935357815518 [NXP]

Telecom Circuit;
935357815518
型号: 935357815518
厂家: NXP    NXP
描述:

Telecom Circuit

文件: 总85页 (文件大小:848K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OL2385  
Industrial RF transceiver  
Rev. 1.0 — 15 June 2016  
Product data sheet  
COMPANY PUBLIC  
1. General information  
1.1 General description  
The device is a fully integrated single-chip transceiver intended for use in an industrial  
environment.  
The device incorporates several commonly used building blocks including a crystal  
stabilized oscillator, a fractional-N based Phase Locked Loop (PLL) for accurate  
frequency selection in both TX and RX, Low Noise Amplifier (LNA), attenuator for  
Automatic Gain Control (AGC), I/Q down-mixer and two high resolution Analog to Digital  
Converters (ADC).The conversion into the digital domain is done in an early phase,  
enabling a software defined radio like approach.  
By transforming signals in the digital domain in an early phase, one highly configurable  
RX channel is available including channel mixer, channel filter, ASK/FSK demodulator,  
clock-data recovery, bit processor and a micro-controller memory interface (DMA)  
allowing the micro-controller to complete the data handling and handshaking.  
The device has an embedded RISC micro-controller optimized for high performance and  
low power as well as an EROM for customer applications. The device also includes a  
medium power UHF transmit system with a high dynamic range of -35dBm to +14dBm  
which makes it ideal for the use in narrow band communication systems. The TX system  
allows transmission with data rates up to 400 kbit/s NRZ.  
Power ramping and splatter avoidance filters are included to ensure that the transmit  
spectrum fulfills all the common standards in Europe, USA and Asia. The phase noise of  
the transmitter supports ARIB operation.  
The device includes a series of timers to allow for autonomous polling and wake-up  
applications. The TX and RX data buffers are located in the RAM with autonomous direct  
memory access (DMA), reducing the 'real-time' overhead for the accompanying  
micro-controller. The device can be interfaced via SPI, UART or LIN protocol compatible  
UART. Simplified programming of the device is facilitated by the HAL (Hardware  
Abstraction Layer).  
The transceiver is configured to operate with low active and standby power consumption,  
ideal for battery powered applications.  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
2. Features and benefits  
Single IC for worldwide usage in bands between 160 MHz and 960 MHz  
Wide dynamic range with AGC to achieve excellent blocking performance  
I/Q down conversion with digital IF processing and automatic gain compensation  
Integrated I/Q phase and amplitude mismatch compensation  
Receiver path with 2 multiplexed antenna inputs enables different antenna matching  
Advanced signal monitoring and data management for fast and reliable signal  
detection and processing  
High dynamic range RSSI measurement  
Programmable PA with digitally controlled power ramping and shaping  
Operation up to 400 kbit/s 4FSK for high data rate applications  
RX and TX data buffer in RAM with independent DMA channels  
Integrated temperature sensor for crystal temperature drift compensation  
Support of high accuracy external temperature sensor for ARIB systems  
Integrated 16-bit extended micro RISC kernel for system on chip solutions with up to  
32kByte EROM  
10 independent DMA channels for powerful data transfer and configuration  
Integrated copy machine for fast data transfer  
Coprocessor for bit manipulation and code redundancy cycle calculation (CRC)  
Several timers for firmware development including 3 general purpose timers, 3 RX  
channel timers, low power mode polling timer and watch dog timer  
Clock driver for micro controller crystal sharing  
Controlled via SPI, UART, LIN compatible UART  
10 bit ADC sensor interface with up to 100kSps sampling rate  
Tool chain (compiler, assembler, linker, debugger) with in circuit debug capability  
API available to simplify custom firmware development  
IREC evaluation and demonstration kit available for basic RF operation  
Remote control protocol (RCP) to operate RF without custom firmware via SPI/UART  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
2 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
3. Applications  
The IC supports the following system applications:  
Smart Metering (sub-GHz Zigbee, wireless M-bus)  
Home and building security and automation (KNX-RF)  
Remote control devices  
Wireless medical applications  
Wireless sensor network  
Industrial monitoring and control  
Low Power Wide Area networks (SigFox)  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
3 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
4. Quick reference data  
Table 1.  
Quick reference data  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
1
General  
1.1  
1.2  
1.3  
1.4  
2
UHF Carrier Frequency  
Power Down Current  
Supply Voltage  
158  
960  
MHz  
nA  
V
700  
1.9  
-40  
5.5  
Operating Temperature  
Transmitter  
+85  
°C  
2.1  
Supply Current  
XTAL  
0.25  
9
mA  
Tx @ 0 dBm  
Tx @ 14dBm  
mA  
29  
mA  
2.2  
2.3  
Max Output Power  
14  
dBm  
Phase Noise @ 100 kHz Offset  
169 MHz band  
434 MHz band  
868 MHz band  
925 MHz band  
-120  
-117  
-109  
-108  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
3
Receiver  
3.1  
Supply Current  
@ 45kHz BW  
@ 10kHz BW  
11  
11  
mA  
mA  
kbit/s  
dBm  
dBm  
dBm  
dB  
3.2  
3.3  
3.3.1  
3.3.2  
3.5  
3.6  
3.7  
3.8  
3.10  
4
Data Rate  
Sensitivity  
400  
ASK/OOK @ 10kHz BW  
FSK @ 50 kHz BW  
FSK @ 10 kHz BW  
868 MHz  
-123  
-112  
-124  
>50  
60  
Adjacent channel rejection  
Image channel rejection (calibrated)  
Channel Filter Band Width  
RSSI  
dB  
4
Dynamic Range @ 10kHz BW 120  
Variation -3  
360  
3
kHz  
dB  
dB  
Micro-controller  
EROM  
4.1  
4.2  
32  
7
kByte  
kByte  
Customer RAM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
4 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
5. Ordering information  
Table 2.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
OL2385AHN/00100[1]  
OL2385AHN/001A0[2]  
OL2385AHN/001B0[3]  
OL2385AHN/001C0[4]  
HVQFN48 Plastic thermal enhanced very thin quad flat package; no leads; 48  
terminals; body 7 x 7 x 0.85 mm; terminal pitch 0.5 mm; wettable flanks  
SOT619-13  
SOT619-13  
SOT619-13  
SOT619-13  
HVQFN48 Plastic thermal enhanced very thin quad flat package; no leads; 48  
terminals; body 7 x 7 x 0.85 mm; terminal pitch 0.5 mm; wettable flanks  
HVQFN48 Plastic thermal enhanced very thin quad flat package; no leads; 48  
terminals; body 7 x 7 x 0.85 mm; terminal pitch 0.5 mm; wettable flanks  
HVQFN48 Plastic thermal enhanced very thin quad flat package; no leads; 48  
terminals; body 7 x 7 x 0.85 mm; terminal pitch 0.5 mm; wettable flanks  
[1] Generic version without preflashed software  
[2] SigFox software stack preflashed  
[3] WMBus 2013 software stack preflashed  
[4] sub-GHz ZigBee MAC layer software stack preflashed  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
5 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
6. Marking  
Table 3.  
Line  
Marking information  
Example  
Description  
A
B
OL2385  
*******  
2385 = Type number  
ID: *****xx (* = Diffusion lot number + x = Assembly ID); In case the number of  
digits exceeds 7, ID is truncated by sequentially removing positions from left to  
right.  
C
ZSDyww*  
Z = Manufacturer Code SSMC  
S = Assembly Centre Kaohsiung  
D = RoHS2006  
yww = Date Code (Y = year, W = calendar week)  
* = Release Status  
X = customer engineering sample (CES)  
Y = customer qualification sample (CQS)  
_ = released samples (RFS)  
2385 = Type number  
D
2385ABrrff  
A = std version  
B = BOM version  
rr = Rom Code version  
ff = SW version  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
6 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
7. Block diagram  
5)B,1B%  
3ꢄꢌ  
ꢅꢈ  
5)ꢀIURQWHQG  
0L[HU  
7,$  
6LJPDꢁGHOWD  
$'&  
'LJLWDOꢀUHFHLYHUꢀFKDLQ  
=HURꢀ,) )LOWHU 'HPꢃ 'DWD &ORFN  
%LWꢀ  
'HFLPꢃ ,4FDO  
)LOWHU  
*1'B5)  
75;6:,7&+B5;  
*1'B5)  
3ꢂꢉ  
,
'0$  
ꢅꢇ  
ꢅꢆ  
ꢅꢅ  
ꢅꢄ  
ꢅꢂ  
ꢅꢌ  
ꢄꢋ  
ꢄꢊ  
ꢄꢉ  
ꢄꢈ  
ꢄꢇ  
/1$  
Į
4  
$'&  
ꢀ0L[HU  
)LOWHU 5HFRYꢃ 3URFHVꢃ  
,4$'&  
9&2  
06&/  
06'$  
567B1  
9''B,2  
3ꢂꢌ  
5DGLR7[  
,QWHUQDOꢀ  
7HPSHUDWXUHꢀ  
6HQVRU  
3RZHUꢀ$PSOLILHU  
7[ꢀ  
0RGXODWRU  
7[ꢀ  
(QFRGHU  
3RZHUꢀ  
UHJXODWRU  
'0$  
Į
75;6:,7&+B$17  
*1'B5)  
,QWHUUXSW  
86$57ꢌ  
0',  
7LPHUꢌ  
FRQWUROOHU  
63, 8$57 /,1  
&5&ꢀFRꢁ  
'0$  
FRQWUROOHU  
SURFHVVRU  
7LPHUꢂ  
7LPHUꢄ  
05.ꢀ,,,H  
&38  
86$57ꢂ  
75;6:,7&+B7;  
*1'B3$B5)  
7;287  
63, 8$57 /,1  
&ORFNꢀ  
JHQHUDWLRQ  
0HPRU\ꢀPDQDJHPHQWꢀXQLW  
%LWPDQLSꢁ  
XODWLRQꢀ  
UHJLVWHUV  
3RUWꢀFRQWURO  
0DLQꢀ5&ꢀ  
RVFLOODWRU  
7LPHUꢅꢎ  
5;ꢀWLPHU  
3ꢂꢂ  
520  
(520  
5$0  
3RZHUꢀꢍꢀ  
V\VWHPꢀFRQWURO  
6\VWHPꢀ  
7LPHUꢌ  
3RUWꢀZDNHꢁXSꢀ  
ORJLF  
*HQHUDOꢀ  
SXUSRVHꢀ$'&  
3ꢂꢄ  
/RZꢀSRZHUꢀ5&ꢀ  
RVFLOODWRU  
:DWFKGRJ  
3ROOLQJꢀWLPHU  
&U\VWDO  
RVFLOODWRU  
3//ꢀVXEV\VWHP  
/2ꢀFKDLQ  
9&2 ',9ꢀꢄ  
)UDFWLRQDOꢁ1  
*1'B3$  
95(*3$  
9&2ꢀFDOLEUDWLRQ  
3ꢂꢅ  
3ꢂꢆ  
ꢂꢌ  
ꢂꢂ  
ꢂꢄ  
GLYLGHU  
/RRS  
ILOWHU  
3)' /RFN &KDUJH  
GHWHFW SXPS  
·
1ꢀ·ꢀ0  
ꢇ9ꢀ9ROWDJHꢀUHJXODWRU  
9''B3$  
3ꢂꢇ  
Fig 1. Block diagram  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
7 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
8. Pinning information  
The circuit is packaged in a HVQFN48 with wettable flanks.  
8.1 Pinning  
WHUPLQDOꢀꢂ  
LQGH[ꢀDUHD  
5)B,1B%  
*1'B5)  
ꢅꢈ 3ꢄꢌ  
ꢅꢇ 3ꢂꢉ  
75;6:,7&+B5;  
*1'B5)  
ꢅꢆ 06&/  
ꢅꢅ 06'$  
ꢅꢄ 567B1  
ꢅꢂ 9''B,2  
ꢅꢌ 3ꢂꢌ  
75;6:,7&+B$17  
*1'B5)  
75;6:,7&+B7;  
*1'B3$B5)  
7;287  
ꢄꢋ 3ꢂꢂ  
ꢄꢊ 3ꢂꢄ  
*1'B3$ ꢂꢌ  
95(*3$ ꢂꢂ  
9''B3$ ꢂꢄ  
ꢄꢉ 3ꢂꢅ  
ꢄꢈ 3ꢂꢆ  
ꢄꢇ 3ꢂꢇ  
+94)1ꢀꢁ  
7UDQVSDUHQWꢀWRSꢀYLHZ  
Fig 2. Pinout HVQFN48  
8.1.1 Pin 1 keep out area  
For the purpose of package orientation, so called "pin 1" identification is included. This  
can either be as an additional small pin / pad as shown in design 1 (left) of Figure 3, or a  
notch in the die pad as shown in design 2 (right) of Figure 3.  
Note that the pin 1 identifier is electrically connected to the ground plate.  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
8 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Fig 3. Pin 1 keep out area  
8.2 Pin description  
Table 4.  
Pinning description  
Symbol  
Pin  
1
Description  
RF_IN_B  
RF receiver input B (internally multiplexed with RF receiver input A)  
Ground  
GND_RF [6]  
TRXSWITCH_RX  
GND_RF [6]  
TRXSWITCH_ANT  
GND_RF [2][6]  
TRXSWITCH_TX  
GND_PA_RF  
TXOUT [7]  
GND_PA  
2
3
TRX switch (interface to RX part)  
Ground  
4
5
TRX switch (interface to antenna)  
Ground - connected to exposed die pad area  
TRX switch (interface to TX part)  
Ground  
6
7
8
9
Power amplifier output  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Ground  
VREGPA  
Regulated power amplifier supply, requires external choke to TXOUT  
Power supply for PA block in transmit path  
Power supply for crystal oscillator  
Crystal oscillator input  
VDD_PA  
VDD_XO  
XTAL_N  
GND_XO  
Ground  
XTAL_P  
Crystal oscillator output  
GND_LO  
Ground  
VDD_LO  
Power supply for local oscillator  
Ground  
GND_LO  
GND_DIG  
VDD_3VOUT  
VDD_5VIN  
VDD_DIG  
P16  
Ground (digital)  
3 V output voltage of the 5 V to 3 V LDO  
5 V input voltage of the 5 V to 3 V LDO  
Power supply for digital part  
GPIO, wake-up, USART0, USART1  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
9 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 4.  
Symbol  
P15  
Pinning description  
Pin  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
Description  
GPIO, timer input, timer output, USART0, USART1  
GPIO, timer output, USART0, USART1  
GPIO, USART0  
P14  
P13  
P12  
GPIO, wake-up, timer input, USART0, USART1  
GPIO, fail safe wake-up, timer input, USART0, USART1  
P11  
P10  
GPIO, fail safe wake-up, timer output, RX and TX clock output  
Power supply for digital I/Os  
VDD_IO  
RST_N [8]  
MSDA [9]  
MSCL [10]  
P17  
Reset input (active low), internal pull-up resistor  
Monitor and debug interface serial data (input/output; internal pull-up in input mode)  
Monitor and debug interface serial clock (output)  
GPIO, wake-up, timer input, timer output, RX data output, TX data input, USART0,  
USART1  
P20  
36  
37  
38  
39  
40  
GPIO, wake-up, timer output, USART1  
GPIO, GP ADC input NEG  
P21  
P22  
GPIO, wake-up, GP ADC input POS, timer output  
GPIO, wake-up, GP ADC reference voltage, USART1  
Test pin (must be connected to ground in the application)  
LDO output voltage  
P23  
TEST [1]  
VDD_DIGL [3][4][5]  
41  
42  
43  
44  
45  
46  
47  
48  
GND_DIG  
Ground (digital)  
GND_ADC  
IFN_SENSE_IN  
IFP_DCBUS  
VDD_ADC  
Ground  
Selectable ADC negative input / pin used for test purposes  
Selectable ADC positive input / pin used for test purposes  
Power supply for ADC in receiver chain  
Power supply for receive path  
VDD_RF  
RF_IN_A  
RF receiver input A (internally multiplexed with RF receiver input B)  
[1] Pin TEST must be connected to ground in the application.  
[2] The exposed die pad area must be connected to ground.  
[3] VDD_DIGL is the internal supply of the digital part and shall only be externally connected to a blocking  
capacitor 15 nF (nominal).  
[4] VDD_DIGL must neither be pulled to high voltages nor to GND  
[5] Do not use VDD_DIGL to supply external devices  
[6] All GND_RF are connected internally  
[7] TXOUT is not to be supplied externally except for an inductor connected to VREGPA  
[8] RST_N shall be connected only with a 4.7 kΩ resistor in series.  
[9] MSDA features an on-chip pull-up resistor to VDD_IO and may be left open or terminated to VDD_IO, as  
desired.  
[10] MSCL is an output and shall be unconnected in the application.  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
10 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9. Design information  
9.1 Introduction  
The device can be used in many applications where the flexibility of the micro-controller in  
combination with the dedicated receive and transmit hardware are exploited. The range of  
applications of such a device span from simple transmitter applications triggered by a key  
press to complex half duplex RF multi protocol transceivers. In order to describe the  
wealth of features and possibilities it is necessary to describe more detailed the key  
functional blocks of the device. Functions, such as power management and wake-up  
procedures (where the micro-controller is not controlling the process directly), permeate  
the complete device and are described in the coming sections. The main functions are the  
micro-controller subsystem, including the frequency generation system (the core of all RF  
functionality), the transmitter system and the receiver systems.  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
11 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.2 Power management  
9.2.1 Modes of operation  
The device supports operation in a 3 V, 5 V or a mixed 3 V and 5 V environment  
supporting the following supply use cases:  
1. Device and digital interface supplied with regulated 5 V supply  
Digital signaling between all devices in the system is done at 5 V level.  
2. Device and digital interface supplied with regulated 3 V (3.3 V) supply  
Digital signaling between all devices in the system is done at 3 V (3.3 V) level.  
3. Device supplied with regulated 3 V (3.3 V) supply and digital interface supplied with  
regulated 5 V supply  
Digital signaling between all devices in the system is done at 5 V level.  
4. Device and digital interface supplied with a single primary lithium battery cell (3.6 V …  
1.9 V)  
Digital signaling between all devices in the system is done at the unregulated  
battery voltage level.  
5. Supply with a single rechargeable battery cell (4.2 V … 3.0 V) and an accompanied  
voltage regulator (3.6 V … 2.5 V)  
Device is supplied with the regulated voltage.  
Digital signaling between all devices in the system is done at the unregulated  
battery voltage level.  
Connection diagrams for these different use cases are depicted in Figure 4.  
9.2.2 External power supply domains  
Several power supply pins are present to provide the required supply isolation between  
various RF, analogue and digital blocks (external power supply domains). The power  
supply pins have to be directly connected to a regulator output or a battery. External  
supply switches are not required.  
Adequate blocking capacitors have to be connected to the external supply pins.  
Table 5.  
External power supply domains  
Power supply pin  
Voltage range  
Description  
VDD_IO, GND_IO  
3 V, 5 V  
Main power supply domain of the device; supplies the I/O port pins, the  
power-on reset circuit and an internal low-power regulator which  
supplies the power state logic, the I/O port control latches, the polling  
timer and the watchdog.  
VDD_LO, GND_LO  
VDD_XO, GND_XO  
VDD_RF, GND_RF  
3 V  
3 V  
3 V  
Power supply for the local oscillator (fractional-N PLL).  
Power supply for the crystal oscillator.  
Power supply for the radio frontend including the LNA, the input  
attenuators and the mixer for receive mode.  
VDD_PA, GND_PA  
3 V  
3 V  
Power supply for the power amplifier regulator output and the power  
amplifier control for transmit mode.  
VDD_ADC, GND_ADC  
Power supply for the sigma-delta ADCs in the radio receiver.  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
12 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 5.  
External power supply domains  
Power supply pin  
VDD_DIG, GND_DIG  
VDD_5VIN  
Voltage range  
Description  
3 V  
5 V  
Power supply for the digital part.  
Supply voltage input for the internal power regulator. This regulator  
generates the required supply voltage for the device’s VDD supply pins  
in the 3 V domains.  
VDD_3VOUT  
3 V  
Regulated supply voltage output of the internal power regulator.  
[1] Voltage ranges are given here only for information purpose. Please refer to the electrical characteristics for  
detailed voltage range specification.  
The external power supply domains with the associated power supply pins are briefly  
described in the Table 5.  
The package HVQFN has an exposed die pad at the back which is intended as heat sink  
and additional ground connection.  
The device includes an internal power regulator which can be used to generate a voltage  
less than 3.6 V when such a voltage is not available. This regulator utilizes the two supply  
pins VDD_5VIN and VDD_3VOUT. The regulator is only on if the device is in power  
supply state ACTIVE. In all other power supply states the regulator is off. VDD_5VIN can  
be supplied permanently and the input voltage must be greater than 3.6 V.  
The application has to ensure that the current drawn from the internal power regulator  
does not exceed the maximum limit given in the section electrical characteristics. If this  
limit is exceeded all supply voltage pins in the 3 V domain must be connected to an  
external voltage regulator. It is not allowed to supply parts of the device with the internal  
and other ones with an external 3 V supply.  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
13 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
5HJXODWRUꢏꢀꢇ9  
,QWHUQDOO\ꢀJHQHUDWHGꢀꢅ9  
9''B/2  
9''B,2  
9''Bꢇ9,1  
9''Bꢅ9287  
9''B5)  
9''B$'&  
9''B3$  
9''B',*  
5HJXODWRUꢏꢀꢅ9ꢀRUꢀꢅꢃꢅ9  
RU  
%DWWHU\ꢏꢀꢂꢃꢋꢀ«ꢀꢅꢃꢈ9  
9''B,2  
9''Bꢇ9,1  
9''Bꢅ9287  
9''B/2  
9''B5)  
9''B$'&  
9''B3$  
9''B',*  
5HJXODWRUꢏꢀꢅ9ꢀRUꢀꢅꢃꢅ9  
5HJXODWRUꢏꢀꢇ9  
9''B,2  
9''Bꢇ9,1  
9''Bꢅ9287  
9''B/2  
9''B5)  
9''B$'&  
9''B3$  
9''B',*  
5HFKDUJHDEOHꢀEDWWHU\ꢏꢀꢅꢃꢌꢀ«ꢀꢆꢃꢄ9  
ꢄꢃꢉꢀ«ꢀꢅꢃꢈ9  
5(*8/$725  
9''Bꢅ9287  
9''B,2  
9''Bꢇ9,1  
9''B/2  
9''B5)  
9''B$'&  
9''B3$  
9''B',*  
Fig 4. Connection of external power supply domains for different power supply use cases  
9.2.3 Recommended external capacitors in the supply domains  
The device is supplied by an external supply with 3V or 3.3V:  
Pin 21 VDD_3VOUT: open, not connected  
Pin 22 VDD_5VIN: connected to GND  
Pin 31 VDD_IO: 10nF ( 20%) capacitor  
Pin 41 VDD_DIGL: 15nF ( 20%) capacitor (mandatory)  
Pin 47 VDD_RF: 10nF ( 20%) capacitor  
Pin 12 VDD_PA: 10nF ( 20%) capacitor  
Pin 23 VDD_DIG: 10nF ( 20%) capacitor  
Pin 18 VDD_LO: 22nF ( 20%) capacitor  
Pin 13 VDD_XO: 68nF ( 20%) capacitor  
Pin 46 VDD_ADC: 10nF ( 20%) capacitor  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
14 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
The device is supplied by an external supply with 5V and the internal 5V to 3V  
regulator is used:  
Pin 21 VDD_3VOUT: 10nF capacitor ( 20%)  
Pin 22 VDD_5VIN: connected to external 5 V supply, 100nF ( 20%) capacitor plus  
optional 2.2µF capacitor  
Pin 31 VDD_IO: 10nF ( 20%) capacitor  
Pin 41 VDD_DIGL: 15nF ( 20%) capacitor (mandatory)  
Pin 47 VDD_RF: 10nF ( 20%) capacitor  
Pin 12 VDD_PA: 10nF ( 20%) capacitor  
Pin 23 VDD_DIG: 10nF ( 20%) capacitor  
Pin 18 VDD_LO: 22nF ( 20%) capacitor  
Pin 13 VDD_XO: 68nF ( 20%) capacitor  
Pin 46 VDD_ADC: 10nF ( 20%) capacitor  
9.2.4 Power supply states  
The device supports four different power states:  
RESET state  
POWER-OFF state  
ACTIVE state  
STANDBY state  
The state diagram for the functional power supply states is given in Figure 5:  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
15 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
WKZ͕  
Z^dͺEсϬ  
WŽǁĞƌꢁƐƵƉƉůLJ  
ƐƚĂƌƚͲƵƉ  
Zꢀ^ꢀd  
ꢁ^dꢂdꢀ  
tĂƚĐŚĚŽŐdŝŵĞŽƵƚ  
WK<ꢁΘꢁZ^dͺEсϭ  
WKZ͕  
Z^dͺEсϬ͕  
WŽƌƚthW͕  
WŽůůŝŶŐdŝŵĞƌthW  
tĂƚĐŚĚŽŐdŝŵĞŽƵƚ͕  
sĚĚꢅƌŽǁŶKƵƚ͕  
^tꢁƌĞƐĞƚꢁƚƌŝŐŐĞƌ  
Ϯ
ϭ
WŽƌƚthW  
WKZ͕  
Z^dͺEсϬ  
WKtꢀZͲK&&ꢁ  
^dꢂdꢀ  
^tꢁĐŽŶƚƌŽů  
^tꢁĐŽŶƚƌŽů  
WKZ͕  
ꢂꢃd/sꢀ  
^dꢂdꢀ  
Z^dͺEсϬ͕  
tĂƚĐŚĚŽŐdŝŵĞŽƵƚ  
sĚĚ^ƚĂŶĚďLJꢅƌŽǁŶKƵƚ  
^dꢂEꢄꢅz  
^dꢂdꢀ  
WŽƌƚthW͕  
WŽůůŝŶŐdŝŵĞƌthW  
Fig 5. Power supply state diagram  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
16 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.3 Local oscillator  
The radio frequencies needed for reception and transmission are created using a local  
oscillator. The signals for the reference namely crystal oscillator, mixer signals and the  
mixer phases for both transmission and reception are generated here. The purity, stability  
and matching of these signals define the maximum performance that can be achieved by  
the RF system; therefore the blocks are optimized for these performance parameters. The  
choice of the architecture of the Fractional-N_PLL and that of the voltage controlled  
oscillator (VCO) guarantees highest performance and flexibility with the minimum of  
current consumption.  
The transmission of FSK is achieved by modulation of the PLL and therefore the loop filter  
supports a high bandwidth to allow data rates up to 400kbit/s.  
&U\VWDO  
RVFLOODWRU  
3//ꢀVXEV\VWHP  
/2ꢀFKDLQ  
)UDFWLRQDOꢁ1  
GLYLGHU  
9&2  
)L[HG  
GLYLGHU  
3)' /RFN &KUJꢃ  
GHWHFW SXPS  
/RRS  
)LOWHU  
1ꢀ·ꢀ0  
·
Fig 6. Local Oscillator  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
17 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.4 UHF transmitter subsystem  
9.4.1 General description  
The UHF transmitter consists of a modulator block for narrow band FSK and ASK, which  
controls the PLL to generate the RF signal and two power amplifier blocks. A 12 dBm PA  
block, which is able to deliver +14 dBm output power, and a 0 dBm block to save power.  
The modulation is digitally controlled, either directly to the power amplifier regulator for  
ASK and power ramping, or via the main LO by controlling the fractional divider to  
generate FSK modulation in the LO.  
TX Modulator for ASK and FSK  
High current regulator with fast response  
Power amplifier delivering 14dBm max.  
Power amplifier switchable to deliver 0dBm max.  
Power can be regulated in 0.25dB steps  
5DGLRꢀ7UDQVPLWWHUꢀ6\VWHP  
3RZHUꢀ$PSOLILHU  
3RZHUꢀ  
&RQWURO  
7[ꢀ  
0RGXODWRU  
+LJKꢀ&XUUHQWꢀ  
UHJXODWRU  
5DPSLQJ  
3//ꢀꢀ  
ꢂꢄG%Pꢀ3$  
5)  
$6.  
)6.  
ꢌG%Pꢀ3$  
Fig 7. Radio transmitter system  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
18 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.4.2 TRX switch  
The TRX switch is a fully featured RF switch used to optimize the component count on the  
application boards. Many system require a software controlled RF switch function to  
select between antennas and auxiliary inputs. Although the circuit has two dedicated RF  
inputs the flexibility in combining the RX and TX paths after the relevant RF matching  
adds real benefit for the product.  
9.4.2.1 Features  
50 Ohm low loss paths from TX to Antenna  
50 Ohm low loss path RX to antenna  
High isolation when switch is open  
Save external components  
dZy^t/dꢃ,ͺdy  
dZy^t/dꢃ,ͺꢂEd  
dZy^t/dꢃ,ͺZy  
ꢅŝĂƐ  
'ĞŶĞƌĂƚŽƌꢁ  
Fig 8. Transmit receive switch  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
19 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.5 UHF receiver subsystem  
The UHF receiver subsystem consists of a low IF RF down conversion system. With low  
gain in the RF and a high resolution ADC used in the baseband to provide the necessary  
dynamic range. The system includes a low noise figure and high linearity LNA stage,  
supported by passive attenuator blocks controlled by an AGC loop. Down conversion and  
high gain baseband amplifiers ensure that the dynamic range of the ADC is exploited fully.  
The digital receiver front-end includes the preprocessing and I/Q compensation. The  
digital receive chain performs the channel selection, demodulation and framing. The  
complete system is shown in Figure 9.  
'HFLPꢃ '&ꢀ ,4ꢀFDO  
ILOWHU QRWFK  
&KDQꢁ &KDQQHO 'HPRG 'DWD &ONꢐGDWD 'DWDꢀ  
5)ꢀIURQWHQG 0L[HU  
7,$  
6LJPDꢁGHOWD  
QHO  
ILOWHU  
ILOWHU UHFRYꢃ SURFHVꢃ  
,
PL[HU  
$'&  
$'&  
/1$  
4
'0$  
Į
9&2  
,4ꢀ$'&  
$*&ꢀFRQWURO  
Fig 9. UHF receiver subsystem  
9.5.1 Features  
RX Antenna switch with 2 inputs  
Wide band receiver for carrier frequencies in the range of 158 to 960MHz  
Low noise figure: 5dB typically @ 434MHz  
Digitally controlled automatic gain control  
18 attenuation steps of 2dB at RF input  
15 attenuation steps of 2dB at mixer input  
IQ down conversion - high phase accuracy  
IF bandwidth with +/-400kHz (3dB)  
RF and IF level detectors for AGC loop  
Programmable bias for amplifier stages  
DC offset correction in the baseband  
Digital IF preprocessing  
Narrow band receive chain with DMA  
9.5.2 Antenna switch  
In order to have the possibility to use the device at more than one frequency band or in an  
antenna diversity application, an integrated antenna switch is implemented.  
9.5.3 LNA  
The LNA is a wide-band inductor-free, highly-linear, low-power and low-noise amplifier.  
The LNA uses internal feedback for obtaining its high linearity and a well defined gain as  
well as good input matching over temperature and voltage. The LNA has a single-ended  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
20 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
input with a wide-band input matching optimized for 200Ohms. A current reuse scheme is  
employed to maintain maximum performance with minimum current consumption. Power  
consumption is controllable depending on the demands of the system. The advanced  
feedback structure in combination with the attenuator set-up results in very low LO  
radiation.  
9.5.4 Attenuators  
Passive 2dB step attenuators are positioned in front of the LNA and in front of the mixer in  
order to control the gain of the receiver. The RF inputs have integrated ESD protection  
and integrated AC coupling for easy application. A matching network can be applied  
off-chip for best performance and adaptation to different source impedances.  
9.5.5 Mixer  
The mixer multiplies the single-ended RF signal with a balanced quadrature (I and Q) LO  
signal in order to differentiate between the wanted and image channel. A special algorithm  
is used to remove the impact of analog mismatch on the image rejection. This usually  
leads to intrusion (leakage) of the image channel into the wanted channel.  
9.5.6 Baseband amplifier (TIA) and DC offset compensation  
The baseband amplifier stage (TIA - transimpedance amplifier) amplifies the balanced  
quadrature (I and Q) mixer output signals to the optimal level for the ADC and performs  
the anti-aliasing filtering in front of the sigma-delta ADC. Internal DC offset correction  
loops guarantee maximum image suppression and high linearity and dynamic range.  
9.5.7 SD ADC  
The SD ADC is a 1-bit higher order oversampled sigma-delta ADC with very low current  
consumption. The sigma delta switched time core makes use of the most modern  
feedback techniques to ensure stability and performance over a wide frequency band,  
process and temperature variation. It features fast auto-calibration for optimum  
performance. The calibration time is typically below 1 µs. The output is a single bit  
data-stream which is further processed by the digital baseband.  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
21 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.5.8 Digital receiver block diagram  
5;  
5;ꢀ&+$11(/  
6,*1$/ꢀ021,7256  
',*ꢀ,)  
'(02'  
,)ꢀ35(),/7(5  
0,;(5  
&+$11(/ꢀ  
),/7(5  
&25',&  
'(02'ꢀ),/7(5  
,54  
7Rꢀ,54B&21752//(5  
7Rꢀ0(025<ꢀ3$'6  
$6.ꢀ  
$*&  
&/2&.ꢀ  
'$7$ꢀ5(&  
'$7$ꢀ352&  
'$7$  
08;  
,ꢀ4  
08;  
08;  
'(0  
3//  
$ꢀ3  
32/<ꢀ),5  
'&ꢀ127&+  
,4ꢀ&203  
)URPꢀ$'&  
)URPꢀ$771  
$*&  
&203B&2()  
$77B/1$  
$77B7,$  
7Rꢀ$771  
Fig 10. Digital receiver block diagram  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
22 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.5.9 Digital IF preprocessing  
9.5.9.1 Features  
Decimation filter  
DC notch filter with optional bypass  
IQ mismatch compensation with optional bypass  
The IF prefilter blocks perform sampling rate reduction from the highly oversampled 1-bit  
sigma delta bit stream into a Nyquist sampling multi bit signal. Furthermore the decimated  
signal is high pass filtered to remove unwanted DC components which could disturb  
further processing in the IQ compensation unit. The IQ compensation unit removes the  
unwanted image frequency components from the complex low IF signal.  
9.5.9.2 Block diagram  
,)ꢀ35(),/7(5  
$'&ꢀ,  
35(),/7(5ꢀ,  
35(),/7(5ꢀ4  
32/<  
),5  
)URPꢀ$'&  
7Rꢀ5;ꢀ&+$11(/  
$'&ꢀ4  
'&  
127&+  
,4  
&203  
Fig 11. Digital receiver front-end  
9.5.9.3 Description  
The IF prefilter block has a dedicated enable bit field which allows power saving in case  
the receiver is not enabled at all.  
Due to the tuner design, the resulting spectral view at the intermediate frequency is  
inverted (higher frequencies are mapped to lower and vice versa). In order to compensate  
that, it is possible to swap the I and Q components. If the IQ swap is enabled, the  
frequency order at IF is matching to the RF.  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
23 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.5.10 Automatic gain control  
9.5.10.1 Features  
Highly programmable for best flexibility  
2dB gain steps  
Automatic or manual mode  
9.5.10.2 Block diagram  
$*&  
&21752/ꢀ81,7  
7+5(6+2/'  
08;  
7RꢀSHDNꢀGHWHFWRUV  
5[ꢀ)60ꢀVWDWH  
/1$ꢀ:,1'2:  
$77(18$7,21ꢀ  
&21752//(5  
&2817(5  
$77(18$7,21  
&2'(56  
08;  
%8)  
7RꢀDWWHQXDWRUV  
7Rꢀ566,  
7,$ꢀ:,1'2:  
&2817(5  
%8))(56ꢀ  
ꢍꢀ),/7(56  
)URPꢀSHDNꢀGHWHFWRUV  
)60  
83'$7(  
&2817(5  
&203&2()  
&2'(5  
'(/$<ꢀ  
/,1(  
Fig 12. AGC block diagram  
9.5.10.3 Description  
The automatic gain control (AGC) ensures that the analog front-end is protected from high  
power signals and therefore ensures high linearity figures throughout the whole dynamic  
range of the receiver.  
The AGC can work in manual or automatic gain control mode. The manual mode is  
intended for debugging system level use cases and for device test.  
In automatic mode the AGC measures signal strength, makes a decision to get the best  
performance and drives the gain of the analogue front-end.  
For measuring signal strength pairs of underload and overload peak detectors are present  
at the LNA and at the TIA. The detectors are fast-response voltage comparators checking  
if the signal envelope belong to the range specified by the underload and overload  
threshold values.  
The AGC control strategy has been optimized for providing the best noise figure and  
maintaining all linearity requirements. Therefore the first steps of the attenuation are  
always done with the baseband (TIA) attenuator. The next steps are done with the  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
24 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
front-end (LNA) attenuator until it has reached its maximum attenuation. The remaining  
attenuation steps are done with the baseband attenuator again. The attenuation level at  
which attenuation control is given from the baseband to the front-end attenuator (takeover  
threshold) can be modified by software. The control strategy has been presented on the  
attenuation distribution figure below. It shows how the attenuation sum AS is distributed  
between front-end AFE and baseband ABB attenuations with regards to the requested  
attenuation AR.  
6\VWHPꢀDWWHQXDWLRQꢀ$6  
)URQWHQGꢀDWWHQXDWLRQꢀ  
$)(  
0D[ꢀꢓ$)(  
0D[ꢀꢓ$%%  
7DNHRYHUꢀ  
SRLQW  
%DVHEDQGꢀDWWHQXDWLRQꢀ  
$%%  
'HVLUHGꢀDWWHQXDWLRQꢀ$5  
Fig 13. Attenuation Distribution  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
25 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.5.11 Narrow band receive chain  
9.5.11.1 Features  
Complex IF channel mixer (-400kHz to +400kHz)  
AGC compensation (for RSSI correction)  
Configurable channel filter (4kHz to 360kHz)  
FSK and ASK demodulator with configurable data filter  
RSSI and offset frequency detector/measurement  
Clock and data recovery for ASK and FSK Manchester encoded data (high data rate  
offset up to 12%)  
Manchester receiver for ASK and FSK Manchester encoded data (high data rate  
offset up to 12%)  
NRZ receiver for NRZ data for 2FSK, 4FSK and 8FSK  
Signal monitors (signal property checks)  
Data processing unit with DMA interface  
5;ꢀ&+$11(/  
6,*1$/ꢀ021,7256  
$6.  
$*&  
0$1  
0,;(5  
&+$11(/  
),/7(5  
&25',&  
'(02'  
),/7(5  
5(&(,9(5  
35(),/7(5ꢀ,  
35(),/7(5ꢀ4  
,54  
7Rꢀ,54ꢀ&21752//(5  
7Rꢀ0(025<ꢀ3$'6  
'$7$ꢀ  
352&  
)URPꢀ,)ꢀ35(),/7(5  
,ꢀ4  
'$7$  
$ꢀ3  
'(02'  
3//  
15=ꢀ  
5(&(,9(5  
Fig 14. RX chain/channel block diagram  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
26 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.5.12 Data processing  
The data processing block combines the functions of data recognition and packet building  
for valid data sequences and accommodates the transfer to the memory of the device.  
There are many functional blocks which work together to carry out this function.  
9.5.12.1 Features  
Data processing core  
Line decoder  
Pattern matching unit  
Signal monitors (code properties)  
Data counter  
Timer  
Receive state machine  
Interrupt generation and status flags  
Micro-controller interface with direct memory access (DMA) channel  
The data processing sub units are enabled by the main state machine automatically on  
demand.  
Two different receive algorithms can be selected. The Manchester receiver is optimized  
for line coded data (e.g. Manchester, Biphase Mark Code) and supports high data rate  
offsets. The NRZ receiver is optimized for NRZ data and supports higher-order modulation  
(2FSK, 4FSK, 8FSK). Signal monitors can be used to minimize the likelihood of a false  
synchronization in noise (i.e. false alarm rate).  
The following signal monitors can be used for the Manchester receiver: modulation  
present detector, RSSI measurement, data rate checker, FSK deviation checker, CDR  
PLL lock detector, gap detector  
The following signal monitors can be used for the NRZ receiver: modulation present  
detector, RSSI measurement, FSK deviation checker.  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
27 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.6 Micro-controller subsystem  
The digital control of the device is done with a RISC micro controller (uC) designed for low  
power and high performance applications. The uC has optimized peripherals to facilitate  
quick and efficient control of the radio frequency blocks as well as having multiple  
peripherals for interfacing the device to the external application. Timers and mathematical  
units are also implemented in hardware to allow the uC to concentrate upon the main  
application level challenges. Such activities as data recognition and data movement are  
carried out with specific blocks thus increasing the computing power available for the user  
application.  
The core uC is discussed in detail in a separate document but the interaction as concerns  
this specific device and moreover the peripherals are discussed in depth here.  
9.6.1 RISC controller  
The device is powered by NXP's 3rd generation low power 16-Bit Extended Micro RISC  
Kernel (MRK ΙΙΙe), which controls device operation in ACTIVE state.  
The MRK ΙΙΙe utilizes a Harvard architecture featuring a 16 bit ALU. The instruction set  
supports 8 bit and 16 bit operations and is optimized for C programming. Additionally to all  
commands supported by the standard MRK ΙΙΙ, MRK ΙΙΙe supports an extended  
instruction set with hardware supported multiplication and division as well as efficient bit  
field modification operations. Details about the MRK III controller including full instruction  
set description are found in Ref. 1.  
Due to the efficient 2-stage pipeline (fetch / execute), most instructions execute in a single  
machine cycle (four clock cycles), resulting in ultra low power consumption.  
The device provides 64 kByte of linear data address range and 128 kByte linear code  
address range, powerful addressing modes and high code density. Besides, the MRK ΙΙΙe  
supports a power saving mode and code/data protection mechanisms (privilege modes).  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
28 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.6.2 System clock  
9.6.2.1 Clock sources  
The following clock sources are available:  
Crystal oscillator clock, XOCLK, 27.6 MHz or 55.2 MHz  
Clock source for system clock, PLL synthesizer, Sigma-Delta ADC  
Main RC oscillator clock, MRCCLK, nominal 25.5 MHz  
Clock source for system clock  
Sampling clock of the Sigma-Delta ADC, FSCLK, 27.6 MHz  
Clock source for system clock, RX subsystem  
Low-power RC oscillator, LPRCCLK, nominal 180 kHz  
Clock source for polling timer and watchdog  
Digitally calibrated divided clock output, PTCLK, nominal 16 kHz  
&38B&/.B6(/  
6<6B&/.B',9  
&38B&/.B',9,'(5  
05&&/.  
;2&/.  
0$,1ꢀ5&ꢀ  
26&,//$725  
&38  
008  
'0$  
&5<67$/ꢀ  
26&,//$725  
6<6&/.ꢂ  
6<6&/.  
6<6&/.ꢀ  
',9,'(5  
&38ꢀ&/2&.ꢀ  
*(1(5$7,21  
67$1'$5'ꢀ  
3(5,3+(5$/6  
6,*0$ꢁ'(/7$ꢀ  
$'&ꢀ&/2&.ꢀ  
*(1(5$7,21  
)6&/.  
75$160,77(5ꢀ  
68%6<67(0  
ꢏꢂꢈ  
',*,7$/ꢀ  
5(&(,9(5ꢀ  
68%6<67(0  
&$/,%5$7,21  
/2:ꢁ32:(5ꢀ  
5&  
26&,//$725  
/35&&/.  
37&/.  
&/2&.ꢀ',9,'(5  
32//,1*ꢀ7,0(5  
:$7&+'2*  
Fig 15. Clock distribution overview  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
29 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.6.3 Direct Memory Access  
The device supports direct memory access channels for different peripherals to unload  
the CPU from simple data copying tasks between the peripherals and the data memory.  
Besides these DMA channels the device also supports one general purpose DMA channel  
for block data transfer between any two data memory ranges.  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
30 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.6.4 Interrupt system  
The device contains an interrupt controller featuring 10 hardware interrupt priority levels. If  
more than one hardware interrupt request is pending at the same time the source with the  
highest request level is selected.  
The application can switch dynamically between single or nested interrupt execution and  
whether a selected event causes an interrupt or a wake-up event. If an interrupt is  
enabled, it causes the RISC controller to perform a CALL operation to the interrupt vector  
address, where execution of the Interrupt Service Routine (ISR) starts.  
User interrupts are usually disabled during the execution of system code (SYS  
instructions). In this case any interrupt request is latched and execution is delayed until  
control is returned to the application code. Please note that the system is basically able to  
allow user interrupts also during execution of system code. Any system call using this  
feature will describe this behavior explicitly.  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
31 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.6.5 I/O ports  
The device incorporates two quasi-identical I/O port structures—port 1 and port 2—with in  
total 12 independently configurable bidirectional pins. The I/O pins provide alternative port  
functions with individual control.  
All I/O ports provide wake-up function and all but two have a battery buffered configurable  
wake-up edge selection (falling/rising) and wake-up disabling function.  
Port 1 consists of 8 I/O pins, that serve the function to control external peripherals and that  
are used as button inputs (wake-up). Port 2 comprises 4 I/O pins, providing additional  
button inputs as well as various extended functions.  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
32 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.6.6 Timer/Counter 0, 2  
Timer/Counter 0 and Timer/Counter 2 are identical. The following description takes  
Timer/Counter 0 as reference. All descriptions are also valid for Timer/Counter 2 if T0 is  
replaced by T2 in names and figures.  
Timer/Counter 0 is a 16 bit timer/counter with 12 bit prescaler and can be operated as  
interval and event counter, as digital modulator or as clock divider.  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
33 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.6.7 Timer/Counter 1  
Timer 1 is an 8/16 bit timer with 12 bit prescaler and is intended as interval and event  
counter for general purpose applications, as demodulator or signal generator and  
modulator. Together with Timer 0 it can be used as versatile clock measurement and/or  
trimming unit.  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
34 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.6.8 Timer 3 and RX chain timers  
Timer 3 is a general purpose timer. The receiver chain has an embedded timer of type  
Timer 3 which is called RX chain timer.  
The RX chain timer is connected with RX state machine and can generate timeout events.  
It can be used for example to detect that a frame has not been received during an  
expected time window.  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
35 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.6.9 Polling and wake-up timer  
Features:  
Wake-up generation from POWER-OFF or STANDBY state  
Uses crystal calibrated divided low-power RC oscillator as clock source  
Configurable wake-up time generation from 1/16 ms to 65536 ms with 1/16 ms  
resolution  
Interrupt generation on wake-up time match  
Update of wake-up time from last device wake-up or from current time  
Polling timer register can be used as timestamp  
Interrupt generation on polling timer register overflow  
The polling and wake-up timer can be used to terminate the POWER-OFF or STANDBY  
state after a predefined time but it can be also used in ACTIVE state to generate  
additional timer intervals.  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
36 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.6.10 Watchdog timer  
Features:  
Watchdog timer running in ACTIVE, STANDBY and POWER-OFF state 1  
Generates device reset, if not properly cleared by the application  
Uses crystal calibrated divided low-power RC oscillator as clock source  
Configurable wake-up time generation from 16 to 65536 ms in 13 steps  
Window watchdog operation with 25%, 50%, 75%, 100% clearing window  
Supports watchdog timer reset flag to detect watchdog overflow by the application  
Non-maskable watchdog timer interrupt instead of reset for devices in INIT mode  
The device incorporates a watchdog timer to recover the system from application program  
deadlocks. The watchdog timer runs continuously in ACTIVE state, STANDBY state and  
POWER-OFF state 1 whereas it is off in RESET state and POWER-OFF state 2.  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
37 of 85  
OL2385  
NXP Semiconductors  
9.6.11 USART  
Industrial RF transceiver  
The USART is a universal synchronous and asynchronous receiver and transmitter  
featuring SPI, UART and LIN compatible UART operation. The device contains two  
identical USARTs denoted as USART0 and USART1. In the register description USART0  
or USART1 must be used instead of the prefix USART.  
9.6.11.1 Features:  
Integer and fractional baud rate generator  
Large range of selectable baud rates  
Two separate DMA channels for receive and transmit data  
SPI  
Synchronous SPI operation  
SPI master and slave mode  
SPI clock polarity and clock phase selection  
SPI full and half duplex operation  
Configurable data length from 1 to 16 bits  
SPI mode fault and slave abort fault detection  
Hardware supported clock absent detection in slave mode to identify stalled SPI slave  
operation (4 … 255 bits)  
Full synchronous design, oversampling rate = 6, 8, 10 or 16  
SPI Stop bit to stop an ongoing SPI data transfer  
UART  
Asynchronous UART operation  
Configurable parity generation (no, odd, even, sticky 0 or 1) and parity check  
1 or 2 stop bits  
Configurable data length from 1 to 16 bits  
Full duplex and half duplex UART operation  
Half duplex operation with combined TRXD pin or separate RXD and TXD pin  
Half duplex operation with optional bit collision detection  
Optional selection to abort or continue transmission upon collision detection  
LIN compatible break detection mechanism on RXD line with configurable time-out  
window (4 … 255 bits)  
Frame error detection  
ISO7816 compatible operation mode  
Optional inversion of data bit  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
38 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.6.12 Registers for mathematical- logical operations  
9.6.12.1 CRC register  
Features:  
Configurable CRC polynomial from CRC1 to CRC16  
Configurable CRC start value  
Parallel CRC calculation for 1 to 8 bit input data  
Support for LSBit/MSBit first and right/left aligned input data  
The CRC register is intended for CRC generation and CRC checking tasks. It consists of a  
16 bit CRC data register CRC_DAT and a configurable CRC polynomial, which can be set  
via register CRC_POLY.  
9.6.12.2 CRC32 register  
Features:  
Configurable CRC polynomial from CRC1 to CRC32  
Configurable CRC start value  
Parallel CRC calculation for 8 bit input data  
Support for LSBit/MSBit first aligned input data  
The CRC register is intended for CRC generation and CRC checking tasks. It consists of a  
32 bit CRC data register and a configurable CRC polynomial.  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
39 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.6.13 Analog-to-digital converter (ADC)  
The ADC is a 10 bit successive approximation analog to digital converter using charge  
redistribution techniques to achieve very low power consumption but also a high data  
conversion rate.  
Features:  
10 bit A-D conversion  
Selection between four input channels  
Selection between four reference voltages  
Power efficient and area saving switched capacitor charge tank  
Typical A-D conversion time of 37 µs  
Dynamic range up to the maximal supply level VDD_DIG  
Ratiometric measurement possible  
End-of-conversion and Data overflow flagging  
Interrupt generation for End-of-conversion  
The ADC is configured and the resulting data can be read out via bit fields. It does not  
include multiple data buffering. Thus if previous conversion data was not read when a  
subsequent conversion is finished previous data will be overwritten which is flagged with  
an overflow flag.  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
40 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.6.14 Temperature measurement  
The temperature can be measured in two ways, either with the internal temperature  
sensor or using an external temperature sensor, connected to the on-chip 10 bit ADC.  
9.6.14.1 External temperature measurement  
An external temperature sensor can be used, connected as shown in Figure 16, with  
connections made to pins P21, P22 and P23.  
The temperature measurement uses the calibration value for R2 stored in the variable  
ADC_R2 in EROM (see Section “Trim data”). The resistance value RT of the external  
temperature sensor is calculated according to Equation 1. The temperature can then be  
derived from the resistance value.  
RP + R2  
-----------------------------------------------------------  
RT =  
(1)  
512  
-------------------------------------------------  
1  
ADCDATA – 511,5  
9''B',*  
5ꢂ  
5ꢄ  
3ꢄꢅ  
3ꢄꢄ  
3ꢄꢂ  
53  
 
57  
$'&'$7$  
$'&  
Fig 16. External temperature sensor measurement  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
41 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.7 Device modes  
The device features the following Device Modes:  
INIT  
PROTECTED  
TAMPERED  
VIRGIN  
The Device Modes affect the overall device behavior, the Monitor and Download Interface  
operation and the user ability to access the EROM.  
A Device Mode is controlled by a set of configuration bytes, which are located in the  
EROM.  
The configuration bytes may not be altered by the user directly, instead, the  
corresponding Monitor and Download command has to be used.  
9.7.1 INIT  
When the device is supplied from NXP, it is configured in INIT mode by default.  
The INIT mode shall be used during software development only. The Monitor and  
Download Interface is fully operational, enabling the customer to initialize the EROM as  
desired for the application.  
To protect the EROM from readout and to disable the debug features, the device shall be  
forced into PROTECTED mode.  
Leaving the device in INIT mode may cause the device to execute a software break, in  
case a corresponding debug command is received at pin MSDA. This would terminate  
execution of the application program and would call the built-in debug program. In this  
case, execution of the application program is interrupted until a proper debug command is  
issued or a device reset is applied.  
9.7.2 PROTECTED  
In the moment the device is set into PROTECTED mode, the EROM is protected against  
altering and readout via the Monitor and Download Interface, and the debug features are  
disabled. The PROTECTED mode has to be used during system testing and in the final  
application.  
The device may be forced into INIT mode again by issuing a corresponding command via  
the Monitor and Download Interface. This command sets the EROM to a predefined state  
before the INIT mode is resumed. Hence, the EROM based application program is  
discarded. In case this sequence does not complete successfully, the device enters  
TAMPERED mode.  
9.7.3 TAMPERED  
The TAMPERED mode is entered temporarily during the sequence that forces the device  
from PROTECTED mode back into INIT mode. If this sequence does not complete  
successfully, the TAMPERED mode is entered.  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
42 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
The device may be forced into INIT mode by again issuing a corresponding command via  
the Monitor and Download Interface. This command sets the EROM to a predefined state  
first, before the INIT mode is resumed. Hence, the EROM based application program is  
discarded. In case this sequence does not complete successfully, the device remains in  
TAMPERED mode until a new attempt is made.  
9.7.4 VIRGIN  
After manufacturing, the device operates in VIRGIN mode, enabling extended device test  
and device configuration. Finally, NXP forces the device into INIT mode and the VIRGIN  
mode is irreversibly locked in order to ensure it cannot be activated again.  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
43 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
9.8 System routines  
9.8.1 Boot routine  
The ROM based boot routine is called immediately after a device reset or a wake-up from  
any POWER-OFF state. This event is referred to as cold boot.  
The boot routine executes a sequence of instructions to evaluate the device mode and  
configures the device, using device protection and configuration flags and passes control  
to the application code at the warm boot vector in EROM.  
The boot routine does not change the information and the bit fields about the wake-up  
events initiated by pressed buttons, polling timer or reset source.  
9.8.2 Monitor and download interface  
The in-circuit Monitor and Download Interface is intended for non intrusive debug  
operation during application program development. The interface allows manipulating the  
embedded peripherals and provides means to initialize the EROM. It is implemented as  
two-wire serial interface using the dedicated pins MSDA and MSCL. The EROM has a  
programming granularity of 64 byte.  
The Monitor and Download Interface provides a 16 Bit Real Time Monitor containing  
Watches. Besides several HW/SW Break Points and single step operation, the interface  
contains an HW accelerator and allows autonomous operation.  
The majority of the features provided by the Monitor and Download Interface are available  
only, if the device is set into INIT mode, which is the factory default setting. When  
performing system tests and field trials, the device shall be set to PROTECTED mode.  
Latter one locks the EROM content, protecting it against alteration and read out, as well  
as disables the debug features. The device may be forced back into INIT mode by a  
dedicated monitor command, which will set the EROM to a predefined state.  
A detailed description about the operation and the command set of the Monitor and  
Download interface is given in Ref. 3.  
9.8.3 Hardware abstraction layer  
The device features functions located in ROM which are accessible using system calls.  
These are grouped in:  
Retrieving the version number of the device and its related firmware module versions.  
Debug functions which send customer defined data using the MDI interface  
Control of dedicated system debug functionality  
EROM programming function  
Low power functions to enable low power modes  
Additionally, an EROM software library is available helping to control all hardware blocks.  
This can be seen as guidance and can be fully modified. The detailed information is  
available in a separate document.  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
44 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
10. Characterization information  
10.1 Limiting values  
Table 6.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134)  
Parameter  
Condition  
Min  
Typ  
Max  
150  
150  
5.5  
Unit  
°C  
°C  
V
Storage temperature range  
Junction temperature  
-55  
VDD_5VIN; VDD_IO;  
Voltage at any digital I/O pin  
-0.3  
-0.3  
-0.3  
Voltage at digital I/O pins  
(5.5 V must not be exceeded)  
VDD_IO + 0.3  
V
V
V
VDD_DIG; VDD_RF; VDD_XO;  
VDD_LO; VDD_ADC; VDD_PA  
Must not exceed VDD_IO  
3.6  
0.1  
Voltage difference between any of  
the following voltages:  
VDD_DIG; VDD_RF; VDD_XO;  
VDD_LO; VDD_ADC; VDD_PA  
VREGPA  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
2.0  
V
V
V
V
V
V
TXOUT  
3.6  
VDD_DIGL  
1.95  
XTAL_N; XTAL_P  
IFN_SENSE_IN; IFP_DCBUS  
1.95  
VDD_ADC  
VDD_RF  
RF_IN_A; RF_IN_B; TRXSWITCH_  
RX; TRXSWITCH_ANT;  
TRXSWITCH_TX  
Maximum RX input level without  
damage  
10  
dBm  
EROM data retention  
AEC-Q100-005 measurement method  
with mission profile as follows:  
6 % @ -40 °C  
15  
Years  
20 % @ 30 °C  
65 % @ 85 °C  
5 % @ 100 °C  
4 % @ 125 °C  
EROM write endurance[1]  
Tamb = 25 °C  
10k  
cycles  
[1] The activation energy equals 0.15 eV. According to Arrhennius' Law, the number of useful cycles at 25 °C is  
about 2.6 times higher than at 85 °C and about 4.3 times higher than at 125 °C.  
10.2 Recommended operating conditions  
Table 7.  
Recommended operating conditions  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Parametric ambient temperature  
Unless otherwise specified  
-40  
25  
85  
°C  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
45 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 7.  
Recommended operating conditions  
Parameter  
Condition  
Min  
2.5  
1.9  
Typ  
Max  
3.6  
Unit  
V
Supply voltage range 1A  
Supply voltage range 1B  
All specification parameters fulfilled  
Device fully functional;  
3
2.5  
V
deviating RX and TX characteristics  
Only on VDD_5VIN and VDD_IO.  
Supply voltage range 2  
4.5  
5
5.5  
V
Full performance and IO operation on  
nominal 5 V supply  
10.3 Characteristics  
Table 8.  
RX Characteristics - General  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 870MHz, crystal = 27.6 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO, VDD_RF, VDD_ADC, VDD_PA  
Nr.  
1
Description  
Conditions  
Min  
165  
310  
410  
425  
Typ  
Max  
Unit  
Note  
[1]  
Frequency band 169 MHz  
Frequency band 315 MHz  
Frequency band 410 MHz  
172  
320  
424  
450  
MHz  
MHz  
MHz  
MHz  
2
[1]  
3
[1]  
4
Frequency band  
[1]  
426/429/434/447 MHz  
5
6
7
8
9
Frequency band 868 MHz  
Frequency band 915 MHz  
Frequency band 950 MHz  
Frequency Step Size  
863  
902  
928  
876  
928  
960  
MHz  
MHz  
MHz  
Hz  
[1]  
[1]  
[1]  
[4]  
[4]  
53  
Data latency Manchester / NRZ Min. at 2.4 kchip/s and  
10 kHz channel filter BW  
1.5  
6.5  
Chip  
Max. at 225 kchip/s and  
300 kHz channel filter BW  
10  
11  
Sensitivity variation over baud  
rate deviation  
Baud rate deviation 1 %.  
Data rate 50 kbit/s, channel  
filter BW = 300 kHz  
0.1  
1.5  
3
3
dB  
dB  
[4]  
[4]  
Sensitivity variation over baud  
rate deviation  
Baud rate deviation 10 %.  
Data rate 50 kbit/s, channel  
filter BW = 300 kHz  
12  
13  
14  
15  
16  
Maximum input level for  
reception  
FER 10 %  
5
10  
130  
2
dBm  
dB  
[4]  
[4]  
[4]  
[4]  
[4]  
Dynamic range of input  
FER 10 %  
Channel filter BW = 10 kHz  
125  
FSK sensitivity variation over  
temperature  
-40 °C to 85 °C  
2.5 V to 3.6 V  
1.9 V to 3.6 V  
dB  
FSK sensitivity variation over  
supply voltage  
0.3  
1
dB  
FSK sensitivity variation over  
supply voltage  
dB  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
46 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 9.  
RX Characteristics - manchester receiver  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 870 MHz, crystal = 55.2 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO, VDD_RF, VDD_ADC, VDD_PA  
Nr.  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Note  
1
FSK sensitivity at input (FER  
10 %)  
-103  
-101  
dBm  
[5]  
Manchester data rate =  
50 kbit/s,  
deviation = 100 kHz,  
channel filter BW = 300 kHz  
2
3
4
5
ASK sensitivity at input (FER  
10 %)  
Manchester data rate =  
0.6 kbit/s,  
channel filter BW = 10 kHz.  
Peak envelope power ASK  
-120  
-118  
-114  
-112  
-117  
-115  
-111  
-110  
dBm  
dBm  
dBm  
dBm  
[5]  
[5]  
[5]  
[5]  
ASK sensitivity at input (FER  
10 %)  
Manchester data rate =  
1.2 kbit/s,  
channel filter BW = 20 kHz.  
Peak envelope power ASK  
ASK sensitivity at input (FER  
10 %)  
Manchester data rate =  
2.4 kbit/s,  
channel filter BW = 50 kHz.  
Peak envelope power ASK  
ASK sensitivity at input (FER  
10 %)  
Manchester data rate =  
4.8 kbit/s,  
channel filter BW = 50 kHz.  
Peak envelope power ASK  
6
7
Image frequency suppression  
without calibration  
45  
67  
dB  
dB  
[5]  
[1]  
RSSI at wanted frequency  
minus RSSI at image frequency  
Image frequency suppression  
with calibration (internal tone) at  
desired temperature / frequency  
46  
RSSI at wanted frequency  
minus RSSI at image frequency  
8
Image frequency suppression  
with calibration (external tone)  
at desired frequency and 25 °C  
72  
dB  
[5]  
RSSI at wanted frequency  
minus RSSI at image frequency  
9
Spurious emission in RX mode: Conducted measurement at  
9 kHz to 1 GHz 50 Ohm reference board  
-82  
-78  
-70  
-70  
dBm  
dBm  
[5]  
[5]  
10  
Spurious emission in RX mode: Conducted measurement at  
1 GHz to 4 GHz 50 Ohm reference board  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
47 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 9.  
RX Characteristics - manchester receiver  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 870 MHz, crystal = 55.2 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO, VDD_RF, VDD_ADC, VDD_PA  
Nr.  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Note  
11  
Spurious emission in RX mode Conducted measurement at  
-83  
-70  
dBm  
[1]  
within signal band in use  
Leakage LO  
50 Ohm reference board  
Tuned LO frequency.  
Conducted 50 Ohm  
12  
13  
14  
-83  
-70  
-78  
-63  
3
dBm  
dBm  
dB  
[1]  
[1]  
[5]  
Leakage VCO  
RSSI tolerance  
Tuned to VCO frequency.  
Conducted 50 Ohm  
One point calibration at  
-60 dBm,  
-3  
-120dBm to 0dBm,  
channel filter BW = 10 kHz  
15  
16  
17  
RSSI variance over temperature  
RSSI variance over voltage  
0.3  
0.1  
3
dB  
dB  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
[5]  
[5]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[2]  
1.9 V to 3.6 V  
-40 °C  
25 °C  
Current consumption in  
STANDBY state  
20  
20  
25  
1.5  
1.5  
5
4
85 °C  
12  
0.6  
0.6  
2.5  
2
18  
19  
20  
Current consumption in  
POWER-OFF 2 state (polling  
timer and watchdog timer off)  
-40 °C  
25 °C  
85 °C  
Current consumption in  
POWER-OFF 1 state (polling  
timer and watchdog timer on)  
-40 °C  
25 °C  
5
2
5
85 °C  
3
6
Current consumption in RESET -40 °C  
state  
46  
52  
58  
450  
60  
60  
70  
600  
25 °C  
85 °C  
21  
22  
Current consumption XTAL  
oscillator  
NDK XTAL NX3225SA  
Current consumption in ACTIVE XTAL clock; System clock  
state  
divided by 2 to be used.  
EROM execution  
-40 °C  
25 °C  
85 °C  
1.9  
2.0  
2.2  
2.2  
2.5  
2.8  
mA  
mA  
mA  
[2]  
[2]  
[2]  
23  
Current consumption in ACTIVE RC clock; System clock  
state  
divided by 2 to be used.  
EROM execution  
-40 °C  
25 °C  
85 °C  
1.3  
1.5  
1.7  
0.1  
1.6  
1.8  
2
mA  
mA  
mA  
mA  
[2]  
[2]  
[2]  
[2]  
24  
Delta of current consumption in EROM execution  
ACTIVE state using system  
clock instead of system clock  
divided by 2.  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
48 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 9.  
RX Characteristics - manchester receiver  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 870 MHz, crystal = 55.2 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO, VDD_RF, VDD_ADC, VDD_PA  
Nr.  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Note  
25  
Delta of current consumption in EROM execution  
ACTIVE state using system  
-0.1  
mA  
[2]  
clock divided by 4  
26  
Current Consumption in idle  
mode  
CPU idle; XTAL clock;  
System clock divided by 2 to  
be used.  
EROM execution  
-40 °C  
25 °C  
85 °C  
2
2.2  
2.4  
2.6  
mA  
mA  
mA  
[2]  
[2]  
[2]  
2
2.2  
27  
Current Consumption in idle  
mode  
CPU idle; RC clock; System  
clock divided by 2 to be  
used.  
EROM execution  
-40 °C  
25 °C  
85 °C  
1.0  
1.2  
1.4  
0.4  
1.3  
1.5  
1.7  
mA  
mA  
mA  
mA  
[2]  
[2]  
[2]  
[2]  
28  
29  
30  
Delta of current consumption in EROM execution  
IDLE mode using system clock  
instead of the system clock  
divided by 2.  
Delta of current consumption in EROM execution  
IDLE mode using system clock  
instead of the system clock  
0.2  
mA  
[2]  
divided by 4.  
Receiver supply current for  
single channel  
ACTIVE state;  
System clock divided by 2 to  
be used.  
Channel filter BW = 10 kHz  
EROM execution  
-40°C  
25 °C  
85 °C  
10  
10.5  
11.5  
12  
mA  
mA  
mA  
[2]  
[2]  
[2]  
10.5  
11.5  
31  
Receiver supply current for  
single channel  
ACTIVE state;  
System clock divided by 2 to  
be used.  
Channel filter BW = 300 kHz  
EROM execution  
-40°C  
25 °C  
85 °C  
8.9  
11.5  
11.5  
12  
mA  
mA  
mA  
µs  
[2]  
[2]  
[2]  
[2]  
9.5  
10.1  
270  
32  
33  
Analog start-up time from XTAL From crystal regulator active  
450  
on to RX ready  
to RX ready;  
NDK XTAL NX3225SA  
XTAL start-up time  
From crystal regulator active  
to XTAL ready;  
150  
200  
µs  
[2]  
NDK XTAL NX3225SA  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
49 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 9.  
RX Characteristics - manchester receiver  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 870 MHz, crystal = 55.2 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO, VDD_RF, VDD_ADC, VDD_PA  
Nr.  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Note  
34  
Time from power supply  
activation to start of EROM  
execution  
1200  
µs  
[2]  
35  
36  
37  
Time from ACTIVE state to  
STANDBY state  
System clock to be used.  
System clock is used.  
23  
µs  
µs  
[2]  
[2]  
Time from STANDBY state to  
ACTIVE state  
230  
Temperature sensor tolerance  
Calibrated at 30 °C.  
-40 °C to 85 °C  
-4  
4
°C  
V
[2]  
[1]  
38  
Internal 5 V regulator output  
voltage available at VDD_  
3VOUT  
VDD_5VIN = 5 V,  
35 mA load current  
2.5  
3.1  
Table 10. RX Characteristics - Wireless MBUS mode S  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
2FSK modulation, frequency. deviation= 50kHz, manchester code, datarate = 32.768 kChip/s, Channel filter bandwidth =  
360kHz, Frame Error Rate (FER) = 80%, payload length = 20 byte, crystal = 55.2 MHz  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 870MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO, VDD_RF, VDD_ADC, VDD_PA  
Nr.  
1
Description  
Conditions  
Min  
Typ  
-108  
2
Max  
-100  
5
Unit  
dBm  
dB  
Note  
[2]  
Sensitivity  
-40 °C to 85 °C  
2
Co-channel rejection  
FSK jammer - same  
[5]  
modulation as wanted.  
3
4
Co-channel rejection  
CW jammer  
2
5
dB  
dB  
[5]  
[5]  
Adjacent channel rejection  
Channel separation =  
45  
50  
50  
600 kHz, Channel filter BW  
= 360 kHz, jammer same  
modulation as wanted  
5
Adjacent channel rejection  
Channel separation =  
600 kHz, Channel filter BW  
= 360 kHz, jammer  
modulation CW  
55  
dB  
[5]  
6
Blocking  
2 MHz  
55  
55  
60  
65  
65  
70  
60  
60  
65  
70  
70  
75  
12  
11  
dB  
dB  
dB  
dB  
dB  
dB  
mA  
mA  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[2]  
[2]  
7
Blocking  
2 MHz (LBT)  
6 MHz  
8
Blocking  
9
Blocking  
10 MHz  
10  
11  
12  
13  
Blocking  
10 MHz (LBT)  
20 MHz  
Blocking  
Current consumption  
Current consumption  
System clock to be used.  
13  
13  
System clock divided by 2 to  
be used.  
14  
Current consumption  
System clock divided by 4 to  
be used.  
11  
12  
mA  
[2]  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
50 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 11. RX Characteristics - Wireless MBUS mode T1 (meter to other device)  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
2FSK modulation, frequency deviation = 50kHz, 3 out of 6 code, data-rate = 100 kChips/s, Channel filter bandwidth = 360kHz,  
Frame Error Rate (FER) = 80%, payload length = 20 byte, crystal = 55.2 MHz.  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 870MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO, VDD_RF, VDD_ADC, VDD_PA  
Nr.  
1
Description  
Conditions  
Min  
Typ  
-105  
2
Max  
-100  
5
Unit  
dBm  
dB  
Note  
[2]  
Sensitivity  
-40 °C to 85 °C  
2
Co-channel rejection  
FSK jammer - same  
[5]  
modulation as wanted.  
3
4
Co-channel rejection  
CW jammer  
2
5
dB  
dB  
[5]  
[5]  
Adjacent channel rejection  
Channel separation =  
45  
50  
48  
600 kHz, Channel filter BW  
= 360 kHz, jammer same  
modulation as wanted  
5
Adjacent channel rejection  
Channel separation =  
600 kHz, Channel filter BW  
= 360 kHz, jammer  
modulation CW  
55  
dB  
[5]  
6
Blocking  
2 MHz  
55  
55  
60  
65  
65  
70  
60  
60  
65  
70  
70  
75  
12.5  
12  
dB  
dB  
dB  
dB  
dB  
dB  
mA  
mA  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[2]  
[2]  
7
Blocking  
2 MHz (LBT)  
6 MHz  
8
Blocking  
9
Blocking  
10 MHz  
10  
11  
12  
13  
Blocking  
10 MHz (LBT)  
20 MHz  
Blocking  
Current consumption  
Current consumption  
System clock to be used.  
13.5  
13  
System clock divided by 2 to  
be used.  
14  
Current consumption  
System clock divided by 4 to  
be used.  
11.5  
12.5  
mA  
[2]  
Table 12. RX Characteristics - Wireless MBUS mode T2 (meter to other device)  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
2FSK modulation, frequency deviation = 50kHz, manchester code, datarate = 100 kChips/s, Channel filter bandwidth =  
360kHz, Frame Error Rate (FER) = 80%, payload length = 20 byte, crystal = 55.2 MHz.  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 870MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO, VDD_RF, VDD_ADC, VDD_PA  
Nr.  
1
Description  
Conditions  
Min  
Typ  
-108  
2
Max  
-105  
5
Unit  
dBm  
dB  
Note  
[2]  
Sensitivity  
-40 °C to 85 °C  
2
Co-channel rejection  
FSK jammer - same  
[5]  
modulation as wanted.  
3
4
Co-channel rejection  
CW jammer  
2
5
dB  
dB  
[5]  
[5]  
Adjacent channel rejection  
Channel separation =  
50  
50  
55  
600 kHz, Channel filter BW  
= 360 kHz, jammer same  
modulation as wanted  
5
Adjacent channel rejection  
Channel separation =  
600 kHz, Channel filter BW  
= 360 kHz, jammer  
modulation CW  
55  
dB  
[5]  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
51 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 12. RX Characteristics - Wireless MBUS mode T2 (meter to other device)  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
2FSK modulation, frequency deviation = 50kHz, manchester code, datarate = 100 kChips/s, Channel filter bandwidth =  
360kHz, Frame Error Rate (FER) = 80%, payload length = 20 byte, crystal = 55.2 MHz.  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 870MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO, VDD_RF, VDD_ADC, VDD_PA  
Nr.  
6
Description  
Blocking  
Conditions  
2 MHz  
Min  
55  
55  
60  
65  
65  
70  
Typ  
60  
Max  
Unit  
dB  
Note  
[5]  
7
Blocking  
2 MHz (LBT)  
6 MHz  
60  
dB  
[5]  
8
Blocking  
65  
dB  
[5]  
9
Blocking  
10 MHz  
70  
dB  
[5]  
10  
11  
12  
13  
Blocking  
10 MHz (LBT)  
20 MHz  
70  
dB  
[5]  
Blocking  
75  
dB  
[5]  
Current consumption  
Current consumption  
System clock to be used.  
12.5  
12  
13.5  
13  
mA  
mA  
[2]  
System clock divided by 2 to  
be used.  
[2]  
14  
Current consumption  
System clock divided by 4 to  
be used.  
11.5  
12.5  
mA  
[2]  
Table 13. RX Characteristics - Wireless MBUS mode R2 channelised system (meter to other device)  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
2FSK modulation, channel spacing 60kHz, frequency deviation = 6kHz, manchester code, datarate = 4.8 kChips/s, Channel  
filter bandwidth = 51kHz, Frame Error Rate (FER) = 80%, payload length = 20 byte, crystal = 55.2 MHz.  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 870MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO, VDD_RF, VDD_ADC, VDD_PA  
Nr.  
1
Description  
Conditions  
Min  
Typ  
-117  
2
Max  
-112  
2
Unit  
dBm  
dB  
Note  
[2]  
Sensitivity  
-40 °C to 85 °C  
2
Co-channel rejection  
FSK jammer - same  
[5]  
modulation as wanted.  
3
4
Co-channel rejection  
CW jammer  
2
2
dB  
dB  
dB  
dB  
[5]  
[5]  
[5]  
[5]  
Adjacent channel rejection  
Channel filter BW = 51 kHz, 48  
jammer same modulation as  
wanted. Channel separation  
= 60kHz, 120kHz, 300 kHz  
52  
58  
62  
50  
58  
5
Adjacent channel rejection  
Channel filter BW = 51 kHz, 50  
55  
58  
62  
dB  
dB  
dB  
[5]  
[5]  
[5]  
jammer modulation CW.  
Channel separation =  
50  
55  
60kHz, 120kHz, 300 kHz  
6
Blocking  
2 MHz  
68  
68  
75  
75  
75  
75  
72  
72  
80  
82  
82  
84  
12  
11  
dB  
dB  
dB  
dB  
dB  
dB  
mA  
mA  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[2]  
[2]  
7
Blocking  
2 MHz (LBT)  
6 MHz  
8
Blocking  
9
Blocking  
10 MHz  
10  
11  
12  
13  
Blocking  
10 MHz (LBT)  
20 MHz  
Blocking  
Current consumption  
Current consumption  
System clock to be used.  
13  
12  
System clock divided by 2 to  
be used.  
14  
Current consumption  
System clock divided by 4 to  
be used.  
11  
11.5  
mA  
[2]  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
52 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 14. RX Characteristics - Wireless MBUS mode C1  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
2FSK modulation, frequency deviation = 45kHz, NRZ, datarate = 100 kChips/s, Channel filter bandwidth = 240kHz, Frame  
Error Rate (FER) = 80%, payload length = 20 byte, crystal = 55.2 MHz.  
Tamb = 25 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 870MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO, VDD_RF, VDD_ADC, VDD_PA  
Nr.  
1
Description  
Conditions  
Min  
Typ  
-105  
2
Max  
-100  
5
Unit  
dBm  
dB  
Note  
[2]  
Sensitivity  
-40 °C to 85 °C  
2
Co-channel rejection  
FSK jammer - same  
[5]  
modulation as wanted.  
3
4
Co-channel rejection  
CW jammer  
2
5
dB  
dB  
[5]  
[5]  
Adjacent channel rejection  
Channel filter BW =  
240 kHz, jammer same  
modulation as wanted.  
Channel separation =  
575 kHz  
45  
50  
50  
5
Adjacent channel rejection  
Channel filter BW =  
240 kHz, jammer modulation  
CW. Channel separation =  
575 kHz  
55  
dB  
[5]  
6
Blocking  
2 MHz  
55  
55  
60  
65  
65  
70  
60  
60  
65  
70  
70  
75  
13  
12  
dB  
dB  
dB  
dB  
dB  
dB  
mA  
mA  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[2]  
[2]  
7
Blocking  
2 MHz (LBT)  
6 MHz  
8
Blocking  
9
Blocking  
10 MHz  
10  
11  
12  
13  
Blocking  
10 MHz (LBT)  
20 MHz  
Blocking  
Current consumption  
Current consumption  
System clock to be used.  
13.5  
13  
System clock divided by 2 to  
be used.  
14  
Current consumption  
System clock divided by 4 to  
be used.  
12  
12.5  
mA  
[2]  
Table 15. RX Characteristics - Wireless MBUS mode C2  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
2GFSK modulation, BT = 0.5, frequency deviation = 25kHz, NRZ, datarate = 50kChips/s, Channel filter bandwidth = 180kHz,  
Frame Error Rate (FER) = 80%, payload length = 20 byte, crystal = 55.2 MHz.  
Tamb = 25 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 870MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO, VDD_RF, VDD_ADC, VDD_PA  
Nr.  
1
Description  
Conditions  
Min  
Typ  
-108  
2
Max  
-103  
5
Unit  
dBm  
dB  
Note  
[2]  
Sensitivity  
-40 °C to 85 °C  
2
Co-channel rejection  
GFSK jammer - same  
modulation as wanted.  
[5]  
3
4
Co-channel rejection  
CW jammer  
2
5
dB  
dB  
[5]  
[5]  
Adjacent channel rejection  
Channel filter BW =  
180 kHz, jammer same  
modulation as wanted.  
Channel separation =  
575 kHz  
50  
55  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
53 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 15. RX Characteristics - Wireless MBUS mode C2  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
2GFSK modulation, BT = 0.5, frequency deviation = 25kHz, NRZ, datarate = 50kChips/s, Channel filter bandwidth = 180kHz,  
Frame Error Rate (FER) = 80%, payload length = 20 byte, crystal = 55.2 MHz.  
Tamb = 25 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 870MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO, VDD_RF, VDD_ADC, VDD_PA  
Nr.  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Note  
5
Adjacent channel rejection  
Channel filter BW =  
180 kHz, jammer modulation  
CW. Channel separation =  
575 kHz  
50  
55  
dB  
[5]  
6
Blocking  
2 MHz  
55  
55  
60  
65  
65  
70  
60  
60  
65  
70  
70  
75  
12  
11.5  
dB  
dB  
dB  
dB  
dB  
dB  
mA  
mA  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[2]  
[2]  
7
Blocking  
2 MHz (LBT)  
6 MHz  
8
Blocking  
9
Blocking  
10 MHz  
10  
11  
12  
13  
Blocking  
10 MHz (LBT)  
20 MHz  
Blocking  
Current consumption  
Current consumption  
System clock to be used.  
13  
System clock divided by 2 to  
be used.  
12.5  
14  
Current consumption  
System clock divided by 4 to  
be used.  
11  
12  
mA  
[2]  
Table 16. RX Characteristics - Wireless MBUS mode N  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
2GFSK modulation, h = 2.0, BT = 0.5, frequency deviation = 2.4 kHz, NRZ, data-rate = 2.4 kChips/s, Channel spacing =  
12.5kHz, Channel filter bandwidth = 12kHz, Frame Error Rate (FER) = 80%, payload length = 20 byte, crystal = 55.2 MHz.  
Tamb = 25 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 169.5MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO, VDD_RF, VDD_ADC, VDD_PA  
Nr.  
1
Description  
Conditions  
Min  
Typ  
-123  
2
Max  
-117  
5
Unit  
dBm  
dB  
Note  
[2]  
Sensitivity  
-40 °C to 85 °C  
2
Co-channel rejection  
GFSK jammer - same  
modulation as wanted.  
[5]  
3
4
Co-channel rejection  
CW jammer  
2
5
dB  
dB  
dB  
dB  
[5]  
[5]  
[5]  
[5]  
Adjacent channel rejection  
Channel filter BW = 12 kHz, 16  
jammer same modulation as  
wanted. Channel separation:  
12.5 kHz, 25 kHz, 62.5 kHz.  
18  
67  
65  
60  
60  
4
Adjacent channel rejection  
Channel filter BW = 12 kHz, 45  
50  
65  
65  
dB  
dB  
dB  
[5]  
[5]  
[5]  
jammer modulation CW.  
Channel separation: 12.5  
60  
60  
kHz, 25 kHz, 62.5 kHz..  
6
Blocking  
Blocking  
Blocking  
Blocking  
Blocking  
Blocking  
2 MHz  
75  
75  
80  
80  
80  
80  
78  
78  
85  
85  
85  
85  
dB  
dB  
dB  
dB  
dB  
dB  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
7
2 MHz (LBT)  
6 MHz  
8
9
10 MHz  
10  
11  
10 MHz (LBT)  
20 MHz  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
54 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 16. RX Characteristics - Wireless MBUS mode N  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
2GFSK modulation, h = 2.0, BT = 0.5, frequency deviation = 2.4 kHz, NRZ, data-rate = 2.4 kChips/s, Channel spacing =  
12.5kHz, Channel filter bandwidth = 12kHz, Frame Error Rate (FER) = 80%, payload length = 20 byte, crystal = 55.2 MHz.  
Tamb = 25 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 169.5MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO, VDD_RF, VDD_ADC, VDD_PA  
Nr.  
12  
13  
Description  
Conditions  
Min  
Typ  
11  
Max  
11.5  
11  
Unit  
mA  
mA  
Note  
[2]  
Current consumption  
Current consumption  
System clock to be used.  
System clock divided by 2 to  
be used.  
10  
[2]  
14  
Current consumption  
System clock divided by 4 to  
be used.  
9.5  
10.5  
mA  
[2]  
Table 17. RX Characteristics - Wireless MBUS mode F  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
2FSK modulation, frequency deviation = 5.5 kHz, NRZ, data-rate = 2.4 kChips/s, Channel spacing = 50kHz, Channel filter  
bandwidth = 24 kHz, Frame Error Rate (FER) = 80%, payload length = 20 byte, crystal = 55.2 MHz.  
Tamb = 25 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 434 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO, VDD_RF, VDD_ADC, VDD_PA  
Nr.  
1
Description  
Conditions  
Min  
Typ  
-117  
2
Max  
-114  
5
Unit  
dBm  
dB  
Note  
[2]  
Sensitivity  
-40 °C to 85 °C  
2
Co-channel rejection  
GFSK jammer - same  
modulation as wanted.  
[5]  
3
4
Co-channel rejection  
CW jammer  
2
5
dB  
dB  
[5]  
[5]  
Adjacent channel rejection  
Channel filter BW = 24 kHz, 65  
jammer same modulation as  
wanted. Channel separation:  
870 kHz  
70  
5
Adjacent channel rejection  
Channel filter BW = 24 kHz, 65  
jammer modulation CW.  
Channel separation: 870  
kHz  
70  
dB  
[5]  
6
Blocking  
2 MHz  
70  
70  
75  
75  
80  
80  
75  
75  
80  
80  
85  
85  
11  
dB  
dB  
dB  
dB  
dB  
dB  
mA  
mA  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[2]  
[2]  
7
Blocking  
2 MHz (LBT)  
6 MHz  
8
Blocking  
9
Blocking  
10 MHz  
10  
11  
12  
13  
Blocking  
10 MHz (LBT)  
20 MHz  
Blocking  
Current consumption  
Current consumption  
System clock to be used.  
12  
System clock divided by 2 to  
be used.  
10.5  
11.5  
14  
Current consumption  
System clock divided by 4 to  
be used.  
10  
11  
mA  
[2]  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
55 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 18. RX Characteristics - Zigbee 868  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
2GFSK modulation, h = 0.7, BT = 0.5, frequency deviation = 35 kHz, NRZ, data-rate = 100 kChips/s, Channel spacing = 200  
kHz, Channel filter bandwidth = 200 kHz, Frame Error Rate (FER) = 80%, payload length = 20 byte crystal = 55.2 MHz.  
Tamb = 25 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 434 MHz,  
VDD = VDD_IO, VDD_DIG, VDD_XO, VDD_RF, VDD_ADC, VDD_PA  
Nr.  
1
Description  
Conditions  
Min  
Typ  
-104  
8
Max  
-100  
12  
Unit  
dBm  
dB  
Note  
[2]  
Sensitivity  
-40 °C to 85 °C  
2
Co-channel rejection  
2GFSK jammer - same  
modulation as wanted.  
[5]  
3
4
Co-channel rejection  
CW jammer  
6
10  
dB  
dB  
dB  
dB  
[5]  
[5]  
[5]  
[5]  
Adjacent channel rejection  
Channel filter BW =  
25  
45  
50  
28  
50  
55  
200 kHz, jammer same  
modulation as wanted.  
Channel separation: 200  
kHz, 400 kHz, 1000 kHz  
4
Adjacent channel rejection  
Channel filter BW = 200 kHz, 40  
45  
50  
55  
dB  
dB  
dB  
[5]  
[5]  
[5]  
jammer modulation CW.  
Channel separation: 200  
45  
50  
kHz, 400 kHz, 1000 kHz  
6
Blocking  
2 MHz  
55  
55  
60  
60  
65  
65  
60  
60  
65  
65  
70  
70  
14  
13.5  
dB  
dB  
dB  
dB  
dB  
dB  
mA  
mA  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[2]  
[2]  
7
Blocking  
2 MHz (LBT)  
6 MHz  
8
Blocking  
9
Blocking  
10 MHz  
10  
11  
12  
13  
Blocking  
10 MHz (LBT)  
20 MHz  
Blocking  
Current consumption  
Current consumption  
System clock to be used.  
15  
System clock divided by 2 to  
be used.  
14.5  
14  
Current consumption  
System clock divided by 4 to  
be used.  
13  
13.5  
mA  
[2]  
Table 19. RX Characteristics - SigFox  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
2GFSK modulation, h = 2.67, BT = 1.0, NRZ, data-rate = 0.6 kChips/s, Channel spacing = 10 kHz, Channel filter bandwidth =  
10 kHz, Frame Error Rate (FER) = 20%, payload length = 228 byte, crystal = 55.2 MHz.  
Tamb = 25 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 870 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO, VDD_RF, VDD_ADC, VDD_PA  
Nr.  
1
Description  
Conditions  
Min  
Typ  
-124  
2
Max  
-119  
5
Unit  
dBm  
dB  
Note  
[2]  
Sensitivity  
-40 °C to 85 °C  
2
Co-channel rejection  
2GFSK jammer - same  
modulation as wanted.  
[5)  
3
4
Co-channel rejection  
CW jammer  
2
5
dB  
dB  
dB  
dB  
[5]  
[5]  
[5]  
[5]  
Adjacent channel rejection  
Channel filter BW = 10 kHz, 50  
jammer same modulation as  
wanted. Channel separation:  
10 kHz, 20 kHz, 150 kHz.  
55  
60  
65  
55  
60  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
56 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 19. RX Characteristics - SigFox  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
2GFSK modulation, h = 2.67, BT = 1.0, NRZ, data-rate = 0.6 kChips/s, Channel spacing = 10 kHz, Channel filter bandwidth =  
10 kHz, Frame Error Rate (FER) = 20%, payload length = 228 byte, crystal = 55.2 MHz.  
Tamb = 25 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 870 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO, VDD_RF, VDD_ADC, VDD_PA  
Nr.  
Description  
Conditions  
Min  
Typ  
55  
Max  
Unit  
dB  
Note  
[5]  
5
Adjacent channel rejection  
Channel filter BW = 10 kHz, 50  
jammer modulation CW.  
Channel separation: 10 kHz,  
20 kHz, 150 kHz.  
55  
60  
dB  
[5]  
60  
65  
dB  
[5]  
6
Blocking  
2 MHz  
70  
75  
80  
85  
85  
85  
75  
80  
85  
90  
90  
90  
13.5  
13  
dB  
dB  
dB  
dB  
dB  
dB  
mA  
mA  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[2]  
[2]  
7
Blocking  
2 MHz (LBT)  
6 MHz  
8
Blocking  
9
Blocking  
10 MHz  
10  
11  
12  
13  
Blocking  
10 MHz (LBT)  
20 MHz  
Blocking  
Current consumption  
Current consumption  
System clock to be used.  
14.5  
13.5  
System clock divided by 2 to  
be used.  
14  
Current consumption  
System clock divided by 4 to  
be used.  
12.5  
13  
mA  
[2]  
Table 20. RX Characteristics - Narrowband 400MHz application  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
2GFSK modulation, h = 0.5, BT = 0.5, NRZ, data-rate = 5 kChips/s, Channel spacing = 25kHz, Channel filter bandwidth =  
25kHz, Frame Error Rate (FER) = 20%, payload length = 28 byte, crystal = 55.2 MHz.  
Tamb = 25 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 423MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO, VDD_RF, VDD_ADC, VDD_PA  
Nr.  
1
Description  
Conditions  
Min  
Typ  
-116  
7
Max  
-110  
10  
Unit  
dBm  
dB  
Note  
[2]  
Sensitivity  
-40 °C to 85 °C  
2
Co-channel rejection  
2GFSK jammer - same  
modulation as wanted.  
[5]  
3
4
Co-channel rejection  
CW jammer  
2
8
dB  
dB  
dB  
dB  
[5]  
[5]  
[5]  
[5]  
Adjacent channel rejection  
Channel filter BW = 25 kHz, 50  
jammer same modulation as  
wanted. Channel separation:  
25 kHz, 50 kHz, 125 kHz  
55  
60  
65  
55  
60  
5
Adjacent channel rejection  
Channel filter BW = 25 kHz, 50  
55  
60  
65  
dB  
dB  
dB  
[5]  
[5]  
[5]  
jammer modulation CW.  
Channel separation: 25 kHz,  
55  
60  
50 kHz, 125 kHz  
6
Blocking  
Blocking  
Blocking  
Blocking  
Blocking  
2 MHz  
70  
70  
75  
80  
80  
75  
75  
80  
85  
85  
dB  
dB  
dB  
dB  
dB  
[5]  
[5]  
[5]  
[5]  
[5]  
7
2 MHz (LBT)  
6 MHz  
8
9
10 MHz  
10  
10 MHz (LBT)  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
57 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 20. RX Characteristics - Narrowband 400MHz application  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
2GFSK modulation, h = 0.5, BT = 0.5, NRZ, data-rate = 5 kChips/s, Channel spacing = 25kHz, Channel filter bandwidth =  
25kHz, Frame Error Rate (FER) = 20%, payload length = 28 byte, crystal = 55.2 MHz.  
Tamb = 25 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 423MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO, VDD_RF, VDD_ADC, VDD_PA  
Nr.  
11  
Description  
Conditions  
Min  
Typ  
85  
Max  
Unit  
dB  
Note  
[5]  
Blocking  
20 MHz  
80  
12  
13  
Current consumption  
Current consumption  
System clock to be used.  
14.5  
13.5  
15.5  
14.5  
mA  
mA  
[2]  
System clock divided by 2 to  
be used.  
[2]  
14  
Current consumption  
System clock divided by 4 to  
be used.  
13  
14  
mA  
[2]  
Table 21. RX Characteristics - Narrowband 400MHz application  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
4GFSK modulation, h = 0.5, BT = 0.5, NRZ, data-rate = 10 kChips/s, Channel spacing = 25kHz, Channel filter bandwidth =  
25kHz, Frame Error Rate (FER) = 20%, payload length = 28 byte, crystal = 55.2 MHz.  
Tamb = 25 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 423MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO, VDD_RF, VDD_ADC, VDD_PA  
Nr.  
1
Description  
Conditions  
Min  
Typ  
-115  
6
Max  
-110  
10  
Unit  
dBm  
dB  
Note  
[2]  
Sensitivity  
-40 °C to 85 °C  
2
Co-channel rejection  
2GFSK jammer - same  
modulation as wanted.  
[5]  
3
4
Co-channel rejection  
CW jammer  
8
12  
dB  
dB  
dB  
dB  
[5]  
[5]  
[5]  
[5]  
Adjacent channel rejection  
Channel filter BW = 25 kHz, 50  
jammer same modulation as  
wanted. Channel separation:  
25 kHz, 50 kHz, 125 kHz  
55  
60  
65  
55  
60  
5
Adjacent channel rejection  
Channel filter BW = 25 kHz, 50  
55  
60  
65  
dB  
dB  
dB  
[5]  
[5]  
[5]  
jammer modulation CW.  
Channel separation: 25 kHz,  
55  
60  
50 kHz, 125 kHz  
6
Blocking  
2 MHz  
70  
70  
75  
80  
80  
80  
75  
dB  
dB  
dB  
dB  
dB  
dB  
mA  
mA  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[2]  
[2]  
7
Blocking  
2 MHz (LBT)  
6 MHz  
75  
8
Blocking  
80  
9
Blocking  
10 MHz  
85  
10  
11  
12  
13  
Blocking  
10 MHz (LBT)  
20 MHz  
85  
Blocking  
85  
Current consumption  
Current consumption  
System clock to be used.  
14.5  
13.5  
15.5  
14.5  
System clock divided by 2 to  
be used.  
14  
Current consumption  
System clock divided by 4 to  
be used.  
13  
14  
mA  
[2]  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
58 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 22. RX Characteristics - Narrowband 400MHz application  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
8GFSK modulation, h = 0.5, BT = 0.5, NRZ, data-rate = 15 kChips/s, Channel spacing = 50kHz, Channel filter bandwidth =  
50kHz, Frame Error Rate (FER) = 20%, payload length = 28 byte, crystal = 55.2 MHz.  
Tamb = 25 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 423MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO, VDD_RF, VDD_ADC, VDD_PA  
Nr.  
1
Description  
Conditions  
Min  
Typ  
-113  
6
Max  
-108  
10  
Unit  
dBm  
dB  
Note  
[2]  
Sensitivity  
-40 °C to 85 °C  
2
Co-channel rejection  
2GFSK jammer - same  
modulation as wanted.  
[5]  
3
4
Co-channel rejection  
CW jammer  
8
12  
dB  
dB  
dB  
dB  
[5]  
[5]  
[5]  
[5]  
Adjacent channel rejection  
Channel filter BW = 50 kHz, 50  
jammer same modulation as  
wanted. Channel separation:  
50 kHz, 100 kHz, 250 kHz  
55  
60  
65  
55  
60  
5
Adjacent channel rejection  
Channel filter BW = 50 kHz, 50  
55  
60  
65  
dB  
dB  
dB  
[5]  
[5]  
[5]  
jammer modulation CW.  
Channel separation: 50 kHz,  
55  
60  
100 kHz, 250 kHz  
6
Blocking  
2 MHz  
65  
65  
70  
75  
75  
75  
70  
dB  
dB  
dB  
dB  
dB  
dB  
mA  
mA  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[2]  
[2]  
7
Blocking  
2 MHz (LBT)  
6 MHz  
70  
8
Blocking  
75  
9
Blocking  
10 MHz  
80  
10  
11  
12  
13  
Blocking  
10 MHz (LBT)  
20 MHz  
80  
Blocking  
80  
Current consumption  
Current consumption  
System clock to be used.  
13.5  
13.5  
15  
System clock divided by 2 to  
be used.  
14.5  
14  
Current consumption  
System clock divided by 4 to  
be used.  
13  
14  
mA  
[2]  
Table 23. TX Characteristics  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 870 MHz, crystal = 55.2 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO_VDD_RF, VDD_ADC, VDD_PA  
Nr.  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Note  
1
Analog start-up time from XTAL From crystal LDO regulator  
250  
us  
[2]  
on to TX ready  
active to TX ready;  
NDK XTAL NX3225SA  
2
3
4
Maximum output power, CW  
mode, L-front matching  
13  
14.  
-28  
dBm  
dBm  
[2]  
[2]  
Minimum output power, CW  
mode, L-front matching  
-22  
Variation of maximum output  
power over temperature, CW  
mode, L-front matching  
3.0 V  
dB  
dB  
dB  
-40 °C to 25 °C  
25 °C to 85 °C  
0.3  
0.3  
1.0  
1.0  
[2]  
[2]  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
59 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 23. TX Characteristics  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 870 MHz, crystal = 55.2 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO_VDD_RF, VDD_ADC, VDD_PA  
Nr.  
Description  
Conditions  
Min  
Typ  
0.1  
0.8  
Max  
0.5  
Unit  
Note  
5
Variation of maximum output  
power over supply voltage, CW  
mode, L-front matching  
25 °C 2.5V to 3.6V  
25 °C 1.9 V to 3.6 V  
3.0  
dB  
[2]  
6
7
PA output power steps,  
0.25  
-40  
0.5  
-36  
dB  
[2]  
[2]  
2nd harmonic, at maximum  
output power  
Conducted measurement at  
50 Ohm  
dBm  
8
9
3rd harmonic, at maximum  
output power  
Conducted measurement at  
50 Ohm  
-60  
-80  
-50  
-70  
dBm  
dBm  
[2]  
[2]  
Spurious emission, at maximum Conducted measurement at  
output power  
50 Ohm reference, 47 MHz  
to 230 MHz and 470 MHz to  
862 MHz  
10  
11  
Spurious emission, at maximum Conducted measurement at  
-73  
-73  
-65  
-53  
dBm  
dBm  
[2]  
[2]  
output power  
50 Ohm  
Other frequencies below  
1 GHz  
Spurious emission, at maximum Conducted measurement at  
output power  
50 Ohm  
1 GHz to 12.5 GHz  
868 MHz band  
12  
13  
14  
15  
16  
Out of band TX noise at 12.5  
kHz offsets, CW mode  
-100  
-102  
-105  
-125  
-58  
-90  
dBc/Hz [2]  
dBc/Hz [2]  
dBc/Hz [2]  
dBc/Hz [2]  
Out of band TX noise at 25 kHz 868 MHz band  
offsets, CW mode  
-95  
Out of band TX noise at  
100 kHz offset, CW mode  
868 MHz band  
-100  
-120  
Out of band TX noise at 1 MHz 868 MHz band  
offset, CW mode  
Adjacent channel power  
Adjacent channel power  
Adjacent channel power  
Adjacent channel power  
GFSK, BT = 0.5, h = 1,  
dBc  
dBc  
dBc  
dBc  
[2]  
[2]  
[2]  
[2]  
channel spacing = 12.5 kHz,  
symbol rate = 3 kBaud,  
modulation with PN9  
sequence  
17  
18  
19  
GFSK, BT = 0.5, h = 1,  
channel spacing = 25 kHz,  
symbol rate = 6 kBaud,  
modulation with PN9  
sequence  
-56  
-56  
-60  
GFSK, BT = 0.5, h = 1,  
channel spacing = 50 kHz,  
symbol rate = 6 kBaud,  
modulation with PN9  
sequence  
GFSK, BT = 0.5, h = 1,  
channel spacing = 300 kHz,  
symbol rate = 6 kBaud,  
modulation with PN9  
sequence  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
60 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 23. TX Characteristics  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 870 MHz, crystal = 55.2 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO_VDD_RF, VDD_ADC, VDD_PA  
Nr.  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Note  
20  
99.5 % occupied bandwidth  
GFSK, BT = 0.5,  
5
6
kHz  
[2]  
Manchester data rate =  
1.2 kbit/s, frequency  
deviation = ±2.0 kHz  
21  
22  
23  
99.5 % occupied bandwidth  
99.5 % occupied bandwidth  
99.5 % occupied bandwidth  
GFSK, BT = 0.5,  
8
12  
kHz  
kHz  
kHz  
[2]  
[2]  
[2]  
Manchester data rate =  
2.4 kbit/s, frequency  
deviation = ±2.4 kHz  
GFSK, BT = 0.5,  
15  
155  
20  
Manchester data rate =  
4.8 kbit/s, frequency  
deviation = ±4.8 kHz  
GFSK, BT = 0.5,  
170  
33  
Manchester data rate =  
50 kbit/s, frequency  
deviation = ±50 kHz  
24  
25  
TX supply current at maximum System clock divided by 2 to  
output power  
30  
mA  
mA  
[2]  
[2]  
be used.  
EROM execution  
Variation over Temperature of  
System clock divided by 2 to  
0.5  
TX Supply Current at maximum be used.  
Output Power 14 dBm  
EROM execution;  
26  
Variation over Voltage of TX  
Supply Current at maximum  
Output Power 14 dBm (1.9 V -  
3.6 V)  
System clock divided by 2 to  
be used.  
EROM execution;  
3.0  
mA  
[2]  
27  
28  
29  
30  
31  
32  
Out of band tx noise @ 200kHz Application: zigbee Band:  
-112  
-118  
-127  
-138  
-104  
-115  
-108  
-113  
-125  
-135  
-99  
dBc/Hz [2]  
dBc/Hz [2]  
dBc/Hz [2]  
dBc/Hz [2]  
dBc/Hz [2]  
dBc/Hz [2]  
870MHz using channel filter  
= 10kHz  
Out of band tx noise @ 400kHz Application: zigbee Band:  
870MHz using channel filter  
= 10kHz  
Out of band tx noise @ 100kHz Application: zigbee Band:  
870MHz using channel filter  
= 10kHz  
Out of band tx noise @  
10000kHz  
Application: zigbee Band:  
870MHz using channel filter  
= 10kHz  
Out of band tx noise @ 60kHz  
Application: wmbus Band:  
870 using channel filter =  
10kHz  
Out of band tx noise @ 360kHz Application: wmbus Band:  
-112  
870 using channel filter =  
10kHz  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
61 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 23. TX Characteristics  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 870 MHz, crystal = 55.2 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO_VDD_RF, VDD_ADC, VDD_PA  
Nr.  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Note  
33  
Out of band tx noise @ 6000kHz Application: wmbus Band:  
-130  
-125  
dBc/Hz [2]  
870 using channel filter =  
10kHz  
34  
35  
36  
Out of band tx noise @  
10000kHz  
Application: wmbus Band:  
870 using channel filter =  
10kHz  
-135  
-60  
4
-130  
dBc/Hz [2]  
ADJACENT CHANNEL  
POWER, 870 MHz band,  
SigFox :  
2GFSK, h=2.67, BT=1.0,  
Channel spacing 10kHz,  
0.6kChip/s  
dBc  
kHz  
[2]  
[2]  
Occupied bandwidth, 870 MHz 2GFSK, h=2.67, BT=1.0,  
5
band, SigFox  
Channel spacing 10kHz,  
0.6kChip/s  
Table 24. TX Characteristics  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 169MHz, crystal = 55.2 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO_VDD_RF, VDD_ADC, VDD_PA  
Nr.  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Note  
1
Analog start-up time from XTAL From crystal LDO regulator  
250  
us  
[2]  
on to TX ready  
active to TX ready;  
NDK XTAL NX3225SA  
2
3
4
Maximum output power, CW  
mode, L-front matching  
13  
14.  
-31  
dBm  
dBm  
[2]  
[2]  
Minimum output power, CW  
mode, L-front matching  
-22  
Variation of maximum output  
power over temperature, CW  
mode, L-front matching  
3.0 V  
dB  
dB  
dB  
-40 °C to 25 °C  
25 °C to 85 °C  
25 °C 2.5V to 3.6V  
25 °C 1.9 V to 3.6 V  
0.3  
0.3  
0.1  
0.8  
1.0  
1.0  
0.5  
3.0  
[2]  
[2]  
5
Variation of maximum output  
power over supply voltage, CW  
mode, L-front matching  
dB  
[2]  
6
7
PA output power steps,  
0.25  
-51  
0.5  
-36  
dB  
[2]  
[2]  
2nd harmonic, at maximum  
output power  
Conducted measurement at  
50 Ohm  
dBm  
8
9
3rd harmonic, at maximum  
output power  
Conducted measurement at  
50 Ohm  
-65  
-80  
-30  
-74  
dBm  
dBm  
[2]  
[2]  
Spurious emission, at maximum Conducted measurement at  
output power  
50 Ohm reference, 47 MHz  
to 230 MHz and 470 MHz to  
862 MHz  
10  
Spurious emission, at maximum Conducted measurement at  
-78  
-70  
dBm  
[2]  
output power  
50 Ohm  
Other frequencies below  
1 GHz  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
62 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 24. TX Characteristics  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 169MHz, crystal = 55.2 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO_VDD_RF, VDD_ADC, VDD_PA  
Nr.  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Note  
11  
Spurious emission, at maximum Conducted measurement at  
-78  
-70  
dBm  
[2]  
output power  
50 Ohm  
1 GHz to 12.5 GHz  
169 MHz band  
12  
13  
14  
15  
16  
Out of band TX noise at 12.5  
kHz offsets, CW mode  
-114  
-114  
-118  
-135  
-70  
-105  
-105  
-110  
-125  
dBc/Hz [2]  
dBc/Hz [2]  
dBc/Hz [2]  
dBc/Hz [2]  
Out of band TX noise at 25 kHz 169 MHz band  
offsets, CW mode  
Out of band TX noise at  
100 kHz offset, CW mode  
169 MHz band  
Out of band TX noise at 1 MHz 169 MHz band  
offset, CW mode  
Adjacent channel power  
Adjacent channel power  
Adjacent channel power  
Adjacent channel power  
GFSK, BT = 0.5, h = 1,  
dBc  
dBc  
dBc  
dBc  
[2]  
[2]  
[2]  
[2]  
channel spacing = 12.5 kHz,  
symbol rate = 3 kBaud,  
modulation with PN9  
sequence  
17  
18  
19  
GFSK, BT = 0.5, h = 1,  
channel spacing = 25 kHz,  
symbol rate = 6 kBaud,  
modulation with PN9  
sequence  
-65  
-70  
-68  
GFSK, BT = 0.5, h = 1,  
channel spacing = 50 kHz,  
symbol rate = 6 kBaud,  
modulation with PN9  
sequence  
GFSK, BT = 0.5, h = 1,  
channel spacing = 300 kHz,  
symbol rate = 6 kBaud,  
modulation with PN9  
sequence  
20  
21  
22  
23  
99.5 % occupied bandwidth  
99.5 % occupied bandwidth  
99.5 % occupied bandwidth  
99.5 % occupied bandwidth  
GFSK, BT = 0.5,  
3.8  
5.3  
10  
5
kHz  
kHz  
kHz  
kHz  
[2]  
[2]  
[2]  
[2]  
Manchester data rate =  
1.2 kbit/s, frequency  
deviation = ±2.0 kHz  
GFSK, BT = 0.5,  
8
Manchester data rate =  
2.4 kbit/s, frequency  
deviation = ±2.4 kHz  
GFSK, BT = 0.5,  
15  
120  
Manchester data rate =  
4.8 kbit/s, frequency  
deviation = ±4.8 kHz  
GFSK, BT = 0.5,  
100  
Manchester data rate =  
50 kbit/s, frequency  
deviation = ±50 kHz  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
63 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 24. TX Characteristics  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 169MHz, crystal = 55.2 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO_VDD_RF, VDD_ADC, VDD_PA  
Nr.  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Note  
24  
TX supply current at maximum System clock divided by 2 to  
32  
40  
mA  
[2]  
output power  
be used.  
EROM execution  
25  
26  
Variation over Temperature of  
TX Supply Current at maximum be used.  
Output Power 14 dBm  
System clock divided by 2 to  
0.5  
3.0  
mA  
mA  
[2]  
[2]  
EROM execution;  
Variation over Voltage of TX  
Supply Current at maximum  
Output Power 14 dBm (1.9 V -  
3.6 V)  
System clock divided by 2 to  
be used.  
EROM execution;  
27  
28  
29  
30  
31  
Out of band tx noise @ 12.5kHz Application: wmbus Band:  
-115  
-115  
-115  
-136  
-64  
-103  
-110  
-110  
-131  
dBc/Hz [2]  
dBc/Hz [2]  
dBc/Hz [2]  
dBc/Hz [2]  
170MHz using channel filter  
= 10kHz  
Out of band tx noise @ 37.5kHz Application: wmbus Band:  
170MHz using channel filter  
= 10kHz  
Out of band tx noise @ 50kHz  
Application: wmbus Band:  
170MHz using channel filter  
= 10kHz  
Out of band tx noise @ 4500kHz Application: wmbus Band:  
170MHz using channel filter  
= 10kHz  
ADJACENT CHANNEL  
POWER, 169 MHz band,  
2GFSK, h=2.0, BT=0.5,  
Channel spacing 12.5kHz,  
dBc  
kHz  
[2]  
[2]  
Wireless MBus - Mode N, 15.4g freq. dev. 2.4kHz, NRZ,  
2.4kChip/s  
32  
Occupied bandwidth, 169 MHz 2GFSK, h=2.0, BT=0.5,  
band, Wireless MBus - Mode N, Channel spacing 12.5kHz,  
7.7  
9
15.4g  
freq. dev. 2.4kHz, NRZ,  
2.4kChip/s  
Table 25. TX Characteristics  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 413MHz, crystal = 55.2 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO_VDD_RF, VDD_ADC, VDD_PA  
Nr.  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Note  
1
Analog start-up time from XTAL From crystal LDO regulator  
250  
us  
[2]  
on to TX ready  
active to TX ready;  
NDK XTAL NX3225SA  
2
3
Maximum output power, CW  
mode, L-front matching  
13  
14.  
-30  
dBm  
dBm  
[2]  
[2]  
Minimum output power, CW  
mode, L-front matching  
-22  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
64 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 25. TX Characteristics  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 413MHz, crystal = 55.2 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO_VDD_RF, VDD_ADC, VDD_PA  
Nr.  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
dB  
Note  
4
Variation of maximum output  
power over temperature, CW  
mode, L-front matching  
3.0 V  
-40 °C to 25 °C  
25 °C to 85 °C  
25 °C 2.5V to 3.6V  
25 °C 1.9 V to 3.6 V  
0.3  
0.3  
0.1  
0.8  
1.0  
1.0  
0.5  
3.0  
dB  
[2]  
[2]  
dB  
5
Variation of maximum output  
power over supply voltage, CW  
mode, L-front matching  
dB  
[2]  
6
7
PA output power steps,  
0.25  
-55  
0.5  
-50  
dB  
[2]  
[2]  
2nd harmonic, at maximum  
output power  
Conducted measurement at  
50 Ohm  
dBm  
8
9
3rd harmonic, at maximum  
output power  
Conducted measurement at  
50 Ohm  
-45  
-80  
-40  
-70  
dBm  
dBm  
[2]  
[2]  
Spurious emission, at maximum Conducted measurement at  
output power  
50 Ohm reference, 47 MHz  
to 230 MHz and 470 MHz to  
862 MHz  
10  
11  
Spurious emission, at maximum Conducted measurement at  
-70  
-78  
-60  
-60  
dBm  
dBm  
[2]  
[2]  
output power  
50 Ohm  
Other frequencies below  
1 GHz  
Spurious emission, at maximum Conducted measurement at  
output power  
50 Ohm  
1 GHz to 12.5 GHz  
169 MHz band  
12  
13  
14  
15  
16  
Out of band TX noise at 12.5  
kHz offsets, CW mode  
-110  
-110  
-113  
-130  
-66  
-100  
-100  
-105  
-125  
dBc/Hz [2]  
dBc/Hz [2]  
dBc/Hz [2]  
dBc/Hz [2]  
Out of band TX noise at 25 kHz 169 MHz band  
offsets, CW mode  
Out of band TX noise at  
100 kHz offset, CW mode  
169 MHz band  
Out of band TX noise at 1 MHz 169 MHz band  
offset, CW mode  
Adjacent channel power  
Adjacent channel power  
Adjacent channel power  
GFSK, BT = 0.5, h = 1,  
dBc  
dBc  
dBc  
[2]  
[2]  
[2]  
channel spacing = 12.5 kHz,  
symbol rate = 3 kBaud,  
modulation with PN9  
sequence  
17  
18  
GFSK, BT = 0.5, h = 1,  
channel spacing = 25 kHz,  
symbol rate = 6 kBaud,  
modulation with PN9  
sequence  
-65  
-63  
GFSK, BT = 0.5, h = 1,  
channel spacing = 50 kHz,  
symbol rate = 6 kBaud,  
modulation with PN9  
sequence  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
65 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 25. TX Characteristics  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 413MHz, crystal = 55.2 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO_VDD_RF, VDD_ADC, VDD_PA  
Nr.  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Note  
19  
Adjacent channel power  
GFSK, BT = 0.5, h = 1,  
channel spacing = 300 kHz,  
symbol rate = 6 kBaud,  
modulation with PN9  
sequence  
-60  
dBc  
[2]  
20  
21  
22  
23  
99.5 % occupied bandwidth  
99.5 % occupied bandwidth  
99.5 % occupied bandwidth  
99.5 % occupied bandwidth  
GFSK, BT = 0.5,  
5.3  
7.8  
15  
8
kHz  
kHz  
kHz  
kHz  
[2]  
[2]  
[2]  
[2]  
Manchester data rate =  
1.2 kbit/s, frequency  
deviation = ±2.0 kHz  
GFSK, BT = 0.5,  
9
Manchester data rate =  
2.4 kbit/s, frequency  
deviation = ±2.4 kHz  
GFSK, BT = 0.5,  
18  
180  
38  
Manchester data rate =  
4.8 kbit/s, frequency  
deviation = ±4.8 kHz  
GFSK, BT = 0.5,  
154  
Manchester data rate =  
50 kbit/s, frequency  
deviation = ±50 kHz  
24  
25  
TX supply current at maximum System clock divided by 2 to  
output power  
33  
mA  
mA  
[2]  
[2]  
be used.  
EROM execution  
Variation over Temperature of  
System clock divided by 2 to  
0.5  
TX Supply Current at maximum be used.  
Output Power 14 dBm  
EROM execution;  
26  
Variation over Voltage of TX  
Supply Current at maximum  
Output Power 14 dBm (1.9 V -  
3.6 V)  
System clock divided by 2 to  
be used.  
EROM execution;  
3.0  
mA  
[2]  
27  
28  
29  
29  
Out of band tx noise @ 12.5kHz Application: sensus Band:  
-110  
-110  
-116  
-135  
-100  
-100  
-110  
-128  
dBc/Hz [2]  
dBc/Hz [2]  
dBc/Hz [2]  
dBc/Hz [2]  
413MHz using channel filter  
= 10kHz  
Out of band tx noise @ 25kHz  
Application: sensus Band:  
413MHz using channel filter  
= 10kHz  
Out of band tx noise @ 100kHz Application: sensus Band:  
413MHz using channel filter  
= 10kHz  
Out of band tx noise @ 2000kHz Application: sensus Band:  
413MHz using channel filter  
= 10kHz  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
66 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 25. TX Characteristics  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 413MHz, crystal = 55.2 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO_VDD_RF, VDD_ADC, VDD_PA  
Nr.  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Note  
30  
Out of band tx noise @  
10000kHz  
Application: sensus Band:  
413MHz using channel filter  
= 10kHz  
-140  
-132  
dBc/Hz [2]  
31  
32  
ADJACENT CHANNEL  
POWER, 412 MHz band,  
Sensus  
4GFSK, h=0.5, BT=0.5,  
Channel spacing 25kHz,  
5kChip/s  
-65  
dBc  
kHz  
[2]  
[2]  
Occupied bandwidth, 412 MHz 4GFSK, h=0.5, BT=0.5,  
11.3  
13  
band, Sensus  
Channel spacing 25kHz,  
5kChip/s  
Table 26. TX Characteristics  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 434MHz, crystal = 55.2 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO_VDD_RF, VDD_ADC, VDD_PA  
Nr.  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Note  
1
Analog start-up time from XTAL From crystal LDO regulator  
250  
us  
[2]  
on to TX ready  
active to TX ready;  
NDK XTAL NX3225SA  
2
3
4
Maximum output power, CW  
mode, L-front matching  
12.5  
14  
dBm  
dBm  
[2]  
[2]  
Minimum output power, CW  
mode, L-front matching  
-31  
-25  
Variation of maximum output  
power over temperature, CW  
mode, L-front matching  
3.0 V  
dB  
dB  
dB  
-40 °C to 25 °C  
25 °C to 85 °C  
25 °C 2.5V to 3.6V  
25 °C 1.9 V to 3.6 V  
0.3  
0.3  
0.1  
0.8  
1.5  
1.2  
0.5  
3.0  
[2]  
[2]  
5
Variation of maximum output  
power over supply voltage, CW  
mode, L-front matching  
dB  
[2]  
6
7
PA output power steps,  
0.25  
-51  
0.5  
-36  
dB  
[2]  
[2]  
2nd harmonic, at maximum  
output power  
Conducted measurement at  
50 Ohm  
dBm  
8
9
3rd harmonic, at maximum  
output power  
Conducted measurement at  
50 Ohm  
-47  
-75  
-30  
-65  
dBm  
dBm  
[2]  
[2]  
Spurious emission, at maximum Conducted measurement at  
output power  
50 Ohm reference, 47 MHz  
to 230 MHz and 470 MHz to  
862 MHz  
10  
11  
Spurious emission, at maximum Conducted measurement at  
-75  
-75  
-55  
-53  
dBm  
dBm  
[2]  
[2]  
output power  
50 Ohm  
Other frequencies below  
1 GHz  
Spurious emission, at maximum Conducted measurement at  
output power  
50 Ohm  
1 GHz to 12.5 GHz  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
67 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 26. TX Characteristics  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 434MHz, crystal = 55.2 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO_VDD_RF, VDD_ADC, VDD_PA  
Nr.  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Note  
12  
Out of band TX noise at 12.5  
kHz offsets, CW mode  
434 MHz band  
-110  
-98  
dBc/Hz [2]  
dBc/Hz [2]  
dBc/Hz [2]  
dBc/Hz [2]  
13  
14  
15  
16  
Out of band TX noise at 25 kHz 434 MHz band  
offsets, CW mode  
-110  
-114  
-130  
-66  
-98  
Out of band TX noise at  
100 kHz offset, CW mode  
434 MHz band  
-100  
-125  
Out of band TX noise at 1 MHz 434 MHz band  
offset, CW mode  
Adjacent channel power  
Adjacent channel power  
Adjacent channel power  
Adjacent channel power  
GFSK, BT = 0.5, h = 1,  
dBc  
dBc  
dBc  
dBc  
[2]  
[2]  
[2]  
[2]  
channel spacing = 12.5 kHz,  
symbol rate = 3 kBaud,  
modulation with PN9  
sequence  
17  
18  
19  
GFSK, BT = 0.5, h = 1,  
channel spacing = 25 kHz,  
symbol rate = 6 kBaud,  
modulation with PN9  
sequence  
-54  
-64  
-60  
GFSK, BT = 0.5, h = 1,  
channel spacing = 50 kHz,  
symbol rate = 6 kBaud,  
modulation with PN9  
sequence  
GFSK, BT = 0.5, h = 1,  
channel spacing = 300 kHz,  
symbol rate = 6 kBaud,  
modulation with PN9  
sequence  
20  
21  
22  
23  
24  
99.5 % occupied bandwidth  
99.5 % occupied bandwidth  
99.5 % occupied bandwidth  
99.5 % occupied bandwidth  
GFSK, BT = 0.5,  
5.3  
7.8  
12.5  
154  
30  
7
kHz  
kHz  
kHz  
kHz  
mA  
[2]  
[2]  
[2]  
[2]  
[2]  
Manchester data rate =  
1.2 kbit/s, frequency  
deviation = ±2.0 kHz  
GFSK, BT = 0.5,  
9
Manchester data rate =  
2.4 kbit/s, frequency  
deviation = ±2.4 kHz  
GFSK, BT = 0.5,  
18  
180  
36  
Manchester data rate =  
4.8 kbit/s, frequency  
deviation = ±4.8 kHz  
GFSK, BT = 0.5,  
Manchester data rate =  
50 kbit/s, frequency  
deviation = ±50 kHz  
TX supply current at maximum System clock divided by 2 to  
output power  
be used.  
EROM execution  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
68 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 26. TX Characteristics  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 434MHz, crystal = 55.2 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO_VDD_RF, VDD_ADC, VDD_PA  
Nr.  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Note  
25  
Variation over Temperature of  
System clock divided by 2 to  
0.5  
mA  
[2]  
TX Supply Current at maximum be used.  
Output Power 14 dBm  
EROM execution;  
26  
Variation over Voltage of TX  
Supply Current at maximum  
Output Power 14 dBm (1.9 V -  
3.6 V)  
System clock divided by 2 to  
be used.  
EROM execution;  
3.0  
mA  
[2]  
27  
28  
29  
29  
31  
32  
Out of band tx noise @ 12.5kHz Application: wmbus Band:  
-110  
-112  
-112  
-135  
-50  
-100  
-102  
-102  
-130  
dBc/Hz [2]  
dBc/Hz [2]  
dBc/Hz [2]  
dBc/Hz [2]  
434MHz using channel filter  
= 10kHz  
Out of band tx noise @ 37.5kHz Application: wmbus Band:  
434MHz using channel filter  
= 10kHz  
Out of band tx noise @ 50kHz  
Application: wmbus Band:  
434MHz using channel filter  
= 10kHz  
Out of band tx noise @ 4500kHz Application: wmbus Band:  
434MHz using channel filter  
= 10kHz  
ADJACENT CHANNEL  
POWER, 434 MHz band,  
Wireless MBus - Mode F  
4GFSK, h=0.5, BT=0.5,  
Channel spacing 25kHz,  
5kChip/s  
dBc  
kHz  
[2]  
[2]  
Occupied bandwidth, 434 MHz 4GFSK, h=0.5, BT=0.5,  
band, Wireless MBus - Mode F Channel spacing 25kHz,  
5kChip/s  
20  
22  
Table 27. Characteristics for TRX switch  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 434 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO_VDD_RF, VDD_ADC, VDD_PA  
Nr.  
Description  
Conditions  
Min  
Typ  
27  
Max  
Unit  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Note  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
1
TRX switch isolation from  
TRXSWITCH_TX to  
TRXSWITCH_ANT  
169 MHz band  
315 MHz band  
434 MHz band  
868 MHz band  
925 MHz band  
169 MHz band  
315 MHz band  
434 MHz band  
868 MHz band  
925 MHz band  
23  
20  
16  
16  
2
TRX switch loss from  
TRXSWITCH_TX to  
TRXSWITCH_ANT  
0.3  
0.3  
0.3  
0.5  
0.5  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
69 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 27. Characteristics for TRX switch  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD = 2.5 V to 3.6 V, fC = 434 MHz  
VDD = VDD_IO, VDD_DIG, VDD_XO_VDD_RF, VDD_ADC, VDD_PA  
Nr.  
Description  
Conditions  
Min  
Typ  
27  
Max  
Unit  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Note  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
3
TRX switch isolation from  
TRXSWITCH_RX to  
TRXSWITCH_ANT  
169 MHz band  
315 MHz band  
434 MHz band  
868 MHz band  
925 MHz band  
169 MHz band  
315 MHz band  
434 MHz band  
868 MHz band  
925 MHz band  
24  
22  
18  
18  
4
TRX switch loss from  
TRXSWITCH_RX to  
TRXSWITCH_ANT  
0.4  
0.4  
0.4  
0.6  
0.6  
Table 28. Characteristics for ESD  
Nr.  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
1
ESD HBM - RF pins[1]  
Electrostatic Discharge  
(Human Body Model)  
1500 Ω, 100 pF  
2
kV  
2
3
ESD HBM - non RF pins[1]  
Electrostatic Discharge  
(Human Body Model)  
1500 Ω, 100 pF  
2
kV  
V
ESD CDM[2]  
All pins  
500  
Electrostatic Discharge  
(Charged Device Model)  
[1] JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control  
process.  
[2] JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control  
process.  
Table 29. Static Characteristics I/O Ports  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD_IO = 1.9 V to 3.6 V and 4.5 V to 5.5 V  
Nr.  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Note  
1
High level input voltage  
0.7 ×  
VDD_IO  
VDD_IO +  
0.3  
V
[1]  
2
3
Low Level input voltage  
Input hysteresis voltage  
–0.3  
0.3 ×  
VDD_IO  
V
V
[1]  
[4]  
0.1 ×  
VDD_IO  
4
5
6
Output high current  
Output low current  
Output high current  
At VOH = VDD_IO - 0.4 V  
At VOL = 0.4 V  
1
1
2
mA  
mA  
mA  
[1]  
[1]  
[2]  
VDD_IO > 2.7 V;  
At VOH = 0.8 × VDD_IO  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
70 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 29. Static Characteristics I/O Ports  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
Tamb = -40 °C to 85 °C, VSS = 0 V, VDD_IO = 1.9 V to 3.6 V and 4.5 V to 5.5 V  
Nr.  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Note  
7
Output low current  
VDD_IO > 2.7 V;  
2
mA  
[2]  
At VOL = 0.2 × VDD_IO  
Voltage at port pin = 0 V  
8
9
Pull-up resistor  
50  
50  
70  
70  
110  
110  
kOhm [1]  
kOhm [1]  
Pull-down resistor  
Voltage at port pin = VDD_  
IO  
Table 30. Dynamic Characteristics I/O Ports  
Following characteristics are valid for conditions as follows (unless otherwise specified)  
amb = -40 °C to 85 °C, VSS = 0 V, VDD_IO = VDD_IO = 2.5 V to 3.6 V and 4.5 V to 5.5 V  
T
Nr.  
Description  
Conditions  
50 pF load  
50 pF load  
50 pF load  
20 pF load  
Min  
6
Typ  
Max  
35  
35  
5
Unit  
ns  
Note  
1
2
3
4
5
Output rise time  
Output fall time  
Bandwidth 50  
Bandwidth 20  
Bandwidth 20  
[4]  
[4]  
[4]  
[4]  
[4]  
6
ns  
MHz  
MHz  
MHz  
10  
5
20 pF load,  
VDD_IO = 1.9 V to 2.5 V  
Table 31. SPI / UART  
Nr.  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Note  
1
SPI operation speed  
Master Mode  
CPU_CLK_SEL = 1 or 2;  
System clock to be used.  
50  
1.0M  
baud  
[4]  
2
3
SPI operation speed  
Slave Mode  
CPU_CLK_SEL = 1 or 2;  
System clock to be used.  
50  
50  
1.0M  
1.7M  
baud  
baud  
[4]  
[4]  
UART operation speed  
CPU_CLK_SEL = 1 or 2;  
System clock to be used.  
Table 32. Application relevant limits  
Nr.  
1
Description  
Conditions  
Min  
Typ  
Max  
Unit  
V
Note  
[1]  
Power-on reset level  
1.5  
2
Maximum current in pin TXOUT Maximum 10 % PA  
using 12 dBm PA activation over 10 years  
40  
3.5  
50  
mA  
[4]  
3
4
Maximum current in pin TXOUT Maximum 10 % PA  
mA  
mA  
[4]  
[1]  
using 0 dBm PA  
activation over 10 years  
Maximum current that can be  
provided by the internal 5 V  
regulator; available at VDD_  
3VOUT  
5
6
Maximum external load  
capacitance[1] connected at  
VDD_3VOUT  
168  
nF  
[4]  
[4]  
Frequency of external reference  
crystal connected to XTAL_N  
and XTAL_P  
27.6  
MHz  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
71 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Table 32. Application relevant limits  
Nr.  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Note  
7
Frequency of external reference  
clock connected to XTAL_N  
27.6  
MHz  
[4]  
8
Frequency of external reference Second Crystal frequency  
55.2  
55.2  
MHz  
[4]  
crystal connected to XTAL_N  
and XTAL_P  
selected.  
9
Frequency of external reference Second Crystal frequency  
MHz  
V
[4]  
[4]  
[4]  
[4]  
clock connected to XTAL_N  
selected.  
10  
11  
12  
External clock input voltage  
level at XTAL_N  
LDO_XO_OK = 1  
0
1.5  
External clock input signal  
amplitude at XTAL_N  
LDO_XO_OK = 1  
LDO_XO_OK = 0  
0.6  
-0.1  
Vpp  
V
Input voltage level at XTAL_N  
when XO LDO is disabled or not  
ready  
0.1  
55  
13  
Duty cycle of external clock  
input signal XTAL_N[2]  
45  
%
[4]  
[1] All tolerances of the external capacitors must be taken into account when calculating the maximum allowed  
external load capacitance.  
[2] As the external clock input signal requires a DC offset the average value of the external clock signal shall  
be used as reference level to determine the duty cycle.  
Notes:  
[1] Tested in production test  
[2] Characterized at 1.9V, 2.5 V, 3 V, 3.6 V; -40 °C, 25 °C, 85 °C  
[3] Characterized at 3 V; -40 °C, 25 °C, 85 °C  
[4] Guaranteed by design  
[5] Characterized at 3 V; -40 °C, 25 °C, 85 °C, limited sample size  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
72 of 428  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
11. Mechanical information  
11.1 Package outline  
HVQFN48: plastic thermal enhanced very thin quad flat package; no leads;  
48 terminals; body 7 x 7 x 0.85 mm  
SOT619-13  
D
B
A
terminal 1  
index area  
A
A
1
C
E
detail X  
e
1
C
e
v
w
C
C
A
B
b
y
y
1/2 e  
C
1
13  
24  
L
25  
12  
e
e
E
h
2
1/2 e  
1
36  
terminal 1  
index area  
48  
37  
X
D
h
0
2.5  
5 mm  
scale  
Dimensions (mm are the original dimensions)  
(1) (1)  
Unit  
A
A
b
C
D
D
h
E
E
h
e
e
1
e
L
v
w
y
y
1
1
2
max 1.00 0.05 0.30  
7.1 5.65 7.1 5.65  
0.5  
mm nom 0.85 0.02 0.21 0.2 7.0 5.50 7.0 5.50 0.5 5.5 5.5 0.4 0.1 0.05 0.05 0.1  
0.80 0.00 0.18 6.9 5.35 6.9 5.35 0.3  
min  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included  
sot619-13_po  
Issue date  
References  
Outline  
version  
European  
projection  
IEC  
- - -  
JEDEC  
JEITA  
- - -  
09-08-24  
13-03-27  
SOT619-13  
MO-220  
Fig 17. Package outline HVQFN48  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
73 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
Fig 18. Package detail wettable flanks  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
74 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
12. Glossary  
AAC — Automatic Amplitude Calibration  
AAFC — Automatic Amplitude and Frequency Calibration  
AC — Alternating Current  
ADC — Analogue to Digital Converter  
AFC — Automatic Frequency Calibration  
AGC — Automatic Gain Control  
API — Application Programming Interface  
ASK — Amplitude Shift Keying  
BF — Bit Field  
BW — BandWidth  
BWC — BandWidth Control  
CDR — Clock and Data Recovery  
CP — Charge Pump  
CW — Continuous Wave  
DAC — Digital to Analogue Converter  
DC — Direct Current  
DMA — Direct Memory Access  
ESD — ElectroStatic Discharge  
FER — Frame Error Rate  
FSK — Frequency Shift Keying  
FSM — Finite State Machine  
FSYNC — Frame SYNChronisation  
HAL — Hardware Abstraction Layer  
HBM — Human Body Model  
IF — Intermediate Frequency  
IREC — Intelligent Radio Evaluation and Configuration  
ISM — Industrial, Scientific and Medical  
ISR — Interrupt Service Routine  
LDO — Low Drop-Out regulator  
LIN — Local Interconnect Network  
LNA — Low Noise Amplifier  
LO — Local Oscillator  
LPF — Low-Pass Filter  
MMR — Missed Message Rate  
MMU — Memory Management Unit  
NC — Not Connected  
NRZ — Non Return to Zero  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
75 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
OFMU — Offset Frequency Measurement Unit  
OOK — On-Off Keying  
PA — Power Amplifier  
PFD — Phase-Frequency Detector  
PLL — Phase Locked Loop  
POR — Power-On-Reset  
POK — Power OK  
PRN — Pseudo-Random Number  
PRNG — Pseudo-Random Number Generator  
RF — Radio Frequency  
RFU — Reserved for Future Use  
RSSI — Received Signal Strength Indicator  
RX — Receiver  
SD — Sigma-Delta  
SFR — Special Function Register  
SPI — Serial Peripheral Interface  
TIA — Trans-Impedance Amplifier  
TX — Transmitter  
UART — Universal Asynchronous Receiver and Transmitter  
UHF — Ultra High Frequency  
PLL — Phase Locked Loop  
VCO — Voltage Controlled Oscillator  
WUP — Wake-UP  
ZIF — Zero Intermediate Frequency  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
76 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
13. References  
[1] MRK III Programmers Reference — MRK III and MRK IIIe instruction set,  
Rev. 04 — 04 Jul 2012  
[2] Application note AN10365 — Surface mount reflow soldering,  
Rev. 7 — 18 April 2013  
[3] MRK III MDI — Monitor and Download Interface,  
Rev. 09 — 23 June 2014  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
77 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
14. Revision history  
Table 33. Revision history  
Document ID  
OL2385_1.0  
Modifications:  
Release date  
Data sheet status  
Change notice  
Supersedes  
15 June 2016  
Product data sheet  
Initial product data sheet - COMPANY PUBLIC  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
78 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
15. Legal information  
15. Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use  
15.1 Definitions  
NXP Semiconductors products are not designed, authorized or warranted to  
be suitable for use in life support, life-critical or safety-critical systems or  
equipment, nor in applications where failure or malfunction of an NXP  
Semiconductors product can reasonably be expected to result in personal  
injury, death or severe property or environmental damage. NXP  
Semiconductors and its suppliers accept no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications  
Applications that are described herein for any of these products are for  
illustrative purposes only. NXP Semiconductors makes no representation or  
warranty that such applications will be suitable for the specified use without  
further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
15.2 Disclaimers  
Limited warranty and liability  
Information in this document is believed to be accurate and reliable. However,  
NXP Semiconductors does not give any representations or warranties,  
expressed or implied, as to the accuracy or completeness of such information  
and shall have no liability for the consequences of use of such information.  
NXP Semiconductors takes no responsibility for the content in this document  
if provided by an information source outside of NXP Semiconductors.  
Limiting values  
Stress above one or more limiting values (as defined in the Absolute  
Maximum Ratings System of IEC 60134) will cause permanent damage to the  
device. Limiting values are stress ratings only and (proper) operation of the  
device at these or any other conditions above those given in the  
Recommended operating conditions section (if present) or the Characteristics  
sections of this document is not warranted. Constant or repeated exposure to  
limiting values will permanently and irreversibly affect the quality and  
reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Terms and conditions of commercial sale  
NXP Semiconductors products are sold subject to the general terms and  
conditions of commercial sale, as published at  
http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written  
individual agreement. In case an individual agreement is concluded only the  
terms and conditions of the respective agreement shall apply. NXP  
Semiconductors hereby expressly objects to applying the customer’s general  
terms and conditions with regard to the purchase of NXP Semiconductors  
products by customer.  
Right to make changes  
NXP Semiconductors reserves the right to make changes to information  
published in this document, including without limitation specifications and  
product descriptions, at any time and without notice. This document  
supersedes and replaces all information supplied prior to the publication  
hereof.  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
79 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
No offer to sell or license  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Nothing in this document may be interpreted or construed as an offer to sell  
products that is open for acceptance or the grant, conveyance or implication  
of any license under any copyrights, patents or other industrial or intellectual  
property rights.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
Non-automotive qualified products  
Unless this data sheet expressly states that this specific NXP  
Semiconductors product is automotive qualified, the product is not suitable for  
automotive use. It is neither qualified nor tested in accordance with  
automotive testing or application requirements. NXP Semiconductors accepts  
no liability for inclusion and/or use of non-automotive qualified products in  
automotive equipment or applications.  
Translations  
A non-English (translated) version of a document is for reference only. The  
English version shall prevail in case of any discrepancy between the  
translated and English versions.  
15.3 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
80 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
16. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
81 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
17. Figures  
Fig 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Fig 2. Pinout HVQFN48. . . . . . . . . . . . . . . . . . . . . . . . . .8  
Fig 3. Pin 1 keep out area . . . . . . . . . . . . . . . . . . . . . . . .9  
Fig 4. Connection of external power supply domains for  
different power supply use cases. . . . . . . . . . . . .14  
Fig 5. Power supply state diagram. . . . . . . . . . . . . . . . .16  
Fig 6. Local Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Fig 7. Radio transmitter system. . . . . . . . . . . . . . . . . . .18  
Fig 8. Transmit receive switch . . . . . . . . . . . . . . . . . . . .19  
Fig 9. UHF receiver subsystem . . . . . . . . . . . . . . . . . . .20  
Fig 10. Digital receiver block diagram . . . . . . . . . . . . . . .22  
Fig 11. Digital receiver front-end . . . . . . . . . . . . . . . . . . .23  
Fig 12. AGC block diagram . . . . . . . . . . . . . . . . . . . . . . .24  
Fig 13. Attenuation Distribution . . . . . . . . . . . . . . . . . . . .25  
Fig 14. RX chain/channel block diagram . . . . . . . . . . . . .26  
Fig 15. Clock distribution overview . . . . . . . . . . . . . . . . .29  
Fig 16. External temperature sensor measurement. . . . .41  
Fig 17. Package outline HVQFN48 . . . . . . . . . . . . . . . . .73  
Fig 18. Package detail wettable flanks. . . . . . . . . . . . . . .74  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
82 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
18. Tables  
Table 1. Quick reference data . . . . . . . . . . . . . . . . . . . . .4  
Table 2. Ordering information . . . . . . . . . . . . . . . . . . . . .5  
Table 3. Marking information . . . . . . . . . . . . . . . . . . . . . .6  
Table 4. Pinning description . . . . . . . . . . . . . . . . . . . . . . .9  
Table 5. External power supply domains . . . . . . . . . . . .12  
Table 6. Limiting values . . . . . . . . . . . . . . . . . . . . . . . . .45  
Table 7. Recommended operating conditions . . . . . . . .45  
Table 8. RX Characteristics - General . . . . . . . . . . . . . .46  
Table 9. RX Characteristics - manchester receiver . . . .47  
Table 10. RX Characteristics - Wireless MBUS mode S .50  
Table 11. RX Characteristics - Wireless MBUS mode T1  
(meter to other device) . . . . . . . . . . . . . . . . . . .51  
Table 12. RX Characteristics - Wireless MBUS mode T2  
(meter to other device) . . . . . . . . . . . . . . . . . . .51  
Table 13. RX Characteristics - Wireless MBUS mode R2  
channelised system (meter to other device). . .52  
Table 14. RX Characteristics - Wireless MBUS mode C1 53  
Table 15. RX Characteristics - Wireless MBUS mode C2 53  
Table 16. RX Characteristics - Wireless MBUS mode N .54  
Table 17. RX Characteristics - Wireless MBUS mode F .55  
Table 18. RX Characteristics - Zigbee 868. . . . . . . . . . . .56  
Table 19. RX Characteristics - SigFox . . . . . . . . . . . . . . .56  
Table 20. RX Characteristics - Narrowband 400MHz  
application . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Table 21. RX Characteristics - Narrowband 400MHz  
application . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Table 22. RX Characteristics - Narrowband 400MHz  
application . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Table 23. TX Characteristics . . . . . . . . . . . . . . . . . . . . . .59  
Table 24. TX Characteristics . . . . . . . . . . . . . . . . . . . . . .62  
Table 25. TX Characteristics . . . . . . . . . . . . . . . . . . . . . .64  
Table 26. TX Characteristics . . . . . . . . . . . . . . . . . . . . . .67  
Table 27. Characteristics for TRX switch . . . . . . . . . . . . .69  
Table 28. Characteristics for ESD . . . . . . . . . . . . . . . . . .70  
Table 29. Static Characteristics I/O Ports. . . . . . . . . . . . .70  
Table 30. Dynamic Characteristics I/O Ports. . . . . . . . . .71  
Table 31. SPI / UART . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Table 32. Application relevant limits . . . . . . . . . . . . . . . . .71  
Table 33. Revision history . . . . . . . . . . . . . . . . . . . . . . . .78  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
83 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
19. Contents  
1
General information. . . . . . . . . . . . . . . . . . . . . . 1  
9.5.12.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
9.6  
Micro-controller subsystem . . . . . . . . . . . . . . 28  
RISC controller. . . . . . . . . . . . . . . . . . . . . . . . 28  
System clock . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Clock sources . . . . . . . . . . . . . . . . . . . . . . . . 29  
Direct Memory Access. . . . . . . . . . . . . . . . . . 30  
Interrupt system . . . . . . . . . . . . . . . . . . . . . . . 31  
I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Timer/Counter 0, 2 . . . . . . . . . . . . . . . . . . . . . 33  
Timer/Counter 1 . . . . . . . . . . . . . . . . . . . . . . . 34  
Timer 3 and RX chain timers . . . . . . . . . . . . . 35  
Polling and wake-up timer . . . . . . . . . . . . . . . 36  
Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . 37  
USART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
1.1  
2
General description . . . . . . . . . . . . . . . . . . . . . 1  
Features and benefits . . . . . . . . . . . . . . . . . . . . 2  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 4  
Ordering information. . . . . . . . . . . . . . . . . . . . . 5  
Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
9.6.1  
9.6.2  
9.6.2.1  
9.6.3  
9.6.4  
9.6.5  
9.6.6  
9.6.7  
9.6.8  
9.6.9  
9.6.10  
9.6.11  
3
4
5
6
7
8
Pinning information. . . . . . . . . . . . . . . . . . . . . . 8  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pin 1 keep out area . . . . . . . . . . . . . . . . . . . . . 8  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 9  
8.1  
8.1.1  
8.2  
9
9.1  
9.2  
9.2.1  
9.2.2  
9.2.3  
Design information . . . . . . . . . . . . . . . . . . . . . 11  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Power management . . . . . . . . . . . . . . . . . . . . 12  
Modes of operation. . . . . . . . . . . . . . . . . . . . . 12  
External power supply domains . . . . . . . . . . . 12  
Recommended external capacitors in the supply  
domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power supply states . . . . . . . . . . . . . . . . . . . . 15  
Local oscillator . . . . . . . . . . . . . . . . . . . . . . . . 17  
UHF transmitter subsystem . . . . . . . . . . . . . . 18  
General description . . . . . . . . . . . . . . . . . . . . 18  
TRX switch . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
UHF receiver subsystem . . . . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Antenna switch . . . . . . . . . . . . . . . . . . . . . . . . 20  
LNA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Attenuators . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Mixer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Baseband amplifier (TIA) and DC offset  
9.6.11.1 Features: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
9.6.12 Registers for mathematical- logical operations 39  
9.6.12.1 CRC register . . . . . . . . . . . . . . . . . . . . . . . . . 39  
9.6.12.2 CRC32 register . . . . . . . . . . . . . . . . . . . . . . . 39  
9.6.13  
9.6.14  
Analog-to-digital converter (ADC) . . . . . . . . . 40  
Temperature measurement . . . . . . . . . . . . . . 41  
9.6.14.1 External temperature measurement . . . . . . . 41  
9.7  
9.2.4  
9.3  
9.4  
Device modes . . . . . . . . . . . . . . . . . . . . . . . . 42  
INIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
PROTECTED. . . . . . . . . . . . . . . . . . . . . . . . . 42  
TAMPERED . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
VIRGIN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
System routines . . . . . . . . . . . . . . . . . . . . . . . 44  
Boot routine . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Monitor and download interface. . . . . . . . . . . 44  
Hardware abstraction layer . . . . . . . . . . . . . . 44  
9.7.1  
9.7.2  
9.7.3  
9.7.4  
9.8  
9.8.1  
9.8.2  
9.8.3  
9.4.1  
9.4.2  
9.4.2.1  
9.5  
9.5.1  
9.5.2  
9.5.3  
9.5.4  
9.5.5  
9.5.6  
10  
Characterization information . . . . . . . . . . . . . 45  
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 45  
Recommended operating conditions . . . . . . . 45  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 46  
10.1  
10.2  
10.3  
compensation . . . . . . . . . . . . . . . . . . . . . . . . . 21  
SD ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Digital receiver block diagram. . . . . . . . . . . . . 22  
Digital IF preprocessing . . . . . . . . . . . . . . . . . 23  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . 23  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Automatic gain control . . . . . . . . . . . . . . . . . . 24  
11  
11.1  
12  
Mechanical information . . . . . . . . . . . . . . . . . 73  
Package outline . . . . . . . . . . . . . . . . . . . . . . . 73  
Glossary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 78  
9.5.7  
9.5.8  
9.5.9  
9.5.9.1  
9.5.9.2  
9.5.9.3  
9.5.10  
13  
14  
15  
15  
15.1  
15.2  
15.3  
Legal information . . . . . . . . . . . . . . . . . . . . . . 79  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 79  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
9.5.10.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
9.5.10.2 Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . 24  
9.5.10.3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
9.5.11  
Narrow band receive chain. . . . . . . . . . . . . . . 26  
16  
17  
Contact information . . . . . . . . . . . . . . . . . . . . 81  
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
9.5.11.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
9.5.12  
Data processing . . . . . . . . . . . . . . . . . . . . . . . 27  
continued >>  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
OL2385  
Product data sheet  
COMPANY PUBLIC  
Rev. 1.0 — 15 June 2016  
84 of 85  
OL2385  
NXP Semiconductors  
Industrial RF transceiver  
18  
19  
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP Semiconductors N.V. 2016.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 15 June 2016  
Document identifier:  

相关型号:

935357853557

Multifunction Peripheral
NXP

935357856557

Multifunction Peripheral
NXP

935357861557

Multifunction Peripheral
NXP

935357862557

Multifunction Peripheral
NXP

935357864518

Multifunction Peripheral
NXP

935357872557

Multifunction Peripheral
NXP

935357873557

Multifunction Peripheral
NXP

935358561557

RISC Microcontroller
NXP

935358699557

RISC Microcontroller
NXP

935359392551

RISC Microcontroller
NXP

935359418557

Multifunction Peripheral
NXP

93535P1

5A Tape Wound Current Transformers
NUVOTEM TALEM