935352792528 [NXP]

RISC Microcontroller;
935352792528
型号: 935352792528
厂家: NXP    NXP
描述:

RISC Microcontroller

微控制器 外围集成电路
文件: 总65页 (文件大小:1159K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number MWCT101xSF  
NXP Semiconductors  
Data Sheet: Advance Information  
Rev. 2, 07/2018  
MWCT101XSF  
MWCT101XS Data Sheet  
Key Features  
• Memory and memory interfaces  
– Up to 2 MB program flash memory with ECC  
– 64 KB FlexNVM for data flash memory with ECC  
and EEPROM emulation. Note: CSEc (Security) or  
EEPROM writes/erase will trigger error flags in  
HSRUN mode (112 MHz) because this use case is  
not allowed to execute simultaneously. The device  
will need to switch to RUN mode (80 MHz) to  
execute CSEc (Security) or EEPROM writes/erase.  
– Up to 256 KB SRAM with ECC  
– Up to 4 KB of FlexRAM for use as SRAM or  
EEPROM emulation  
– Up to 4 KB Code cache to minimize performance  
impact of memory access latencies  
• Operating characteristics  
– Voltage range: 2.7 V to 5.5 V  
– Ambient temperature range: -40 °C to 105 °C for  
HSRUN mode, -40 °C to 125 °C for RUN mode  
• Arm™ Cortex-M4F core, 32-bit CPU  
– Supports up to 112 MHz frequency (HSRUN) with  
1.25 Dhrystone MIPS per MHz  
– Arm Core based on the Armv7 Architecture and  
Thumb®-2 ISA  
– Integrated Digital Signal Processor (DSP)  
– Configurable Nested Vectored Interrupt Controller  
(NVIC)  
– Single Precision Floating Point Unit (FPU)  
– QuadSPI with HyperBus™ support  
• Clock interfaces  
• Mixed-signal analog  
– 4 - 40 MHz fast external oscillator (SOSC)  
– 48 MHz Fast Internal RC oscillator (FIRC)  
– 8 MHz Slow Internal RC oscillator (SIRC)  
– 128 kHz Low Power Oscillator (LPO)  
– Up to 112 MHz (HSRUN) System Phased Lock  
Loop (SPLL)  
– Up to two 12-bit Analog-to-Digital Converter  
(ADC) with up to 32 channel analog inputs per  
module  
– One Analog Comparator (CMP) with internal 8-bit  
Digital to Analog Converter (DAC)  
• Debug functionality  
– Up to 50 MHz DC external square wave input clock  
– Real Time Counter (RTC)  
– Serial Wire JTAG Debug Port (SWJ-DP) combines  
– Debug Watchpoint and Trace (DWT)  
– Instrumentation Trace Macrocell (ITM)  
– Test Port Interface Unit (TPIU)  
• Power management  
– Low-power Arm Cortex-M4F core with excellent  
energy efficiency  
– Flash Patch and Breakpoint (FPB) Unit  
– Power Management Controller (PMC) with multiple  
power modes: HSRUN, RUN, STOP, VLPR, and  
VLPS. Note: CSEc (Security) or EEPROM writes/  
erase will trigger error flags in HSRUN mode (112  
MHz) because this use case is not allowed to  
execute simultaneously. The device will need to  
switch to RUN mode (80 Mhz) to execute CSEc  
(Security) or EEPROM writes/erase.  
• Human-machine interface (HMI)  
– Up to 89 GPIO pins with interrupt functionality  
– Non-Maskable Interrupt (NMI)  
– Clock gating and low power operation supported on  
specific peripherals.  
This document contains information on a pre-production product. Specifications  
and pre-production information herein are subject to change without notice.  
• Communications interfaces  
– Up to three Low Power Universal Asynchronous Receiver/Transmitter (LPUART/LIN) modules with DMA support  
and low power availability  
– Up to three Low Power Serial Peripheral Interface (LPSPI) modules with DMA support and low power availability  
– Up to two Low Power Inter-Integrated Circuit (LPI2C) modules with DMA support and low power availability  
– Up to three FlexCAN modules (with optional CAN-FD support)  
– FlexIO module for emulation of communication protocols and peripherals (UART, I2C, SPI, I2S, LIN, PWM, etc).  
• Safety and Security  
– Cryptographic Services Engine (CSEc) implements a comprehensive set of cryptographic functions as described in the  
SHE (Secure Hardware Extension) Functional Specification. Note: CSEc (Security) or EEPROM writes/erase will  
trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The  
device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.  
– 128-bit Unique Identification (ID) number  
– Error-Correcting Code (ECC) on flash and SRAM memories  
– System Memory Protection Unit (System MPU)  
– Cyclic Redundancy Check (CRC) module  
– Internal watchdog (WDOG)  
– External Watchdog monitor (EWM) module  
• Timing and control  
– Up eight independent 16-bit FlexTimers (FTM) module, offering up to 64 standard channels (IC/OC/PWM)  
– One 16-bit Low Power Timer (LPTMR) with flexible wake up control  
– Two Programmable Delay Blocks (PDB) with flexible trigger system  
– One 32-bit Low Power Interrupt Timer (LPIT) with 4 channels  
– 32-bit Real Time Counter (RTC)  
• I/O and package  
– 64-pin LQFP, 100-pin LQFP, 100-pin MAPBGA package options  
• 16 channel DMA with up to 63 request sources using DMAMUX  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
2
NXP Semiconductors  
Table of Contents  
1
2
3
Block diagram.................................................................................... 4  
6.2.5 SPLL electrical specifications .....................................27  
6.3 Memory and memory interfaces................................................27  
6.3.1 Flash memory module (FTFC) electrical  
Feature comparison............................................................................ 5  
Ordering parts.....................................................................................7  
3.1 Determining valid orderable parts ............................................ 7  
3.2 Ordering information ................................................................8  
General............................................................................................... 9  
4.1 Absolute maximum ratings........................................................9  
4.2 Voltage and current operating requirements..............................10  
4.3 Thermal operating characteristics..............................................11  
4.4 Power and ground pins.............................................................. 11  
4.5 LVR, LVD and POR operating requirements............................13  
4.6 Power mode transition operating behaviors.............................. 13  
4.7 Power consumption................................................................... 14  
4.8 ESD handling ratings.................................................................17  
4.9 EMC radiated emissions operating behaviors........................... 17  
I/O parameters....................................................................................17  
5.1 AC electrical characteristics...................................................... 17  
5.2 General AC specifications......................................................... 18  
5.3 DC electrical specifications at 3.3 V Range.............................. 18  
5.4 DC electrical specifications at 5.0 V Range.............................. 19  
5.5 AC electrical specifications at 3.3 V range .............................. 20  
5.6 AC electrical specifications at 5 V range ................................. 21  
5.7 Standard input pin capacitance.................................................. 22  
5.8 Device clock specifications....................................................... 22  
Peripheral operating requirements and behaviors..............................23  
6.1 System modules.........................................................................23  
6.2 Clock interface modules............................................................ 23  
6.2.1 External System Oscillator electrical specifications....23  
6.2.2 External System Oscillator frequency specifications . 25  
6.2.3 System Clock Generation (SCG) specifications..........26  
specifications................................................................27  
6.3.1.1  
Flash timing specifications —  
4
commands................................................ 27  
Reliability specifications..........................30  
6.3.1.2  
6.3.2 QuadSPI AC specifications..........................................31  
6.4 Analog modules.........................................................................35  
6.4.1 ADC electrical specifications...................................... 35  
6.4.1.1  
6.4.1.2  
12-bit ADC operating conditions.............35  
12-bit ADC electrical characteristics....... 37  
6.4.2 CMP with 8-bit DAC electrical specifications............ 39  
6.5 Communication modules...........................................................43  
6.5.1 LPUART electrical specifications............................... 43  
6.5.2 LPSPI electrical specifications.................................... 43  
6.5.3 LPI2C electrical specifications.................................... 49  
6.5.4 FlexCAN electical specifications.................................50  
6.5.5 Clockout frequency......................................................50  
6.6 Debug modules.......................................................................... 50  
6.6.1 SWD electrical specofications .................................... 50  
6.6.2 Trace electrical specifications......................................52  
6.6.3 JTAG electrical specifications..................................... 53  
Thermal attributes.............................................................................. 56  
7.1 Description.................................................................................56  
7.2 Thermal characteristics..............................................................56  
7.3 General notes for specifications at maximum junction  
5
7
6
temperature................................................................................ 59  
Dimensions.........................................................................................60  
8.1 Obtaining package dimensions .................................................60  
Pinouts................................................................................................61  
9.1 Package pinouts and signal descriptions....................................61  
8
9
6.2.3.1  
Fast internal RC Oscillator (FIRC)  
electrical specifications............................ 26  
Slow internal RC oscillator (SIRC)  
6.2.3.2  
10 Revision History.................................................................................61  
electrical specifications ........................... 26  
6.2.4 Low Power Oscillator (LPO) electrical specifications  
......................................................................................27  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
3
Block diagram  
1 Block diagram  
The figure below shows a superset high level architecture block diagram of the device.  
Other devices within the family have a subset of the features. See Feature comparison for  
chip specific values.  
Arm Cortex M4F  
MCM  
Core  
Async  
Trace  
port  
TPIU  
PPB  
NVIC  
ITM  
AWIC  
JTAG &  
SWJ-DP  
AHB-AP  
Serial Wire  
FPU  
FPB  
Clock generation  
DSP DWT  
DMA  
MUX  
SOSC  
4-40 MHz  
FIRC  
48 MHz  
SIRC  
8 MHz  
LPO  
128 kHz  
8-40 MHz  
Mux  
SPLL  
eDMA  
TCD  
512B  
LMEM  
2
Main SRAM  
LMEM  
controller  
Upper region  
Lower region  
EIM  
Code Cache  
M3  
M2  
M1  
M0  
S2  
S3  
S1  
Crossbar switch (AXBS-Lite)  
S0  
1
1
1
System MPU  
System MPU  
System MPU  
Mux  
QuadSPI  
GPIO  
Flash memory  
controller  
Peripheral bus controller  
FlexRAM/  
SRAM  
Low Power  
Timer  
LPIT  
WDOG  
LPI2C  
ERM  
12-bit ADC  
FlexIO  
Code flash  
memory  
Data flash  
memory  
CMP  
8-bit DAC  
FlexTimer  
FlexCAN  
LPUART  
LPSPI  
QSPI  
EWM  
CRC  
3
CSEc  
RTC  
TRGMUX  
PDB  
1: On this device, NXP’s system MPU implements the safety mechanisms to prevent masters from  
accessing restricted memory regions. This system MPU provides memory protection at the  
level of the Crossbar Switch. Each Crossbar master (Core, DMA) can be assigned  
different access rights to each protected memory region. The Arm M4 core version in this family  
does not integrate the Arm Core MPU, which would concurrently monitor only core-initiated memory  
accesses. In this document, the term MPU refers to NXP’s system MPU.  
Device architectural IP  
on all MWCT101xS devices  
Key:  
Peripherals present  
on all MWCT101xS devices  
2: For the device-specific sizes, see the "On-chip SRAM sizes" table in the "Memories and Memory Interfaces"  
chapter of the MWCT101xS Series Reference Manual.  
Peripherals present  
on selected MWCT101xS devices  
(see the "Feature Comparison"  
section in the RM)  
3: CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this  
use case is not allowed to execute simultaneously. The device needs to switch to RUN mode (80 MHz) to  
execute CSEc (Security) or EEPROM writes/erase.  
Figure 1. High-level architecture diagram for the MWCT101xS family  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
4
NXP Semiconductors  
Feature comparison  
2 Feature comparison  
The following figure summarizes the memory and package options for the MWCT101xS  
series and demonstrates where this device fits within the overall series. All devices which  
share a common package are pin-to-pin compatible.  
NOTE  
Availability of peripherals depends on the pin availability in a  
particular package. For more information see IO Signal  
Description Input Multiplexing sheet(s) attached with  
Reference Manual.  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
5
Feature comparison  
MWCT101xS  
MWCT1014S  
Parameter  
MWCT1015S  
MWCT1016S  
®
Core  
Arm Cortex-M4F  
Frequency  
IEEE-754 FPU  
up to 112 MHz (HSRUN)  
HW security module (CSEc)1  
CRC module  
1x  
capable up to ASIL-B  
ISO 26262  
Peripheral speed  
Crossbar  
up to 112 MHz (HSRUN)  
DMA  
EWM  
Memory protection unit  
FIRC CMU  
Watchdog  
1x  
Low power modes  
HSRUN mode1  
Number of I/Os  
Single supply voltage  
up to 89  
up to 89  
2.7 - 5.5 V  
up to 89  
Operating temperature (T ) Temperature ambient  
a
-40 to +105ºC / +125ºC  
1 MB  
Flash  
2 MB2  
512 KB  
64 KB  
Error correction code (ECC)  
System RAM (including FlexRAM)  
FlexRAM (also available as system RAM)  
Cache  
128 KB  
4 KB  
256 KB  
4 KB  
EEPROM emulated by FlexRAM1  
4 KB (up to 64 KB D-Flash)  
See footnote 3  
QuadSPI incl.  
HyperBus™  
External memory interface  
Low power interrupt timer  
1x  
FlexTimer (16-bit counter) 8 channels  
Low power timer (LPTMR)  
4x (32)  
8x (64)  
6x (48)  
1x  
1x  
2x  
Real time counter (RTC)  
Programmable delay block (PDB)  
Trigger mux (TRGMUX)  
1x (73)  
2x (24)  
1x (64)  
2x (16)  
1x (81)  
2x (32)  
12-bit SAR ADC (1 MSPS each)  
Comparator with 8-bit DAC  
1x  
Low power UART/LIN  
(Supports LIN protocol versions 1.3, 2.0, 2.1, 2.2A and SAE J2602)  
3x  
Low power SPI  
Low power I2C  
3x  
2x  
1x  
FlexCAN  
(CAN-FD ISO/CD 11898-1)  
3x  
(1x with FD)  
3x  
3x  
(2x with FD)  
(3x with FD)  
FlexIO (8 pins configurable as UART, SPI, I2C, I2S)  
1x  
SWD, JTAG  
(ITM, SWV,  
SWO), ETM  
Debug & trace  
SWD, JTAG4 (ITM, SWV, SWO)  
Ecosystem  
(IDE, compiler, debugger)  
NXP S32 Design Studio + GCC + GHS + Lauterbach  
LQFP-100  
BGA-100  
LQFP-64  
LQFP-100  
Packages5  
BGA-100  
LEGEND:  
Not implemented  
Available on the device  
1
No write or erase access to Flash module, including Security (CSEc) and EEPROM commands, are allowed when  
device is running at HSRUN mode (112MHz) or VLPR mode.  
2
3
Available when EEEPROM, CSEc and Data Flash are not used. Else only up to 1,984 KB is available for Program Flash.  
4 KB (up to 512 KB D-Flash as a part of 2M Flash). Up to 64 KB of flash is used as EEPROM backup and the remaining 448 KB  
of the last 512 KB block can be used as Data flash or Program flash. See chapter FTFC for details.  
Only for Boundary Scan Register  
4
5
See Dimensions for package drawing  
Figure 2. MWCT101xS product series comparison  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
6
NXP Semiconductors  
Ordering parts  
3 Ordering parts  
3.1 Determining valid orderable parts  
To determine the orderable part numbers for this device, go to www.nxp.com and  
perform a part number search.  
NOTE  
Not all part number combinations exist  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
7
Ordering parts  
3.2 Ordering information  
M/P WCT 1 0 1 4 S F V LH N R  
Product status  
Product line  
Generation  
Config  
Power Class  
Memory Size  
Application  
Core Platform  
Temperature  
Package  
Includes stack  
Tape and Reel  
Product status  
P: Pre Qualification  
M: Fully Qualified  
Package  
Memory size (Flash)  
LQFP  
Pins  
64  
BGA  
-
4
5
6
LH  
LL  
M4F  
512 K  
1 M  
2 M  
Product line  
WCT: Wireless Charging  
Technology  
100  
MH  
Application  
Generation  
1: 1st product Gen  
2: 2nd product Gen  
Blank =Customer  
A = Auto/Industr  
S = A + AUTOSAR  
Includes stack  
Blank = No stack  
N = NFC  
Config  
0 = Standard  
1 = Premium  
Core platform  
F: Arm Cortex M4F  
Tape and Reel  
T: Trays and Tubes  
R: Tape and Reel  
Power Class  
0 = 5 W  
Temperature  
V: -40C to 105C  
1 = 15 W  
2 = 60 W  
3 =200 W  
Figure 3. Ordering information  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
8
NXP Semiconductors  
General  
4 General  
4.1 Absolute maximum ratings  
NOTE  
• Functional operating conditions appear in the DC electrical  
characteristics. Absolute maximum ratings are stress  
ratings only, and functional operation at the maximum  
values is not guaranteed. See footnotes in the following  
table for specific conditions.  
• Stress beyond the listed maximum values may affect device  
reliability or cause permanent damage to the device.  
• All the limits defined in the datasheet specification must be  
honored together and any violation to any one or more will  
not guarantee desired operation.  
• Unless otherwise specified, all maximum and minimum  
values in the datasheet are across process, voltage, and  
temperature.  
Table 1. Absolute maximum ratings  
Symbol  
Parameter  
Conditions1  
Min  
-0.3  
-0.3  
-3  
Max  
5.8 3  
5.8 3  
+3  
Unit  
V
2
VDD  
2.7 V - 5. 5V input supply voltage  
3.3 V / 5.0 V ADC high reference voltage  
VREFH  
V
4
IINJPAD_DC_ABS  
Continuous DC input current (positive /  
negative) that can be injected into an I/O  
pin  
mA  
VIN_DC  
Continuous DC Voltage on any I/O pin  
with respect to VSS  
-0.8  
5.85  
30  
V
IINJSUM_DC_ABS  
Sum of absolute value of injected currents  
on all the pins (Continuous DC limit)  
mA  
6
Tramp  
ECU supply ramp rate  
MCU supply ramp rate  
Ambient temperature  
Storage temperature  
0.5 V/min  
0.5 V/min  
-40  
500 V/ms  
100 V/ms  
125  
°C  
°C  
V
7
Tramp_MCU  
8
TA  
TSTG  
-55  
165  
6.8 9  
VIN_TRANSIENT  
Transient overshoot voltage allowed on  
I/O pin beyond VIN_DC limit  
1. All voltages are referred to VSS unless otherwise specified.  
2. As VDD varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the  
ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.  
3. 60 s lifetime – No restrictions i.e. The part can switch.  
10 hours lifetime – Device in reset i.e. The part cannot switch.  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
9
General  
4. When input pad voltage levels are close to VDD or VSS, practically no current injection is possible.  
5. While respecting the maximum current injection limit  
6. This is the Electronic Control Unit (ECU) supply ramp rate and not directly the MCU ramp rate. Limit applies to both  
maximum absolute maximum ramp rate and typical operating conditions.  
7. This is the MCU supply ramp rate, and the ramp rate assumes that the HW design guidelines in AN5426 are followed.  
Limit applies to both maximum absolute maximum ramp rate and typical operating conditions.  
8. TJ (Junction temperature)=135 °C. Assumes TA=125 °C for RUN mode  
TJ (Junction temperature)=125 °C. Assumes TA=105 °C for HSRUN mode  
• Assumes maximum θJA for 2s2p board. See Thermal characteristics  
9. 60 seconds lifetime; device in reset (no outputs enabled/toggling)  
4.2 Voltage and current operating requirements  
NOTE  
Device functionality is guaranteed up to the LVR assert level;  
however, electrical performance of 12-bit ADC, CMP with 8-  
bit DAC, IO electrical characteristics, and communication  
modules electrical characteristics would be degraded when  
voltage drops below 2.7 V  
Table 2. Voltage and current operating requirements 1  
Symbol  
Description  
Min.  
2.73  
0
Max.  
5.5  
Unit  
V
Notes  
2
VDD  
Supply voltage  
4
VDD_OFF  
Voltage allowed to be developed on VDD  
pin when it is not powered from any  
external power supply source.  
0.1  
V
VDDA  
VDD – VDDA  
VREFH  
Analog supply voltage  
2.7  
– 0.1  
2.7  
5.5  
0.1  
V
V
4
4
5
VDD-to-VDDA differential voltage  
ADC reference voltage high  
ADC reference voltage low  
Open drain pullup voltage level  
VDDA + 0.1  
0.1  
V
VREFL  
-0.1  
VDD  
-3  
V
VODPU  
VDD  
V
6
7
IINJPAD_DC_OP  
Continuous DC input current (positive /  
negative) that can be injected into an I/O  
pin  
+3  
mA  
IINJSUM_DC_OP  
Continuous total DC input current that can  
be injected across all I/O pins such that  
there's no degradation in accuracy of  
analog modules: ADC and ACMP (See  
section Analog Modules)  
30  
mA  
1. Typical conditions assumes VDD = VDDA = VREFH = 5 V, temperature = 25 °C and typical silicon process unless otherwise  
stated.  
2. As VDD varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the  
ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.  
3. MWCT1016S will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged MWCT1016S is  
guaranteed to operate from 2.97 V. All other MWCT101xS family devices operate from 2.7 V in all modes.  
4. VDD and VDDA must be shorted to a common source on PCB. The differential voltage between VDD and VDDA is for RF-AC  
only. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for  
reference supply design for SAR ADC.  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
10  
NXP Semiconductors  
General  
5. VREFH should always be equal to or less than VDDA + 0.1 V and VDD + 0.1 V  
6. Open drain outputs must be pulled to VDD  
.
7. When input pad voltage levels are close to VDD or VSS, practically no current injection is possible.  
4.3 Thermal operating characteristics  
Table 3. Thermal operating characteristics for 64-pin LQFP and 100-pin LQFP and MAPBGA  
packages  
Symbol  
Parameter  
Value  
Typ.  
Unit  
Min.  
−40  
−40  
−40  
−40  
−40  
−40  
Max.  
851  
TA C-Grade Part  
TJ C-Grade Part  
TA V-Grade Part  
TJ V-Grade Part  
TA M-Grade Part  
TJ M-Grade Part  
Ambient temperature under bias  
Junction temperature under bias  
Ambient temperature under bias  
Junction temperature under bias  
Ambient temperature under bias  
Junction temperature under bias  
1051  
1051  
1251  
1252  
1352  
1. Values mentioned are measured at ≤ 112 MHz in HSRUN mode.  
2. Values mentioned are measured at ≤ 80 MHz in RUN mode.  
4.4 Power and ground pins  
C
DEC  
VDD  
VDD  
VDDA  
VDD  
VDD  
VSS  
VDDA  
64 LQFP  
Package  
100 LQFP  
Package  
VREFH  
VREFL  
VSSA/VSS  
VSS  
VREFH  
VREFL/VSSA/VSS  
C
DEC  
NOTE: VDD and VDDA must be shorted to a common source on PCB  
Figure 4. Pinout decoupling  
Table 4. Supplies decoupling capacitors 1, 2  
Symbol  
Description  
Min. 3  
Typ.  
100  
Max.  
Unit  
, 4  
5
CREF  
,
ADC reference high decoupling capacitance  
70  
nF  
Table continues on the next page...  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
11  
General  
Table 4. Supplies decoupling capacitors 1, 2 (continued)  
Symbol  
Description  
Min. 3  
Typ.  
Max.  
Unit  
CDEC5, 6, 7  
Recommended decoupling capacitance  
70  
100  
nF  
1. VDD and VDDA must be shorted to a common source on PCB. The differential voltage between VDD and VDDA is for RF-AC  
only. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for  
reference supply design for SAR ADC. All VSS pins should be connected to common ground at the PCB level.  
2. All decoupling capacitors must be low ESR ceramic capacitors (for example X7R type).  
3. Minimum recommendation is after considering component aging and tolerance.  
4. For improved performance, it is recommended to use 10 μF, 0.1 μF and 1 nF capacitors in parallel.  
5. All decoupling capacitors should be placed as close as possible to the corresponding supply and ground pins.  
6. Contact your local Field Applications Engineer for details on best analog routing practices.  
7. The filtering used for decoupling the device supplies must comply with the following best practices rules:  
• The protection/decoupling capacitors must be on the path of the trace connected to that component.  
• No trace exceeding 1 mm from the protection to the trace or to the ground.  
• The protection/decoupling capacitors must be as close as possible to the input pin of the device (maximum 2 mm).  
• The ground of the protection is connected as short as possible to the ground plane under the integrated circuit.  
V
OSC  
= 3.3 V nominal  
FIRC  
SIRC  
SPLL  
SOSC  
ADC  
CMP  
V
= 1.2 V/1.4 V nominal  
CORE  
V
Flash  
= 3.3 V nominal  
PMC  
Pads  
System RAM  
TCD RAM  
I/D Cache  
EEE RAM  
Flash  
LV SOG  
GPIO  
*Note: VSSA and VSS are shorted at package level  
Figure 5. Power diagram  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
12  
NXP Semiconductors  
General  
4.5 LVR, LVD and POR operating requirements  
Table 5. VDD supply LVR, LVD and POR operating requirements  
Symbol  
VPOR  
Description  
Min.  
1.1  
Typ.  
1.6  
Max.  
2.0  
Unit  
V
Notes  
Rising and falling VDD POR detect voltage  
VLVR  
LVR falling threshold (RUN, HSRUN, and  
STOP modes)  
2.50  
2.58  
2.7  
V
LVR hysteresis  
45  
mV  
1
VLVR_HYST  
VLVR_LP  
VLVD  
LVR falling threshold (VLPS/VLPR modes)  
Falling low-voltage detect threshold  
LVD hysteresis  
1.97  
2.8  
2.22  
2.875  
50  
2.44  
3
V
V
mV  
1
1
VLVD_HYST  
VLVW  
VLVW_HYST  
VBG  
Falling low-voltage warning threshold  
LVW hysteresis  
4.19  
4.305  
75  
4.5  
V
mV  
V
Bandgap voltage reference  
0.97  
1.00  
1.03  
1. Rising threshold is the sum of falling threshold and hysteresis voltage.  
4.6 Power mode transition operating behaviors  
All specifications in the following table assume this clock configuration:  
• RUN Mode:  
• Clock source: FIRC  
• SYS_CLK/CORE_CLK = 48 MHz  
• BUS_CLK = 48 MHz  
• FLASH_CLK = 24 MHz  
• HSRUN Mode:  
• Clock source: SPLL  
• SYS_CLK/CORE_CLK = 112 MHz  
• BUS_CLK = 56 MHz  
• FLASH_CLK = 28 MHz  
• VLPR Mode:  
• Clock source: SIRC  
• SYS_CLK/CORE_CLK = 4 MHz  
• BUS_CLK = 4 MHz  
• FLASH_CLK = 1 MHz  
• STOP1/STOP2 Mode:  
• Clock source: FIRC  
• SYS_CLK/CORE_CLK = 48 MHz  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
13  
General  
• BUS_CLK = 48 MHz  
• FLASH_CLK = 24 MHz  
• VLPS Mode: All clock sources disabled.  
Table 6. Power mode transition operating behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
tPOR  
After a POR event, amount of time from the point VDD  
reaches 2.7 V to execution of the first instruction  
across the operating temperature range of the chip.  
325  
μs  
VLPS RUN  
8
0.075  
0.075  
17  
0.08  
0.08  
26  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
STOP1 RUN  
0.07  
0.07  
19  
STOP2 RUN  
VLPR RUN  
VLPR VLPS  
5.1  
18.8  
0.72  
0.3  
0.35  
0.2  
0.3  
3.5  
105  
1
5.7  
6.5  
VLPS VLPR  
23  
27.75  
0.77  
0.35  
0.4  
RUN Compute operation  
HSRUN Compute operation  
RUN STOP1  
0.75  
0.31  
0.38  
0.23  
0.35  
3.8  
RUN STOP2  
0.25  
0.4  
RUN VLPS  
RUN VLPR  
5
VLPS Asynchronous DMA Wakeup  
STOP1 Asynchronous DMA Wakeup  
STOP2 Asynchronous DMA Wakeup  
Pin reset Code execution  
110  
1.1  
125  
1.3  
1
1.1  
1.3  
214  
NOTE  
HSRUN should only be used when frequencies in excess of 80  
MHz are required. When using 80 MHz and below, RUN mode  
is the recommended operating mode.  
4.7 Power consumption  
The following table shows the power consumption targets for the device in various  
modes of operation. Attached MWCT101xS_Power_Modes _Configuration.xlsx details  
the modes used in gathering the power consumption data stated in the following table  
Table 7. For full functionality refer to table: Module operation in available low power  
modes of the Reference Manual.  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
14  
NXP Semiconductors  
General  
I d d / M ( z
P e e
P
5
P e e
P
P e
P
P e
P
P e e
P
P e e
P
6
A i
C h i p / D e v i
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
15  
General  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
16  
NXP Semiconductors  
I/O parameters  
4.8 ESD handling ratings  
Symbol  
VHBM  
Description  
Min.  
Max.  
Unit  
Notes  
Electrostatic discharge voltage, human body model  
Electrostatic discharge voltage, charged-device model  
All pins except the corner pins  
− 4000  
4000  
V
1
2
VCDM  
− 500  
− 750  
− 100  
500  
750  
100  
V
V
Corner pins only  
ILAT  
Latch-up current at ambient temperature of 125 °C  
mA  
3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
4.9 EMC radiated emissions operating behaviors  
EMC measurements to IC-level IEC standards are available from NXP on request.  
5 I/O parameters  
5.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
Figure 6. Input signal measurement reference  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
17  
I/O parameters  
5.2 General AC specifications  
These general purpose specifications apply to all signals configured for GPIO, UART,  
and timers.  
Table 8. General switching specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter  
disabled) — Synchronous path  
1.5  
Bus clock  
cycles  
1, 2  
GPIO pin interrupt pulse width (digital glitch filter  
disabled, passive filter disabled) — Asynchronous path  
50  
ns  
3
WFRST  
RESET input filtered pulse  
10  
ns  
ns  
4
5
WNFRST RESET input not filtered pulse  
Maximum of  
(100 ns, bus  
clock period)  
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In Stop and VLPS modes, the synchronizer is bypassed so shorter pulses can be recognized in  
that case.  
2. The greater of synchronous and asynchronous timing must be met.  
3. These pins do not have a passive filter on the inputs. This is the shortest pulse width that is guaranteed to be recognized.  
4. Maximum length of RESET pulse which will be filtered by internal filter.  
5. Minimum length of RESET pulse, guaranteed not to be filtered by the internal filter. This number depends on bus clock  
period also. For example, in VLPR mode bus clock is 4 MHz, which make clock period of 250 ns. In this case, minimum  
pulse width which will cause reset is 250 ns. For faster bus clock frequencies which have clock period less than 100 ns,  
the minimum pulse width not filtered will be 100 ns.  
5.3 DC electrical specifications at 3.3 V Range  
NOTE  
For details on the pad types defined in Table 9 and Table 10,  
see Reference Manual section IO Signal Table and IO Signal  
Description Input Multiplexing sheet(s) attached with  
Reference Manual.  
Table 9. DC electrical specifications at 3.3 V Range  
Symbol  
Parameter  
Value  
Typ.  
3.3  
Unit  
Notes  
Min.  
2.7  
Max.  
VDD  
Vih  
I/O Supply Voltage  
4
VDD + 0.3  
0.3 × VDD  
V
V
1
2
3
Input Buffer High Voltage  
Input Buffer Low Voltage  
Input Buffer Hysteresis  
0.7 × VDD  
VSS − 0.3  
0.06 × VDD  
3.5  
Vil  
V
Vhys  
IohGPIO  
V
I/O current source capability measured when  
pad Voh = (VDD − 0.8 V)  
mA  
Table continues on the next page...  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
18  
NXP Semiconductors  
I/O parameters  
Table 9. DC electrical specifications at 3.3 V Range (continued)  
Symbol  
Parameter  
Value  
Typ.  
Unit  
Notes  
Min.  
Max.  
IohGPIO-HD_DSE_0  
IolGPIO  
IolGPIO-HD_DSE_0  
IohGPIO-HD_DSE_1  
I/O current sink capability measured when  
pad Vol = 0.8 V  
3
mA  
I/O current source capability measured when  
pad Voh = (VDD − 0.8 V)  
14  
12  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
4
4
5
5
5
5
IolGPIO-HD_DSE_1  
I/O current sink capability measured when  
pad Vol = 0.8 V  
IohGPIO-FAST_DSE_0 I/O current sink capability measured when  
pad Voh=VDD-0.8 V  
9.5  
10  
IolGPIO-FAST_DSE_0 I/O current sink capability measured when  
pad Vol = 0.8 V  
IohGPIO-FAST_DSE_1 I/O current sink capability measured when  
pad Voh=VDD-0.8 V  
16  
IolGPIO-FAST_DSE_1 I/O current sink capability measured when  
pad Vol = 0.8 V  
15.5  
IOHT  
IIN  
Output high current total for all ports  
100  
Input leakage current (per pin) for full temperature range at VDD = 3.3 V  
6
All pins other than high drive port pins  
High drive port pins  
0.005  
0.010  
0.5  
0.5  
60  
μA  
μA  
kΩ  
kΩ  
RPU  
RPD  
Internal pullup resistors  
20  
20  
7
8
Internal pulldown resistors  
60  
1. MWCT1016S will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged MWCT1016S is  
guaranteed to operate from 2.97 V. All other MWCT101xS family devices operate from 2.7 V in all modes.  
2. For reset pads, same Vih levels are applicable  
3. For reset pads, same Vil levels are applicable  
4. The value given is measured at high drive strength mode. For value at low drive strength mode see the Ioh_Standard  
value given above.  
5. For refernce only. Run simulations with the IBIS model and custom board for accurate results.  
6. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All  
other GPIOs are normal drive only. For details refer to MWCT101xS_IO_Signal_Description_Input_Multiplexing.xlsx  
attached with the Reference Manual.  
7. Measured at input V = VSS  
8. Measured at input V = VDD  
5.4 DC electrical specifications at 5.0 V Range  
Table 10. DC electrical specifications at 5.0 V Range  
Symbol  
Parameter  
Value  
Typ.  
Unit  
Notes  
Min.  
4
Max.  
5.5  
VDD  
Vih  
I/O Supply Voltage  
Input Buffer High Voltage  
V
V
0.65 x VDD  
VDD + 0.3  
1
Table continues on the next page...  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
19  
I/O parameters  
Symbol  
Table 10. DC electrical specifications at 5.0 V Range (continued)  
Parameter  
Value  
Typ.  
Unit  
Notes  
Min.  
VSS − 0.3  
0.06 x VDD  
5
Max.  
0.35 x VDD  
Vil  
Input Buffer Low Voltage  
Input Buffer Hysteresis  
V
V
2
Vhys  
Ioh_Standard I/O current source capability  
mA  
measured when pad Voh= (VDD - 0.8  
V)  
Iol_Standard I/O current sink capability measured  
when pad Vol= 0.8 V  
5
mA  
mA  
Ioh_Strong I/O current source capability  
20  
3, 4  
4, 5  
measured when pad Voh = VDD - 0.8  
V
Iol_Strong I/O current sink capability measured  
when pad Vol = 0.8 V  
20  
mA  
mA  
IOHT  
IIN  
Output high current total for all ports  
100  
Input leakage current (per pin) for full temperature range at VDD = 5.5 V  
6
All pins other than high drive port  
pins  
0.005  
0.5  
μA  
High drive port pins  
0.010  
0.5  
50  
50  
μA  
kΩ  
kΩ  
RPU  
RPD  
Internal pullup resistors  
Internal pulldown resistors  
20  
20  
7
8
1. For reset pads, same Vih levels are applicable  
2. For reset pads, same Vil levels are applicable  
3. The value given is measured at high drive strength mode. For value at low drive strength mode see the Ioh_Standard  
value given above.  
4. The strong pad I/O pin is capable of switching a 50 pF load at up to 40 MHz.  
5. The value given is measured at high drive strength mode. For value at low drive strength mode see the Iol_Standard value  
given above.  
6. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All  
other GPIOs are normal drive only. For details refer to MWCT101xS_IO_Signal_Description_Input_Multiplexing.xlsx  
attached with the Reference Manual.  
7. Measured at input V = VSS  
8. Measured at input V = VDD  
5.5 AC electrical specifications at 3.3 V range  
Table 11. AC electrical specifications at 3.3 V Range  
Symbol  
DSE  
Rise time (nS) 1  
Fall time (nS) 1  
Capacitance (pF) 2  
Min.  
Max.  
14.5  
23.7  
80.0  
14.5  
Min.  
Max.  
15.7  
26.2  
88.4  
15.7  
tRFGPIO  
NA  
3.2  
5.7  
3.4  
6.0  
25  
50  
20.0  
3.2  
20.8  
3.4  
200  
25  
tRFGPIO-HD  
0
Table continues on the next page...  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
20  
NXP Semiconductors  
I/O parameters  
Table 11. AC electrical specifications at 3.3 V Range (continued)  
Symbol  
DSE  
Rise time (nS) 1  
Fall time (nS) 1  
Capacitance (pF) 2  
Min.  
Max.  
23.7  
80.0  
5.8  
Min.  
Max.  
26.2  
88.4  
6.1  
5.7  
20.0  
1.5  
2.4  
6.3  
0.6  
3.0  
12.0  
0.4  
1.5  
7.4  
6.0  
20.8  
1.7  
50  
200  
25  
1
0
1
8.0  
2.6  
8.3  
50  
22.0  
2.8  
6.0  
23.8  
2.8  
200  
25  
tRFGPIO-FAST  
0.5  
7.1  
2.6  
7.5  
50  
27.0  
1.3  
10.3  
0.38  
1.4  
26.8  
1.3  
200  
25  
3.8  
3.9  
50  
14.9  
7.0  
15.3  
200  
1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.  
2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be  
different, for example for QSPI etc. . For protocol specific AC specifications, see respective sections.  
5.6 AC electrical specifications at 5 V range  
Table 12. AC electrical specifications at 5 V Range  
Symbol  
DSE  
Rise time (nS)1  
Fall time (nS) 1  
Capacitance (pF) 2  
Min.  
Max .  
9.4  
Min.  
Max.  
10.7  
17.4  
59.7  
10.7  
17.4  
59.7  
5.0  
tRFGPIO  
NA  
2.8  
5.0  
2.9  
5.1  
25  
50  
15.7  
54.8  
9.4  
17.3  
2.8  
17.6  
2.9  
200  
25  
tRFGPIO-HD  
0
1
0
1
5.0  
15.7  
54.8  
4.6  
5.1  
50  
17.3  
1.1  
17.6  
1.1  
200  
25  
2.0  
5.7  
2.0  
5.8  
50  
5.4  
16.0  
2.2  
5.0  
16.0  
2.2  
200  
25  
tRFGPIO-FAST  
0.42  
2.0  
0.37  
1.9  
5.0  
5.2  
50  
9.3  
18.8  
0.9  
8.5  
19.3  
0.9  
200  
25  
0.37  
1.2  
0.35  
1.2  
2.7  
2.9  
50  
6.0  
11.8  
6.0  
12.3  
200  
1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.  
2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be  
different, for example for QSPI etc. . For protocol specific AC specifications, see respective sections.  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
21  
I/O parameters  
5.7 Standard input pin capacitance  
Table 13. Standard input pin capacitance  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance: digital pins  
7
pF  
NOTE  
Please refer to External System Oscillator electrical  
specifications for EXTAL/XTAL pins.  
5.8 Device clock specifications  
Table 14. Device clock specifications 1  
Symbol  
Description  
Min.  
Max.  
Unit  
High Speed run mode2  
Normal run mode (MWCT101xS series) 3  
VLPR mode5  
fSYS  
fBUS  
System and core clock  
Bus clock  
112  
56  
MHz  
MHz  
MHz  
fFLASH  
Flash clock  
28  
fSYS  
fBUS  
System and core clock  
Bus clock  
80  
404  
MHz  
MHz  
MHz  
fFLASH  
Flash clock  
26.67  
fSYS  
fBUS  
fFLASH  
fERCLK  
System and core clock  
Bus clock  
4
4
MHz  
MHz  
MHz  
MHz  
Flash clock  
1
External reference clock  
16  
1. Refer to the section Feature comparison for the availability of modes and other specifications.  
2. Only available on some devices. See section Feature comparison.  
3. With SPLL as system clock source.  
4. 48 MHz when fSYS is 48 MHz  
5. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any  
other module.  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
22  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
6 Peripheral operating requirements and behaviors  
6.1 System modules  
There are no electrical specifications necessary for the device's system modules.  
6.2 Clock interface modules  
6.2.1 External System Oscillator electrical specifications  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
23  
Clock interface modules  
Single input comparator  
(EXTAL WAVE)  
ref_clk  
Mux  
Differential input comparator  
(HG/LP mode)  
Peak detector  
LP mode  
Driver  
(HG/LP mode)  
Pull down resistor (OFF)  
ESD PAD  
280 ohms  
ESD PAD  
40 ohms  
XTAL pin  
EXTAL pin  
Series resistor for current  
limitation  
1M ohms Feedback Resistor  
Crystal or resonator  
C1  
C2  
Figure 7. Oscillator connections scheme  
Table 15. External System Oscillator electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
gmXOSC Crystal oscillator transconductance  
4-8 MHz  
2.2  
16  
13.7  
47  
mA/V  
mA/V  
V
8-40 MHz  
VIL  
VIH  
Input low voltage — EXTAL pin in external clock mode  
VSS  
0.35 * VDD  
VDD  
Input high voltage — EXTAL pin in external clock  
mode  
0.7 * VDD  
V
C1  
C2  
RF  
EXTAL load capacitance  
XTAL load capacitance  
Feedback resistor  
1
1
2
Low-gain mode (HGO=0)  
MΩ  
Table continues on the next page...  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
24  
NXP Semiconductors  
Clock interface modules  
Table 15. External System Oscillator electrical specifications  
(continued)  
Symbol Description  
High-gain mode (HGO=1)  
Series resistor  
Min.  
Typ.  
Max.  
Unit  
Notes  
1
MΩ  
RS  
Low-gain mode (HGO=0)  
0
0
kΩ  
kΩ  
High-gain mode (HGO=1)  
Vpp  
Peak-to-peak amplitude of oscillation (oscillator mode)  
Low-gain mode (HGO=0)  
3
1.0  
3.3  
V
V
High-gain mode (HGO=1)  
1. Crystal oscillator circuit provides stable oscillations when gmXOSC > 5 * gm_crit. The gm_crit is defined as:  
gm_crit = 4 * ESR * (2πF)2 * (C0 + CL)2  
where:  
• gmXOSC is the transconductance of the internal oscillator circuit  
• ESR is the equivalent series resistance of the external crystal  
• F is the external crystal oscillation frequency  
• C0 is the shunt capacitance of the external crystal  
• CL is the external crystal total load capacitance. CL = Cs+ [C1*C2/(C1+C2)]  
• Cs is stray or parasitic capacitance on the pin due to any PCB traces  
• C1, C2 external load capacitances on EXTAL and XTAL pins  
See manufacture datasheet for external crystal component values  
2.  
• When low-gain is selected, internal RF will be selected and external RF should not be attached.  
• When high-gain is selected, external RF (1 M Ohm) needs to be connected for proper operation of the crystal. For  
external resistor, up to 5% tolerance is allowed.  
3. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any  
other devices.  
6.2.2 External System Oscillator frequency specifications  
Table 16. External System Oscillator frequency specifications  
Symbol Description  
Min.  
4
Typ.  
Max.  
40  
Unit  
MHz  
MHz  
%
Notes  
fosc_hi  
fec_extal  
tdc_extal  
tcst  
Oscillator crystal or resonator frequency  
Input clock frequency (external clock mode)  
Input clock duty cycle (external clock mode)  
Crystal Start-up Time  
50  
1
1
48  
50  
52  
8 MHz low-gain mode (HGO=0)  
8 MHz high-gain mode (HGO=1)  
40 MHz low-gain mode (HGO=0)  
40 MHz high-gain mode (HGO=1)  
1.5  
2.5  
2
ms  
2
2
1. Frequencies below 40 MHz can be used for degraded duty cycle up to 40-60%  
2. Proper PC board layout procedures must be followed to achieve specifications.  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
25  
System Clock Generation (SCG) specifications  
6.2.3 System Clock Generation (SCG) specifications  
6.2.3.1 Fast internal RC Oscillator (FIRC) electrical specifications  
Table 17. Fast internal RC Oscillator electrical specifications  
Symbol  
Parameter1  
Value  
Typ.  
48  
Unit  
Min.  
Max.  
FFIRC  
FIRC target frequency  
MHz  
ΔF  
Frequency deviation across process, voltage, and  
temperature < 105°C  
0.5  
0.5  
1
%FFIRC  
ΔF125  
Frequency deviation across process, voltage, and  
temperature < 125°C  
1.1  
%FFIRC  
TStartup  
Startup time  
3.4  
250  
0.04  
5
µs2  
ps  
, 3  
TJIT  
Cycle-to-Cycle jitter  
Long term jitter over 1000 cycles  
500  
0.1  
3
TJIT  
%FFIRC  
1. With FIRC regulator enable  
2. Startup time is defined as the time between clock enablement and clock availability for system use.  
3. FIRC as system clock  
NOTE  
Fast internal RC Oscillator is compliant with CAN and LIN  
standards.  
6.2.3.2 Slow internal RC oscillator (SIRC) electrical specifications  
Table 18. Slow internal RC oscillator (SIRC) electrical specifications  
Symbol  
Parameter  
Value  
Typ.  
8
Unit  
Min.  
Max.  
FSIRC  
SIRC target frequency  
MHz  
ΔF  
Frequency deviation across process, voltage, and  
temperature < 105°C  
3
%FSIRC  
ΔF125  
Frequency deviation across process, voltage, and  
temperature < 125°C  
9
3.3  
%FSIRC  
µs1  
TStartup  
Startup time  
12.5  
1. Startup time is defined as the time between clock enablement and clock availability for system use.  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
26  
NXP Semiconductors  
Memory and memory interfaces  
6.2.4 Low Power Oscillator (LPO) electrical specifications  
Table 19. Low Power Oscillator (LPO) electrical specifications  
Symbol  
FLPO  
Parameter  
Internal low power oscillator frequency  
Startup Time  
Min.  
113  
Typ.  
128  
Max.  
139  
20  
Unit  
kHz  
µs  
Tstartup  
6.2.5 SPLL electrical specifications  
Table 20. SPLL electrical specifications  
Symbol  
Parameter  
PLL Reference Frequency Range  
PLL Input Frequency  
Min.  
8
Typ.  
Max.  
Unit  
1
2
FSPLL_REF  
16  
40  
MHz  
MHz  
MHz  
MHz  
FSPLL_Input  
FVCO_CLK  
FSPLL_CLK  
JCYC_SPLL  
8
VCO output frequency  
180  
90  
320  
160  
PLL output frequency  
PLL Period Jitter (RMS)3  
at FVCO_CLK 180 MHz  
120  
75  
ps  
ps  
at FVCO_CLK 320 MHz  
JACC_SPLL  
PLL accumulated jitter over 1µs (RMS)3  
at FVCO_CLK 180 MHz  
1350  
600  
ps  
ps  
%
s
at FVCO_CLK 320 MHz  
DUNL  
Lock exit frequency tolerance  
TSPLL_LOCK Lock detector detection time4  
4.47  
5.97  
150 × 10-6  
+
1075(1/FSPLL_REF  
)
1. FSPLL_REF is PLL reference frequency range after the PREDIV. For PREDIV and MULT settings refer SCG_SPLLCFG  
register of Reference Manual.  
2. FSPLL_Input is PLL input frequency range before the PREDIV must be limited to the range 8 MHz to 40 MHz. This input  
source could be derived from a crystal oscillator or some other external square wave clock source using OSC bypass  
mode. For external clock source settings refer SCG_SOSCCFG register of Reference Manual.  
3. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of each  
PCB and results will vary  
4. Lock detector detection time is defined as the time between PLL enablement and clock availability for system use.  
6.3 Memory and memory interfaces  
6.3.1 Flash memory module (FTFC) electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
27  
Memory and memory interfaces  
6.3.1.1 Flash timing specifications — commands  
Table 21. Flash command timing specifications  
Symbol  
Description1  
MWCT1014S  
Typ Max  
MWCT1015S  
Typ Max  
MWCT1016S  
Typ Max  
Unit Notes  
ms  
trd1blk  
Read 1 Block  
execution time  
32 KB flash  
64 KB flash  
128 KB flash  
256 KB flash  
512 KB flash  
2 KB flash  
4 KB flash  
2
0.5  
0.5  
1.8  
75  
2
trd1sec  
Read 1 Section  
execution time  
75  
100  
95  
75  
µs  
100  
95  
100  
100  
tpgmchk  
tpgm8  
Program Check  
execution time  
µs  
µs  
ms  
Program Phrase  
execution time  
90  
225  
90  
225  
90  
225  
tersblk  
Erase Flash Block 32 KB flash  
execution time  
30  
2
2
64 KB flash  
550  
30  
550  
128 KB flash  
256 KB flash  
512 KB flash 250  
4250  
130  
250  
12  
4250  
130  
250  
12  
4250  
130  
tersscr  
Erase Flash Sector —  
execution time  
12  
ms  
ms  
tpgmsec1k  
Program Section  
execution time  
(1KB flash)  
5
5
5
trd1all  
Read 1s All Block  
execution time  
2.3  
30  
5.2  
30  
90  
8.2  
30  
ms  
µs  
µs  
ms  
µs  
trdonce  
tpgmonce  
tersall  
Read Once  
execution time  
Program Once  
execution time  
90  
400  
90  
700  
Erase All Blocks  
execution time  
4900  
35  
10000 1400  
35  
17000  
35  
2
tvfykey  
Verify Backdoor  
Access Key  
execution time  
tersallu  
Erase All Blocks  
Unsecure  
execution time  
400  
70  
4900  
700  
70  
10000 1400  
17000  
ms  
ms  
2
3
tpgmpart  
Program Partition 32 KB  
for EEPROM  
execution time  
EEPROM  
backup  
64 KB  
71  
71  
150  
EEPROM  
backup  
Table continues on the next page...  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
28  
NXP Semiconductors  
Memory and memory interfaces  
Table 21. Flash command timing specifications (continued)  
Symbol  
Description1  
MWCT1014S  
Typ Max  
Control Code 0.08  
MWCT1015S  
Typ Max  
0.08  
MWCT1016S  
Typ Max  
0.08  
Unit Notes  
tsetram  
Set FlexRAM  
Function execution 0xFF  
ms  
3
time  
32 KB  
EEPROM  
backup  
0.8  
1
1.2  
0.8  
1
1.2  
48 KB  
EEPROM  
backup  
1.5  
1.9  
1.5  
64 KB  
EEPROM  
backup  
1.3  
385  
430  
475  
385  
430  
475  
360  
1.3  
385  
430  
475  
385  
430  
475  
360  
1.9  
1.3  
1.9  
teewr8b  
Byte write to  
32 KB  
1700  
1850  
2000  
1700  
1850  
2000  
2000  
1700  
1850  
2000  
1700  
1850  
2000  
2000  
µs  
3,4  
FlexRAM execution EEPROM  
time  
backup  
48 KB  
EEPROM  
backup  
64 KB  
EEPROM  
backup  
475  
4000  
teewr16b  
16-bit write to  
32 KB  
µs  
3,4  
FlexRAM execution EEPROM  
time  
backup  
48 KB  
EEPROM  
backup  
64 KB  
EEPROM  
backup  
475  
360  
4000  
2000  
teewr32bers  
32-bit write to  
erased FlexRAM  
location execution  
time  
µs  
µs  
teewr32b  
32-bit write to  
FlexRAM execution EEPROM  
time  
32 KB  
630  
720  
810  
2000  
2125  
2250  
630  
720  
810  
2000  
2125  
2250  
3,4  
backup  
48 KB  
EEPROM  
backup  
64 KB  
810  
4500  
EEPROM  
backup  
tquickwr  
32-bit Quick Write 1st 32-bit write 200  
execution time:  
Time from CCIF  
clearing (start the  
write) until CCIF  
setting (32-bit write  
550  
550  
200  
150  
550  
550  
200  
150  
1100  
550  
µs  
4,5,6  
2nd through  
Next to Last  
(Nth-1) 32-bit  
write  
150  
Table continues on the next page...  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
29  
Memory and memory interfaces  
Table 21. Flash command timing specifications (continued)  
Symbol  
Description1  
MWCT1014S  
Typ Max  
550  
MWCT1015S  
Typ Max  
200 550  
MWCT1016S  
Typ Max  
200 550  
Unit Notes  
complete, ready for  
Last (Nth) 32- 200  
bit write (time  
next 32-bit write)  
for write only,  
not cleanup)  
tquickwrClnup  
Quick Write  
Cleanup execution  
time  
(# of  
(# of  
(# of  
ms  
7
Quick  
Writes ) *  
2.0  
Quick  
Writes )  
* 2.0  
Quick  
Writes )  
* 2.0  
1. All command times assumes 25 MHz or greater flash clock frequency (for synchronization time between internal/external  
clocks).  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3. For all EEPROM Emulation terms, the specified timing shown assumes previous record cleanup has occurred. This may  
be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 - No EEPROM  
issues detected.  
4. 1st time EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2× the  
times shown.  
5. Only after the Nth write completes will any data be valid. Emulated EEPROM record scheme cleanup overhead may occur  
after this point even after a brownout or reset. If power on reset occurs before the Nth write completes, the last valid record  
set will still be valid and the new records will be discarded.  
6. Quick Write times may take up to 550 µs, as additional cleanup may occur when crossing sector boundaries.  
7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes,  
assuming still powered. Or via SETRAM cleanup execution command is requested at a later point.  
NOTE  
Under certain circumstances FlexMEM maximum times may be  
exceeded. In this case the user or application may wait, or assert  
reset to the FTFC macro to stop the operation.  
6.3.1.2 Reliability specifications  
Table 22. NVM reliability specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
When using as Program and Data Flash  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
20  
years  
1
1 K  
cycles  
2, 3  
When using FlexMemory feature: FlexRAM as Emulated EEPROM  
tnvmretee Data retention  
5
years  
4
Write endurance  
nnvmwree16  
5, 6, 7  
100 K  
1.6 M  
writes  
writes  
• EEPROM backup to FlexRAM ratio = 16  
nnvmwree256  
• EEPROM backup to FlexRAM ratio = 256  
1. Data retention period per block begins upon initial user factory programming or after each subsequent erase.  
2. Program and Erase for PFlash and DFlash are supported across product temperature specification in Normal Mode (not  
supported in HSRUN mode).  
3. Cycling endurance is per DFlash or PFlash Sector.  
4. Data retention period per block begins upon initial user factory programming or after each subsequent erase. Background  
maintenance operations during normal FlexRAM usage extend effective data retention life beyond 5 years.  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
30  
NXP Semiconductors  
Memory and memory interfaces  
5. FlexMemory write endurance specified for 16-bit and/or 32-bit writes to FlexRAM and is supported across product  
temperature specification in Normal Mode (not supported in HSRUN mode). Greater write endurance may be achieved  
with larger ratios of EEPROM backup to FlexRAM.  
6. For usage of any EEE driver other than the FlexMemory feature, the endurance spec will fall back to the specified  
endurance value of the D-Flash specification (1K).  
7. FlexMemory calculator tool is available at NXP web site for help in estimation of the maximum write endurance achievable  
at specific EEPROM/FlexRAM ratios. The “In Spec” portions of the online calculator refer to the NVM reliability  
specifications section of data sheet. This calculator is only applies to the FlexMemory feature.  
6.3.2 QuadSPI AC specifications  
The following table describes the QuadSPI electrical characteristics.  
• Measurements are with maximum output load of 25 pF, input transition of 1 ns and  
pad configured with fastest slew settings (DSE = 1'b1).  
• I/O operating voltage ranges from 2.97 V to 3.6 V  
• While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN ), the  
interface should be OFF.  
• Add 50 ohm series termination on board in QuadSPI SCK for Flash A to avoid loop  
back reflection when using in Internal DQS (PAD Loopback) mode.  
• QuadSPI trace length should be 3 inches.  
• For non-Quad mode of operation if external device doesn’t have pull-up feature,  
external pull-up needs to be added at board level for non-used pads.  
• With external pull-up, performance of the interface may degrade based on load  
associated with external pull-up.  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
31  
Memory and memory interfaces  
1 / f S C K  
1 / f S C K  
1 / f S C K  
1 / f S C K  
1 / f S C K  
1 / f S C K  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
32  
NXP Semiconductors  
Memory and memory interfaces  
t S C
t S C 5  
t S C
t S C 5  
t S C
t S C 5  
t -
t -
t S C
t S C 5  
t S C
t S C
t S C
t S C 5  
t S C
t S C 5  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
33  
Memory and memory interfaces  
1
2
3
Clock  
tSCK  
tSDC  
tSDC  
SCK  
CS  
tIH  
tIS  
Data in  
Figure 8. QuadSPI input timing (SDR mode) diagram  
1
2
3
Clock  
SCK  
CS  
tSCK  
tSDC  
tSDC  
tSCKCS  
tCSSCK  
tIV  
tOV  
Invalid  
Data out  
Figure 9. QuadSPI output timing (SDR mode) diagram  
TIS  
TIS  
TIH  
TIH  
invalid  
invalid  
D1  
invalid  
invalid  
D4  
D5  
D2  
D3  
TIS– Setup Time  
T
I
H
H
old Time  
Figure 10. QuadSPI input timing (HyperRAM mode) diagram  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
34  
NXP Semiconductors  
Analog modules  
CK  
tIV  
tOV  
Output Invalid Data  
Figure 11. QuadSPI output timing (HyperRAM mode) diagram  
6.4 Analog modules  
6.4.1 ADC electrical specifications  
6.4.1.1 12-bit ADC operating conditions  
Table 24. 12-bit ADC operating conditions  
Symbol Description  
Conditions  
Min.  
Typ.1  
Max.  
Unit Notes  
VREFH ADC reference voltage high  
See Voltage  
and current  
operating  
VDDA  
See Voltage  
and current  
operating  
V
2
requirements  
for values  
requirements  
for values  
VREFL ADC reference voltage low  
See Voltage  
and current  
operating  
0
See Voltage mV  
and current  
operating  
2
requirements  
for values  
requirements  
for values  
VADIN Input voltage  
VREFL  
VREFH  
5
V
RS  
Source impedendance  
fADCK < 4 MHz  
kΩ  
kΩ  
RSW1  
Channel Selection Switch  
Impedance  
0.75  
1.2  
RAD  
CP1  
CP2  
CS  
Sampling Switch Impedance  
Pin Capacitance  
2
10  
4
5
4
kΩ  
pF  
pF  
pF  
Analog Bus Capacitance  
Sampling capacitance  
5
Table continues on the next page...  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
35  
ADC electrical specifications  
Table 24. 12-bit ADC operating conditions (continued)  
Symbol Description  
fADCK ADC conversion clock  
frequency  
fCONV ADC conversion frequency  
Conditions  
Min.  
Typ.1  
Max.  
Unit Notes  
Normal usage  
2
40  
50  
MHz  
3, 4  
No ADC hardware  
averaging.5 Continuous  
conversions enabled,  
subsequent conversion  
time  
46.4  
1.45  
928  
29  
1160  
Ksps  
6, 7  
ADC hardware averaging  
set to 32. 5 Continuous  
conversions enabled,  
subsequent conversion  
time  
36.25  
Ksps  
6, 7  
1. Typical values assume VDDA = 5 V, Temp = 25 °C, fADCK = 40 MHz, RAS=20 Ω, and CAS=10 nF unless otherwise stated.  
Typical values are for reference only, and are not tested in production.  
2. For packages without dedicated VREFH and VREFL pins, VREFH is internally tied to VDDA, and VREFL is internally tied to VSS  
.
To get maximum performance, reference supply quality should be better than SAR ADC. See application note AN5032 for  
details.  
3. Clock and compare cycle need to be set according to the guidelines mentioned in the Reference Manual .  
4. ADC conversion will become less reliable above maximum frequency.  
5. When using ADC hardware averaging, see the Reference Manual to determine the most appropriate setting for AVGS.  
6. Numbers based on the minimum sampling time of 275 ns.  
7. For guidelines and examples of conversion rate calculation, see the Reference Manual or download the ADC calculator  
tool.  
Figure 12. ADC input impedance equivalency diagram  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
36  
NXP Semiconductors  
ADC electrical specifications  
6.4.1.2 12-bit ADC electrical characteristics  
NOTE  
• ADC performance specifications are documented using a  
single ADC. For parallel/simultaneous operation of both  
ADCs, either for sampling the same channel by both ADCs  
or for sampling different channels by each ADC, some  
amount of decrease in performance can be expected. Care  
must be taken to stagger the two ADC conversions, in  
particular the sample phase, to minimize the impact of  
simultaneous conversions.  
• On reduced pin packages where ADC reference pins are  
shared with supply pins, ADC analog performance  
characteristics may be impacted. The amount of variation  
will be directly impacted by the external PCB layout and  
hence care must be taken with PCB routing. See AN5426  
for details  
Table 25. 12-bit ADC characteristics (2.7 V to 3 V) (VREFH = VDDA, VREFL = VSS)  
Symbol Description  
VDDA Supply voltage  
Conditions 1  
Min.  
2.7  
Typ.2  
Max.  
3
Unit  
V
Notes  
IDDA_ADC Supply current per ADC  
SMPLTS Sample Time  
0.6  
mA  
ns  
3
275  
Refer to  
the  
Reference  
Manual  
TUE4  
DNL  
INL  
Total unadjusted error  
Differential non-linearity  
Integral non-linearity  
4
8
LSB5  
LSB5  
LSB5  
6, 7, 8, 9  
6, 7, 8, 9  
6, 7, 8, 9  
1.0  
2.0  
1. All accuracy numbers assume the ADC is calibrated with VREFH=VDDA=VDD, with the calibration frequency set to less than  
or equal to half of the maximum specified ADC clock frequency.  
2. Typical values assume VDDA = 3 V, Temp = 25 °C, fADCK = 40 MHz, RAS=20 Ω, and CAS=10 nF.  
3. The ADC supply current depends on the ADC conversion rate.  
4. Represents total static error, which includes offset and full scale error.  
5. 1 LSB = (VREFH - VREFL)/2N  
6. The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device  
use case scenario. When using ADC averaging, refer to the Reference Manual to determine the most appropriate settings  
for AVGS.  
7. For ADC signals adjacent to VDD/VSS or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC  
performance may be observed.  
8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the  
internal analog parameters, assume minor degradation.  
9. All the parameters in the table are given assuming system clock as the clocking source for ADC.  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
37  
ADC electrical specifications  
Table 26. 12-bit ADC characteristics (3 V to 5.5 V)(VREFH = VDDA, VREFL = VSS)  
Symbol Description  
VDDA Supply voltage  
Conditions 1  
Min.  
3
Typ.2  
Max.  
5.5  
Unit  
V
Notes  
IDDA_ADC Supply current per ADC  
SMPLTS Sample Time  
1
mA  
ns  
3
275  
Refer to  
the  
Reference  
Manual  
TUE4  
DNL  
INL  
Total unadjusted error  
Differential non-linearity  
Integral non-linearity  
4
8
LSB5  
LSB5  
LSB5  
6, 7, 8, 9  
6, 7, 8, 9  
6, 7, 8, 9  
0.7  
1.0  
1. All accuracy numbers assume the ADC is calibrated with VREFH=VDDA=VDD, with the calibration frequency set to less than  
or equal to half of the maximum specified ADC clock frequency.  
2. Typical values assume VDDA = 5.0 V, Temp = 25 °C, fADCK = 40 MHz, RAS=20 Ω, and CAS=10 nF unless otherwise stated.  
3. The ADC supply current depends on the ADC conversion rate.  
4. Represents total static error, which includes offset and full scale error.  
5. 1 LSB = (VREFH - VREFL)/2N  
6. The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device  
use case scenario. When using ADC averaging, refer to the Reference Manual to determine the most appropriate settings  
for AVGS.  
7. For ADC signals adjacent to VDD/VSS or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC  
performance may be observed.  
8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the  
internal analog parameters, assume minor degradation.  
9. All the parameters in the table are given assuming system clock as the clocking source for ADC.  
NOTE  
• Due to triple bonding in lower pin packages like the 64-  
LQFP, degradation might be seen in ADC parameters.  
• When using high speed interfaces such as the QuadSPI,  
there may be some ADC degradation on the adjacent  
analog input paths. See following table for details.  
Pin name  
PTE8  
TGATE purpose  
CMP0_IN3  
PTC3  
ADC0_SE11/CMP0_IN4  
ADC0_SE10/CMP0_IN5  
CMP0_IN6  
PTC2  
PTD7  
PTD6  
CMP0_IN7  
PTD28  
PTD27  
ADC1_SE22  
ADC1_SE21  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
38  
NXP Semiconductors  
ADC electrical specifications  
6.4.2 CMP with 8-bit DAC electrical specifications  
Table 28. Comparator with 8-bit DAC electrical specifications  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDDHS  
Supply current, High-speed mode1  
μA  
-40 - 125 ℃  
230  
300  
IDDLS  
Supply current, Low-speed mode1  
-40 - 105 ℃  
μA  
6
6
11  
13  
-40 - 125 ℃  
VAIN  
VAIO  
Analog input voltage  
Analog input offset voltage, High-speed mode  
-40 - 125 ℃  
0
0 - VDDA  
VDDA  
V
mV  
-25  
-40  
1
4
25  
40  
VAIO  
Analog input offset voltage, Low-speed mode  
mV  
ns  
-40 - 125 ℃  
tDHSB  
Propagation delay, High-speed mode2  
-40 - 105 ℃  
35  
35  
200  
300  
-40 - 125 ℃  
tDLSB  
tDHSS  
tDLSS  
Propagation delay, Low-speed mode2  
µs  
ns  
µs  
-40 - 105 ℃  
0.5  
0.5  
2
3
-40 - 125 ℃  
Propagation delay, High-speed mode3  
-40 - 105 ℃  
70  
70  
400  
500  
-40 - 125 ℃  
Propagation delay, Low-speed mode3  
-40 - 105 ℃  
1
1
5
5
-40 - 125 ℃  
tIDHS  
Initialization delay, High-speed mode4  
μs  
μs  
-40 - 125 ℃  
1.5  
10  
0
3
tIDLS  
Initialization delay, Low-speed mode4  
-40 - 125 ℃  
30  
VHYST0  
Analog comparator hysteresis, Hyst0  
-40 - 125 ℃  
mV  
mV  
VHYST1  
Analog comparator hysteresis, Hyst1, High-speed  
mode  
-40 - 125 ℃  
19  
15  
34  
66  
40  
Analog comparator hysteresis, Hyst1, Low-speed  
mode  
-40 - 125 ℃  
VHYST2  
Analog comparator hysteresis, Hyst2, High-speed  
mode  
mV  
-40 - 125 ℃  
133  
Table continues on the next page...  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
39  
ADC electrical specifications  
Table 28. Comparator with 8-bit DAC electrical specifications (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Analog comparator hysteresis, Hyst2, Low-speed  
mode  
-40 - 125 ℃  
23  
80  
VHYST3  
Analog comparator hysteresis, Hyst3, High-speed  
mode  
mV  
-40 - 125 ℃  
46  
200  
120  
Analog comparator hysteresis, Hyst3, Low-speed  
mode  
-40 - 125 ℃  
32  
IDAC8b  
8-bit DAC current adder (enabled)  
3.3V Reference Voltage  
6
9
16  
μA  
μA  
LSB6  
LSB6  
μs  
5V Reference Voltage  
10  
INL5  
DNL  
tDDAC  
8-bit DAC integral non-linearity  
8-bit DAC differential non-linearity  
Initialization and switching settling time  
–0.75  
–0.5  
0.75  
0.5  
30  
1. Difference at input > 200mV  
2. Applied (100 mV + VHYST0/1/2/3+ max. of VAIO) around switch point.  
3. Applied (30 mV + 2 × VHYST0/1/2/3+ max. of VAIO) around switch point.  
4. Applied (100 mV + VHYST0/1/2/3).  
5. Calculation method used: Linear Regression Least Square Method  
6. 1 LSB = Vreference/256  
NOTE  
For comparator IN signals adjacent to VDD/VSS or XTAL/  
EXTAL or switching pins cross coupling may happen and  
hence hysteresis settings can be used to obtain the desired  
comparator performance. Additionally, an external capacitor  
(1nF) should be used to filter noise on input signal. Also, source  
drive should not be weak (Signal with < 50 K pull up/down is  
recommended).  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
40  
NXP Semiconductors  
ADC electrical specifications  
Figure 13. Typical hysteresis vs. Vin level (VDDA = 3.3 V, PMODE = 0)  
Figure 14. Typical hysteresis vs. Vin level (VDDA = 3.3 V, PMODE = 1)  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
41  
ADC electrical specifications  
Figure 15. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 0)  
Figure 16. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 1)  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
42  
NXP Semiconductors  
Communication modules  
6.5 Communication modules  
6.5.1 LPUART electrical specifications  
Refer to General AC specifications for LPUART specifications.  
6.5.1.1 Supported baud rate  
Baud rate = Baud clock / ((OSR+1) * SBR).  
For details, see section: 'Baud rate generation' of the Reference Manual.  
6.5.2 LPSPI electrical specifications  
The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus  
with master and slave operations. Many of the transfer attributes are programmable. The  
following tables provide timing characteristics for classic LPSPI timing modes.  
• All timing is shown with respect to 20% VDD and 80% VDD thresholds.  
• All measurements are with maximum output load of 50 pF, input transition of 1 ns  
and pad configured with fastest slew setting ( DSE = 1 ).  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
43  
Communication modules  
p e r i p h  
p e r i p h  
- 5 0  
- 5 0  
( P C S S C K + 1 ) * t  
( P C S S C K + 1 ) * t  
p e r i p h  
- 2 5  
- 2 5  
( P C S S C K + 1 ) * t  
( P C S S C K + 1 ) * t  
p e r i p h  
p e r i p h  
- 2 5  
- 2 5  
( P C S S C K + 1 ) * t  
( P C S S C K + 1 ) * t  
p e r i p h  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
44  
NXP Semiconductors  
Communication modules  
S P S C K  
/ 2 + 5 t  
p e r i p h  
p e r i p h  
- 5 0  
- 5 0  
( / 2 - 5 S t P S C K  
S P S C K  
/ 2 + 5 t  
( / 2 - 5 S t P S C K  
S P S C K  
/ 2 + 3 t  
p e r i p h  
- 2 5  
- 2 5  
( / 2 - 3 S t P S C K  
S P S C K  
/ 2 + 3 t  
p e r i p h  
( / 2 - 3 S t P S C K  
S P S C K  
/ 2 + 3 t  
p e r i p h  
- 2 5  
- 2 5  
( / 2 - 3 S t P S C K  
S P S C K  
/ 2 + 3 t  
p e r i p h  
( / 2 - 3 S t P S C K  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
45  
Communication modules  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
46  
NXP Semiconductors  
Communication modules  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
47  
Communication modules  
1
SS  
(OUTPUT)  
3
2
12  
12  
13  
13  
4
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
MSB IN  
LSB IN  
10  
11  
MOSI  
(OUTPUT)  
2
BIT 6 . . . 1  
MSB OUT  
LSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 17. LPSPI master mode timing (CPHA = 0)  
1
SS  
(OUTPUT)  
2
12  
12  
13  
13  
4
3
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
LSB IN  
MSB IN  
11  
BIT 6 . . . 1  
10  
MOSI  
(OUTPUT)  
2
PORT DATA  
MASTER MSB OUT  
PORT DATA  
MASTER LSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 18. LPSPI master mode timing (CPHA = 1)  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
48  
NXP Semiconductors  
Communication modules  
SS  
(INPUT)  
2
12  
12  
13  
13  
4
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
3
SPSCK  
(CPOL=1)  
(INPUT)  
9
8
10  
11  
11  
See  
note1  
See  
note 1  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE MSB  
7
SLAVE LSB OUT  
6
MOSI  
(INPUT)  
LSB IN  
MSB IN  
BIT 6 . . . 1  
Notes:  
1. Undefined  
Figure 19. LPSPI slave mode timing (CPHA = 0)  
SS  
(INPUT)  
4
2
12  
12  
13  
13  
3
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
SPSCK  
(CPOL=1)  
(INPUT)  
11  
9
10  
SLAVE MSB OUT  
See  
note 1  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
8
6
7
MOSI  
(INPUT)  
MSB IN  
Notes:  
1. Undefined  
Figure 20. LPSPI slave mode timing (CPHA = 1)  
6.5.3 LPI2C electrical specifications  
See General AC specifications for LPI2C specifications.  
For supported baud rate see section 'Chip-specific LPI2C information' of the Reference  
Manual.  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
49  
Debug modules  
6.5.4 FlexCAN electical specifications  
For supported baud rate, see section 'Protocol timing' of the Reference Manual.  
6.5.5 Clockout frequency  
Maximum supported clock out frequency for this device is 20 MHz  
6.6 Debug modules  
6.6.1 SWD electrical specofications  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
50  
NXP Semiconductors  
Debug modules  
S
S
S
S
S
S
S
S
S
S
S
S
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
51  
Debug modules  
S2  
S4  
S3  
S3  
SWD_CLK (input)  
S4  
Figure 21. Serial wire clock input timing  
SWD_CLK  
SWD_DIO  
SWD_DIO  
SWD_DIO  
S9  
S10  
Input data valid  
S11  
S13  
Output data valid  
S12  
Figure 22. Serial wire data timing  
6.6.2 Trace electrical specifications  
The following table describes the Trace electrical characteristics.  
• Measurements are with maximum output load of 50 pF, input transition of 1 ns and  
pad configured with fastest slew settings (DSE = 1'b1).  
• While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN ), the  
interface should be OFF.  
Table 31. Trace specifications  
Symbol  
Description  
RUN Mode  
HSRUN Mode  
112 80  
VLPR  
Mode  
Unit  
Fsys  
System frequency  
80  
48  
40  
4
MHz  
Table continues on the next page...  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
52  
NXP Semiconductors  
Debug modules  
Table 31. Trace specifications (continued)  
Symbol  
Description  
RUN Mode  
HSRUN Mode  
VLPR  
Unit  
Mode  
fTRACE  
Max Trace frequency  
Data Output Valid  
Data Output Invalid  
80  
48  
4
40  
4
74.667  
80  
4
4
MHz  
ns  
tDVO  
tDIV  
4
4
20  
-2  
-2  
-2  
-2  
-2  
-10  
ns  
fTRACE  
tDVO  
tDIV  
Max Trace frequency  
Data Output Valid  
Data Output Invalid  
22.86  
24  
8
20  
8
22.4  
8
22.86  
8
4
MHz  
ns  
8
20  
-10  
-4  
-4  
-4  
-4  
-4  
ns  
Figure 23. TRACE CLKOUT specifications  
6.6.3 JTAG electrical specifications  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
53  
Debug modules  
J
J -
J
J -
J
J -
J
J -
J
J -
J
J -
MWCT101XS Data Sheet, Rev. 2, 07/2018  
54  
NXP Semiconductors  
Debug modules  
J2  
J4  
J3  
J3  
TCLK (input)  
J4  
Figure 24. Test clock input timing  
TCLK  
J5  
J6  
Input data valid  
Data inputs  
J7  
J8  
Output data valid  
Data outputs  
Data outputs  
J9  
Figure 25. Boundary scan (JTAG) timing  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
55  
Thermal attributes  
TCLK  
J10  
J11  
Input data valid  
TDI/TMS  
J12  
J13  
Output data valid  
TDO  
TDO  
J14  
Figure 26. Test Access Port timing  
7 Thermal attributes  
7.1 Description  
The tables in the following sections describe the thermal characteristics of the device.  
NOTE  
Junction temperature is a function of die size, on-chip power  
dissipation, package thermal resistance, mounting side (board)  
temperature, ambient temperature, air flow, power dissipation  
or other components on the board, and board thermal resistance.  
7.2 Thermal characteristics  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
56  
NXP Semiconductors  
Thermal attributes  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
57  
Thermal attributes  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
58  
NXP Semiconductors  
Thermal attributes  
7.3 General notes for specifications at maximum junction  
temperature  
An estimation of the chip junction temperature, TJ, can be obtained from this equation:  
where:  
• TA = ambient temperature for the package (°C)  
• RθJA = junction to ambient thermal resistance (°C/W)  
• PD = power dissipation in the package (W)  
The junction to ambient thermal resistance is an industry standard value that provides a  
quick and easy estimation of thermal performance. Unfortunately, there are two values in  
common usage: the value determined on a single layer board and the value obtained on a  
board with two planes. For packages such as the PBGA, these values can be different by  
a factor of two. Which value is closer to the application depends on the power dissipated  
by other components on the board. The value obtained on a single layer board is  
appropriate for the tightly packed printed circuit board. The value obtained on the board  
with the internal planes is usually appropriate if the board has low power dissipation and  
the components are well separated.  
When a heat sink is used, the thermal resistance is expressed in the following equation as  
the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:  
where:  
• RθJA = junction to ambient thermal resistance (°C/W)  
• RθJC = junction to case thermal resistance (°C/W)  
• RθCA = case to ambient thermal resistance (°C/W)  
RθJC is device related and cannot be influenced by the user. The user controls the thermal  
environment to change the case to ambient thermal resistance, RθCA. For instance, the  
user can change the size of the heat sink, the air flow around the device, the interface  
material, the mounting arrangement on printed circuit board, or change the thermal  
dissipation on the printed circuit board surrounding the device.  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
59  
Dimensions  
To determine the junction temperature of the device in the application when heat sinks  
are not used, the Thermal Characterization Parameter (ΨJT) can be used to determine the  
junction temperature with a measurement of the temperature at the top center of the  
package case using this equation:  
where:  
• TT = thermocouple temperature on top of the package (°C)  
ΨJT = thermal characterization parameter (°C/W)  
• PD = power dissipation in the package (W)  
The thermal characterization parameter is measured per JESD51-2 specification using a  
40 gauge type T thermocouple epoxied to the top center of the package case. The  
thermocouple should be positioned so that the thermocouple junction rests on the  
package. A small amount of epoxy is placed over the thermocouple junction and over  
about 1 mm of wire extending from the junction. The thermocouple wire is placed flat  
against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
8 Dimensions  
8.1 Obtaining package dimensions  
Package dimensions are provided in the package drawings.  
To find a package drawing, go to http://www.nxp.com and perform a keyword search for  
the drawing’s document number:  
Package option  
64-pin LQFP  
Document Number  
98ASS23234W  
98ASS23308W  
98ASA00802D  
100-pin LQFP  
100-pin MAPBGA  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
60  
NXP Semiconductors  
Pinouts  
9 Pinouts  
9.1 Package pinouts and signal descriptions  
For package pinouts and signal descriptions, refer to the Reference Manual.  
10 Revision History  
The following table provides a revision history for this document.  
Table 35. Revision History  
Rev. No.  
Rev. 0  
Date  
Substantial Changes  
May 2017  
Dec 2017  
• Initial release.  
Rev. 1  
• In "Feature comparison" section, updated the "MWCT101xS product  
series comparison" figure.  
• In Table 1,  
• Updated note 'All the limits defined ... '  
• Updated parameter 'IINJPAD_DC_ABS', 'VIN_DC', IINJSUM_DC_ABS  
• In Table 2,  
.
• Updated min. value of VDD_OFF  
• Added parameter IINJPAD_DC_OP and IINJSUM_DC_OP  
.
• Updated footnote to TSPLL_LOCK and removed IDDSPLL in "SPLL  
electrical specifications" table.  
• In "12-bit ADC electrical characteristics" section,  
• Updated table: 12-bit ADC characteristics (2.7 V to 3 V)  
(VREFH = VDDA, VREFL = VSS)  
• Added typ. value to IDDA_ADC, TUE, DNL, and INL  
• Added min. value to SMPLTS  
• Removed footnote 'All the parameters in this table ... '  
• Updated table: 12-bit ADC characteristics (3 V to 5.5 V)  
(VREFH = VDDA, VREFL = VSS)  
• Added typ. value to IDDA_ADC  
• Removed footnote 'All the parameters in this table ... '  
• In "Flash command timing specifications" table, updated Max. value  
of tvfykey to 35 μs  
• Updated "MWCT101xS product series comparison" figure.  
• In Table 5, updated TBDs for VLVR_HYST, VLVD_HYST, and VLVW_HYST  
• In Power mode transition operating behaviors,  
• Added VLPR VLPS  
• Added VLPS VLPR  
• Updated TBDs for VLPS Asynchronous DMA Wakeup,  
STOP1 Asynchronous DMA Wakeup, and STOP2 →  
Asynchronous DMA Wakeup  
• In Table 7, updated the specifications for MWCT1014S.  
• Updated the attachment MWCT101xS_Power_Modes  
_Configuration.xlsx.  
• In "Standard input pin capacitance" table, removed CIN_A  
.
• In "External System Oscillator electrical specifications" table,  
Table continues on the next page...  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
61  
Revision History  
Rev. No.  
Table 35. Revision History (continued)  
Date  
Substantial Changes  
• Updated specifications for gmXOSC  
• Removed IDDOSC  
.
• In "Fast internal RC Oscillator (FIRC) electrical specifications"  
section,  
• Added parameter ΔF125.  
• Removed IDDFIRC  
• In "Slow internal RC oscillator (SIRC) electrical specifications"  
section,  
• Added parameter ΔF125.  
• Removed IDDSIRC  
• In "Low Power Oscillator (LPO) electrical specifications" section,  
removed ILPO  
• Updated section: "Flash memory module (FTFC) electrical  
specifications"  
• In section: "12-bit ADC electrical characteristics",  
• Updated TBDs in Table 25.  
• Updated TBDs in Table 26.  
• In section: QuadSPI AC specifications, updated figure 'QuadSPI  
output timing (HyperRAM mode) diagram'.  
• In section: "ADC electrical specifications", updated Table 24.  
• In section: "CMP with 8-bit DAC electrical specifications", added  
note 'For comparator IN signals adjacent ... '  
• In table: "LPSPI electrical specifications", minor update in footnote 6.  
• In table: Table 33, updated specifications for MWCT1015S.  
Rev. 2  
July 2018  
• Global update: removed Ethernet and SAI  
• Updated the attachment MWCT101xS_Power_Modes  
_Configuration.xlsx  
• In 'Key features':  
• Added a note under 'Power management', 'Memory and  
memory interfaces', and 'Safety and security'  
• Updated FlexIO under Communications interfaces  
• Updated Cryptographic Services Engine (CSEc) under 'Safety  
and security'  
• Updated package information  
• In High-level architecture diagram for the MWCT101xS family,  
added footnote 3  
• In "Feature comparison" section, updated the "MWCT101xS product  
series comparison" figure:  
• Updated the "System RAM" row  
• Added support for LIN protocol version 2.2 A  
• Updated the Ecosystem information  
• Updated the Package information  
• Updated the Legend notes  
• Updated Ordering information  
• In Absolute maximum ratings :  
• Updated the NOTE section  
• Added parameter 'Tramp_MCU  
• Updated footnote for 'Tramp  
'
'
• Updated Voltage and current operating requirements  
• In Power and ground pins  
• Removed the 144-pin LQFP package  
• Updated footnote 'VDD and VDDA must be shorted ...'  
• Updated the "Power diagram" figure  
• In Power mode transition operating behaviors updated numbers for:  
• VLPR VLPS  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
62  
NXP Semiconductors  
Revision History  
Table 35. Revision History  
Rev. No.  
Date  
Substantial Changes  
• VLPS VLPR  
• RUN VLPS  
• RUN VLPR  
• In Power consumption :  
• Updated specs  
• Removed section 'Modes configuration', amd moved its  
content under the fisrt paragraph.  
• Updated footnote 'Typical current numbers are indicative ...'  
• Updated footnote 'The MWCT1016S data ...'  
• Removed footnote 'Above MWCT1016S data is preliminary  
targets only'  
• In General AC specifications :  
• Updated max value and footnote of WFRST  
• Updated symbol for not filtered pulse to 'WNFRST', updated  
min value, removed max. value, and added footnote  
• Fixed naming conventions to align with DS in DC electrical  
specifications at 3.3 V Range and DC electrical specifications at 5.0  
V Range  
• Updated specs for AC electrical specifications at 3.3 V range and  
AC electrical specifications at 5 V range  
• In Device clock specifications :  
• Added footnote to fBUS  
• In External System Oscillator frequency specifications :  
• Updated 'tdc_extal  
'
• Added footnote 'Frequecies below ... ' to 'fec_extal' and 'tdc_extal  
• Updated Flash timing specifications — commands  
• In Reliability specifications :  
'
• Updated footnotes  
• In QuadSPI AC specifications :  
• Updated 'MCR[SCLKCFG[5]]' value to 0  
• Updated 'Data Input Setup Time' HSRUN Internal DQS PAD  
Loopback value to 1.6  
• Updated 'Data Input Setup Time' DDR External DQS min.  
value to 2  
• Updated 'Data Input Hold Time' DDR External DQS min. value  
to 20  
• Updated tIV  
• Upadted figure 'QuadSPI output timing (SDR mode) diagram'  
and 'QuadSPI input timing (HyperRAM mode) diagram'  
• In 12-bit ADC operating conditions :  
• Fixed the typo in RSW1  
• Removed parameter 'ΔVDDA  
'
• In 12-bit ADC electrical characteristics :  
• Added note 'On reduced pin packages where ... '  
• Removed max. value of 'IDDA_ADC  
• Added note 'Due to triple ... '  
'
• In CMP with 8-bit DAC electrical specifications :  
• Updated Typ. and Max. values of 'IDDLS  
• Upadted Typ. value of 'tDHSB  
'
'
• Updated Typ. value of 'VHYST1' , 'VHYST2', and 'VHYST3  
• In LPSPI electrical specifications :  
'
• Updated 'fperiph' and 'fop', and 'tSPSCK  
'
• Updated 3.3 V numbers and added footnote against fop, tSU  
ans tV in HSRUN Mode  
,
• Added footnote to 'tWSPSCK  
'
MWCT101XS Data Sheet, Rev. 2, 07/2018  
NXP Semiconductors  
63  
Revision History  
Rev. No.  
Table 35. Revision History  
Date  
Substantial Changes  
• Updated tLead and tLag  
• Added footnote in Figure: LPSPI slave mode timing (CPHA =  
0) and Figure: LPSPI slave mode timing (CPHA = 1)  
• In Thermal characteristics :  
• Updated table name for the LQFP packages  
• Added table for the BGA package  
• Updated Obtaining package dimensions  
MWCT101XS Data Sheet, Rev. 2, 07/2018  
64  
NXP Semiconductors  
How to Reach Us:  
Information in this document is provided solely to enable system and software implementers to use  
NXP products. There are no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits based on the information in this document. NXP reserves the right to  
make changes without further notice to any products herein.  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any  
particular purpose, nor does NXP assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets  
and/or specifications can and do vary in different applications, and actual performance may vary over  
time. All operating parameters, including “typicals,” must be validated for each customer application  
by customerʼs technical experts. NXP does not convey any license under its patent rights nor the  
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to unidentified  
vulnerabilities. Customers are responsible for the design and operation of their applications and  
products to reduce the effect of these vulnerabilities on customer's applications and products, and  
NXP accepts no liability for any vulnerability that is discovered. Customers should implement  
appropriate design and operating safeguards to minimize the risks associated with their applications  
and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE  
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,  
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,  
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,  
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,  
the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,  
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS  
are trademarks of NXP B.V. All other product or service names are the property of their respective  
owners. Arm, AMBA, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are  
registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9,  
Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode,  
Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the EU and/or  
elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its  
affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos  
and related marks are trademarks and service marks licensed by Power.org.  
© 2017–2018 NXP B.V.  
Document Number MWCT101xSF  
Revision 2, 07/2018  

相关型号:

935352982518

Multifunction Peripheral
NXP

935352982557

Multifunction Peripheral
NXP

935353606557

RISC Microprocessor
NXP

935353613518

RISC Microcontroller
NXP

935353613557

RISC Microcontroller
NXP

935353776528

RISC Microcontroller
NXP

935353776557

RISC Microcontroller
NXP

935353967518

RISC Microcontroller
NXP

935353967557

RISC Microcontroller
NXP

935354251557

Power Supply Management Circuit
NXP

935354329557

Multifunction Peripheral
NXP

935354334557

Multifunction Peripheral
NXP