935346773557 [NXP]

RISC Microcontroller;
935346773557
型号: 935346773557
厂家: NXP    NXP
描述:

RISC Microcontroller

微控制器 外围集成电路
文件: 总76页 (文件大小:992K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number MPC5746C  
Rev. 6, 11/2018  
NXP Semiconductors  
Data Sheet: Technical Data  
MPC5746C  
MPC5746C Microcontroller  
Datasheet  
Features  
• 32-channel eDMA controller with multiple transfer  
request sources using DMAMUX  
• 1 × 160 MHz Power Architecture® e200z4 Dual issue,  
32-bit CPU  
• Boot Assist Flash (BAF) supports internal flash  
programming via a serial link (SCI)  
– Single precision floating point operations  
– 8 KB instruction cache and 4 KB data cache  
– Variable length encoding (VLE) for significant code  
density improvements  
• Analog  
– Two analog-to-digital converters (ADC), one 10-bit  
and one 12-bit  
• 1 x 80 MHz Power Architecture® e200z2 Single issue,  
32-bit CPU  
– Three analog comparators  
– Cross Trigger Unit to enable synchronization of  
ADC conversions with a timer event from the  
eMIOS or from the PIT  
– Using variable length encoding (VLE) for  
significant code size footprint reduction  
• End to end ECC  
• Communication  
– All bus masters, for example, cores, generate a  
single error correction, double error detection  
(SECDED) code for every bus transaction  
– SECDED covers 64-bit data and 29-bit address  
– Four Deserial Serial Peripheral Interface (DSPI)  
– Four Serial Peripheral interface (SPI)  
– 16 serial communication interface (LIN) modules  
– Eight enhanced FlexCAN3 with FD support  
– Four inter-IC communication interface (I2C)  
– ENET complex (10/100 Ethernet) that supports  
Multi queue with AVB support, 1588, and MII/  
RMII  
• Memory interfaces  
– 3 MB on-chip flash memory supported with the  
flash memory controller  
– 3 x flash memory page buffers (3-port flash memory  
controller)  
– Dual-channel FlexRay controller  
– 384 KB on-chip SRAM across three RAM ports  
• Audio  
– Synchronous Audio Interface (SAI)  
– Fractional clock dividers (FCD) operating in  
conjunction with the SAI  
• Clock interfaces  
– 8-40 MHz external crystal (FXOSC)  
– 16 MHz IRC (FIRC)  
– 128 KHz IRC (SIRC)  
• Configurable I/O domains supporting FlexCAN,  
LINFlexD, Ethernet, and general I/O  
– 32 KHz external crystal (SXOSC)  
– Clock Monitor Unit (CMU)  
– Frequency modulated phase-locked loop (FMPLL)  
– Real Time Counter (RTC)  
• Supports wake-up from low power modes via the  
WKPU controller  
• On-chip voltage regulator (VREG)  
• System Memory Protection Unit (SMPU) with up to 32  
region descriptors and 16-byte region granularity  
• Debug functionality  
– e200z2 core:NDI per IEEE-ISTO 5001-2008  
• 16 Semaphores to manage access to shared resources  
Class3+  
• Interrupt controller (INTC) capable of routing  
interrupts to any CPU  
– e200z4 core: NDI per IEEE-ISTO 5001-2008 Class  
3+  
• Crossbar switch architecture for concurrent access to  
peripherals, flash memory, and RAM from multiple  
bus masters  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
• Timer  
– 16 Periodic Interrupt Timers (PITs)  
– Two System Timer Modules (STM)  
– Three Software Watchdog Timers (SWT)  
– 64 Configurable Enhanced Modular Input Output Subsystem (eMIOS) channels  
• Device/board boundary Scan testing supported with Joint Test Action Group (JTAG) of IEEE 1149.1 and IEEE 1149.7  
(CJTAG)  
• Security  
– Hardware Security Module (HSMv2)  
– Password and Device Security (PASS) supporting advanced censorship and life-cycle management  
– One Fault Collection and Control Unit (FCCU) to collect faults and issue interrupts  
• Functional Safety  
– ISO26262 ASIL-B compliance  
• Multiple operating modes  
– Includes enhanced low power operation  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
2
NXP Semiconductors  
Table of Contents  
1
2
3
Block diagram.................................................................................... 4  
6.3.2  
Flash memory Array Integrity and Margin Read  
specifications.......................................................... 39  
Flash memory module life specifications............... 40  
Data retention vs program/erase cycles.................. 40  
Flash memory AC timing specifications................ 41  
Flash read wait state and address pipeline control  
settings ................................................................... 42  
Family comparison.............................................................................4  
Ordering parts.....................................................................................8  
3.1 Determining valid orderable parts ..........................................8  
3.2 Ordering Information ............................................................. 9  
General............................................................................................... 9  
4.1 Absolute maximum ratings..................................................... 9  
4.2 Recommended operating conditions....................................... 11  
4.3 Voltage regulator electrical characteristics............................. 13  
4.4 Voltage monitor electrical characteristics...............................17  
4.5 Supply current characteristics................................................. 18  
4.6 Electrostatic discharge (ESD) characteristics......................... 22  
4.7 Electromagnetic Compatibility (EMC) specifications............ 22  
I/O parameters....................................................................................23  
5.1 AC specifications @ 3.3 V Range...........................................23  
5.2 DC electrical specifications @ 3.3V Range............................24  
5.3 AC specifications @ 5 V Range..............................................25  
5.4 DC electrical specifications @ 5 V Range..............................25  
5.5 Reset pad electrical characteristics..........................................26  
5.6 PORST electrical specifications..............................................28  
Peripheral operating requirements and behaviours............................28  
6.1 Analog..................................................................................... 28  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
4
6.4 Communication interfaces.......................................................43  
6.4.1  
6.4.2  
DSPI timing............................................................ 43  
FlexRay electrical specifications............................ 49  
6.4.2.1  
6.4.2.2  
6.4.2.3  
6.4.2.4  
FlexRay timing....................................49  
TxEN...................................................49  
TxD..................................................... 50  
RxD..................................................... 51  
5
6.4.3  
6.4.4  
Ethernet switching specifications........................... 52  
SAI electrical specifications .................................. 53  
6.5 Debug specifications............................................................... 55  
6.5.1  
6.5.2  
6.5.3  
6.5.4  
JTAG interface timing ........................................... 55  
Nexus timing...........................................................58  
WKPU/NMI timing................................................ 60  
External interrupt timing (IRQ pin)........................ 61  
6
7
8
9
Thermal attributes.............................................................................. 61  
7.1 Thermal attributes................................................................... 61  
Dimensions.........................................................................................65  
8.1 Obtaining package dimensions ...............................................65  
Pinouts................................................................................................66  
9.1 Package pinouts and signal descriptions................................. 66  
6.1.1  
6.1.2  
ADC electrical specifications................................. 28  
Analog Comparator (CMP) electrical  
specifications.......................................................... 33  
6.2 Clocks and PLL interfaces modules........................................34  
6.2.1  
6.2.2  
6.2.3  
6.2.4  
Main oscillator electrical characteristics.................34  
32 kHz Oscillator electrical specifications ............ 36  
16 MHz RC Oscillator electrical specifications......36  
128 KHz Internal RC oscillator Electrical  
10 Reset sequence................................................................................... 66  
10.1 Reset sequence........................................................................ 66  
10.1.1  
10.1.2  
10.1.3  
Reset sequence duration..........................................66  
BAF execution duration..........................................66  
Reset sequence description..................................... 67  
specifications ......................................................... 37  
PLL electrical specifications ..................................37  
6.2.5  
6.3 Memory interfaces...................................................................38  
6.3.1 Flash memory program and erase specifications....38  
11 Revision History.................................................................................69  
11.1 Revision History......................................................................69  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
3
Block diagram  
1 Block diagram  
80 MHz e200z2  
System bus masters  
160 MHz e200z4  
64-bit AHB  
E2 E-ECC  
Nexus 3+  
System  
2 x STM  
8 KB i-cache 4 KB d-cache  
WKPU  
BAF  
Ethernet  
(ENET)  
HSMv2  
Flexray  
SPFP-APU  
E2 E-ECC  
Nexus 3+  
PMC  
eDMA  
64-bit AHB  
FMPLL  
16 MHz FIRC  
RTC/API  
DEBUG/  
JTAG  
2 x SWTs  
16 x SEMA42  
16 x PIT-RTI  
FCCU  
PASS  
SSCM  
64-bit data  
E2 E-ECC  
SMPU  
32 KHz  
SXOSC  
MC_CGM,  
MC_PCU,  
MC_ME,  
Peripheral  
Flash Memory  
E2 E-ECC  
2xRAM  
E2 E-ECC  
Low power  
unit interface  
(LPU)  
bridge  
MC_RGM  
E2 E-ECC  
3 x SA-PF buffers  
Triple ported  
64-bit wide RAM  
256 KB array  
256 KB array  
128 KHz  
SIRC  
SIUL  
8–40 MHz  
FXOSC  
STCU  
(MBIST)  
3 MB array (inc EEE)  
MEMU  
CMU  
TDM  
Peripheral clusters  
Padkeeper  
support  
68 ch 10-bit ADC0 31 ch 12-bit ADC1 1 x FlexCAN(PN)* 16 x LINFlexD  
(mix int and ext)  
7 x FlexCAN*  
Register  
protection  
2
C
4 x I  
3 x analog  
4 x DSPI  
4 x SPI  
3 x SAI  
comparator (CMP)  
3 x FCD  
2 x eMIOS + BCTU  
2-core INTC  
DMA and  
2 x channel mux  
1 x CRC  
* All FlexCANs optionally support  
CAN FD  
Figure 1. MPC5746C block diagram  
2 Family comparison  
The following table provides a summary of the different members of the MPC5746C  
family and their proposed features. This information is intended to provide an  
understanding of the range of functionality offered by this family. For full details of all of  
the family derivatives please contact your marketing representative.  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
4
NXP Semiconductors  
Family comparison  
NOTE  
All optional features (Flash memory, RAM, Peripherals) start  
with lowest number or address (e.g., FlexCAN0) and end at  
highest available number or address (e.g., MPC574xB/C have 6  
CAN, ending with FlexCAN5).  
Table 1. MPC5746C Family Comparison1  
Feature  
MPC5745B  
MPC5744B  
MPC5746B  
MPC5744C  
e200z4  
MPC5745C  
e200z4  
MPC5746C  
e200z4  
CPUs  
e200z4  
e200z4  
e200z4  
e200z2  
e200z2  
e200z2  
FPU  
e200z4  
e200z4  
e200z4  
e200z4  
e200z4  
e200z4  
Maximum  
Operating  
Frequency2  
160MHz (Z4)  
160MHz (Z4)  
160MHz (Z4)  
160MHz (Z4)  
80MHz (Z2)  
160MHz (Z4)  
80MHz (Z2)  
160MHz (Z4)  
80MHz (Z2)  
Flash memory  
2 MB  
1.5 MB  
3 MB  
1.5 MB  
2 MB  
3 MB  
EEPROM  
support  
Emulated up to 64K  
Emulated up to 128K  
RAM  
256 KB  
192 KB  
384 KB  
(Optional  
512KB)3  
192 KB  
256 KB  
384 KB  
(Optional  
512KB)3  
ECC  
SMPU  
End to End  
16 entry  
32 channels  
DMA  
10-bit ADC  
36 Standard channels  
32 External channels  
15 Precision channels  
16 Standard channels  
3
12-bit ADC  
Analog  
Comparator  
BCTU  
SWT  
1
1, SWT[0]  
1, STM[0]  
24  
2
STM  
PIT-RTI  
16 channels PIT  
1 channels RTI  
1
RTC/API  
Total Timer I/O5  
64 channels  
16-bits  
LINFlexD  
1
1
Master and Slave (LINFlexD[0], 11 Master  
(LINFlexD[1:11])  
Master and Slave (LINFlexD[0], 15 Master  
(LINFlexD[1:15])  
FlexCAN  
DSPI/SPI  
6 with optional CAN FD support (FlexCAN[0:5])  
8 with optional CAN FD support (FlexCAN[0:7])  
4 x DSPI  
4 x SPI  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
5
Family comparison  
Table 1. MPC5746C Family Comparison1 (continued)  
Feature  
I2C  
MPC5745B  
MPC5744B  
MPC5746B  
MPC5744C  
MPC5745C  
MPC5746C  
4
3
4
3
4
3
4
3
SAI/I2S  
FXOSC  
SXOSC  
FIRC  
8 - 40 MHz  
32 KHz  
16 MHz  
128 KHz  
1
SIRC  
FMPLL  
Low Power Unit  
(LPU)  
Yes  
FlexRay 2.1  
(dual channel)  
Yes, 128 MB  
1
Yes, 128 MB  
1
Yes, 128 MB  
Yes, 128 MB  
1
Ethernet (RMII,  
MII + 1588, Muti  
queue AVB  
1
support)  
CRC  
1
MEMU  
STCU2  
2
1
HSM-v2  
Optional  
(security)  
Censorship  
FCCU  
Yes  
1
Safety level  
User MBIST  
Specific functions ASIL-B certifiable  
Yes  
Yes  
I/O Retention in  
Standby  
GPI  
1 (100 BGA), 17 (176 LQFP-EP), 18 (256 BGA), 18 (324 BGA)  
65 (100 BGA), 129 (176 LQFP-EP), 178 (256 BGA), 246 (324 BGA)  
JTAGC,  
GPIO  
Debug  
cJTAG  
Nexus  
Z4 N3+ (Only available on 324BGA (development only) )  
Z2 N3+ (Only available on 324BGA (development only) )  
Packages  
176 LQFP-EP  
256 BGA  
176 LQFP-EP  
256 BGA  
176 LQFP-EP  
256 BGA  
176 LQFP-EP  
256 BGA  
176 LQFP-EP  
256 BGA  
176 LQFP-EP  
256 BGA,  
100 BGA  
100 BGA  
100 BGA  
100 BGA  
100 BGA  
324 BGA  
(development  
only)  
100 BGA  
1. Feature set dependent on selected peripheral multiplexing, table shows example. Peripheral availability is package  
dependent.  
2. Based on 125°C ambient operating temperature and subject to full device characterization.  
3. Contact NXP representative for part number  
4. Additional SWT included when HSM option selected  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
6
NXP Semiconductors  
Family comparison  
5. See device datasheet and reference manual for information on to timer channel configuration and functions.  
Table 2. MPC5746C Family Comparison - NVM Memory Map 1  
Start Address  
End Address  
Flash block  
RWW partition  
MPC5744  
MPC5745  
MPC5746  
0x01000000  
0x0103FFFF  
256 KB code  
Flash block 0  
6
available  
available  
available  
0x01040000  
0x01080000  
0x010C0000  
0x01100000  
0x01140000  
0x01180000  
0x011C0000  
0x01200000  
0x01240000  
0x0107FFFF  
0x010BFFFF  
0x010FFFFF  
0x0113FFFF  
0x0117FFFF  
0x011BFFFF  
0x011FFFFF  
0x0123FFFF  
0x0127FFFF  
256 KB code  
Flash block 1  
6
6
6
6
7
7
7
7
7
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
256 KB code  
Flash block 2  
256 KB code  
Flash block3  
available  
available  
256 KB code  
Flash block 4  
not available  
not available  
not available  
not available  
not available  
not available  
available  
256 KB code  
Flash block 5  
available  
256 KB code  
Flash block 6  
not available  
not available  
not available  
not available  
256 KB code  
Flash block 7  
256 KB code  
Flash block 8  
256 KB code  
Flash block 9  
Table 3. MPC5746C Family Comparison - NVM Memory Map 2  
Start Address  
End Address  
Flash block  
RWW partition  
MPC5744B  
MPC5745B  
MPC5746B  
MPC5744C  
MPC5745C  
MPC5746C  
0x00F900001  
0x00F94000  
0x00F98000  
0x00F9C000  
0x00FA0000  
0x00FA4000  
0x00FA8000  
0x00FAC000  
0x00FB0000  
0x00FB8000  
0x00FC0000  
0x00FC8000  
0x00FD0000  
0x00FD8000  
0x00FE0000  
0x00FF0000  
0x00F93FFF  
0x00F97FFF  
0x00F9BFFF  
0x00F9FFFF  
0x00FA3FFF  
0x00FA7FFF  
0x00FABFFF  
0x00FAFFFF  
0x00FB7FFF  
0x00FBFFFF  
0x00FC7FFF  
0x00FCFFFF  
0x00FD7FFF  
0x00FDFFFF  
0x00FEFFFF  
0x00FFFFFF  
16 KB data Flash  
16 KB data Flash  
16 KB data Flash  
16 KB data Flash  
16 KB data Flash  
16 KB data Flash  
16 KB data Flash  
16 KB data Flash  
32 KB data Flash  
32 KB data Flash  
32 KB data Flash  
32 KB data Flash  
32 KB data Flash  
32 KB data Flash  
64 KB data Flash  
64 KB data Flash  
2
2
2
2
3
3
3
3
available  
available  
available1  
available1  
available1  
available1  
available1  
available1  
available1  
available1  
available  
available  
not available  
not available  
not available  
not available  
Reserved  
Reserved  
available  
0
1
1
1
0
1
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
7
Ordering parts  
1. Flexible patitions for boot and EEPROM  
Table 4. MPC5748G Family Comparison - NVM Memory Map 3  
Start Address  
End Address  
Flash block  
RWW  
MPC5744B  
MPC5745B  
MPC5746B  
MPC5744C  
MPC5745C  
MPC5746C  
0x00610000  
0x00620000  
0x0061FFFF  
0x0062FFFF  
64 KB HSM Code  
block 2  
0
1
available  
available  
64 KB HSM Code  
block 3  
available  
available  
HSM Data  
0x00630000  
0x00F7FFFF  
9536 KB  
Reserved  
HSM Data  
0x00F80000  
0x00F84000  
0x00F88000  
0x00F83FFF  
0x00F87FFF  
0x00F8BFFF  
16 KB HSM data  
block 0  
4
5
available  
available  
Reserved  
available  
available  
16 KB HSM data  
block 1  
16 KB  
Small HSM Code Block  
0x00F8C000  
0x00F8FFFF  
16 KB Code Flash  
block  
0
available  
available  
Table 5. MPC5746C Family Comparison - RAM Memory Map  
Start Address  
0x40000000  
0x40002000  
0x40010000  
0x40020000  
0x40030000  
0x40040000  
0x40050000  
0x40060000  
0x40070000  
End Address  
0x40001FFF  
0x4000FFFF  
0x4001FFFF  
0x4002FFFF  
0x4003FFFF  
0x4004FFFF  
0x4005FFFF  
0x4006FFFF  
0x4007FFFF  
Allocated size  
8 KB  
Description  
SRAM0  
SRAM1  
SRAM2  
SRAM3  
SRAM4  
SRAM5  
SRAM6  
SRAM7  
SRAM8  
MPC5744  
available  
MPC5745  
available  
MPC5746  
available  
available  
available  
available  
available  
available  
available  
optional  
56 KB  
available  
available  
64 KB  
available  
available  
64 KB  
available  
available  
64 KB  
not available  
not available  
not available  
not available  
not available  
available  
64 KB  
not available  
not available  
not available  
not available  
64 KB  
64 KB  
64 KB  
optional  
3 Ordering parts  
3.1 Determining valid orderable parts  
To determine the orderable part numbers for this device, go to www.nxp.com and  
perform a part number search for the following device number: MPC5746C.  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
8
NXP Semiconductors  
General  
3.2 Ordering Information  
P
PC 57  
4
6
C
S
K0  
MJ  
6
M
R
Example Code  
Qualification Status  
Power Architecture  
Automotive Platform  
Core Version  
Flash Size (core dependent)  
Product  
Optional fields  
Fab and mask indicator  
Temperature spec.  
Package Code  
CPU Frequency  
R = Tape & Reel (blank if Tray)  
Product Version  
B = Single core  
C = Dual core  
Package Code  
Fab and mask version indicator  
K = TSMC Fab  
#(0,1,etc.) = Version of the  
maskset, like rev. 0=0N65H  
Qualification Status  
P = Engineering samples  
S = Automotive qualified  
KU = 176 LQFP EP  
MJ = 256 MAPBGA  
MN = 324 MAPBGA  
PC = Power Architecture  
Automotive Platform  
MH = 100MAPBGA  
Temperature spec.  
CPU Frequency  
C = -40.C to +85.C Ta  
V = -40.C to +105.C Ta  
M = -40.C to +125.C Ta  
57 = Power Architecture in 55nm  
2 = Z4 operates upto 120 MHz  
6 = Z4 operates upto 160 MHz  
Optional fields  
Core Version  
Blank = No optional feature  
S = HSM (Security Module)  
4 = e200z4 Core Version (highest  
core version in the case of multiple  
cores)  
F = CAN FD  
B = HSM + CAN FD  
R = 512K RAM  
T = HSM + 512K RAM  
G* = CAN FD + 512K RAM  
H* = HSM + CAN FD + 512K RAM  
* G and H for 5746 B/C only  
Shipping Method  
R = Tape and reel  
Blank = Tray  
Flash Memory Size  
4 = 1.5 MB  
5 = 2 MB  
6 = 3 MB  
Note: Not all part number combinations are available as production product  
4 General  
4.1 Absolute maximum ratings  
NOTE  
Functional operating conditions appear in the DC electrical  
characteristics. Absolute maximum ratings are stress ratings  
only, and functional operation at the maximum values is not  
guaranteed. See footnotes in Table 6 for specific conditions  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
9
General  
Stress beyond the listed maximum values may affect device  
reliability or cause permanent damage to the device.  
Table 6. Absolute maximum ratings  
Symbol  
VDD_HV_A, VDD2,_3HV_B  
VDD_HV_C  
Parameter  
Conditions1  
Min  
Max  
Unit  
,
3.3 V - 5. 5V input/output supply voltage  
–0.3  
6.0  
V
4, 5  
VDD_HV_FLA  
3.3 V flash supply voltage (when supplying  
from an external source in bypass mode)  
–0.3  
3.63  
V
6
VDD_LP_DEC  
Decoupling pin for low power regulators7  
3.3 V / 5.0 V ADC1 high reference voltage  
3.3 V to 5.5V ADC supply voltage  
–0.3  
–0.3  
–0.3  
1.32  
6
V
V
V
8
VDD_HV_ADC1_REF  
VDD_HV_ADC0  
VDD_HV_ADC1  
VSS_HV_ADC0  
VSS_HV_ADC1  
6.0  
3.3V to 5.5V ADC supply ground  
–0.1  
0.1  
V
9, 10, 11, 12  
VDD_LV  
Core logic supply voltage  
–0.3  
–0.3  
1.32  
V
V
VINA  
Voltage on analog pin with respect to  
Min (VDD_HV_x,  
ground (VSS_HV  
)
VDD_HV_ADCx  
VDD_ADCx_REF  
+0.3  
,
)
VIN  
Voltage on any digital pin with respect to  
ground (VSS_HV  
Relative to  
–0.3  
VDD_HV_x + 0.3  
V
)
VDD_HV_A  
VDD_HV_B  
,
,
VDD_HV_C  
IINJPAD  
IINJSUM  
Tramp  
Injected input current on any pin during  
overload condition  
Always  
–5  
5
mA  
mA  
Absolute sum of all injected input currents  
during overload condition  
–50  
50  
Supply ramp rate  
0.5 V / min  
-40  
100V/ms  
125  
°C  
°C  
13  
TA  
Ambient temperature  
Storage temperature  
TSTG  
–55  
165  
1. All voltages are referred to VSS_HV unless otherwise specified  
2. VDD_HV_B and VDD_HV_C are common together on the 176 LQFP-EP package.  
3. Allowed VDD_HV_x = 5.5–6.0 V for 60 seconds cumulative time with no restrictions, for 10 hours cumulative time device in  
reset, TJ= 150 °C, remaining time at or below 5.5 V.  
4. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V  
5. VDD_HV_FLA must be disconnected from ANY power sources when VDD_HV_A = 5V  
6. This pin should be decoupled with low ESR 1 µF capacitor.  
7. Not available for input voltage, only for decoupling internal regulators  
8. 10-bit ADC does not have dedicated reference and its reference is bonded to 10-bit ADC supply(VDD_HV_ADC0) inside  
the package.  
9. Allowed 1.45 – 1.5 V for 60 seconds cumulative time at maximum TJ = 150 °C, remaining time as defined in footnotes 10  
and 11.  
10. Allowed 1.38 – 1.45 V– for 10 hours cumulative time at maximum TJ = 150 °C, remaining time as defined in footnote 11.  
11. 1.32 – 1.38 V range allowed periodically for supply with sinusoidal shape and average supply value below 1.326 V at  
maximum TJ = 150 °C.  
12. If HVD on core supply (VHVD_LV_x) is enabled, it will generate a reset when supply goes above threshold.  
13. TJ=150°C. Assumes TA=125°C  
• Assumes maximum θJA for 2s2p board. See Thermal attributes  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
10  
NXP Semiconductors  
General  
4.2 Recommended operating conditions  
The following table describes the operating conditions for the device, and for which all  
specifications in the data sheet are valid, except where explicitly noted. The device  
operating conditions must not be exceeded in order to guarantee proper operation and  
reliability. The ranges in this table are design targets and actual data may vary in the  
given range.  
NOTE  
• For normal device operations, all supplies must be within  
operating range corresponding to the range mentioned in  
following tables. This is required even if some of the  
features are not used.  
• If VDD_HV_A is in 5.0V range, VDD_HV_FLA should be  
externally supplied using a 3.3V source. If VDD_HV_A is  
in 3.3V range, VDD_HV_FLA should be shorted to  
VDD_HV_A.  
• VDD_HV_A, VDD_HV_B and VDD_HV_C are all  
independent supplies and can each be set to 3.3V or 5V.  
The following tables: 'Recommended operating conditions  
(VDD_HV_x = 3.3 V)' and table 'Recommended operating  
conditions (VDD_HV_x = 5 V)' specify their ranges when  
configured in 3.3V or 5V respectively.  
Table 7. Recommended operating conditions (VDD_HV_x = 3.3 V)  
Symbol  
VDD_HV_A  
VDD_HV_B  
VDD_HV_C  
VDD_HV_FLA  
Parameter  
Conditions1  
Min2  
Max  
Unit  
HV IO supply voltage  
3.15  
3.6  
V
3
HV flash supply voltage  
3.15  
3.0  
3.6  
5.5  
3.6  
V
V
V
VDD_HV_ADC1_REF HV ADC1 high reference voltage  
VDD_HV_ADC0  
VDD_HV_ADC1  
HV ADC supply voltage  
max(VDD_H  
V_A,VDD_H  
V_B,VDD_H  
V_C) - 0.05  
VSS_HV_ADC0  
VSS_HV_ADC1  
HV ADC supply ground  
-0.1  
0.1  
V
4, 5  
VDD_LV  
Core supply voltage  
1.2  
3.15  
-3.0  
1.32  
3.6  
V
V
6, 7  
VIN1_CMP_REF  
IINJPAD  
Analog Comparator DAC reference voltage  
Injected input current on any pin during  
overload condition  
3.0  
mA  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
11  
General  
Table 7. Recommended operating conditions (VDD_HV_x = 3.3 V) (continued)  
Symbol  
Parameter  
Conditions1  
Min2  
Max  
Unit  
8
TA  
Ambient temperature under bias  
fCPU ≤ 160  
MHz  
–40  
125  
°C  
TJ  
Junction temperature under bias  
–40  
150  
°C  
1. All voltages are referred to VSS_HV unless otherwise specified  
2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the  
point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.  
3. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V  
4. Only applicable when supplying from external source.  
5. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be  
left floating.  
6. VIN1_CMP_REF ≤ VDD_HV_A  
7. This supply is shorted VDD_HV_A on lower packages.  
8. TJ=150°C. Assumes TA=125°C  
• Assumes maximum θJA of 2s2p board. See Thermal attributes  
NOTE  
If VDD_HV_A is in 5V range, it is necessary to use internal  
Flash supply 3.3V regulator. VDD_HV_FLA should not be  
supplied externally and should only have decoupling capacitor.  
Table 8. Recommended operating conditions (VDD_HV_x = 5 V)  
Symbol  
VDD_HV_A  
VDD_HV_B  
VDD_HV_C  
VDD_HV_FLA  
Parameter  
Conditions 1  
Min2  
Max  
Unit  
HV IO supply voltage  
4.5  
5.5  
V
3
HV flash supply voltage  
3.15  
3.15  
3.6  
5.5  
5.5  
V
V
V
VDD_HV_ADC1_REF HV ADC1 high reference voltage  
VDD_HV_ADC0  
HV ADC supply voltage  
max(VDD_H  
V_A,VDD_H  
V_B,VDD_H  
V_C) - 0.05  
VDD_HV_ADC1  
VSS_HV_ADC0  
VSS_HV_ADC1  
HV ADC supply ground  
-0.1  
0.1  
V
4
VDD_LV  
Core supply voltage  
1.2  
3.15  
-3.0  
1.32  
5.55  
3.0  
V
V
6
VIN1_CMP_REF  
Analog Comparator DAC reference voltage  
IINJPAD  
Injected input current on any pin during  
overload condition  
mA  
7
TA  
Ambient temperature under bias  
fCPU ≤ 160  
MHz  
–40  
–40  
125  
150  
°C  
°C  
TJ  
Junction temperature under bias  
1. All voltages are referred to VSS_HV unless otherwise specified  
2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the  
point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.  
3. When VDD_HV is in 5 V range, VDD_HV_FLA cannot be supplied externally.This pin is decoupled with Cflash_reg  
.
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
12  
NXP Semiconductors  
General  
4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be  
left floating  
5. VIN1_CMP_REF ≤ VDD_HV_A  
6. This supply is shorted VDD_HV_A on lower packages.  
7. TJ=150°C. Assumes TA=125°C  
• Assumes maximum θJA of 2s2p board. See Thermal attributes  
4.3 Voltage regulator electrical characteristics  
The voltage regulator is composed of the following blocks:  
• Choice of generating supply voltage for the core area.  
• Control of external NPN ballast transistor  
• Generating core supply using internal ballast transistor  
• Connecting an external 1.25 V (nominal) supply directly without the NPN ballast  
• Internal generation of the 3.3 V flash supply when device connected in 5V  
applications  
• External bypass of the 3.3 V flash regulator when device connected in 3.3V  
applications  
• Low voltage detector - low threshold (LVD_IO_A_LO) for VDD_HV_IO_A supply  
• Low voltage detector - high threshold (LVD_IO_A_Hi) for VDD_HV_IO_A supply  
• Low voltage detector (LVD_FLASH) for 3.3 V flash supply (VDD_HV_FLA)  
• Various low voltage detectors (LVD_LV_x)  
• High voltage detector (HVD_LV_cold) for 1.2 V digital core supply (VDD_LV)  
• Power on Reset (POR_LV) for 1.25 V digital core supply (VDD_LV)  
• Power on Reset (POR_HV) for 3.3 V to 5 V supply (VDD_HV_A)  
The following bipolar transistors1 are supported, depending on the device performance  
requirements. As a minimum the following must be considered when determining the  
most appropriate solution to maintain the device under its maximum power dissipation  
capability: current, ambient temperature, mounting pad area, duty cycle and frequency for  
Idd, collector voltage, etc  
1. BCP56, MCP68 and MJD31are guaranteed ballasts.  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
13  
General  
LPPREG  
VDD_LP_DEC  
VDD_HV_BALLAST  
ULPPREG  
CLP/ULPREG  
VRC_CTRL  
VSS_HV  
FPREG  
C
BE_FPREG  
Flash  
voltage  
regulator  
VDD_HV_FLA  
V
DD_LV  
CFLASH_REG  
CFP_REG  
VSS_HV  
VSS_HV  
DEVICE  
Figure 2. Voltage regulator capacitance connection  
NOTE  
On BGA, VSS_LV and VSS_HV have been joined on substrate  
and renamed as VSS.  
Table 9. Voltage regulator electrical specifications  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
1
Cfp_reg  
External decoupling / stability  
capacitor  
Min, max values shall be granted  
with respect to tolerance, voltage,  
temperature, and aging  
variations.  
1.32  
2.22  
3
µF  
Combined ESR of external  
capacitor  
0.001  
0.8  
1
0.03  
1.4  
Ohm  
µF  
Clp/ulp_reg External decoupling / stability  
capacitor for internal low power  
regulators  
Min, max values shall be granted  
with respect to tolerance, voltage,  
temperature, and aging  
variations.  
Combined ESR of external  
capacitor  
0.001  
0.1  
Ohm  
nF  
3
Cbe_fpreg  
Capacitor in parallel to base-  
emitter  
BCP68 and BCP56  
MJD31  
3.3  
4.7  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
14  
NXP Semiconductors  
General  
Table 9. Voltage regulator electrical specifications (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
4
Cflash_reg  
External decoupling / stability  
capacitor for internal Flash  
regulators  
Min, max values shall be granted  
with respect to tolerance, voltage,  
temperature, and aging  
variations.  
1.32  
2.2  
3
µF  
Combined ESR of external  
capacitor  
VDD_HV_A supply capacitor 5  
0.001  
0.03  
Ohm  
µF  
CHV_VDD_A  
Min, max values shall be granted  
with respect to tolerance, voltage,  
temperature, and aging  
variations.  
1
CHV_VDD_B  
VDD_HV_B supply capacitor5  
Min, max values shall be granted  
with respect to tolerance, voltage,  
temperature, and aging  
variations.  
1
µF  
µF  
µF  
µF  
V
CHV_VDD_C VDD_HV_C supply capacitor5  
Min, max values shall be granted  
with respect to tolerance, voltage,  
temperature, and aging  
variations.  
1
CHV_ADC0 HV ADC supply decoupling  
capacitances  
CHV_ADC1  
Min, max values shall be granted  
with respect to tolerance, voltage,  
temperature, and aging  
variations.  
1
6
CHV_ADR  
HV ADC SAR reference supply  
decoupling capacitances  
Min, max values shall be granted  
with respect to tolerance, voltage,  
temperature, and aging  
variations.  
0.47  
2.25  
VDD_HV_BALL FPREG Ballast collector supply  
When collector of NPN ballast is  
directly supplied by an on board  
supply source (not shared with  
VDD_HV_A supply pin) without  
any series resistance, that is,  
RC_BALLAST less than 0.01 Ohm.  
5.5  
7
voltage  
AST  
RC_BALLAST Series resistor on collector of  
FPREG ballast  
When VDD_HV_BALLAST is  
shorted to VDD_HV_A on the  
board  
74  
0.1  
Ohm  
μs  
tSU  
Start-up time with external  
ballastafter main supply  
(VDD_HV_A) stabilization  
Cfp_reg = 3 μF  
tSU_int  
Start-up time with internal ballast Cfp_reg = 3 μF  
after main supply (VDD_HV_A)  
stabilization  
103  
1.0  
μs  
tramp  
Load current transient  
Iload from 15% to 55%  
Cfp_reg = 3 µF  
µs  
1. Split capacitance on each pair VDD_LV pin should sum up to a total value of Cfp_reg  
2. Typical values will vary over temperature, voltage, tolerance, drift, but total variation must not exceed minimum and  
maximum values.  
3. Ceramic X7R or X5R type with capacitance-temperature characteristics +/-15% of -55 degC to +125degC is  
recommended. The tolerance +/-20% is acceptable.  
4. It is required to minimize the board parasitic inductance from decoupling capacitor to VDD_HV_FLA pin and the routing  
inductance should be less than 1nH.  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
15  
General  
5. 1. For VDD_HV_x, 1µf on each side of the chip  
a. 0.1 µf close to each VDD/VSS pin pair.  
b. 10 µf near for each power supply source  
c. For VDD_LV, 0.1uf close to each VDD/VSS pin pair is required. Depending on the the selected regulation  
mode, this amount of capacitance will need to be subtracted from the total capacitance required by the  
regulator for e.g., as specified by CFP_REG parameter.  
2. For VDD_LV, 0.1uf close to each VDD/VSS pin pair is required. Depending on the the selected regulation mode, this  
amount of capacitance will need to be subtracted from the total capacitance required by the regulator for e.g., as  
specified by CFP_REG parameter  
6. Only applicable to ADC1  
7. In external ballast configuration the following must be ensured during power-up and power-down (Note: If VDD_HV_BALLAST  
is supplied from the same source as VDD_HV_A this condition is implicitly met):  
• During power-up, VDD_HV_BALLAST must have met the min spec of 2.25V before VDD_HV_A reaches the  
POR_HV_RISE min of 2.75V.  
• During power-down, VDD_HV_BALLAST must not drop below the min spec of 2.25V until VDD_HV_A is below  
POR_HV_FALL min of 2.7V.  
NOTE  
For a typical configuration using an external ballast transistor  
with separate supply for VDD_HV_A and the ballast collector,  
a bulk storage capacitor (as defined in Table 9) is required on  
VDD_HV_A close to the device pins to ensure a stable supply  
voltage.  
Extra care must be taken if the VDD_HV_A supply is also  
being used to power the external ballast transistor or the device  
is running in internal regulation mode. In these modes, the  
inrush current on device Power Up or on exit from Low Power  
Modes is significant and may cause the VDD_HV_A voltage to  
drop resulting in an LVD reset event. To avoid this, the board  
layout should be optimized to reduce common trace resistance  
or additional capacitance at the ballast transistor collector (or  
VDD_HV_A pins in the case of internal regulation mode) is  
required. NXP recommends that customers simulate the  
external voltage supply circuitry.  
In all circumstances, the voltage on VDD_HV_A must be  
maintained within the specified operating range (see  
Recommended operating conditions) to prevent LVD events.  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
16  
NXP Semiconductors  
General  
4.4 Voltage monitor electrical characteristics  
Table 10. Voltage monitor electrical characteristics  
Symbol  
Parameter  
State Conditions  
Configuration  
Threshold  
Typ  
Unit  
V
Power Up  
Mask  
Opt2  
Reset  
Type  
Min  
Max  
1
VPOR_LV  
LV supply power Fall  
on reset detector  
Untrimmed Yes  
Trimmed  
No  
POR  
0.930  
0.979  
1.028  
V
V
V
V
-
-
-
Rise Untrimmed  
0.980  
-
1.029  
-
1.078  
-
Trimmed  
VHVD_LV_col LV supply high  
Fall  
Untrimmed No  
Trimmed  
Yes  
No  
Function Disabled at Start  
al  
voltage  
d
1.325  
1.345  
1.375  
V
monitoring,  
detecting at  
device pin  
Rise Untrimmed  
Trimmed  
Disabled at Start  
1.345 1.365  
1.395  
V
V
V
V
V
VLVD_LV_PD LV supply low  
Fall  
Untrimmed Yes  
Trimmed  
POR  
POR  
POR  
1.0800 1.1200  
1.1250 1.1425  
1.1000 1.1400  
1.1450 1.1625  
1.1600  
1.1600  
1.1800  
1.1800  
voltage  
2_hot  
monitoring,  
detecting on the  
PD2 core (hot)  
area  
Rise Untrimmed  
Trimmed  
VLVD_LV_PD LV supply low  
Fall  
Untrimmed Yes  
Trimmed  
No  
No  
1.0800 1.1200  
1.1140 1.1370  
1.1000 1.140  
1.1340 1.1570  
1.1600  
1.1600  
1.1800  
1.1800  
V
V
V
V
voltage  
1_hot (BGFP)  
monitoring,  
detecting on the  
PD1 core (hot)  
area  
Rise Untrimmed  
Trimmed  
VLVD_LV_PD LV supply low  
Fall  
Untrimmed Yes  
Trimmed  
1.0800 1.1200  
1.1140 1.1370  
1.1000 1.1400  
1.1340 1.1570  
1.1600  
1.1600  
1.1800  
1.1800  
V
V
V
V
voltage  
0_hot (BGFP)  
monitoring,  
detecting on the  
PD0 core (hot)  
area  
Rise Untrimmed  
Trimmed  
VPOR_HV  
HV supply power Fall  
on reset detector  
Untrimmed Yes  
Trimmed  
No  
POR  
POR  
2.7000 2.8500  
3.0000  
-
V
V
V
V
V
V
V
V
-
-
Rise Untrimmed  
2.7500 2.9000  
3.0500  
-
Trimmed  
-
-
VLVD_IO_A_L HV IO_A supply  
Fall  
Untrimmed Yes  
Trimmed  
No  
2.7500 2.9230  
2.9780 3.0390  
2.7800 2.9530  
3.0080 3.0690  
3.0950  
3.1000  
3.1250  
3.1300  
, 3  
low voltage  
O
monitoring - low  
range  
Rise Untrimmed  
Trimmed  
VLVD_IO_A_H HV IO_A supply  
Fall  
Trimmed  
No  
Yes  
Function Disabled at Start  
3
low voltage  
monitoring - high  
range  
al  
I
4.0600 4.151  
4.2400  
4.3000  
V
V
Rise Trimmed  
Disabled at Start  
4.1150 4.2010  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
17  
General  
Table 10. Voltage monitor electrical characteristics (continued)  
Symbol  
Parameter  
State Conditions  
Configuration  
Threshold  
Typ  
Unit  
V
Power Up  
Mask  
Opt2  
Reset  
Type  
Min  
Max  
1
VLVD_LV_PD LV supply low  
Fall  
Untrimmed No  
Trimmed  
Yes  
Function Disabled at Start  
voltage  
al  
2_cold  
1.1400 1.1550  
1.1750  
1.1950  
V
monitoring,  
detecting at the  
device pin  
Rise Untrimmed  
Trimmed  
Disabled at Start  
1.1600 1.1750  
V
1. All monitors that are active at power-up will gate the power up recovery and prevent exit from POWERUP phase until the  
minimum level is crossed. These monitors can in some cases be masked during normal device operation, but when active  
will always generate a POR reset.  
2. Voltage monitors marked as non maskable are essential for device operation and hence cannot be masked.  
3. There is no voltage monitoring on the VDD_HV_ADC0, VDD_HV_ADC1, VDD_HV_B and VDD_HV_C I/O segments. For applications  
requiring monitoring of these segments, either connect these to VDD_HV_A at the PCB level or monitor externally.  
4.5 Supply current characteristics  
Current consumption data is given in the following table. These specifications are design  
targets and are subject to change per device characterization.  
NOTE  
The ballast must be chosen in accordance with the ballast  
transistor supplier operating conditions and recommendations.  
Table 11. Current consumption characteristics  
Symbol  
IDD_BODY_1  
2, 3  
Parameter  
Conditions1  
Min Typ  
Max  
Unit  
RUN Body Mode Profile Operating  
current  
LV supply + HV supply + HV  
Flash supply +  
147  
mA  
2 x HV ADC supplies4  
Ta = 125°C , 5  
VDD_LV = 1.25 V  
VDD_HV_A = 5.5V  
SYS_CLK = 80MHz  
Ta = 105°C  
142  
137  
246  
mA  
mA  
mA  
Ta = 85 °C  
IDD_BODY_2  
6
RUN Body Mode Profile Operating  
current  
LV supply + HV supply + HV  
Flash supply + 2 x HV ADC  
supplies4  
Ta = 125°C5  
VDD_LV = 1.25 V  
VDD_HV_A = 5.5V  
SYS_CLK = 160MHz  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
18  
NXP Semiconductors  
General  
Table 11. Current consumption characteristics (continued)  
Symbol  
Parameter  
Conditions1  
Min Typ  
Max  
235  
210  
181  
Unit  
mA  
mA  
mA  
Ta = 105°C  
Ta = 85°C  
IDD_BODY_3  
7
RUN Body Mode Profile Operating  
current  
LV supply + HV supply + HV  
Flash supply + 2 x HV ADC  
supplies4  
Ta = 125 °C 5  
VDD_LV = 1.25 V  
VDD_HV_A = 5.5V  
SYS_CLK = 120MHz  
Ta = 105 °C  
176  
171  
264  
mA  
mA  
mA  
Ta = 85°C  
8
IDD_BODY_4  
RUN Body Mode Profile Operating  
current  
LV supply + HV supply + HV  
Flash supply + 2 x HV ADC  
supplies4  
Ta = 125 °C 5  
VDD_LV = 1.25 V  
VDD_HV_A = 5.5V  
SYS_CLK = 120MHz  
Ta = 105 °C  
176  
171  
49  
mA  
mA  
mA  
Ta = 85 °C  
Ta = 125 °C9  
IDD_STOP  
STOP mode Operating current  
VDD_LV = 1.25 V  
Ta = 105 °C  
10.6  
8.1  
VDD_LV = 1.25 V  
Ta = 85 °C  
VDD_LV = 1.25 V  
Ta = 25 °C  
4.6  
VDD_LV = 1.25 V  
Ta = 125 °C5  
10, 11  
IDD_HV_ADC_REF  
ADC REF Operating current  
200  
400  
µA  
2 ADCs operating at 80 MHz  
VDD_HV_ADC_REF = 5.5 V  
Ta = 105 °C  
200  
200  
200  
2 ADCs operating at 80 MHz  
VDD_HV_ADC_REF = 5.5 V  
Ta = 85 °C  
2 ADCs operating at 80 MHz  
VDD_HV_ADC_REF = 5.5 V  
Ta = 25 °C  
2 ADCs operating at 80 MHz  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
19  
General  
Table 11. Current consumption characteristics (continued)  
Symbol  
Parameter  
Conditions1  
Min Typ  
Max  
Unit  
VDD_HV_ADC_REF = 3.6 V  
11  
IDD_HV_ADCx  
ADC HV Operating current  
Ta = 125 °C5  
1.2  
2
mA  
ADC operating at 80 MHz  
VDD_HV_ADC = 5.5 V  
Ta = 25 °C  
1
2
ADC operating at 80 MHz  
VDD_HV_ADC = 3.6 V  
Ta = 125 °C5  
12  
IDD_HV_FLASH  
Flash Operating current during read  
access  
40  
45  
45  
45  
mA  
3.3 V supplies  
160 MHz frequency  
Ta = 105 °C  
40  
3.3 V supplies  
160 MHz frequency  
Ta = 85 °C  
40  
3.3 V supplies  
160 MHz frequency  
1. The content of the Conditions column identifies the components that draw the specific current.  
2. Single e200Z4 core cache disabled @80 MHz, no FlexRay, no ENET, 2 x CAN, 8 LINFlexD, 2 SPI, ADC0 and 1 used  
constantly, no HSM, Memory: 2M flash, 128K RAM RUN mode, Clocks: FIRC on, XOSC, PLL on, SIRC on for TOD, no  
32KHz crystal (TOD runs off SIRC).  
3. Recommended Transistors:MJD31 @ 85°C, 105°C and 125°C. In case of internal ballast mode, it is expected that the  
external ballast is not mounted and BAL_SELECT_INT pin is tied to VDD_HV_A supply on board. Internal ballast can be  
used for all use cases with current consumption upto 150mA. For internal ballast configuration the VRC_CTL pin should be  
left floating.  
4. The power consumption does not consider the dynamic current of I/Os  
5. Tj=150°C. Assumes Ta=125°C  
• Assumes maximum θJA of 2s2p board. SeeThermal attributes  
6. e200Z4 core, 160MHz, cache enabled; e200Z2 core , 80MHz, no FlexRay, no ENET, 7 CAN, 16 LINFlexD, 4 SPI, 1x ADC  
used constantly, includes HSM at start-up / periodic use, Memory: 3M flash, 256K RAM, Clocks: FIRC on, XOSC on, PLL  
on, SIRC on, no 32KHz crystal  
7. e200Z4 core, 120MHz, cache enabled; e200Z2 core, 60MHz; no FlexRay, no ENET, 7 CAN, 16 LINFlexD, 4 SPI, 1x ADC  
used constantly, includes HSM at start-up / periodic use, Memory: 3M flash, 128K RAM, Clocks: FIRC on, XOSC on, PLL  
on, SIRC on, no 32KHz crystal  
8. e200Z4 core, 160MHz, cache enabled; e200Z4 core, 80MHz; HSM fully operational (Z0 core @80MHz) FlexRay, 5x CAN,  
5x LINFlexD, 2x SPI, 1x ADC used constantly, 1xeMIOS (5 ch), Memory: 3M flash, 384K RAM, Clocks: FIRC on, XOSC  
on, PLL on, SIRC on, no 32KHz crystal  
9. Assuming Ta=Tj, as the device is in Stop mode. Assumes maximum θJA of 2s2p board. SeeThermal attributes.  
10. Internal structures hold the input voltage less than VDD_HV_ADC_REF + 1.0 V on all pads powered by VDDA supplies, if the  
maximum injection current specification is met (3 mA for all pins) and VDDA is within the operating voltage specifications.  
11. This value is the total current for two ADCs.Each ADC might consume upto 2mA at max.  
12. This assumes the default configuration of flash controller register. For more details, refer to Flash memory program and  
erase specifications  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
20  
NXP Semiconductors  
General  
Table 12. Low Power Unit (LPU) Current consumption characteristics  
Symbol  
Parameter  
Conditions1  
Min Typ  
Max Unit  
LPU_RUN  
with 256K RAM  
Ta = 25 °C  
10  
10.5  
11  
26  
mA  
SYS_CLK = 16MHz  
ADC0 = OFF, SPI0 = OFF, LIN0 = OFF, CAN0 = OFF  
Ta = 85 °C  
SYS_CLK = 16MHz  
ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON  
Ta = 105 °C  
SYS_CLK = 16MHz  
ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON  
Ta = 125 °C, 2  
SYS_CLK = 16MHz  
ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON  
LPU_STOP  
with 256K RAM  
Ta = 25 °C  
Ta = 85 °C  
Ta = 105 °C  
Ta = 125 °C 2  
0.18  
0.60  
1.00  
mA  
10.6  
1. The content of the Conditions column identifies the components that draw the specific current.  
2. Assuming Ta=Tj, as the device is in static (fully clock gated) mode. Assumes maximum θJA of 2s2p board. SeeThermal  
attributes  
Table 13. STANDBY Current consumption characteristics  
Symbol  
Parameter  
Conditions1  
Min Typ  
Max Unit  
STANDBY0  
STANDBY with  
8K RAM  
Ta = 25 °C  
Ta = 85 °C  
Ta = 105 °C  
Ta = 125 °C , 2  
Ta = 25 °C  
Ta = 85 °C  
Ta = 105 °C  
Ta = 125 °C 2  
Ta = 25 °C  
Ta = 85 °C  
Ta = 105 °C  
Ta = 125 °C 2  
Ta = 25 °C  
Ta = 85 °C  
Ta = 105 °C  
Ta = 125 °C 2  
Ta = 25 °C  
71  
125  
195  
314  
72  
700  
1225  
2100  
µA  
µA  
µA  
µA  
µA  
STANDBY1  
STANDBY2  
STANDBY3  
STANDBY with  
64K RAM  
140  
225  
358  
75  
715  
1275  
2250  
STANDBY with  
128K RAM  
155  
255  
396  
80  
730  
1350  
2600  
STANDBY with  
256K RAM  
180  
290  
465  
500  
800  
1425  
2900  
STANDBY3  
FIRC ON  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
21  
General  
1. The content of the Conditions column identifies the components that draw the specific current.  
2. Assuming Ta=Tj, as the device is in static (fully clock gated) mode. Assumes maximum θJA of 2s2p board. SeeThermal  
attributes  
NOTE  
For the Precision channel Analog inputs, SIUL2_MSCRn[PUS]  
must be configured to 0 before entering STANDBY. An  
increase in current would be observed when  
SIUL2_MSCRn[PUS] is configured to be 1, irrespective of the  
state of IBE or PUE. The current numbers would increase  
irrespective of whether the pad is pulled low/high externally.  
4.6 Electrostatic discharge (ESD) characteristics  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n + 1) supply pin). This  
test conforms to the AEC-Q100-002/-003/-011 standard.  
NOTE  
A device will be defined as a failure if after exposure to ESD  
pulses the device no longer meets the device specification  
requirements. Complete DC parametric and functional testing  
shall be performed per applicable device specification at room  
temperature followed by hot temperature, unless specified  
otherwise in the device specification.  
Table 14. ESD ratings  
Symbol  
Parameter  
Electrostatic discharge  
(Human Body Model)  
Conditions1  
Class  
Max value2  
Unit  
VESD(HBM)  
TA = 25 °C  
H1C  
2000  
V
conforming to AEC-  
Q100-002  
VESD(CDM)  
Electrostatic discharge  
(Charged Device Model)  
TA = 25 °C  
C3A  
500  
V
conforming to AEC-  
Q100-011  
750 (corners)  
1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.  
2. Data based on characterization results, not tested in production.  
4.7 Electromagnetic Compatibility (EMC) specifications  
EMC measurements to IC-level IEC standards are available from NXP on request.  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
22  
NXP Semiconductors  
I/O parameters  
5 I/O parameters  
5.1 AC specifications @ 3.3 V Range  
Table 15. Functional Pad AC Specifications @ 3.3 V Range  
Symbol  
Prop. Delay (ns)1  
Rise/Fall Edge (ns)  
Drive Load  
(pF)  
SIUL2_MSCRn[SRC 1:0]  
L>H/H>L  
Min  
Max  
6/6  
Min  
Max  
1.9/1.5  
3.25/3  
12/12  
3.9/3.5  
1.1  
MSB,LSB  
pad_sr_hv  
(output)  
25  
50  
11  
2.5/2.5  
6.4/5  
8.25/7.5  
19.5/19.5  
8/8  
0.8/0.6  
3.5/2.5  
0.55/0.5  
0.035  
1/1  
200  
2.2/2.5  
0.090  
2.9/3.5  
11/8  
25  
10  
1.1  
asymmetry2  
12.5/11  
35/31  
45/45  
65/65  
75/75  
100/100  
2/2  
7/6  
50  
7.7/5  
25/21  
25/25  
30/30  
40/40  
51/51  
0.5/0.5  
200  
8.3/9.6  
13.5/15  
13/13  
21/22  
4/3.5  
50  
01  
003  
NA  
6.3/6.2  
6.8/6  
200  
50  
11/11  
200  
pad_i_hv/  
pad_sr_hv  
0.5  
(input)4  
1. As measured from 50% of core side input to Voh/Vol of the output  
2. This row specifies the min and max asymmetry between both the prop delay and the edge rates for a given PVT and 25pF  
load. Required for the Flexray spec.  
3. Slew rate control modes  
4. Input slope = 2ns  
NOTE  
The specification given above is based on simulation data into  
an ideal lumped capacitor. Customer should use IBIS models  
for their specific board/loading conditions to simulate the  
expected signal integrity and edge rates of their system.  
NOTE  
The specification given above is measured between 20% / 80%.  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
23  
I/O parameters  
5.2 DC electrical specifications @ 3.3V Range  
Table 16. DC electrical specifications @ 3.3V Range  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
Vih (pad_i_hv)  
Vil (pad_i_hv)  
Vhys (pad_i_hv)  
Vih_hys  
Pad_I_HV Input Buffer High Voltage  
Pad_I_HV Input Buffer Low Voltage  
Pad_I_HV Input Buffer Hysteresis  
0.72*VDD_HV_ VDD_HV_x +  
V
V
V
V
V
V
V
V
x
0.3  
VDD_HV_x -  
0.3  
0.45*VDD_HV_  
x
0.11*VDD_HV_  
x
CMOS Input Buffer High Voltage (with hysteresis  
enabled)  
0.67*VDD_HV_ VDD_HV_x +  
x
0.3  
Vil_hys  
CMOS Input Buffer Low Voltage (with hysteresis  
enabled)  
VDD_HV_x -  
0.3  
0.35*VDD_HV_  
x
Vih  
CMOS Input Buffer High Voltage (with hysteresis  
disabled)  
0.57 *  
VDD_HV_x1 +  
0.3  
VDD_HV_x1  
Vil  
CMOS Input Buffer Low Voltage (with hysteresis  
disabled)  
VDD_HV_x -  
0.3  
0.4 *  
VDD_HV_x1  
Vhys  
CMOS Input Buffer Hysteresis  
0.09 *  
VDD_HV_x1  
Pull_IIH (pad_i_hv) Weak Pullup Current2 Low  
Pull_IIH (pad_i_hv) Weak Pullup Current3 High  
Pull_IIL (pad_i_hv) Weak Pulldown Current3 Low  
Pull_IIL (pad_i_hv) Weak Pulldown Current2 High  
15  
28  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
V
55  
85  
50  
50  
2.5  
Pull_Ioh  
Pull_Iol  
Iinact_d  
Voh  
Weak Pullup Current4  
Weak Pulldown Current5  
15  
15  
Digital Pad Input Leakage Current (weak pull inactive)  
Output High Voltage6  
-2.5  
0.8  
*VDD_HV_x1  
Vol  
Output Low Voltage7  
Output Low Voltage8  
0.2  
V
*VDD_HV_x1  
0.1 *VDD_HV_x  
Ioh_f  
Iol_f  
Full drive Ioh9 (SIUL2_MSCRn.SRC[1:0] = 11)  
Full drive Iol9 (SIUL2_MSCRn.SRC[1:0] = 11)  
Half drive Ioh9 (SIUL2_MSCRn.SRC[1:0] = 10)  
Half drive Iol9 (SIUL2_MSCRn.SRC[1:0] = 10)  
18  
21  
70  
120  
35  
mA  
mA  
mA  
mA  
Ioh_h  
Iol_h  
9
10.5  
60  
1. VDD_HV_x = VDD_HV_A, VDD_HV_B, VDD_HV_C  
2. Measured when pad=0.69*VDD_HV_x  
3. Measured when pad=0.49*VDD_HV_x  
4. Measured when pad = 0 V  
5. Measured when pad = VDD_HV_x  
6. Measured when pad is sourcing 2 mA  
7. Measured when pad is sinking 2 mA  
8. Measured when pad is sinking 1.5 mA  
9. Ioh/Iol is derived from spice simulations. These values are NOT guaranteed by test.  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
24  
NXP Semiconductors  
I/O parameters  
5.3 AC specifications @ 5 V Range  
Table 17. Functional Pad AC Specifications @ 5 V Range  
Symbol  
Prop. Delay (ns)1  
Rise/Fall Edge (ns)  
Drive Load (pF)  
SIUL2_MSCRn[SRC 1:0]  
L>H/H>L  
Min  
Max  
4.5/4.5  
6/6  
Min  
Max  
1.3/1.2  
2.5/2  
9/9  
MSB,LSB  
pad_sr_hv  
(output)  
25  
50  
11  
13/13  
5.25/5.25  
9/8  
200  
25  
3/2  
10  
5/4  
50  
22/22  
27/27  
40/40  
40/40  
65/65  
1.5/1.5  
18/16  
13/13  
24/24  
24/24  
40/40  
0.5/0.5  
200  
50  
012  
002  
NA  
200  
50  
200  
0.5  
pad_i_hv/  
pad_sr_hv  
(input)  
1. As measured from 50% of core side input to Voh/Vol of the output  
2. Slew rate control modes  
NOTE  
The above specification is based on simulation data into an  
ideal lumped capacitor. Customer should use IBIS models for  
their specific board/loading conditions to simulate the expected  
signal integrity and edge rates of their system.  
NOTE  
The above specification is measured between 20% / 80%.  
5.4 DC electrical specifications @ 5 V Range  
Table 18. DC electrical specifications @ 5 V Range  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
Vih (pad_i_hv)  
pad_i_hv Input Buffer High Voltage  
0.7*VDD_HV_x VDD_HV_x +  
0.3  
V
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
25  
I/O parameters  
Symbol  
Table 18. DC electrical specifications @ 5 V Range (continued)  
Parameter  
Value  
Unit  
Min  
Max  
Vil (pad_i_hv)  
Vhys (pad_i_hv)  
Vih_hys  
Vil_hys  
pad_i_hv Input Buffer Low Voltage  
pad_i_hv Input Buffer Hysteresis  
VDD_HV_x -  
0.3  
0.45*VDD_HV_  
x
V
V
V
V
V
V
V
0.09*VDD_HV_  
x
CMOS Input Buffer High Voltage (with hysteresis  
enabled)  
0.65*  
VDD_HV_x  
VDD_HV_x +  
0.3  
CMOS Input Buffer Low Voltage (with hysteresis  
enabled)  
VDD_HV_x -  
0.3  
0.35*VDD_HV_  
x
VDD_HV_x1 +  
0.3  
Vih  
CMOS Input Buffer High Voltage (with hysteresis  
disabled)  
0.55 *  
VDD_HV_x1  
Vil  
CMOS Input Buffer Low Voltage (with hysteresis  
disabled)  
VDD_HV_x -  
0.3  
0.40 *  
VDD_HV_x1  
Vhys  
CMOS Input Buffer Hysteresis  
0.09 *  
VDD_HV_x1  
Pull_IIH (pad_i_hv) Weak Pullup Current2 Low  
Pull_IIH (pad_i_hv) Weak Pullup Current3 High  
Pull_IIL (pad_i_hv) Weak Pulldown Current3 Low  
Pull_IIL (pad_i_hv) Weak Pulldown Current2 High  
23  
40  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
V
82  
130  
80  
Pull_Ioh  
Pull_Iol  
Iinact_d  
Voh  
Weak Pullup Current4  
Weak Pulldown Current5  
30  
30  
80  
Digital Pad Input Leakage Current (weak pull inactive)  
Output High Voltage6  
-2.5  
2.5  
0.8 *  
VDD_HV_x1  
Vol  
Output Low Voltage7  
0.2*VDD_HV_x  
V
Output Low Voltage8  
0.1*VDD_HV_x  
Ioh_f  
Iol_f  
Full drive Ioh9 (SIUL2_MSCRn.SRC[1:0] = 11)  
Full drive Iol9 (SIUL2_MSCRn.SRC[1:0] = 11)  
Half drive Ioh9 (SIUL2_MSCRn.SRC[1:0] = 10)  
Half drive Iol9 (SIUL2_MSCRn.SRC[1:0] = 10)  
18  
21  
70  
120  
35  
mA  
mA  
mA  
mA  
Ioh_h  
Iol_h  
9
10.5  
60  
1. VDD_HV_x = VDD_HV_A, VDD_HV_B, VDD_HV_C  
2. Measured when pad=0.69*VDD_HV_x  
3. Measured when pad=0.49*VDD_HV_x  
4. Measured when pad = 0 V  
5. Measured when pad = VDD_HV_x  
6. Measured when pad is sourcing 2 mA  
7. Measured when pad is sinking 2 mA  
8. Measured when pad is sinking 1.5 mA  
9. Ioh/Iol is derived from spice simulations. These values are NOT guaranteed by test.  
5.5 Reset pad electrical characteristics  
The device implements a dedicated bidirectional RESET pin.  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
26  
NXP Semiconductors  
I/O parameters  
V
DD_HV_
A
V
DDMIN  
PORST  
V
IH  
V
IL  
device reset forced by PORST  
device start-up phase  
Figure 3. Start-up reset requirements  
VPORST  
hw_rst  
‘1’  
V
DD_HV_
A
V
IH  
V
IL  
‘0’  
filtered by  
lowpass filter  
unknown reset  
state  
filtered by  
hysteresis  
filtered by  
lowpass filter  
device under hardware reset  
W
W
FRST  
FRST  
W
NFRST  
Figure 4. Noise filtering on reset signal  
Table 19. Functional reset pad electrical specifications  
Symbol  
Parameter  
Conditions  
Value  
Unit  
Min  
Typ  
Max  
VIH  
CMOS Input Buffer High Voltage  
CMOS Input Buffer Low Voltage  
0.65*VD  
VDD_HV_x  
+0.3  
V
D_HV_x  
VIL  
VDD_HV_  
x-0.3  
0.35*VDD_HV V  
_x  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
27  
Peripheral operating requirements and behaviours  
Table 19. Functional reset pad electrical specifications (continued)  
Symbol  
Parameter  
Conditions  
Value  
Unit  
Min  
300  
Typ  
Max  
VHYS  
VDD_POR  
CMOS Input Buffer hysterisis  
mV  
V
Minimum supply for strong pull-down  
activation  
1.2  
IOL_R  
Strong pull-down current 1  
Device under power-on reset  
VDD_HV_IO= V DD_POR  
VOL = 0.35*VDD_HV_IO  
Device under power-on reset  
3.0 V < VDD_HV_IO < 5.5 V  
VOL = 0.35*VDD_HV_IO  
0.2  
mA  
11  
mA  
WFRST  
RESET input filtered pulse  
500  
ns  
ns  
µA  
WNFRST  
RESET input not filtered pulse  
Weak pull-up current absolute value  
2000  
23  
|IWPU  
|
RESET pin VIN = VDD  
82  
1. Strong pull-down is active on PHASE0, PHASE1, PHASE2, and the beginning of PHASE3 for RESET.  
5.6 PORST electrical specifications  
Table 20. PORST electrical specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
Typ  
Max  
WFPORST  
WNFPORST  
VIH  
PORST input filtered pulse  
PORST input not filtered pulse  
Input high level  
200  
ns  
1000  
ns  
V
0.65 x  
VDD_HV_A  
VIL  
Input low level  
0.35 x  
V
VDD_HV_A  
6 Peripheral operating requirements and behaviours  
6.1 Analog  
6.1.1 ADC electrical specifications  
The device provides a 12-bit Successive Approximation Register (SAR) Analog-to-  
Digital Converter.  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
28  
NXP Semiconductors  
Analog  
Offset Error OSE Gain Error GE  
4095  
4094  
4093  
4092  
4091  
4090  
(2)  
1 LSB ideal =(VrefH-VrefL)/ 4096 =  
3.3V/ 4096 = 0.806 mV  
Total Unadjusted Error  
TUE = +/- 6 LSB = +/- 4.84mV  
code out7  
(1)  
6
5
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(3) Differential non-linearity error (DNL)  
(4) Integral non-linearity error (INL)  
(5) Center of a step of the actual transfer  
curve  
(5)  
4
3
(4)  
(3)  
2
1
1 LSB (ideal)  
0
1
2
3
4
5
6
7
4089 4090 4091 4092 4093 4094 4095  
Vin(A) (LSBideal  
)
Offset Error OSE  
Figure 5. ADC characteristics and error definitions  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
29  
Analog  
6.1.1.1 Input equivalent circuit and ADC conversion characteristics  
EXTERNAL CIRCUIT  
INTERNAL CIRCUIT SCHEME  
V
DD_IO  
Channel  
Sampling  
Selection  
Source  
Filter  
Current Limiter  
R
R
R
R
R
S
F
L
SW1  
AD  
C
V
C
C
P1  
C
S
A
F
P2  
R
Source Impedance  
Filter Resistance  
Filter Capacitance  
Current Limiter Resistance  
Channel Selection Switch Impedance  
Sampling Switch Impedance  
S
F
F
L
R
C
R
R
R
C
C
SW1  
AD  
P
Pin Capacitance (two contributions, C and C  
Sampling Capacitance  
)
P1  
P2  
S
Figure 6. Input equivalent circuit  
NOTE  
The ADC performance specifications are not guaranteed if two  
ADCs simultaneously sample the same shared channel.  
Table 21. ADC conversion characteristics (for 12-bit)  
Symbol  
Parameter  
Conditions  
Min  
Typ1  
Max  
Unit  
fCK  
ADC Clock frequency (depends on —  
ADC configuration) (The duty cycle  
depends on AD_CK2 frequency)  
15.2  
80  
80  
MHz  
fs  
Sampling frequency  
Sample time3  
80 MHz  
1.00  
MHz  
ns  
tsample  
80 MHz@ 100 ohm source  
impedance  
250  
tconv  
Conversion time4  
80 MHz  
80 MHz  
700  
1.55  
ns  
µs  
ttotal_conv  
Total Conversion time tsample +  
tconv (for standard and extended  
channels)  
Total Conversion time tsample  
tconv (for precision channels)  
+
1
, 6  
CS  
ADC input sampling capacitance  
ADC input pin capacitance 1  
ADC input pin capacitance 2  
3
5
5
pF  
pF  
pF  
kΩ  
Ω
6
CP1  
6
CP2  
0.8  
0.3  
875  
6
RSW1  
Internal resistance of analog  
source  
VREF range = 4.5 to 5.5 V  
VREF range = 3.15 to 3.6 V  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
30  
NXP Semiconductors  
Analog  
Table 21. ADC conversion characteristics (for 12-bit) (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ1  
Max  
Unit  
6
RAD  
Internal resistance of analog  
source  
825  
Ω
INL  
INL  
Integral non-linearity (precise  
channel)  
–2  
–3  
2
3
LSB  
LSB  
Integral non-linearity (standard  
channel)  
DNL  
OFS  
GNE  
Differential non-linearity  
Offset error  
–1  
–6  
–4  
1
6
LSB  
LSB  
LSB  
nA  
Gain error  
4
ADC Analog Pad Max leakage (precision channel)  
(pad going to one  
150 °C  
150 °C  
250  
2500  
250  
5
Max leakage (standard channel)  
nA  
ADC)  
Max leakage (standard channel)  
105 °C TA  
5
nA  
Max positive/negative injection  
–5  
–6  
mA  
LSB  
LSB  
LSB  
LSB  
µs  
TUEprecision channels Total unadjusted error for precision Without current injection  
+/-4  
+/-5  
+/-6  
+/-8  
6
channels  
With current injection7  
TUEstandard/extended Total unadjusted error for standard/ Without current injection  
–8  
8
extended channels  
With current injection7  
channels  
trecovery  
STOP mode to Run mode recovery  
time  
< 1  
1. Active ADC input, VinA < [min(ADC_VrefH, ADC_ADV, VDD_HV_IOx)]. VDD_HV_IOx refers to I/O segment supply  
voltage. Violation of this condition would lead to degradation of ADC performance. Please refer to Table: 'Absolute  
maximum ratings' to avoid damage. Refer to Table: 'Recommended operating conditions (VDD_HV_x = 3.3 V)' for required  
relation between IO_supply_A,B,C and ADC_Supply.  
2. The internally generated clock (known as AD_clk or ADCK) could be same as the peripheral clock or half of the peripheral  
clock based on register configuration in the ADC.  
3. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal  
resistance of the analog source must allow the capacitance to reach its final voltage level within tsample. After the end of the  
sample time tsample, changes of the analog input voltage have no effect on the conversion result. Values for the sample  
clock tsample depend on programming.  
4. This parameter does not include the sample time tsample, but only the time for determining the digital result and the time to  
load the result register with the conversion result.  
5. Apart from tsample and tconv, few cycles are used up in ADC digital interface and hence the overall throughput from the  
ADC is lower.  
6. See Figure 2.  
7. Current injection condition for ADC channels is defined for an inactive ADC channel (on which conversion is NOT being  
performed), and this occurs when voltage on the ADC pin exceeds the I/O supply or ground. However, absolute maximum  
voltage spec on pad input (VINA, see Table: Absolute maximum ratings) must be honored to meet TUE spec quoted here  
Table 22. ADC conversion characteristics (for 10-bit)  
Symbol  
Parameter  
Conditions  
Min  
Typ1  
Max  
Unit  
fCK  
ADC Clock frequency (depends on  
ADC configuration) (The duty cycle  
depends on AD_CK2 frequency.)  
15.2  
80  
80  
MHz  
fs  
Sampling frequency  
Sample time3  
1.00  
MHz  
ns  
tsample  
80 MHz@ 100 ohm source  
impedance  
275  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
31  
Analog  
Table 22. ADC conversion characteristics (for 10-bit) (continued)  
Symbol  
Parameter  
Conversion time4  
Conditions  
80 MHz  
Min  
550  
1
Typ1  
Max  
Unit  
ns  
tconv  
ttotal_conv  
Total Conversion time tsample +  
tconv (for standard channels)  
80 MHz  
µs  
Total Conversion time tsample +  
tconv (for extended channels)  
1.5  
CS  
ADC input sampling capacitance  
ADC input pin capacitance 1  
ADC input pin capacitance 2  
3
5
pF  
pF  
pF  
kΩ  
Ω
5
CP1  
5
5
CP2  
0.8  
0.3  
875  
825  
5
RSW1  
Internal resistance of analog  
source  
VREF range = 4.5 to 5.5 V  
VREF range = 3.15 to 3.6 V  
5
RAD  
Internal resistance of analog  
source  
Ω
INL  
DNL  
OFS  
GNE  
Integral non-linearity  
Differential non-linearity  
Offset error  
–2  
–1  
–4  
–4  
–5  
–4  
2
1
LSB  
LSB  
LSB  
LSB  
nA  
4
Gain error  
4
ADC Analog Pad Max leakage (standard channel)  
(pad going to one  
150 °C  
2500  
5
Max positive/negative injection  
mA  
nA  
ADC)  
Max leakage (standard channel)  
105 °C TA  
5
250  
4
TUEstandard/extended Total unadjusted error for standard Without current injection  
+/-3  
+/-4  
LSB  
LSB  
µs  
channels  
With current injection6  
channels  
trecovery  
STOP mode to Run mode recovery  
time  
< 1  
1. Active ADC Input, VinA < [min(ADC_ADV, IO_Supply_A,B,C)]. Violation of this condition would lead to degradation of ADC  
performance. Please refer to Table: 'Absolute maximum ratings' to avoid damage. Refer to Table: 'Recommended  
operating conditions' for required relation between IO_supply_A, B, C and ADC_Supply.  
2. The internally generated clock (known as AD_clk or ADCK) could be same as the peripheral clock or half of the peripheral  
clock based on register configuration in the ADC.  
3. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal  
resistance of the analog source must allow the capacitance to reach its final voltage level within tsample. After the end of the  
sample time tsample, changes of the analog input voltage have no effect on the conversion result. Values for the sample  
clock tsample depend on programming.  
4. This parameter does not include the sample time tsample, but only the time for determining the digital result and the time to  
load the result register with the conversion result.  
5. See Figure 2-1  
6. Current injection condition for ADC channels is defined for an inactive ADC channel (on which conversion is NOT being  
performed), and this occurs when voltage on the ADC pin exceeds the I/O supply or ground. However, absolute maximum  
voltage spec on pad input (VINA, see Table: Absolute maximum ratings) must be honored to meet TUE spec quoted here  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
32  
NXP Semiconductors  
Analog  
6.1.2 Analog Comparator (CMP) electrical specifications  
Table 23. Comparator and 6-bit DAC electrical specifications  
Symbol  
IDDHS  
IDDLS  
Description  
Min.  
Typ.  
Max.  
250  
11  
Unit  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
μA  
μA  
V
5
VAIN  
VSS  
VIN1_CMP_RE  
F
VAIO  
VH  
Analog input offset voltage 1  
Analog comparator hysteresis 2  
• CR0[HYSTCTR] = 00  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
-47  
47  
mV  
1
25  
50  
mV  
mV  
mV  
mV  
20  
40  
60  
70  
105  
tDHS  
tDLS  
Propagation Delay, High Speed Mode (Full Swing) 1, 3  
Propagation Delay, Low power Mode (Full Swing) 1, 3  
5
250  
21  
ns  
μs  
μs  
Analog comparator initialization delay, High speed  
mode4  
4
Analog comparator initialization delay, Low speed  
mode 4  
100  
μs  
IDAC6b  
6-bit DAC current adder (when enabled)  
3.3V Reference Voltage  
6
9
μA  
μA  
LSB5  
5V Reference Voltage  
10  
16  
0.5  
0.8  
INL  
6-bit DAC integral non-linearity  
6-bit DAC differential non-linearity  
–0.5  
–0.8  
DNL  
LSB  
1. Measured with hysteresis mode of 00  
2. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD_HV_A-0.6V  
3. Full swing = VIH, VIL  
4. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN,  
VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.  
5. 1 LSB = Vreference/64  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
33  
Clocks and PLL interfaces modules  
6.2 Clocks and PLL interfaces modules  
6.2.1 Main oscillator electrical characteristics  
This device provides a driver for oscillator in pierce configuration with amplitude  
control. Controlling the amplitude allows a more sinusoidal oscillation, reducing in this  
way the EMI. Other benefits arises by reducing the power consumption. This Loop  
Controlled Pierce (LCP mode) requires good practices to reduce the stray capacitance of  
traces between crystal and MCU.  
An operation in Full Swing Pierce (FSP mode), implemented by an inverter is also  
available in case of parasitic capacitances and cannot be reduced by using crystal with  
high equivalent series resistance. For this mode, a special care needs to be taken  
regarding the serial resistance used to avoid the crystal overdrive.  
Other two modes called External (EXT Wave) and disable (OFF mode) are provided. For  
EXT Wave, the drive is disabled and an external source of clock within CMOS level  
based in analog oscillator supply can be used. When OFF, EXTAL is pulled down by 240  
Kohms resistor and the feedback resistor remains active connecting XTAL through  
EXTAL by 1M resistor.  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
34  
NXP Semiconductors  
Clocks and PLL interfaces modules  
Figure 7. Oscillator connections scheme  
Table 24. Main oscillator electrical characteristics  
Symbol  
fXOSCHS  
Parameter  
Mode  
Conditions  
Min  
Typ  
Max  
Unit  
Oscillator  
frequency  
FSP/LCP  
8
40  
MHz  
gmXOSCHS  
Driver  
Transconduct  
ance  
LCP  
FSP  
23  
33  
mA/V  
VXOSCHS  
Oscillation  
Amplitude  
LCP1, 2  
FSP/LCP1  
FSP  
8 MHz  
1.0  
1.0  
0.8  
2
VPP  
ms  
16 MHz  
40 MHz  
8 MHz  
TXOSCHSSU  
Startup time  
16 MHz  
40 MHz  
8 MHz  
1
0.5  
2.2  
2.2  
Oscillator  
Analog Circuit  
supply current  
mA  
16 MHz  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
35  
Clocks and PLL interfaces modules  
Table 24. Main oscillator electrical characteristics (continued)  
Symbol  
Parameter  
Mode  
Conditions  
40 MHz  
Min  
Typ  
Max  
Unit  
3.2  
LCP  
8 MHz  
141  
252  
518  
uA  
16 MHz  
40 MHz  
VIH  
VIL  
Input High  
level CMOS  
Schmitt trigger  
EXT Wave  
Oscillator  
supply=3.3  
1.95  
V
V
Input low level EXT Wave  
CMOS  
Oscillator  
supply=3.3  
1.25  
Schmitt trigger  
1. Values are very dependent on crystal or resonator used and parasitic capacitance observed in the board.  
2. Typ value for oscillator supply 3.3 V@27 °C  
6.2.2 32 kHz Oscillator electrical specifications  
Table 25. 32 kHz oscillator electrical specifications  
Symbol  
fosc_lo  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Oscillator crystal  
or resonator  
frequency  
32  
40  
2
KHz  
tcst  
Crystal Start-up  
Time1, 2  
s
1. This parameter is characterized before qualification rather than 100% tested.  
2. Proper PC board layout procedures must be followed to achieve specifications.  
6.2.3 16 MHz RC Oscillator electrical specifications  
Table 26. 16 MHz RC Oscillator electrical specifications  
Symbol  
Parameter  
Conditions  
Value  
Typ  
16  
Unit  
Min  
Max  
FTarget  
PTA  
IRC target frequency  
5
MHz  
%
IRC frequency variation after trimming  
Startup time  
-5  
Tstartup  
TSTJIT  
TLTJIT  
1.5  
1.5  
0.2  
us  
%
Cycle to cycle jitter  
Long term jitter  
%
NOTE  
The above start up time of 1 us is equivalent to 16 cycles of 16  
MHz.  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
36  
NXP Semiconductors  
Clocks and PLL interfaces modules  
6.2.4 128 KHz Internal RC oscillator Electrical specifications  
Table 27. 128 KHz Internal RC oscillator electrical specifications  
Symbol  
Parameter  
Condition  
Calibrated  
Min  
Typ  
Max  
Unit  
1
Foscu  
Oscillator  
frequency  
119  
128  
136.5  
600  
18  
KHz  
Temperature  
dependence  
ppm/C  
%/V  
Supply  
dependence  
Supply current  
Clock running  
Clock stopped  
2.75  
200  
µA  
nA  
1. Vdd=1.2 V, 1.32V, Ta=-40 C, 125 C  
6.2.5 PLL electrical specifications  
Table 28. PLL electrical specifications  
Parameter  
Input Frequency  
Min  
Typ  
Max  
Unit  
MHz  
Comments  
8
40  
VCO Frequency Range  
Duty Cycle at pllclkout  
600  
48%  
1280  
52%  
MHz  
This specification is guaranteed  
at PLL IP boundary  
Period Jitter  
TIE  
See Table 29  
See Table 29  
ps  
NON SSCG mode  
at 960 M Integrated over 1MHz  
offset not valid in SSCG mode  
Modulation Depth (Center Spread) +/- 0.25%  
Modulation Frequency  
+/- 3.0%  
32  
KHz  
µs  
Lock Time  
60  
Calibration mode  
Table 29. Jitter calculation  
Type of jitter  
Jitter due to  
Supply  
Jitter due to  
Jitter due to  
Fractional Mode  
JSSCG (ps) 3  
1 Sigma  
Total Period Jitter (ps)  
Fractional Mode  
Random  
Jitter JRJ  
(ps) 4  
2
Noise (ps)  
(ps) JSDM  
1
JSN  
Period Jitter  
60 ps  
3% of pllclkout1,2  
Modulation depth  
0.1% of  
+/-(JSN+JSDM+JSSCG+N[4]  
pllclkout1,2  
×JRJ)  
Long Term Jitter  
(Integer Mode)  
40  
+/-(N x JRJ  
)
)
Long Term jitter  
100  
+/-(N x JRJ  
(Fractional Mode)  
1. This jitter component is due to self noise generated due to bond wire inductances on different PLL supplies. The jitter value  
is valid for inductor value of 5nH or less each on VDD_LV and VSS_LV.  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
37  
Memory interfaces  
2. This jitter component is added when the PLL is working in the fractional mode.  
3. This jitter component is added when the PLL is working in the Spread Spectrum Mode. Else it is 0.  
4. The value of N is dependent on the accuracy requirement of the application. See Percentage of sample exceeding  
specified value of jitter table  
Table 30. Percentage of sample exceeding specified value of jitter  
N
Percentage of samples exceeding specified value of jitter  
(%)  
1
2
3
4
5
6
7
31.73  
4.55  
0.27  
6.30 × 1e-03  
5.63 × 1e-05  
2.00 × 1e-07  
2.82 × 1e-10  
6.3 Memory interfaces  
6.3.1 Flash memory program and erase specifications  
NOTE  
All timing, voltage, and current numbers specified in this  
section are defined for a single embedded flash memory within  
an SoC, and represent average currents for given supplies and  
operations.  
Table 31 shows the estimated Program/Erase times.  
Table 31. Flash memory program and erase specifications  
Symbol  
Characteristic1  
Typ2  
Factory  
Field Update  
Unit  
Programming3, 4  
Initial  
Max  
Initial  
Max, Full  
Temp  
Typical  
End of  
Life5  
Lifetime Max6  
20°C ≤TA -40°C ≤TJ -40°C ≤TJ ≤ 1,000 ≤ 250,000  
≤30°C ≤150°C ≤150°C cycles cycles  
tdwpgm  
Doubleword (64 bits) program time 43  
100 150 55 500  
μs  
tppgm  
Page (256 bits) program time  
73  
200  
800  
300  
108  
396  
500  
μs  
μs  
tqppgm  
Quad-page (1024 bits) program  
time  
268  
1,200  
2,000  
t16kers  
16 KB Block erase time  
168  
34  
290  
45  
320  
50  
250  
40  
1,000  
1,000  
ms  
ms  
t16kpgm  
16 KB Block program time  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
38  
NXP Semiconductors  
Memory interfaces  
Table 31. Flash memory program and erase specifications (continued)  
Symbol  
Characteristic1  
Typ2  
Factory  
Field Update  
Unit  
Programming3, 4  
Initial  
Max  
Initial  
Max, Full  
Temp  
Typical  
End of  
Life5  
Lifetime Max6  
20°C ≤TA -40°C ≤TJ -40°C ≤TJ ≤ 1,000 ≤ 250,000  
≤30°C  
≤150°C  
≤150°C  
cycles  
1,200  
1,200  
1,600  
1,600  
4,000  
4,000  
cycles  
t32kers  
t32kpgm  
t64kers  
32 KB Block erase time  
32 KB Block program time  
64 KB Block erase time  
64 KB Block program time  
256 KB Block erase time  
256 KB Block program time  
217  
360  
390  
310  
ms  
ms  
ms  
ms  
ms  
ms  
69  
100  
110  
90  
315  
138  
884  
552  
490  
590  
420  
170  
1,080  
650  
t64kpgm  
t256kers  
t256kpgm  
180  
210  
1,520  
720  
2,030  
880  
1. Program times are actual hardware programming times and do not include software overhead. Block program times  
assume quad-page programming.  
2. Typical program and erase times represent the median performance and assume nominal supply values and operation at  
25 °C. Typical program and erase times may be used for throughput calculations.  
3. Conditions: ≤ 150 cycles, nominal voltage.  
4. Plant Programing times provide guidance for timeout limits used in the factory.  
5. Typical End of Life program and erase times represent the median performance and assume nominal supply values.  
Typical End of Life program and erase values may be used for throughput calculations.  
6. Conditions: -40°C ≤ TJ ≤ 150°C, full spec voltage.  
6.3.2 Flash memory Array Integrity and Margin Read specifications  
Table 32. Flash memory Array Integrity and Margin Read specifications  
Symbol  
Characteristic  
Min  
Typical  
Max1  
Units  
2
tai16kseq  
Array Integrity time for sequential sequence on 16 KB block.  
512 x  
Tperiod x  
Nread  
tai32kseq  
Array Integrity time for sequential sequence on 32 KB block.  
Array Integrity time for sequential sequence on 64 KB block.  
Array Integrity time for sequential sequence on 256 KB block.  
1024 x  
Tperiod x  
Nread  
tai64kseq  
2048 x  
Tperiod x  
Nread  
8192 x  
Tperiod x  
Nread  
tai256kseq  
tmr16kseq  
tmr32kseq  
tmr64kseq  
tmr256kseq  
Margin Read time for sequential sequence on 16 KB block.  
Margin Read time for sequential sequence on 32 KB block.  
Margin Read time for sequential sequence on 64 KB block.  
Margin Read time for sequential sequence on 256 KB block.  
73.81  
128.43  
237.65  
893.01  
110.7  
192.6  
μs  
μs  
μs  
μs  
356.5  
1,339.5  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
39  
Memory interfaces  
1. Array Integrity times need to be calculated and is dependent on system frequency and number of clocks per read. The  
equation presented require Tperiod (which is the unit accurate period, thus for 200 MHz, Tperiod would equal 5e-9) and  
Nread (which is the number of clocks required for read, including pipeline contribution. Thus for a read setup that requires  
6 clocks to read with no pipeline, Nread would equal 6. For a read setup that requires 6 clocks to read, and has the  
address pipeline set to 2, Nread would equal 4 (or 6 - 2).)  
2. The units for Array Integrity are determined by the period of the system clock. If unit accurate period is used in the  
equation, the results of the equation are also unit accurate.  
6.3.3 Flash memory module life specifications  
Table 33. Flash memory module life specifications  
Symbol  
Characteristic  
Conditions  
Min  
Typical  
Units  
P/E  
Array P/E  
cycles  
Number of program/erase cycles per block  
for 16 KB, 32 KB and 64 KB blocks.1  
250,000  
cycles  
Number of program/erase cycles per block  
for 256 KB blocks.2  
1,000  
250,000  
P/E  
cycles  
Data  
retention  
Minimum data retention.  
Blocks with 0 - 1,000 P/E 50  
cycles.  
Years  
Years  
Years  
Blocks with 100,000 P/E  
cycles.  
20  
Blocks with 250,000 P/E  
cycles.  
10  
1. Program and erase supported across standard temperature specs.  
2. Program and erase supported across standard temperature specs.  
6.3.4 Data retention vs program/erase cycles  
Graphically, Data Retention versus Program/Erase Cycles can be represented by the  
following figure. The spec window represents qualified limits. The extrapolated dotted  
line demonstrates technology capability, however is beyond the qualification limits.  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
40  
NXP Semiconductors  
Memory interfaces  
6.3.5 Flash memory AC timing specifications  
Table 34. Flash memory AC timing specifications  
Symbol  
Characteristic  
Min  
Typical  
Max  
Units  
tpsus  
Time from setting the MCR-PSUS bit until MCR-DONE bit is set  
to a 1.  
9.4  
11.5  
μs  
plus four  
system  
clock  
plus four  
system  
clock  
periods  
periods  
tesus  
Time from setting the MCR-ESUS bit until MCR-DONE bit is set  
to a 1.  
16  
20.8  
μs  
plus four  
system  
clock  
plus four  
system  
clock  
periods  
periods  
tres  
Time from clearing the MCR-ESUS or PSUS bit with EHV = 1  
until DONE goes low.  
16  
100  
ns  
ns  
μs  
tdone  
tdones  
Time from 0 to 1 transition on the MCR-EHV bit initiating a  
program/erase until the MCR-DONE bit is cleared.  
5
Time from 1 to 0 transition on the MCR-EHV bit aborting a  
program/erase until the MCR-DONE bit is set to a 1.  
20.8  
plus four  
system  
clock  
plus four  
system  
clock  
periods  
periods  
tdrcv  
Time to recover once exiting low power mode.  
16  
45  
μs  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
41  
Memory interfaces  
Table 34. Flash memory AC timing specifications (continued)  
Symbol  
Characteristic  
Min  
Typical  
Max  
Units  
plus seven  
system  
clock  
plus seven  
system  
clock  
periods.  
periods  
taistart  
Time from 0 to 1 transition of UT0-AIE initiating a Margin Read  
or Array Integrity until the UT0-AID bit is cleared. This time also  
applies to the resuming from a suspend or breakpoint by  
clearing AISUS or clearing NAIBP  
5
ns  
ns  
taistop  
Time from 1 to 0 transition of UT0-AIE initiating an Array  
Integrity abort until the UT0-AID bit is set. This time also applies  
to the UT0-AISUS to UT0-AID setting in the event of a Array  
Integrity suspend request.  
80  
plus fifteen  
system  
clock  
periods  
tmrstop  
Time from 1 to 0 transition of UT0-AIE initiating a Margin Read  
abort until the UT0-AID bit is set. This time also applies to the  
UT0-AISUS to UT0-AID setting in the event of a Margin Read  
suspend request.  
10.36  
20.42  
μs  
plus four  
system  
clock  
plus four  
system  
clock  
periods  
periods  
6.3.6 Flash read wait state and address pipeline control settings  
The following table describes the recommended RWSC and APC settings at various  
operating frequencies based on specified intrinsic flash access times of the flash module  
controller array at 125 °C.  
Table 35. Flash Read Wait State and Address Pipeline Control Combinations  
Flash frequency  
0 MHz < fFlash <= 33 MHz  
33 MHz < fFlash <= 100 MHz  
100 MHz < fFlash <= 133 MHz  
133 MHz < fFlash <= 160 MHz  
RWSC setting  
APC setting  
0
2
3
4
0
1
1
1
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
42  
NXP Semiconductors  
Communication interfaces  
6.4 Communication interfaces  
6.4.1 DSPI timing  
Table 36. DSPI electrical specifications  
No  
Symbol  
Parameter  
Conditions  
High Speed Mode1  
low Speed mode  
Unit  
Min  
25  
Max  
Min  
50  
Max  
1
tSCK  
DSPI cycle  
time  
Master  
Slave (MTFE = 0)  
ns  
40  
60  
2
3
4
5
6
7
8
9
tCSC  
tASC  
tSDC  
tA  
PCS to SCK  
delay  
16  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
After SCK  
delay  
16  
SCK duty  
cycle  
tSCK/2 - 10  
tSCK/2 + 10  
Slave access SS active to SOUT  
time valid  
13  
13  
40  
10  
tDIS  
Slave SOUT SS inactive to SOUT  
disable time  
High-Z or invalid  
tPCSC  
tPASC  
tSUI  
PCSx to  
PCSS time  
PCSS to  
PCSx time  
Data setup  
time for  
inputs  
Master (MTFE = 0)  
Slave  
NA  
2
20  
2
82  
Master (MTFE = 1,  
CPHA = 0)  
15  
Master (MTFE = 1,  
CPHA = 1)  
15  
20  
10  
11  
12  
tHI  
tSUO  
tHO  
Data hold  
time for  
inputs  
Master (MTFE = 0)  
Slave  
NA  
4
–5  
4
112  
ns  
ns  
ns  
Master (MTFE = 1,  
CPHA = 0)  
0
Master (MTFE = 1,  
CPHA = 1)  
0
-5  
Data valid  
(after SCK  
edge)  
Master (MTFE = 0)  
Slave  
NA  
15  
4
4
23  
162  
Master (MTFE = 1,  
CPHA = 0)  
Master (MTFE = 1,  
CPHA = 1)  
4
4
Data hold  
time for  
outputs  
Master (MTFE = 0)  
NA  
–2  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
43  
Communication interfaces  
Table 36. DSPI electrical specifications (continued)  
No  
Symbol  
Parameter  
Conditions  
High Speed Mode1  
low Speed mode  
Unit  
Min  
4
Max  
Min  
Max  
Slave  
6
Master (MTFE = 1,  
CPHA = 0)  
-2  
102  
Master (MTFE = 1,  
CPHA = 1)  
–2  
–2  
1. Only one {SIN,SOUT and SCK} group per DSPI/SPI will support high frequency mode. See Table 3.  
2. SMPL_PTR should be set to 1  
NOTE  
Restriction For High Speed modes  
• DSPI2, DSPI3, SPI1 and SPI2 will support 40MHz Master  
mode SCK  
• DSPI2, DSPI3, SPI1 and SPI2 will support 25MHz Slave  
SCK frequency  
• Only one {SIN,SOUT and SCK} group per DSPI/SPI will  
support high frequency mode. See Table 38.  
• For Master mode MTFE will be 1 for high speed mode  
• For high speed slaves, their master have to be in MTFE=1  
mode or should be able to support 15ns tSUO delay  
NOTE  
For numbers shown in the following figures, see Table 36  
Table 37. Continuous SCK timing  
Spec  
Characteristics  
Pad Drive/Load  
Value  
Min  
100 ns  
-
Max  
tSCK  
SCK cycle timing  
PCS valid after SCK  
PCS valid after SCK  
strong/50 pF  
strong/50 pF  
strong/50 pF  
-
15 ns  
-
-
-
-4 ns  
Table 38. DSPI high speed mode I/Os  
DSPI  
High speed SCK  
GPIO[78]  
High speed SIN  
GPIO[76]  
High speed SOUT  
GPIO[77]  
DSPI2  
DSPI3  
SPI1  
GPIO[100]  
GPIO[173]  
GPIO[79]  
GPIO[101]  
GPIO[175]  
GPIO[110]  
GPIO[98]  
GPIO[176]  
GPIO[111]  
SPI2  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
44  
NXP Semiconductors  
Communication interfaces  
2
3
PCSx  
1
4
SCK Output  
(CPOL=0)  
4
SCK Output  
(CPOL=1)  
10  
9
Last Data  
SIN  
First Data  
Data  
Data  
12  
11  
First Data  
Last Data  
SOUT  
Figure 8. DSPI classic SPI timing — master, CPHA = 0  
PCSx  
SCK Output  
(CPOL=0)  
10  
SCK Output  
(CPOL=1)  
9
Data  
Data  
First Data  
Last Data  
SIN  
12  
11  
SOUT  
Last Data  
First Data  
Figure 9. DSPI classic SPI timing — master, CPHA = 1  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
45  
Communication interfaces  
3
2
SS  
1
4
SCK Input  
(CPOL=0)  
4
SCK Input  
(CPOL=1)  
5
11  
12  
Data  
6
First Data  
Last Data  
SOUT  
SIN  
9
10  
Data  
Last Data  
First Data  
Figure 10. DSPI classic SPI timing — slave, CPHA = 0  
SS  
SCK Input  
(CPOL=0)  
SCK Input  
(CPOL=1)  
11  
5
6
12  
Last Data  
Data  
Data  
SOUT  
SIN  
First Data  
10  
9
Last Data  
First Data  
Figure 11. DSPI classic SPI timing — slave, CPHA = 1  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
46  
NXP Semiconductors  
Communication interfaces  
3
PCSx  
4
1
2
SCK Output  
(CPOL=0)  
4
SCK Output  
(CPOL=1)  
9
10  
SIN  
First Data  
12  
Last Data  
Last Data  
Data  
11  
SOUT  
First Data  
Data  
Figure 12. DSPI modified transfer format timing — master, CPHA = 0  
PCSx  
SCK Output  
(CPOL=0)  
SCK Output  
(CPOL=1)  
10  
9
SIN  
Last Data  
First Data  
Data  
12  
Data  
11  
First Data  
Last Data  
SOUT  
Figure 13. DSPI modified transfer format timing — master, CPHA = 1  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
47  
Communication interfaces  
3
2
SS  
1
SCK Input  
(CPOL=0)  
4
4
SCK Input  
(CPOL=1)  
12  
11  
6
5
First Data  
9
Data  
Data  
Last Data  
10  
SOUT  
SIN  
Last Data  
First Data  
Figure 14. DSPI modified transfer format timing – slave, CPHA = 0  
SS  
SCK Input  
(CPOL=0)  
SCK Input  
(CPOL=1)  
11  
5
6
12  
Last Data  
First Data  
10  
Data  
Data  
SOUT  
SIN  
9
First Data  
Last Data  
Figure 15. DSPI modified transfer format timing — slave, CPHA = 1  
8
7
PCSS  
PCSx  
Figure 16. DSPI PCS strobe (PCSS) timing  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
48  
NXP Semiconductors  
FlexRay electrical specifications  
6.4.2 FlexRay electrical specifications  
6.4.2.1 FlexRay timing  
This section provides the FlexRay Interface timing characteristics for the input and output  
signals. It should be noted that these are recommended numbers as per the FlexRay EPL  
v3.0 specification, and subject to change per the final timing analysis of the device.  
6.4.2.2 TxEN  
TxEN  
80 %  
20 %  
dCCTxEN  
dCCTxEN  
FALL  
RISE  
Figure 17. TxEN signal  
Table 39. TxEN output characteristics1  
Name  
Description  
Min  
Max  
Unit  
ns  
dCCTxENRISE25  
dCCTxENFALL25  
dCCTxEN01  
Rise time of TxEN signal at CC  
Fall time of TxEN signal at CC  
9
9
ns  
Sum of delay between Clk to Q of the last FF and the final  
output buffer, rising edge  
25  
ns  
dCCTxEN10  
Sum of delay between Clk to Q of the last FF and the final  
output buffer, falling edge  
25  
ns  
1. All parameters specified for VDD_HV_IOx = 3.3 V -5%, + 10%, TJ = –40 °C / 150 °C, TxEN pin load maximum 25 pF  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
49  
FlexRay electrical specifications  
PE_Clk  
TxEN  
dCCTxEN  
dCCTxEN  
10  
01  
Figure 18. TxEN signal propagation delays  
6.4.2.3 TxD  
TxD  
dCCTxD  
50%  
80 %  
50 %  
20 %  
dCCTxD  
dCCTxD  
RISE  
FALL  
Figure 19. TxD Signal  
Table 40. TxD output characteristics  
Name  
Description1  
Min  
Max  
Unit  
dCCTxAsym  
Asymmetry of sending CC @ 25 pF load (=dCCTxD50% - 100  
ns)  
–2.45  
2.45  
ns  
dCCTxDRISE25+dCCTx Sum of Rise and Fall time of TxD signal at the output  
DFALL25  
92  
ns  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
50  
NXP Semiconductors  
FlexRay electrical specifications  
Table 40. TxD output characteristics (continued)  
Name  
Description1  
Min  
Max  
Unit  
dCCTxD01  
Sum of delay between Clk to Q of the last FF and the final  
output buffer, rising edge  
25  
ns  
dCCTxD10  
Sum of delay between Clk to Q of the last FF and the final  
output buffer, falling edge  
25  
ns  
1. All parameters specified for VDD_HV_IOx = 3.3 V -5%, + 10%, TJ = –40 °C / 150 °C, TxD pin load maximum 25 pF.  
2. For 3.3 V 10% operation, this specification is 10 ns.  
PE_Clk*  
TxD  
dCCTxD  
10  
dCCTxD  
01  
*FlexRay Protocol Engine Clock  
Figure 20. TxD Signal propagation delays  
6.4.2.4 RxD  
Table 41. RxD input characteristic  
Name  
Description1  
Min  
Max  
Unit  
C_CCRxD  
Input capacitance on  
RxD pin  
7
pF  
uCCLogic_1  
uCCLogic_0  
dCCRxD01  
Threshold for detecting  
logic high  
35  
30  
70  
65  
10  
%
%
ns  
Threshold for detecting  
logic low  
Sum of delay from  
actual input to the D  
input of the first FF,  
rising edge  
dCCRxD10  
Sum of delay from  
actual input to the D  
input of the first FF,  
falling edge  
10  
ns  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
51  
FlexRay electrical specifications  
1. All parameters specified for VDD_HV_IOx = 3.3 V -5%, + 10%, TJ = –40 oC / 150 oC.  
6.4.3 Ethernet switching specifications  
The following timing specs are defined at the chip I/O pin and must be translated  
appropriately to arrive at timing specs/constraints for the physical interface.  
6.4.3.1 MII signal switching specifications  
The following timing specs meet the requirements for MII style interfaces for a range of  
transceiver devices.  
Table 42. MII signal switching specifications  
Symbol  
Description  
Min.  
Max.  
25  
Unit  
MHz  
RXCLK frequency  
RXCLK pulse width high  
MII1  
35%  
65%  
RXCLK  
period  
RXCLK  
period  
ns  
MII2  
RXCLK pulse width low  
35%  
65%  
MII3  
MII4  
RXD[3:0], RXDV, RXER to RXCLK setup  
RXCLK to RXD[3:0], RXDV, RXER hold  
TXCLK frequency  
5
5
ns  
25  
MHz  
MII5  
TXCLK pulse width high  
35%  
65%  
TXCLK  
period  
TXCLK  
period  
ns  
MII6  
TXCLK pulse width low  
35%  
65%  
MII7  
MII8  
TXCLK to TXD[3:0], TXEN, TXER invalid  
TXCLK to TXD[3:0], TXEN, TXER valid  
2
25  
ns  
MII6  
MII5  
MII7  
TXCLK (input)  
MII8  
Valid data  
TXD[n:0]  
TXEN  
Valid data  
Valid data  
TXER  
Figure 21. RMII/MII transmit signal timing diagram  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
52  
NXP Semiconductors  
FlexRay electrical specifications  
MII2  
MII3  
MII1  
MII4  
RXCLK (input)  
RXD[n:0]  
RXDV  
Valid data  
Valid data  
Valid data  
RXER  
Figure 22. RMII/MII receive signal timing diagram  
6.4.3.2 RMII signal switching specifications  
The following timing specs meet the requirements for RMII style interfaces for a range of  
transceiver devices.  
Table 43. RMII signal switching specifications  
Num  
Description  
Min.  
Max.  
50  
Unit  
EXTAL frequency (RMII input clock RMII_CLK)  
RMII_CLK pulse width high  
MHz  
RMII1  
35%  
65%  
RMII_CLK  
period  
RMII2  
RMII_CLK pulse width low  
35%  
65%  
RMII_CLK  
period  
RMII3  
RMII4  
RMII7  
RMII8  
RXD[1:0], CRS_DV, RXER to RMII_CLK setup  
RMII_CLK to RXD[1:0], CRS_DV, RXER hold  
RMII_CLK to TXD[1:0], TXEN invalid  
4
2
15  
ns  
ns  
ns  
ns  
4
RMII_CLK to TXD[1:0], TXEN valid  
6.4.4 SAI electrical specifications  
All timing requirements are specified relative to the clock period or to the minimum  
allowed clock period of a device  
Table 44. Master mode SAI Timing  
no  
Parameter  
Value  
Unit  
Min  
2.7  
40  
Max  
3.6  
-
Operating Voltage  
V
S1  
SAI_MCLK cycle time  
ns  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
53  
FlexRay electrical specifications  
Table 44. Master mode SAI Timing (continued)  
no  
Parameter  
Value  
Unit  
Min  
Max  
S2  
S3  
SAI_MCLK pulse width high/low  
SAI_BCLK cycle time  
45%  
55%  
MCLK  
period  
80  
-
BCLK  
period  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
SAI_BCLK pulse width high/low  
45%  
55%  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SAI_BCLK to SAI_FS output valid  
SAI_BCLK to SAI_FS output invalid  
SAI_BCLK to SAI_TXD valid  
-
0
15  
-
-
15  
-
SAI_BCLK to SAI_TXD invalid  
0
SAI_RXD/SAI_FS input setup before SAI_BCLK  
SAI_RXD/SAI_FS input hold after SAI_BCLK  
28  
0
-
-
Figure 23. Master mode SAI Timing  
Table 45. Slave mode SAI Timing  
No  
Parameter  
Value  
Unit  
Min  
2.7  
80  
Max  
Operating Voltage  
3.6  
V
S11  
S12  
S13  
S14  
SAI_BCLK cycle time (input)  
-
ns  
SAI_BCLK pulse width high/low (input)  
SAI_FS input setup before SAI_BCLK  
SAI_FS input hold after SAI_BCLK  
45%  
10  
55%  
BCLK period  
-
-
ns  
ns  
2
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
54  
NXP Semiconductors  
Debug specifications  
Unit  
Table 45. Slave mode SAI Timing (continued)  
No  
Parameter  
Value  
Min  
-
Max  
S15  
S16  
S17  
S18  
SAI_BCLK to SAI_TXD/SAI_FS output valid  
SAI_BCLK to SAI_TXD/SAI_FS output invalid  
SAI_RXD setup before SAI_BCLK  
28  
-
ns  
ns  
ns  
ns  
0
10  
2
-
SAI_RXD hold after SAI_BCLK  
-
Figure 24. Slave mode SAI Timing  
6.5 Debug specifications  
6.5.1 JTAG interface timing  
Table 46. JTAG pin AC electrical characteristics 1  
#
1
Symbol  
tJCYC  
Characteristic  
Min  
62.5  
40  
5
Max  
Unit  
ns  
%
TCK Cycle Time 2  
60  
3
2
tJDC  
TCK Clock Pulse Width  
TCK Rise and Fall Times (40% - 70%)  
3
tTCKRISE  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4
tTMSS, tTDIS TMS, TDI Data Setup Time  
tTMSH, tTDIH TMS, TDI Data Hold Time  
5
5
203  
6
tTDOV  
tTDOI  
tTDOHZ  
tBSDV  
TCK Low to TDO Data Valid  
0
7
TCK Low to TDO Data Invalid  
TCK Low to TDO High Impedance  
TCK Falling Edge to Output Valid  
8
15  
6004  
11  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
55  
Debug specifications  
Table 46. JTAG pin AC electrical characteristics 1 (continued)  
#
Symbol  
Characteristic  
Min  
Max  
Unit  
12  
tBSDVZ  
TCK Falling Edge to Output Valid out of High  
Impedance  
600  
ns  
13  
14  
15  
tBSDHZ  
tBSDST  
tBSDHT  
TCK Falling Edge to Output High Impedance  
Boundary Scan Input Valid to TCK Rising Edge  
TCK Rising Edge to Boundary Scan Input Invalid  
15  
15  
600  
ns  
ns  
ns  
1. These specifications apply to JTAG boundary scan only.  
2. This timing applies to TDI, TDO, TMS pins, however, actual frequency is limited by pad type for EXTEST instructions.  
Refer to pad specification for allowed transition frequency  
3. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.  
4. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.  
TCK  
2
3
2
1
3
Figure 25. JTAG test clock input timing  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
56  
NXP Semiconductors  
Debug specifications  
TCK  
4
5
TMS, TDI  
6
8
7
TDO  
Figure 26. JTAG test access port timing  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
57  
Debug specifications  
TCK  
11  
13  
Output  
Signals  
12  
Output  
Signals  
14  
15  
Input  
Signals  
Figure 27. JTAG boundary scan timing  
6.5.2 Nexus timing  
Table 47. Nexus debug port timing 1  
No.  
Symbol  
Parameter  
Condition  
s
Min  
Max  
Unit  
1
2
3
4
5
6
7
8
tMCYC  
tMDC  
tMDOV  
tEVTIPW  
MCKO Cycle Time  
15.6  
40  
–0.1  
4
60  
0.25  
ns  
%
MCKO Duty Cycle  
MCKO Low to MDO, MSEO, EVTO Data Valid2  
tMCYC  
tTCYC  
tMCYC  
ns  
EVTI Pulse Width  
tEVTOPW EVTO Pulse Width  
1
tTCYC  
tTDC  
TCK Cycle Time3  
62.5  
40  
8
TCK Duty Cycle  
60  
%
tNTDIS  
,
TDI, TMS Data Setup Time  
ns  
tNTMSS  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
58  
NXP Semiconductors  
Debug specifications  
Table 47. Nexus debug port timing 1 (continued)  
No.  
Symbol  
Parameter  
Condition  
s
Min  
5
Max  
Unit  
ns  
9
tNTDIH  
,
TDI, TMS Data Hold Time  
TCK Low to TDO/RDY Data Valid  
tNTMSH  
10  
tJOV  
0
25  
ns  
1. JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured  
from 50% of MCKO and 50% of the respective signal.  
2. For all Nexus modes except DDR mode, MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.  
3. The system clock frequency needs to be four times faster than the TCK frequency.  
1
2
MCKO  
3
MDO  
MSEO  
EVTO  
Output Data Valid  
5
Figure 28. Nexus output timing  
4
EVTI  
Figure 29. Nexus EVTI Input Pulse Width  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
59  
Debug specifications  
6
7
TCK  
8
9
TMS, TDI  
10  
TDO/RDY  
Figure 30. Nexus TDI, TMS, TDO timing  
6.5.3 WKPU/NMI timing  
Table 48. WKPU/NMI glitch filter  
No.  
1
Symbol  
Parameter  
Min  
Typ  
Max  
20  
Unit  
ns  
WFNMI  
NMI pulse width that is rejected  
NMI pulse width that is passed  
2
WNFNMI  
D
400  
ns  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
60  
NXP Semiconductors  
Thermal attributes  
6.5.4 External interrupt timing (IRQ pin)  
Table 49. External interrupt timing specifications  
No.  
1
Symbol  
tIPWL  
Parameter  
Conditions  
Min  
3
Max  
Unit  
tCYC  
tCYC  
tCYC  
IRQ pulse width low  
IRQ pulse width high  
IRQ edge to edge time  
2
tIPWH  
3
3
tICYC  
6
These values applies when IRQ pins are configured for rising edge or falling edge events,  
but not both.  
IRQ  
1
2
3
Figure 31. External interrupt timing  
7 Thermal attributes  
7.1 Thermal attributes  
Board type  
Symbol  
Description  
176LQFP  
Unit  
Notes  
Single-layer (1s)  
RθJA  
Thermal  
50.7  
24.2  
38.1  
17.8  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
resistance, junction  
to ambient (natural  
convection)  
Four-layer (2s2p)  
Single-layer (1s)  
Four-layer (2s2p)  
RθJA  
Thermal  
1, 2, 3  
1, 3  
resistance, junction  
to ambient (natural  
convection)  
RθJMA  
Thermal  
resistance, junction  
to ambient (200 ft./  
min. air speed)  
RθJMA  
Thermal  
1, 3  
resistance, junction  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
61  
Thermal attributes  
Board type  
Symbol  
Description  
176LQFP  
Unit  
Notes  
to ambient (200 ft./  
min. air speed)  
RθJB  
RθJC  
ΨJT  
Thermal  
resistance, junction  
to board  
10.9  
8.4  
°C/W  
°C/W  
°C/W  
°C/W  
4
5
6
7
Thermal  
resistance, junction  
to case  
Thermal  
resistance, junction  
to package top  
0.5  
ΨJB  
Thermal  
0.3  
characterization  
parameter, junction  
to package bottom  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
6. Thermal resistance between the die and the solder pad on the bottom of the package based on simulation without any  
interface resistance. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
7. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written  
as Psi-JB.  
Board type  
Symbol  
Description  
324 MAPBGA  
Unit  
Notes  
Single-layer (1s)  
RθJA  
Thermal  
31.0  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
1,2,3  
1, 3  
1,3  
4
resistance, junction  
to ambient (natural  
convection)  
Four-layer (2s2p)  
Single-layer (1s)  
Four-layer (2s2p)  
RθJA  
Thermal  
24.3  
23.5  
20.1  
16.8  
resistance, junction  
to ambient (natural  
convection)  
RθJMA  
RθJMA  
RθJB  
Thermal  
resistance, junction  
to ambient (200 ft./  
min. air speed)  
Thermal  
resistance, junction  
to ambient (200 ft./  
min. air speed)  
Thermal  
resistance, junction  
to board  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
62  
NXP Semiconductors  
Thermal attributes  
Board type  
Symbol  
Description  
324 MAPBGA  
Unit  
Notes  
RθJC  
Thermal  
resistance, junction  
to case  
7.4  
°C/W  
°C/W  
5
ΨJT  
Thermal  
0.2  
7.3  
6
7
characterization  
parameter, junction  
to package top  
natural convection  
ΨJB  
Thermal  
°C/W  
characterization  
parameter, junction  
to package bottom  
natural convection  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.  
3. Per JEDEC JESD51-6 with the board horizontal  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2.  
7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction  
temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is  
written as Psi-JB.  
Board type  
Symbol  
Description  
256 MAPBGA  
Unit  
Notes  
Single-layer (1s)  
RθJA  
Thermal  
42.6  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
1,2,3  
1,3  
resistance, junction  
to ambient (natural  
convection)  
Four-layer (2s2p)  
Single-layer (1s)  
Four-layer (2s2p)  
RθJA  
Thermal  
26.0  
31.0  
21.3  
resistance, junction  
to ambient (natural  
convection)  
RθJMA  
Thermal  
resistance, junction  
to ambient (200 ft./  
min. air speed)  
RθJMA  
Thermal  
1,3  
resistance, junction  
to ambient (200 ft./  
min. air speed)  
RθJB  
Thermal  
resistance, junction  
to board  
12.8  
7.9  
°C/W  
°C/W  
4
5
RθJC  
Thermal  
resistance, junction  
to case  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
63  
Thermal attributes  
Board type  
Symbol  
Description  
256 MAPBGA  
Unit  
Notes  
ΨJT  
Thermal  
0.2  
°C/W  
°C/W  
6
7
characterization  
parameter, junction  
to package top  
outside center  
(natural  
convection)  
RθJB_CSB  
Thermal  
9.0  
characterization  
parameter, junction  
to package bottom  
outside center  
(natural  
convection)  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written  
as Psi-JT.  
7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction  
temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is  
written as Psi-JB.  
Board type  
Symbol  
Description  
100 MAPBGA  
Unit  
Notes  
Single-layer (1s)  
RθJA  
Thermal  
50.9  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1,2  
1,2,3  
1,3  
1,3  
4
resistance, junction  
to ambient (natural  
convection)  
Four-layer (2s2p)  
Single-layer (1s)  
Four-layer (2s2p)  
RθJA  
Thermal  
27.0  
38.0  
22.2  
10.8  
resistance, junction  
to ambient (natural  
convection)  
RθJMA  
RθJMA  
RθJB  
Thermal  
resistance, junction  
to ambient (200 ft./  
min. air speed)  
Thermal  
resistance, junction  
to ambient (200 ft./  
min. air speed)  
Thermal  
resistance, junction  
to board  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
64  
NXP Semiconductors  
Dimensions  
Notes  
Board type  
Symbol  
Description  
100 MAPBGA  
Unit  
RθJC  
Thermal  
resistance, junction  
to case  
8.2  
°C/W  
°C/W  
5
6
ΨJT  
Thermal  
0.2  
characterization  
parameter, junction  
to package top  
outside center  
(natural  
convection)  
ΨJB  
Thermal  
7.8  
°C/W  
7
characterization  
parameter, junction  
to package bottom  
outside center  
(natural  
convection)  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written  
as Psi-JT.  
7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction  
temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is  
written as Psi-JB.  
8 Dimensions  
8.1 Obtaining package dimensions  
Package dimensions are provided in package drawing.  
To find a package drawing, go to www.nxp.com and perform a keyword search for the  
drawing’s document number:  
Package  
NXP Document Number  
100 MAPBGA  
176-pin LQFP-EP  
256 MAPBGA  
324 MAPBGA  
98ASA00802D  
98ASA00698D  
98ASA00346D  
98ASA10582D  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
65  
Pinouts  
9 Pinouts  
9.1 Package pinouts and signal descriptions  
For package pinouts and signal descriptions, refer to the Reference Manual.  
10 Reset sequence  
10.1 Reset sequence  
This section describes different reset sequences and details the duration for which the  
device remains in reset condition in each of those conditions.  
10.1.1 Reset sequence duration  
Table 50 specifies the reset sequence duration for the five different reset sequences  
described in Reset sequence description.  
Table 50. RESET sequences  
No. Symbol  
Parameter  
TReset  
Unit  
Min Typ 1 Max  
1
2
3
4
5
TDRB  
TDR  
Destructive Reset Sequence, BIST enabled  
Destructive Reset Sequence, BIST disabled  
6.2  
110  
6.2  
110  
7
7.3  
182  
7.3  
182  
9
-
-
-
-
-
ms  
us  
TERLB External Reset Sequence Long, Unsecure Boot  
ms  
us  
TFRL  
TFRS  
Functional Reset Sequence Long, Unsecure Boot  
Functional Reset Sequence Short, Unsecure Boot  
us  
1. The Typ value is applicable only if the reset sequence duration is not prolonged by an extended assertion of RESET_B by  
an external reset generator.  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
66  
NXP Semiconductors  
Reset sequence  
10.1.2 BAF execution duration  
Following table specifies the typical BAF execution time in case BAF boot header is  
present at first location (Typical) and last location (worst case). Total Boot time is the  
sum of reset sequence duration and BAF execution time.  
Table 51. BAF execution duration  
BAF execution  
duration  
Min  
Typ  
Max  
Unit  
BAF execution time  
(boot header at first  
location)  
200  
μs  
BAF execution time  
(boot header at last  
location)  
320  
μs  
10.1.3 Reset sequence description  
The figures in this section show the internal states of the device during the five different  
reset sequences. The dotted lines in the figures indicate the starting point and the end  
point for which the duration is specified in .  
With the beginning of DRUN mode, the first instruction is fetched and executed. At this  
point, application execution starts and the internal reset sequence is finished.  
The following figures show the internal states of the device during the execution of the  
reset sequence and the possible states of the RESET_B signal pin.  
NOTE  
RESET_B is a bidirectional pin. The voltage level on this pin  
can either be driven low by an external reset generator or by the  
device internal reset circuitry. A high level on this pin can only  
be generated by an external pullup resistor which is strong  
enough to overdrive the weak internal pulldown resistor. The  
rising edge on RESET_B in the following figures indicates the  
time when the device stops driving it low. The reset sequence  
durations given in are applicable only if the internal reset  
sequence is not prolonged by an external reset generator  
keeping RESET_B asserted low beyond the last Phase3.  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
67  
Reset sequence  
Reset Sequence Trigger  
Reset Sequence Start Condition  
RESET_B  
PHASE0  
PHASE1,2  
PHASE3  
BIST  
PHASE1,2  
PHASE3  
DRUN  
Establish  
IRC and  
PWR  
Flash  
Init  
Device  
Config  
Self Test  
Setup  
Flash  
Init  
Device  
Config  
Application  
Execution  
MBIST  
T
< T  
< T  
RESET DRB, max  
DRB, min  
Figure 32. Destructive reset sequence, BIST enabled  
Reset Sequence Trigger  
Reset Sequence Start Condition  
RESET_B  
PHASE0  
PHASE1,2  
PHASE3  
DRUN  
BAF+  
Establish  
IRC and  
PWR  
Flash  
Init  
Device  
Config  
Application  
Execution  
T
< T  
< T  
RESET DR, max  
DR, min  
Figure 33. Destructive reset sequence, BIST disabled  
Reset Sequence Trigger  
Reset Sequence Start Condition  
RESET_B  
PHASE1,2  
PHASE3  
BIST  
PHASE1,2  
PHASE3  
DRUN  
Device  
Config  
Flash  
Init  
Application  
Execution  
Device  
Config  
Flash  
Init  
Self Test  
Setup  
MBIST  
T
< T  
RESET  
< T  
ERLB, max  
ERLB, min  
Figure 34. External reset sequence long, BIST enabled  
Reset Sequence Trigger  
Reset Sequence Start Condition  
RESET_B  
PHASE1,2  
PHASE3  
DRUN  
BAF+  
Application  
Ex ecut ion  
Flash  
Init  
Device  
Config  
T
< T  
< T  
RESET FRL, max  
FRL, min  
Figure 35. Functional reset sequence long  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
68  
NXP Semiconductors  
Revision History  
Reset Sequence Trigger  
Reset Sequence Start Condition  
RESET_B  
PHASE3  
DRUN  
BAF+  
Application  
Execution  
T
< T  
< T  
RESET FRS, max  
FRS, min  
Figure 36. Functional reset sequence short  
The reset sequences shown in Figure 35 and Figure 36 are triggered by functional reset  
events. RESET_B is driven low during these two reset sequences only if the  
corresponding functional reset source (which triggered the reset sequence) was enabled to  
drive RESET_B low for the duration of the internal reset sequence. See the RGM_FBRE  
register in the device reference manual for more information.  
11 Revision History  
11.1 Revision History  
The following table provides a revision history for this document.  
Table 52. Revision History  
Rev. No.  
Rev 1  
Date  
Substantial Changes  
14 March 2013  
7 August 2015  
Initial Release  
• In features:  
Rev 2  
• Updated BAF feature with sentence, Boot Assist Flash (BAF) supports internal  
flash programming via a serial link (SCI)  
• Updated FlexCAN3 with FD support  
• Updated number of STMs to two.  
• In Block diagram:  
• Updated SRAM size from 128 KB to 256 KB.  
• In Family Comparison:  
• Added note: All optional features (Flash memory, RAM, Peripherals) start with  
lowest number or address (e.g. FlexCAN0) and end at highest available number  
or address (e.g. MPC574xB/D have 6 CAN, ending with FlexCAN5).  
• Revised MPC5746C Family Comparison table.  
• In Ordering parts:  
• Updated ordering parts diagram to include 100 MAPBGA information and optional  
fields.  
• In table: Absolute maximum ratings  
• Removed entry: 'VSS_HV  
• Added spec for 'VDD12  
• Updated 'Max' column for 'VINA  
'
'
'
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
69  
Revision History  
Rev. No.  
Table 52. Revision History (continued)  
Date  
Substantial Changes  
• Updated footnote for VDD_HV_ADC1_REF.  
• Added footnote to 'Conditions', All voltages are referred to VSS_HV unless  
otherwise specified  
• Removed footnote from 'Max', Absolute maximum voltages are currently  
maximum burn-in voltages. Absolute maximum specifications for device stress  
have not yet been determined.  
• In section: Recommended operating conditions  
• Added opening text: ''The following table describes the operating conditions ... "  
• Added note: "VDD_HV_A, VDD_HV_B and VDD_HV_C are all ... "  
• In table: Recommended operating conditions (VDD_HV_x = 3.3 V) and  
(VDD_HV_x = 5 V)  
• Added footnote to 'Conditions' cloumn, (All voltages are referred to VSS_HV  
unless otherwise specified).  
• Updated footnote for 'Min' column to Device will be functional down (and  
electrical specifications as per various datasheet parameters will be  
guaranteed) to the point where one of the LVD/HVD resets the device.  
When voltage drops outside range for an LVD/HVD, device is reset.  
• Removed footnote for 'VDD_HV_A', 'VDD_HV_B', and 'VDD_HV_C' entry and  
updated the parameter column.  
• Removed entry : 'VSS_HV  
• Updated 'Parameter' column for 'VDD_HV_FLA', 'VDD_HV_ADC1_REF', 'VDD_LV  
• Updated 'Min' column for 'VDD_HV_ADC0' 'VDD_HV_ADC1  
'
'
'
• Updated 'Parameter' 'Min' 'Max' columns for 'VSS_HV_ADC0' and 'VSS_HV_ADC1  
• Updated footnote for 'VDD_LV ' to VDD_LV supply pins should never be  
grounded (through a small impedance). If these are not driven, they should  
only be left floating.  
'
• Removed row for symbol 'VSS_LV  
'
• Removed footnote from 'Max' column of 'VDD_HV_ADC0' and 'VDD_HV_ADC1',  
(PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from  
VDD_HV_B domain hence VDD_HV_ADC1 should be within 100 mV of  
VDD_HV_B when these channels are used for ADC_1).  
• In table: Recommended operating conditions (VDD_HV_x = 3.3 V)  
• Removed footnote from 'VIN1_CMP_REF', (Only applicable when supplying  
from external source).  
• In table: Recommended operating conditions (VDD_HV_x = 5 V)  
• Added spec for 'VIN1_CMP_REF' and corresponding footnotes.  
• In section: Voltage monitor electrical characteristics  
• Updated description for Low Voltage detector block.  
• Added note, BCP56, MCP68 and MJD31 are guaranteed ballasts.  
• In table: Voltage regulator electrical specifications  
• Added footnote, Ceramic X7R or X5R type with capacitance-temperature  
characteristics +/-15% of -55 degC to +125degC is recommended. The  
tolerance +/-20% is acceptable.  
• Revised table, Voltage monitor electrical characteristics  
• In section: Supply current characteristics  
• In table: Current consumption characteristics  
• IDD_BODY_4: Updated SYS_CLK to 120 MHz.  
• IDD_BODY_4: Updated Max for Ta= 105 °C fand 85 °C )  
• Idd_STOP: Added condition for Ta= 105 °C and removed Max value for Ta= 85  
°C.  
• IDD_HV_ADC_REF: Added condition for Ta= 105 °C and 85 °C and removed  
Max value for Ta= 25 °C.  
• IDD_HV_FLASH: Added condition for Ta= 105 °C and 85 °C  
• In table: Low Power Unit (LPU) Current consumption characteristics  
• LPU_RUN and LPU_STOP: Added condition for Ta= 105 °C and 85 °C  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
70  
NXP Semiconductors  
Revision History  
Table 52. Revision History (continued)  
Rev. No.  
Date  
Substantial Changes  
• In table: STANDBY Current consumption characteristics  
• Added condition for Ta= 105 °C and 85 °C for all entries.  
• In section: I/O parameters  
• In table: Functional Pad AC Specifications @ 3.3 V Range  
• Updated values for 'pad_sr_hv (output)'  
• In table: DC electrical specifications @ 3.3V Range  
• Updateded Min and Max values for Vih and Vil respectively.  
• In table: Functional Pad AC Specifications @ 5 V Range  
• Updated values for 'pad_sr_hv (output)'  
• In table DC electrical specifications @ 5 V Range  
• Updated Min value for Vhys  
• In section: Reset pad electrical characteristics  
• Revised table, Reset electrical characteristics  
• Deleted note, There are some specific ports that supports TTL functionality. These  
ports are, PB[4], PB[5], PB[6], PB[7], PB[8], PB[9], PD[0], PD[1], PD[2], PD[3],  
PD[4], PD[5], PD[6], PD[7], PD[8], PD[9], PD[10], and PD[11].  
• In section: PORST electrical specifications  
• In table: PORST electrical specifications  
• Updated 'Min' value for WNFPORST  
• In section: Peripheral operating requirements and behaviours  
• Changed section title from Input impedance and ADC accuracy to Input equivalent  
circuit and ADC conversion characteristics.  
• Revised table: ADC conversion characteristics (for 12-bit) and ADC conversion  
characteristics (for 10-bit)  
• Removed table, ADC supply configurations.  
• In section: Analogue Comparator (CMP) electrical specifications  
• In table: Comparator and 6-bit DAC electrical specifications  
• Updated 'Max' value of IDDLS  
• Updated 'Min' and 'Max' for VAIO and DNL  
• Updated 'Descripton' 'Min' 'Max' od VH  
• Updated row for tDHS  
• Added row for tDLS  
• Removed row for VCMPOh and VCMPOl  
• In section: Clocks and PLL interfaces modules  
• In table: Main oscillator electrical characteristics  
• VXOSCHS: Removed values for 4 MHz.  
• TXOSCHSSU: Updated range to 8-40 MHz.  
• In table: 16 MHz RC Oscillator electrical specifications  
• Updated 'Max' for Tstartup and TLTJIT  
• Removed FUntrimmed row  
• In table: 128 KHz Internal RC oscillator electrical specifications  
• Fosc: Removed Uncaliberated 'Condition' and updated 'Min', 'Typ', and  
'Max' for Caliberated condition  
• Fosc: Updated 'Temperature dependence' and 'Supply dependence' Max  
values  
• In table: PLL electrical specifications  
• Removed entries for Input Clock Low Level, Input Clock High Level, Power  
consumption, Regulator Maximum Output Current, Analog Supply, Digital  
Supply (VDD_LV), Modulation Depth (Down Spread), PLL reset assertion  
time, and Power Consumption  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
71  
Revision History  
Rev. No.  
Table 52. Revision History (continued)  
Date  
Substantial Changes  
• Removed 'Typ' value for Duty Cycle at pllclkout  
• Removed 'Min' value for Lock Time in calibration mode.  
• In table: Jitter calculation  
• Added 1 Sigma Random Jitter and Total Period Jitter values for Long Term  
Jitter (Interger and Fractional Mode) rows.  
• In section Flash read wait state and address pipeline control settings  
• In Flash Read Wait State and Address Pipeline Control: Updated APC for 40 MHz.  
• Removed section: On-chip peripherals  
• In section, Thermal attributes  
• Added table for 100 MAPBGA  
• In section Obtaining package dimensions  
• Updated package details for 100 MAPBGA  
• Editoral updates throughtout including correction of various module names.  
Rev 3  
2 March 2016  
• In section, Recommended operating conditions  
• Added a new Note  
• In section, Voltage regulator electrical characteristics  
• In table, Voltage regulator electrical specifications:  
• Added a new row for CHV_VDD_B  
• Added a footnote on VDD_HV_BALLAST  
• Added a new Note at the end of this section  
• In section, Voltage monitor electrical characteristics  
• In table, Voltage monitor electrical characteristics:  
• Removed "VLVD_FLASH" and "VLVD_FLASH during low power mode using  
LPBG as reference" rows  
• Updated Fall and Rise trimmed Minimum values for VHVD_LV_cold  
• In section, Supply current characteristics  
• In table, Current consumption characteristics:  
• Updated the footnote mentioned in the Condition column of IDD_STOP row  
• Updated all TBD values  
• In table, Low Power Unit (LPU) Current consumption characteristics:  
• Updated the typical value of LPU_STOP to 0.18 mA  
• Updated all TBD values  
• In table, STANDBY Current consumption characteristics:  
• Updated all TBD values  
• In section, AC specifications @ 3.3 V Range  
• In table, Functional Pad AC Specifications @ 3.3 V Range:  
• Updated Rise/Fall Edge values  
• In section, DC electrical specifications @ 3.3V Range  
• In table, DC electrical specifications @ 3.3V Range:  
• Updated Max value for Vol to 0.1 * VDD_HV_x  
• In section, AC specifications @ 5 V Range  
• In table, Functional Pad AC Specifications @ 5 V Range:  
• Updated Rise/Fall Edge values  
• In section, DC electrical specifications @ 5 V Range  
• In table, DC electrical specifications @ 5 V Range:  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
72  
NXP Semiconductors  
Revision History  
Table 52. Revision History (continued)  
Rev. No.  
Date  
Substantial Changes  
• Updated Min and Max values for Pull_Ioh and Pull_Iol rows  
• Updated Max value for Vol to 0.1 * VDD_HV_x  
• In section, Reset pad electrical characteristics  
• In table, Functional reset pad electrical specifications:  
• Updated parameter column for VIH, VIL and VHYS rows  
• Updated Min and Max values for VIH and VIL rows  
• In section, PORST electrical specifications  
• In table, PORST electrical specifications:  
• Updated Unit and Min/Max values for VIH and VIL rows  
• In section, Input equivalent circuit and ADC conversion characteristics  
• In table, ADC conversion characteristics (for 12-bit):  
• Updated "ADC Analog Pad (pad going to one ADC)" row  
• In table, ADC conversion characteristics (for 10-bit):  
• Updated "ADC Analog Pad (pad going to one ADC)" row  
• In section, Analog Comparator (CMP) electrical specifications  
• In table, Comparator and 6-bit DAC electrical specifications:  
• Updated Min and Max values for VAIO to 47 mV  
• Updated Max value for tDLS to 21 μs  
• In section, Main oscillator electrical characteristics  
• In table, Main oscillator electrical characteristics:  
• Updated VIH Min value to 1.95V  
• Updated VIL Max value to 1.25V  
• Removed VIH Typ value  
• In section, PLL electrical specifications  
• In table, PLL electrical specifications:  
• Updated Max value for Modulation Depth (Center Spread) to +/- 3.0%  
Rev 4  
Rev 5  
9 March 2016  
• In section, Voltage regulator electrical characteristics  
• In table, Voltage regulator electrical specifications:  
• Updated the footnote on VDD_HV_BALLAST  
27 February  
2017  
• In Family Comparison section:  
• Updated the "MPC5746C Family Comparison" table.  
• added "NVM Memory Map 1", "NVM Memory Map 2", and "RAM Memory Map"  
tables.  
• Updated the product version, flash memory size and optional fields information in  
Ordering Information section.  
• In Recommended Operating Conditions section, removed the note related to additional  
crossover current.  
• VDD_HV_C row added in "Voltage regulator electrical specifications" table in Voltage  
regulator electrical characteristics section.  
• In Voltage Monitor Electrical Characteristics section, updated the "Trimmed" Fall and  
Rise specs of VHVD_LV_cold parameter in "Voltage Monitor Electrical Characteristics"  
table.  
• In AC Electrical Specifications: 3.3 V Range section, changed the occurrences of  
“ipp_sre[1:0]” to “SIUL2_MSCRn.SRC[1:0]” in the table.  
Table continues on the next page...  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
73  
Revision History  
Rev. No.  
Table 52. Revision History (continued)  
Date  
Substantial Changes  
• In DC Electrical Specifications: 3.3 V Range section, changed the occurrences of  
“ipp_sre[1:0]” to “SIUL2_MSCRn.SRC[1:0]” and updated "Vol min and max" values in  
the table.  
• In AC Electrical Specifications: 5 V Range section, changed the occurrences of  
“ipp_sre[1:0]” to “SIUL2_MSCRn.SRC[1:0]” in the table.  
• In DC Electrical Specifications: 5 V Range section, changed the occurrences of  
“ipp_sre[1:0]” to “SIUL2_MSCRn.SRC[1:0]” and updated "Vol min and max" values in  
the table.  
• In "Flash memory AC timing specifications" table in Flash memory AC timing  
specifications section:  
• Updated the "tpsus" typ value from 7 us to 9.4 us.  
• Updated the "tpsus" max value from 9.1 us to 11.5 us.  
• Added "Continuous SCK Timing" table in DSPI timing section.  
• Added "ADC pad leakage" at 105°C TA conditions in "ADC conversion characteristics  
(for 12-bit)" table in ADC electrical specifications section.  
• In "STANDBY Current consumption characteristics" table in Supply current  
characteristics section:  
• Updated the Typ and max values of IDD Standby current.  
• Added IDD Standby3 current spec for FIRC ON.  
• Removed IVDDHV and IVDDLV specs in 16 MHz RC Oscillator electrical specifications  
section.  
• Added Reset Sequence section, with Reset Sequence Duration, BAF execution duration  
section, and Reset Sequence Distribution as its sub-sections.  
Rev 5.1  
22 May 2017  
• Removed the Introduction section from Section 4 "General".  
• In AC Specifications@3.3V section, removed note related to Cz results and added two  
notes.  
• In AC Specifications@5V section, added two notes.  
• In ADC Electrical Specifications section, added spec value of "ADC Analog Pad" at Max  
leakage (standard channel)@ 105 C TA in "ADC conversion characteristics (for 10-bit)"  
table.  
• In PLL Electrical Specifications section, updated the first footnote of "Jitter calculation"  
table.  
• In Analog Comparator Electrical Specifications section, updated the TDLS (propagation  
delay, low power mode) max value in "Comparator and 6-bit DAC electrical  
specifications" table to 21 us.  
• In Recommended Operating Conditions section, updated the footnote link to TA in  
"Recommended operating conditions (V DD_HV_x = 5V)" table.  
Rev 6  
21 Nov 2018  
• In Table 2 changed the Code Flash Block 9 (0x01240000 - 0x0127FFFF) from 'not  
available' to 'available' for MPC5746.  
• In Table 3 added 32 and 64 KB flash blocks and footnote "Flexible patitions for boot and  
EEPROM".  
• Added Table 4.  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
74  
NXP Semiconductors  
Revision History  
Table 52. Revision History  
Rev. No.  
Date  
Substantial Changes  
• Updated GPIO and added GPI row in Table 1.  
• Changed the EEPROM support for MPC574xC devices from Emulated up to"64K" to  
"Emulated up to 128K" in Table 1.  
• Changed "VDD_HV_A" to "VDD_HV_IO" and changed the condition from "VDD_HV_A  
VDD_POR" to "3.0 V < VDD_HV_IO < 5.5 V" in Table 19.  
=
• Added the text "For internal ballast configuration the VRC_CTL pin should be left  
floating" in existing foot note "Recommended Transistors:MJD31 @ 85°C....." in Table  
11.  
• Added note "For the Precision channel Analog inputs...pulled low/high externally" after  
the table "STANDBY Current consumption characteristics" in Supply current  
characteristics.  
• In Table 36 :  
• Added footnote in "High Speed Mode" column.  
• For Parameter "DSPI cycle time" changed the Condition from "Master (MTFE=0)"  
to "Master".  
• In Voltage monitor electrical characteristics  
• Under the column "Reset Type" changed "Destructive" to "POR" throughout the  
table "Voltage monitor electrical characteristics".  
• Changed the Reset type of "VLVD_IO_A_HI" to "Functional"  
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018  
NXP Semiconductors  
75  
How to Reach Us:  
Information in this document is provided solely to enable system and software implementers to use  
NXP products. There are no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits based on the information in this document. NXP reserves the right to  
make changes without further notice to any products herein.  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any  
particular purpose, nor does NXP assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets  
and/or specifications can and do vary in different applications, and actual performance may vary over  
time. All operating parameters, including “typicals,” must be validated for each customer application  
by customerʼs technical experts. NXP does not convey any license under its patent rights nor the  
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to unidentified  
vulnerabilities. Customers are responsible for the design and operation of their applications and  
products to reduce the effect of these vulnerabilities on customer's applications and products, and  
NXP accepts no liability for any vulnerability that is discovered. Customers should implement  
appropriate design and operating safeguards to minimize the risks associated with their applications  
and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE  
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,  
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,  
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,  
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,  
the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,  
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS  
are trademarks of NXP B.V. All other product or service names are the property of their respective  
owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,  
CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,  
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,  
ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its  
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of  
patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered  
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the  
Power and Power.org logos and related marks are trademarks and service marks licensed by  
Power.org.  
© 2018 NXP B.V.  
Document Number MPC5746C  
Revision 6, 11/2018  

相关型号:

935346774528

RISC Microcontroller
NXP

935346774557

RISC Microcontroller
NXP

935347031518

RISC Microcontroller
NXP

935347031557

RISC Microcontroller
NXP

935347049557

RISC Microcontroller
NXP

935347051528

RISC Microcontroller
NXP

935347051557

RISC Microcontroller
NXP

935347053528

RISC Microcontroller
NXP

935347054528

RISC Microcontroller
NXP

935347054557

RISC Microcontroller
NXP

935347055528

RISC Microcontroller
NXP

935347119557

RISC Microcontroller
NXP