935377783557 [NXP]

Multifunction Peripheral;
935377783557
型号: 935377783557
厂家: NXP    NXP
描述:

Multifunction Peripheral

文件: 总100页 (文件大小:1832K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: IMX8MDQLQCEC  
Rev. 1.1, 07/2019  
NXP Semiconductors  
Data Sheet: Technical Data  
MIMX8MQ7DVAJZAA MIMX8MQ7DVAJZAB  
MIMX8MQ6DVAJZAA MIMX8MQ6DVAJZAB  
MIMX8MD7DVAJZAA MIMX8MD7DVAJZAB  
MIMX8MD6DVAJZAA MIMX8MD6DVAJZAB  
MIMX8MQ5DVAJZAA MIMX8MQ5DVAJZAB  
i.MX 8M Dual / 8M  
QuadLite / 8M Quad  
Applications Processors  
Data Sheet for Consumer  
Products  
Package Information  
Bare Die Package  
FBGA 17 x 17 mm, 0.65 mm pitch  
Ordering Information  
See Table 2 on page 6  
1 i.MX 8M Dual / 8M QuadLite  
/ 8M Quad introduction  
The i.MX 8M Dual / 8M QuadLite / 8M Quad processors  
represent NXP’s latest market of connected streaming  
audio/video devices, scanning/imaging devices, and  
various devices requiring high-performance, low-power  
processors.  
1. i.MX 8M Dual / 8M QuadLite / 8M Quad introduction . . . 1  
1.1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
1.2. Ordering information . . . . . . . . . . . . . . . . . . . . . . . 6  
2. Modules list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1. Recommended connections for unused interfaces 12  
3. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.1. Chip-level conditions . . . . . . . . . . . . . . . . . . . . . . 13  
3.2. Power supplies requirements and restrictions . . . 25  
3.3. PLL electrical characteristics . . . . . . . . . . . . . . . . 27  
3.4. On-chip oscillators . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.5. I/O DC parameters . . . . . . . . . . . . . . . . . . . . . . . 30  
3.6. I/O AC parameters . . . . . . . . . . . . . . . . . . . . . . . 32  
3.7. Output buffer impedance parameters . . . . . . . . . 35  
3.8. System modules timing . . . . . . . . . . . . . . . . . . . . 37  
3.9. External peripheral interface parameters . . . . . . 38  
4. Boot mode configuration . . . . . . . . . . . . . . . . . . . . . . . . 74  
4.1. Boot mode configuration pins . . . . . . . . . . . . . . . 74  
4.2. Boot device interface allocation . . . . . . . . . . . . . . 75  
5. Package information and contact assignments . . . . . . . 76  
5.1. 17 x 17 mm package information . . . . . . . . . . . . 76  
5.2. DDR pin function list for 17 x 17 mm package . . 96  
6. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
The i.MX 8M Dual / 8M QuadLite / 8M Quad processors  
®
feature advanced implementation of a quad Arm  
®
Cortex -A53 core, which operates at speeds of up to  
®
1.5 GHz. A general purpose Cortex -M4 core processor  
is for low-power processing. The DRAM controller  
supports 32-bit/16-bit LPDDR4, DDR4, and DDR3L  
memory. There are a number of other interfaces for  
connecting peripherals, such as WLAN, Bluetooth, GPS,  
displays, and camera sensors. The i.MX 8M Quad and  
i.MX 8M Dual processors have hardware acceleration  
for video playback up to 4K, and can drive the video  
outputs up to 60 fps. Although the i.MX 8M QuadLite  
processor does not have hardware acceleration for video  
decode, it allows for video playback with software  
decoders if needed.  
NXP reserves the right to change the production detail specifications as may be required  
to permit improvements in the design of its products.  
i.MX 8M Dual / 8M QuadLite / 8M Quad introduction  
Table 1. Features  
Subsystem  
Feature  
Quad symmetric Cortex-A53 processors:  
Arm Cortex-A53 MPCore platform  
• 32 KB L1 Instruction Cache  
• 32 KB L1 Data Cache  
• Support L1 cache RAMs protection with parity/ECC  
Support of 64-bit Armv8-A architecture:  
• 1 MB unified L2 cache  
• Support L2 cache RAMs protection with ECC  
• Frequency of 1.5 GHz  
Arm Cortex-M4 core platform  
Connectivity  
16 KB L1 Instruction Cache  
16 KB L1 Data Cache  
256 KB tightly coupled memory (TCM)  
Two PCI Express Gen2 interfaces  
Two USB 3.0/2.0 controllers with integrated PHY interfaces  
Two Ultra Secure Digital Host Controller (uSDHC) interfaces  
One Gigabit Ethernet controller with support for EEE, Ethernet AVB, and IEEE 1588  
Four Universal Asynchronous Receiver/Transmitter (UART) modules  
Four I2C modules  
Three SPI modules  
External memory interface  
32/16-bit DRAM interface: LPDDR4-3200, DDR4-2400, DDR3L-1600  
8-bit NAND-Flash  
eMMC 5.0 Flash  
SPI NOR Flash  
QuadSPI Flash with support for XIP  
GPIO and pin multiplexing  
On-chip memory  
GPIO modules with interrupt capability  
Input/output multiplexing controller (IOMUXC) to provide centralized pad control  
Boot ROM (128 KB)  
On-chip RAM (128 KB + 32 KB)  
Power management  
Temperature sensor with programmable trip points  
Flexible power domain partitioning with internal power switches to support efficient  
power management  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors  
2
i.MX 8M Dual / 8M QuadLite / 8M Quad introduction  
Table 1. Features (continued)  
Feature  
Subsystem  
Multimedia  
Video Processing Unit:  
• 4Kp60 HEVC/H.265 main, and main 10 decoder  
• 4Kp60 VP9 decoder  
• 4Kp30 AVC/H.264 decoder  
• 1080p60 MPEG-2, MPEG-4p2, VC-1, VP8, RV9, AVS, MJPEG, H.263 decoder  
Graphic Processing Unit:  
• 4 shader  
• 267 million triangles/sec  
• 1.6 Giga pixel/sec  
• 32 GFLOPs 32-bit or 64 GFLOPs 16-bit  
• Support OpenGL ES 1.1, 2.0, 3.0, 3.1, Open CL 1.2, and Vulkan  
HDMI Display Interface:  
• HDMI 2.0a supporting one display: resolution up to 4096 x 2160 at 60 Hz, support  
HDCP 2.2 and HDCP 1.41  
• 20+ Audio interfaces 32-bit @ 384 kHz fs, with Time Division Multiplexing (TDM)  
support  
• S/PDIF input and output  
• Audio Return Channel (ARC) on HDMI  
• Upscale HD graphics to 4K for display  
• Downscale 4K video to HD for display  
• Display Port  
• Embedded Display Port  
MIPI-DSI Display Interface:  
• MIPI-DSI 4 channels supporting one display, resolution up to 1920 x 1080 at 60 Hz  
• LCDIF display controller  
• Output can be LCDIF output or DC display controller output  
Audio:  
• S/PDIF input and output  
• Five synchronous audio interface (SAI) modules supporting I2S, AC97, TDM, and  
codec/DSP interfaces, including one SAI with 16 Tx and 16 Rx channels, one SAI  
with 8 Tx and 8 Rx channels, and three SAI with 2 Tx and 2 Rx channels  
• One SAI for 8 Tx channels for HDMI output audio  
• One S/PDIF input for HDMI ARC input  
Camera inputs:  
• Two MIPI-CSI2 camera inputs (4-lane each)  
Security  
Resource Domain Controller (RDC) supports four domains and up to eight regions  
Arm TrustZone (TZ) architecture  
On-chip RAM (OCRAM) secure region protection using OCRAM controller  
High Assurance Boot (HAB)  
Cryptographic acceleration and assurance (CAAM) module  
Secure non-volatile storage (SNVS): Secure real-time clock (RTC)  
Secure JTAG controller (SJC)  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors  
3
i.MX 8M Dual / 8M QuadLite / 8M Quad introduction  
Table 1. Features (continued)  
Subsystem  
System debug  
Feature  
Arm CoreSight debug and trace architecture  
TPIU to support off-chip real-time trace  
ETF with 4 KB internal storage to provide trace buffering  
Unified trace capability for Quad Cortex-A53 and Cortex-M4 CPUs  
Cross Triggering Interface (CTI)  
Support for 5-pin (JTAG) debug interface  
1
Please contact the NXP sales and marketing team for order details on HDCP enable parts.  
NOTE  
The actual feature set depends on the part numbers as described in Table 2.  
Functions such as display and camera interfaces, and connectivity  
interfaces, may not be enabled for specific part numbers.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors  
4
i.MX 8M Dual / 8M QuadLite / 8M Quad introduction  
1.1  
Block diagram  
Figure 1 shows the functional modules in the i.MX 8M Dual / 8M QuadLite / 8M Quad processor system.  
Security  
Main CPU Platform  
Connectivity and I/O  
1 GB Ethernet  
TrustZone  
Quad Cortex-A53  
(IEEE1588, EEE, and AVB)  
DRM Ciphers  
Secure Clock  
32 KB I-cache  
NEON  
32 KB D-cache  
FPU  
S/PDIF Rx and Tx,  
I2S/SAI x6  
PCIe 2.0 x2 (1-lane, each)  
USB 3.0/2.0 OTG x2  
eFuse Key Storage  
Random Number  
1 MB L2 Cache  
Low Power, Security CPU  
32 KB Secure RAM  
UART x4, 5 Mbps  
I2C x4, SPI x3  
Cortex-M4  
System Control  
16 KB D-cache  
256 KB TCM  
16 KB I-cache  
HDMI 2.0a output  
HDCP 2.2  
Smart DMA x2  
Timer x3  
MIPI DSI Display x1  
MIPI CSI2 Capture x2  
Multimedia  
3D Graphics: 4 Shader  
OpenGL/ES 3.1, CL 1.2, Vulkan  
PWM x4  
External Memory  
LPDDR4-3200  
DDR4-2400  
DDR3L-1600  
4Kp60 HEVC/H.265  
4Kp60 VP9  
4Kp30 H.264 Decoder and VP9  
Watchdog x3  
Temp Monitor  
Secure JTAG  
1080p60 MPEG-2, MPEG-4p2,  
VC-1, VP8, RV9, AVS,  
2x eMMC 5/SD 3  
NAND CTL (BCH62)  
MJPEG, H.263 Decoder  
4Kp60 Display  
Temperature Sensor  
QuadSPI (XIP)  
Figure 1. i.MX 8M Dual / 8M QuadLite / 8M Quad system block diagram  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors  
5
i.MX 8M Dual / 8M QuadLite / 8M Quad introduction  
1.2  
Ordering information  
Table 2 shows examples of orderable sample part numbers covered by this data sheet. This table does not  
include all possible orderable part numbers. If your desired part number is not listed in the table, or you  
have questions about available parts, contact your NXP representative.  
Table 2. Orderable part numbers  
Cortex-A53  
CPU speed  
grade  
Qualification Temperature  
Part number  
Options  
Package  
tier  
Tj (C)  
MIMX8MQ7DVAJZAA1  
MIMX8MQ7DVAJZAB1  
8M Quad  
1.5 GHz  
1.5 GHz  
1.5 GHz  
1.5 GHz  
1.5 GHz  
Consumer  
0 to +95  
17 x 17 mm,  
0.65 mm pitch,  
FBGA  
MIMX8MQ6DVAJZAA  
MIMX8MQ6DVAJZAB  
8M Quad  
8M Dual  
Consumer  
Consumer  
Consumer  
Consumer  
0 to +95  
0 to +95  
0 to +95  
0 to +95  
17 x 17 mm,  
0.65 mm pitch,  
FBGA  
MIMX8MD7DVAJZAA1  
MIMX8MD7DVAJZAB1  
17 x 17 mm,  
0.65 mm pitch,  
FBGA  
MIMX8MD6DVAJZAA  
MIMX8MD6DVAJZAB  
8M Dual  
17 x 17 mm,  
0.65 mm pitch,  
FBGA  
MIMX8MQ5DVAJZAA  
MIMX8MQ5DVAJZAB  
8M Quad Lite  
17 x 17 mm,  
0.65 mm pitch,  
FBGA  
1
Part number requires a Dolby VisionTM license from Dolby.  
Figure 2 describes the part number nomenclature so that the users can identify the characteristics of the  
specific part number.  
Contact an NXP representative for additional details.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
6
NXP Semiconductors  
i.MX 8M Dual / 8M QuadLite / 8M Quad introduction  
+
A
M
IMX8MQ  
@
VN  
$$  
%
Silicon Rev  
Rev. 1.0  
A
A
B
Qualification Level  
M
Samples  
P
M
S
Rev. 1.1  
Mass Production  
Special  
Fusing  
%
-
A
D
HDCP customer  
programmable  
i.MX 8 Family Part # Series  
i.MX 8MQ  
Description  
Quad core  
Dual core  
HDCP NXP programmed  
C
i.MX 8MD  
Frequency  
1.5 GHz  
$$  
JZ  
1.3 GHz  
HZ  
Part Differentiator  
@
7
VPU decode + Dolby Vision + HDR10 + GPU  
VPU decode + HDR10 + GPU  
GPU, No VPU  
ROHS  
Package Type  
17 x 17 mm, 0.65 mm pitch, FCBGA bare die  
package  
6
VA  
5
Temperature (Tj)  
+
D
C
Commercial: 0 to + 95 °C  
Industrial: -40 to +105 °C  
Figure 2. Part number nomenclature—i.MX 8M Dual / 8M QuadLite / 8M Quad processors  
*Please contact the NXP sales and marketing team for order details on HDCP enable parts.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors  
7
Modules list  
2 Modules list  
The i.MX 8M Dual / 8M QuadLite / 8M Quad of processors contain a variety of digital and analog  
modules. Table 3 describes these modules in alphabetical order.  
Table 3. i.MX 8M Dual / 8M QuadLite / 8M Quad modules list  
Block mnemonic  
Block name  
Brief description  
APBH-DMA  
NAND Flash and BCH ECC  
DMA Controller  
DMA controller used for GPMI2 operation.  
Arm  
Arm Platform  
The Arm Core Platform includes a quad Cortex-A53 core and a  
Cortex-M4 core. The Cortex-A53 core includes associated  
sub-blocks, such as the Level 2 Cache Controller, Snoop Control  
Unit (SCU), General Interrupt Controller (GIC), private timers,  
watchdog, and CoreSight debug modules. The Cortex-M4 core is  
used as a customer microcontroller.  
BCH  
Binary-BCH ECC Processor The BCH module provides up to 62-bit ECC encryption/decryption  
for NAND Flash controller (GPMI)  
CAAM  
Cryptographic accelerator and CAAM is a cryptographic accelerator and assurance module. CAAM  
assurance module  
implements several encryption and hashing functions, a run-time  
integrity checker, entropy source generator, and a Pseudo Random  
Number Generator (PRNG). The PRNG is certifiable by the  
Cryptographic Algorithm Validation Program (CAVP) of the National  
Institute of Standards and Technology (NIST).  
CAAM also implements a Secure Memory mechanism. In i.MX 8M  
Dual / 8M QuadLite / 8M Quad processors, the secure memory  
provided is 32 KB.  
CCM  
GPC  
SRC  
Clock Control Module, General These modules are responsible for clock and reset distribution in the  
PowerController, SystemReset system, and also for the system power management.  
Controller  
CSU  
Central Security Unit  
The Central Security Unit (CSU) is responsible for setting  
comprehensive security policy within the i.MX 8M Dual / 8M  
QuadLite / 8M Quad platform.  
CTI-0  
CTI-1  
CTI-2  
CTI-3  
CTI-4  
Cross Trigger Interface  
Cross Trigger Interface (CTI) allows cross-triggering based on inputs  
from masters attached to CTIs. The CTI module is internal to the  
Cortex-A53 core platform.  
DAP  
Debug Access Port  
Display Controller  
The DAP provides real-time access for the debugger without halting  
the core to access:  
• System memory and peripheral registers  
• All debug configuration registers  
The DAP also provides debugger access to JTAG scan chains.  
DC  
Dual display controller  
DDRC  
Double Data Rate Controller The DDR Controller has the following features:  
• Supports 32/16-bit LPDDR4-3200, DDR4-2400, and  
DDR3L-1600  
• Supports up to 8 Gbyte DDR memory space  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors  
8
Modules list  
Table 3. i.MX 8M Dual / 8M QuadLite / 8M Quad modules list (continued)  
Block mnemonic  
Block name  
Brief description  
eCSPI1  
eCSPI2  
eCSPI3  
Configurable SPI  
Full-duplex enhanced Synchronous Serial Interface, with data rate  
up to 52 Mbit/s. Configurable to support Master/Slave modes, only  
one chip select is supported.  
EIM  
NOR-Flash / PSRAM interface The EIM NOR-FLASH / PSRAM provides:  
• Support for 16-bit (in Muxed I/O mode only) PSRAM memories  
(sync and async operating modes), at slow frequency  
• Support for 16-bit (in muxed and non muxed I/O modes)  
NOR-Flash memories, at slow frequency  
• Multiple chip selects  
ENET1  
Ethernet Controller  
The Ethernet Media Access Controller (MAC) is designed to support  
10/100/1000 Mbps Ethernet/IEEE 802.3 networks. An external  
transceiver interface and transceiver function are required to  
complete the interface to the media. The module has dedicated  
hardware to support the IEEE 1588 standard. See the ENET chapter  
of the i.MX 8M Dual / 8M QuadLite / 8M Quad Applications  
Processor Reference Manual (IMX8MDQLQRM) for details.  
GIC  
Generic Interrupt Controller  
The GIC handles all interrupts from the various subsystems and is  
ready for virtualization.  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
General Purpose I/O Modules Used for general purpose input/output to external ICs. Each GPIO  
module supports up to 32 bits of I/O.  
GPMI  
General Purpose Memory  
Interface  
The GPMI module supports up to 8x NAND devices and 62-bit ECC  
encryption/decryption for NAND Flash Controller (GPMI2). GPMI  
supports separate DMA channels for each NAND device.  
GPT1  
GPT2  
GPT3  
GPT4  
GPT5  
GPT6  
General Purpose Timer  
Each GPT is a 32-bit “free-running” or “set-and-forget” mode timer  
with programmable prescaler and compare and capture register. A  
timer counter value can be captured using an external event and can  
be configured to trigger a capture event on either the leading or  
trailing edges of an input pulse. When the timer is configured to  
operate in “set-and-forget” mode, it is capable of providing precise  
interrupts at regular intervals with minimal processor intervention.  
The counter has output compare logic to provide the status and  
interrupt at comparison. This timer can be configured to run either on  
an external clock or on an internal clock.  
GPU3D  
Graphics Processing Unit-3D The GPU3D provides hardware acceleration for 3D graphics  
algorithms with sufficient processor power to run desktop quality  
interactive graphics applications on displays.  
HDMI Tx  
HDMI Tx interface  
I2C Interface  
The HDMI module provides an HDMI standard interface port to an  
HDMI 2.0a-compliant display.  
I2C1  
I2C2  
I2C3  
I2C4  
I2C provides serial interface for external devices.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors  
9
Modules list  
Table 3. i.MX 8M Dual / 8M QuadLite / 8M Quad modules list (continued)  
Block mnemonic  
Block name  
Brief description  
IOMUXC  
IOMUX Control  
This module enables flexible I/O multiplexing. Each IO pad has a  
default as well as several alternate functions. The alternate functions  
are software configurable.  
LCDIF  
LCD interface  
The LCDIF is a general purpose display controller used to drive a  
wide range of display devices varying in size and capability.  
MIPI CSI2 (four-lane)  
MIPI DSI (four-lane)  
OCOTP_CTRL  
MIPI Camera Serial Interface This module provides two four-lane MIPI camera serial interfaces,  
each of them can operate up to a maximum bit rate of 1.5 Gbps.  
MIPI Display Serial Interface This module provides a four-lane MIPI display serial interface  
operating up to a maximum bit rate of 1.5 Gbps.  
OTP Controller  
The On-Chip OTP controller (OCOTP_CTRL) provides an interface  
for reading, programming, and/or overriding identification and control  
information stored in on-chip fuse elements. The module supports  
electrically programmable poly fuses (eFUSEs). The OCOTP_CTRL  
also provides a set of volatile software-accessible signals that can be  
used for software control of hardware elements, not requiring non  
volatility. The OCOTP_CTRL provides the primary user-visible  
mechanism for interfacing with on-chip fuse elements. Among the  
uses for the fuses are unique chip identifiers, mask revision  
numbers, cryptographic keys, JTAG secure mode, boot  
characteristics, and various control signals requiring permanent non  
volatility.  
OCRAM  
On-Chip Memory controller  
The On-Chip Memory controller (OCRAM) module is designed as an  
interface between the system’s AXI bus and the internal (on-chip)  
SRAM memory module.  
In i.MX 8M Dual / 8M QuadLite / 8M Quad processors, the OCRAM  
is used for controlling the 128 KB multimedia RAM through a 64-bit  
AXI bus.  
PCIe1  
PCIe2  
2x PCI Express 2.0  
Power Management Unit  
Pulse Width Modulation  
The PCIe IP provides PCI Express Gen 2.0 functionality.  
PMU  
Integrated power management unit. Used to provide power to  
various SoC domains.  
PWM1  
PWM2  
PWM3  
PWM4  
The pulse-width modulator (PWM) has a 16-bit counter and is  
optimized to generate sound from stored sample audio images. It  
can also generate tones. It uses 16-bit resolution and a 4x16 data  
FIFO to generate sound.  
QSPI  
Quad SPI  
The Quad SPI module acts as an interface to external serial flash  
devices. This module contains the following features:  
• Flexible sequence engine to support various flash vendor devices  
• Single pad/Dual pad/Quad pad mode of operation  
• Single Data Rate/Double Data Rate mode of operation  
• Parallel Flash mode  
• DMA support  
• Memory mapped read access to connected flash devices  
• Multi master access with priority and flexible and configurable  
buffer for each master  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
10 NXP Semiconductors  
Modules list  
Table 3. i.MX 8M Dual / 8M QuadLite / 8M Quad modules list (continued)  
Block name Brief description  
Block mnemonic  
SAI1  
SAI2  
SAI3  
SAI4  
SAI5  
SAI6  
Synchronous Audio Interface The SAI module provides a synchronous audio interface (SAI) that  
supports full duplex serial interfaces with frame synchronization,  
such as I2S, AC97, TDM, and codec/DSP interfaces.  
SDMA  
Smart Direct Memory Access The SDMA is a multichannel flexible DMA engine. It helps in  
maximizing system performance by offloading the various cores in  
dynamic data routing. It has the following features:  
• Powered by a 16-bit Instruction-Set micro-RISC engine  
• Multi channel DMA supporting up to 32 time-division multiplexed  
DMA channels  
• 48 events with total flexibility to trigger any combination of  
channels  
• Memory accesses including linear, FIFO, and 2D addressing  
• Shared peripherals between Arm and SDMA  
• Very fast Context-Switching with 2-level priority based preemptive  
multi tasking  
• DMA units with auto-flush and prefetch capability  
• Flexible address management for DMA transfers (increment,  
decrement, and no address changes on source and destination  
address)  
• DMA ports can handle unidirectional and bidirectional flows (Copy  
mode)  
• Up to 8-word buffer for configurable burst transfers for EMIv2.5  
• Support of byte-swapping and CRC calculations  
• Library of Scripts and API is available  
SJC  
Secure JTAG Controller  
The SJC provides JTAG interface (designed to be compatible with  
JTAG TAP standards) to internal logic. The i.MX 8M Dual / 8M  
QuadLite / 8M Quad of processors use JTAG port for production,  
testing, and system debugging. Additionally, the SJC provides BSR  
(Boundary Scan Register) standard support, designed to be  
compatible with IEEE 1149.1 and IEEE 1149.6 standards.  
The JTAG port must be accessible during platform initial laboratory  
bring-up, for manufacturing tests and troubleshooting, as well as for  
software debugging by authorized entities. The SJC of the i.MX 8M  
Dual / 8M QuadLite / 8M Quad incorporates three security modes for  
protecting against unauthorized accesses. Modes are selected  
through eFUSE configuration.  
SNVS  
Secure Non-Volatile Storage Secure Non-Volatile Storage, including Secure Real Time Clock,  
Security State Machine, and Master Key Control.  
SPDIF1  
SPDIF2  
Sony Philips Digital  
Interconnect Format  
A standard audio file transfer format, developed jointly by the Sony  
and Phillips corporations. It supports Transmitter and Receiver  
functionality.  
TEMPSENSOR  
TZASC  
Temperature Sensor  
Temperature sensor  
Trust-Zone Address Space  
Controller  
The TZASC (TZC-380 by Arm) provides security address region  
control functions required for intended application. It is used on the  
path to the DRAM controller.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 11  
Modules list  
Table 3. i.MX 8M Dual / 8M QuadLite / 8M Quad modules list (continued)  
Block mnemonic  
Block name  
Brief description  
UART1  
UART2  
UART3  
UART4  
UART Interface  
Each of the UARTv2 modules supports the following serial data  
transmit/receive protocols and configurations:  
• 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even,  
odd, or none)  
• Programmable baud rates up to 4 Mbps. This is a higher max  
baud rate relative to the 1.875 MHz, which is stated by the  
TIA/EIA-232-F standard.  
• 32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting  
auto-baud  
uSDHC1  
uSDHC2  
SD/MMC and SDXC  
The i.MX 8M Dual / 8M QuadLite / 8M Quad SoC characteristics:  
Enhanced Multi-Media Card / All the MMC/SD/SDIO controller IPs are based on the uSDHC IP.  
Secure Digital Host Controller They are designed to support:  
• SD/SDIO standard, up to version 3.0.  
• MMC standard, up to version 5.0.  
• 1.8 V and 3.3 V operation, but do not support 1.2 V operation.  
• 1-bit/4-bit SD and SDIO modes, 1-bit/4-bit/8-bit MMC mode.  
One uSDHC controller (SD1) can support up to an 8-bit interface, the  
other controller (SD2) can only support up to a 4-bit interface.  
USB 3.0/2.0  
VPU  
2x USB 3.0/2.0 controllers and Two USB controllers and PHYs that support USB 3.0 and USB 2.0.  
PHYs  
Each USB instance contains:  
• USB 3.0 core, which can operate in both 3.0 and 2.0 mode  
Video Processing Unit  
A high performing video processing unit (VPU), which covers many  
SD-level and HD-level video decoders. See the i.MX 8M Dual / 8M  
QuadLite / 8M Quad Applications Processor Reference Manual  
(IMX8MDQLQRM) for a complete list of the VPU’s decoding and  
encoding capabilities.  
WDOG1  
WDOG2  
WDOG3  
Watchdog  
The watchdog (WDOG) timer supports two comparison points  
during each counting period. Each of the comparison points is  
configurable to evoke an interrupt to the Arm core, and a second  
point evokes an external event on the WDOG line.  
XTALOSC  
Crystal Oscillator interface  
The XTALOSC module enables connectivity to an external crystal  
oscillator device.  
2.1  
Recommended connections for unused interfaces  
The recommended connections for unused analog interfaces can be found in the Section, “Unused  
Input/Output Terminations,” in the hardware development guide for the device.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
12  
NXP Semiconductors  
Electrical characteristics  
3 Electrical characteristics  
This section provides the device and module-level electrical characteristics for the i.MX 8M Dual / 8M  
QuadLite / 8M Quad processors.  
3.1  
Chip-level conditions  
This section provides the device-level electrical characteristics for the IC. See Table 4 for a quick reference  
to the individual tables and sections.  
Table 4. i.MX 8M Dual / 8M QuadLite / 8M Quad chip-level conditions  
For these characteristics, …  
Absolute maximum ratings  
Topic appears …  
on page 13  
on page 15  
on page 15  
on page 18  
on page 19  
on page 20  
on page 23  
FPBGA package thermal resistance  
Operating ranges  
External clock sources  
Maximum supply currents  
Power modes  
USB PHY Suspend current consumption  
3.1.1  
Absolute maximum ratings  
CAUTION  
Stresses beyond those listed under Table 5 may affect reliability or cause  
permanent damage to the device. These are stress ratings only. Functional  
operation of the device at these or any other conditions beyond those  
indicated in the operating ranges or parameters tables is not implied.  
Table 5. Absolute maximum ratings  
Parameter description  
Symbol  
Min  
Max  
Unit  
Notes  
Core supply voltages  
VDD_ARM  
VDD_SOC  
0
1.1  
V
1.1 V is for  
VDD_ARM  
overdrive  
Power supply for GPU  
Power supply for VPU  
VDD_GPU  
VDD_VPU  
0
0
0
1.1  
1.1  
1.1  
V
V
V
1.1 V is for  
overdrive  
Nominal  
mode  
Overdrive  
mode  
Core voltage  
VDD_DRAM  
0
0
1.05  
1.42  
V
V
DDR I/O supply voltage  
NVCC_DRAM  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 13  
Electrical characteristics  
Parameter description  
Table 5. Absolute maximum ratings (continued)  
Symbol  
Min  
Max  
Unit  
Notes  
Power supply for analog domain  
GPIO supply voltage  
VDDA_1P8  
0
0
1.98  
3.6  
V
V
NVCC_JTAG, NVCCGPIO1,  
NVCC_ENT, NVCC_SD1,  
NVCC_SD2, NVCC_NAND,  
NVCC_SA1, NVCC_SAI2,  
NVCC_SAI3, NVCC_SAI5,  
NVCC_ECSPI, NVCC_I2C,  
NVCC_UART  
1.8 V  
mode/3.3 V  
mode  
SNVS IO supply voltage  
NVCC_SNVS  
0
3.6  
V
3.3 V mode  
only  
VDD_SNVS supply voltage  
PLL 1.8 V supply voltage  
Supply for 25 MHz crystal  
Supply for 27 MHz crystal  
HDMI supply voltage  
VDD_SNVS  
VDDA_DRAM  
VDDA_1P8_XTAL_25M  
VDDA_1P8_XTAL_27M  
HDMI_AVDDCLK  
HDMI_AVDDIO  
HDMI_AVDDCORE  
PCIE_VP  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.99  
1.89  
1.98  
1.98  
0.99  
1.90  
0.99  
0.99  
3.63  
0.99  
1.1  
V
V
V
V
PCIe PHY supply voltage  
MIPI supply voltage  
V
V
V
V
V
V
V
V
PCIE_VPH  
PCIE_VPTX  
MIPI_VDDA  
MIPI_VDDHA  
1.98  
1.1  
MIPI_VDD  
MIPI_VDDPLL  
1.1  
USB high supply voltage  
USB_VBUS input detected  
USB1_VDD33, USB1_VPH,  
USB2_VDD33, USB2_VPH  
3.63  
USB1_VBUS,  
USB2_VBUS  
0
0
5.25  
V
V
Input voltage on USB*_DP,  
USB*_DN pins  
USB1_DP/USB1_DN  
USB2_DP/USB2_DN  
USB1_VDD33  
USB2_VDD33  
Temperature sensor  
Fuse power  
VDD_1P8_TSENSOR  
EFUSE_VQPS  
Vin/Vout  
0
0
0
1.98  
1.98  
V
V
V
Input/output voltage range  
ESD damage immunity:  
OVDD1+0.3  
Vesd  
V
• Human Body Model (HBM)  
• Charge Device Model (CDM)  
2000  
500  
Storage temperature range  
TSTORAGE  
–40  
150  
oC  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
14 NXP Semiconductors  
Electrical characteristics  
1
OVDD is the I/O supply voltage.  
3.1.2  
Thermal resistance  
3.1.2.1  
FPBGA package thermal resistance  
Table 6 displays the thermal resistance data.  
Table 6. Thermal resistance data  
17 x 17  
Unit  
Rating  
Test conditions  
Symbol  
pkg value  
Junction to Ambient1  
Single-layer board (1s); natural convection2  
Four-layer board (2s2p); natural convection2  
RJA  
RJA  
oC/W  
Bare die: 16.4  
oC/W  
Junction to Ambient1  
Single-layer board (1s); airflow 200 ft/min2,3  
Four-layer board (2s2p); airflow 200 ft/min2,3  
RJA  
RJA  
oC/W  
oC/W  
Bare die: 13.9  
Bare die: 4.6  
Bare die: 0.1  
Junction to Board1,4  
Junction to Case1,5  
RJB  
RJC  
oC/W  
oC/W  
1
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2
Per JEDEC JESD51-2 with the single layer board horizontal. Thermal test board meets JEDEC specification for the specified  
package.  
3
4
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on  
the top surface of the board near the package.  
5
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method  
1012.1).  
3.1.3  
Operating ranges  
Table 7 provides the operating ranges of the i.MX 8M Dual / 8M QuadLite / 8M Quad processors. For  
details on the chip's power structure, see the “Power Management Unit (PMU)” chapter of the i.MX 8M  
Dual / 8M QuadLite / 8M Quad Applications Processor Reference Manual (IMX8MDQLQRM).  
Table 7. Operating ranges  
Parameter description  
Symbol  
Min  
Typ  
Max1  
Unit  
Comment  
Power supply for Quad-A53  
VDD_ARM  
0.81  
0.9  
1.05  
V
Nominalmode—themaximum  
Arm core frequency supported  
in this mode is 1000 MHz.  
0.9  
1.0  
0.9  
1.05  
0.99  
V
V
Overdrive mode—the  
maximum Arm core frequency  
supported in this mode is  
defined in Table 2.  
Power supply for SoC logic  
VDD_SOC  
0.81  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 15  
Electrical characteristics  
Table 7. Operating ranges (continued)  
Parameter description  
Symbol  
Min  
Typ  
Max1  
Unit  
Comment  
Power supply for GPU  
VDD_GPU  
0.81  
0.9  
1.05  
V
Nominalmode—themaximum  
GPU frequency supported in  
this mode is 800 MHz.  
0.9  
0.81  
0.9  
1.0  
0.9  
1.0  
1.05  
1.05  
1.05  
V
V
V
Overdrive mode—the  
maximum GPU frequency  
supported in this mode is 1  
GHz.  
Power supply for VPU  
VDD_VPU  
Nominalmode—themaximum  
VPU frequency supported in  
this mode is 550/500/588  
MHz.  
Overdrive mode—the  
maximum VPU G2/G1/AXI  
Bus frequency supported in  
this mode is 660/600/800  
MHz.  
Core voltage  
VDD_DRAM  
0.81  
0.99  
1.62  
0.9  
1.0  
1.8  
1.05  
1.05  
1.98  
V
V
V
Nominalmode—themaximum  
DRAM working frequency  
supported in this mode is 933  
MHz.  
Overdrive mode—the  
maximum DRAM working  
frequency supported in this  
mode is 1600 MHz  
Power Supply Analog  
Domain  
VDDA_1P8  
Power for internal analog  
blocks—must match the range  
of voltages that the  
rechargeable backup battery  
supports.  
PLL 1.8 V supply voltage  
VDDA_DRAM  
VDD_SNVS  
1.71  
0.81  
1.8  
0.9  
1.89  
0.99  
V
V
Backup battery supply  
range  
Supply for 25 MHz crystal  
Supply for 27 MHz crystal  
Temperature sensor  
VDD_1P8_XTAL_25M  
VDD_1P8_XTAL_27M  
VDD_1P8_TSENSOR  
1.6  
1.6  
1.6  
1.8  
1.8  
1.8  
1.98  
1.98  
1.98  
V
V
V
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
16 NXP Semiconductors  
Electrical characteristics  
Table 7. Operating ranges (continued)  
Parameter description  
Symbol  
Min  
Typ  
Max1  
Unit  
Comment  
USB supply voltages  
USB1_VDD33/  
USB1_VPH  
3.069  
3.3  
3.63  
V
This rail is for USB  
USB2_VDD33/  
USB2_VPH  
3.069  
0.837  
0.837  
3.3  
3.63  
0.990  
0.990  
V
V
V
This rail is for USB  
USB1/2_DVDD  
0.900  
0.900  
0.9 V supply for USB high  
speed operation  
USB1/2_VP  
0.9 V supply for USB super  
speed operation  
USB1/2_VPTX  
0.837  
0.8  
0.900  
1.4  
0.990  
5.25  
V
V
0.9 V supply for PHY transmit  
USB1_VBUS/  
USB2_VBUS  
DDR I/O supply voltage  
NVCC_DRAM  
DRAM_VREF  
1.06  
1.14  
1.10  
1.2  
1.17  
1.26  
V
V
V
V
LPDDR4  
DDR4  
1.28  
1.35  
1.42  
DDR3L  
0.49 x  
0.5 x  
0.51 x  
Set to one-half NVCC_DRAM  
NVCC_D NVCC_D NVCC_D  
RAM  
RAM  
RAM  
GPIO supply voltages  
NVCC_JTAG,  
NVCC_SD1,  
NVCC_SD2,  
NVCC_NAND,  
NVCC_SAI1,  
NVCC_SAI2,  
NVCC_SAI3,  
NVCC_SAI5,  
NVCC_ECSPI,  
NVCC_I2C,  
1.65,  
3.0  
1.8,  
3.3  
1.95,  
3.6  
V
NVCC_UART  
NVCC_ENET  
1.65,  
2.25  
3.0  
1.8,  
2.5  
3.3  
1.95,  
2.75  
3.6  
V
V
NVCC_GPIO1  
1.65  
3.0  
1.8,  
3.3  
1.95,  
3.6  
Power for GPIO1_IO00 ~  
GPIO1_IO15  
NVCC_SNVS  
3.0  
3.3  
3.6  
V
V
Power for 3.3 V only  
HDMI supply voltage  
HDMI_AVDDCLK  
0.850  
0.900  
0.990  
0.9 V supply for HDMI high  
speed clock  
HDMI_AVDDIO  
1.700  
0.850  
1.800  
0.900  
1.900  
0.990  
V
V
1.8 V supply for HDMI bias  
and PLL  
HDMI_AVDDCORE  
0.9 V supply for HDMI analog  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 17  
Electrical characteristics  
Table 7. Operating ranges (continued)  
Parameter description  
Symbol  
Min  
Typ  
Max1  
Unit  
Comment  
MIPI supply voltage  
MIPI_VDDA  
MIPI_VDDHA  
MIPI_VDD  
0.81  
1.62  
0.81  
0.81  
0.9/1.0  
1.8  
1.1  
1.98  
1.1  
V
V
V
V
V
Analog core power supply  
Analog IO power supply  
Digital core power supply  
Analog supply for MIPI PLL  
Supplied from PMIC  
0.9/1.0  
0.9/1.0  
MIPI_VDDPLL  
PCIE_VPH  
1.1  
Voltage rails supplied from  
1.8 V PHY  
1.674  
3.069  
1.8  
3.3  
1.98  
3.63  
PCIE_VP, PCIE_VPTX  
Tdelta  
0.837  
0.9  
3
0.99  
V
Supplied from PMIC  
Temperature sensor  
accuracy  
°C Typical accuracy over the  
range –40°C to 125°C  
Fuse power  
EFUSE_VQPS  
1.71  
0
1.8  
1.98  
+95  
V
Power supply for internal use  
T
J
Junction temperature,  
consumer  
oC See Table 2 forcompletelistof  
junction temperature  
capabilities.  
1
Applying the maximum voltage results in maximum power consumption and heat generation. A voltage set point = (Vmin + the  
supply tolerance) is recommended. This result in an optimized power/speed ratio.  
3.1.4  
External clock sources  
A 25 MHz oscillator is used as the primary clock source for the PLLs to generate the clock for CPU, BUS,  
and high-speed interfaces. For fractional PLLs, the 25 MHz clock from the oscillator can be directly used  
as the PLL reference clock.  
A 27 MHz oscillator is used as the reference clock for HDMI PHY. Also it can be used as the alternative  
source for the fractional PLLs.  
A 32 kHz clock input pin is used as the RTC clock source. It is expected to be supplied by an external  
32.768 kHz oscillator.  
Two pairs of differential clock inputs, named as CLK1P and CLK1N, can be used as the reference clock  
for the PLL. This is mainly used for a high-speed clock input during testing.  
Four clock inputs to the CCM from normal GPIO pads via IOMUX can be used as the clock sources in the  
CCM.  
Table 8 shows the interface frequency requirements.  
Table 8. External input clock frequency  
Parameter description  
Symbol  
Min  
Typ  
Max  
Unit  
RTC1,2  
fckil  
fxtal  
fxtal  
20  
20  
32.7683  
25  
40  
40  
kHz  
MHz  
MHz  
XTALI_25M/XTALO_25M2  
XTALI_27M/XTALO_27M2  
27  
1
External oscillator or a crystal with internal oscillator amplifier.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
18 NXP Semiconductors  
Electrical characteristics  
2
3
The required frequency stability of this clock source is application dependent.  
Recommended nominal frequency 32.768 kHz.  
The typical values shown in Table 8 are required for use with NXP BSPs to ensure precise time keeping  
and USB operation. For RTC operation, two clock sources are available.The decision of choosing a clock  
source should be made based on real-time clock use and precision timeout.  
3.1.5  
Maximum supply currents  
Power consumption is highly dependent on the application. Estimating the maximum supply currents  
required for power supply design is difficult because the use cases that requires maximum supply current  
is not a realistic use cases.  
To help illustrate the effect of the application on power consumption, data was collected while running  
consumer standard benchmarks that are designed to be compute and graphic intensive. The results pro-  
vided are intended to be used as guidelines for power supply design.  
1
Table 9. Maximum supply currents  
Power rail  
Max current  
Unit  
VDD_ARM  
384 to 24101  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VDD_SOC  
1400 to 18701  
VDD_GPU  
0 to 20401  
VDD_VPU  
0 to 6101  
VDD_DRAM  
VDDA_0P9  
VDDA_1P8  
VDDA_DRAM  
VDD_SNVS  
NVCC_SNVS  
NVCC_<XXX>  
600 to 8701  
50  
20  
30  
5
5
Imax = N x C x V x (0.5 x F)  
Where:  
N—Number of IO pins supplied by the power line  
C—Equivalent external capacitive load  
V—IO voltage  
(0.5 x F)—Data change rate. Up to 0.5 of the clock  
rate (F).  
In this equation, Imax is in Amps, C in Farads, V in  
Volts, and F in Hertz.  
NVCC_DRAM  
DRAM_VFEF  
USB1_DVDD  
USB2_DVDD  
USB1_VP  
375 to 7501  
mA  
mA  
mA  
mA  
mA  
10  
9.2  
9.2  
35.7  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 19  
Electrical characteristics  
1
Table 9. Maximum supply currents (continued)  
Power rail Max current  
Unit  
USB2_VP  
35.7  
21.2  
21.2  
24.5  
24.5  
20.3  
20.3  
38.1  
38.1  
43  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
USB1_VPTX  
USB2_VPTX  
USB1_VDD33  
USB2_VDD33  
USB1_VPH  
USB2_VPH  
PCIE_VP (PCIE1)  
PCIE_VP (PCIE2)  
PCIE_VPH (PCIE1)  
PCIE_VPH (PCIE2)  
PCIE_VPTX (PCIE1)  
PCIE_VPTX (PCIE2)  
HDMI_AVDDCLK  
HDMI_AVDDCORE  
HDMI_AVDDIO  
MIPI_VDDA (DSI)  
MIPI_VDDHA (DSI)  
MIPI_VDD (DSI)  
MIPI_VDDPLL (DSI)  
MIPI_VDDA (CSI1/2)  
MIPI_VDDHA (CSI1/2)  
EFUSE_VQPS  
43  
14.3  
14.3  
95.89  
6.551  
17.1  
4.2  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
14.4  
3.8  
18.79  
2.97  
96.35  
1
Use case dependent  
3.1.6  
Power modes  
The i.MX 8M Dual / 8M QuadLite / 8M Quad processors support the following power modes:  
RUN Mode: All external power rails are on, CPU is active and running; other internal modules can  
be on/off based on application.  
IDLE Mode: When there is no thread running and all high-speed devices are not active, the CPU  
can automatically enter this mode. The CPU can be in the power-gated state but with L2 data  
retained, DRAM and the bus clock are reduced. Most of the internal logic is clock gated but still  
remains powered. The M4 core can remain running. Compared with RUN mode, all the external  
power rails from the PMIC remain the same, and most of the modules still remain in their state.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
20 NXP Semiconductors  
Electrical characteristics  
Deep Sleep Mode (DSM): The most efficient power saving mode where all the clocks are off and  
all the unnecessary power supplies are off.  
SNVS Mode: This mode is also called RTC mode. Only the power for the SNVS domain remains  
on to keep RTC and SNVS logic alive.  
OFF Mode: All power rails are off.  
Table 10. Chip power in different LP mode  
Mode  
Supply  
VDD_SNVS (1.0 V)  
Max.1  
Unit  
SNVS  
1.39  
mA  
NVCC_SNVS (3.6 V)  
Total2  
4.25  
17  
mW  
mA  
Deep Sleep Mode (DSM)  
VDD_SOC (1.0 V)  
VDDA_1P8 (2.0 V)  
VDDA_0P9 (1.0 V)  
VDDA_DRAM (1.8 V)  
VDD_SNVS (1.0 V)  
NVCC_SNVS (3.3 V)  
NVCC_DRAM (1.17 V)  
Total2  
148.50  
12.82  
0.30  
0.50  
0.25  
4.80  
4.51  
197  
mW  
mA  
IDLE  
VDD_ARM (1.0 V)  
VDD_SOC (1.0 V)  
VDD_DRAM (1.0 V)  
VDDA_1P8 (2.0 V)  
VDDA_0P9 (1.0 V)  
VDDA_DRAM (1.8 V)  
VDD_SNVS (1.0 V)  
NVCC_SNVS (3.3 V)  
NVCC_DRAM (1.17 V)  
Total2  
152.10  
132.90  
44.10  
13.53  
0.30  
1.32  
0.25  
4.34  
13.12  
389  
mW  
W
RUN  
Total  
1 to 4  
1
2
All the power numbers defined in the table are based on typical silicon at 25oC. Use case dependent  
Sum of the listed supply rails.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 21  
Electrical characteristics  
Table 11 summarizes the external power supply states in all the power modes.  
Table 11. The power supply states  
Power rail  
VDD_ARM  
OFF  
SNVS  
SUSPEND  
OFF  
IDLE  
RUN  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
ON  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
VDD_SOC  
ON  
VDD_GPU  
OFF  
OFF  
OFF  
ON  
ON/OFF  
ON/OFF  
ON  
VDD_VPU  
VDD_DRAM  
VDDA_0P9  
VDDA_1P8  
VDDA_DRAM  
VDD_SNVS  
NVCC_SNVS  
NVCC_<XXX>  
NVCC_DRAM  
DRAM_VREF  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
ON  
ON  
ON  
ON  
OFF  
ON  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
22 NXP Semiconductors  
Electrical characteristics  
3.1.7  
USB PHY Suspend current consumption  
Low power Suspend Mode  
3.1.7.1  
The VBUS Valid comparators and their associated bandgap circuits are enabled by default. Table 12  
shows the USB interface current consumption in Suspend mode with default settings.  
1
Table 12. USB PHY current consumption in Suspend mode  
USB1_VDD33  
USB2_VDD33  
154   
154   
Current  
1
Low Power Suspend is enabled by setting USBx_PORTSC1 [PHCD]=1 [Clock Disable (PLPSCD)].  
3.1.7.2  
Power-Down modes  
Table 13 shows the USB interface current consumption with only the OTG block powered down.  
1
Table 13. USB PHY current consumption in Sleep mode  
USB1_VDD33  
USB2_VD33  
520   
520   
Current  
1
VBUS Valid comparators can be disabled through software by setting USBNC_OTG*_PHY_CFG2[OTGDISABLE0] to 1. This  
signal powers down only the VBUS Valid comparator, and does not control power to the Session Valid Comparator, ADP  
Probe and Sense comparators, or ID detection circuitry.  
In Power-Down mode, everything is powered down, including the USB_VBUS valid comparators and  
their associated bandgap circuity in typical condition. Table 14 shows the USB interface current  
consumption in Power-Down mode.  
1
Table 14. USB PHY current consumption in Power-Down mode  
USB1_VDD33  
USB2_VDD33  
146   
146   
Current  
1
The VBUS Valid Comparators and their associated bandgap circuits can be disabled through software by setting  
USBNC_OTG*_PHY_CFG2[OTGDISABLE0] to 1 and USBNC_OTG*_PHY_CFG2[DRVVBUS0] to 0, respectively.  
3.1.8  
PCIe PHY 2.1 DC electrical characteristics  
Table 15. PCIe recommended operating conditions  
Parameter  
Description  
Min  
Max  
Unit  
PCIE_VP  
PCIE_VPTX  
PCIE_VPH  
Low Power Supply Voltage for PHY Core  
PHY transmit supply  
0.837  
0.837  
1.674  
3.069  
0.99  
0.99  
1.98  
3.63  
V
High Power Supply Voltage for PHY Core  
1.8  
3.3  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 23  
Electrical characteristics  
Parameter  
Table 15. PCIe recommended operating conditions (continued)  
Description  
Min  
Max  
Unit  
TA  
TJ  
Commercial Temperature Range  
0
70  
°C  
°C  
Simulation Junction Temperature Range  
-40  
125  
Note: VDD should have no more than 40 mVpp AC power supply noise superimposed on the high power supply voltage for the  
PHY core (1.8 V nominal DC value). At the same time, VDD should have no more than 20 mVpp AC power supply noise  
superimposed on the low power supply voltage for the PHY core (1.0 V nominal value or 1.1 V overdrive DC value).  
The power supply voltage variation for the PHY core should have less than 5% including the board-level power supply variation  
and on-chip power supply variation due to the finite impedances in the package.  
Table 16. PCIe DC electrical characteristics  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
PCIE1_VP, Power Supply Voltage  
PCIE2_VP  
0.9 - 7%  
0.9  
0.9 + 10%  
V
PD  
Power Consumption  
Normal  
40  
27  
7
mW  
mW  
mW  
mW  
Partial Mode  
Slumber Mode  
Full Powerdown  
0.2  
Table 17. PCIe PHY high-speed characteristics  
High Speed I/O Characteristics  
Description  
Symbol  
Speed  
Min.  
Typ.  
Max.  
Unit  
Unit Interval  
UI  
2.5 Gbps  
5.0 Gbps  
2.5 Gbps  
5.0 Gbps  
2.5 Gbps  
5.0 Gbps  
2.5 Gbps  
5.0 Gbps  
2.5 Gbps  
5.0 Gbps  
2.5 Gbps  
5.0 Gbps  
400  
200  
ps  
TX Serial output rise time (20% to 80%)  
TX Serial output fall time (80% to 20%)  
TX Serial data output voltage (Differential, pk–pk)  
PCIe Tx deterministic jitter < 1.5 MHz  
PCIe Tx deterministic jitter > 1.5 MHz  
TTXRISE  
TTXFALL  
VTX  
TRJ  
100  
100  
100  
100  
800  
600  
3
ps  
ps  
1100  
900  
mVp–p  
ps, rms  
3
TDJ  
20  
10  
ps, pk–pk  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
24 NXP Semiconductors  
Electrical characteristics  
Table 17. PCIe PHY high-speed characteristics (continued)  
High Speed I/O Characteristics  
Description  
Symbol  
Speed  
Min.  
Typ.  
Max.  
Unit  
RX Serial data input voltage (Differential pk–pk)  
VRX  
2.5 Gbps  
5.0 Gbps  
120  
120  
1200  
1200  
mVp–p  
Table 18. PCIe PHY reference clock timing requirements (vp is PIE_VP, 0.9 V power supply)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Condition  
FREF_OFFSET  
DJREF_CLK  
Reference clock frequency offset  
Reference clock cycle to cycle jitter  
Duty cycle  
-300  
30  
35  
ppm  
ps  
DJ across all frequencies  
DCREF_CLK  
VCMREF_CLK  
VDREF_CLK  
VOLREF_CLK  
40  
60  
%
Common mode input level  
Differential input swing  
0
vp  
V
Differential inputs  
Differential inputs  
-0.3  
-0.3  
VPP  
V
Single-ended input logic low  
-0.3  
If single-ended input is  
used.  
VOHREF_CLK  
Single-ended input logic high  
vp - 0.3  
vp + 0.3  
V
If single-ended input is  
used.  
SWREF_CLK  
Input edge rate  
V/ns  
ps  
REF_CLK_SKEW  
Reference clock skew ( )  
200  
PCIe PHY interface is compliant with PCIe Express GEN2.  
3.2  
Power supplies requirements and restrictions  
The system design must comply with power-up sequence, power-down sequence, and steady state  
guidelines as described in this section to guarantee the reliable operation of the device. Any deviation  
from these sequences may result in the following situations:  
Excessive current during power-up phase  
Prevention of the device from booting  
Irreversible damage to the processor (worst-case scenario)  
3.2.1  
Power-up sequence  
The i.MX 8M Dual / 8M QuadLite / 8M Quad processors have the following power-up sequence  
requirements:  
Turn on NVCC_SNVS  
Turn on VDD_SNVS  
RTC_RESET_B release (after 32K clock stable and before POR_B release, no constraint with any  
other power supplies)  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 25  
Electrical characteristics  
Turn on VDD_SOC and VDDA_0P9  
Turn on VDD_ARM, VDD_GPU, VDD_VPU, and VDD_DRAM (no sequence between these  
four rails)  
Turn on VDDA_1P8_XXX, VDDA_DRAM (no sequence between these rails)  
Turn on NVCC_XXX and NVCC_DRAM (no sequence between these rails)  
POR_B release (it should be asserted during the entire power up sequence)  
If the GPU/VPU is not used during the ROM boot sequence, VDD_GPU/VDD_VPU can stay off to reduce  
the power during boot, and then turned on by software afterwards.  
During the chip power up, the power of the PCIe PHY, USB PHY, HDMI PHY, and MIPI PHY could stay  
off. After chip power up, the power of these PHys should be turned on. If any of the PHY power are turned  
on during the power up sequence, the POR_B can be released after the PHY power is stable.  
3.2.2  
Power-down sequence  
The i.MX 8M Dual / 8M QuadLite / 8M Quad processors have the following power-down sequence  
requirements:  
Turn off NVCC_SNVS and VDD_SNVS last  
Turn off VDD_SOC after the other power rails or at the same time as other rails  
No sequence for other power rails during power down  
3.2.3  
Power supplies usage  
I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_xxx) is OFF. This  
can cause internal latch-up and malfunctions due to reverse current flows. For information about the I/O  
power supply of each pin, see “Power Rail” columns in the pin list tables of Section 5, Package  
information and contact assignments.”  
Table 19 lists the modules in each power domain.  
Table 19. The modules in the power domains  
Power Domain  
Modules in the domain  
Arm A53  
VDD_ARM  
VDD_GPU  
VDD_VPU  
VDD_DRAM  
VDD_SNVS  
VDD_SOC  
GC7000L GPU  
G1 and G2 VPU  
DRAM controller and PHY  
SNVS_LP  
All the other modules  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
26 NXP Semiconductors  
Electrical characteristics  
3.3  
PLL electrical characteristics  
Table 20. PLL electrical parameters  
PLL type  
Parameter  
Value  
AUDIO_PLL1  
Clock output range  
Reference clock  
Lock time  
650 MHz ~ 1.3 GHz  
25 MHz  
50 s  
Jitter  
1% of output period, 50 ps  
650 MHz ~ 1.3 GHz  
25 MHz  
AUDIO_PLL2  
Clock output range  
Reference clock  
Lock time  
50 s  
Jitter  
1% of output period, 50 ps  
650 MHz ~ 1.3 GHz  
25 MHz  
VIDEO_PLL1  
VIDEO_PLL2  
SYS_PLL1  
SYS_PLL2  
SYS_PLL3  
ARM_PLL  
Clock output range  
Reference clock  
Lock time  
50 s  
Clock output range  
Reference clock  
Lock time  
650 MHz ~ 1.3 GHz  
25 MHz  
70 s  
Clock output range  
Reference clock  
Lock time  
800 MHz  
25 MHz  
70 s  
Clock output range  
Reference clock  
Lock time  
1 GHz  
25 MHz  
70 s  
Clock output range  
Reference clock  
Lock time  
600 MHz ~ 1GHz  
25 MHz  
70 s  
Clock output range  
Reference clock  
Lock time  
800 MHz ~1.6 GHz  
25 MHz  
50 s  
DRAM_PLL  
Clock output range  
Reference clock  
Lock time  
400 MHz–800 MHz  
25 MHz  
70 s  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 27  
Electrical characteristics  
Table 20. PLL electrical parameters (continued)  
Parameter  
PLL type  
Value  
GPU_PLL  
Clock output range  
Reference clock  
Lock time  
800 MHz ~1.6 GHz  
25 MHz  
50 s  
VPU_PLL  
Clock output range  
Reference clock  
Lock time  
400 MHz ~ 800 MHz  
25 MHz  
50 s  
3.4  
On-chip oscillators  
3.4.1  
OSC25M and OSC27M  
A 25 MHz oscillator is used as the primary clock source for the PLLs to generate the clock for the CPU,  
BUS, and high-speed interfaces. For fractional PLLs, the 25 MHz clock from the oscillator can be used as  
the PLL reference clock directly.  
A 27 MHz oscillator is used as the reference clock for HDMI PHY. It can also be used as the alternative  
source for the fractional PLLs.  
Table 21 lists the electrical specifications of this oscillator when loaded with an NX5032GA 40 MHz  
crystal unit at 40 MHz frequency. All values are valid only for the device TJ operating specification of -40  
o
o
C to 125 C.  
Table 21. Electrical specification of oscillator @ 1.8 V  
Parameter  
Min  
Typ  
Max  
Unit  
Voltage swing on external pin1  
250  
800  
4
mV  
mA  
Power consumption (analog  
supply RMS current in OSC  
mode)2, 3  
Start-up time1, 2  
2
ms  
1
The start-up time is dependent upon crystal characteristics, board leakage, etc.; high ESR and excessive capacitive loads can  
cause long start-up time.  
2
3
Electrical parameters are subject to change.  
Maximum current is observed during startup. After oscillation is stable, the current from HV supply comes down.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
28 NXP Semiconductors  
Electrical characteristics  
Table 22 shows the transconductance specification of the oscillator (in mA/V).  
Table 22. Transconductance specification of oscillator  
GM_sel  
Min  
Max  
111  
10  
25  
Table 23 shows the input clock specifications.  
Table 23. Input clock specification  
Parameter  
Min  
Typ  
Max  
Unit  
Clock Frequency in OSC mode  
20  
40  
50  
MHz  
MHz  
Input Clock Frequency in Bypass  
mode  
Input Clock Rise/Fall Time in  
Bypass mode  
1
ns  
%
Input Clock Duty Cycle in Bypass  
mode  
47.50  
50  
52.50  
Table 24 shows core output clock specification.  
Table 24. Core output clock specification  
Parameter  
Min  
Typ  
Max  
Unit  
20  
40  
MHz  
Output Clock Frequency in  
OSC mode  
45  
50  
55  
%
Output Clock Duty Cycle in  
OSC mode  
OutputClockFrequencyinBypass  
mode  
40  
150  
0.1  
50  
50  
500  
0.5  
60  
MHz  
fF  
Capacitive Loading on Outputs  
Clock  
Output Clock Rise/Fall Time in  
Bypass mode  
ns  
Output Clock Duty Cycle in  
Bypass mode  
%
Table 25 shows VIL/VIH specification at EXTAL.  
Table 25. Transconductance specification of oscillator  
Parameter  
Condition  
Min  
Max  
Unit  
VILEXTAL  
VIHEXTAL  
VREF = 0.5 x avdd  
(xosc HV supply)  
0
VREF - 0.5  
avdd  
V
VREF + 0.5  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 29  
Electrical characteristics  
3.5  
I/O DC parameters  
This section includes the DC parameters of the following I/O types:  
General Purpose I/O (GPIO)  
Double Data Rate I/O (DDR) for LPDDR4, DDR4, and DDR3L modes  
Differential I/O (CLKx)  
3.5.1  
General purpose I/O (GPIO) DC parameters  
Table 26 shows DC parameters for GPIO pads. The parameters in Table 26 are guaranteed per the  
operating ranges in Table 7, unless otherwise noted.  
Table 26. GPIO DC parameters  
Parameter  
Symbol  
Test Conditions  
Min VDD  
Min  
Typ  
Max  
Unit  
High-level output voltage VOH (1.8 V)  
,
V
DD - 0.2,  
V
IOH = –100 A,  
VDD - 0.45  
IOH = –2 mA  
VOH (3.3 V)  
VDD - 0.2  
2.4  
V
V
V
Low-level output voltage  
High-level input voltage  
VOL (1.8 V)  
Min VDD  
,
0.2  
0.2 x VDD  
IOH = 100 A,  
IOH = 3 mA  
VOL (3.3 V)  
0.2  
0.4  
VIH (1.8 V)  
VIH (3.3 V)  
ipp_lvttl_en = 0  
ipp_lvttl_en = 1  
ipp_lvttl_en = 0  
0.7 x VDD  
2
VDD  
VDD  
VDD  
V
V
V
VIH_1VCOMS  
0.7 x VDD  
(3.3 V)  
Low-level input voltage  
VIL (1.8 V)  
ipp_lvttl_en = 0  
ipp_lvttl_en = 0  
0
0
0.2 x VDD  
V
V
VIL_emmc  
(1.8 V)  
0.35 x VDD  
VIL (3.3 V)  
ipp_lvttl_en = 1  
ipp_lvttl_en = 0  
0
0
0.8  
V
V
VIL_emmc  
(3.3 V)  
0.25 x VDD  
VIL_1vcmos  
(3.3 V)  
ipp_lvttl_en = 0  
0
0.2 x VDD  
V
Input hysteresis  
VHYS (1.8 V)  
ipp_hys = 1  
0.15  
0.2  
30  
V
VHYS (3.3 V)  
ipp_hys = 1  
V
Pull-up resistor  
Pull-down resistor  
IIH  
IIL  
30 x 0.75  
95 x 0.75  
-50  
30 x 1.25  
95 x 1.25  
50  
K  
K  
A  
A  
95  
High level input current1  
Low level input current1  
-50  
50  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
30 NXP Semiconductors  
Electrical characteristics  
1
The leakage limit for the following pins: HDMI_TX (several) is 200 A; HDMI_AUX_N/P is 65 A; PMIC_ON_REQ is 60  
A; PMIC_STBY_REQ is 80 A; RTC_RESET_B is 60 A; ONOFF is 60 A; POR_B is 60 A; and SD2_CD_B is 60  
A.  
3.5.2  
DDR I/O DC electrical characteristics  
The DDR I/O pads support LPDDR 4, DDR4, and DDR3L operational modes. The DDR Memory  
Controller (DDRMC) is designed to be compatible with JEDEC-compliant SDRAMs.  
DDRMC operation is contingent upon the board’s DDR design adherence to the DDR design and layout  
requirements stated in the hardware development guide for the i.MX 8M Dual / 8M QuadLite / 8M Quad  
application processor.  
Table 27. DC input logic level  
Characteristics  
Symbol  
VIH(DC)  
VIL(DC)  
Min  
VREF +100  
Max  
Unit  
1
mV  
DC input logic high  
DC input logic low  
VREF –100  
1
It is the relationship of the VDDQ of the driving device and the VREF of the receiving device that determines noise margins.  
However, in the case of VIH(DC) max (that is, input overdrive), it is the VDDQ of the receiving device that is referenced.  
Table 28. Output DC current drive  
Characteristics  
Symbol  
OH(DC)  
Min  
Max  
Unit  
Output minimum source DC current1  
Output minimum sink DC current  
I
–4  
mA  
mA  
V
IOL(DC)  
VOH  
4
0.9 x VDDQ  
DC output high voltage(IOH = –0.1mA),2  
DC output low voltage(IOL = 0.1mA),  
VOL  
0.1 x VDDQ  
V
1
When DDS = [111] and without ZQ calibration.  
2
The values of VOH and VOL are valid only for 1.2 V range.  
1
Table 29. Input DC current  
Characteristics  
High level input current2,3  
Low level input current,  
Symbol  
Min  
–40  
–40  
Max  
40  
Unit  
A  
IIH  
IIL  
40  
A  
1
The leakage limit for the following pins: DRAM_AC00, DRAM_AC01, DRAM_AC20, and DRAM_AC21 are 300 A;  
DRAM_RESET_N is 200 A.  
The values of VOH and VOL are valid only for 1.2 V range.  
Driver Hi-Z and input power-down (PD = High)  
2
3
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 31  
Electrical characteristics  
3.5.2.1  
LPDDR4 mode I/O DC parameters  
Table 30. LPDDR4 I/O DC electrical parameters  
Test  
Symbol  
Parameters  
Min  
Max  
Unit  
Conditions  
High-level output voltage  
VOH  
VOL  
Ioh= -0.1 mA  
0.9 x OVDD  
V
V
Low-level output voltage  
Iol= 0.1 mA  
0.1 x OVDD  
Input Reference Voltage  
Vref  
0.49 x OVDD 0.51 x OVDD  
V
DC High-Level input voltage  
DC Low-Level input voltage  
Differential Input Logic High  
Differential Input Logic Low  
Pull-up/Pull-down Impedance Mismatch  
240 unit calibration resolution  
Vih_DC  
Vil_DC  
Vih_diff  
Vil_diff  
Mmpupd  
Rres  
VRef + 0.100  
OVSS  
0.26  
OVDD  
VRef – 0.100  
See note1  
-0.26  
V
V
%
K  
A  
See note  
–15  
15  
10  
Keeper Circuit Resistance  
Rkeep  
Iin  
110  
-2.5  
175  
2.5  
Input current (no pull-up/down)  
VI = 0, VI = OVDD  
1
The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as  
the limitations for overshoot and undershoot.  
3.5.3  
Differential I/O port (CLKx_P/N)  
The clock I/O interface is designed to be compatible with TIA/EIA 644-A standard. See TIA/EIA  
STANDARD 644-A, Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface  
Circuits (2001), for details.  
The CLK1_P/CLK1_N is input only, while CLK2_P/CLK2_N is output only.  
3.6  
I/O AC parameters  
This section includes the AC parameters of the following I/O types:  
General Purpose I/O (GPIO)  
Double Data Rate I/O (DDR) for DDR3L/DDR4/LPDDR4 modes  
Differential I/O (CLKx)  
The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 3 and  
Figure 4.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
32  
NXP Semiconductors  
Electrical characteristics  
From Output  
Under Test  
Test Point  
CL  
CL includes package, probe and fixture capacitance  
Figure 3. Load circuit for output  
OVDD  
80%  
80%  
20%  
0 V  
20%  
tr  
Output (at pad)  
tf  
Figure 4. Output transition time waveform  
3.6.1  
General purpose I/O AC parameters  
This section presents the I/O AC parameters for GPIO in different modes. Note that the fast or slow I/O  
behavior is determined by the appropriate control bits in the IOMUXC control registers.  
Table 31. Maximum input cell delay time  
Max Delay PAD Y (ns)  
Cell name  
VDD = 1.62 V  
T = 125°C  
WCS model  
VDD = 3.0V  
T = 125°C  
WCS model  
PBIJGTOV36PUD_MCLAMP_LVGPIO_EW  
1.54  
1.3  
Table 32. Output cell delay time for fixed load  
Simulated Cell Delay A PAD (ns)  
Parameter  
VDD = 1.62 V, T = 125°C VDD = 2.97 V, T = 125°C  
dse[2:0]  
fsel[1:0]  
Driver Type  
CL = 15 pF  
CL = 15 pF  
011  
011  
100  
100  
101  
101  
00  
11  
00  
11  
00  
11  
3 x Slow Slew  
3 x Fast Slew  
4 x Slow Slew  
4 x Fast Slew  
5 x Slow Slew  
5 x Fast Slew  
3.1  
2.1  
3.7  
2.3  
3.1  
2.1  
3.3  
2.6  
3.9  
2.8  
3.5  
2.5  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 33  
Electrical characteristics  
Table 32. Output cell delay time for fixed load (continued)  
Simulated Cell Delay A PAD (ns)  
VDD = 1.62 V, T = 125°C VDD = 2.97 V, T = 125°C  
Parameter  
dse[2:0]  
fsel[1:0]  
Driver Type  
CL = 15 pF  
CL = 15 pF  
111  
111  
00  
11  
7 x Slow Slew  
7 x Fast Slew  
2.9  
1.8  
3.1  
2.3  
Table 33. Maximum frequency of operation for input  
Maximum frequency (MHz)  
VDD = 1.8 V, CL = 15 pF, fast  
VDD = 3.3 V, CL = 20 pF, fast  
200  
160  
3.6.2  
Clock I/O AC parameters—CLKx_N/CLKx_P  
The differential output transition time waveform is shown in Figure 5.  
vddi  
50%  
50%  
ipp_do  
0 V  
Voh  
Vol  
Tphld  
Tplhd  
padn  
70%  
70%  
30%  
30%  
Tthl  
padp  
Ttlh  
Vod = padp - padn  
0 V  
0 V (differential)  
Figure 5. Differential LVDS driver transition time waveform  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
34 NXP Semiconductors  
Electrical characteristics  
Table 34 shows the AC parameters for clock I/O.  
Table 34. I/O AC parameters of LVDS pad  
Symbol  
Parameter Test conditions  
Min Typ Max Unit Notes  
1
Tphld  
Tplhd  
Ttlh  
Output Differential propagation delay high to low Rload = 100 between padp  
0.92 ns  
0.92  
and padn,  
Output Differential propagation delay low to high  
Cload =2pF, at125°C, TYP, 1.62  
2
3
V OVDD, and 0.9 V VDDI  
Output Transition time low to high  
0.58  
Tthl  
Output Transition time high to low  
0.73  
Tphlr  
Tplhr  
Input Differential propagation delay high to low  
Input Differential propagation delay low to high  
Rload = 100 between padp  
and padn, at 125 °C, TYP, 1.62 V  
OVDD, and 0.9 V VDDI  
0.83 ns  
0.83  
4
Ttx  
F
Transmitter startup time (ipp-obe low to high)  
Operating frequency  
40  
ns  
600 1000 MHz  
1
At TYP, 125 °C, 1.62 V OVDD, and 0.9 V VDDI. Measurement levels are 50 - 50%. Output differential signal measured.  
At TYP, 125 °C, 1.62 V OVDD, and 0.9 V VDDI. Measurement levels are 20 - 80%. Output differential signal measured.  
At TYP, 125 °C, 1.62 V OVDD, and 0.9 V VDDI. Measurement levels are 50 - 50%.  
2
3
4
TX startup time is defined as the time taken by transmitter for settling after its ipp_obe has been asserted. It is to stabilize the  
current reference. Functionality is guaranteed only after the startup time.  
3.7  
Output buffer impedance parameters  
This section defines the I/O impedance parameters of the i.MX 8M Dual / 8M QuadLite / 8M Quad  
processors for the following I/O types:  
Double Data Rate I/O (DDR) for LPDDR4, DDR4, and DDR3L modes  
Differential I/O (CLKx)  
USB battery charger detection open-drain output (USB_OTG1_CHD_B)  
NOTE  
DDR I/O output driver impedance is measured with “long” transmission  
line of impedance Ztl attached to I/O pad and incident wave launched into  
transmission line. Rpu/Rpd and Ztl form a voltage divider that defines  
specific voltage of incident wave relative to OVDD. Output driver  
impedance is calculated from this voltage divider (see Figure 6).  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 35  
Electrical characteristics  
OVDD  
PMOS (Rpu)  
Ztl W, L = 20 inches  
ipp_d
pad  
predriver  
Cload = 1p  
NMOS (Rpd)  
OVSS  
U,(V)  
VDD  
(do)  
Vin  
t,(ns)  
0
U,(V)  
Vout (pad)  
OVDD  
Vref2  
Vref1  
Vref  
t,(ns)  
0
Vovdd - Vref1  
Vref1  
Rpu =  
x Ztl  
x Ztl  
Vref2  
Rpd =  
Vovdd - Vref2  
Figure 6. Impedance matching load for measurement  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
36 NXP Semiconductors  
Electrical characteristics  
3.7.1  
DDR I/O output buffer impedance  
Table 35 shows DDR I/O output buffer impedance of i.MX 8M Dual / 8M QuadLite / 8M Quad  
processors.  
Table 35. DDR I/O output buffer impedance  
Typical  
Test Conditions  
Parameter  
Symbol  
DSE  
(Drive Strength)  
Unit  
NVCC_DRAM = 1.35  
V (DDR3L)  
NVCC_DRAM = 1.1 V  
(LPDDR4)  
NVCC_DRAM = 1.2 V  
(DDR4)  
DDR_SEL = 11  
DDR_SEL = 10  
Output Driver  
Impedance  
Rdrv  
000000  
Hi-Z  
240  
120  
80  
Hi-Z  
240  
120  
80  
Hi-Z  
240  
120  
80  
000010  
000110  
001010  
001110  
011010  
011110  
111010  
60  
60  
60  
48  
48  
48  
40  
40  
40  
34  
34  
34  
Note:  
1. Output driver impedance is controlled across PVTs using ZQ calibration procedure.  
2. Calibration is done against 240 external reference resistor.  
3. Output driver impedance deviation (calibration accuracy) is 5% (max/min impedance) across PVTs.  
3.7.2  
Differential I/O output buffer impedance  
The Differential CCM interface is designed to be compatible with TIA/EIA644-Astandard. See, TIA/EIA  
STANDARD 644-A, Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface  
Circuits (2001) for details.  
3.7.3  
USB battery charger detection driver impedance  
The USB_OTG1_CHD_B open-drain output pin can be used to signal to power management and  
monitoring device results of USB Battery Charger detection routines for the USB_OTG1 PHY instance.  
Use of this pin requires an external pullup resistor, for more information see Table 5.  
3.8  
System modules timing  
This section contains the timing and electrical parameters for the modules in each i.MX 8M Dual / 8M  
QuadLite / 8M Quad processor.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors  
37  
Electrical characteristics  
3.8.1  
Reset timings parameters  
Figure 7 shows the reset timing and Table 36 lists the timing parameters.  
POR_B  
(Input)  
CC1  
Figure 7. Reset timing diagram  
Table 36. Reset timing parameters  
ID  
Parameter  
Min Max  
Unit  
CC1  
Duration of POR_B to be qualified as valid.  
1
RTC_XTALI cycle  
3.8.2  
WDOG Reset timing parameters  
Figure 8 shows the WDOG reset timing and Table 37 lists the timing parameters.  
WDOGx_B  
(Output)  
CC3  
Figure 8. WDOGx_B timing diagram  
Table 37. WDOGx_B timing parameters  
ID  
Parameter  
Duration of WDOG1_B Assertion  
Min  
Max  
Unit  
CC3  
1
RTC_XTALI cycle  
NOTE  
RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or  
approximately 30 ms.  
NOTE  
WDOGx_B output signals (for each one of the Watchdog modules) do not  
have dedicated pins, but are muxed out through the IOMUX. See the  
IOMUXC chapter of the i.MX 8M Dual / 8M QuadLite / 8M Quad  
Applications Processor Reference Manual (IMX8MDQLQRM) for detailed  
information.  
3.9  
External peripheral interface parameters  
The following subsections provide information on external peripheral interfaces.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
38  
NXP Semiconductors  
Electrical characteristics  
3.9.1  
ECSPI timing parameters  
This section describes the timing parameters of the ECSPI blocks. The ECSPI have separate timing  
parameters for master and slave modes.  
3.9.1.1  
ECSPI Master mode timing  
Figure 9 depicts the timing of ECSPI in master mode. Table 38 lists the ECSPI master mode timing  
characteristics.  
ECSPIx_RDY_B  
ECSPIx_SS_B  
CS10  
CS5  
CS2  
CS6  
CS3  
CS1  
CS4  
ECSPIx_SCLK  
ECSPIx_MOSI  
ECSPIx_MISO  
CS2  
CS3  
CS7  
CS9  
CS8  
Figure 9. ECSPI Master mode timing diagram  
Table 38. ECSPI Master mode timing parameters  
ID  
Parameter  
Symbol  
Min  
Max Unit  
CS1 ECSPIx_SCLK Cycle Time–Read  
ECSPIx_SCLK Cycle Time–Write  
tclk  
43  
15  
ns  
ns  
CS2 ECSPIx_SCLK High or Low Time–Read  
ECSPIx_SCLK High or Low Time–Write  
tSW  
21.5  
7
CS3 ECSPIx_SCLK Rise or Fall1  
tRISE/FALL  
tCSLH  
tSCS  
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS4 ECSPIx_SS_B pulse width  
Half ECSPIx_SCLK period  
CS5 ECSPIx_SS_B Lead Time (CS setup time)  
CS6 ECSPIx_SS_B Lag Time (CS hold time)  
CS7 ECSPIx_MOSI Propagation Delay (CLOAD = 20 pF)  
CS8 ECSPIx_MISO Setup Time  
Half ECSPIx_SCLK period - 4  
tHCS  
Half ECSPIx_SCLK period - 2  
tPDmosi  
tSmiso  
tHmiso  
tSDRY  
-1  
18  
0
CS9 ECSPIx_MISO Hold Time  
CS10 RDY to ECSPIx_SS_B Time2  
5
1
2
See specific I/O AC parameters Section 3.6, I/O AC parameters.”  
SPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 39  
Electrical characteristics  
3.9.1.2  
ECSPI Slave mode timing  
Figure 10 depicts the timing of ECSPI in Slave mode. Table 39 lists the ECSPI Slave mode timing  
characteristics.  
ECSPIx_SS_B  
CS5  
CS6  
CS2  
CS1  
CS4  
ECSPIx_SCLK  
ECSPIx_MISO  
CS2  
CS9  
CS8  
CS7  
ECSPIx_MOSI  
Figure 10. ECSPI Slave mode timing diagram  
Table 39. ECSPI Slave mode timing parameters  
ID  
Parameter  
Symbol  
Min  
Max Unit  
CS1 ECSPIx_SCLK Cycle Time–Read  
ECSPI_SCLK Cycle Time–Write  
tclk  
15  
43  
ns  
ns  
CS2 ECSPIx_SCLK High or Low Time–Read  
ECSPIx_SCLK High or Low Time–Write  
tSW  
7
21.5  
CS4 ECSPIx_SS_B pulse width  
tCSLH  
tSCS  
Half ECSPIx_SCLK period  
19  
ns  
ns  
ns  
ns  
ns  
ns  
CS5 ECSPIx_SS_B Lead Time (CS setup time)  
CS6 ECSPIx_SS_B Lag Time (CS hold time)  
CS7 ECSPIx_MOSI Setup Time  
5
5
4
4
4
tHCS  
tSmosi  
tHmosi  
tPDmiso  
CS8 ECSPIx_MOSI Hold Time  
CS9 ECSPIx_MISO Propagation Delay (CLOAD = 20 pF)  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
40 NXP Semiconductors  
Electrical characteristics  
3.9.2  
Ultra-high-speed SD/SDIO/MMC host interface (uSDHC) AC  
timing  
This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (single data  
rate) timing, eMMC4.4/4.41 (dual data rate) timing and SDR104/50 (SD3.0) timing.  
3.9.2.1  
SD/eMMC4.3 (single data rate) AC timing  
Figure 11 depicts the timing of SD/eMMC4.3, and Table 40 lists the SD/eMMC4.3 timing characteristics.  
SD4  
SD2  
SD1  
SD5  
SDx_CLK  
SD3  
SD6  
Output from uSDHC to card  
SDx_DATA[7:0]  
SD7  
SD8  
Input from card to uSDHC  
SDx_DATA[7:0]  
Figure 11. SD/eMMC4.3 timing  
Table 40. SD/eMMC4.3 interface timing specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
1
SD1 Clock Frequency (Low Speed)  
fPP  
0
0
400  
25/50  
20/52  
400  
kHz  
MHz  
MHz  
kHz  
ns  
2
Clock Frequency (SD/SDIO Full Speed/High Speed)  
Clock Frequency (MMC Full Speed/High Speed)  
Clock Frequency (Identification Mode)  
fPP  
3
fPP  
0
fOD  
tWL  
100  
7
SD2 Clock Low Time  
SD3 Clock High Time  
SD4 Clock Rise Time  
SD5 Clock Fall Time  
tWH  
tTLH  
tTHL  
7
ns  
3
ns  
3
ns  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)  
SD6 uSDHC Output Delay tOD 6.6  
3.6  
ns  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 41  
Electrical characteristics  
Table 40. SD/eMMC4.3 interface timing specification (continued)  
Parameter Symbols Min  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)  
ID  
Max  
Unit  
SD7 uSDHC Input Setup Time  
SD8 uSDHC Input Hold Time4  
tISU  
tIH  
2.5  
1.5  
ns  
ns  
1
2
In Low-Speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.  
In Normal (Full) -Speed mode for SD/SDIO card, clock frequency can be any value between 0 25 MHz. In High-speed mode,  
clock frequency can be any value between 0 50 MHz.  
3
4
In Normal (Full) -Speed mode for MMC card, clock frequency can be any value between 0 20 MHz. In High-speed mode,  
clock frequency can be any value between 0 52 MHz.  
To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.  
3.9.2.2  
eMMC4.4/4.41 (dual data rate) AC timing  
Figure 12 depicts the timing of eMMC4.4/4.41. Table 41 lists the eMMC4.4/4.41 timing characteristics.  
Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD).  
SD1  
SDx_CLK  
SD2  
SD2  
Output from eSDHCv3 to card  
SDx_DATA[7:0]  
......  
......  
SD3  
SD4  
Input from card to eSDHCv3  
SDx_DATA[7:0]  
Figure 12. eMMC4.4/4.41 timing  
Table 41. eMMC4.4/4.41 interface timing specification  
ID  
Parameter  
Symbols  
Card Input Clock  
Min  
Max  
Unit  
SD1  
SD1  
Clock Frequency (eMMC4.4/4.41 DDR)  
Clock Frequency (SD3.0 DDR)  
fPP  
fPP  
0
0
52  
50  
MHz  
MHz  
uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)  
uSDHC Output Delay tOD 2.7  
uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)  
SD2  
6.9  
ns  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
42 NXP Semiconductors  
Electrical characteristics  
Table 41. eMMC4.4/4.41 interface timing specification (continued)  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
SD3  
SD4  
uSDHC Input Setup Time  
uSDHC Input Hold Time  
tISU  
tIH  
2.4  
1.3  
ns  
ns  
3.9.2.3  
HS400 DDR AC timingeMMC5.0 only  
Figure 13 depicts the timing of HS400 mode, and Table 42 lists the HS400 timing characteristics. Be  
aware that only data is sampled on both edges of the clock (not applicable to CMD). The CMD  
input/output timing for HS400 mode is the same as CMD input/output timing for SDR104 mode. Check  
SD5, SD6, and SD7 parameters in Table 44 SDR50/SDR104 Interface Timing Specification for CMD  
input/output timing for HS400 mode.  
SD1  
SD3  
SD2  
SCK  
SD4  
SD5  
SD5  
SD4  
DAT0  
Output from  
uSDHC to eMMC  
DAT1  
...  
DAT7  
Strobe  
DAT0  
SD6  
SD7  
Input from  
eMMC to uSDHC  
DAT1  
...  
DAT7  
Figure 13. HS400 Mode timing  
Table 42. HS400 interface timing specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
SD1  
SD2  
SD3  
Clock frequency  
Clock low time  
Clock high time  
fPP  
tCL  
tCH  
0
200  
MHz  
ns  
0.46 x tCLK  
0.46 x tCLK  
0.54 x tCLK  
0.54 x tCLK  
ns  
uSDHC Output/Card Inputs DAT (Reference to SCK)  
Output skew from data of edge of SCK  
Output skew from edge of SCk to data  
tOSkew1  
tOSkew2  
0.45  
0.45  
ns  
ns  
SD4  
SD5  
uSDHC Input/Card Outputs DAT (Reference to Strobe)  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 43  
Electrical characteristics  
Table 42. HS400 interface timing specification (continued)  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
uSDHC input skew  
uSDHC hold skew  
tRQ  
0.45  
ns  
SD6  
SD7  
tRQH  
0.45  
ns  
3.9.2.4  
HS200 Mode timing  
Figure 14 depicts the timing of HS200 mode, and Table 43 lists the HS200 timing characteristics.  
SD1  
SD2  
SD3  
SCK  
SD4/SD5  
8-bit output from uSDHC to eMMC  
8-bit input from eMMC to uSDHC  
SD8  
Figure 14. HS200 mode timing  
iti  
Table 43. HS200 interface timing specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
SD1 Clock Frequency Period  
SD2 Clock Low Time  
tCLK  
tCL  
5
ns  
ns  
ns  
0.3 x tCLK 0.7 x tCLK  
0.3 x tCLK 0.7 x tCLK  
SD3 Clock High Time  
tCH  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)  
SD5 uSDHC Output Delay  
tOD  
-1.6  
1
ns  
ns  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1  
SD8 uSDHC Output Data Window  
tODW  
0.5 x tCLK  
1
HS200 is for 8 bits while SDR104 is for 4 bits.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
44 NXP Semiconductors  
Electrical characteristics  
3.9.2.5  
SDR50/SDR104 AC timing  
Figure 15 depicts the timing of SDR50/SDR104, and Table 44 lists the SDR50/SDR104 timing  
characteristics.  
SD1  
SD2  
SD3  
SCK  
SD4/SD5  
8-bit output from uSDHC to eMMC  
8-bit input from eMMC to uSDHC  
SD6  
SD7  
SD8  
Figure 15. SDR50/SDR104 timing  
Table 44. SDR50/SDR104 interface timing specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
SD1 Clock Frequency Period  
SD2 Clock Low Time  
tCLK  
tCL  
5
ns  
ns  
ns  
0.46 x tCLK 0.54 x tCLK  
0.46 x tCLK 0.54 x tCLK  
SD3 Clock High Time  
tCH  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)  
SD4 uSDHC Output Delay tOD -3  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)  
SD5 uSDHC Output Delay tOD -1.6  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in DDR50 (Reference to CLK)  
1
1
ns  
ns  
SD6 uSDHC Input Setup Time  
SD7 uSDHC Input Hold Time  
tISU  
tIH  
2.4  
1.4  
ns  
ns  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)1  
SD8 uSDHC Output Data Window  
tODW  
0.5 x tCLK  
ns  
1
Data window in SDR100 mode is variable.  
3.9.2.6  
Bus operation condition for 3.3 V and 1.8 V signaling  
Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of SDR104/SDR50  
mode is 1.8 V. The DC parameters for the NVCC_SD1, NVCC_SD2 and NVCC_SD3 supplies are  
identical to those shown in Table 26, "GPIO DC parameters," on page 30.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors  
45  
Electrical characteristics  
3.9.3  
Ethernet controller (ENET) AC electrical specifications  
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive  
at timing specs/constraints for the physical interface.  
3.9.3.1  
RMII mode timing  
Figure 16 shows RMII mode timings. Table 45 describes the timing parameters (M16–M21) shown in the  
figure.  
M16  
M17  
ENET_CLK (input)  
M18  
ENET_TX_DATA (output)  
ENET_TX_EN  
M19  
ENET_RX_EN (input)  
ENET_RX_DATA[1:0]  
ENET_RX_ER  
M20  
M21  
Figure 16. RMII mode signal timing diagram  
Table 45. RMII signal timing  
ID  
M16  
Characteristic  
Min.  
Max.  
Unit  
ENET_CLK pulse width high  
ENET_CLK pulse width low  
35%  
35%  
4
65%  
65%  
ENET_CLK period  
M17  
M18  
M19  
M20  
ENET_CLK period  
ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid  
ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid  
ns  
ns  
ns  
15  
ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to  
ENET_CLK setup  
4
M21  
ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER hold  
2
ns  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
46 NXP Semiconductors  
Electrical characteristics  
Comment  
Table 46. RMII signal mapping  
Pad name  
Description  
Mode  
Alt Mode  
Direction  
ENET_MDC  
ENET_MDIO  
ENET_TD3  
ENET_TD2  
enet1.MDC  
enet1.MDIO  
RGMII.TD3  
RMII/RGMII  
RMII/RGMII  
RGMII  
ALT0  
ALT0  
ALT0  
ALT0  
O
I/O  
O
Only used for RGMII  
RMII.CLK;  
RGMII.TD2  
RMII/RGMII  
I/O  
Used as RMII clock and RGMII data, there  
are two RGMII clock schemes.  
• MAC generate output 50M reference  
clock for PHY, and MAC also uses this  
50M clock.  
• MAC uses external 50M clock.  
ENET_TD1  
ENET_TD0  
RMII and  
RGMII.TD1  
RMII/RGMII  
RMII/RGMII  
RMII/RGMII  
RGMII  
ALT0  
ALT0  
O
O
O
O
RMII and  
RGMII.TD0  
ENET_TX_CTL  
ENET_TXC  
RMII.TX_EN;  
RGMII.TX_CTL  
ALT0  
RMII.TX_ERR;  
RGMII.TX_CLK  
ALT0/ALT1  
For RMII, ENET_TXC works as  
RMII.TX_ERR, need to work in the ALT1  
mode.  
For RGMII, ENET_TXC works as  
RGMII_TX_CLK, need to work in the ALT0  
mode.  
ENET_RX_CTL  
ENET_RXC  
RMII.RX_EN  
(CRS_DV);  
RGMII.RX_CTL  
RMII/RGMII  
RGMII  
ALT0  
I
I
RMII.RX_ERR;  
RGMII.RX_CLK  
ALT0/ALT1  
For RMII, ENET_RXC works as  
RMII.RX_ERR, need to work in the ALT1  
mode.  
For RGMII, ENET_RXC works as  
RGMII_RX_CLK, need to work in the ALT0  
mode.  
ENET_RD0  
ENET_RD1  
RMII and  
RGMII.RD0  
RMII/RGMII  
RMII/RGMII  
ALT0  
ALT0  
I
I
RMII and  
RGMII.RD1  
ENET_RD2  
ENET_RD3  
GPIO1_IO06  
GPIO1_IO07  
RGMII RD2  
RGMII RD3  
enet1.MDC  
enet1.MDIO  
RGMII  
RGMII  
ALT0  
ALT0  
ALT1  
ALT1  
I
I
RMII/RGMII  
RMII/RGMII  
O
I/O  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 47  
Electrical characteristics  
Table 46. RMII signal mapping (continued)  
Pad name  
Description  
Mode  
Alt Mode  
Direction  
Comment  
I2C1_SCL  
I2C1_SDA  
enet1.MDC  
enet1.MDIO  
RMII/RGMII  
RMII/RGMII  
ALT1  
ALT1  
ALT1  
O
I/O  
I
GPIO1_IO08  
enet1.1588_EVE RMII/RGMII  
NT0_IN  
Capture/compare block input/output event  
bus signal. When configured for capture and  
a rising edge is detected, the current timer  
value is latched and transferred into the  
corresponding ENET_TCCRn register for  
inspection by software. When configured for  
comparison, the corresponding signal  
1588_EVENT is asserted for one cycle  
when the timer reaches the comparsion  
value programmed in the register  
ENET_TCCRn. An interrupt or DMA request  
can be triggered if the corresponding bit in  
the ENET_TCSRn[TIE] or  
ENET_TCSRn[TDRE] is set.  
GPIO1_IO00  
ENET_PHY_REF  
_CLK_ROOT  
RGMII  
ALT1  
O
Reference clock is for PHY.  
3.9.3.2  
RGMII signal switching specifications  
The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver  
devices.  
1
Table 47. RGMII signal switching specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
2
Tcyc  
Clock cycle duration  
7.2  
-500  
1
8.8  
500  
2.6  
85  
ns  
ps  
ns  
%
3
TskewT  
Data to clock output skew at transmitter  
Data to clock input skew at receiver  
Duty cycle for Gigabit  
3
TskewR  
Duty_G4  
Duty_T4  
Tr/Tf  
45  
Duty cycle for 10/100T  
40  
90  
%
Rise/fall time (20–80%)  
0.98  
ns  
1
The timings assume the following configuration:  
DDR_SEL = (11)b  
DSE (drive-strength) = (111)b  
2
3
For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns 40 ns and 40 ns 4 ns respectively.  
For all versions of RGMII prior to 2.0; this implies that PC board design will require clocks to be routed such that an additional  
trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100, the Max value  
is unspecified.  
4
Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long  
as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned  
between.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
48 NXP Semiconductors  
Electrical characteristics  
2'-))?48# ꢀAT TRANSMITTERꢁ  
2'-))?48$N ꢀN ꢂ ꢃ TO ꢄ ꢁ  
4SKEW4  
2'-))?48?#4,  
48%.  
48%22  
4SKEW2  
2'-))?48# ꢀAT RECEIVERꢁ  
Figure 17. RGMII transmit signal timing diagram original  
2'-))?28# ꢀAT TRANSMITTERꢁ  
4SKEW4  
2'-))?28$N ꢀN ꢂ ꢃ TO ꢄ ꢁ  
2'-))?28?#4,  
28$6  
28%22  
4SKEW2  
2'-))?28# ꢀAT RECEIVERꢁ  
Figure 18. RGMII receive signal timing diagram original  
)NTERNAL DELAY  
2'-))?28# ꢀSOURCE OF DATAꢁ  
4SETUP 4  
4 HOLD 4  
2'-))?28$N ꢀN ꢂ ꢃ TO ꢄ ꢁ  
28$6  
28%22  
2'-))?28?#4,  
4 SETUP 2  
4 HOLD 2  
2'-))?28# ꢀAT RECEIVERꢁ  
Figure 19. RGMII receive signal timing diagram with internal delay  
3.9.4  
General-purpose media interface (GPMI) timing  
The GMPI controller of the i.MX 8M Dual / 8M QuadLite / 8M Quad processor is a flexible interface  
NAND Flash controller with 8-bit data width, up to 200 MB/s I/O speed and individual chip select.  
It supports Asynchronous Timing mode, Source Synchronous Timing mode and Toggle Timing mode  
separately, as described in the following subsections.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors  
49  
Electrical characteristics  
3.9.4.1  
Asynchronous mode AC timing (ONFI 1.0 compatible)  
Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The  
maximum I/O speed of GPMI in Asynchronous mode is about 50 MB/s. Figure 20 through Figure 23  
depicts the relative timing between GPMI signals at the module level for different operations under  
Asynchronous mode. Table 48 describes the timing parameters (NF1–NF17) that are shown in the figures.  
NF2  
NF1  
.!.$?#,%  
NF3  
NF4  
.!.$?#%ꢃ?"  
.!.$?7%?"  
NF5  
.!.$?!,%  
NF6  
NF8  
Command  
NF7  
NF9  
.!.$?$!4!XX  
Figure 20. Command Latch cycle timing diagram  
NF1  
.!.$?#,%  
NF3  
.!.$?#%ꢃ?"  
.!.$?7%?"  
NF10  
NF5  
NF11  
NF7  
.!.$?!,%  
NF6  
NF8  
Address  
NF9  
NAND_DATAxx  
Figure 21. Address Latch cycle timing diagram  
NF1  
.!.$?#,%  
.!.$?#%ꢃ?"  
.!.$?7%?"  
NF3  
NF10  
NF5  
NF11  
NF7  
NF6  
NF8  
Data to NF  
.!.$?!,%  
NF9  
.!.$?$!4!XX  
Figure 22. Write Data Latch cycle timing diagram  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
50  
NXP Semiconductors  
Electrical characteristics  
.!.$?#,%  
.!.$?#%ꢃ?"  
.!.$?2%?"  
NF14  
NF13  
NF15  
.!.$?2%!$9?"  
NF12  
NF16  
NF17  
Data from NF  
.!.$?$!4!XX  
Figure 23. Read Data Latch cycle timing diagram (Non-EDO Mode)  
.!.$?#,%  
.!.$?#%ꢃ?"  
NF14  
NF13  
NF15  
.!.$?2%?"  
.!.$?2%!$9?"  
NF12  
NF17  
NF16  
NAND_DATAxx  
Data from NF  
Figure 24. Read Data Latch cycle timing diagram (EDO mode)  
1
Table 48. Asynchronous mode timing parameters  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min.  
(AS + DS) T - 0.12 [see notes2,3  
DH T - 0.72 [see note2]  
Max.  
NF1  
NF2  
NF3  
NF4  
NF5  
NF6  
NF7  
NF8  
NF9  
NAND_CLE setup time  
NAND_CLE hold time  
NAND_CE0_B setup time  
NAND_CE0_B hold time  
NAND_WE_B pulse width  
NAND_ALE setup time  
NAND_ALE hold time  
Data setup time  
tCLS  
tCLH  
tCS  
]
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(AS + DS + 1) T [see notes3,2  
(DH+1) T - 1 [see note2]  
DS T [see note2]  
]
tCH  
tWP  
tALS  
tALH  
tDS  
(AS + DS) T - 0.49 [see notes3,2  
DH T - 0.42 [see note2]  
DS T - 0.26 [see note2]  
DH T - 1.37 [see note2]  
(DS + DH) T [see note2]  
DH T [see note2]  
]
Data hold time  
tDH  
NF10 Write cycle time  
tWC  
tWH  
tRR4  
tRP  
NF11 NAND_WE_B hold time  
NF12 Ready to NAND_RE_B low  
NF13 NAND_RE_B pulse width  
NF14 READ cycle time  
(AS + 2) T [see 3,2  
]
DS T [see note2]  
(DS + DH) T [see note2]  
DH T [see note2]  
tRC  
NF15 NAND_RE_B high hold time  
tREH  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 51  
Electrical characteristics  
1
Table 48. Asynchronous mode timing parameters (continued)  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min.  
Max.  
NF16 Data setup on read  
NF17 Data hold on read  
tDSR  
tDHR  
(DS T -0.67)/18.38 [see  
ns  
ns  
notes5,6  
]
0.82/11.83 [see notes5,6  
]
1
GPMI’s Asynchronous mode output timing can be controlled by the module’s internal registers  
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.  
This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.  
2
3
4
5
6
AS minimum value can be 0, while DS/DH minimum value is 1.  
T = GPMI clock period -0.075 ns (half of maximum p-p jitter).  
NF12 is guaranteed by the design.  
Non-EDO mode.  
EDO mode, GPMI clock 100 MHz  
(AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0).  
In EDO mode (Figure 23), NF16/NF17 are different from the definition in non-EDO mode (Figure 22).  
They are called tREA/tRHOH (RE# access time/RE# HIGH to output hold). The typical values for them  
are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI samples  
NAND_DATAxx at the rising edge of delayed NAND_RE_B provided by an internal DPLL. The delay  
value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX 8M Dual /  
8M QuadLite / 8M Quad Applications Processor Reference Manual [IMX8MDQLQRM]). The typical  
value of this control register is 0x8 at 50 MT/s EDO mode. But if the board delay is big enough and cannot  
be ignored, the delay value should be made larger to compensate the board delay.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
52  
NXP Semiconductors  
Electrical characteristics  
3.9.4.2  
Source synchronous mode AC timing (ONFI 2.x compatible)  
Figure 25 to Figure 27 show the write and read timing of Source Synchronous mode.  
NF19  
NF18  
.!.$?#%?"  
NF23  
NAND_CLE  
NF26  
NF25  
NF24  
NAND_ALE  
NF25 NF26  
NAND_WE/RE_B  
NF22  
NAND_CLK  
NAND_DQS  
NAND_DQS  
Output enable  
NF20  
NF20  
NF21  
NF21  
CMD  
ADD  
NAND_DATA[7:0]  
NAND_DATA[7:0]  
Output enable  
Figure 25. Source Synchronous mode command and address timing diagram  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 53  
Electrical characteristics  
NF19  
NF18  
.!.$?#%ꢃ?"  
.!.$?#,%  
NF23  
NF23  
NF24  
NF24  
NF25  
NF25  
NF26  
NF26  
.!.$?!,%  
NAND_WE/RE_B  
NF22  
.!.$?#,+  
.!.$?$13  
NF27  
NF27  
.!.$?$13  
Output enable  
NF29  
NF29  
.!.$?$1;ꢅꢆꢃ=  
NF28  
NF28  
.!.$?$1;ꢅꢆꢃ=  
Output enable  
Figure 26. Source Synchronous mode data write timing diagram  
NF18  
NF19  
.!.$?#%?"  
.!.$?#,%  
NF24  
NF24  
NF23  
NF23  
NF26  
NF26  
NF25  
NF25  
NAND_ALE  
NF25  
.!.$?7%ꢇ2%  
NF25  
NF22  
NF26  
.!.$?#,+  
.!.$?$13  
.!.$?$13  
/UTPUT ENABLE  
.!.$?$!4!;ꢅꢆꢃ=  
.!.$?$!4!;ꢅꢆꢃ=  
/UTPUT ENABLE  
Figure 27. Source Synchronous mode data read timing diagram  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
54 NXP Semiconductors  
Electrical characteristics  
.!.$?$13  
NF30  
.!.$?$!4!;ꢅꢆꢃ=  
D0  
D1  
D2  
D3  
NF30  
NF31  
NF31  
Figure 28. NAND_DQS/NAND_DQ read valid window  
1
Table 49. Source Synchronous mode timing parameters  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min.  
Max.  
NF18 NAND_CE0_B access time  
NF19 NAND_CE0_B hold time  
tCE  
tCH  
CE_DELAY T - 0.79 [see note2]  
0.5 tCK - 0.63 [see note2]  
0.5 tCK - 0.05  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
NF20 Command/address NAND_DATAxx setup time  
NF21 Command/address NAND_DATAxx hold time  
NF22 clock period  
tCAS  
tCAH  
tCK  
0.5 tCK - 1.23  
NF23 preamble delay  
tPRE  
tPOST  
tCALS  
tCALH  
tDQSS  
PRE_DELAY T - 0.29 [see note2]  
POST_DELAY T - 0.78 [see note2]  
0.5 tCK - 0.86  
NF24 postamble delay  
NF25 NAND_CLE and NAND_ALE setup time  
NF26 NAND_CLE and NAND_ALE hold time  
NF27 NAND_CLK to first NAND_DQS latching transition  
NF28 Data write setup  
0.5 tCK - 0.37  
T - 0.41 [see note2]  
0.25 tCK - 0.35  
NF29 Data write hold  
0.25 tCK - 0.85  
NF30 NAND_DQS/NAND_DQ read setup skew  
NF31 NAND_DQS/NAND_DQ read hold skew  
2.06  
1.95  
1
GPMI’s Source Synchronous mode output timing can be controlled by the module’s internal registers  
GPMI_TIMING2_CE_DELAY,GPMI_TIMING_PREAMBLE_DELAY,GPMI_TIMING2_POST_DELAY.ThisACtimingdepends  
on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings.  
2
T = tCK(GPMI clock period) –0.075 ns (half of maximum p-p jitter).  
For DDR Source Synchronous mode, Figure 28 shows the timing diagram of  
NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 0.85 ns (max) and 1 ns  
(max) for tQHS at 200 MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of an  
delayed NAND_DQS signal, which can be provided by an internal DPLL. The delay value can be  
controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI  
chapter of the i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processor Reference Manual  
[IMX8MDQLQRM]). Generally, the typical delay value of this register is equal to 0x7 which means 1/4  
clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value  
should be made larger to compensate the board delay.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors  
55  
Electrical characteristics  
3.9.4.3  
ONFI NV-DDR2 mode (ONFI 3.2 compatible)  
Command and address timing  
3.9.4.3.1  
ONFI 3.2 mode command and address timing is the same as ONFI 1.0 compatible Async mode AC timing.  
See Section 3.9.4.1, Asynchronous mode AC timing (ONFI 1.0 compatible),” for details.  
3.9.4.3.2  
Read and write timing  
ONFI 3.2 mode read and write timing is the same as Toggle mode AC timing. See Section 3.9.4.4, Toggle  
mode AC Timing,” for details.  
3.9.4.4  
Toggle mode AC Timing  
3.9.4.4.1  
Command and address timing  
NOTE  
Toggle mode command and address timing is the same as ONFI 1.0  
compatible Asynchronous mode AC timing. See Section 3.9.4.1,  
Asynchronous mode AC timing (ONFI 1.0 compatible),” for details.  
3.9.4.4.2  
Read and write timing  
Figure 29. Toggle mode data write timing  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
56 NXP Semiconductors  
Electrical characteristics  
DEV?CLK  
.!.$?#%X?"  
.& ꢈꢉ  
.!.$?#,%  
.!.$?!,%  
ꢈ T #+  
.&ꢊꢋ  
.!.$?7%?"  
.!.$?2%?"  
ꢈ T #+  
.& ꢊꢄ  
ꢈ T #+  
ꢈ T #+  
ꢈ T #+  
.!.$?$13  
.!.$?$!4!;ꢅꢆꢃ=  
Figure 30. Toggle mode data read timing  
1
Table 50. Toggle mode timing parameters  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min.  
Max.  
NF1 NAND_CLE setup time  
NF2 NAND_CLE hold time  
NF3 NAND_CE0_B setup time  
NF4 NAND_CE0_B hold time  
NF5 NAND_WE_B pulse width  
NF6 NAND_ALE setup time  
NF7 NAND_ALE hold time  
tCLS  
tCLH  
tCS  
(AS + DS) T - 0.12 [see note2s,3]  
DH T - 0.72 [see note2]  
(AS + DS) T - 0.58 [see notes,2]  
DH T - 1 [see note2]  
tCH  
tWP  
tALS  
tALH  
DS T [see note2]  
(AS + DS) T - 0.49 [see notes,2]  
DH T - 0.42 [see note2]  
DS T - 0.26 [see note2]  
DH T - 1.37 [see note2]  
NF8 Command/address NAND_DATAxx setup time tCAS  
NF9 Command/address NAND_DATAxx hold time  
NF18 NAND_CEx_B access time  
NF22 clock period  
tCAH  
tCE  
CE_DELAY T [see notes4,2  
]
ns  
ns  
ns  
tCK  
NF23 preamble delay  
tPRE PRE_DELAY T [see notes5,2  
]
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 57  
Electrical characteristics  
1
Table 50. Toggle mode timing parameters (continued)  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min.  
Max.  
NF24 postamble delay  
tPOST POST_DELAY T +0.43 [see  
ns  
note2]  
NF28 Data write setup  
NF29 Data write hold  
tDS6  
tDH6  
tDQSQ7  
tQHS7  
0.25 tCK - 0.32  
ns  
ns  
ns  
ns  
0.25 tCK - 0.79  
NF30 NAND_DQS/NAND_DQ read setup skew  
NF31 NAND_DQS/NAND_DQ read hold skew  
3.18  
3.27  
1
The GPMI toggle mode output timing can be controlled by the module’s internal registers  
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.  
This AC timing depends on these register’s settings. In the table, AS/DS/DH represents each of these settings.  
2
3
4
AS minimum value can be 0, while DS/DH minimum value is 1.  
T = tCK (GPMI clock period) -0.075 ns (half of maximum p-p jitter).  
CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is guaranteed by the design. Read/Write operation is started  
with enough time of ALE/CLE assertion to low level.  
5
6
7
PRE_DELAY+1 (AS+DS)  
Shown in Figure 29.  
Shown in Figure 30.  
For DDR Toggle mode, Figure 28 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid  
window. The typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI  
samples NAND_DATA[7:0] at both the rising and falling edges of a delayed NAND_DQS signal, which  
is provided by an internal DPLL. The delay value of this register can be controlled by the GPMI register  
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 8M Dual / 8M  
QuadLite / 8M Quad Applications Processor Reference Manual [IMX8MDQLQRM]). Generally, the  
typical delay value is equal to 0x7, which means a 1/4 clock cycle delay is expected. But if the board delay  
is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay.  
3.9.5  
HDMI 2.0 Tx module timing parameters  
See the following specifications:  
HDMI 2.0a specification (HDMI.org)  
DisplayPort 1.3 standard (VESA.org)  
— DP supports 1.6 GHz (RBR), 2.7 GHz (HBR), and 5.4 GHz (HBR2) rates. Those rates are  
managed in API (Host).  
— RBR supports 1080p60 (RGB 8b), HBR supports 4kp30 (RGB 8b) and HBR2 supports 4kp60  
(RGB 8b).  
See bandwidth details below.  
Effective bandwidth per rate with 4 lanes:  
— RBR: 1.62 x 4 x 8 / 10 = 5.184 Gbps  
— HBR: 2.7 x 4 x 8 / 10 = 8.64 Gbps  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
58 NXP Semiconductors  
Electrical characteristics  
— HBR2: 1.62 x4 x 8 / 10 = 17.28 Gbps  
Bandwidth required per resolution (CEA-861-F):  
— 1920 x 1080 (24 b/px) 60 fps: 3.56 Gbps  
— 3840 x 2160 (24 b/px) 30 fps: 7.13 Gbps  
— 3840 x 2160 (24 b/px) 30 fps: 14.26 Gbps  
Embedded DisplayPort 1.4 standard (VESA.org)  
— eDP link rates: R216 (2.16 Gbps), R243 (2.43 Gbps), R324 (3.24 Gbps), and R432 (4.32 Gbps)  
— Fast Link Training is also supported  
DDC link requires external pull-up resistors to be connected to a 5 V supply. The following table provides  
the range for those pull-ups.  
Table 51. Pull-up resistors for DDC link  
Ball Name  
Min  
Typ  
Max  
Unit  
HDMI_TX0_DDC_SCL  
HDMI_TX0_DDC_SDA  
1.5  
1.5  
2
2
K  
K  
3.9.6  
I2C bus characteristics  
The Inter-Integrated Circuit (I2C) provides functionality of a standard I2C master and slave. The I2C is  
designed to be compatible with the I2C Bus Specification, version 2.1, by Philips Semiconductor (now  
NXP Semiconductors).  
3.9.7  
MIPI D-PHY timing parameters  
This section describes MIPI D-PHY electrical specifications.  
3.9.7.1 MIPI HS-TX specifications  
Table 52. MIPI high-speed transmitter DC specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
1
VCMTX  
High Speed Transmit Static Common Mode Voltage  
VCMTX mismatch when Output is Differential-1 or Differential-0  
High Speed Transmit Differential Voltage  
150  
200  
250  
3
mV  
mV  
mV  
mV  
mV  
|VCMTX (1,0)  
|
1
|VOD  
|
140  
200  
270  
12  
|VOD  
|
VOD mismatch when Output is Differential-1 or Differential-0  
High Speed Output High Voltage  
1
VOHHS  
ZOS  
360  
62.5  
Single Ended Output Impedance  
40  
50  
ZOS  
Single Ended Output Impedance Mismatch  
10  
%
1
Value when driving into load impedance anywhere in the ZID range.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 59  
Electrical characteristics  
Symbol  
Table 53. MIPI high-speed transmitter AC specifications  
Parameter  
Min  
Typ  
Max  
Unit  
VCMTX(HF)  
VCMTX(LF)  
Common-level variations above 450 MHz  
Common-level variation between 50-450 MHz  
Rise Time and Fall Time (20% to 80%)  
8
mVRMS  
mVPEAK  
ps  
10  
1
tR and tF  
160  
0.3 UI  
1
UI is the long-term average unit interval.  
3.9.7.2  
MIPI LP-TX specifications  
Table 54. MIPI low-power transmitter DC specifications  
Symbol  
Parameter  
Thevenin Output High Level  
Min  
Typ  
Max  
Unit  
1
VOH  
1.1  
-50  
110  
1.2  
1.3  
50  
V
mV  
VOL  
Thevenin Output Low Level  
2
ZOLP  
Output Impedance of Low Power Transmitter  
1
2
This specification can only be met when limiting the core supply variation from 1.1 V to 1.3 V.  
Although there is no specified maximum for ZOLP, the LP transmitter output impedance ensures the TRLP/TFLP specification  
is met.  
Table 55. MIPI low-power transmitter AC specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
1
TRLP /TFLP  
15% to 85% Rise Time and Fall Time  
30% to 85% Rise Time and Fall Time  
40  
25  
35  
ns  
ns  
ns  
1,2,3  
TREOT  
TLP-PULSE-TX  
4
Pulse width of the LP exclusive-OR clock: First LP exclusive-OR  
clock pulse after Stop state or last pulse before Stop state  
Pulse width of the LP exclusive-OR clock: All other pulses  
Period of the LP exclusive-OR clock  
Slew Rate @ CLOAD = 0 pF  
20  
90  
30  
30  
30  
30  
0
ns  
TLP-PER-TX  
ns  
1,5,6,7  
V/tSR  
500  
200  
150  
100  
70  
mV/ns  
mV/ns  
mV/ns  
mV/ns  
pF  
Slew Rate @ CLOAD = 5 pF  
Slew Rate @ CLOAD = 20 pF  
Slew Rate @ CLOAD = 70 pF  
CLOAD  
Load Capacitance  
1
2
CLOAD includes the low equivalent transmission line capacitance of TX and RX are assumed to always be < 10 pF. The  
distributed line capacitance can be up to 50 pF for a transmission line with 2 ns delay.  
The rise-time of TREOT starts from the HS common-level at the moment when the differential amplitude drops below 70 mV,  
due to stopping of the differential drive.  
3
4
With an additional load capacitance CCM between 0 to 60 pF on the termination center, tap at RX side of the lane.  
This parameter value can be lower than TLPX, due to differences in rise vs. fall signal slopes, trip levels, and mismatches  
between Dp and Dn LP transmitters. Any LP exclusive-OR pulse observed during HS EoT (transition from HS level to LP-11)  
is glitch behavior as described in Low-Power Receiver section.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
60 NXP Semiconductors  
Electrical characteristics  
5
6
7
When the output voltage is between 15% and 85% of the fully settled LP signal levels.  
Measured as average across any 50 mV segment of the output signal transition.  
This value represents a corner point in a piecewise linear curve.  
3.9.7.3  
MIPI LP-RX specifications  
Table 56. MIPI low power receiver DC specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VIH  
VIL  
Logic 1 input voltage  
880  
1.3  
550  
300  
mV  
mV  
mV  
mV  
Logic 0 input voltage, not in ULP state  
Logic 0 input voltage, ULP state  
Input hysteresis  
VIL-ULPS  
VHYST  
25  
Table 57. MIPI low power receiver AC specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
1,2  
eSPIKE  
Input pulse rejection  
20  
0
300  
0
V.ps  
ns  
3
TMIN-RX  
Minimum pulse width response  
Peak Interference amplitude  
Interference frequency  
VINT  
fINT  
200  
mV  
450  
MHz  
1
2
3
Time-voltage integration of a spike above VIL when in LP-0 state or below VIH when in LP-1 state.  
An impulse below this value will not change the receiver state.  
An input pulse greater than this value shall toggle the output.  
3.9.7.4  
MIPI LP-CD specifications  
Table 58. MIPI contention detector DC specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VIHCD  
VILCD  
Logic 1 contention threshold  
Logic 0 contention threshold  
450  
mV  
mV  
200  
3.9.7.5  
MIPI DC specifications  
Table 59. MIPI input characteristics DC specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VPIN  
Pad signal voltage range  
Pin leakage current  
Ground shift  
-50  
-30  
-50  
1350  
30  
mV  
A  
mV  
1
ILEAK  
VGNDSH  
50  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 61  
Electrical characteristics  
Table 59. MIPI input characteristics DC specifications (continued)  
2
VPIN(absmax)  
Maximum pin voltage level  
-0.15  
1.45  
20  
V
3
TVPIN(absmax)  
Maximum transient time above VPIN(max) or below VPIN(min)  
ns  
1
When the pad voltage is within the signal voltage range between VGNDSH(min) to VOH + VGNDSH(max) and the Lane Module is  
in LP receive mode.  
2
3
This value includes ground shift.  
The voltage overshoot and undershoot beyond the VPIN is only allowed during a single 20 ns window after any LP-0 to LP-1  
transition or vice versa. For all other situations it must stay within the VPIN range.  
3.9.8  
PCIe PHY parameters  
The PCIe interface is designed to be compatible with PCIe specification Gen2 x1 lane and supports the  
PCI Express 1.1/2.0 standard.  
3.9.8.1  
PCIEx_RESREF reference resistor connection  
The impedance calibration process requires connection of reference resistor 200  1% precision resistor  
on PCIEx_RESREF pads to ground. It is used for termination impedance calibration.  
3.9.9  
Pulse width modulator (PWM) timing parameters  
This section describes the electrical information of the PWM. The PWM can be programmed to select one  
of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before  
being input to the counter. The output is available at the pulse-width modulator output (PWMO) external  
pin.  
Figure 31 depicts the timing of the PWM, and Table 60 lists the PWM timing parameters.  
0ꢈ  
0ꢊ  
07-N?/54  
Figure 31. PWM timing  
Table 60. PWM output timing parameters  
ID  
Parameter  
Min  
Max  
Unit  
PWM Module Clock Frequency  
PWM output pulse width high  
PWM output pulse width low  
0
ipg_clk (66 MHz)  
MHz  
ns  
P1  
P2  
15  
15  
ns  
3.9.10 Quad SPI (QSPI) timing parameters  
This section describes the electrical information for QSPI.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
62 NXP Semiconductors  
Electrical characteristics  
Measurement is with a load of 35 pF on SCK and SIO pins and an input slew rate of 1 V/ns.  
3.9.10.1 SDR Mode  
QSPIx_SCLK  
TIS  
TIH  
TIS  
TIH  
QSPIx_DATA[0:3]  
Figure 32. QuadSPI input/read timing (SDR mode with internal sampling)  
Table 61. QuadSPI input timing (SDR mode with internal sampling)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
TIS  
TIH  
Setup time for incoming data  
8.67  
0
ns  
ns  
Hold time requirement for incoming data  
1
2
3
4
QSPIx_SCLK  
QSPIx_DATA[0:3]  
QSPIx_DQS  
TIS  
TIH  
TIS  
TIH  
Figure 33. QuadSPI input/read timing (SDR mode with loopback DQS sampling)  
Table 62. QuadSPI input/read timing (SDR mode with loopback DQS sampling)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
TIS  
TIH  
Setup time for incoming data  
2
1
ns  
ns  
Hold time requirement for incoming data  
NOTE  
For internal sampling, the timing values assume using sample point 0,  
that is QuadSPIx_SMPR[SDRSMP] = 0.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 63  
Electrical characteristics  
For loopback DQS sampling, the data strobe is output to the DQS pad  
together with the serial clock. The data strobe is looped back from DQS  
pad and used to sample input data.  
QSPIx_SCLK  
QSPIx_CS  
TCSH  
TCSS  
TCK  
TDVO  
TDVO  
QSPIx_SIO  
TDHO  
TDHO  
Figure 34. QuadSPI output/write timing (SDR mode)  
Table 63. QuadSPI output/write timing (SDR mode)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
TDVO  
TDHO  
TCK  
TCSS  
TCSH  
Output data valid time  
-0.5  
10  
3
2
ns  
ns  
ns  
ns  
ns  
Output data hold time  
SCK clock period  
Chip select output setup time  
Chip select output hold time  
3
NOTE  
and T are configured by the QuadSPIx_FLSHCR register; the default  
T
css  
csh  
value of 3 is shown on the timing. See the i.MX 8M Dual / 8M QuadLite /  
8M Quad Applications Processor Reference Manual (IMX8MDQLQRM)  
for more details.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
64 NXP Semiconductors  
Electrical characteristics  
3.9.10.2 DDR mode  
QSPIx_SCLK  
TIS  
TIH  
TIS  
TIH  
QSPIx_DATA[0:3]  
Figure 35. QuadSPI input/read timing (DDR mode with internal sampling)  
Table 64. QuadSPI input/read timing (DDR mode with internal sampling)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
TIS  
TIH  
Setup time for incoming data  
8.67  
0
ns  
ns  
Hold time requirement for incoming data  
1
2
3
4
QSPIx_SCLK  
QSPIx_DATA[0:3]  
QSPIx_DQS  
TIS  
TIH  
TIS  
TIH  
Figure 36. QuadSPI input/read timing (DDR mode with loopback DQS sampling)  
Table 65. QuadSPI input/read timing (DDR mode with loopback DQS sampling)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
TIS  
TIH  
Setup time for incoming data  
2
1
ns  
ns  
Hold time requirement for incoming data  
NOTE  
For internal sampling, the timing values assume using sample point 0,  
that is QuadSPIx_SMPR[SDRSMP] = 0.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 65  
Electrical characteristics  
For loopback DQS sampling, the data strobe is output to the DQS pad  
together with the serial clock. The data strobe is looped back from DQS  
pad and used to sample input data.  
1
2
QSPIx_SCLK  
QSPIx_CS  
TCSS  
TCK  
TCSH  
TDVO  
TDVO  
QSPIx_SIO  
TDHO  
TDHO  
Figure 37. QuadSPI output/write timing (DDR mode)  
Table 66. QuadSPI output/write timing (DDR mode)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
(0.25 x TSCLK) + 2 ns  
TDVO  
TDHO  
TCK  
TCSS  
TCSH  
Output data valid time  
Output data hold time  
SCK clock period  
(0.25 x TSCLK) - 0.5  
ns  
ns  
20  
3
Chip select output setup time  
Chip select output hold time  
SCK cycle(s)  
ns  
3
NOTE  
and T are configured by the QuadSPIx_FLSHCR register; the default value of 3 is shown on the  
T
css  
csh  
timing. See the i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processor Reference Manual  
(IMX8MDQLQRM) for more details.  
3.9.11 SAI/I2S switching specifications  
This section provides theAC timings for the SAI in Master (clocks driven) and Slave (clocks input) modes.  
All timings are given for non inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP]  
= 0) and non inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock  
and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal  
(SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below.  
Table 67. Master mode SAI timing  
Num  
Characteristic  
SAI_MCLK cycle time  
Min  
Max  
Unit  
S1  
S2  
S3  
20  
ns  
SAI_MCLK pulse width high/low  
SAI_BCLK cycle time  
40%  
40  
60%  
MCLK period  
ns  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
66 NXP Semiconductors  
Electrical characteristics  
Table 67. Master mode SAI timing (continued)  
Characteristic Min  
SAI_BCLK pulse width high/low  
Num  
Max  
Unit  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
40%  
0
60%  
15  
BCLK period  
SAI_BCLK to SAI_FS output valid  
SAI_BCLK to SAI_FS output invalid  
SAI_BCLK to SAI_TXD valid  
ns  
ns  
ns  
ns  
ns  
ns  
0
15  
SAI_BCLK to SAI_TXD invalid  
SAI_RXD/SAI_FS input setup before SAI_BCLK  
SAI_RXD/SAI_FS input hold after SAI_BCLK  
15  
0
Figure 38. SAI timing—Master modes  
Table 68. Slave mode SAI timing  
Num  
Characteristic  
SAI_BCLK cycle time (input)  
Min  
Max  
Unit  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
40  
40%  
10  
2
ns  
SAI_BCLK pulse width high/low (input)  
SAI_FS input setup before SAI_BCLK  
SAI_FA input hold after SAI_BCLK  
60%  
BCLK period  
ns  
ns  
ns  
ns  
ns  
ns  
SAI_BCLK to SAI_TXD/SAI_FS output valid  
SAI_BCLK to SAI_TXD/SAI_FS output invalid  
SAI_RXD setup before SAI_BCLK  
0
20  
10  
2
SAI_RXD hold after SAI_BCLK  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 67  
Electrical characteristics  
Figure 39. SAI Timing — Slave Modes  
3.9.12 SPDIF timing parameters  
The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When  
encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.  
Table 69 and Figure 40 and Figure 41 show SPDIF timing parameters for the Sony/Philips Digital  
Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for  
SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.  
Table 69. SPDIF timing parameters  
Timing Parameter Range  
Parameter  
Symbol  
Unit  
Min  
Max  
SPDIF_IN Skew: asynchronous inputs, no specs apply  
0.7  
ns  
ns  
SPDIF_OUT output (Load = 50 pf)  
• Skew  
• Transition rising  
• Transition falling  
1.5  
24.2  
31.3  
SPDIF_OUT output (Load = 30 pf)  
• Skew  
• Transition rising  
• Transition falling  
1.5  
13.6  
18.0  
ns  
Modulating Rx clock (SPDIF_SR_CLK) period  
SPDIF_SR_CLK high period  
srckp  
srckph  
srckpl  
stclkp  
stclkph  
stclkpl  
40.0  
16.0  
16.0  
40.0  
16.0  
16.0  
ns  
ns  
ns  
ns  
ns  
ns  
SPDIF_SR_CLK low period  
Modulating Tx clock (SPDIF_ST_CLK) period  
SPDIF_ST_CLK high period  
SPDIF_ST_CLK low period  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
68 NXP Semiconductors  
Electrical characteristics  
srckp  
srckpl  
VM  
srckph  
VM  
SPDIF_SR_CLK  
(Output)  
Figure 40. SPDIF_SR_CLK timing diagram  
stclkp  
stclkpl  
VM  
stclkph  
VM  
SPDIF_ST_CLK  
(Input)  
Figure 41. SPDIF_ST_CLK timing diagram  
3.9.13 UART I/O configuration and timing parameters  
3.9.13.1 UART RS-232 I/O configuration in different modes  
The UART interfaces of the i.MX 8M Dual / 8M QuadLite / 8M Quad processors can serve both as DTE  
or DCE device. This can be configured by the DCEDTE control bit (default 0—DCE mode). Table 70  
shows the UART I/O configuration based on the enabled mode.  
Table 70. UART I/O configuration vs. mode  
DTE Mode  
Description  
DCE Mode  
Description  
Port  
Direction  
Direction  
UARTx_RTS_B  
UARTx_CTS_B  
Output  
Input  
UARTx_RTS_B from DTE to DCE  
UARTx_CTS_B from DCE to DTE  
Serial data from DCE to DTE  
Serial data from DTE to DCE  
Input  
Output  
Output  
Input  
UARTx_RTS_B from DTE to DCE  
UARTx_CTS_B from DCE to DTE  
Serial data from DCE to DTE  
Serial data from DTE to DCE  
UARTx_TX_DATA  
UARTx_RX_DATA  
Input  
Output  
3.9.13.2 UART RS-232 Serial mode timing  
This section describes the electrical information of the UART module in the RS-232 mode.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors  
69  
Electrical characteristics  
3.9.13.2.1 UART transmitter  
Figure 42 depicts the transmit timing of UART in the RS-232 Serial mode, with 8 data bit/1 stop bit  
format. Table 71 lists the UART RS-232 Serial mode transmit timing characteristics.  
Possible  
UA1  
UA1  
Bit 3  
Parity  
Bit  
Next  
Start  
Bit  
Start  
Bit  
UARTx_TX_DATA  
(output)  
STOP  
BIT  
Bit 7  
Bit 0  
Bit 1  
Bit 2  
Bit 4  
Bit 5  
Bit 6  
Par Bit  
UA1  
UA1  
Figure 42. UART RS-232 Serial mode transmit timing diagram  
Table 71. RS-232 Serial mode transmit timing parameters  
ID  
Parameter  
Symbol  
Min  
Max  
1/Fbaud_rate + Tref_clk  
Unit  
2
UA1 Transmit Bit Time  
tTbit  
1/Fbaud_rate1 - Tref_clk  
1
2
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.  
Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).  
3.9.13.2.2  
UART receiver  
Figure 43 depicts the RS-232 Serial mode receive timing with 8 data bit/1 stop bit format. Table 72 lists  
Serial mode receive timing characteristics.  
Possible  
Parity  
UA2  
UA2  
Bit 3  
Bit  
Next  
Start  
Bit  
Start  
Bit  
UARTx_RX_DATA  
(output)  
STOP  
BIT  
Bit 7  
Bit 0  
Bit 1  
Bit 2  
Bit 4  
Bit 5  
Bit 6  
Par Bit  
UA2  
UA2  
Figure 43. UART RS-232 Serial mode receive timing diagram  
Table 72. RS-232 Serial mode receive timing parameters  
ID  
Parameter  
Symbol  
Min  
Max  
Unit  
UA2  
Receive Bit Time1  
tRbit  
1/Fbaud_rate2 - 1/(16  
1/Fbaud_rate  
+
x Fbaud_rate  
)
1/(16 x Fbaud_rate)  
1
2
The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not  
exceed 3/(16 x Fbaud_rate).  
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
70 NXP Semiconductors  
Electrical characteristics  
3.9.14 USB PHY parameters  
This section describes the USB-OTG PHY parameters.  
The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision  
3.0 OTG, USB Host with the amendments below (On-The-Go and Embedded Host Supplement to the USB  
Revision 3.0 Specification is not applicable to Host port):  
USB ENGINEERING CHANGE NOTICE  
— Title: 5V Short Circuit Withstand Requirement Change  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000  
USB ENGINEERING CHANGE NOTICE  
— Title: Pull-up/Pull-down resistors  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
USB ENGINEERING CHANGE NOTICE  
— Title: Suspend Current Limit Changes  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
USB ENGINEERING CHANGE NOTICE  
— Title: USB 2.0 Phase Locked SOFs  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification  
— Revision 2.0, version 1.1a, July 27, 2010  
Battery Charging Specification (available from USB-IF)  
— Revision 1.2, December 7, 2010  
3.9.14.1 USB_OTG*_REXT reference resistor connection  
The bias generation and impedance calibration process for the USB OTG PHYs requires connection of  
reference resistors 200 1% precision on each of USB_OTG1_REXT and USB_OTG2_REXT pads to  
ground.  
3.9.14.2 USB_OTG_CHD_B USB battery charger detection external pullup  
resistor connection  
The usage and external resistor connection for the USB_OTG_CHD_B pin are described in Table 5, and  
Section 3.7.3, USB battery charger detection driver impedance.”  
3.9.15 USB 2.0 PHY parameters  
USB 2.0 PHY parameters are compatible with USB 3.0 PHY. See Section 3.9.16, USB 3.0 PHY  
parameters for more detailed information.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors  
71  
Electrical characteristics  
3.9.16 USB 3.0 PHY parameters  
This section describes the electrical information about USB 3.0 PHY.  
Table 73 shows the USB 3.0 PHY junction temperature.  
Table 73. USB 3.0 PHY junction temperature  
Min  
Max  
-40 C  
125 C  
Table 74 shows the USB 3.0 PHY power dissipation of SuperSpeed 5-Gbps operation.  
Table 74. USB 3.0 PHY power dissipation: SuperSpeed 5-Gbps operation (unit: for current is mA, for power  
is mW)  
Current from  
USB1/2_VP  
Current from  
USB1/2_VPTX USB1/2_VPH  
Current from  
Mode  
Conditions  
Total Current  
Total Power  
U0  
TT/WC  
25.700/35.700  
0.318/2.550  
15.000/21.200 14.000/20.300 54.700/77.200 82.800/130.000  
0.012/0.184 0.012/0.030 0.34/2.764 0.337/2.816  
Power-Down  
TT/WC  
Table 75 shows the USB 3.0 PHY power dissipation: HS/FS/LS operation.  
Table 75. USB 3.0 PHY power dissipation: HS/FS/LS operations (unit: for current is mA, for power is mW)  
Current from  
USB1/2_DVDD  
Current from  
USB1/2_VDD33  
Mode  
Conditions  
Total Current  
Total Power  
HS TX  
FS TX  
TT/WC  
TT/WC  
TT/WC  
TT/WC  
TT/WC  
TT/WC  
4.800/9.200  
2.800/6.800  
3.500/7.700  
0.048/3.690  
0.047/3.690  
0.122/3.760  
24.000/24.400  
22.100/24.500  
19.300/20.400  
0.065/0.146  
28.800/33.600  
24.900/31.200  
22.800/28.100  
0.112/3.386  
83.500/97.700  
75.400/95.500  
66.900/81.700  
0.257/4.182  
LS TX  
Power-Down  
Suspend  
0.066/0.154  
0.113/3.844  
0.261/4.213  
Battery Charging  
6.350/5.780  
6.472/9.540  
21.065/24.704  
Table 76 shows the worst-case maximum current.  
Table 76. Worst-Case maximum current  
USB1/2_VPH  
USB1/2_VP  
USB1/2_VPTX  
USB1/2_VDD33  
USB1/2_DVDD  
Unit  
20.3  
35.7  
21.2  
24.5  
9.2  
mA  
Table 77 shows the USB power pin supplies.  
Table 77. USB power pin supplies  
Description  
Pin Name  
Value  
USB1/2_VDD  
USB1/2_VP  
PHY analog and digital high-speed supply  
PHY analog and digital SuperSpeed supply  
0.9 V (+22.2%, -7%)  
0.9 V (+22.2%, -7%)  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
72 NXP Semiconductors  
Electrical characteristics  
Value  
Table 77. USB power pin supplies (continued)  
Description  
Pin Name  
USB1/2_VPTX  
PHY transmit supply  
0.9 V (+22.2%, -7%)  
USB1/2_VDD33  
USB1/2_VPH  
High supply for high-speed operation IO  
High supply for SuperSpeed operation IO  
3.3 V (+10%, -7%)  
3.3 V (+10%, -7%)  
Table 78 shows the external component values.  
Table 78. External component values  
Component  
Pin Name  
Value  
External resistor (resref)  
USB1_RESREF/USB2_RESREF  
200 ( 1%)  
Table 79 shows the minimum ESD protection target levels.  
Table 79. Minimum ESD protection target levels  
ESD Category  
Minimum Protection Level  
JEDEC Class  
Human Body Model (HBM) (JS-001-2014)  
Charged Device Model (CDM) (JESD22-C101F)  
Machine Model (MM) (JESD22_A115C)  
2 KV  
6 A peak discharge current  
100 V  
2
C2/C1 (500 V/ 250 V)1  
N/A  
1
Support for either 500 V or 250 V CDM target level is dependent on maximum discharge current generated in final  
SoC/package implementation.  
Table 80 shows the supply impedance requirements.  
Table 80. Supply impedance requirements  
LVSSA<#> +  
LDVDD(nH)  
LVSSA<#> + LVDD33  
<#>(nH)  
Lgd + Lvp(nH)  
Lgd + Lvptx<#>(nH)  
L
gd + Lvph(nH)  
< 2.4  
< 2.4  
< 2.4  
< 2.8  
< 2.8  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 73  
Boot mode configuration  
4 Boot mode configuration  
This section provides information on Boot mode configuration pins allocation and boot devices interfaces  
allocation.  
4.1  
Boot mode configuration pins  
Table 81 provides boot options, functionality, fuse values, and associated pins. Several input pins are also  
sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse.  
The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an  
unblown fuse). For detailed Boot mode options configured by the Boot mode pins, see the “System Boot,  
Fusemap, and eFuse” chapter in the i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processor  
Reference Manual (IMX8MDQLQRM).  
Table 81. Fuses and associated pins used for boot  
State during reset  
(POR_B  
State after reset  
(POR_B  
deasserted)  
Direction  
at Reset  
Pin  
eFuse name  
Details  
asserted)  
BOOT_MODE0  
BOOT_MODE1  
Input  
Input  
N/A  
N/A  
Input with 95 K pull down Input with 95 K pull down Boot mode  
selection  
Input with 95 K pull down Input with 95 K pull down Boot mode  
selection  
SAI1_RXD0  
SAI1_RXD1  
SAI1_RXD2  
SAI1_RXD3  
SAI1_RXD4  
SAI1_RXD5  
SAI1_RXD6  
SAI1_RXD7  
SAI1_TXD0  
SAI1_TXD1  
SAI1_TXD2  
SAI1_TXD3  
SAI1_TXD4  
SAI1_TXD5  
SAI1_TXD6  
SAI1_TXD7  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
BOOT_CFG[0] Input with 95 K pull down Input with 95 K pull down Boot options pin  
value overrides  
BOOT_CFG[1] Input with 95 K pull down Input with 95 K pull down  
fuse settings for  
BT_FUSE_SEL =  
“0“. Signal  
BOOT_CFG[2] Input with 95 K pull down Input with 95 K pull down  
BOOT_CFG[3] Input with 95 K pull down Input with 95 K pull down  
BOOT_CFG[4] Input with 95 K pull down Input with 95 K pull down  
BOOT_CFG[5] Input with 95 K pull down Input with 95 K pull down  
BOOT_CFG[6] Input with 95 K pull down Input with 95 K pull down  
BOOT_CFG[7] Input with 95 K pull down Input with 95 K pull down  
BOOT_CFG[8] Input with 95 K pull down Input with 95 K pull down  
BOOT_CFG[9] Input with 95 K pull down Input with 95 K pull down  
BOOT_CFG[10] Input with 95 K pull down Input with 95 K pull down  
BOOT_CFG[11] Input with 95 K pull down Input with 95 K pull down  
BOOT_CFG[12] Input with 95 K pull down Input with 95 K pull down  
BOOT_CFG[13] Input with 95 K pull down Input with 95 K pull down  
BOOT_CFG[14] Input with 95 K pull down Input with 95 K pull down  
BOOT_CFG[15] Input with 95 K pull down Input with 95 K pull down  
configuration as  
fuse override input  
at power up. These  
are special I/O lines  
that control the boot  
configurationduring  
product  
development. In  
production, theboot  
configuration can  
be controlled by  
fuses.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
74 NXP Semiconductors  
Boot mode configuration  
4.2  
Boot device interface allocation  
Table 82 lists the interfaces that can be used by the boot process in accordance with the specific Boot  
mode configuration. The table also describes the interface’s specific modes and IOMUXC allocation,  
which are configured during boot when appropriate.  
Table 82. Interface allocation during boot  
Interface  
IP Instance  
Allocated Pads During Boot  
Comment  
NAND Flash  
GPMI  
NAND_ALE, NAND_CE0_B, NAND_CLE,  
NAND_DATA00, NAND_DATA01, NAND_DATA02,  
NAND_DATA03, NAND_DATA04, NAND_DATA05,  
NAND_DATA06, NAND_DATA07, NAND_DQS,  
NAND_RE_B, NAND_READY_B, NAND_WE_B,  
NAND_WP_B  
8-bit, only CS0 is supported.  
SD/MMC  
USDHC-1  
GPIO1_IO03, GPIO1_IO06, GPIO1_IO07,  
SD1_RESET_B, SD1_CLK, SD1_CMD,  
SD1_STROBE, SD1_DATA0, SD1_DATA1,  
SD1_DATA2,SD1_DATA3,SD1_DATA4,SD1_DATA5,  
SD1_DATA6, SD1_DATA7  
1, 4, or 8-bit  
SD/MMC  
USB  
USDHC-2  
GPIO1_IO04, GPIO1_IO08, GPIO1_IO07,  
SD2_RESET_B, SD2_CD_B, SD2_WP, SD2_CLK,  
SD2_CMD,SD2_DATA0,SD2_DATA1,SD2_DATA2,  
SD2_DATA3  
1 or 4-bit  
USB_OTG PHY  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 75  
Package information and contact assignments  
5 Package information and contact assignments  
This section includes the contact assignment information and mechanical package drawing.  
5.1  
17 x 17 mm package information  
5.1.1  
17 x 17 mm, 0.65 mm pitch, ball matrix  
Figure 44 shows the top, bottom, and side views of the 17 × 17 mm BGA package.  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
76  
NXP Semiconductors  
Package information and contact assignments  
Figure 44. 17 x 17 mm BGA, package top, bottom, and side Views  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 77  
Package information and contact assignments  
5.1.2  
17 x 17 mm supplies contact assignments and functional contact  
assignments  
Table 83 shows supplies contact assignments for the 17 x 17 mm package.  
Table 83. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm supplies contact assignments  
Supply Rail Name  
EFUSE_VQPS  
Ball(s) Postion(s)  
Remark  
R17  
Supply for eFuse Programming  
Supply for HDMI PHY  
Supply for HDMI PHY  
Supply for HDMI PHY  
Supply for MIPI PHY  
HDMI_AVDDCLK  
HDMI_AVDDCORE  
HDMI_AVDDIO  
MIPI_VDD  
V3  
U3, U4  
P2  
E15, F15  
MIPI_VDDA  
E17, E18, F17, F18  
C18, D17, D18  
F19  
Supply for MIPI PHY  
MIPI_VDDHA  
MIPI_VDDPLL  
NVCC_DRAM  
Supply for MIPI PHY  
Supply for MIPI PHY  
Y12, Y14, AA10, AA15, AB3, AB8, AB17,  
AB23, AC3, AC6, AC8, AC14, AC17, AC20,  
AC23, AD5, AD18, AD21  
Supply for DRAM Interface  
NVCC_ECSPI  
NVCC_ENET  
NVCC_GPIO1  
NVCC_I2C  
F5  
Supply for ESCPI Interface  
Supply for ENET Interface  
Supply for GPIO1 Interface  
Supply for I2C Interface  
Supply for JTAG Interface  
Supply for NAND Interface  
Supply for SAI Interface  
Supply for SAI Interface  
Supply for SAI Interface  
Supply for SAI Interface  
Supply for SD Interface  
Supply for SD Interface  
Supply for SNVS Interface  
Supply for UART Interface  
Supply for PCIe PHY  
T18  
R5, R6  
H7  
NVCC_JTAG  
NVCC_NAND  
NVCC_SAI1  
NVCC_SAI2  
NVCC_SAI3  
NVCC_SAI5  
NVCC_SD1  
NVCC_SD2  
NVCC_SNVS  
NVCC_UART  
PCIE_VP  
W4  
L18, M18  
K3, L3  
J7  
E3  
M3  
L23, M23  
N23  
W18  
D8  
F22, G22  
H23, J23  
F23, G23  
E12  
PCIE_VPH  
Supply for PCIe PHY  
PCIE_VPTX  
USB1_DVDD  
USB1_VDD33  
Supply for PCIe PHY  
Supply for USB PHY  
G12  
Supply for USB PHY  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
78 NXP Semiconductors  
Package information and contact assignments  
Table 83. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm supplies contact assignments (continued)  
USB1_VP  
D12  
F12  
C12  
E11  
G11  
D11  
F11  
C11  
Supply for USB PHY  
Supply for USB PHY  
Supply for USB PHY  
Supply for USB PHY  
Supply for USB PHY  
Supply for USB PHY  
Supply for USB PHY  
Supply for USB PHY  
USB1_VPH  
USB1_VPTX  
USB2_DVDD  
USB2_VDD33  
USB2_VP  
USB2_VPH  
USB2_VPTX  
VDD_ARM  
G14, G15, G16, H14, H15, H16, J15, J16, K15, Supply for Arm Core  
K16, L15, L16, M15, M16  
VDD_DRAM  
U10, U11, U12, U13, U14, V9, V10, V11, V12, Supply for DRAM Module  
V13, V14, V15, Y6, Y8, Y10, Y16, Y18, Y20  
VDD_GPU  
VDD_SNVS  
VDD_SOC  
J9, J10, K9, K10, L9, L10, M9, M10  
R18  
Supply for GPU  
Supply for SNVS Logic  
K12, L12, L13, M12, M13, N13, P12, P13, P15, Supply for SOC Logic  
P16, R8, R9, R10, R11, R12, R13, R14, R15,  
R16, T8, T17  
VDD_VPU  
N8, N9, N10, P9, P10  
Supply for VPU  
VDDA_0P9  
V18  
U17  
K14  
U23  
W17  
T15  
Supply for SOC Logic  
Supply for Frac PLL  
Supply for Arm PLL  
VDDA_1P8_FPLL  
VDDA_1P8_FPLL_ARM  
VDDA_1P8_LVDS  
VDDA_1P8_SPLL  
VDDA_1P8_SPLL_DRAM  
Supply for LVDS Interface  
Supply for SSCG PLL  
Supply for DRAM PLL  
Supply for VIDEO PLL2  
Supply for temperature sensor  
Supply for XTAL  
VDDA_1P8_SPLL_VIDEO2 N11  
VDDA_1P8_TSENSOR  
VDDA_1P8_XTAL_25M  
VDDA_1P8_XTAL_27M  
VDDA_DRAM  
T16  
W24  
W23  
AA11  
Supply for XTAL  
Supply for DRAM Module  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 79  
Package information and contact assignments  
Table 83. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm supplies contact assignments (continued)  
VSS  
A2, A24, B1, B25, C8, C10, C13, C15, C24,  
D10, D13, D15, D23, E4, E10, E13, E14, E16,  
E19, E20, E21, E22, E23, F10, F13, F14, F16,  
F20, G9, G10, G13, G17, G18, G24, H8, H9,  
H10, H11, H12, H13, H17, H18, J3, J8, J11,  
J12, J13, J14, J17, J18, J19, K8, K11, K17,  
K18, K23, L8, L11, L14, L17, M8, M11, M14,  
M17, N3, N14, N15, N16, N17, N18, P6, P8,  
P11, P14, P17, P18, P23, R7, T3, T4, T9, T10,  
T11, T12, T13, U8, U9, U15, U18, V4, V8, V16,  
W1, W7, W8, W9, W10, W11, W12, W13,  
W14, W15, W16, W25, Y2, Y3, Y4, Y5, Y7, Y9,  
Y11, Y13, Y15, Y17, Y19, Y21, Y22, Y23, Y24,  
AA5, AA16, AA21, AB2, AB9, AB11, AB18,  
AB24, AC4, AC19, AC22, AD1, AD7, AD9,  
AD11, AD13, AD16, AD25, AE2, AE5, AE21,  
AE24  
VSSA_FPLL  
U16  
K13  
V17  
T14  
N12  
V23  
W22  
Return path of VDDA_1P8_FPLL  
VSSA_FPLL_ARM  
VSSA_SPLL  
Return path of VDDA_1P8_FPLL_ARM  
Return path of VDDA_1P8_SPLL  
VSSA_SPLL_DRAM  
VSSA_SPLL_VIDEO2  
VSSA_XTAL_25M  
VSSA_XTAL_27M  
Return path of VDDA_1P8_SPLL_DRAM  
Return path of VDDA_1P8_SPLL_VIDEO2  
Return path of VDDA_1P8_XTAL_25M  
Return path of VDDA_1P8_XTAL_27M  
Table 84 shows an alpha-sorted list of functional contact assignments for the 17 x 17 mm package.  
Table 84. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments  
Reset condition2  
Default  
Ball name  
Ball  
Power group  
Ball type1  
mode  
(Reset  
mode)  
Default function  
(Signal name)  
Input/  
Output  
Value  
BOOT_MODE0  
BOOT_MODE1  
W6  
V6  
NVCC_JTAG  
NVCC_JTAG  
GPIO  
GPIO  
ALT0 ccmsrcgpcmix.BOOT_  
MODE[0]  
Input  
Input  
PD (90 K)  
PD (90 K)  
ALT0 ccmsrcgpcmix.BOOT_  
MODE[1]  
CLK1_P  
CLK1_N  
R23  
T23  
VDDA  
VDDA  
LVDS  
LVDS  
LVDS  
LVDS  
DDR  
CLK2_P  
T22  
VDDA  
CLK2_N  
U22  
AC16  
VDDA  
DRAM_AC00  
NVCC_DRAM  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
80 NXP Semiconductors  
Package information and contact assignments  
Table 84. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments (continued)  
Reset condition2  
Default  
Ball name  
Ball  
Power group  
Ball type1  
mode  
(Reset  
mode)  
Default function  
(Signal name)  
Input/  
Output  
Value  
DRAM_AC01  
DRAM_AC02  
DRAM_AC03  
DRAM_AC04  
DRAM_AC05  
DRAM_AC06  
DRAM_AC07  
DRAM_AC08  
DRAM_AC09  
DRAM_AC10  
DRAM_AC11  
DRAM_AC12  
DRAM_AC13  
DRAM_AC14  
DRAM_AC15  
DRAM_AC16  
DRAM_AC17  
DRAM_AC19  
DRAM_AC20  
DRAM_AC21  
DRAM_AC22  
DRAM_AC23  
DRAM_AC24  
DRAM_AC25  
DRAM_AC26  
DRAM_AC27  
DRAM_AC28  
DRAM_AC29  
DRAM_AC30  
DRAM_AC31  
AE17  
AE18  
AC18  
AD14  
AE14  
AE13  
AB15  
AD17  
AE16  
AD20  
AE20  
AD19  
AE19  
AB16  
AC15  
AE15  
AD15  
AB14  
AD10  
AE10  
AD8  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
AC9  
AD12  
AE12  
AB12  
AA12  
AC7  
AE7  
AE6  
AD6  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 81  
Package information and contact assignments  
Table 84. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments (continued)  
Reset condition2  
Default  
Ball name  
Ball  
Power group  
Ball type1  
mode  
(Reset  
mode)  
Default function  
(Signal name)  
Input/  
Output  
Value  
DRAM_AC32  
DRAM_AC33  
DRAM_AC34  
DRAM_AC35  
DRAM_AC36  
DRAM_AC37  
DRAM_AC38  
AE8  
AE9  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
AC10  
AB10  
AC12  
AE11  
AC11  
DRAM_ALERT_N AC13  
DRAM_DM0  
DRAM_DM1  
DRAM_DM2  
DRAM_DM3  
DRAM_DQ00  
DRAM_DQ01  
DRAM_DQ02  
DRAM_DQ03  
DRAM_DQ04  
DRAM_DQ05  
DRAM_DQ06  
DRAM_DQ07  
DRAM_DQ08  
DRAM_DQ09  
DRAM_DQ10  
DRAM_DQ11  
DRAM_DQ12  
DRAM_DQ13  
DRAM_DQ14  
DRAM_DQ15  
DRAM_DQ16  
DRAM_DQ17  
AD23  
AB20  
AD3  
AB6  
AE23  
AD24  
AE22  
AD22  
AA24  
Y25  
AA25  
AB25  
AB22  
AA22  
AA23  
AA20  
AA18  
AB19  
AA19  
AA17  
AE3  
AD2  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
82 NXP Semiconductors  
Package information and contact assignments  
Table 84. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments (continued)  
Reset condition2  
Default  
Ball name  
Ball  
Power group  
Ball type1  
mode  
(Reset  
mode)  
Default function  
(Signal name)  
Input/  
Output  
Value  
DRAM_DQ18  
DRAM_DQ19  
DRAM_DQ20  
DRAM_DQ21  
DRAM_DQ22  
DRAM_DQ23  
DRAM_DQ24  
DRAM_DQ25  
DRAM_DQ26  
DRAM_DQ27  
DRAM_DQ28  
DRAM_DQ29  
DRAM_DQ30  
DRAM_DQ31  
DRAM_DQS0_N  
DRAM_DQS0_P  
DRAM_DQS1_N  
DRAM_DQS1_P  
DRAM_DQS2_N  
DRAM_DQS2_P  
DRAM_DQS3_N  
DRAM_DQS3_P  
AE4  
AD4  
AA2  
Y1  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_ECSPI  
NVCC_ECSPI  
NVCC_ECSPI  
NVCC_ECSPI  
NVCC_ECSPI  
DDR  
DDR  
DDR  
DDR  
AA1  
AB1  
AB4  
AA4  
AA3  
AA6  
AA8  
AB7  
AA7  
AA9  
AC25  
AC24  
AC21  
AB21  
AC1  
AC2  
AC5  
AB5  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDR  
DRAM_RESET_N AB13  
DRAM_VREF  
DRAM_ZN  
AA14  
AA13  
B4  
DDR  
DDR  
ECSPI1_MISO  
ECSPI1_MOSI  
ECSPI1_SCLK  
ECSPI1_SS0  
ECSPI2_MISO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO5.IO[8]  
GPIO5.IO[7]  
GPIO5.IO[6]  
GPIO5.IO[9]  
GPIO5.IO[12]  
Input  
Input  
Input  
Input  
Input  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
A4  
GPIO  
D5  
GPIO  
D4  
GPIO  
B5  
GPIO  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 83  
Package information and contact assignments  
Table 84. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments (continued)  
Reset condition2  
Default  
Ball name  
Ball  
Power group  
Ball type1  
mode  
(Reset  
mode)  
Default function  
(Signal name)  
Input/  
Output  
Value  
ECSPI2_MOSI  
ECSPI2_SCLK  
ECSPI2_SS0  
ENET_MDC  
ENET_MDIO  
ENET_RD0  
E5  
C5  
NVCC_ECSPI  
NVCC_ECSPI  
NVCC_ECSPI  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
GPIO5.IO[11]  
GPIO5.IO[10]  
GPIO5.IO[13]  
GPIO1.IO[16]  
GPIO1.IO[17]  
GPIO1.IO[26]  
GPIO1.IO[27]  
GPIO1.IO[28]  
GPIO1.IO[29]  
GPIO1.IO[25]  
GPIO1.IO[24]  
GPIO1.IO[21]  
GPIO1.IO[20]  
GPIO1.IO[19]  
GPIO1.IO[18]  
GPIO1.IO[23]  
GPIO1.IO[22]  
GPIO1.IO[0]  
GPIO1.IO[1]  
GPIO1.IO[2]  
GPIO1.IO[3]  
GPIO1.IO[4]  
GPIO1.IO[5]  
GPIO1.IO[6]  
GPIO1.IO[7]  
GPIO1.IO[8]  
GPIO1.IO[9]  
GPIO1.IO[10]  
GPIO1.IO[11]  
GPIO1.IO[12]  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (27 K)  
PD (90 K)  
PD (90 K)  
PU (27 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
A5  
N20  
N19  
U19  
U21  
U20  
V19  
T20  
T21  
R20  
R21  
R19  
P20  
T19  
P19  
T6  
ENET_RD1  
ENET_RD2  
ENET_RD3  
ENET_RXC  
ENET_RX_CTL  
ENET_TD0  
ENET_TD1  
ENET_TD2  
ENET_TD3  
ENET_TXC  
ENET_TX_CTL  
GPIO1_IO00  
GPIO1_IO013  
GPIO1_IO02  
GPIO1_IO03  
GPIO1_IO04  
GPIO1_IO054  
GPIO1_IO06  
GPIO1_IO07  
GPIO1_IO08  
GPIO1_IO09  
GPIO1_IO10  
GPIO1_IO11  
GPIO1_IO12  
T7  
R4  
P4  
P5  
P7  
N5  
N6  
N7  
M6  
M7  
L6  
L7  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
84 NXP Semiconductors  
Package information and contact assignments  
Table 84. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments (continued)  
Reset condition2  
Default  
Ball name  
Ball  
Power group  
Ball type1  
mode  
(Reset  
mode)  
Default function  
(Signal name)  
Input/  
Output  
Value  
GPIO1_IO13  
GPIO1_IO14  
K6  
K7  
J6  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
HDMI_AVDDIO  
HDMI_AVDDIO  
HDMI_AVDDIO  
HDMI_AVDDIO  
HDMI_AVDDIO  
HDMI_AVDDIO  
HDMI_AVDDIO  
HDMI_AVDDIO  
HDMI_AVDDIO  
HDMI_AVDDIO  
HDMI_AVDDIO  
HDMI_AVDDIO  
HDMI_AVDDIO  
HDMI_AVDDIO  
HDMI_AVDDIO  
HDMI_AVDDIO  
HDMI_AVDDIO  
NVCC_I2C  
GPIO  
GPIO  
GPIO  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT0  
ALT0  
ALT0  
GPIO1.IO[13]  
Input  
Input  
Input  
PD (90 K)  
GPIO1.IO[14]  
PD (90 K)  
GPIO1_IO15  
GPIO1.IO[15]  
PD (90 K)  
HDMI_AUX_N  
HDMI_AUX_P  
HDMI_CEC  
V2  
V1  
W3  
R3  
P3  
W2  
R1  
R2  
P1  
T2  
U1  
N1  
M2  
T1  
U2  
N2  
M1  
E7  
E8  
G7  
F7  
G8  
E9  
F8  
F9  
U7  
T5  
HDMI_DDC_SCL  
HDMI_DDC_SDA  
HDMI_HPD  
HDMI_REFCLK_N  
HDMI_REFCLK_P  
HDMI_REXT  
HDMI_TX_M_LN_0  
HDMI_TX_M_LN_1  
HDMI_TX_M_LN_2  
HDMI_TX_M_LN_3  
HDMI_TX_P_LN_0  
HDMI_TX_P_LN_1  
HDMI_TX_P_LN_2  
HDMI_TX_P_LN_3  
I2C1_SCL  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT0  
ALT0  
GPIO5.IO[14]  
GPIO5.IO[15]  
GPIO5.IO[16]  
GPIO5.IO[17]  
GPIO5.IO[18]  
GPIO5.IO[19]  
GPIO5.IO[20]  
GPIO5.IO[21]  
cjtag_wrapper.MOD  
cjtag_wrapper.TCK  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PU 27 K)  
I2C1_SDA  
NVCC_I2C  
I2C2_SCL  
NVCC_I2C  
I2C2_SDA  
NVCC_I2C  
I2C3_SCL  
NVCC_I2C  
I2C3_SDA  
NVCC_I2C  
I2C4_SCL  
NVCC_I2C  
I2C4_SDA  
NVCC_I2C  
JTAG_MOD  
NVCC_JTAG  
NVCC_JTAG  
JTAG_TCK  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 85  
Package information and contact assignments  
Table 84. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments (continued)  
Reset condition2  
Default  
Ball name  
Ball  
Power group  
Ball type1  
mode  
(Reset  
mode)  
Default function  
(Signal name)  
Input/  
Output  
Value  
JTAG_TDI  
JTAG_TDO  
W5  
U5  
V5  
U6  
NVCC_JTAG  
NVCC_JTAG  
NVCC_JTAG  
NVCC_JTAG  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
GPIO  
GPIO  
GPIO  
GPIO  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
ALT0  
ALT0  
ALT0  
cjtag_wrapper.TDI  
cjtag_wrapper.TDO  
cjtag_wrapper.TMS  
Input  
Input  
Input  
Input  
PU (27 K)  
PU (27 K)  
JTAG_TMS  
PU (27 K)  
JTAG_TRST_B  
ALT0 cjtag_wrapper.TRST_B  
PU (27 K)  
MIPI_CSI1_CLK_N A22  
MIPI_CSI1_CLK_P B22  
MIPI_CSI1_D0_N  
MIPI_CSI1_D0_P  
MIPI_CSI1_D1_N  
MIPI_CSI1_D1_P  
MIPI_CSI1_D2_N  
MIPI_CSI1_D2_P  
MIPI_CSI1_D3_N  
MIPI_CSI1_D3_P  
A23  
B23  
C22  
D22  
B24  
C23  
C21  
D21  
MIPI_CSI2_CLK_N A19  
MIPI_CSI2_CLK_P B19  
MIPI_CSI2_D0_N  
MIPI_CSI2_D0_P  
MIPI_CSI2_D1_N  
MIPI_CSI2_D1_P  
MIPI_CSI2_D2_N  
MIPI_CSI2_D2_P  
MIPI_CSI2_D3_N  
MIPI_CSI2_D3_P  
MIPI_DSI_CLK_N  
MIPI_DSI_CLK_P  
MIPI_DSI_D0_N  
MIPI_DSI_D0_P  
MIPI_DSI_D1_N  
MIPI_DSI_D1_P  
C20  
D20  
A20  
B20  
A21  
B21  
C19  
D19  
C16  
D16  
A17  
B17  
A16  
B16  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
86 NXP Semiconductors  
Package information and contact assignments  
Table 84. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments (continued)  
Reset condition2  
Default  
Ball name  
Ball  
Power group  
Ball type1  
mode  
(Reset  
mode)  
Default function  
(Signal name)  
Input/  
Output  
Value  
MIPI_DSI_D2_N  
MIPI_DSI_D2_P  
MIPI_DSI_D3_N  
MIPI_DSI_D3_P  
MIPI_DSI_REXT  
NAND_ALE  
A18  
B18  
A15  
B15  
C17  
G19  
H19  
G21  
F21  
H20  
H21  
G20  
J20  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
MIPI_VDDHA  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_SNVS  
PCIE_VPH  
PHY  
PHY  
PHY  
PHY  
PHY  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
PHY  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT0  
GPIO3.IO[0]  
GPIO3.IO[1]  
GPIO3.IO[2]  
GPIO3.IO[3]  
GPIO3.IO[4]  
GPIO3.IO[5]  
GPIO3.IO[6]  
GPIO3.IO[7]  
GPIO3.IO[8]  
GPIO3.IO[9]  
GPIO3.IO[10]  
GPIO3.IO[11]  
GPIO3.IO[12]  
GPIO3.IO[13]  
GPIO3.IO[14]  
GPIO3.IO[15]  
GPIO3.IO[16]  
GPIO3.IO[17]  
GPIO3.IO[18]  
snvsmix.ONOFF  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PU (27 K)  
NAND_CE0_B  
NAND_CE1_B  
NAND_CE2_B  
NAND_CE3_B  
NAND_CLE  
NAND_DATA00  
NAND_DATA01  
NAND_DATA02  
NAND_DATA03  
NAND_DATA04  
NAND_DATA05  
NAND_DATA06  
NAND_DATA07  
NAND_DQS  
H22  
J21  
L20  
J22  
L19  
M19  
M20  
K19  
K20  
K22  
K21  
W21  
NAND_RE_B  
NAND_READY_B  
NAND_WE_B  
NAND_WP_B  
ONOFF  
PCIE1_REF_PAD_C K24  
LK_N  
PCIE1_REF_PAD_C K25  
LK_P  
PCIE_VPH  
PCIE_VPH  
PHY  
PHY  
PCIE1_RESREF  
G25  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 87  
Package information and contact assignments  
Table 84. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments (continued)  
Reset condition2  
Default  
Ball name  
Ball  
Power group  
Ball type1  
mode  
(Reset  
mode)  
Default function  
(Signal name)  
Input/  
Output  
Value  
PCIE1_RXN_N  
PCIE1_RXN_P  
PCIE1_TXN_N  
PCIE1_TXN_P  
H24  
H25  
J24  
J25  
PCIE_VPH  
PCIE_VPH  
PCIE_VPH  
PCIE_VPH  
PCIE_VPH  
PHY  
PHY  
PHY  
PHY  
PHY  
PCIE2_REF_PAD_C F24  
LK_N  
PCIE2_REF_PAD_C F25  
LK_P  
PCIE_VPH  
PHY  
PCIE2_RESREF  
PCIE2_RXN_N  
PCIE2_RXN_P  
PCIE2_TXN_N  
PCIE2_TXN_P  
PMIC_ON_REQ  
C25  
D24  
D25  
E24  
E25  
V20  
PCIE_VPH  
PCIE_VPH  
PCIE_VPH  
PCIE_VPH  
PCIE_VPH  
NVCC_SNVS  
PHY  
PHY  
PHY  
PHY  
PHY  
GPIO  
ALT0 snvsmix.PMIC_ON_RE  
Q
Output  
Open-Drain  
PU (27 K)  
PMIC_STBY_REQ  
V21  
NVCC_SNVS  
GPIO  
ALT0 ccmsrcgpcmix.PMIC_S  
TBY_REQ  
Output  
Low  
POR_B  
RTC  
W20  
V22  
W19  
A3  
NVCC_SNVS  
NVCC_SNVS  
NVCC_SNVS  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT0  
ALT0  
ALT0  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
snvsmix.POR_B  
snvsmix.RTC  
snvsmix.RTC_POR_B  
GPIO4.IO[20]  
GPIO4.IO[1]  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
PU (27 K)  
PD (90 K)  
PU (27 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
RTC_RESET_B  
SAI1_MCLK  
SAI1_RXC  
K1  
SAI1_RXD05  
SAI1_RXD15  
SAI1_RXD25  
SAI1_RXD35  
SAI1_RXD45  
SAI1_RXD55  
SAI1_RXD65  
SAI1_RXD75  
SAI1_RXFS  
K2  
GPIO4.IO[2]  
L2  
GPIO4.IO[3]  
H2  
J2  
GPIO4.IO[4]  
GPIO4.IO[5]  
J1  
GPIO4.IO[6]  
F1  
GPIO4.IO[7]  
G2  
G1  
L1  
GPIO4.IO[8]  
GPIO4.IO[9]  
GPIO4.IO[0]  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
88 NXP Semiconductors  
Package information and contact assignments  
Table 84. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments (continued)  
Reset condition2  
Default  
Ball name  
Ball  
Power group  
Ball type1  
mode  
(Reset  
mode)  
Default function  
(Signal name)  
Input/  
Output  
Value  
SAI1_TXC  
SAI1_TXD05  
SAI1_TXD15  
SAI1_TXD25  
SAI1_TXD35  
SAI1_TXD45  
SAI1_TXD55  
SAI1_TXD65  
SAI1_TXD75  
SAI1_TXFS  
SAI2_MCLK  
SAI2_RXC  
E1  
F2  
E2  
B2  
D1  
D2  
C2  
B3  
C1  
H1  
H5  
H3  
H6  
J4  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI2  
NVCC_SAI2  
NVCC_SAI2  
NVCC_SAI2  
NVCC_SAI2  
NVCC_SAI2  
NVCC_SAI2  
NVCC_SAI3  
NVCC_SAI3  
NVCC_SAI3  
NVCC_SAI3  
NVCC_SAI3  
NVCC_SAI3  
NVCC_SAI3  
NVCC_SAI5  
NVCC_SAI5  
NVCC_SAI5  
NVCC_SAI5  
NVCC_SAI5  
NVCC_SAI5  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO4.IO[11]  
GPIO4.IO[12]  
GPIO4.IO[13]  
GPIO4.IO[14]  
GPIO4.IO[15]  
GPIO4.IO[16]  
GPIO4.IO[17]  
GPIO4.IO[18]  
GPIO4.IO[19]  
GPIO4.IO[10]  
GPIO4.IO[27]  
GPIO4.IO[22]  
GPIO4.IO[23]  
GPIO4.IO[21]  
GPIO4.IO[25]  
GPIO4.IO[26]  
GPIO4.IO[24]  
GPIO5.IO[2]  
GPIO4.IO[29]  
GPIO4.IO[30]  
GPIO4.IO[28]  
GPIO5.IO[0]  
GPIO5.IO[1]  
GPIO4.IO[31]  
GPIO3.IO[25]  
GPIO3.IO[20]  
GPIO3.IO[21]  
GPIO3.IO[22]  
GPIO3.IO[23]  
GPIO3.IO[24]  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
SAI2_RXD0  
SAI2_RXFS  
SAI2_TXC  
J5  
SAI2_TXD0  
SAI2_TXFS  
SAI3_MCLK  
SAI3_RXC  
G5  
H4  
D3  
F4  
F3  
G4  
C4  
C3  
G3  
K4  
L5  
SAI3_RXD  
SAI3_RXFS  
SAI3_TXC  
SAI3_TXD  
SAI3_TXFS  
SAI5_MCLK  
SAI5_RXC  
SAI5_RXD0  
SAI5_RXD1  
SAI5_RXD2  
SAI5_RXD3  
M5  
L4  
M4  
K5  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 89  
Package information and contact assignments  
Table 84. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments (continued)  
Reset condition2  
Default  
Ball name  
Ball  
Power group  
Ball type1  
mode  
(Reset  
mode)  
Default function  
(Signal name)  
Input/  
Output  
Value  
SAI5_RXFS  
SD1_CLK  
N4  
L25  
L24  
M25  
M24  
N25  
P25  
N24  
P24  
R25  
T25  
R24  
T24  
L21  
L22  
M22  
N22  
N21  
P22  
P21  
R22  
M21  
E6  
NVCC_SAI5  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SAI3  
NVCC_SAI3  
NVCC_SAI3  
NVCC_JTAG  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT0  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO3.IO[19]  
GPIO2.IO[0]  
GPIO2.IO[1]  
GPIO2.IO[2]  
GPIO2.IO[3]  
GPIO2.IO[4]  
GPIO2.IO[5]  
GPIO2.IO[6]  
GPIO2.IO[7]  
GPIO2.IO[8]  
GPIO2.IO[9]  
GPIO2.IO[10]  
GPIO2.IO[11]  
GPIO2.IO[12]  
GPIO2.IO[13]  
GPIO2.IO[14]  
GPIO2.IO[15]  
GPIO2.IO[16]  
GPIO2.IO[17]  
GPIO2.IO[18]  
GPIO2.IO[19]  
GPIO2.IO[20]  
GPIO5.IO[5]  
GPIO5.IO[4]  
GPIO5.IO[3]  
tcu.TEST_MODE  
GPIO5.IO[22]  
GPIO5.IO[23]  
GPIO5.IO[24]  
GPIO5.IO[25]  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
PD (90 K)  
SD1_CMD  
SD1_DATA0  
SD1_DATA1  
SD1_DATA2  
SD1_DATA3  
SD1_DATA4  
SD1_DATA5  
SD1_DATA6  
SD1_DATA7  
SD1_RESET_B  
SD1_STROBE  
SD2_CD_B  
SD2_CLK  
SD2_CMD  
SD2_DATA0  
SD2_DATA1  
SD2_DATA2  
SD2_DATA3  
SD2_RESET_B  
SD2_WP  
SPDIF_EXT_CLK  
SPDIF_RX  
G6  
SPDIF_TX  
F6  
TEST_MODE  
UART1_RXD  
UART1_TXD  
UART2_RXD  
UART2_TXD  
V7  
C7  
A7  
B6  
D6  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
90 NXP Semiconductors  
Package information and contact assignments  
Table 84. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments (continued)  
Reset condition2  
Default  
Ball name  
Ball  
Power group  
Ball type1  
mode  
(Reset  
mode)  
Default function  
(Signal name)  
Input/  
Output  
Value  
UART3_RXD  
UART3_TXD  
UART4_RXD  
UART4_TXD  
USB1_DN  
A6  
B7  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
USB1_VDD33  
USB1_VDD33  
USB1_VDD33  
USB1_VPH  
USB1_VPH  
USB1_VPH  
USB1_VPH  
USB1_VPH  
USB1_VDD33  
USB2_VDD33  
USB2_VDD33  
USB2_VDD33  
USB2_VPH  
USB2_VPH  
USB2_VPH  
USB2_VPH  
USB2_VPH  
USB2_VDD33  
VDDA  
GPIO  
GPIO  
GPIO  
GPIO  
PHY  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO5.IO[26]  
Input  
Input  
Input  
Input  
PD (90 K)  
GPIO5.IO[27]  
PD (90 K)  
C6  
GPIO5.IO[28]  
PD (90 K)  
D7  
GPIO5.IO[29]  
PD (90 K)  
B14  
A14  
C14  
A11  
B12  
A12  
B13  
A13  
D14  
B10  
A10  
C9  
USB1_DP  
PHY  
USB1_ID  
PHY  
USB1_RESREF  
USB1_RX_N  
USB1_RX_P  
USB1_TX_N  
USB1_TX_P  
USB1_VBUS  
USB2_DN  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
USB2_DP  
PHY  
USB2_ID  
PHY  
USB2_RESREF  
USB2_RX_N  
USB2_RX_P  
USB2_TX_N  
USB2_TX_P  
USB2_VBUS  
XTALI_25M  
XTALI_27M  
XTALO_25M  
XTALO_27M  
B11  
B8  
PHY  
PHY  
A8  
PHY  
B9  
PHY  
A9  
PHY  
D9  
PHY  
U25  
V25  
U24  
V24  
ANALOG  
ANALOG  
ANALOG  
ANALOG  
VDDA  
VDDA  
VDDA  
1
2
3
4
5
The state immediately after RESET and before ROM firmware or software has executed.  
The state during, after RESET and before ROM firmware or software has executed.  
Jtag Active output during reset  
INT_BOOT output (High) during reset  
Boot Configure Input  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 91  
Package information and contact assignments  
5.1.3  
i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm 0.65 mm pitch ball  
map  
Table 85 shows the i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm, 0.65 mm pitch ball map.  
Table 85. 17 x 17 mm, 0.65 mm pitch ball map  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
92 NXP Semiconductors  
Package information and contact assignments  
Table 85. 17 x 17 mm, 0.65 mm pitch ball map (continued)  
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
1
2
3
4
5
6
7
8
9
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 93  
Package information and contact assignments  
Table 85. 17 x 17 mm, 0.65 mm pitch ball map (continued)  
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
1
2
3
4
5
6
7
8
9
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
94 NXP Semiconductors  
Package information and contact assignments  
Table 85. 17 x 17 mm, 0.65 mm pitch ball map (continued)  
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
1
2
3
4
5
6
7
8
9
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 95  
Package information and contact assignments  
5.2  
DDR pin function list for 17 x 17 mm package  
Table 86 shows the DDR pin function list for 17 x 17 mm package.  
Table 86. DDR pin function list for 17 x 17 mm package  
Die level pin name  
LPDDR4  
DDR4  
DDR3L  
BALL  
DRAM_DQS0_P  
DRAM_DQS0_N  
DRAM_DM0  
DQS0_t_A  
DQS0_C_A  
DMI0_A  
DQ0_A  
DQSL_t_A  
DQSL_C_A  
DML_N_A / DBIL_n_A  
DQL0_A  
DQSL_A  
DQSL#_A  
DML_A  
AC24  
AC25  
AD23  
AE23  
AD24  
AE22  
AD22  
AA24  
Y25  
DRAM_DQ00  
DRAM_DQ01  
DRAM_DQ02  
DRAM_DQ03  
DRAM_DQ04  
DRAM_DQ05  
DRAM_DQ06  
DRAM_DQ07  
DRAM_DQS1_P  
DRAM_DQS1_N  
DRAM_DM1  
DQL0_A  
DQL1_A  
DQL2_A  
DQL3_A  
DQL4_A  
DQL5_A  
DQL6_A  
DQL7_A  
DQSU_A  
DQSU#_A  
DMU_A  
DQ1_A  
DQL1_A  
DQ2_A  
DQL2_A  
DQ3_A  
DQL3_A  
DQ4_A  
DQL4_A  
DQ5_A  
DQL5_A  
DQ6_A  
DQL6_A  
AA25  
AB25  
AB21  
AC21  
AB20  
AB22  
AA22  
AA23  
AA20  
AA18  
AB19  
AA19  
AA17  
AC2  
DQ7_A  
DQL7_A  
DQS1_t_A  
DQS1_c_A  
DMI1_A  
DQ08_A  
DQ09_A  
DQ10_A  
DQ11_A  
DQ12_A  
DQ13_A  
DQ14_A  
DQ15_A  
DQS0_t_B  
DQS0_c_B  
DMI0_B  
DQ0_B  
DQSU_t_A  
DQSU_c_A  
DMU_n_A / DBIU_n_A  
DQU0_A  
DRAM_DQ08  
DRAM_DQ09  
DRAM_DQ10  
DRAM_DQ11  
DRAM_DQ12  
DRAM_DQ13  
DRAM_DQ14  
DRAM_DQ15  
DRAM_DQS2_P  
DRAM_DQS2_N  
DRAM_DM2  
DQU0_A  
DQU1_A  
DQU2_A  
DQU3_A  
DQU4_A  
DQU5_A  
DQU6_A  
DQU7_A  
DQSL_B  
DQSL#_B  
DML_B  
DQU1_A  
DQU2_A  
DQU3_A  
DQU4_A  
DQU5_A  
DQU6_A  
DQU7_A  
DQSL_t_B  
DQSL_c_B  
DML_n_B / DBIL_n_B  
DQL0_B  
AC1  
AD3  
DRAM_DQ16  
DRAM_DQ17  
DRAM_DQ18  
DRAM_DQ19  
DRAM_DQ20  
DRAM_DQ20  
DQL0_B  
DQL1_B  
DQL2_B  
DQL3_B  
DQL4_B  
DQL4_B  
AE3  
DQ1_B  
DQL1_B  
AD2  
DQ2_B  
DQL2_B  
AE4  
DQ3_B  
DQL3_B  
AD4  
DQ4_B  
DQL4_B  
AA2  
DQ4_B  
DQL4_B  
AA2  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
96 NXP Semiconductors  
Package information and contact assignments  
Table 86. DDR pin function list for 17 x 17 mm package (continued)  
DRAM_DQ21  
DRAM_DQ22  
DRAM_DQ23  
DRAM_DQS3_P  
DRAM_DQS3_N  
DRAM_DM3  
DQ5_B  
DQ6_B  
DQ7_B  
DQS1_t_B  
DQS1_c_B  
DMI1_B  
DQ08_B  
DQ09_B  
DQ10_B  
DQ11_B  
DQ12_B  
DQ13_B  
DQ14_B  
DQ15_B  
RESET_N  
MTEST1  
CKE0_A  
CKE1_A  
CS0_A  
CS1_A  
CK_t_A  
CK_c_A  
DQL5_B  
DQL6_B  
DQL7_B  
DQSU_t_B  
DQSU_c_B  
DMU_n_B / DBIU_n_B  
DQU0_B  
DQU1_B  
DQU2_B  
DQU3_B  
DQU4_B  
DQU5_B  
DQU6_B  
DQU7_B  
RESET_N  
ALERT_n / MTEST1  
CKE0  
DQL5_B  
DQL6_B  
DQL7_B  
DQSU_B  
DQSU#_B  
DMU_B  
DQU0_B  
DQU1_B  
DQU2_B  
DQU3_B  
DQU4_B  
DQU5_B  
DQU6_B  
DQU7_B  
RESET#  
MTEST1  
CKE0  
Y1  
AA1  
AB1  
AB5  
AC5  
AB6  
DRAM_DQ24  
DRAM_DQ25  
DRAM_DQ26  
DRAM_DQ27  
DRAM_DQ28  
DRAM_DQ29  
DRAM_DQ30  
DRAM_DQ31  
DRAM_RESET_N  
DRAM_ALERT_N  
DRAM_AC00  
DRAM_AC01  
DRAM_AC02  
DRAM_AC03  
DRAM_AC04  
DRAM_AC05  
DRAM_AC06  
DRAM_AC07  
DRAM_AC08  
DRAM_AC09  
DRAM_AC10  
DRAM_AC11  
DRAM_AC12  
DRAM_AC13  
DRAM_AC14  
DRAM_AC15  
DRAM_AC16  
DRAM_AC17  
AB4  
AA4  
AA3  
AA6  
AA8  
AB7  
AA7  
AA9  
AB13  
AC13  
AC16  
AE17  
AE18  
AC18  
AD14  
AE14  
AE13  
AB15  
AD17  
AE16  
AD20  
AE20  
AD19  
AE19  
AB16  
AC15  
AE15  
AD15  
CKE1  
CKE1  
CS0_n  
CS0#  
C0  
BG0  
BA2  
BG1  
A14  
ACT_n  
A15  
A9  
A9  
CA0_A  
CA1_A  
CA2_A  
CA3_A  
CA4_A  
CA5_A  
A12  
A12 / BC#  
A11  
A11  
A7  
A7  
A8  
A8  
A6  
A6  
A5  
A5  
A4  
A4  
A3  
A3  
CK_t_A  
CK_c_A  
CK_A  
CK#_A  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors 97  
Package information and contact assignments  
Table 86. DDR pin function list for 17 x 17 mm package (continued)  
DRAM_AC19  
DRAM_AC20  
DRAM_AC21  
DRAM_AC22  
DRAM_AC23  
DRAM_AC24  
DRAM_AC25  
DRAM_AC26  
DRAM_AC27  
DRAM_AC28  
DRAM_AC29  
DRAM_AC30  
DRAM_AC31  
DRAM_AC32  
DRAM_AC33  
DRAM_AC34  
DRAM_AC35  
DRAM_AC36  
DRAM_AC37  
DRAM_AC38  
DRAM_ZN  
MTEST  
CKE0_B  
CKE1_B  
CS1_B  
CS0_B  
CK_t_B  
CK_c_B  
MTEST  
CK_t_B  
CK_c_B  
MTEST  
CK_B  
CK#_B  
AB14  
AD10  
AE10  
AD8  
AC9  
A2  
A2  
AD12  
AE12  
AB12  
AA12  
AC7  
A1  
A1  
BA1  
BA1  
PARITY  
A13  
CA2_B  
CA3_B  
CA4_B  
CA5_B  
CA0_B  
CA1_B  
A13  
BA0  
BA0  
AE7  
A10 / AP  
A0  
A10 / AP  
A0  
AE6  
AD6  
C2  
AE8  
CAS_n / A15  
WE_n / A14  
RAS_n / A16  
ODT0  
ODT1  
CS1_n  
ZQ  
CAS#  
WE#  
RAS#  
ODT0  
ODT1  
CS1#  
ZQ  
AE9  
AC10  
AB10  
AC12  
AE11  
AC11  
AA13  
AA14  
ZQ  
DRAM_VREF  
VREF  
VREF  
VREF  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
98 NXP Semiconductors  
Revision history  
6 Revision history  
Table 87 provides a revision history for this data sheet.  
Table 87. Revision history  
Rev.  
number  
Date  
Substantive change(s)  
Rev. 1.1 05/2019 • Updated the package type information in the Figure 2, "Part number nomenclature—i.MX 8M Dual / 8M  
QuadLite / 8M Quad processors"  
• Updated eCSPI description in the Table 3, "i.MX 8M Dual / 8M QuadLite / 8M Quad modules list"  
• Added the core voltage, analog domain voltage, PLL 1.8 V voltage, 25 MHz crystal voltage, 27 MHz  
crystal voltage, DDR I/O voltage, HDMI voltage, MIPI voltage, PCIe voltage, temperature sensor  
voltage, and fuse power in the Table 5, "Absolute maximum ratings"  
• Updated the Table 6, "Thermal resistance data"  
• Updated the RUN mode unit in the Table 10, "Chip power in different LP mode"  
Rev. 1 10/2018 • Updated the Table 2, "Orderable part numbers"  
• Updated the Figure 2, "Part number nomenclature—i.MX 8M Dual / 8M QuadLite / 8M Quad  
processors"  
Rev. 0.2 08/2018 • Updated the Table 7, "Operating ranges"  
• Updated the Section 3.1.4, External clock sources  
• Updated the Section 3.1.5, Maximum supply currents  
• Updated the Section 3.2.1, Power-up sequence  
• Updated the Figure 5, "Differential LVDS driver transition time waveform"  
• Updated the Section 3.9.3.1, RMII mode timing  
• Updated the Section 5.1.2, 17 x 17 mm supplies contact assignments and functional contact  
assignments  
• Fixed a typo in the Table 85, "17 x 17 mm, 0.65 mm pitch ball map"  
Rev. 0.1 05/2018 • Added a note in the Table 2, "Orderable part numbers"  
• Updated the Table 3, "i.MX 8M Dual / 8M QuadLite / 8M Quad modules list"  
• Updated the Table 7, "Operating ranges"  
• Updated the Table 9, "Maximum supply currents"  
• Updated the Table 10, "Chip power in different LP mode"  
• Added the Table 11, "The power supply states"  
• Updated the PCIe parameters in the Table 15, "PCIe recommended operating conditions"  
• Updated and added a leakage limit note in the Table 26, "GPIO DC parameters"  
• Added a leakage limit note in the Table 29, "Input DC current"  
• Updated the timing parameters in the Table 38, "ECSPI Master mode timing parameters" and Table 39,  
"ECSPI Slave mode timing parameters"  
• Updated the Section 3.9.8.1, PCIEx_RESREF reference resistor connection  
• Updated the Table 59, "MIPI input characteristics DC specifications"  
• Removed the SPI interfaces from the Table 82, "Interface allocation during boot"  
• Updated the PCIe and MIPI power group in the Table 84, "i.MX 8M Dual / 8M QuadLite / 8M Quad  
17 x 17 mm functional contact assignments"  
• Updated the Table 85, "17 x 17 mm, 0.65 mm pitch ball map"  
Rev. 0 01/2018 • Initial version  
i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 1.1, 07/2019  
NXP Semiconductors  
99  
Information in this document is provided solely to enable system and software implementers  
to use NXP products. There are no express or implied copyright licenses granted hereunder  
to design or fabricate any integrated circuits based on the information in this document. NXP  
reserves the right to make changes without further notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products  
for any particular purpose, nor does NXP assume any liability arising out of the application  
or use of any product or circuit, and specifically disclaims any and all liability, including  
without limitation consequential or incidental damages. “Typical” parameters that may be  
provided in NXP data sheets and/or specifications can and do vary in different applications,  
and actual performance may vary over time. All operating parameters, including “typicals”  
must be validated for each customer application by customer‚ customer’s technical experts.  
NXP does not convey any license under its patent rights nor the rights of others. NXP sells  
products pursuant to standard terms and conditions of sale, which can be found at the  
following address: nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to  
unidentified vulnerabilities. Customers are responsible for the design and operation of their  
applications and products to reduce the effect of these vulnerabilities on customer’s  
applications and products, and NXP accepts no liability for any vulnerability that is discovered.  
Customers should implement appropriate design and operating safeguards to minimize the  
risks associated with their applications and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,  
COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,  
MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS,  
MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX,  
SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo,  
AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient  
Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor  
Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore,  
Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a  
Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of  
NXP B.V. All other product or service names are the property of their respective owners.  
AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,  
CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON,  
POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME,  
ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm  
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be  
protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.  
Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power  
Architecture and Power.org word marks and the Power and Power.org logos and related  
marks are trademarks and service marks licensed by Power.org.  
© 2018-2019 NXP B.V.  
Document Number: IMX8MDQLQCEC  
Rev. 1.1  
07/2019  

相关型号:

935377785557

Multifunction Peripheral
NXP

935377832118

RF Power Bipolar Transistor
NXP

935377839528

Power Supply Management Circuit
NXP

935377839557

Power Supply Management Circuit
NXP

935378318528

RISC Microcontroller
NXP

935378318557

RISC Microcontroller
NXP

935378427557

RISC Microcontroller
NXP

935378709557

RISC Microcontroller
NXP

935379256598

RF Power Field-Effect Transistor
NXP

935379325557

RISC Microcontroller
NXP

935379674557

RISC Microcontroller
NXP

935379913528

Narrow Band Medium Power Amplifier
NXP