  
Reset2  
Low Leakage LPTMR, RTC, TSI can be used. NVIC is disabled; LLWU is used  
Stop 0)  
to wake up.  
All of SRAM_U and SRAM_L are powered off.  
LPO disabled, optional POR brown-out detection  
1
2
Resumes normal run mode operation by executing the LLWU interrupt service routine.  
Follows the reset flow with the LLWU interrupt flag set for the NVIC.  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
17  
6.1.1  
Power mode transitions  
Figure 6 shows power mode transitions. Any reset always brings the MCU back to normal state run. In  
RUN, WAIT and STOP modes active power regulation is enabled. The VLPx modes are limited in  
frequency but offer a lower power operating power mode than normal modes. The LLS and VLLSx modes  
are the lowest power stop modes based on the amount of logic or memory that is required to be reatined  
by the application.  
Figure 6. Power mode state transition diagram  
6.2  
Transceiver modes of operation.  
The transceiver can be set in numerous modes of operation as described in Table 4. By default, when  
switching from one mode to another various features are selectively turned on coordinated by a  
pre-defined optimized sequence using the automatic sequencer. Alternatively, these operating modes can  
be selected directly by disabling the automatic sequencer.  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
18  
Freescale Semiconductor, Inc.  
Table 4. Basic Transceiver modes  
Selected Mode  
Enabled blocks  
Sleep  
Stand-by  
Idle  
None  
Main regulator and crystal oscillator  
Main regulator and RC oscillator  
Frequency synthesizer  
FS  
Transmit  
Receive  
Listen  
Frequency synthesizer and transmitter  
Frequency synthesizer and receiver  
Periodical receive wake-up from Idle operation  
An overview of the transceiver modes of operation is described below:  
Sleep - provides lowest power consumption and is the full power down state.  
Idle - provides very low standby power consumption and has the main voltage regulator and the  
RC oscillator enabled.  
Standby - similar to Idle with low standby power consumption but has the main voltage regulator  
and the crystal oscillator enabled.  
FS (Frequency synthesizer) - the frequency synthesizer is alive to shorten startup time to transmit  
or receive states.  
Transmit - transmitter is active.  
Receive - receiver is active.  
6.3  
System Protection  
The MKW01 provides numerous vehicles to maintain security or a high level of system robustness:  
Standard COP Watchdog reset with option to run from dedicated 1 kHz internal clock source or bus  
clock. The COP watchdog is intended to force a system reset when the application software fails  
to execute as expected.  
LVD protection with reset or interrupt; selectable trip points.  
HardFault exception on attempts to execute undefined instructions or access to undefined memory  
space.  
LOCKUP reset resource from core.  
Flash protection  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
19  
7 Development Environment  
Development support for the ARM® Cortex M0+ MCU on the MKW01 is configured to provide  
maximum flexibility as allowed by the restrictions of the pinout and other available resources. One debug  
interface is supported:  
• Two-wire Serial Wire Debug (SWD) interface  
Table 5 presents a brief description of the serial wire debug description.  
NOTE  
Electrical specifications for the SWD lines can be found in the appendix.  
Table 5. Debug Components Description  
Module  
Type  
Description  
SWCLK  
Input  
Serial Wire Clock. This pin is the clock for debug logic when in the Serial Wire  
Debug mode. This pin is pulled down internally.  
SWDIO  
Input /Output Serial Wire debug data input / output. The SWDIO pin is used by an external  
debug tool for communication and devive control. This pin is pulled up internally.  
8 System Electrical Specification  
This section details maximum ratings for the 60-pin LGA package and recommended operating  
conditions, DC characteristics, and AC characteristics for the modem, and the MCU.  
8.1  
LGA Package Maximum Ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the maximum rating is not  
guaranteed. Stress beyond the limits specified in Table 6 may affect device reliability or cause permanent  
damage to the device. For functional operating conditions, refer to the remaining tables in this section.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields;  
however, it is advised that normal precautions be taken to avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused  
inputs are tied to an appropriate logic voltage level (for instance, either V or V ) or the programmable  
SS  
DD  
pull-up resistor associated with the pin is enabled.  
Table 6 shows the maximum ratings for the 60-pin LGA package.  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
20  
Freescale Semiconductor, Inc.  
Table 6. LGA Package Maximum Ratings  
Symbol  
Rating  
Maximum Junction Temperature  
Value  
Unit  
TJ  
Tstg  
95  
-55 to 115  
-0.3 to 3.8  
-0.3 to (VDDINT + 0.3)  
6
C  
C  
Storage Temperature Range  
Power Supply Voltage  
Digital Input Voltage  
RF Input Power  
VBATT, VDDINT  
Vin  
Vdc  
Pmax  
dBm  
Note: Maximum Ratings are those values beyond which damage to the device may occur.  
Functional operation should be restricted to the limits in the Electrical Characteristics  
or Recommended Operating Conditions tables.  
Note: Meets Human Body Model (HBM) = 2 kV. RF input/output pins have no ESD protection.  
8.2  
ESD Protection and Latch-Up Immunity  
Although damage from electrostatic discharge (ESD) is much less common on these devices than on early  
CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge.  
Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels  
of static without suffering any permanent damage.  
All ESD testing is in conformity with the JESD22 Stress Test Qualification for Commercial Grade  
Integrated Circuits. During the device qualification ESD stresses were performed for the human body  
model (HBM), the machine model (MM) and the charge device model (CDM).  
All latchup testing is in conformity with the JESD78 IC Latch-Up Test.  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification.  
Table 7. ESD and Latch-up Test Conditions  
Model  
Description  
Series resistance  
Symbol  
Value  
Unit  
R1  
C
1500  
100  
1
Human  
Body  
Storage capacitance  
Number of pulses per pin1  
Series resistance  
pF  
R1  
C
0
Machine Storage capacitance  
Number of pulses per pin1  
200  
1
pF  
Minimum input voltage limit  
Latch-up  
– 1.8  
4.32  
V
V
Maximum input voltage limit  
1
This number represents a minimum number for both positive pulse(s) and negative pulse(s)  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
21  
Table 8. ESD and Latch-Up Protection Characteristics  
No.  
Rating1  
Symbol  
Min  
Max  
Unit  
1
2
3
4
Human body model (HBM)  
Machine model (MM)  
VHBM  
VMM  
VCDM  
ILAT  
2000  
200  
500  
100  
V
V
Charge device model (CDM)  
Latch-up current at TA = 85C  
V
mA  
1
Parameter is achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted.  
8.3  
Transceiver Electrical Characteristics  
The tables below give the electrical specifications of the transceiver under the following conditions:  
Supply voltage VBAT1= VBAT2=VDD=3.3 V, temperature = 25 °C, FXOSC = 32 MHz, FRF = 915 MHz,  
Pout = +13dBm, 2-level FSK modulation without pre-filtering, FDA = 5 kHz, Bit Rate = 4.8 kb/s and  
terminated in a matched 50 Ohm impedance, unless otherwise specified.  
NOTE  
Unless otherwise specified, the performances in the other frequency bands  
are similar or better.  
8.3.1  
Transceiver Recommended Operating Conditions  
Table 9. Recommended Operating Conditions  
Characteristic  
Power Supply Voltage (VBATT  
Symbol  
Min  
Typ  
Max  
Unit  
)
1.8  
-40  
0
3.6  
85  
Vdc  
C  
V
Operating Temperature Range  
Logic Input Voltage Low  
TA  
25  
-
VIL  
20%  
VBATT  
Logic Input Voltage High  
VIH  
VOL  
VOH  
80%  
VBATT  
-
-
-
VBATT  
V
V
V
Logic Output Voltage Low (Imax = -1 mA)  
Logic Output Voltage High (Imax = 1 mA)  
0
10%  
VBATT  
90%  
VBATT  
VBATT  
Load capacitance on digital ports  
SPI Clock Rate  
CL  
fSPI  
Pmax  
fref  
25  
8.0  
0
pF  
-
-
-
-
MHz  
dBm  
RF Input Power  
Crystal Reference Oscillator Frequency  
32 MHz Only  
(Some variants may use 30 MHz instead)  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
22  
Freescale Semiconductor, Inc.  
8.3.2  
Transceiver Power Consumption  
Table 10. Power Supply Current  
Characteristic  
Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
Supply current in Sleep mode  
Supply current in Idle mode  
IDDSL  
IDDIDLE  
IDDST  
IDDFS  
IDDR  
-
-
-
-
-
0.1  
1.2  
1.25  
9
1
-
µA  
µA  
RC oscillator enabled  
Supply current in Standby mode  
Supply current in Synthesizer mode  
Supply current in Receive mode  
Crystal oscillator enabled  
1.5  
-
mA  
mA  
4.8 kbps  
500 kbps  
16  
17  
-
mA  
mA  
Supply current in Transmit mode with RFOP = +17 dBm, on PA_BOOST  
appropriate matching, RF power RFOP = +13 dBm, on RFIO pin  
stable across VDD range, DC current RFOP = +10 dBm, on RFIO pin  
varies with VDD, lower IDDT at lower RFOP = 0 dBm, on RFIO pin  
VDD, typical numbers correspond to RFOP = -1 dBm, on RFIO pin  
mid-range VDD, about 2.7 V  
IDDT  
-
-
-
-
-
95  
45  
33  
20  
16  
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
8.3.3  
Transceiver Frequency Synthesis  
Table 11. Frequency Synthesizer Specification  
Characteristic  
Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
Synthesizer Frequency Range  
Programmable, 32 MHz clock  
FR  
290  
424  
862  
-
-
-
340  
510  
1020  
MHz  
MHz  
MHz  
Crystal oscillator frequency  
FXOSC  
TS_OSC  
TS_FS  
-
-
-
32  
250  
80  
-
MHz  
µs  
Crystal oscillator wake-up time  
500  
150  
Frequency synthesizer wake-up time From Standby mode  
to PllLock signal  
µs  
Frequency synthesizer hop time at  
most 10 kHz away from the target  
200 kHz step TS_HOP  
1 MHz step  
5 MHz step  
-
-
-
-
-
-
-
20  
20  
50  
50  
80  
80  
80  
-
-
-
-
-
-
-
µs  
µs  
µs  
µs  
µs  
µs  
µs  
7 MHz step  
12 MHz step  
20 MHz step  
25 MHz step  
Frequency synthesizer step  
RC Oscillator frequency  
Bit rate, FSK  
FSTEP = FXOSC/219  
After calibration  
Programmable  
FSTEP  
FRC  
-
61.0  
-
-
Hz  
-
62.5  
kHz  
kbps  
BRF  
1.2  
1.2  
0.6  
-
-
-
600  
Bit rate, OOK  
Programmable  
BRO  
FDA  
32.768 kbps  
300 kHz  
Frequency deviation, FSK  
Programmable  
FDA + BRF/2 =< 500 kHz  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
23  
8.3.4  
Receiver  
All receiver tests are performed with RxBw = 10 kHz (Single Side Bandwidth) as programmed in  
RegRxBw, receiving a PN15 sequence with a BER of 0.1% (Bit Synchronizer is enabled), unless otherwise  
specified. The LNA impedance is set to 200 Ohms, by setting bit LnaZin in RegLna to 1. Blocking tests  
are performed with an unmodulated interferer. The wanted signal power for the Blocking Immunity, ACR,  
IIP2, IIP3 and AMR tests is set 3 dB above the nominal sensitivity level.  
Table 12. Receiver Specification  
Characteristic  
Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
FSK sensitivity, highest LNA gain  
FDA = 5 kHz, BR = 1.2 kb/s  
FDA = 5 kHz, BR = 4.8 kb/s  
FDA = 40 kHz, BR = 38.4 kb/s  
RFS_F  
-
-
-
-118  
-114  
-105  
-
-
-
dBm  
dBm  
dBm  
FDA = 5 kHz, BR = 1.2 kb/s 1  
BR = 4.8 kb/s  
-
-
-120  
-112  
-10  
-
-109  
-
dBm  
dBm  
dB  
OOK sensitivity, highest LNA gain  
Co-Channel Rejection  
RFS_O  
CCR  
-13  
Adjacent Channel Rejection  
Offset = +/- 25 kHz  
Offset = +/- 50 kHz  
ACR  
-
37  
42  
42  
-
-
dB  
dB  
Blocking Immunity  
Offset = +/- 1 MHz  
Offset = +/- 2 MHz  
Offset = +/- 10 MHz  
BI  
-
-
-
66  
71  
79  
-
-
-
dB  
dB  
dB  
Blocking Immunity  
Wanted signal at sensitivity +16dB  
Offset = +/- 1 MHz  
Offset = +/- 2 MHz  
Offset = +/- 10 MHz  
-
-
-
62  
65  
73  
-
-
-
dB  
dB  
dB  
AM Rejection , AM modulated  
interferer with 100% modulation  
depth, fm = 1 kHz, square  
Offset = +/- 1 MHz  
Offset = +/- 2 MHz  
Offset = +/- 10 MHz  
AMR  
IIP2  
-
-
-
66  
71  
79  
-
-
-
dB  
dB  
dB  
2nd order Input Intercept Point  
Unwanted tones are 20 MHz above  
the LO  
Lowest LNA gain  
Highest LNA gain  
-
-
+75  
+35  
-
-
dBm  
dBm  
3rd order Input Intercept point  
Unwanted tones are 1MHz and 1.995  
MHz above the LO  
Lowest LNA gain  
Highest LNA gain  
IIP3  
-
+20  
-18  
-
-
dBm  
dBm  
-23  
Single Side channel filter BW  
Image rejection in OOK mode  
Programmable  
BW_SSB  
2.6  
27  
-
500  
-
kHz  
dB  
Wanted signal level = -106 dBm  
IMR_  
OOK  
30  
Receiver wake-up time, from PLL  
locked state to RxReady  
RxBw = 10 kHz, BR = 4.8 kb/s  
RxBw = 200 kHz, BR = 100 kb/s  
TS_RE  
-
-
1.7  
96  
-
-
ms  
µs  
Receiver wake-up time, from PLL  
locked state, AGC enabled  
RxBw= 10 kHz, BR = 4.8 kb/s  
RxBw = 200 kHz, BR = 100 kb/s  
TS_RE_  
AGC  
-
3.0  
163  
ms  
µs  
Receiver wake-up time, from PLL lock RxBw= 10 kHz, BR = 4.8 kb/s  
TS_RE_  
AGC&AFC  
4.8  
265  
ms  
µs  
state, AGC and AFC enabled  
RxBw = 200 kHz, BR = 100 kb/s  
FEI sampling time  
Receiver is ready  
TS_FEI  
-
-
4.T  
bit  
-
-
-
-
AFC Response Time  
Receiver is ready  
TS_AFC  
4.T  
bit  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
24  
Freescale Semiconductor, Inc.  
Table 12. Receiver Specification  
Conditions Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
RSSI Response Time  
RSSI Dynamic Range  
Receiver is ready  
AGC enabled  
TS_RSSI  
-
2.T  
-
-
bit  
Min DR_RSSI  
Max  
-
-
-115  
0
-
-
dBm  
dBm  
1
Set SensitivityBoost in RegTestLna to 0x2D to reduce the noise floor in the receiver  
8.3.5  
Transmitter  
Table 13. Transmitter Specidication  
Characteristic  
Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
RF output power in 50 ohms  
On RFIO pin  
Programmable with 1dB steps  
Max  
Min  
RF_OP  
-
-
+13  
-18  
-
-
dBm  
dBm  
Max RF output power, on PA_BOOST With external match to 50 ohms  
pin  
RF_OPH  
RF_OP  
PHN  
-
-
+17  
-
-
dBm  
dB  
RF output power stability  
Transmitter Phase Noise  
From VDD=1.8V to 3.6V  
50 kHz Offset from carrier  
+/-0.3  
868 / 915 MHz bands  
434 / 315 MHz bands  
-
-
-95  
-99  
-
-
dBc/Hz  
dBm  
µs  
Transmitter adjacent channel power BT=0.5 . Measurement conditions  
(measured at 25 kHz offset) as defined by EN 300 220-1 V2.1.1  
ACP  
-
-
-37  
Transmitter wake up time, to the first Frequency Synthesizer enabled,  
rising edge of DCLK PaRamp = 10 µs, BR = 4.8 kb/s.  
TS_TR  
-
120  
-
9 Typical Applications Circuit  
Figure 7 shows a MKW01 typical applications circuit with and without use of an external power amplifier  
(PA) (driven by the RF power boost feature). Note a number of circuit features:  
1. The two metal flags on the package bottom are independent (unconnected), and as a result, both  
must be connected to ground.  
2. The topology of the external RF matching components is consistent across various frequency  
bandwidths. Only the component values differ as determined by the desired frequency range.  
3. Freescale recommends using a single crystal design (as shown) to minimize systems costs - the  
circuit must connect transceiver signal DIO5/CLKOUT to the MCU EXTAL input to supply the  
MCU with a crystal accurate clock source. Also, the MCU initialization must enable the DIO5 pin  
as the ClkOut function.  
Freescale also recommends that the transceiver RESET is driven by an MCU GPIO to provide total hard-  
ware control of the transceiver. Figure 7 shows GPIO PTE30 (preferred), but any GPIO can be used.  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
25  
4. The MKW01Z128 provides in-package connection for the DIO1-DIO0 status to the MCU.  
External connection of DIO4-DIO2 status to MCU GPIO may be useful or required to implement  
a wireless node communication algorithm. Enhanced performance can be achieved by routing  
DIO1 and DIO0 externally to GPIO pins PTC4 and PTC3.  
1
5. The transceiver reference oscillator uses the specified 32 MHz crystal (pins XTA and XTB).  
6. A debug port connector will beprovided for programming the MKW01 MCU FLASH and  
debugging code via the SWD interface.  
Two common RF wiring options are shown in Figure 7:  
1. Bi-directional single port operation - this mode uses the bi-directional RF port pin of the MKW01  
designated as RFIO. The device transmits and receives through this single port.  
— Typical +13 dBm TX output power  
— An inductor acts to provide DC power to the transmitter’s output amplifier while also acting as  
an AC signal block.  
— A circuit topology consisting of inductors and capacitors will provide:  
– Impedance matching between the RFIO port and the antenna  
– Low pass filtering for the transmit output path — when fully populated can implement an  
elliptic-function low pass filter.  
NOTE  
The topology for the RF matching network can be used over the various  
bands of interest with changes in component values  
Not all indicated components are used at all frequencies  
Refer to MKW01Z128 Sub 1 GHz Low Power Transceiver plus  
Microcontroller Reference Manual (MKW01Z128RM.pdf) for  
additional information  
2. Dual port operation with external amplification - this mode uses the RFIO port pin of the  
MKW01Z128 typically as the RX input and the auxiliary port PA_BOOST as the TX output. An  
external PA can optionally be inserted into the transmit path and an external antenna switch is also  
required.  
— The PA_BOOST has typical +17 dBm output power - this is +4 dBm higher than the RFIO and  
helps achieve higher power at the PA output.  
— The PA_BOOST transmit path has a similar filter matching network discussed in the  
single-port to do low pass filtering and impedance match. The above note about components  
values also applies.  
— With separate transmit and receive paths, an antenna switch is required - the RXTX signal or  
another programmed GPIO can be used to switch paths depending on radio operation.  
— The receive side matching network can be simplified as no PA DC bias, low pass filtering or  
harmonic trap is required as is in the transmit and single port networks. When implemented on  
a new board design, both transmit and receive path component values and even topology  
should be optimized for best performance on the most important parameters for the application.  
1. Or 30 MHz, in some cases.  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
26  
Freescale Semiconductor, Inc.  
40ꢂ  
6?"!44  
6?"!446?"!44  
40ꢅ  
40ꢃ  
6?)#  
'(%8*ꢀ3257  
62?!.!  
62?$)'  
6?)#  
2ꢃꢄ  
ꢅꢄ+  
$.0  
#ꢃꢇ  
ꢄꢋꢅ5&  
#ꢃꢉ  
#ꢃꢈ  
#ꢅꢆ  
ꢄꢋꢅ5&  
#ꢂꢄ  
#ꢃꢄ  
#ꢃꢅ  
*ꢀ  
6?"!44  
40ꢅꢊ  
6:'B',2  
6:'B&/.  
ꢅꢄ5&  
ꢄꢋꢄꢅ5&  
ꢄꢋꢅ5&  
ꢄꢋꢅ5&  
ꢄꢋꢅ5&  
04!ꢂ  
04!ꢄ  
ꢅꢄ  
37$ꢀꢁ  
#ꢂꢂ  
2%3%4  
40ꢅꢆ  
ꢄꢋꢅ5&  
($2 ꢃ8ꢀ  
6?"!44  
633!  
5ꢅ  
#ꢇꢀ  
6?"!44  
ꢄꢋꢅ5&  
ꢇꢇ  
ꢇꢀ  
ꢇꢃ  
62?!.!  
62%&(  
62%&,  
62?!.!  
*ꢅꢆ  
62?$)'  
62?0!  
62?$)'  
62?0!  
6:'B&/.  
0&8B5;  
0&8B7;  
6:'B',2  
ꢅꢄ  
ꢅꢇ  
ꢅꢂ  
ꢅꢅ  
ꢅꢃ  
ꢅꢀ  
ꢅꢉ  
ꢂꢂ  
04!ꢄ  
04!ꢂ  
04!ꢄꢁ37$?#,+ꢁ43)/?#(ꢅꢁ&-4ꢄ?#(ꢀ  
04!ꢅꢁ43)/?#(ꢃꢁ5!24/?28ꢁ&4-ꢃ?#(ꢄ  
04!ꢃꢁ43)/?#(ꢂꢁ5!24/?48ꢁ&4-ꢃ?#(ꢅ  
04!ꢂꢁ37$?$)/ꢁ43)/?#(ꢇꢁ))#ꢅ?3#,ꢁ&-4ꢄ?#(ꢄ  
04!ꢇꢁ.-)?"ꢁ43)/?#(ꢀꢁ))#ꢅ?3$!ꢁ&-4ꢄ?#(ꢅ  
04!ꢅꢊꢁ%84!,ꢁ5!24ꢅ?28ꢁ&4-?#,+).ꢄ  
04!ꢅꢆꢁ84!,ꢁ5!24ꢅ?48ꢁ&4-?#,+).ꢅꢁ,04-2ꢄ?!,4ꢅ  
04!ꢃꢄꢁ2%3%4  
ꢇꢆ  
ꢀꢄ  
ꢀꢅ  
ꢀꢃ  
ꢀꢂ  
ꢀꢇ  
$)/ꢄꢁ04$ꢈꢁ30)ꢅ?-)3/ꢁ5!24ꢄ?48ꢁ30)ꢅ?-/3)  
$)/ꢅꢁ04$ꢉꢁ!$#ꢄ?3%ꢈ"ꢁ,,75?0ꢅꢀꢁ30)ꢅ?-/3)ꢁ5!24ꢄ?28ꢁ30)ꢅ?-)3/  
($2 ꢅ8ꢇ  
$)/ꢀꢁ#,+/54  
$)/ꢃ  
$)/ꢂ  
$)/ꢇ  
37$ꢀꢁ  
2%3%4  
#ꢅꢊ  
#ꢅꢈ  
ꢄꢋꢄꢅ5&  
,ꢀ  
ꢂꢂN(  
$)/ꢀꢁ#,+/54  
$)/ꢀꢁ#,+/54  
ꢅꢈ  
ꢅꢊ  
ꢃꢅ  
ꢃꢃ  
04"ꢄꢁ!$#ꢄ?3%ꢊꢁ43)/?#(ꢄꢁ,,75?0ꢀꢁ))#ꢄ?3#,ꢁ&-4ꢅ?#(ꢄ  
04"ꢅꢁ!$#/?3%ꢆꢁ43)/?#(ꢉꢁ,,75?0ꢀꢁ))#ꢄ?3$!ꢁ&-4ꢅ?#(ꢅ  
04"ꢃꢁ!$#ꢄ?3%ꢅꢃꢁ43)/?#(ꢈꢁ,,75?0ꢀꢁ))#ꢄ?3#,ꢁ&-4ꢃ?#(ꢄ  
04"ꢂꢁ!$#ꢄ?3%ꢅꢂꢁ43)/?#(ꢊꢁ,,75?0ꢀꢁ))#ꢄ?3$!ꢁ&-4ꢃ?#(ꢅ  
ꢉꢄ  
ꢀꢊ  
ꢃꢃꢄ0&  
237,21$/ꢂ8$57ꢂ3257ꢂ  
)25ꢂ'(%8*ꢂꢃꢂ&200  
-)3/ꢁ04#ꢈꢁ#-0ꢄ?).ꢅꢁ30)ꢄ?-)3/ꢁ30)ꢄ?-/3)  
-/3)ꢁ04#ꢉꢁ#-0ꢄ?).ꢄꢁ,,75?0ꢅꢄꢁ30)ꢄ?-/3)ꢁ%842'?).ꢁ30)ꢄ?-)3/  
ꢀꢈ  
ꢀꢆ  
ꢇꢅ  
3#+ꢁ04#ꢀꢁ,,75?0ꢆꢁ30)ꢄ3#+ꢁ,04-2ꢄ?!,4ꢃꢁ#-0ꢄ?/54  
ꢃꢂ  
ꢃꢇ  
ꢃꢀ  
ꢃꢉ  
ꢃꢊ  
ꢃꢆ  
#ꢊ  
#ꢅ  
04#ꢄꢁ!$#ꢄ?3%ꢅꢇꢁ43)/?#(ꢅꢂꢁ%842'?).ꢁ#-0ꢄ?/54  
04#ꢅꢁ!$#ꢄ?3%ꢅꢀꢁ43)/?#(ꢅꢇꢁ,,75?0ꢉꢁ24#?#,+).ꢁ))#ꢅ?3#,ꢁ&-4ꢄ?#(ꢄ  
04#ꢃꢁ!$#ꢄ?3%ꢅꢅꢁ43)/?#(ꢅꢀꢁ,,75?0ꢉꢁ24#?#,+).ꢁ))#ꢅ?3$!ꢁ&-4ꢄ?#(ꢅ  
04#ꢂꢁ,,75?0ꢈꢁ5!24ꢅ?28ꢁ&-4ꢄ?#(ꢃꢁ#,+/54!  
04#ꢊꢁ#-0ꢄ?).ꢃꢁ))#ꢄ?3#,ꢁ&4-ꢄ?#(ꢇ  
04#ꢆꢁ#-0ꢄ?).ꢂꢁ))#ꢄ?3$!ꢁ&4-ꢄ?#(ꢀ  
.33ꢁ04#ꢇꢁ,,75?0ꢊꢁ30)ꢄ?0#3ꢄꢁ5!24ꢅ?48ꢁ&4-ꢄ?#(ꢂ  
0!?"//34  
0!?"//34  
2ꢅ  
#ꢅꢄ  
ꢇꢈ0&  
0!?"//34?%84  
,ꢂ  
,ꢅ  
ꢇꢉ  
ꢇꢈ  
#ꢅꢃ  
%84!,?ꢂꢃ-  
84!,?ꢂꢃ-  
84!  
84"  
#ꢂ  
#ꢃ  
ꢃꢈ  
ꢂꢇ  
04$ꢇꢁ,,75?0ꢅꢇꢁ30)ꢅ?0#3ꢄꢁ5!24ꢃ?28ꢁ&-4ꢄ?#(ꢇ  
04$ꢀꢁ!$#ꢄ?3%ꢉ"ꢁ30)ꢅ?3#+ꢁ5!24ꢃ?48ꢁ&4-ꢄ?#(ꢀ  
ꢂꢈ  
ꢂꢆ  
ꢇꢊ  
2848  
2848?2&  
2&)/?2&  
2%3%4  
ꢂꢃ  
ꢂꢅ  
04%ꢄꢁ5!24ꢅ?48ꢁ24#?#,+/54ꢁ#-0ꢄ/54ꢁ))#ꢅ?3$!  
04%ꢅꢁ30)ꢅ?-/3)ꢁ5!24ꢅ?28ꢁ30)ꢅ?-)3/ꢁ))#ꢅ?3#,  
04%ꢅꢉꢁ!$#ꢄ?$0ꢅꢁ!$#/?3%ꢅꢁ30)ꢄ?0#3ꢄꢁ5!24ꢃ?48ꢁ&4-?#,+).ꢄ  
04%ꢅꢈꢁ!$#ꢄ?$-ꢅꢁ!$#/?3%ꢀ!ꢁ30)ꢄ?3#+ꢁ5!24ꢃ?28ꢁ&4-?#,+).ꢅꢁ,04-2ꢄ?!,4ꢂ  
04%ꢅꢊꢁ!$#ꢄ?$0ꢃꢁ!$#ꢄ?3%ꢃꢁ30)ꢄ?-/3)ꢁ))#ꢄ?3$!ꢁ30)ꢄ?-)3/  
04%ꢅꢆꢁ!$#ꢄ?$-ꢃꢁ!$#ꢄ?3%ꢉ!ꢁ30)ꢄ?-)3/ꢁ))#ꢄ?3#,ꢁ30)ꢄ?-/3)  
04%ꢂꢄꢁ$!#ꢄ?/54ꢁ!$#/?3%ꢃꢂꢁ#-0ꢄ?).ꢇꢁ&-4ꢄ?#(ꢂꢁ&4-?#,+).ꢅ  
8#62?2%3%4  
#ꢅꢉ  
#ꢅꢇ  
,ꢉ  
ꢂꢂN(  
ꢃꢃꢄ0&  
ꢄꢋꢅ5&  
ꢂꢄ  
8#62?2%3%4  
.#ꢂꢄ  
#ꢅꢅ  
#ꢈ  
,ꢈ  
#ꢅꢂ  
2&)/?%84  
2&)/  
2&)/  
2&)/  
!.4  
!.4  
,ꢇ  
,ꢃ  
-+7ꢄꢅ:ꢅꢃꢊ  
#ꢅꢀ  
#ꢆ  
#ꢇ  
9ꢅ  
%84!,?ꢂꢃ-  
6WDQGDUGꢂ&RQQHFWLRQꢂIRUꢂ  
#ꢃꢃ  
%Lꢄ'LUHFWLRQDOꢂ6LQJOHꢂ3RUW  
84!,?ꢂꢃ-  
2ꢊ  
ꢂꢃ-(Z  
#ꢃꢀ  
633!  
;7$/Bꢀꢁ0+]  
127(6ꢅꢂ  
ꢆꢇꢂ5)ꢂFRPSRQHQWVꢂGHWHUPLQHGꢂE\ꢂGHVLUHGꢂIUHTXHQF\ꢂUDQJHꢈꢂ  
ꢀꢇꢂ5HFRPPHQGꢂWKDWꢂ&ONRXWꢂGULYHꢂWKHꢂ0&8ꢂ(;7$/ꢂLQSXWꢈꢂ  
ꢉꢇꢂ5HFRPPHQGꢂWKDWꢂWUDQVFHLYHUꢂ5(6(7ꢂEHꢂGULYHQꢂIURPꢂ0&8ꢂ*3,2ꢂꢊ37(ꢉꢁꢂVKRZQꢇꢂ  
ꢋꢇꢂ7UDQVFHLYHUꢂVWDWXVꢂ',2ꢋꢄꢂ',2ꢀꢂPD\ꢂEHꢂPRQLWRUHGꢂYLDꢂH[WHUQDOꢂFRQQHFWLRQꢂWRꢂ0&8ꢂ*3,2  
Figure 7. MKW01 Application Circuit Options  
10 Mechanical Drawings  
Figure 8. Mechanical Drawing (1 of 2)  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
28  
Freescale Semiconductor, Inc.  
Figure 9. Mechanical Drawing (2 of 2)  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
29  
MKW01 MCU Section Data Sheet  
Appendix A MKW01 MCU Section Data Sheet  
MKW01Z128 Datasheet, Rev. 6, 04/2016  
30  
Freescale Semiconductor, Inc.  
Document Number MKW01Z128  
Rev. 6, 04/2016  
Freescale Semiconductor  
Data Sheet: Technical Data  
MKW01Z128  
MKW01 MCU Section Data  
Sheet  
Supports the following: MKW01Z128  
Key features  
• Security and integrity modules  
– 80-bit unique identification (ID) number per chip  
• Operating Characteristics  
– Voltage range: 1.8 to 3.6 V  
• Human-machine interface  
– Flash write voltage range: 1.8 to 3.6 V  
– Temperature range (ambient): -40 to 85°C  
– Low-power hardware touch sensor interface (TSI)  
– General-purpose input/output  
• Performance  
• Analog modules  
– Up to 48 MHz ARM® Cortex-M0+ core  
– 16-bit SAR ADC  
– 12-bit DAC  
– Analog comparator (CMP) containing a 6-bit DAC  
and programmable reference input  
• Memories and memory interfaces  
– 128 KB program flash memory  
– 16 KB RAM  
• Timers  
• Clocks  
– Six channel Timer/PWM (TPM)  
– Two 2-channel Timer/PWM (TPM)  
– Periodic interrupt timers  
– 16-bit low-power timer (LPTMR)  
– Real-time clock  
– 32 kHz to 40 kHz or 3 MHz to 32 MHz crystal  
oscillator  
– Multi-purpose clock source  
• System peripherals  
– Nine low-power modes to provide power  
optimization based on application requirements  
– 4-channel DMA controller, supporting up to 63  
request sources  
– COP Software watchdog  
– Low-leakage wakeup unit  
• Communication interfaces  
– One 16-bit serial peripheral communcation (SPI)  
module available externally  
– Two I2C modules  
– One low power UART module  
– Two UART modules  
– SWD interface and Micro Trace buffer  
– Bit Manipulation Engine (BME)  
© 2013–2016 Freescale Semiconductor, Inc.  
Table of Contents  
1 General................................................................................................. 3  
2.3.1 MCG specifications........................................................15  
2.3.2 Oscillator electrical specifications................................. 17  
2.4 Memories and memory interfaces................................................19  
2.4.1 Flash electrical specifications........................................ 19  
2.5 Security and integrity modules.................................................... 21  
2.6 Analog..........................................................................................21  
2.6.1 ADC electrical specifications.........................................21  
2.6.2 CMP and 6-bit DAC electrical specifications................25  
2.6.3 12-bit DAC electrical characteristics............................. 27  
2.7 Timers.......................................................................................... 30  
2.8 Communication interfaces........................................................... 30  
2.8.1 SPI switching specifications.......................................... 30  
2.8.2 Inter-Integrated Circuit Interface (I2C) timing.............. 34  
2.8.3 UART.............................................................................35  
2.9 Human-machine interfaces (HMI)...............................................36  
2.9.1 TSI electrical specifications........................................... 36  
3 Revision History...................................................................................36  
1.1 Voltage and current operating requirements................................3  
1.2 LVD and POR operating requirements........................................3  
1.3 Voltage and current operating behaviors.....................................4  
1.4 Power mode transition operating behaviors.................................5  
1.5 Power consumption operating behaviors.....................................6  
1.5.1 Diagram: Typical IDD_RUN operating behavior..........10  
1.6 Designing with radiated emissions in mind.................................12  
1.7 Capacitance attributes..................................................................12  
1.8 Switching specifications.............................................................. 13  
1.8.1 Device clock specifications............................................13  
1.8.2 General switching specifications....................................13  
2 Peripheral operating requirements and behaviors................................ 14  
2.1 Core modules............................................................................... 14  
2.1.1 SWD electricals .............................................................14  
2.2 System modules........................................................................... 15  
2.3 Clock modules............................................................................. 15  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
2
Freescale Semiconductor, Inc.  
General  
1 General  
1.1 Voltage and current operating requirements  
Table 1. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.8  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
VDDA  
Analog supply voltage  
1.8  
3.6  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
–0.1  
–0.1  
0.1  
V
0.1  
V
VIH  
Input high voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
IICIO  
Input hysteresis  
0.06 × VDD  
-3  
V
IO pin negative DC injection current — single pin  
• VIN < VSS-0.3V  
1
mA  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents of 16  
contiguous pins  
-25  
mA  
• Negative current injection  
VODPU  
VRAM  
Open drain pullup voltage level  
VDD  
1.2  
VDD  
V
V
2
VDD voltage required to retain RAM  
1. All I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If VIN  
greater than VIO_MIN (= VSS-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this  
limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is  
calculated as R = (VIO_MIN - VIN)/|IICIO|.  
2. Open drain outputs must be pulled to VDD  
.
1.2 LVD and POR operating requirements  
Table 2. VDD supply LVD and POR operating requirements  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VPOR  
Falling VDD POR detect voltage  
0.8  
1.1  
1.5  
V
Table continues on the next page...  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
3
General  
Table 2. VDD supply LVD and POR operating requirements (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV = 01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV = 00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
60  
2.78  
2.88  
2.98  
3.08  
V
V
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
V
• Level 4 falling (LVWV = 11)  
V
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
mV  
1
Falling low-voltage detect threshold — low range  
(LVDV=00)  
1.54  
1.60  
1.66  
V
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV = 00)  
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
40  
1.86  
1.96  
2.06  
2.16  
V
V
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
V
• Level 4 falling (LVWV = 11)  
V
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period — factory  
trimmed  
1000  
1100  
μs  
1. Rising thresholds are falling threshold + hysteresis voltage  
1.3 Voltage and current operating behaviors  
Table 3. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOH  
Output high voltage — Normal drive pad (except  
RESET_b)  
1, 2  
VDD – 0.5  
VDD – 0.5  
V
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -5 mA  
• 1.8 V ≤ VDD ≤ 2.7 V, IOH = -2.5 mA  
VOH  
Output high voltage — High drive pad (except  
RESET_b)  
1, 2  
VDD – 0.5  
VDD – 0.5  
V
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -20 mA  
• 1.8 V ≤ VDD ≤ 2.7 V, IOH = -10 mA  
IOHT  
VOL  
Output high current total for all ports  
Output low voltage — Normal drive pad  
100  
mA  
1
Table continues on the next page...  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
4
Freescale Semiconductor, Inc.  
General  
Notes  
Table 3. Voltage and current operating behaviors (continued)  
Symbol  
Description  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA  
Min.  
Max.  
Unit  
0.5  
V
• 1.8 V ≤ VDD ≤ 2.7 V, IOL = 2.5 mA  
0.5  
V
VOL  
Output low voltage — High drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA  
• 1.8 V ≤ VDD ≤ 2.7 V, IOL = 10 mA  
1
0.5  
0.5  
V
V
IOLT  
IIN  
Output low current total for all ports  
100  
1
mA  
μA  
Input leakage current (per pin) for full temperature  
range  
3
IIN  
IIN  
Input leakage current (per pin) at 25 °C  
0.025  
65  
μA  
μA  
3
3
Input leakage current (total all pins) for full temperature  
range  
IOZ  
Hi-Z (off-state) leakage current (per pin)  
Internal pullup and pulldown resistors  
1
μA  
kΩ  
RPU  
20  
50  
4
1. PTB0, PTB1, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated  
PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.  
2. The reset pin only contains an active pull down device when configured as the RESET signal or as a GPIO. When  
configured as a GPIO output, it acts as a pseudo open drain output.  
3. Measured at VDD = 3.6 V  
4. Measured at VDD supply voltage = VDD min and Vinput = VSS  
1.4 Power mode transition operating behaviors  
All specifications except tPOR and VLLSxRUN recovery times in the following table  
assume this clock configuration:  
• CPU and system clocks = 48 MHz  
• Bus and flash clock = 24 MHz  
• FEI clock mode  
POR and VLLSxRUN recovery use FEI clock mode at the default CPU and system  
frequency of 21 MHz, and a bus and flash clock frequency of 10.5 MHz.  
Table 4. Power mode transition operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
tPOR  
After a POR event, amount of time from the point  
300  
μs  
1
VDD reaches 1.8 V to execution of the first  
instruction across the operating temperature  
range of the chip.  
• VLLS0 RUN  
106  
120  
μs  
Table continues on the next page...  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
5
General  
Table 4. Power mode transition operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
105  
47  
Max.  
117  
54  
Unit  
Notes  
• VLLS1 RUN  
μs  
• VLLS3 RUN  
• LLS RUN  
μs  
4.5  
4.5  
4.5  
5.0  
5.0  
5.0  
μs  
• VLPS RUN  
• STOP RUN  
μs  
μs  
1. Normal boot (FTFA_FOPT[LPBOOT]=11).  
1.5 Power consumption operating behaviors  
Table 5. Power consumption operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
2
IDD_RUNCO_ Run mode current in compute operation - 48  
MHz core / 24 MHz flash / bus disabled, LPTMR  
running using 4 MHz internal reference clock,  
CoreMark benchmark code executing from flash  
CM  
6.1  
mA  
• at 3.0 V  
IDD_RUNCO Run mode current in compute operation - 48  
MHz core / 24 MHz flash / bus clock disabled,  
code of while(1) loop executing from flash  
3
3
3.8  
4.6  
5.9  
6.1  
mA  
mA  
• at 3.0 V  
IDD_RUN Run mode current - 48 MHz core / 24 MHz bus  
and flash, all peripheral clocks disabled, code of  
while(1) loop executing from flash  
• at 3.0 V  
IDD_RUN Run mode current - 48 MHz core / 24 MHz bus  
and flash, all peripheral clocks enabled, code of  
while(1) loop executing from flash  
3, 4  
• at 3.0 V  
• at 25 °C  
• at 70 °C  
• at 125 °C  
6.0  
6.2  
6.3  
6.5  
6.8  
7.1  
mA  
mA  
mA  
Table continues on the next page...  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
6
Freescale Semiconductor, Inc.  
General  
Table 5. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_WAIT Wait mode current - core disabled / 48 MHz  
system / 24 MHz bus / flash disabled (flash doze  
enabled), all peripheral clocks disabled  
• at 3.0 V  
3
2.7  
5.7  
mA  
IDD_WAIT Wait mode current - core disabled / 24 MHz  
system / 24 MHz bus / flash disabled (flash doze  
enabled), all peripheral clocks disabled  
• at 3.0 V  
3
3
5
2.1  
2.2  
732  
5.5  
4.1  
mA  
mA  
μA  
IDD_PSTOP2 Stop mode current with partial stop 2 clocking  
option - core and system disabled / 10.5 MHz  
bus  
• at 3.0 V  
IDD_VLPRCO Very-low-power run mode current in compute  
operation - 4 MHz core / 0.8 MHz flash / bus  
clock disabled, LPTMR running with 4 MHz  
internal reference clock, CoreMark benchmark  
code executing from flash  
_CM  
• at 3.0 V  
IDD_VLPRCO Very-low-power run mode current in compute  
operation - 4 MHz core / 0.8 MHz flash / bus  
clock disabled, code of while(1) loop executing  
from flash  
6
6
161  
185  
367  
372  
μA  
μA  
• at 3.0 V  
IDD_VLPR Very-low-power run mode current - 4 MHz core /  
0.8 MHz bus and flash, all peripheral clocks  
disabled, code of while(1) loop executing from  
flash  
• at 3.0 V  
IDD_VLPR Very-low-power run mode current - 4 MHz core /  
4, 6  
256  
110  
420  
355  
μA  
μA  
0.8 MHz bus and flash, all peripheral clocks  
enabled, code of while(1) loop executing from  
flash  
• at 3.0 V  
IDD_VLPW Very-low-power wait mode current - core  
disabled / 4 MHz system / 0.8 MHz bus / flash  
disabled (flash doze enabled), all peripheral  
clocks disabled  
6
• at 3.0 V  
IDD_STOP Stop mode current at 3.0 V  
at 25 °C  
301  
311  
342  
382  
428  
722  
758  
809  
at 50 °C  
μA  
at 70 °C  
at 85 °C  
IDD_VLPS Very-low-power stop mode current at 3.0 V  
at 25 °C  
2.3  
8.4  
Table continues on the next page...  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
7
General  
Table 5. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
at 50 °C  
5.2  
18.3  
μA  
at 70 °C  
10.5  
19.3  
26.1  
58.5  
at 85 °C  
IDD_LLS Low-leakage stop mode current at 3.0 V  
μA  
μA  
at 25 °C  
1.7  
3.2  
3.3  
at 50 °C  
34.9  
38.5  
43.8  
at 70 °C  
5.8  
at 85 °C  
11.6  
IDD_VLLS3 Very-low-leakage stop mode 3 current at 3.0 V  
at 25 °C  
1.3  
2.3  
4.7  
8.5  
3.0  
at 50 °C  
17.6  
19.5  
24.1  
at 70 °C  
at 85 °C  
IDD_VLLS1 Very-low-leakage stop mode 1 current at 3.0V  
at 25°C  
at 50°C  
at 70°C  
at 85°C  
0.7  
1.2  
2.2  
4.8  
1.3  
11.7  
12.6  
15.3  
μA  
nA  
IDD_VLLS0 Very-low-leakage stop mode 0 current  
(SMC_STOPCTRL[PORPO] = 0) at 3.0 V  
at 25 °C  
at 50 °C  
at 70 °C  
at 85 °C  
310  
778  
844  
3861  
1928  
3906  
13055  
15457  
IDD_VLLS0 Very-low-leakage stop mode 0 current  
(SMC_STOPCTRL[PORPO] = 1) at 3.0 V  
7
at 25 °C  
at 50 °C  
at 70 °C  
at 85 °C  
139  
600  
747  
nA  
3418  
1674  
3554  
11143  
13683  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See  
each module's specification for its supply current.  
2. MCG configured for PEE mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized for  
balanced.  
3. MCG configured for FEI mode.  
4. Incremental current consumption from peripheral activity is not included.  
5. MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized for  
balanced.  
6. MCG configured for BLPI mode.  
7. No brownout  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
8
Freescale Semiconductor, Inc.  
General  
Table 6. Low power mode peripheral adders — typical value  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
IIREFSTEN4MHz  
4 MHz internal reference clock (IRC) adder.  
Measured by entering STOP or VLPS mode  
with 4 MHz IRC enabled.  
56  
56  
56  
56  
56  
µA  
IIREFSTEN32KHz  
IEREFSTEN4MHz  
IEREFSTEN32KHz  
32 kHz internal reference clock (IRC)  
adder. Measured by entering STOP mode  
with the 32 kHz IRC enabled.  
52  
52  
52  
52  
52  
µA  
uA  
External 4 MHz crystal clock adder.  
Measured by entering STOP or VLPS mode  
with the crystal enabled.  
250  
262  
266  
268  
272  
External 32 kHz crystal clock adder by  
means of the OSC0_CR[ERCLKEN and  
EREFSTEN] bits. Measured by entering all  
modes with the crystal enabled.  
440  
440  
490  
510  
510  
22  
490  
490  
490  
560  
560  
22  
540  
540  
540  
560  
560  
22  
560  
560  
560  
560  
560  
22  
570  
570  
570  
610  
610  
22  
VLLS1  
VLLS3  
LLS  
nA  
VLPS  
STOP  
ICMP  
CMP peripheral adder measured by placing  
the device in VLLS1 mode with CMP  
enabled using the 6-bit DAC and a single  
external input for compare. Includes 6-bit  
DAC power consumption.  
µA  
nA  
IRTC  
RTC peripheral adder measured by placing  
the device in VLLS1 mode with external 32  
kHz crystal enabled by means of the  
432  
357  
388  
475  
532  
RTC_CR[OSCE] bit and the RTC ALARM  
set for 1 minute. Includes ERCLK32K (32  
kHz external crystal) power consumption.  
IUART  
UART peripheral adder measured by  
placing the device in STOP or VLPS mode  
with selected clock source waiting for RX  
data at 115200 baud rate. Includes selected  
clock source power consumption.  
MCGIRCLK (4 MHz internal reference  
clock)  
66  
66  
66  
66  
66  
µA  
259  
271  
275  
277  
281  
OSCERCLK (4 MHz external crystal)  
ITPM  
TPM peripheral adder measured by placing  
the device in STOP or VLPS mode with  
selected clock source configured for output  
compare generating 100 Hz clock signal.  
No load is placed on the I/O generating the  
clock signal. Includes selected clock source  
and I/O switching currents.  
µA  
MCGIRCLK (4 MHz internal reference  
clock)  
86  
86  
86  
86  
86  
Table continues on the next page...  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
9
General  
Table 6. Low power mode peripheral adders — typical value (continued)  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
OSCERCLK (4 MHz external crystal)  
275  
288  
45  
290  
295  
45  
300  
IBG  
Bandgap adder when BGEN bit is set and  
device is placed in VLPx, LLS, or VLLSx  
mode.  
45  
45  
45  
µA  
µA  
IADC  
ADC peripheral adder combining the  
measured values at VDD and VDDA by  
placing the device in STOP or VLPS mode.  
ADC is configured for low-power mode  
using the internal clock and continuous  
conversions.  
366  
366  
366  
366  
366  
1.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFA  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
10  
Freescale Semiconductor, Inc.  
General  
Run Mode Current VS Core Frequency  
7.00E-03  
6.00E-03  
5.00E-03  
4.00E-03  
3.00E-03  
2.00E-03  
1.00E-03  
000.00E+00  
All Peripheral CLK Gates  
All Off  
All On  
CLK Ratio  
'1-1  
1
'1-1  
2
'1-1  
3
'1-1  
4
'1-1  
6
'1-1  
12  
'1-1  
24  
'1-2  
48  
Flash-Core  
Core Freq (MHz)  
Figure 1. Run mode supply current vs. core frequency  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
11  
General  
400.00E-06  
350.00E-06  
300.00E-06  
250.00E-06  
200.00E-06  
150.00E-06  
100.00E-06  
50.00E-06  
All Off  
All On  
000.00E+00  
CLK Ratio  
Flash-Core  
Core Freq (MHz)  
1
2
4
Figure 2. VLPR mode current vs. core frequency  
1.6 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.freescale.com.  
2. Perform a keyword search for “EMC design.”  
1.7 Capacitance attributes  
Table 7. Capacitance attributes  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN  
Input capacitance  
7
pF  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
12  
Freescale Semiconductor, Inc.  
General  
1.8 Switching specifications  
1.8.1 Device clock specifications  
Table 8. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Normal run mode  
fSYS  
fBUS  
fFLASH  
fLPTMR  
System and core clock  
Bus clock  
48  
24  
24  
24  
MHz  
MHz  
MHz  
MHz  
Flash clock  
LPTMR clock  
VLPR and VLPS modes1  
fSYS  
fBUS  
System and core clock  
Bus clock  
4
1
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
fFLASH  
fLPTMR  
fERCLK  
Flash clock  
LPTMR clock2  
1
24  
16  
16  
16  
External reference clock  
fLPTMR_ERCLK LPTMR external reference clock  
fosc_hi_2  
Oscillator crystal or resonator frequency — high frequency  
mode (high range) (MCG_C2[RANGE]=1x)  
fTPM  
TPM asynchronous clock  
8
8
MHz  
MHz  
fUART0  
UART0 asynchronous clock  
1. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing  
specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN or  
from VLPR.  
2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.  
1.8.2 General switching specifications  
These general-purpose specifications apply to all signals configured for GPIO and UART  
signals.  
Table 9. General switching specifications  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter disabled) —  
Synchronous path  
1.5  
Bus clock  
cycles  
1
External RESET and NMI pin interrupt pulse width —  
Asynchronous path  
100  
ns  
2
GPIO pin interrupt pulse width — Asynchronous path  
Port rise and fall time  
16  
ns  
ns  
2
3
36  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
13  
Peripheral operating requirements and behaviors  
1. The greater synchronous and asynchronous timing must be met.  
2. This is the shortest pulse that is guaranteed to be recognized.  
3. 75 pF load  
2 Peripheral operating requirements and behaviors  
2.1 Core modules  
2.1.1 SWD electricals  
Table 10. SWD full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.8  
3.6  
V
J1  
SWD_CLK frequency of operation  
• Serial wire debug  
0
25  
MHz  
ns  
J2  
J3  
SWD_CLK cycle period  
SWD_CLK clock pulse width  
• Serial wire debug  
1/J1  
20  
ns  
J4  
J9  
SWD_CLK rise and fall times  
10  
0
3
ns  
ns  
ns  
ns  
ns  
SWD_DIO input data setup time to SWD_CLK rise  
SWD_DIO input data hold time after SWD_CLK rise  
SWD_CLK high to SWD_DIO data valid  
SWD_CLK high to SWD_DIO high-Z  
32  
J10  
J11  
J12  
5
J2  
J4  
J3  
J3  
SWD_CLK (input)  
J4  
Figure 3. Serial wire clock input timing  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
14  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
SWD_CLK  
SWD_DIO  
SWD_DIO  
SWD_DIO  
SWD_DIO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
Output data valid  
Figure 4. Serial wire data timing  
2.2 System modules  
There are no specifications necessary for the device's system modules.  
2.3 Clock modules  
2.3.1 MCG specifications  
Table 11. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft Internal reference frequency (slow clock) —  
32.768  
kHz  
factory trimmed at nominal VDD and 25 °C  
fints_t  
Internal reference frequency (slow clock) — user  
trimmed  
31.25  
39.0625  
0.6  
kHz  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using C3[SCTRIM] and C4[SCFTRIM]  
0.3  
%fdco  
1
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over voltage and temperature  
+0.5/-0.7  
3
%fdco  
1, 2  
Table continues on the next page...  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
15  
Peripheral operating requirements and behaviors  
Table 11. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0–70 °C  
0.4  
1.5  
%fdco  
1, 2  
fintf_ft  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25 °C  
4
3
MHz  
Δfintf_ft  
Frequency deviation of internal reference clock  
(fast clock) over temperature and voltage —  
factory trimmed at nominal VDD and 25 °C  
+1/-2  
%fintf_ft  
2
fintf_t  
Internal reference frequency (fast clock) — user  
trimmed at nominal VDD and 25 °C  
3
5
MHz  
kHz  
kHz  
floc_low  
floc_high  
Loss of external clock minimum frequency —  
RANGE = 00  
(3/5) x  
fints_t  
Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
FLL  
ffll_ref  
fdco  
FLL reference frequency range  
31.25  
20  
39.0625  
25  
kHz  
DCO output  
frequency range  
Low range (DRS = 00)  
640 × ffll_ref  
20.97  
MHz  
3, 4  
5, 6  
Mid range (DRS = 01)  
1280 × ffll_ref  
40  
41.94  
23.99  
47.97  
180  
48  
1
MHz  
MHz  
MHz  
ps  
fdco_t_DMX32 DCO output  
frequency  
Low range (DRS = 00)  
732 × ffll_ref  
Mid range (DRS = 01)  
1464 × ffll_ref  
Jcyc_fll  
FLL period jitter  
• fVCO = 48 MHz  
7
8
tfll_acquire FLL target frequency acquisition time  
ms  
PLL  
fvco  
Ipll  
VCO operating frequency  
PLL operating current  
48.0  
100  
MHz  
µA  
9
9
1060  
• PLL at 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2  
MHz, VDIV multiplier = 48)  
Ipll  
PLL operating current  
600  
µA  
• PLL at 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2  
MHz, VDIV multiplier = 24)  
fpll_ref  
PLL reference frequency range  
PLL period jitter (RMS)  
• fvco = 48 MHz  
2.0  
4.0  
MHz  
Jcyc_pll  
10  
10  
120  
50  
ps  
ps  
• fvco = 100 MHz  
Jacc_pll  
PLL accumulated jitter over 1µs (RMS)  
• fvco = 48 MHz  
1350  
600  
ps  
ps  
• fvco = 100 MHz  
Table continues on the next page...  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
16  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 11. MCG specifications (continued)  
Symbol Description  
Min.  
1.49  
4.47  
Typ.  
Max.  
2.98  
5.97  
Unit  
%
Notes  
Dlock  
Dunl  
Lock entry frequency tolerance  
Lock exit frequency tolerance  
Lock detector detection time  
%
tpll_lock  
150 × 10-6  
+ 1075(1/  
s
11  
fpll_ref  
)
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. The deviation is relative to the factory trimmed frequency at nominal VDD and 25 °C, fints_ft  
.
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.  
4. The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation  
(Δfdco_t) over voltage and temperature must be considered.  
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.  
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
7. This specification is based on standard deviation (RMS) of period or frequency.  
8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
9. Excludes any oscillator currents that are also consuming power while PLL is in operation.  
10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of  
each PCB and results will vary.  
11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled  
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes  
it is already running.  
2.3.2 Oscillator electrical specifications  
2.3.2.1 Oscillator DC electrical specifications  
Table 12. Oscillator DC electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.8  
3.6  
V
IDDOSC  
Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
500  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
mA  
mA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
• 24 MHz  
• 32 MHz  
1.5  
IDDOSC  
Supply current — high gain mode (HGO=1)  
1
• 32 kHz  
• 4 MHz  
25  
μA  
μA  
400  
Table continues on the next page...  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
17  
Peripheral operating requirements and behaviors  
Table 12. Oscillator DC electrical specifications (continued)  
Symbol Description  
• 8 MHz (RANGE=01)  
Min.  
Typ.  
Max.  
Unit  
Notes  
500  
μA  
• 16 MHz  
• 24 MHz  
• 32 MHz  
2.5  
3
mA  
mA  
mA  
4
Cx  
Cy  
RF  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
2, 4  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
MΩ  
MΩ  
kΩ  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
Feedback resistor — high-frequency, low-power  
mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
1
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Series resistor — low-frequency, high-gain mode  
(HGO=1)  
200  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
kΩ  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
0
kΩ  
V
5
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
VDD  
0.6  
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation  
3. Cx,Cy can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all  
other cases external capacitors must be used.  
4. When low power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any  
other devices.  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
18  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
2.3.2.2 Oscillator frequency specifications  
Table 13. Oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal or resonator frequency — low-  
frequency mode (MCG_C2[RANGE]=00)  
Min.  
32  
Typ.  
Max.  
40  
Unit  
Notes  
kHz  
fosc_hi_1 Oscillator crystal or resonator frequency — high-  
frequency mode (low range)  
3
8
8
MHz  
MHz  
(MCG_C2[RANGE]=01)  
fosc_hi_2 Oscillator crystal or resonator frequency — high  
frequency mode (high range)  
32  
(MCG_C2[RANGE]=1x)  
fec_extal  
tdc_extal  
tcst  
Input clock frequency (external clock mode)  
Input clock duty cycle (external clock mode)  
40  
50  
48  
60  
MHz  
%
1, 2  
3, 4  
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
750  
ms  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
250  
0.6  
ms  
ms  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
1
ms  
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.  
2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by  
FRDIV, it remains within the limits of the DCO input clock frequency.  
3. Proper PC board layout procedures must be followed to achieve specifications.  
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register  
being set.  
2.4 Memories and memory interfaces  
2.4.1 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
2.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps are  
active and do not include command overhead.  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
19  
Peripheral operating requirements and behaviors  
Table 14. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
13  
Max.  
18  
Unit  
μs  
Notes  
thvpgm4  
Longword Program high-voltage time  
1
thversscr Sector Erase high-voltage time  
113  
452  
ms  
ms  
thversall  
Erase All high-voltage time  
52  
1
1. Maximum time based on expectations at cycling end-of-life.  
2.4.1.2 Flash timing specifications — commands  
Table 15. Flash command timing specifications  
Symbol Description  
Min.  
Typ.  
Max.  
60  
Unit  
μs  
Notes  
trd1sec1k Read 1s Section execution time (flash sector)  
1
1
tpgmchk  
trdrsrc  
tpgm4  
Program Check execution time  
Read Resource execution time  
Program Longword execution time  
Erase Flash Sector execution time  
Read 1s All Blocks execution time  
Read Once execution time  
45  
μs  
30  
μs  
1
65  
14  
145  
114  
1.8  
25  
μs  
2
tersscr  
trd1all  
ms  
ms  
μs  
1
trdonce  
1
tpgmonce Program Once execution time  
65  
88  
μs  
2
tersall  
Erase All Blocks execution time  
650  
30  
ms  
μs  
tvfykey  
Verify Backdoor Access Key execution time  
1
1. Assumes 25 MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
2.4.1.3 Flash high voltage current behaviors  
Table 16. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
2.5  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
2.4.1.4 Reliability specifications  
Table 17. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
2
20  
100  
50 K  
10 K  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
20  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant  
25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering  
Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 125 °C.  
2.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
2.6 Analog  
2.6.1 ADC electrical specifications  
The 16-bit accuracy specifications listed in Table 1 and Table 19 are achievable on the  
differential pins ADCx_DP0, ADCx_DM0.  
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy  
specifications.  
2.6.1.1 16-bit ADC operating conditions  
Table 18. 16-bit ADC operating conditions  
Symbol Description  
Conditions  
Min.  
1.8  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
ΔVDDA  
ΔVSSA  
VREFH  
Supply voltage  
Supply voltage  
Ground voltage  
Absolute  
Delta to VDD (VDD – VDDA  
)
-100  
-100  
1.13  
0
+100  
+100  
VDDA  
mV  
mV  
V
2
2
3
Delta to VSS (VSS – VSSA  
)
0
ADC reference  
voltage high  
VDDA  
VREFL  
VADIN  
ADC reference  
voltage low  
VSSA  
VSSA  
VSSA  
V
V
3
Input voltage  
• 16-bit differential mode  
• All other modes  
• 16-bit mode  
VREFL  
VREFL  
31/32 *  
VREFH  
VREFH  
CADIN  
Input capacitance  
8
4
10  
5
pF  
• 8-bit / 10-bit / 12-bit  
modes  
RADIN  
RAS  
Input series  
resistance  
2
5
5
kΩ  
kΩ  
Analog source  
resistance  
(external)  
13-bit / 12-bit modes  
fADCK < 4 MHz  
4
Table continues on the next page...  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
21  
Peripheral operating requirements and behaviors  
Table 18. 16-bit ADC operating conditions (continued)  
Symbol Description  
Conditions  
Min.  
Typ.1  
Max.  
Unit  
Notes  
fADCK  
fADCK  
Crate  
ADC conversion ≤ 13-bit mode  
clock frequency  
1.0  
18.0  
MHz  
5
ADC conversion 16-bit mode  
clock frequency  
2.0  
12.0  
MHz  
Ksps  
5
6
ADC conversion ≤ 13-bit modes  
rate  
No ADC hardware averaging  
20.000  
818.330  
Continuous conversions  
enabled, subsequent  
conversion time  
Crate  
ADC conversion 16-bit mode  
6
rate  
No ADC hardware averaging  
37.037  
461.467  
Ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
3. For packages without dedicated VREFH and VREFL pins, VREFH is internally tied to VDDA, and VREFL is internally tied to  
VSSA  
.
4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS/CAS  
time constant should be kept to < 1 ns.  
5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 5. ADC input impedance equivalency diagram  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
22  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
2.6.1.2 16-bit ADC electrical characteristics  
Table 19. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
mA  
Notes  
IDDA_ADC Supply current  
3
ADC asynchronous  
clock source  
• ADLPC = 1, ADHSC = 0  
• ADLPC = 1, ADHSC = 1  
• ADLPC = 0, ADHSC = 0  
• ADLPC = 0, ADHSC = 1  
2.4  
4.0  
5.2  
6.2  
MHz  
MHz  
MHz  
MHz  
tADACK = 1/  
fADACK  
2.4  
fADACK  
3.0  
4.4  
Sample Time  
See Reference Manual chapter for sample times  
TUE  
DNL  
Total unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
LSB4  
5
5
1.4  
Differential non-  
linearity  
• 12-bit modes  
• <12-bit modes  
0.7  
0.2  
–1.1 to  
+1.9  
–0.3 to  
0.5  
INL  
Integral non-linearity  
• 12-bit modes  
• <12-bit modes  
1.0  
0.5  
–2.7 to  
+1.9  
LSB4  
5
–0.7 to  
+0.5  
5
EFS  
EQ  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• 16-bit modes  
• ≤13-bit modes  
–4  
–1.4  
–1 to 0  
–5.4  
–1.8  
LSB4  
LSB4  
VADIN = VDDA  
Quantization error  
0.5  
ENOB Effective number of 16-bit differential mode  
6
bits  
12.8  
11.9  
14.5  
13.8  
bits  
bits  
• Avg = 32  
• Avg = 4  
16-bit single-ended mode  
• Avg = 32  
12.2  
11.4  
13.9  
13.1  
bits  
bits  
dB  
• Avg = 4  
Signal-to-noise plus See ENOB  
SINAD  
6.02 × ENOB + 1.76  
distortion  
THD  
Total harmonic  
distortion  
16-bit differential mode  
• Avg = 32  
7
dB  
dB  
-94  
-85  
16-bit single-ended mode  
• Avg = 32  
Table continues on the next page...  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
23  
Peripheral operating requirements and behaviors  
Table 19. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
SFDR Spurious free  
dynamic range  
16-bit differential mode  
• Avg = 32  
7
dB  
82  
95  
dB  
16-bit single-ended mode  
• Avg = 32  
78  
90  
EIL  
Input leakage error  
IIn × RAS  
mV  
IIn = leakage  
current  
(refer to the  
MCU's voltage  
and current  
operating  
ratings)  
Temp sensor slope  
Across the full temperature  
range of the device  
1.55  
706  
1.62  
716  
1.69  
726  
mV/°C  
mV  
8
VTEMP25 Temp sensor voltage 25 °C  
8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1  
MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
8. ADC conversion clock < 3 MHz  
Typical ADC 16-bit Differential ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
15.00  
14.70  
14.40  
14.10  
13.80  
13.50  
13.20  
12.90  
12.60  
Hardware Averaging Disabled  
Averaging of 4 samples  
12.30  
12.00  
Averaging of 8 samples  
Averaging of 32 samples  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 6. Typical ENOB vs. ADC_CLK for 16-bit differential mode  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
24  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
14.00  
13.75  
13.50  
13.25  
13.00  
12.75  
12.50  
12.25  
12.00  
11.75  
11.50  
11.25  
11.00  
Averaging of 4 samples  
Averaging of 32 samples  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 7. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode  
2.6.2 CMP and 6-bit DAC electrical specifications  
Table 20. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.8  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
VH  
5
mV  
mV  
mV  
mV  
• CR0[HYSTCTR] = 01  
10  
20  
30  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
Output low  
VDD – 0.5  
50  
0.5  
200  
V
V
Propagation delay, high-speed mode (EN=1,  
PMODE=1)  
20  
ns  
tDLS  
Propagation delay, low-speed mode (EN=1,  
PMODE=0)  
80  
250  
600  
ns  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
7
40  
μs  
μA  
LSB3  
IDAC6b  
INL  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
LSB  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
25  
Peripheral operating requirements and behaviors  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
HYSTCTR  
Setting  
00  
01  
10  
11  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 8. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
26  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 9. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
2.6.3 12-bit DAC electrical characteristics  
2.6.3.1 12-bit DAC operating requirements  
Table 21. 12-bit DAC operating requirements  
Symbol  
VDDA  
VDACR  
CL  
Desciption  
Min.  
1.8  
1.13  
Max.  
3.6  
3.6  
100  
1
Unit  
V
Notes  
Supply voltage  
Reference voltage  
Output load capacitance  
Output load current  
V
1
2
pF  
mA  
IL  
1. The DAC reference can be selected to be VDDA or VREFH.  
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
27  
Peripheral operating requirements and behaviors  
2.6.3.2 12-bit DAC operating behaviors  
Table 22. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
250  
μA  
P
IDDA_DACH Supply current — high-speed mode  
100  
15  
0.7  
900  
200  
30  
μA  
μs  
P
tDACLP Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
1
1
1
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
μs  
tCCDACLP Code-to-code settling time (0xBF8 to 0xC08)  
— low-power mode and high-speed mode  
1
μs  
Vdacoutl DAC output voltage range low — high-speed  
mode, no load, DAC set to 0x000  
100  
VDACR  
8
mV  
mV  
LSB  
LSB  
LSB  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
INL  
DNL  
DNL  
Integral non-linearity error — high speed  
mode  
2
3
4
Differential non-linearity error — VDACR > 2  
V
1
Differential non-linearity error — VDACR  
VREF_OUT  
=
1
VOFFSET Offset error  
EG Gain error  
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V  
60  
0.4  
0.1  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
TCO  
TGE  
Rop  
SR  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Output resistance (load = 3 kΩ)  
Slew rate -80hF7Fh80h  
3.7  
μV/C  
%FSR/C  
Ω
6
0.000421  
250  
V/μs  
• High power (SPHP  
)
1.2  
1.7  
• Low power (SPLP  
3dB bandwidth  
)
0.05  
0.12  
BW  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0 + 100 mV to VDACR −100 mV  
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV  
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V  
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV  
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to  
0x800, temperature range is across the full range of the device  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
28  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
8
6
4
2
0
-2  
-4  
-6  
-8  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Digital Code  
Figure 10. Typical INL error vs. digital code  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
29  
Peripheral operating requirements and behaviors  
1.499  
1.4985  
1.498  
1.4975  
1.497  
1.4965  
1.496  
55  
85  
25  
105  
125  
-40  
Temperature °C  
Figure 11. Offset at half scale vs. temperature  
2.7 Timers  
See General switching specifications.  
2.8 Communication interfaces  
2.8.1 SPI switching specifications  
The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and  
slave operations. Many of the transfer attributes are programmable. The following tables  
provide timing characteristics for classic SPI timing modes. See the SPI chapter of the  
chip's Reference Manual for information about the modified transfer formats used for  
communicating with slower peripheral devices.  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
30  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as  
well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.  
Table 23. SPI master mode timing on slew rate disabled pads  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Hz  
Note  
1
2
fop  
Frequency of operation  
fperiph/2048  
2 x tperiph  
fperiph/2  
1
2
tSPSCK  
SPSCK period  
2048 x  
tperiph  
ns  
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
1024 x  
tperiph  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
18  
0
ns  
ns  
ns  
ns  
ns  
15  
8
tv  
0
9
tHO  
tRI  
10  
tperiph - 25  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
Table 24. SPI master mode timing on slew rate enabled pads  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Hz  
Note  
1
2
fop  
Frequency of operation  
fperiph/2048  
2 x tperiph  
fperiph/2  
1
2
tSPSCK  
SPSCK period  
2048 x  
tperiph  
ns  
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
1024 x  
tperiph  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
96  
0
ns  
ns  
ns  
ns  
ns  
52  
8
tv  
0
9
tHO  
tRI  
10  
tperiph - 25  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
36  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
31  
Peripheral operating requirements and behaviors  
1
SS  
(OUTPUT)  
3
2
10  
10  
11  
11  
4
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
8
MSB IN  
LSB IN  
9
MOSI  
(OUTPUT)  
2
BIT 6 . . . 1  
MSB OUT  
LSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 12. SPI master mode timing (CPHA = 0)  
1
SS  
(OUTPUT)  
2
10  
10  
11  
11  
4
3
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
LSB IN  
MSB IN  
9
8
MOSI  
(OUTPUT)  
2
PORT DATA  
BIT 6 . . . 1  
MASTER MSB OUT  
PORT DATA  
MASTER LSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 13. SPI master mode timing (CPHA = 1)  
Table 25. SPI slave mode timing on slew rate disabled pads  
Num.  
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Hz  
Note  
1
1
2
3
4
5
fop  
tSPSCK  
tLead  
tLag  
Frequency of operation  
0
SPSCK period  
Enable lead time  
Enable lag time  
4 x tperiph  
ns  
2
1
1
tperiph  
tperiph  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
Table continues on the next page...  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
32  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 25. SPI slave mode timing on slew rate disabled pads (continued)  
Num.  
6
Symbol Description  
Min.  
2.5  
3.5  
Max.  
Unit  
ns  
Note  
3
tSU  
tHI  
ta  
Data setup time (inputs)  
7
Data hold time (inputs)  
Slave access time  
ns  
8
tperiph  
tperiph  
31  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
0
ns  
tperiph - 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
Table 26. SPI slave mode timing on slew rate enabled pads  
Num.  
1
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Hz  
Note  
1
fop  
tSPSCK  
tLead  
tLag  
Frequency of operation  
0
2
SPSCK period  
Enable lead time  
Enable lag time  
4 x tperiph  
ns  
2
3
1
tperiph  
tperiph  
ns  
3
4
1
5
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
6
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
2
7
ns  
7
ns  
8
0
tperiph  
tperiph  
122  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph - 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
36  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
33  
Peripheral operating requirements and behaviors  
SS  
(INPUT)  
2
12  
12  
13  
13  
4
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
3
SPSCK  
(CPOL=1)  
(INPUT)  
9
8
10  
11  
11  
see  
note  
SEE  
NOTE  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE MSB  
7
SLAVE LSB OUT  
6
MOSI  
(INPUT)  
LSB IN  
MSB IN  
BIT 6 . . . 1  
NOTE: Not defined  
Figure 14. SPI slave mode timing (CPHA = 0)  
SS  
(INPUT)  
4
2
12  
12  
13  
13  
3
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
SPSCK  
(CPOL=1)  
(INPUT)  
11  
9
10  
SLAVE MSB OUT  
see  
note  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
8
6
7
MOSI  
(INPUT)  
MSB IN  
NOTE: Not defined  
Figure 15. SPI slave mode timing (CPHA = 1)  
2.8.2 Inter-Integrated Circuit Interface (I2C) timing  
Table 27. I 2C timing  
Characteristic  
Symbol  
Standard Mode  
Minimum Maximum  
100  
Fast Mode  
Unit  
Minimum  
Maximum  
SCL Clock Frequency  
fSCL  
0
0
400  
kHz  
Table continues on the next page...  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
34  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 27. I 2C timing (continued)  
Characteristic  
Symbol  
Standard Mode  
Minimum Maximum  
Fast Mode  
Unit  
Minimum  
Maximum  
Hold time (repeated) START condition.  
After this period, the first clock pulse is  
generated.  
tHD; STA  
4
0.6  
µs  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
4.7  
4
1.3  
0.6  
0.6  
µs  
µs  
µs  
Set-up time for a repeated START  
condition  
tSU; STA  
4.7  
Data hold time for I2C bus devices  
tHD; DAT  
tSU; DAT  
tr  
01  
2504  
3.452  
03  
1002, 5  
20 +0.1Cb  
20 +0.1Cb  
0.6  
0.91  
µs  
ns  
ns  
ns  
µs  
µs  
Data set-up time  
6
5
Rise time of SDA and SCL signals  
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
1000  
300  
300  
300  
tf  
tSU; STO  
tBUF  
4
Bus free time between STOP and  
START condition  
4.7  
1.3  
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
N/A  
N/A  
0
50  
ns  
1. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves  
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL  
lines.  
2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.  
3. Input signal Slew = 10 ns and Output Load = 50 pF  
4. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.  
5. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns must  
then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a  
device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU; DAT  
= 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is released.  
6. Cb = total capacitance of the one bus line in pF.  
SDA  
tSU; DAT  
tf  
tr  
tBUF  
tf  
tr  
tHD; STA  
tSP  
tLOW  
SCL  
tSU; STA  
tSU; STO  
HD; STA  
S
SR  
P
S
tHD; DAT  
tHIGH  
Figure 16. Timing definition for fast and standard mode devices on the I2C bus  
2.8.3 UART  
See General switching specifications.  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
Freescale Semiconductor, Inc.  
35  
Revision History  
2.9 Human-machine interfaces (HMI)  
2.9.1 TSI electrical specifications  
Table 28. TSI electrical specifications  
Symbol  
TSI_RUNF  
TSI_RUNV  
Description  
Min.  
Typ.  
100  
Max.  
Unit  
µA  
Fixed power consumption in run mode  
Variable power consumption in run mode  
(depends on oscillator's current selection)  
1.0  
128  
µA  
TSI_EN  
TSI_DIS  
Power consumption in enable mode  
Power consumption in disable mode  
TSI analog enable time  
100  
1.2  
66  
µA  
µA  
µs  
pF  
V
TSI_TEN  
TSI_CREF  
TSI_DVOLT  
TSI reference capacitor  
1.0  
Voltage variation of VP & VM around nominal  
values  
0.19  
1.03  
3 Revision History  
The following table provides a revision history for this document.  
Table 29. Revision History  
Rev. No.  
Date  
Substantial Changes  
6
April 2016  
• Updated RF Transceiver features list in topic 2.2.  
• Made text changes in the 'Supply current in Transmit mode' characteristic in Table 10.  
Power Supply Current.  
• Updated Typical values of 'Blocking Immunity', 'AM Rejection , AM modulated'  
characteristics in Table 12. Receiver Specification.  
• Updated content of RF wiring options in topic "Typical Applications Circuit" and also  
updated the circuit diagram to be visually clear.  
• Corrected description of IEREFSTEN32KHz in Table 6. Low power mode peripheral adders  
— typical value.  
MKW01 MCU Section Data Sheet, Rev. 6, 04/2016  
36  
Freescale Semiconductor, Inc.  
Information in this document is provided solely to enable system and  
software implementers to use Freescale products. There are no express  
or implied copyright licenses granted hereunder to design or fabricate  
any integrated circuits based on the information in this document.  
Freescale reserves the right to make changes without further notice to  
any products herein.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale makes no warranty, representation, or guarantee regarding  
the suitability of its products for any particular purpose, nor does  
Freescale assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability,  
including without limitation consequential or incidental damages.  
“Typical” parameters that may be provided in Freescale data sheets  
and/or specifications can and do vary in different applications, and  
actual performance may vary over time. All operating parameters,  
including “typicals,” must be validated for each customer application by  
customer's technical experts. Freescale does not convey any license  
under its patent rights nor the rights of others. Freescale sells products  
pursuant to standard terms and conditions of sale, which can be found  
at the following address: freescale.com/SalesTermsandConditions.  
Freescale, the Freescale logo, and Kinetis are trademarks of Freescale  
Semiconductor, Inc., Reg. U.S. Pat. & Tm. All other product or service  
names are the property of their respective owners. ARM, the ARM  
powered logo, and Cortex are registered trademarks of ARM Limited (or  
its subsidiaries) in the EU and/or elsewhere. All rights reserved.  
© 2013-2016 Freescale Semiconductor, Inc.  
Document Number MKW01Z128  
Revision 6, 04/2016  

相关型号:

935324722518

Multifunction Peripheral
NXP

935324737557

RISC Microprocessor
NXP

935324738557

RISC Microprocessor
NXP

935324744528

Microprocessor
NXP

935324751528

Microcontroller
NXP

935324758557

Multifunction Peripheral
NXP

935324801557

Microprocessor
NXP

935324843557

RISC Microprocessor
NXP

935324844557

Microprocessor
NXP

935324846557

RISC Microprocessor
NXP

935324862528

RISC Microcontroller
NXP

935324878574

Microcontroller
NXP