935363184528 [NXP]

Wide Band Low Power Amplifier;
935363184528
型号: 935363184528
厂家: NXP    NXP
描述:

Wide Band Low Power Amplifier

射频 微波
文件: 总19页 (文件大小:541K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: A2I09VD015N  
Rev. 0, 06/2018  
NXP Semiconductors  
Technical Data  
RF LDMOS Wideband Integrated  
Power Amplifiers  
A2I09VD015NR1  
A2I09VD015GNR1  
The A2I09VD015N wideband integrated circuit is designed with on--chip  
matching that makes it usable from 575 to 960 MHz. This multi--stage  
structure is rated for 48 to 55 V operation and covers all typical cellular base  
station modulation formats.  
575–960 MHz, 2 W AVG., 48 V  
AIRFAST RF LDMOS WIDEBAND  
INTEGRATED POWER AMPLIFIERS  
900 MHz  
Typical Single--Carrier W--CDMA Characterization Performance:  
DD = 48 Vdc, IDQ1(A+B) = 16 mA, IDQ2(A+B) = 84 mA, Pout = 2 W Avg., Input  
Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.(1)  
V
G
PAE  
(%)  
ACPR  
(dBc)  
ps  
Frequency  
920 MHz  
940 MHz  
960 MHz  
(dB)  
32.9  
33.0  
32.8  
19.3  
19.7  
19.6  
–45.9  
–45.5  
–44.9  
TO--270WB--15  
PLASTIC  
A2I09VD015NR1  
Features  
On--chip matching (50 ohm input, DC blocked)  
Integrated quiescent current temperature compensation with  
enable/disable function (2)  
TO--270WBG--15  
PLASTIC  
A2I09VD015GNR1  
Designed for digital predistortion error correction systems  
Optimized for Doherty applications  
V
DS1A  
V
V
1
2
DS1A  
GS2A  
RF  
RF /V  
out1 DS2A  
inA  
15  
V
3
GS1A  
RF  
4
RF /V  
out1 DS2A  
inA  
N.C.  
N.C.  
N.C.  
N.C.  
5
V
V
GS1A  
GS2A  
Quiescent Current  
Temperature Compensation  
6
14  
13  
N.C.  
RF /V  
(2)  
(2)  
7
8
V
V
RF  
9
GS1B  
GS2B  
inB  
GS1B  
GS2B  
Quiescent Current  
Temperature Compensation  
out2 DS2B  
V
V
V
10  
11  
12  
DS1B  
RF  
inB  
RF /V  
out2 DS2B  
(Top View)  
Note: Exposed backside of the package is  
the source terminal for the transistor.  
V
DS1B  
Figure 1. Functional Block Diagram  
Figure 2. Pin Connections  
1. All data measured in fixture with device soldered to heatsink.  
2. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current  
Control for the RF Integrated Circuit Device Family. Go to http://www.nxp.com/RF and search for AN1977 or AN1987.  
2018 NXP B.V.  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
–0.5, +105  
–0.5, +10  
55, +0  
Unit  
Vdc  
Vdc  
Vdc  
C  
Drain--Source Voltage  
V
DSS  
Gate--Source Voltage  
V
GS  
DD  
Operating Voltage  
V
Storage Temperature Range  
Case Operating Temperature Range  
T
stg  
–65 to +150  
–40 to +150  
–40 to +225  
20  
T
C
C  
(1,2)  
Operating Junction Temperature Range  
Input Power  
T
J
C  
P
dBm  
in  
Table 2. Thermal Characteristics  
(2,3)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
R
C/W  
JC  
Case Temperature 74C, 2 W, 940 MHz  
Stage 1, 48 Vdc, I  
Stage 2, 48 Vdc, I  
16 mA  
78 mA  
7.2  
3.1  
DQ1(A+B)  
DQ2(A+B)  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
1B  
Human Body Model (per JS--001--2017)  
Charge Device Model (per JS--002--2014)  
C0B  
Table 4. Moisture Sensitivity Level  
Test Methodology  
Rating  
Package Peak Temperature  
Unit  
Per JESD22--A113, IPC/JEDEC J--STD--020  
3
260  
C  
1. Continuous use at maximum temperature will affect MTTF.  
2. MTTF calculator available at http://www.nxp.com/RF/calculators.  
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.  
A2I09VD015NR1 A2I09VD015GNR1  
RF Device Data  
NXP Semiconductors  
2
Table 5. Electrical Characteristics (T = 25C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(1)  
Stage 1 -- Off Characteristics  
Zero Gate Voltage Drain Leakage Current  
I
I
10  
1
Adc  
Adc  
Adc  
DSS  
DSS  
GSS  
(V = 105 Vdc, V = 0 Vdc)  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 55 Vdc, V = 0 Vdc)  
DS  
GS  
Gate--Source Leakage Current  
(V = 1.2 Vdc, V = 0 Vdc)  
I
1
GS  
DS  
Stage 1 -- On Characteristics  
(1)  
Gate Threshold Voltage  
V
V
1.3  
2.2  
4.4  
1.8  
2.4  
4.8  
2.3  
2.6  
5.2  
Vdc  
Vdc  
Vdc  
GS(th)  
GS(Q)  
GG(Q)  
(V = 10 Vdc, I = 1 Adc)  
DS  
D
Gate Quiescent Voltage  
(V = 48 Vdc, I  
= 16 mAdc)  
DQ1(A+B)  
DS  
Fixture Gate Quiescent Voltage  
V
(V = 48 Vdc, I  
DD  
= 16 mAdc, Measured in Functional Test)  
DQ1(A+B)  
(1)  
Stage 2 -- Off Characteristics  
Zero Gate Voltage Drain Leakage Current  
(V = 105 Vdc, V = 0 Vdc)  
I
10  
1
Adc  
Adc  
Adc  
DSS  
DSS  
GSS  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 55 Vdc, V = 0 Vdc)  
I
DS  
GS  
Gate--Source Leakage Current  
(V = 1.2 Vdc, V = 0 Vdc)  
I
1
GS  
DS  
Stage 2 -- On Characteristics  
(1)  
Gate Threshold Voltage  
V
V
1.3  
2.0  
4.0  
0.1  
1.8  
2.2  
4.4  
0.3  
2.3  
2.4  
4.8  
0.5  
Vdc  
Vdc  
Vdc  
Vdc  
GS(th)  
GS(Q)  
GG(Q)  
DS(on)  
(V = 10 Vdc, I = 6 Adc)  
DS  
D
Gate Quiescent Voltage  
(V = 48 Vdc, I  
= 78 mAdc)  
DQ2(A+B)  
DS  
Fixture Gate Quiescent Voltage  
(V = 48 Vdc, I = 78 mAdc, Measured in Functional Test)  
V
DD  
DQ2(A+B)  
(1)  
Drain--Source On--Voltage  
(V = 10 Vdc, I = 60 mAdc)  
V
GS  
D
1. Each side of device measured separately.  
(continued)  
A2I09VD015NR1 A2I09VD015GNR1  
RF Device Data  
NXP Semiconductors  
3
Table 5. Electrical Characteristics (T = 25C unless otherwise noted) (continued)  
A
Characteristic  
Symbol  
Min  
Typ  
= 16 mA, I = 78 mA,  
DQ2(A+B)  
Max  
Unit  
(1,2)  
Functional Tests  
(In NXP Production Test Fixture, 50 ohm system) V = 48 Vdc, I  
DD  
DQ1(A+B)  
P
= 2 W Avg., f = 920 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.  
out  
ACPR measured in 3.84 MHz Channel Bandwidth @ 5 MHz Offset.  
Power Gain  
G
31.0  
18.0  
32.8  
18.8  
34.0  
dB  
%
ps  
Power Added Efficiency  
PAE  
ACPR  
Adjacent Channel Power Ratio  
–43.9  
18.5  
–41.0  
dBc  
W
P
@ 3 dB Compression Point, CW  
P3dB  
16.6  
out  
Load Mismatch (In NXP Production Test Fixture, 50 ohm system) I  
= 16 mA, I  
= 78 mA, f = 940 MHz  
DQ2(A+B)  
DQ1(A+B)  
VSWR 10:1 at 55 Vdc, 24 W CW Output Power  
(3 dB Input Overdrive from 19 W CW Rated Power)  
No Device Degradation  
(3)  
Typical Performance (In NXP Characterization Test Fixture, 50 ohm system) V = 48 Vdc, I  
= 16 mA, I  
= 78 mA,  
DD  
DQ1(A+B)  
DQ2(A+B)  
920–960 MHz Bandwidth  
P
P
@ 1 dB Compression Point, CW  
P1dB  
P3dB  
17.7  
18.5  
–9  
W
W
out  
out  
(4)  
@ 3 dB Compression Point  
AM/PM  
(Maximum value measured at the P3dB compression point across  
the 920–960 MHz frequency range.)  
VBW Resonance Point  
(IMD Third Order Intermodulation Inflection Point)  
VBW  
270  
MHz  
%
res  
(5)  
Quiescent Current Accuracy over Temperature  
I  
QT  
with 2 kGate Feed Resistors (--30 to 85C) Stage 1  
with 2 kGate Feed Resistors (--30 to 85C) Stage 2  
2.9  
3.2  
Gain Flatness in 40 MHz Bandwidth @ P = 2 W Avg.  
G
0.2  
dB  
out  
F
Gain Variation over Temperature  
G  
0.036  
dB/C  
(–30C to +85C)  
Output Power Variation over Temperature  
P1dB  
0.007  
dB/C  
(–30C to +85C)  
Table 6. Ordering Information  
Device  
Tape and Reel Information  
Package  
A2I09VD015NR1  
A2I09VD015GNR1  
TO--270WB--15  
R1 Suffix = 500 Units, 44 mm Tape Width, 13--inch Reel  
TO--270WBG--15  
1. Part internally input and output matched.  
2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull  
wing (GN) parts.  
3. All data measured in fixture with device soldered to heatsink.  
4. P3dB = P  
+ 7.0 dB where P  
is the average output power measured using an unclipped W--CDMA single--carrier input signal where  
avg  
avg  
output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.  
5. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current  
Control for the RF Integrated Circuit Device Family. Go to http://www.nxp.com/RF and search for AN1977 or AN1987.  
A2I09VD015NR1 A2I09VD015GNR1  
RF Device Data  
NXP Semiconductors  
4
V
DS2  
V
GS2  
A2I09VD015N  
C8  
V
DS1  
V
R1  
GS1  
C7  
R2  
C1  
C2  
C15  
C24  
C23  
C3  
Rev. 2  
C11  
C19  
C12  
Z1  
C17  
R7  
C25  
R8  
C21  
R5  
Z2  
R10  
R9  
C22  
C28  
R6  
C18  
C14  
C26  
C27  
C16  
C13  
C20  
C4  
C5  
C6  
C10  
R4  
C9  
V
GS3  
V
DS1  
R3  
GS4  
V
V
DS2  
Figure 3. A2I09VD015NR1 Production Test Circuit Component Layout  
Table 7. A2I09VD015NR1 Production Test Circuit Component Designations and Values  
Part  
Description  
Part Number  
C5750X7SA106M230KB  
C3225X7S1H106M250AB  
C0805C103K5RAC  
ATC600S470JT250XT  
CRCW08052K20JNEA  
C8A50Z4A  
Manufacturer  
TDK  
C1, C2, C3, C4, C5, C6, C7, C8, C9, C10  
10 F Chip Capacitor  
C11, C12, C13, C14  
10 F Chip Capacitor  
TDK  
C15, C16, C17, C18  
10 nF Chip Capacitor  
Kemet  
ATC  
C19, C20, C21, C22, C23, C24, C25, C26, C27, C28  
47 pF Chip Capacitor  
R1, R2, R3, R4  
2.2 k, 1/8 W Chip Resistor  
50 , 8 W Termination Chip Resistor  
50 , 20 W Termination Chip Resistor  
10 , 1/8 W Chip Resistor  
Vishay  
Anaren  
Anaren  
Vishay  
Anaren  
MTL  
R5  
R6  
C20A50Z4  
R7, R8, R9, R10  
Z1, Z2  
CRCW080510R0FKEA  
X3C09P1-03  
800--1000 MHz, 90, 3 dB Hybrid Coupler  
PCB  
Rogers RO4350B, 0.020, = 3.66  
r
A2I09VD015NR1 A2I09VD015GNR1  
RF Device Data  
NXP Semiconductors  
5
D99736  
V
DS2  
V
GS2  
A2I09VD015N  
V
DS1  
V
GS1  
R1  
C8  
C7  
R2  
C1  
C2  
C15  
C24  
C23  
C3  
Rev. 2  
C11  
C19  
C12  
Z1  
C17  
R7  
C25  
R8  
C21  
R5  
Q1  
Z2  
R10  
R9  
C22  
C28  
R6  
C18  
C14  
C26  
C27  
C16  
C13  
C20  
C4  
C5  
C6  
C10  
R4  
C9  
V
GS3  
V
DS1  
R3  
GS4  
V
V
DS2  
Note: All data measured in fixture with device soldered to heatsink. Production fixture does not include device  
soldered to heatsink.  
Figure 4. A2I09VD015NR1 Characterization Test Circuit Component Layout — 920–960 MHz  
Table 8. A2I09VD015NR1 Characterization Test Circuit Component Designations and Values — 920–960 MHz  
Part  
Description  
Part Number  
C5750X7SA106M230KB  
C3225X7S1H106M250AB  
C0805C103K5RAC  
ATC600S470JT250XT  
A2I09VD015N  
Manufacturer  
TDK  
C1, C2, C3, C4, C5, C6, C7, C8, C9, C10  
10 F Chip Capacitor  
C11, C12, C13, C14  
10 F Chip Capacitor  
TDK  
C15, C16, C17, C18  
10 nF Chip Capacitor  
Kemet  
ATC  
C19, C20, C21, C22, C23, C24, C25, C26, C27, C28  
47 pF Chip Capacitor  
Q1  
RF Power LDMOS Amplifier  
2.2 k, 1/8 W Chip Resistor  
50 , 8 W Termination Chip Resistor  
50 , 20 W Termination Chip Resistor  
10 , 1/8 W Chip Resistor  
NXP  
R1, R2, R3, R4  
CRCW08052K20JNEA  
C8A50Z4A  
Vishay  
Anaren  
Anaren  
Vishay  
Anaren  
MTL  
R5  
R6  
C20A50Z4  
R7, R8, R9, R10  
Z1, Z2  
CRCW080510R0FKEA  
X3C09P1-03  
800--1000 MHz, 90, 3 dB Hybrid Coupler  
PCB  
Rogers RO4350B, 0.020, = 3.66  
D99736  
r
A2I09VD015NR1 A2I09VD015GNR1  
RF Device Data  
NXP Semiconductors  
6
TYPICAL CHARACTERISTICS — 920–960 MHz  
20  
33.5  
D
V
= 48 Vdc, P = 2 W (Avg.)  
out  
DD  
33  
32.5  
32  
18  
I
= 16 mA  
= 84 mA  
DQ1(A+B)  
I
DQ2(A+B)  
16  
G
ps  
14  
31.5  
31  
12  
PARC  
–.3  
–43  
–44  
–45  
–46  
–47  
–48  
–.6  
30.5  
30  
ACPR  
–.9  
–1.2  
–1.5  
–1.8  
29.5  
29  
Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth  
Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF  
28.5  
820  
840  
860  
880  
900  
920  
940  
960  
980  
f, FREQUENCY (MHz)  
Figure 5. Single--Carrier Output Peak--to--Average Ratio Compression  
(PARC) Broadband Performance @ Pout = 2 Watts Avg.  
–15  
V
DD  
= 48 Vdc, P = 8 W (PEP), I  
= 16 mA  
out  
DQ1(A+B)  
I
= 84 mA  
DQ2(A+B)  
IM3--U  
IM3--L  
–30  
–45  
–60  
–75  
–90  
IM5--L  
IM5--U  
IM7--L  
IM7--U  
Two--Tone Measurements, (f1 + f2)/2 = Center Frequency of 940 MHz  
1
10  
100  
400  
TWO--TONE SPACING (MHz)  
Figure 6. Intermodulation Distortion Products  
versus Two--Tone Spacing  
32.9  
40  
35  
–30  
–33  
–36  
–39  
–42  
–45  
–48  
1
0
V
= 48 Vdc, I  
= 16 mA, I  
= 84 mA  
DD  
DQ1(A+B)  
DQ2(A+B)  
f = 940 MHz, Single--Carrier W--CDMA  
32.8  
32.7  
ACPR  
–1  
–2  
–3  
–4  
–5  
30  
25  
20  
15  
–1 dB = 2.3 W  
–2 dB = 3.1 W  
32.6  
32.5  
32.4  
32.3  
G
PARC  
ps  
D
–3 dB = 4.1 W  
3.84 MHz Channel Bandwidth  
Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF  
10  
1
2
3
4
5
6
P
, OUTPUT POWER (WATTS)  
out  
Figure 7. Output Peak--to--Average Ratio  
Compression (PARC) versus Output Power  
A2I09VD015NR1 A2I09VD015GNR1  
RF Device Data  
NXP Semiconductors  
7
TYPICAL CHARACTERISTICS — 920–960 MHz  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
35  
60  
50  
40  
30  
20  
10  
V
= 48 Vdc, I  
= 16 mA, I  
= 84 mA  
DD  
DQ1(A+B)  
DQ2(A+B)  
Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth  
Input Signal PAR = 9.9 dB @ 0.01%  
Probability on CCDF  
34  
33  
32  
31  
30  
29  
D
960 MHz  
940 MHz  
920 MHz  
G
ps  
920 MHz  
940 MHz 960 MHz  
ACPR  
960 MHz  
940 MHz  
920 MHz  
0
20  
1
10  
, OUTPUT POWER (WATTS) AVG.  
P
out  
Figure 8. Single--Carrier W--CDMA Power Gain, Drain  
Efficiency and ACPR versus Output Power  
36  
34  
32  
30  
28  
26  
24  
V
P
= 48 Vdc  
= 0 dBm  
DD  
in  
I
I
= 16 mA  
= 84 mA  
DQ1(A+B)  
DQ2(A+B)  
Gain  
750  
800  
850  
900  
950  
1000 1050  
1100 1150  
f, FREQUENCY (MHz)  
Figure 9. Broadband Frequency Response  
A2I09VD015NR1 A2I09VD015GNR1  
RF Device Data  
NXP Semiconductors  
8
Table 9. Load Pull Performance — Maximum Power Tuning  
V
= 48 Vdc, I  
= 8 mA, I = 39 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle  
DD  
DQ1  
DQ2  
Max Output Power  
P1dB  
(1)  
Z
AM/PM  
()  
f
Z
Z
in  
()  
load  
()  
D
source  
()  
(%)  
59.5  
59.6  
58.7  
Gain (dB)  
31.6  
(dBm)  
40.2  
(W)  
10  
(MHz)  
920  
940  
960  
51.0 – j3.11  
49.2 + j1.23  
50.9 + j2.55  
65.8 + j7.62  
35.3 + j33.2  
32.5 + j32.9  
29.7 + j32.1  
–2  
–3  
–4  
60.4 + j2.53  
54.2 + j0.33  
31.5  
40.2  
11  
31.3  
40.2  
10  
Max Output Power  
P3dB  
(2)  
Z
()  
AM/PM  
()  
f
Z
Z
()  
load  
D
source  
()  
in  
(%)  
62.1  
61.5  
61.1  
Gain (dB)  
29.6  
(dBm)  
41.1  
(W)  
13  
(MHz)  
920  
51.0 – j3.11  
66.2 + j7.48  
33.7 + j31.8  
31.3 + j31.1  
28.8 + j30.7  
–3  
–4  
–5  
940  
960  
49.2 + j1.23  
50.9 + j2.55  
60.0 + j2.49  
52.8 + j1.10  
29.5  
41.1  
13  
29.3  
41.0  
13  
(1) Load impedance for optimum P1dB power.  
(2) Load impedance for optimum P3dB power.  
Z
Z
Z
= Measured impedance presented to the input of the device at the package reference plane.  
= Impedance as measured from gate contact to ground.  
= Measured impedance presented to the output of the device at the package reference plane.  
source  
in  
load  
Note: Measurement made on a per side basis.  
Table 10. Load Pull Performance — Maximum Efficiency Tuning  
V
= 48 Vdc, I  
= 8 mA, I = 39 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle  
DD  
DQ1  
DQ2  
Max Drain Efficiency  
P1dB  
(1)  
Z
AM/PM  
()  
f
Z
Z
in  
()  
load  
()  
D
source  
()  
(%)  
70.0  
68.8  
67.5  
Gain (dB)  
33.7  
(dBm)  
38.5  
(W)  
7
(MHz)  
920  
940  
960  
51.0 – j3.11  
49.2 + j1.23  
50.9 + j2.55  
67.5 + j6.05  
18.5 + j45.3  
14.3 + j44.7  
18.0 + j40.8  
–4  
–5  
–4  
60.9 + j1.05  
54.3 + j0.28  
33.8  
37.5  
6
32.9  
38.8  
8
Max Drain Efficiency  
P3dB  
(2)  
Z
()  
AM/PM  
()  
f
Z
Z
()  
load  
D
source  
()  
in  
(%)  
71.1  
69.9  
69.4  
Gain (dB)  
31.7  
(dBm)  
39.4  
(W)  
9
(MHz)  
920  
51.0 – j3.11  
67.3 + j4.87  
18.5 + j45.7  
13.0 + j46.5  
18.3 + j40.8  
–3  
–4  
–2  
940  
960  
49.2 + j1.23  
50.9 + j2.55  
59.2 – j0.18  
53.5 – j0.45  
32.0  
38.1  
6
30.9  
39.8  
10  
(1) Load impedance for optimum P1dB efficiency.  
(2) Load impedance for optimum P3dB efficiency.  
Z
Z
Z
= Measured impedance presented to the input of the device at the package reference plane.  
= Impedance as measured from gate contact to ground.  
= Measured impedance presented to the output of the device at the package reference plane.  
source  
in  
load  
Note: Measurement made on a per side basis.  
Input Load Pull  
Tuner and Test  
Circuit  
Output Load Pull  
Tuner and Test  
Circuit  
Device  
Under  
Test  
Z
Z
in  
Z
load  
source  
A2I09VD015NR1 A2I09VD015GNR1  
RF Device Data  
NXP Semiconductors  
9
P1dB – TYPICAL LOAD PULL CONTOURS — 940 MHz  
55  
50  
45  
40  
35  
30  
25  
20  
15  
55  
39  
38.5  
39.5  
50  
45  
40  
35  
30  
25  
20  
15  
66  
38  
64  
68  
62  
E
E
40  
36  
60  
58  
56  
P
P
54  
40  
52  
37  
38  
38.5  
39.5  
39  
39  
5
10 15 20 25 30 35 40 45 50 55 60  
5
10 15 20 25 30 35 40 45 50 55 60  
REAL ()  
REAL ()  
Figure 10. P1dB Load Pull Output Power Contours (dBm)  
Figure 11. P1dB Load Pull Efficiency Contours (%)  
55  
55  
–2  
50  
50  
45  
40  
35  
30  
25  
20  
15  
–4  
E
30.5  
45  
40  
35  
30  
25  
20  
15  
E
34  
31  
31.5  
–10  
–8  
–6  
33.5  
32  
33  
32.5  
P
P
–4  
–4  
5
10 15 20 25 30 35 40 45 50 55 60  
5
10 15 20 25 30 35 40 45 50 55 60  
REAL ()  
REAL ()  
Figure 12. P1dB Load Pull Gain Contours (dB)  
Figure 13. P1dB Load Pull AM/PM Contours ()  
NOTE:  
P
E
= Maximum Output Power  
= Maximum Drain Efficiency  
Gain  
Drain Efficiency  
Linearity  
Output Power  
A2I09VD015NR1 A2I09VD015GNR1  
RF Device Data  
NXP Semiconductors  
10  
P3dB – TYPICAL LOAD PULL CONTOURS — 940 MHz  
55  
50  
45  
40  
35  
30  
25  
20  
15  
55  
39 39.5  
38.5  
40  
38  
50  
68  
66  
64  
E
E
40.5  
41  
62  
45  
40  
35  
30  
25  
20  
15  
37  
60  
58  
56  
54  
P
P
38  
39  
40.5  
40  
39.5  
40  
5
10 15 20 25 30 35 40 45 50 55 60  
5
10 15 20 25 30 35 40 45 50 55 60  
REAL ()  
REAL ()  
Figure 14. P3dB Load Pull Output Power Contours (dBm)  
Figure 15. P3dB Load Pull Efficiency Contours (%)  
55  
50  
55  
50  
45  
40  
35  
30  
25  
20  
15  
0
E
E
28.5  
45  
29  
32  
29.5  
40  
35  
30  
25  
20  
15  
–2  
–14  
30  
31.5  
–12  
–10  
–8  
31  
30.5  
–4  
P
P
–6  
5
10 15 20 25 30 35 40 45 50 55 60  
5
10 15 20 25 30 35 40 45 50 55 60  
REAL ()  
REAL ()  
Figure 16. P3dB Load Pull Gain Contours (dB)  
Figure 17. P3dB Load Pull AM/PM Contours ()  
NOTE:  
P
E
= Maximum Output Power  
= Maximum Drain Efficiency  
Gain  
Drain Efficiency  
Linearity  
Output Power  
A2I09VD015NR1 A2I09VD015GNR1  
RF Device Data  
NXP Semiconductors  
11  
PACKAGE DIMENSIONS  
A2I09VD015NR1 A2I09VD015GNR1  
RF Device Data  
NXP Semiconductors  
12  
A2I09VD015NR1 A2I09VD015GNR1  
RF Device Data  
NXP Semiconductors  
13  
A2I09VD015NR1 A2I09VD015GNR1  
RF Device Data  
NXP Semiconductors  
14  
A2I09VD015NR1 A2I09VD015GNR1  
RF Device Data  
NXP Semiconductors  
15  
A2I09VD015NR1 A2I09VD015GNR1  
RF Device Data  
NXP Semiconductors  
16  
A2I09VD015NR1 A2I09VD015GNR1  
RF Device Data  
NXP Semiconductors  
17  
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS  
Refer to the following resources to aid your design process.  
Application Notes  
AN1907: Solder Reflow Attach Method for High Power RF Devices in Over--Molded Plastic Packages  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family  
AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
Software  
Electromigration MTTF Calculator  
RF High Power Model  
.s2p File  
Development Tools  
Printed Circuit Boards  
To Download Resources Specific to a Given Part Number:  
1. Go to http://www.nxp.com/RF  
2. Search by part number  
3. Click part number link  
4. Choose the desired resource from the drop down menu  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
June 2018  
Initial release of data sheet  
A2I09VD015NR1 A2I09VD015GNR1  
RF Device Data  
NXP Semiconductors  
18  
Information in this document is provided solely to enable system and software  
implementers to use NXP products. There are no express or implied copyright licenses  
granted hereunder to design or fabricate any integrated circuits based on the information  
in this document. NXP reserves the right to make changes without further notice to any  
products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its  
products for any particular purpose, nor does NXP assume any liability arising out of the  
application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation consequential or incidental damages. “Typical” parameters  
that may be provided in NXP data sheets and/or specifications can and do vary in  
different applications, and actual performance may vary over time. All operating  
parameters, including “typicals,” must be validated for each customer application by  
customer’s technical experts. NXP does not convey any license under its patent rights  
nor the rights of others. NXP sells products pursuant to standard terms and conditions of  
sale, which can be found at the following address: nxp.com/SalesTermsandConditions.  
NXP, the NXP logo and Airfast are trademarks of NXP B.V. All other product or service  
names are the property of their respective owners.  
E 2018 NXP B.V.  
Document Number: A2I09VD015N  
Rev. 0, 06/2018  

相关型号:

935363292557

RISC Microcontroller
NXP

935363578557

Multifunction Peripheral
NXP

935363894557

Multifunction Peripheral
NXP

935363896557

Multifunction Peripheral
NXP

935363899125

Switching Controller
NXP

935363899147

Switching Controller
NXP

935368003128

RF Power Field-Effect Transistor
NXP

935368153574

Microcontroller
NXP

935368231518

RISC Microcontroller
NXP

935368334557

RISC Microcontroller
NXP

935368347528

Power Supply Management Circuit
NXP

935368518551

RISC Microcontroller
NXP