98ASA00368D [NXP]

17 mOhm and 7.0 mOhm high-side switches;
98ASA00368D
型号: 98ASA00368D
厂家: NXP    NXP
描述:

17 mOhm and 7.0 mOhm high-side switches

文件: 总72页 (文件大小:1799K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MC12XS6D1  
Rev. 7.0, 1/2021  
NXP Semiconductors  
Data sheet: Technical Data  
17 mOhm and 7.0 mOhm high-side  
switches  
MC07XS6517BEK; MC07XS6517DEK;  
MC17XS6400BEK; MC17XS6400CEK;  
MC17XS6500BEK; MC17XS6500CEK;  
MC17XS6500EEK  
The 12XS6 is the latest SMARTMOS achievement in automotive lighting drivers.  
It belongs to an expanding family, which helps to control and diagnose  
incandescent lamps and light-emitting diodes (LEDs), with enhanced precision.  
It combines flexibility through daisy chainable SPI 5.0 MHz, extended digital and  
analog feedbacks, safety, and robustness.  
High-side switches  
Output edge shaping helps to improve electromagnetic performance. To avoid  
shutting off the device upon inrush current, while still being able to closely track  
the load current, a dynamic overcurrent threshold profile is featured. Current of  
each channel can be sensed with a programmable sensing ratio. Whenever  
communication with the external microcontroller is lost, the device enters a fail  
operation mode, but remains operational, controllable, and protected.  
EK SUFFIX (PB-FREE)  
98ASA00368D AND  
98ASA00894D  
EK SUFFIX (PB-FREE)  
98ASA00367D  
54-PIN SOIC-EP  
32-PIN SOIC-EP  
This new generation of high-side switch products family facilitates ECU design  
due to compatible MCU software and PCB foot prints for each device variant.  
Applications  
Features  
• Low-voltage automotive exterior lighting  
• Halogen lamps  
• Quad or penta high-side switches with high transient capability  
• 16-bit 5.0 MHz SPI control of overcurrent profiles, channel control including  
PWM duty cycles, output on and off open load detections, thermal shutdown  
and prewarning, and fault reporting  
• Output current monitoring with programmable synchronization signal and  
battery voltage feedback  
• Incandescent bulbs  
• Light-emitting diodes (LEDs)  
• HID Xenon ballasts  
• Limp home mode  
• External smart power switch control  
• Operating voltage is 7.0 V to 18 V with sleep current < 5.0 µA, extended mode  
from 6.0 V to 28 V  
• -16 V reverse polarity and ground disconnect protections  
• Compatible PCB foot print and SPI software driver among the family  
V
BAT  
V
BAT  
VCC  
5.0 V  
Regulator  
VBAT  
07XS6517  
VBAT  
VCC  
SI  
VCC  
CP  
SO  
CSB  
SCLK  
SI  
GND  
CSB  
SCLK  
SO  
RSTB  
CLK  
CSNS  
SYNCB  
LIMP  
IN1  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
RSTB  
CLK  
A/D1  
TRG1  
PORT  
Main  
MCU  
PORT  
PORT  
PORT  
IN2  
IN3  
OUT  
Smart Power  
CSNS  
VBAT  
IN  
IN4  
PORT  
A/D2  
OUT6  
GND  
GND  
GND  
Figure 1. Triple 7.0 mΩ and dual 17 mΩ high-side simplified application diagram  
© NXP B.V. 2021.  
1
Orderable parts  
This section describes the part numbers available to be purchased along with their differences. Valid orderable part numbers are provided  
on the web. To determine the orderable part numbers for this device, go to http://www.nxp.com and perform a part number search for the  
following device numbers.  
Table 1. Orderable part variations  
Temperature  
OUT1  
RDS(on)  
OUT2  
RDS(on)  
OUT3  
RDS(on)  
OUT4  
RDS(on)  
OUT5  
RDS(on)  
Part number  
Notes  
Package  
OUT6  
(T )  
A
MC07XS6517BEK  
MC07XS6517DEK  
MC17XS6500BEK  
MC17XS6500CEK  
MC17XS6500EEK  
MC17XS6400BEK  
MC17XS6400CEK  
17 mΩ  
17 mΩ  
17 mΩ  
17 mΩ  
17 mΩ  
17 mΩ  
17 mΩ  
17 mΩ  
17 mΩ  
17 mΩ  
17 mΩ  
17 mΩ  
17 mΩ  
17 mΩ  
7.0 mΩ  
7.0 mΩ  
17 mΩ  
17 mΩ  
17 mΩ  
17 mΩ  
17 mΩ  
7.0 mΩ  
7.0 mΩ  
17 mΩ  
17 mΩ  
17 mΩ  
17 mΩ  
17 mΩ  
7.0 mΩ  
7.0 mΩ  
17 mΩ  
17 mΩ  
17 mΩ  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
SOIC54 pins  
exposed pad  
(1)  
-40 °C to 125 °C  
SOIC32 pins  
exposed pad  
No  
Notes  
1.  
To order parts in tape and reel, add the R2 suffix to the part number.  
12XS6D1  
2
NXP Semiconductors  
Table of Contents  
1
2
3
Orderable parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.1 Pinout diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.2 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4.1 Relationship between ratings and operating requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4.2 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.4 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.5 Supply currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
General IC functional description and application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.5 Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.6 SPI interface and configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Functional block requirements and behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.1 Self-protected high-side switches description and application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.2 Power supply functional block description and application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
6.3 Communication interface and device control functional block description and application information . . . . . . . . . . . . . . . 54  
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
7.2 EMC and EMI considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
7.3 Robustness considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
7.4 PCB layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
7.5 Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
8.1 Marking information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
8.2 Package mechanical dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
4
5
6
7
8
9
12XS6D1  
NXP Semiconductors  
3
2
Internal block diagram  
CP  
VCC  
VBAT  
Power  
Supply  
Reverse  
Battery  
VBAT_PROTECTED  
VS  
UVF Undervoltage  
Protection  
Detection  
Battery  
Clamp  
Power-on  
Reset  
OVF  
Charge  
CPF  
Pump  
OTW1  
OTW2  
SO  
Thermal  
Prewarning  
OTS1  
Temperature  
Shutdown  
CSB  
SPI  
Selectable  
Slope Control  
SCLK  
SI  
SPIF  
Selectable Overcurrent  
Protection  
OC1  
RSTB  
OLON1  
OLOFF1  
Fault  
Management  
Selectable OpenLoad  
Detection  
Selectable  
Current Sensing  
LIMP  
IN1  
Output Voltage  
Monitoring  
OUT1  
OUT1  
OUT2  
OUT1 Channel  
OUT2 Channel  
OUT3 Channel  
IN2  
PWM Module  
IN3  
IN4  
OUT3  
OUT4  
Logic  
VCC  
WAKEB OR  
RSTB  
OUT4 Channel  
Clock Failure  
Detection  
CLK  
OUT5/  
NC  
OUT5 Channel  
VCC  
CSNS  
SYNCB  
VBAT_PROTECTED  
Selectable  
Delay  
OUT6  
Selectable  
Analog  
VBAT_PROTECTED  
CSNS  
Feedback  
Control die  
Temperature  
Monitoring  
Battery  
Voltage  
Monitoring  
GND  
Figure 2. 12XS6 simplified internal block diagram (penta/quad)  
12XS6D1  
4
NXP Semiconductors  
3
Pin connections  
3.1  
Pinout diagram  
Transparent top view  
1
CLK  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
CP  
2
LIMP  
RSTB  
CSB  
IN4  
3
IN3  
4
SCLK  
SI  
IN2  
5
IN1  
6
VCC  
SO  
CSNS SYNCB  
CSNS  
GND  
7
OUT6  
8
VBAT  
33  
9
GND  
OUT2  
OUT2  
OUT4  
OUT1  
OUT1  
OUT3  
OUT3  
OUT3  
OUT5/NC  
OUT5/NC  
10  
11  
12  
13  
14  
15  
16  
OUT4  
OUT4  
NC  
NC  
Figure 3. Pinout diagram for 32 pin SOIC-EP package  
Transparent top view - stamped version  
Transparent top view - etched version  
NC  
NC  
CLK  
LIMP  
IN4  
IN3  
IN2  
IN1  
CSNS SYNCB  
CSNS  
GND  
OUT1  
OUT1  
OUT3  
OUT3  
OUT3  
NC  
NC  
CLK  
LIMP  
IN4  
IN3  
IN2  
IN1  
CSNS SYNCB  
CSNS  
GND  
OUT1  
OUT1  
OUT3  
OUT3  
OUT3  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
NC  
NC  
CP  
RSTB  
CSB  
SCLK  
SI  
VCC  
SO  
OUT6  
GND  
OUT2  
OUT2  
OUT4  
OUT4  
OUT4  
54  
NC  
NC  
CP  
RSTB  
CSB  
SCLK  
SI  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
VCC  
SO  
9
9
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
14  
15  
16  
OUT6  
GND  
OUT2  
OUT2  
OUT4  
OUT4  
OUT4  
55  
VBAT  
55  
VBAT  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
OUT5  
OUT5  
OUT5  
OUT5  
OUT5  
OUT5  
OUT5  
OUT5  
OUT5  
OUT5  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
OUT5  
OUT5  
OUT5  
OUT5  
OUT5  
OUT5  
OUT5  
OUT5  
OUT5  
OUT5  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Figure 4. Pinout diagram for 54 pin SOIC-EP package  
12XS6D1  
NXP Semiconductors  
5
3.2  
Pin definitions  
Table 2. 12XS6 pin definitions  
Pin number  
Pin number  
Pin name Pin function Formal name  
Definition  
32 SOIC-EP 54 SOIC-EP (2)  
This pin is the connection for an external capacitor for charge pump use  
only.  
1
2
3
4
CP  
Internal supply Charge-pump  
This input pin is used to initialize the device configuration and fault  
registers, as well as place the device in a low-current sleep mode. This pin  
has a passive internal pull-down.  
RSTB  
SPI  
SPI  
Reset  
This input pin is connected to a chip select output of a master  
microcontroller (MCU). When this digital signal is high, SPI signals are  
ignored. Asserting this pin low starts an SPI transaction. The transaction is  
indicated as completed when this signal returns to high level. This pin has  
a passive internal pull-up to VCC through a diode  
3
5
CSB  
Chip select  
This input pin is connected to the MCU providing the required bit shift clock  
for SPI communication. This pin has an passive internal pull-down.  
4
5
6
6
7
8
SCLK  
SI  
SPI  
SPI  
Serial clock  
Serial input  
This pin is the data input of the SPI communication interface. The data at  
the input are sampled on the positive edge of the SCLK. This pin has a  
passive internal pull-down.  
MCU power  
supply  
This pin is a power supply pin for internal logic, the SPI I/Os and the OUT6  
driver.  
VCC  
Power supply  
This output pin is connected to the SPI serial data Input pin of the MCU or  
to the SI pin of the next device of a daisychain of devices. The SPI changes  
on the negative edge of SCLK. When CSB is high, this pin is high-  
impedance.  
7
9
SO  
SPI  
Serial output  
External solid  
state  
This output pin controls an external smart power switch by logic level. This  
pin has a passive internal pull-down.  
8
10  
OUT6  
GND  
Output  
These pins are the ground for the logic and analog circuitries of the device.  
For ESD and electrical parameter accuracy purpose, the ground pins must  
be shorted on the board.  
9 and 24  
11 and 44  
Ground  
Ground  
10 to 11  
12 to 14  
12 to 13  
14 to 16  
OUT2  
OUT4  
Output  
Output  
Channel #2  
Channel #4  
Protected high-side power output pins to the load.  
Protected high-side power output pins to the load.  
1, 2, 18 to 27,  
53, 54  
These pins are not connected. It is recommended to connect these pint to  
ground  
15, 16  
NC  
N/A  
Not connected  
Channel #5  
Protected high-side power output pins to the load. This channel is not  
connected for the quad version 17XS6400. It is recommended to connect  
those pins to ground for this device.  
17 to 18  
28 to 37  
OUT5  
Output  
19 to 21  
22 to 23  
39 to 41  
42 to 43  
OUT3  
OUT1  
Output  
Output  
Channel #3  
Channel #1  
Protected high-side power output pins to the load.  
Protected high-side power output pins to the load.  
This pin reports an analog value proportional to the designated OUT[1:5]  
output current or the temperature of the exposed pad or the battery  
25  
45  
CSNS  
Feedback  
Current sense voltage. It is used externally to generate a ground-referenced voltage for  
the microcontroller (MCU). Current recopy and analog voltage feedbacks  
are SPI programmable.  
CSNS  
SYNCB  
Current sense This open drain output pin allows synchronizing the MCU A/D conversion.  
synchronization This pin requires an external pull-up resistor to VCC.  
26  
27  
46  
47  
Feedback  
Input  
This input wakes up the device. This input pin is used to directly control  
corresponding channel in Fail mode. During normal mode the control of the  
outputs by the control inputs is SPI programmable.This pin has a passive  
IN1  
IN2  
Direct input #1  
internal pull-down.  
This input wakes up the device. This input pin is used to directly control  
corresponding channel in fail mode. During normal mode the control of the  
outputs by the control inputs is SPI programmable.This pin has a passive  
28  
48  
Input  
Direct input #2  
internal pull-down.  
12XS6D1  
6
NXP Semiconductors  
Table 2. 12XS6 pin definitions (continued)  
Pin number  
Pin number  
Pin name Pin function Formal name  
Definition  
32 SOIC-EP 54 SOIC-EP (2)  
This input wakes up the device. This input pin is used to directly control  
corresponding channel in fail mode. During normal mode the control of the  
outputs by the control inputs is SPI programmable.This pin has a passive  
internal pull-down.  
29  
49  
IN3  
Input  
Direct input #3  
This input wakes up the device. This input pin is used to directly control  
corresponding channel in fail mode. During normal mode the control of the  
outputs by the control inputs is SPI programmable.This pin has a passive  
internal pull-down.  
30  
31  
32  
33  
50  
51  
52  
55  
IN4  
LIMP  
CLK  
Input  
Input  
Direct input #4  
Limp home  
The Fail mode can be activated by this digital input. This pin has a passive  
internal pull-down.  
Device mode  
feedback  
Reference  
PWM clock  
This pin is an input/output pin. It is used to report the device sleep-state  
information. It is also used to apply reference PWM clock which is divided  
by 28 in normal operating mode. This pin has a passive internal pull-down.  
Input/output  
Power supply  
Battery power This exposed pad connects to the positive power supply and is the source  
supply of operational power for the device.  
VBAT  
Notes  
2.  
Pins 17 and 38 are omitted.  
12XS6D1  
NXP Semiconductors  
7
4
General product characteristics  
4.1  
Relationship between ratings and operating requirements  
The analog portion of device is supplied by the voltage applied to the VBAT exposed pad. Thereby the supply of internal circuitry (logic in  
case of a VCC disconnect, charge pump, gate drive,...) is derived from the VBAT pin.  
In case of a reverse battery:  
• the internal supply rail is protected (max. -16 V)  
• the output drivers (OUT1:OUT4/5) are switched on, to reduce the power consumption in the drivers when using incandescent bulbs  
Fatal range  
Reverse  
protection  
Degraded operating Normaloperating Degraded operating  
range range range  
Potential failure  
Fatal range  
Probable  
permanent  
failure  
- Reduced performance  
- Probable failure in  
case of short-circuit  
Probable  
permanent  
failure  
- Reduced performance Full performance - Reduced performance  
- Full protection but  
accuracy not  
- Full protection but  
accuracy not  
guaranteed  
guaranteed  
- no PMW feature for  
UV to 6.0 V  
Operating range  
V
6
V
0
4
1
-
Fatal range  
Accepted industry  
standard practices  
Fatal range  
Probable  
Probable  
permanent failure  
Correct operation  
permanent failure  
Handling conditions (power off)  
Figure 5. Ratings vs. operating requirements (VBAT pin)  
The device’s digital circuitry is powered by the voltage applied to the VCC pin. If VCC is disconnected, the logic part is supplied by the  
VBAT pin. The output driver for SPI signals, CLK pin (wake feedback), and OUT6 are supplied by the VCC pin only. This pin must be  
protected externally in case of a reverse polarity, and in case of a high-voltage disturbance.  
Fatal range  
Not operating range Degraded operating  
range  
Normal operating  
range  
Degraded operating  
range  
Fatal range  
Probable  
Probable  
permanent failure  
Reduced  
Full performance Reduced performance permanent failure  
performance  
Operating range  
Figure 6. Ratings vs. operating requirements (VCC pin)  
12XS6D1  
8
NXP Semiconductors  
4.2  
Maximum ratings  
Table 3. Maximum ratings  
All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage  
to the device.  
Symbol  
Description (rating)  
Min.  
Max.  
Unit  
Notes  
Electrical ratings  
V
VBAT voltage range  
-16  
40  
V
V
BAT  
V
VCC logic supply voltage  
-0.3  
7.0  
CC  
Digital input voltage  
• IN1:IN4 and LIMP  
(3)  
V
-0.3  
-0.3  
40  
20  
V
IN  
• CLK, SI, SCLK, CSB, and RSTB  
Digital output voltage  
(3)  
(4)  
V
-0.3  
20  
V
OUT  
• SO, CSNS, SYNC, OUT6, CLK  
I
Negative digital input clamp current  
5.0  
mA  
CL  
Power channel current  
• 7.0 mΩ channel  
• 17 mΩ channel  
(5)  
IOUT  
11  
5.5  
A
Power channel clamp energy capability  
• 7.0 mΩ channel - Initial TJ = 25 °C  
200  
100  
100  
50  
(6)  
• 7.0 mΩ channel - Initial TJ = 150 °C  
• 17 mΩ channel - Initial TJ = 25 °C  
• 17 mΩ channel - Initial TJ = 150 °C  
E
mJ  
CL  
ESD voltage  
• Human body model (HBM) - VBAT, power channel, and GND pins  
• Human body model (HBM) - all other pins  
• Charge device model (CDM) - corner pins  
• Charge device model (CDM) - all other pins  
-8000  
-2000  
-750  
+8000  
+2000  
+750  
(7)  
V
V
ESD  
-500  
+500  
Notes  
3.  
4.  
5.  
Exceeding voltage limits on those pins may cause a malfunction or permanent damage to the device.  
Maximum current in negative clamping for IN1:IN4, LIMP, RSTB, CLK, SI, SO, SCLK, and CSB pins.  
Continuous high-side output current rating so long as maximum junction temperature is not exceeded. Calculation of maximum output current  
using package thermal resistance is required.  
6.  
7.  
Active clamp energy using single-pulse method (L = 2.0 mH, RL = 0 Ω, VBAT = 14 V). Refer to Output clamps on page 38 section.  
ESD testing is performed in accordance with the human body model (HBM) (CZAP = 100 pF, RZAP = 1500 Ω), and the charge device model.  
12XS6D1  
NXP Semiconductors  
9
4.3  
Thermal characteristics  
Table 4. Thermal ratings  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage  
to the device.  
Symbol  
Description (rating)  
Min.  
Max.  
Unit  
Notes  
Thermal ratings  
Operating temperature  
• Ambient  
TA  
TJ  
-40  
-40  
+125  
+150  
°C  
• Junction  
TSTG  
Storage temperature  
-55  
+ 150  
260  
°C  
°C  
(8) (9)  
TPPRT  
Peak package reflow temperature during reflow  
Thermal resistance and package dissipation ratings  
(10)  
RΘJB  
RΘJA  
RΘJC  
Junction-to-board  
2.5  
°C/W  
°C/W  
°C/W  
(11) (12)  
Junction-to-ambient, natural convection, four-layer board (2s2p)  
• RΘJA - 54 SOIC-EP  
17.4  
19.4  
• RΘJA - 32 SOIC-EP  
(13)  
Junction-to-case (case top surface)  
10.6  
Notes  
8.  
Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause  
malfunction or permanent damage to the device.  
9.  
NXP’s package reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For peak package reflow temperature and  
moisture sensitivity levels (MSL), go to www.nxp.com, search by part number (remove prefixes/suffixes) and enter the core ID to view all orderable  
parts, and review parametrics.  
10.  
11.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the  
board near the package.  
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient  
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.  
12.  
13.  
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).  
4.4  
Operating conditions  
This section describes the operating conditions of the device. Conditions apply to all the following data, unless otherwise noted.  
Table 5. Operating conditions  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage  
to the device.  
Symbol  
Ratings  
Min.  
Max.  
Unit  
Notes  
Functional operating supply voltage - Device is fully functional. All features are  
operating.  
7.0  
18  
V
Overvoltage range  
• Jump start  
VBAT  
28  
40  
V
• Load dump  
Reverse battery  
-16  
4.5  
V
V
Functional operating supply voltage - Device is fully functional. All features are  
operating.  
VCC  
5.5  
12XS6D1  
10  
NXP Semiconductors  
4.5  
Supply currents  
This section describes the current consumption characteristics of the device.  
Table 6. Supply currents  
Characteristics noted under conditions 4.5 V VCC 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Ratings  
Min.  
Typ.  
Max.  
Unit  
Notes  
VBAT current consumptionS  
Sleep mode measured at VPWR = 12 V  
• TA = 25 °C  
(14) (15)  
(15)  
IQVBAT  
1.2  
10  
5.0  
30  
µA  
• TA = 125 °C  
Operating mode measured at VPWR = 18 V  
IVBAT  
7.0  
8.0  
mA  
VCC current consumptionS  
Sleep mode measured at VCC = 5.5 V  
Operating mode measured at VPWR = 5.5 V (SPI frequency 5.0 MHz)  
IQVCC  
IVCC  
0.05  
2.8  
5.0  
4.0  
µA  
mA  
Notes  
14.  
With the OUT1:OUT4/5 power channels grounded.  
With the OUT1:OUT4/5 power channels opened.  
15.  
12XS6D1  
NXP Semiconductors  
11  
5
General IC functional description and application  
information  
5.1  
Introduction  
The 12XS6 is the latest achievement in automotive drivers for all types of centralized automotive lighting applications. It is an evolution of  
the successful 12XS3 by providing improved features of a complete family of devices using NXP's latest and unique technologies for the  
controller and the power stages.  
It consists of a scalable family of devices with different RDS(on) and different number of outputs, compatible in terms of software driver and  
package footprint. It allows diagnosing the light-emitting diodes (LEDs) with an enhanced current sense precision with synchronization  
pin. It combines flexibility through daisy chainable SPI 5.0 MHz, extended digital and analog feedbacks, safety, and robustness. It  
integrates an enhanced PWM module with 8-bit duty cycle capability and PWM frequency prescaler per power channel.  
5.2  
Features  
The main attributes of the 12XS6 are:  
• Dual, triple, quad, or penta high-side switches with overload, overtemperature, and undervoltage protection  
• Control output for one external smart power switch  
• 16-bit SPI communication interface with daisy chain capability  
• Dedicated control inputs for use in fail mode  
• Analog feedback pin with SPI programmable multiplexer and sync signal  
• Channel diagnosis by SPI communication  
• Advanced current sense mode for LED usage  
• Synchronous PWM module with external clock, prescaler and multiphase feature  
• Excellent EMC behavior  
• Power net and reverse polarity protection  
• Ultra low-power mode  
• Scalable and flexible family concept  
• Board layout compatible SOIC54 and SOIC32 package with exposed pad  
• AEC-Q100 grade 1 automotive qualified  
12XS6D1  
12  
NXP Semiconductors  
5.3  
Block diagram  
The choice of multi-die technology in an SOIC exposed pad package, including a low cost vertical trench FET power die associated with  
smart power control die, lead to an optimized solution.  
12XS6 - Functional block diagram  
Power supply  
MCU interface and device control  
SPI interface  
Self-protected  
high-side  
switches  
OUT[x]  
Parallel control inputs  
PWM controller  
MCU  
interface  
Supply  
MCU interface and output control  
Self-protected high-side switches  
Figure 7. Functional block diagram  
5.3.1 Self-protected high-side switches  
OUT1: OUT4/5 are the output pins of the power switches. The power channels are protected against various kinds of short-circuits, and  
have active clamp circuitry which may be activated when switching off inductive loads. Many protective and diagnostic functions are  
available.  
5.3.2 Power supply  
The device operates with supply voltages from 5.5 V to 40 V (VBAT), but is full spec. compliant only between 7.0 V and 18 V. The VBAT  
pin supplies power to the internal regulator, analog, and logic circuit blocks. The VCC pin (5.0 V typ.) supplies the output register of the  
serial peripheral interface (SPI). Consequently, the SPI registers cannot be read without presence of VCC. The employed IC architecture  
guarantees a low quiescent current in sleep mode.  
5.3.3 MCU interface and device control  
In normal mode the power output channels are controlled by the embedded PWM module, which is configured by the SPI register settings.  
For bidirectional SPI communication, VCC has to be in the authorized range. Failure diagnostics and configuration are also performed  
through the SPI port. The reported failure types are: open load, short-circuit to battery, severe short-circuit to ground, overcurrent,  
overtemperature, clock-fail, and under and overvoltage. The device allows driving loads at different frequencies up to 400 Hz.  
5.4  
Functional description  
The device has four fundamental operating modes: sleep, normal, fail, and power off. It possesses multiple high-side switches (power  
channels) each of which can be controlled independently:  
• In normal mode by SPI interface. A second supply voltage (VCC) is required for bidirectional SPI communication  
• In fail mode by the corresponding direct inputs IN1:IN4. The OUT5 for the penta version and the OUT6 are off in this mode  
12XS6D1  
NXP Semiconductors  
13  
5.5  
Modes of operation  
The operating modes are based on the signals:  
• wake = (IN1_ON) OR (IN2_ON) OR (IN3_ON) OR (IN4_ON) OR (RSTB). More details in the Logic I/O plausibility check section  
• fail = (SPI_fail) OR (LIMP). More details in the Loss of communication interface section  
The following chapters provide information for a five output device. (do not consider OUT5 for the quad version.)  
Sleep  
wake = [0]  
wake = [0]  
wake = [1]  
(VBAT < VBATPOR) and  
(VCC < VCCPOR  
(VBAT > VBATPOR) or  
(VCC > VCCPOR  
)
)
(VBAT < VBATPOR) and  
(VCC < VCCPOR  
(VBAT < VBATPOR) and  
(VCC < VCCPOR  
Power  
off  
)
)
Normal  
fail = [0] and valid watchdog toggle  
fail = [1]  
Fail  
Figure 8. General IC operating modes  
5.5.1 Power off mode  
The power off mode is applied when VBAT and VCC are below the power on reset threshold (VBAT POR, VCC POR). No functionality is  
available, but the device is protected by the clamping circuits In power off. Refer to Supply voltages disconnection.  
5.5.2 Sleep mode  
The sleep mode is used to provide ultra low-current consumption. During sleep mode:  
• the component is inactive and all outputs are disabled  
• the outputs are protected by the clamping circuits  
• the pull-up/pull-down resistors are present  
Sleep mode is the default mode of the device after applying the supply voltages (VBAT or VCC) prior to any wake-up condition (wake = [0]).  
Wake-up from sleep mode is provided by the wake signal.  
5.5.3 Normal mode  
The normal mode is the regular operating mode of the device. The device is in normal mode, when the device is in the wake state  
(wake = [1]) and no fail condition (fail = [0]) is detected.  
During normal mode:  
• the power outputs are under control of the SPI  
• the power outputs are controlled by the programmable PWM module  
• the power outputs are protected by the overload protection circuit  
• the control of the power outputs by SPI programming  
• the digital diagnostic feature transfers status of the smart switch via the SPI  
• the analog feedback output (CSNS and CSNS SYNC) can be controlled by the SPI  
12XS6D1  
14  
NXP Semiconductors  
The channel control (CHx) can be summarized:  
• CH1:4 controlled by ONx or iINx (if it is programmed by the SPI)  
• CH5:6 controlled by ONx  
• Rising CHx by definition means starting overcurrent window for OUT1:5  
5.5.4 Fail mode  
The device enters the fail mode, when:  
• the LIMP input pin is high (logic [1])  
• or a SPI failure is detected  
During fail mode (wake = [1] & fail = [1]):  
• the OUT1:OUT4 outputs are directly controlled by the corresponding control inputs (IN1:IN4)  
• the OUT5:OUT6 are turned off  
• the PWM module is not available  
• while no SPI control is feasible, the SPI diagnosis is functional (depending on the fail mode condition):  
• SO reports the content of SO register defined by SOA0 to three bits  
• the outputs are fully protected in case of an overload, overtemperature, and undervoltage  
• no analog feedback is available  
• the max. output overcurrent profile is activated (OCLO and window times)  
• in case of an overload condition or undervoltage, the autorestart feature controls the OUT1:OUT4 outputs  
• in case of an overtemperature condition, OCHI1 detection, or severe short-circuit detection, the corresponding output is latched  
OFF until a new wake-up event  
The channel control (CHx) can be summarized:  
• CH1:4 controlled by iINx, while the overcurrent windows are controlled by IN_ONx  
• CH5:6 are off  
5.5.5 Mode transitions  
After a wake-up:  
• a power on reset is applied and all SPI SI and SO registers are cleared (logic[0])  
• the faults are blanked during tBLANKING  
The device enters in normal mode after start-up if following sequence is provided:  
• VBAT and VCC power supplies must be above their undervoltage thresholds (sleep mode)  
• generate wake-up event (wake =1) setting RSTB from 0 to 1  
The device initialization is completed after 50 µsec (typ). During this time, the device is robust in case VBAT interrupts higher than  
150 nsec. The transition from “normal mode” to “fail mode” is executed immediately when a fail condition is detected. During the transition,  
the SPI SI settings are cleared and the SPI SO registers are not cleared.  
When the fail mode condition is a:  
• LIMP input, WD toggle timeout, WD toggle sequence, or a SPI modulo 16 error, the SPI diagnosis is available during fail mode  
• SI/SO stuck to static level, the SPI diagnosis is not available during fail mode  
The transition from “fail mode” to “normal mode” is enabled when:  
• the fail condition is removed and  
• two SPI commands are sent within a valid watchdog cycle (first WD=[0] and then WD=[1])  
During this transition:  
• all SPI SI and SO registers are cleared (logic[0])  
• the DSF (device status flag) in the registers #1:#7 and the RCF (register clear flag) in the device status register #1 are set (logic[1])  
To delatch the RCF diagnosis, a read command of the quick status register #1 must be performed.  
12XS6D1  
NXP Semiconductors  
15  
5.6  
SPI interface and configurations  
5.6.1 Introduction  
The SPI is used to:  
• control the device in case of normal mode  
• provide diagnostics in case of normal and fail mode  
The SPI is a 16-bit full-duplex synchronous data transfer interface with daisy chain capability.  
The interface consists of four I/O lines with 5.0 V CMOS logic levels and termination resistors:  
• The SCLK pin clocks the internal shift registers of the device  
• The SI pin accepts data into the input shift register on the rising edge of the SCLK signal  
• The SO pin changes its state on the rising edge of SCLK and reads out on the falling edge  
• The CSB enables the SPI interface:  
• with the leading edge of CSB, the registers loads  
• while CSB is logic [0], SI/SO data shifts  
• with the trailing edge of the CSB signal, SPI data latches into the internal registers  
• when CSB is logic [1], the signals at the SCLK and SI pins are ignored and SO is high-impedance  
When the RSTB input is:  
• low (logic [0]), the SPI and the fault registers are reset. The wake state then depends on the status of the input pins  
(IN_ON1:IN_ON4)  
• high (logic[1]), the device is in wake status and the SPI is enabled  
The functionality of the SPI is checked by a plausibility check. During a SPI failure, the device enters fail mode.  
5.6.2 SPI input register and bit descriptions  
The first nibble of the 16-bit data word (D15:D12) serves as address bits.  
SI address  
D14  
SI data  
Register  
#
D15  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
name  
8
4-Bit address  
WD  
11-Bit address  
11 bits (D10:D1) are used as data bits.  
The D11 bit is the WD toggle bit. This bit has to be toggled with each write command.  
When the toggling of the bit is not executed within the WD timeout, a SPI fail is detected.  
All register values are logic [0] after a reset. The predefined value is off/inactive unless otherwise noted.  
12XS6D1  
16  
NXP Semiconductors  
Register  
SI address  
SI data  
#
0
1
2
3
4
5
6
7
D15  
D14  
D13  
D12  
0
D11  
WD  
WD  
WD  
WD  
WD  
WD  
WD  
WD  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SYNC  
EN1  
SYNC  
EN0  
SOA  
MODE  
OCHI  
OD3  
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
WD SEL  
MUX2  
MUX1  
MUX0  
SOA3  
SOA2  
SOA1  
SOA0  
Initialisation 1  
initialisation 2  
CH1 control  
CH2 control  
CH3 control  
CH4 control  
CH5 control  
CH6 control  
OCHI  
OD5  
OCHI  
OD4  
OCHI  
OD2  
OCHI  
OD1  
PWM  
sync  
OTW  
SEL  
OCHI  
THERMAL  
OCHI  
0
1
NO HID1 NO HID0  
TRANSIENT  
0
0
PH11  
PH12  
PH13  
PH14  
PH15  
PH16  
PH01  
PH02  
PH03  
PH04  
PH05  
PH06  
ON1  
ON2  
ON3  
ON4  
ON5  
ON6  
PWM71 PWM61 PWM51 PWM41 PWM31 PWM21 PWM11 PWM01  
PWM72 PWM62 PWM52 PWM42 PWM32 PWM22 PWM12 PWM02  
PWM73 PWM63 PWM53 PWM43 PWM33 PWM23 PWM13 PWM03  
PWM74 PWM64 PWM54 PWM44 PWM34 PWM24 PWM14 PWM04  
PWM75 PWM65 PWM55 PWM45 PWM35 PWM25 PWM15 PWM05  
PWM76 PWM66 PWM56 PWM46 PWM36 PWM26 PWM16 PWM06  
0
1
1
0
1
1
1
0
1
1
output  
control  
8
1
0
0
0
WD  
PSF5  
PSF4  
PSF3  
PSF2  
X
PSF1  
X
ON6  
ON5  
ON4  
ON3  
ON2  
ON1  
GPWM  
EN6  
GPWM  
EN5  
GPWM  
EN4  
GPWM  
EN3  
GPWM  
EN2  
GPWM  
EN1  
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
1
1
1
0
0
0
0
1
1
0
0
1
0
0
1
1
WD  
WD  
WD  
WD  
WD  
WD  
WD  
WD  
WD  
0
1
0
1
0
0
1
0
1
X
X
X
X
9-1  
9-2  
Global PWM  
control  
GPWM7 GPWM6 GPWM5 GPWM4 GPWM3 GPWM2 GPWM1 GPWM0  
ACM  
OCLO5 OCLO4 OCLO3 OCLO2 OCLO1 ACM EN5 ACM EN4 ACM EN3 ACM EN2  
10-1  
10-2  
11  
over current  
control  
EN1  
SHORT SHORT SHORT SHORT SHORT  
OCHI5 OCHI4 OCHI3 OCHI2 OCHI1  
NO  
OCHI5  
NO  
OCHI4  
NO  
OCHI3  
NO  
OCHI2  
NO  
OCHI1  
X
PRS15  
X
X
PRS05  
X
INEN14 INEN04 INEN13 INEN03 INEN12 INEN02 INEN11 INEN01  
input enable  
PRS14  
X
PRS04  
X
PRS13  
X
PRS03  
X
PRS12  
X
PRS02  
X
PRS11  
PRS16  
PRS01  
PRS06  
12-1  
12-2  
13-1  
13-2  
prescaler  
settings  
OLON  
DGL5  
OLON  
DGL4  
OLON  
DGL3  
OLON  
DGL2  
OLON  
DGL1  
OLLED  
TRIG  
OLOFF OLOFF OLOFF OLOFF OLOFF  
EN5  
OLLED  
EN5  
OL control  
EN4  
OLLED  
EN4  
EN3  
OLLED  
EN3  
EN2  
OLLED  
EN2  
EN1  
OLLED  
EN1  
res  
res  
res  
res  
OLLED control  
increment /  
decrement  
testmode  
INCR  
SGN  
14  
15  
1
1
1
1
1
1
0
1
WD  
X
INCR15 INCR05 INCR14 INCR04 INCR13 INCR03 INCR12 INCR02 INCR11 INCR01  
X
X
X
X
X
X
X
X
X
X
X
WD #0~#14 = watchdog toggle bit  
#0  
MUX2  
MUX1  
MUX0 CSNS  
SOA0 ~ SOA3  
SOA MODE  
MUX0 ~ MUX2  
#0  
#0  
#0  
#0  
#0  
#1  
#1  
#1  
#1  
#1  
#1  
= address of next SO data word  
= single read address of next SO data word  
= CSNS multiplexer setting  
= SYNC delay setting  
= watchdog timeout select  
= over temperature warning threshold selection  
= reset clock module  
= OCHI window on load demand  
= HID outputs selection  
= OCHI1 level depending on control die temperature  
= OCHIx levels adjusted during OFF-to-ON transition  
0
0
0
0
1
1
1
1
0
0
1
1
0
1
0
1
0
1
0
1
off  
OUT1 current  
OUT2 current  
OUT3 current  
OUT4 current  
OUT5 current  
SYNC EN0~ SYNC EN1  
WD SEL  
OTW SEL  
PWM SYNC  
OCHI ODx  
NO HIDx  
0
0
1
VBAT monitor  
control die temp.monitor  
1
#0  
SYNC  
SYNC Sync status  
EN0  
0
1
0
1
OCHI THERMAL  
OCHI TRANSIENT  
PWM0x ~ PWM7x #2~#7 = PWM value (8Bit)  
PH0x ~ PH1x #2~#7 = phase control  
ONx #2~#8 = channel on/off incl. OCHI control  
PSFx  
GPWM ENx  
GPWM1 ~ GPWM7  
ACM ENx #10-1 = advanced current sense mode enable  
OCLOx #10-1 = OCLO level control  
SHORT OCHIx #10-2 = use short OCHI window time  
NO OCHIx #10-2 = start with OCLO threshold  
INEN0x ~ INEN1x  
PRS0x ~ PRS1x  
EN1  
0
0
1
1
sync off  
valid  
trig0  
trig1/2  
#8  
= pulse skipping feature for power output channels  
#9-1 = global PWM enable  
#2~#7  
#11  
PH 1x  
PH 0x Phase  
#9-2 = global PWM value (8Bit)  
0
0
1
1
0
1
0
1
0°  
90°  
180°  
270°  
GPWM  
ENx  
INx=0  
INx=1  
ONx  
INEN1x INEN0x  
#11  
#12  
= input enable control  
= pre scaler setting  
OUTx  
OFF  
ON  
PWMx  
OUTx  
OFF  
ON  
PWMx  
0
x
x
x
x
x
0
individual  
global  
individual  
global  
individual  
global  
individual  
global  
global  
OLOFF ENx #13-1 = OL load in off state enable  
OLON DGLx #13-1 = OL ON deglitch time  
OLLED ENx #13-2 = OL LED mode enable  
OLLED TRIG #13-2 = trigger for OLLED detetcion in 100% d.c.  
INCR SGN  
0
0
1
ON  
ON  
0
OFF  
OFF  
OFF  
OFF  
ON  
individual  
global  
individual  
global  
individual  
global  
ON  
0
1
1
1
0
1
1
ON  
1
0
ON  
#14  
#14  
= PWM increment / decrement sign  
= PWM increment / decrement setting  
1
ON  
INCR0x ~ INCR1x  
0
ON  
1
ON  
ON  
individual  
#12  
#1  
NO HID1 NO HID0  
HID Selection  
available for all channels  
available for channel 3 only  
available for channels 3 and 4 only  
unavailable for all channels  
25Hz .... 100Hz  
0
0
1
1
0
1
0
1
#14  
#14  
12XS6D1  
NXP Semiconductors  
17  
5.6.3 SPI output register and bit descriptions  
The first nibble of the 16-bit data word (D12:D15) serves as address bits. All register values are logic [0] after a reset, except DSF and  
RCF bits. The predefined value is off/inactive unless otherwise noted.  
#2~#6  
QSFx  
CLKF  
RCF  
#1  
#1  
#1  
#1  
= qu ick s ta tus (OC o r OTW or OTS or OLON or OLOFF)  
= PWM clo ck fail flag  
OC2x O C1x OC 0x over curre nt st atus  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
n o overcurrent  
OCH I1  
= reg ister c lea r fla g  
CPF  
= ch arge pum p flag  
OCH I2  
OLF #1~#7 = op en load flag (wired or of all OL s ignals )  
OVLF #1~#7 = ov er load flag (wire d or of all OC and OTS sig nals)  
DSF #1~#7 = de vic e status flag ( UVF or OVF or CP F or R CF or CLKF o r TM F)  
FM #1~#8 = fail mode flag  
OCH I3  
OCLO  
OCH IOD  
S SC  
OLOFFx #2~#6 = op en load in off state status b it  
OLONx #2~#6 = op en load in on state status b it  
OTWx #2~#6 = ov er temperatur e warning bit  
n ot u sed  
#9  
DEVID2 DEV ID1 DEVID0 device type  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
P enta3/2  
P enta0/5  
Quad2/2  
Quad0/4  
Trip le1 /2  
Triple0/3  
re s  
OTS x #2~#6 = ov er temperatur e shu tdown bit  
iL IM P  
SPIF  
#7  
#7  
#7  
#7  
#7  
#8  
#8  
#8  
#9  
#9  
#9  
= status of LIM P inpu t after de glitc her (re ported in rea l tim e)  
= SPI fail flag  
UVF  
= un der v oltag e fla g  
OVF  
= ov er volta ge flag  
TMF  
= testmode activa tion flag  
OUTx  
= status of VB AT/2 c omparator(reported in real time)  
= status of INx pin after de glitc her (re ported in real tim e)  
= status o f INx _ON s ign als (IN 1_O N or IN2 _ON o r IN 3_ON or IN 4_ ON)  
= de vic e ty pe  
res  
iINx  
TOGGLE  
DEVID0 ~ DEVID2  
DEVID3 ~ DEVID4  
DEVID5 ~ DEVID7  
= de vic e fa mily  
= design status (incremented number)  
12XS6D1  
18  
NXP Semiconductors  
5.6.4 Timing diagrams  
RSTB  
V
V
IH  
IL  
10 % VCC  
t
t
CS  
ENBL  
t
WRST  
CSB  
90 % VCC  
V
V
IH  
IL  
10 % VCC  
t
RSI  
t
WSCLKh  
t
LAG  
t
LEAD  
V
V
IH  
IL  
90 % VCC  
SCLK  
10 % VCC  
t
SI(SU)  
t
WSCLKl  
t
FSI  
t
SI(H)  
V
V
IH  
IL  
90 % VCC  
10 % VCC  
SI  
Must be Valid  
Don’t Care  
Must be Valid  
Don’t Care  
Don’t Care  
t
t
SOEN  
SODIS  
V
V
IH  
IL  
Tri-stated  
Tri-stated  
SO  
Figure 9. Timing requirements during SPI communication  
t
t
FSI  
RSI  
V
OH  
90 % VCC  
50 %  
SCLK  
10 % VCC  
V
V
OL  
OH  
10 % VCC  
SO  
V
OL  
t
RSO  
Low to High  
t
VALID  
t
FSO  
SO  
V
V
OH  
OL  
High To Low  
90 % VCC  
10 % VC  
Figure 10. Timing diagram for serial output (SO) data communication  
12XS6D1  
NXP Semiconductors  
19  
5.6.5 Electrical characterization  
Table 7. Electrical characteristics  
Characteristics noted under conditions 4.5 V VCC 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
SPI signals CSB, SI, SO, SCLK, SO  
fSPI  
VIH  
SPI clock frequency  
0.5  
5.0  
MHz  
V
Logic input high state level (SI, SCLK, CSB, RSTB)  
Logic input high state level for wake-up (RSTB)  
Logic input low state level (SI, SCLK, CSB, RSTB)  
Logic output high state level (SO)  
3.5  
VIH(WAKE)  
VIL  
3.75  
V
VCC - 0.4  
0.85  
V
VOH  
V
VOL  
Logic output low state level (SO)  
0.4  
V
Logic input leakage current in inactive state (SI = SCLK = RSTB = [0]  
and CSB = [1])  
IIN  
-0.5  
+0.5  
µA  
IOUT  
RPULL  
RPULL-CSB  
CIN  
Logic output tri-state leakage current (SO from 0 V to VCC  
Logic input pull-up/pull-down resistor  
Logic pull-up resistor for CSB  
)
-10  
25  
25  
+1.0  
100  
130  
20  
µA  
kΩ  
kΩ  
pF  
µs  
ns  
ns  
ns  
(16)  
Logic input capacitance  
tRST_DGL  
tSO  
tWCLKh  
tWCLKl  
RSTB deglitch time  
7.5  
10  
12.5  
20  
SO rising and falling edges with 80 pF  
Required high state duration of SCLK (required setup time)  
Required low state duration of SCLK (required setup time)  
80  
80  
Required duration from the rising to the falling edge of CSB (required  
setup time)  
tCS  
1.0  
µs  
tRST  
tLEAD  
tLAG  
Required low state duration for reset RSTB  
1.0  
320  
100  
20  
20  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
Falling edge of CSB to rising edge of SCLK (required setup time)  
Falling edge of SCLK to rising edge of CSB (required setup lag time)  
SI to falling edge of SCLK (required setup time)  
tSI(SU)  
tSI(H)  
tRSI  
Falling edge of SCLK to SI (required hold time of the SI signal)  
SI, CSB, SCLK, Max. rise time allowing operation at maximum fSPI  
SI, CSB, SCLK, Max. fall time allowing operation at maximum fSPI  
20  
20  
50  
50  
tFSI  
Time from falling edge of CSB to reach low-impedance on SO (access  
time)  
tSO(EN)  
60  
ns  
tSO(DIS)  
tWRST  
Time from Rising Edge of CSB to Reach Tri-state on SO  
Required low state of RSTB  
60  
ns  
µs  
1.0  
Notes  
16.  
Parameter is derived from simulations.  
12XS6D1  
20  
NXP Semiconductors  
6
Functional block requirements and behaviors  
6.1  
Self-protected high-side switches description and application  
information  
6.1.1 Features  
Up to five power outputs are foreseen to drive automotive light applications. The outputs are optimized for driving automotive bulbs, but  
also HID ballasts, LEDs, and other primarily resistive loads. The smart switches are controlled by use of high sophisticated gate drivers.  
The gate drivers provide:  
• output pulse shaping  
• output protections  
• active clamps  
• output diagnostics  
6.1.2 Output pulse shaping  
The outputs are controlled with a closed loop active pulse shaping to provide the best compromise between:  
• low switching losses  
• low EMC emission performance  
• minimum propagation delay time  
Depending on the programming of the prescaler setting register #12-1, #12-2, the switching speeds of the outputs are adjusted to the  
output frequency range of each channel. The edge shaping must be designed according the following table:  
PWM freq. (Hz)  
PWM period (ms)  
d.c. range (hex)  
min. max.  
03 FB  
d.c. range (LSB)  
min. max  
252  
min. on/off  
duty cycle  
time (μs)  
divider  
factor  
min.  
max.  
min.  
max.  
4
2
1
25  
50  
100  
200  
400  
10  
5
40  
20  
10  
4
156  
156  
78  
07  
07  
F7  
F7  
8
8
248  
248  
100  
2.5  
The edge shaping provides full symmetry for rising and falling transition:  
• the slopes for the rising and falling edge are matched to provide the best EMC emission performance  
• the shaping of the upper edges and the lower edges are matched to provide the best EMC emission performance  
• the propagation delay time for the rising edge and the falling edge is matched to provide true duty cycle control of the output duty  
cycle error, < 1 LSB at max. frequency  
• a digital regulation loop is used to minimize the duty cycle error of the output signal  
12XS6D1  
NXP Semiconductors  
21  
Figure 11. Typical power output switching (slow and fast slew rate)  
6.1.2.1  
SPI control and configuration  
For optimized control of the outputs, a synchronous clock module is integrated. The PWM frequency and output timing during normal mode  
are generated from the clock input (CLK) by the integrated PWM module. In case of clock fail (very low frequency, very high frequency),  
the output duty cycle is 100 %.  
Each output (OUT1:OUT6) can be controlled by an individual channel control register:  
SI address  
D14  
SI data  
Register  
#
D15  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PWM7 PWM6 PWM5 PWM4 PWM3 PWM2 PWM1 PWM0  
CHx control 2-7  
channel address  
WD  
PH1x PH0x Onx  
x
x
x
x
x
x
x
x
Where:  
• PH0x:PH1x: phase assignment of the output channel x  
• ONx: on/off control including overcurrent window control of the output channel x  
• PWM0x:PWM7x: 8-bit PWM value individually for each output channel x  
The ONx bits are duplicated in the output control register #8 to control the outputs with either the CHx control register or the output control  
register. The PRS1x:PRS0x prescaler settings can be set in the prescaler settings register #12-1 and #12-2. The following changes of the  
duty cycle are performed asynchronous (with positive edge of CSB signal):  
• turn on with 100 % duty cycle (CHx = ON)  
• change of duty cycle value to 100 %  
• turn off (CHx = OFF)  
• phase setting (PH0x:PH1x)  
• prescaler setting (PRS1x:PRS0x)  
A change in phase setting or prescaler setting during CHx = on may cause an unwanted long on-time. Therefore it is recommended to  
turn off the output(s) before execution of this change. The following changes of the duty cycle are performed synchronous (with the next  
PWM cycle):  
• turn on with less than 100 % duty cycle (OUTx = ONx)  
• change of duty cycle value to less than 100 %  
A change of the duty cycle value can be achieved by a change of the:  
• PWM0x: PWM7x bits in individual channel control register #2:#7  
• GPWM EN1: GPWM EN6 bits (change between individual PWM and global PWM settings) in global PWM control register #9-1  
• incremental/decremental register #14  
12XS6D1  
22  
NXP Semiconductors  
The synchronization of the switching phases between different devices is provided by the PWM SYNC bit in the initialization 2 register #1.  
On a SPI write into initialization 2 register (#1):  
• initialization when the bit D1 (PWM SYNC) is logic[1], all counters of the PWM module are reset with the positive edge of the CSB,  
i.e. the phase synchronization is performed immediately within one SPI frame. It could help to synchronize different 12XS6 devices  
in the board  
• when the bit D1 is logic[0], no action is executed  
The switching frequency can be adjusted for the corresponding channel as described in the following table:  
CLK freq. (kHz)  
prescaler setting  
PRS1x PRS0x  
PWM freq. (Hz)  
PWM resolution)  
divider  
factor  
slew rate  
min.  
max.  
min.  
max.  
(Bit)  
(steps)  
0
0
4
2
1
25  
50  
100  
200  
400  
slow  
slow  
fast  
25.6  
102.4  
0
1
1
8
256  
X
100  
No PWM feature is provided in case of:  
• Fail mode  
• clock input signal failure  
6.1.2.2  
Global PWM control  
In addition to the individual PWM register, each channel can be assigned independently to a global PWM register. The setting is controlled  
by the GPWM EN bits inside the global PWM control register #9-1. When no control by direct input pin is enabled and the GPWM EN bit is:  
• low (logic[0]), the output is assigned to individual PWM (default status)  
• high (logic[1]), the output is assigned to global PWM  
The PWM value of the global PWM channel is controlled by the global PWM control register #9-2.  
Table 8. Global PWM register  
INx = 0  
INx = 1  
ONx  
INEN1x  
INEN0x  
GPWM ENx  
CHx  
PWMx  
CHx  
PWMx  
0
x
x
x
0
1
0
1
0
1
off  
on  
on  
off  
off  
on  
on  
x
off  
on  
on  
on  
on  
on  
on  
x
individual  
global  
individual  
global  
0
0
0
1
1
0
individual  
global  
individual  
global  
1
individual  
global  
global  
1
1
individual  
When a channel is assigned to global PWM, the switching phase the prescaler and the pulse skipping are according the corresponding  
output channel setting.  
6.1.2.3  
Incremental PWM control  
To reduce the control overhead during soft start/stop of bulbs (e.g. theatre dimming), an incremental PWM control feature is implemented.  
With the incremental PWM control feature the PWM values of all internal channels OUT1:OUT4/5 can be incremented or decremented  
with one SPI frame.  
The incremental PWM feature is not available for:  
• the global PWM channel  
• the external channel OUT6  
The control is according the increment/decrement register #14:  
• INCR SGN: sign of incremental dimming (valid for all channels)  
• INCR 1x, INCR 0x increment/decrement  
12XS6D1  
NXP Semiconductors  
23  
INCR SGN increment/decrement  
0
1
decrement  
increment  
INCR 1x INCR 0x increment/decrement  
0
0
1
1
0
1
0
1
no increment/decrement  
4
8
16  
This feature limits the duty cycle to the rails (00 resp. FF) to avoid any overflow.  
6.1.2.4  
Pulse skipping  
Due to the output pulse shaping feature and the resulting switching delay time of the smart switches, duty cycles close to 0 % resp. 100 %  
can not be generated by the device. Therefore the pulse skipping feature (PSF) is integrated to interpolate this output duty cycle range in  
normal mode.  
The pulse skipping provides a fixed duty cycle pattern with eight states to interpolate the duty cycle values between F7 (Hex) and FF (Hex).  
The range between 00 (Hex) and 07 (Hex) is not considered to be provided.  
The pulse skipping feature:  
• is available individually for the power output channels (OUT1:OUT5)  
• is not available for the external channel (OUT6)  
The feature is enabled with the PSF bits in the output control register #8. When the corresponding PSF bit is:  
• low (logic[0]), the pulse skipping feature is disabled on this channel (default status)  
• high (logic[1]), the pulse skipping feature is enabled on this channel  
PWMduty cycle  
pulse skippingframe  
S0 S1 S2 S3 S4 S5 S6 S7  
FF FF FF FF FF FF FF FF  
F7 FF FF FF FF FF FF FF  
F7 FF FF FF F7 FF FF FF  
F7 FF F7 FF F7 FF FF FF  
F7 FF F7 FF F7 FF F7 FF  
F7 F7 F7 FF F7 FF F7 FF  
F7 F7 F7 FF F7 F7 F7 FF  
F7 F7 F7 F7 F7 F7 F7 FF  
hex  
FF  
FE  
FD  
FC  
FB  
FA  
F9  
F8  
F7  
F6  
F5  
dec  
256  
255  
254  
253  
252  
251  
250  
249  
248  
247  
246  
[%]  
100,00%  
99,61%  
99,22%  
98,83%  
98,44%  
98,05%  
97,66%  
97,27%  
96,88%  
96,48%  
96,09%  
245  
F4  
95,70%  
.
.
.
.
.
.
.
.
.
.
.
.
4
3
2
1
03  
02  
01  
00  
1,56%  
1,17%  
0,78%  
0,39%  
12XS6D1  
24  
NXP Semiconductors  
6.1.2.5  
Input control  
Up to four dedicated control inputs (IN1:IN4) are foreseen to:  
• wake-up the device  
• fully control the corresponding output in case of fail mode  
• control the corresponding output in case of normal mode  
The control during normal mode is according the INEN0x and INEN1x bits in the input enable register #11 and according the logic table  
in Table 8. An input deglitcher is provided at each control input to avoid high frequency control of the outputs. The internal signal is called  
iINx. The channel control (CHx) can be summarized:  
• Normal mode:  
• CH1: 4 controlled by ONx or INx (if it is programmed by the SPI)  
• CH5: 6 controlled by ONx  
• Rising CHx by definition means starting overcurrent window for OUT1:5  
• Fail mode:  
• CH1: 4 controlled by iINx, while the overcurrent windows are controlled by IN_ONx  
• CH5: 6 are off  
Even so, the input thresholds are logic level compatible, the input structure of the pins is able to withstand battery voltage levels (max.40 V)  
without damage. External current limit resistors (i.e. 1.0 kΩ:10 kΩ) can be used to handle reverse current conditions. The inputs have an  
integrated pull-down resistor.  
6.1.2.6  
Electrical characterization  
Table 9. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Power outputs OUT1:OUT5  
On-resistance, drain-to-source for 7.0 mΩ power channel  
• TJ = 25 °C  
6.0  
12.9  
13  
• TJ = 150 °C  
RDS(on)  
mΩ  
• TJ = 25 °C, VBAT = -12 V  
• TJ = 150 °C, VBAT = -12 V  
18.7  
On-resistance, drain-to-source for 17 mΩ power channel  
• TJ = 25 °C  
15  
30.9  
31  
• TJ = 150 °C  
RDS(on)  
mΩ  
• TJ = 25 °C, VBAT = -12 V  
• TJ = 150 °C, VBAT = -12 V  
43.5  
Sleep mode output leakage current (output shorted to GND) per  
channel  
• TJ = 25 °C, VBAT = 12 V  
• TJ = 125 °C, VBAT = 12 V  
• TJ = 25 °C, VBAT = 35 V  
• TJ = 125 °C, VBAT = 35 V  
0.5  
5.0  
5.0  
25  
ILEAK SLEEP  
µA  
Operational output leakage current in off-state per channel  
• TJ = 25 °C, VBAT = 18 V  
IOUT OFF  
10  
20  
µA  
• TJ = 125 °C, VBAT = 18 V  
Output PWM duty cycle range (measured at VOUT = VBAT/2  
)
• Low frequency range (25 Hz to 100 Hz)  
• Medium frequency range (50 Hz to 200 Hz)  
• High frequency range (100 Hz to 400 Hz)  
4.0  
8.0  
8.0  
252  
248  
248  
δPWM  
LSB  
12XS6D1  
NXP Semiconductors  
25  
Table 9. Electrical characteristics (continued)  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Rising and falling edges slew rate at VBAT = 14 V (measured from  
V
OUT = 2.5 V to VBAT - 2.5 V)  
• Low frequency range  
• Medium frequency range  
• High frequency range  
(17)  
0.25  
0.25  
0.55  
0.42  
0.42  
0.84  
0.6  
0.6  
1.25  
SR  
V/µs  
(17)  
(17)  
ΔSR  
Rising and falling edges slew rate matching at VBAT = 14 V (SRr/SRf)  
0.9  
1.0  
1.1  
Turn-on and turn-off delay times at VBAT = 14 V  
• Low frequency range  
20  
20  
10  
70  
70  
30  
120  
120  
50  
tDLY  
µs  
• Medium frequency range  
• High frequency range  
Turn-on and turn-off delay times matching at VBAT = 14 V  
• Low frequency range  
-20  
-20  
-10  
0.0  
0.0  
0.0  
20  
20  
10  
(17)  
ΔtDLY  
µs  
µs  
• Medium frequency range  
• High frequency range  
tOUTPUT SD  
Shutdown delay time in case of fault  
0.5  
2.5  
4.5  
Reference PWM clock  
fCLK  
Clock Input Frequency Range  
25.6  
102.4  
kHz  
Notes  
17.  
With nominal resistive load: 2.5 Ω and 5.0 Ω respectively for 7.0 mΩ and 17 mΩ channel.  
6.1.3 Output protections  
The power outputs are protected against fault conditions in normal and fail mode in case of:  
• overload conditions  
• harness short-circuit  
• overcurrent protection against ultra-low resistive short-circuit conditions due to a smart overcurrent profile and severe short-circuit  
protection  
• overtemperature protection including overtemperature warning  
• under and overvoltage protections  
• charge pump monitoring  
• reverse battery protection  
In case a fault condition is detected, the corresponding output is commanded off immediately after the deglitch time tFAULT SD. The turn  
off in case of a fault shutdown (OCHI1, OCHI2, OCHI3, OCLO, OTS, UV, CPF, OLOFF) is provided by the FTO feature (fast turn off). The  
FTO:  
• does not use edge shaping  
• is provided with high slew rate to minimize the output turn-off time tOUTPUT SD, in regards to the detected fault  
• uses a latch which keeps the FTO active during an undervoltage condition (0 < VBAT < VBAT UVF  
)
12XS6D1  
26  
NXP Semiconductors  
Figure 12. Power output switching in nominal operation and in case of a fault  
Normal mode  
In case of a fault condition during normal mode:  
• the status is reported in the quick status register #1 and the corresponding channel status register #2:#6  
To restart the output:  
• the channel must be restarted by writing the corresponding on bit in the channel control register #2:#6 or output control register #8  
12XS6D1  
NXP Semiconductors  
27  
OLOFF  
(Ioutx > I oloff thres) or (t > t oloff)  
OUTx = 1  
(OLOFF ENx = 1)  
(rewrite CHx=1) & (tochi1+tochi2< t <tochi1+tochi2+tochi3)  
(rewrite CHx=1) & (tochi1< t <tochi1+tochi2)  
[(set CHx=1) & (fault x=0)] or  
[(rewrite CHx=1) & (t<tochi1)]  
(t>tochi1 + tochi2)  
& (fault x=0)  
(t > tochi1) & (fault x=0)  
off  
OCHI1  
OCHI2  
OCHI3  
OUTx = HSONx  
OUTx = HSONx  
OUTx = HSONx  
OUTx = off  
(CHx=0) or (fault x=1)  
(CHx=0) or (fault x=1)  
(CHx=0) or (fault x=1)  
(OCLOx=1) & (OCHI ODx=1)  
(NO OCHIx=1) & (fault x=0)  
(NO OCHIx =1) & (fault x=0)  
(CHx=0) or (fault x=1)  
OCLO  
OUTx = HSONx  
[(t > tochi1+tochi2+tochi3) & (fault x=0)] or  
[(NO OCHIx=1) & (fault x=0)]  
[(rewrite CHx=1) & (t>tochi1+tochi2+tochi3)] or  
[(set CHx=1) & (NO OCHIx=1)]  
Definitions of key logic signals  
(fault x):= (UV) or (OCHI1x) or (OCHI2x) or (OCHI3x) or (OCLOx) or (OTx) or (SSCx)  
(set CHx=1):= [(ONx=0) then (ONx=1)] or [(iINx=0) then (iINx=1)]  
(rewrite CHx=1):= (rewrite ONx=1) after (fault x=1)  
SSCx:= severe short circuit detection  
tochi2 is depending on NO_HID settings and output current during OCHI2 state  
Figure 13. Output control diagram in normal mode  
12XS6D1  
28  
NXP Semiconductors  
Fail mode  
If an overcurrent (OCHI2, OCHI3, OCLO) or undervoltage is detected, the restart is controlled by the autorestart feature.  
Ithreshold  
IOCHI2  
driver turned off incaseof  
fault_fail x ( =OC or UV)  
event during autorestart  
IOCHI3  
driver turned on againwith  
OCHI2 after fault_fail x  
IOCLO  
In case of successful autorestart  
(nofault_fail x event)  
time  
OCLO remains active  
tOCHI2  
t AUTORESTART  
Figure 14. Autorestart in fail mode  
During overtemperature (OTSx), severe short-circuit (SSCx), or OCHI1 overcurrent, the corresponding output enters the latch off state  
until the next wake-up cycle or mode change.  
auto  
(INx_ON=0)  
restart  
autorestart x=1  
OC_fail x=0  
OUTx=off  
(UV =1) or  
(OCLOx=1)  
(UV =1)  
(UV =1) or  
(OCHI3x=1)  
(UV =1) or  
(OCHI2x=1)  
(UV=0) &  
(t > t autorestart)  
(t > tochi1+tochi2)  
& (autorestart=1)  
(INx_ON=1)  
(INx_ON=0)  
(t >tochi1+  
off  
autorestart x=0  
OCHI1  
OCHI2 (t > tochi1+tochi2) OCHI3  
OCLO  
(t > tochi1)  
tochi2+ tochi3)  
& (autorestart x=0)  
OUTx=off  
OUTx=iINx  
OUTx=iINx  
OUTx=iINx  
OUTx=iINx  
(INx_ON=0)  
(INx_ON=0)  
(INx_ON=0)  
(OTSx=1) or  
(SSCx=1)  
(OTSx=1) or  
(SSCx=1)  
(OTSx=1) or  
(SSCx=1) or  
(OCHI1x=1)  
(OTSx=1) or  
(SSCx=1)  
latch  
OFF  
Definitions of key signals  
iINx:= external Inputs IN1~IN4 after deglitcher  
SSCx := severe short circuit detection  
OUTx=off  
tochi2 is depending on output current during OCHI2 state  
Figure 15. Output control diagram in fail mode  
12XS6D1  
NXP Semiconductors  
29  
6.1.3.1  
Overcurrent protections  
Each output channel is protected against overload conditions by use of a multilevel overcurrent shutdown.  
current  
I
OCHI1  
I
I
OCHI2  
OCHI3  
Overcurrent threshold profile  
I
OCLO  
Lamp current  
tOCHI2  
tOC HI3  
tOC HI1  
Figure 16. Transient overcurrent profile  
The current thresholds and the threshold window times are fixed for each type of power channel. When the output is in PWM mode, the  
clock for the OCHI time counters (tOCHI1:tOCHI3) is gated (logic AND) with the referring output control signal:  
• the clock for the tOCHI counter is activated when the output = [1] respectively CHx = 1  
• the clock for the tOCHI counter is stopped when the output = [0] respectively CHx = 0  
current  
I
OCHI1  
I
I
OCHI2  
OCHI3  
I
OCLO  
time  
cumulative  
cumulative  
cumulative  
t
OCHI1  
t
OCHI2  
tO CHI3  
Figure 17. Transient overcurrent profile in PWM mode  
This strategy counts the OCHI time only when the bulb is actually heated up. The window counting is stopped in case of UV, CPF, and  
OTS. A severe short-circuit protection (SSC) is implemented to limit the power dissipation in normal and fail modes, in case of severe  
short-circuit event. This feature is active only for a very short period of time, during off-to-on transition. The load impedance is monitored  
during the output turn-on.  
12XS6D1  
30  
NXP Semiconductors  
Normal mode  
The enabling of the high current window (OCHI1:OCHI3) is dependent on CHx signal. When no control input pin is enabled, the control  
of the overcurrent window depends on the on bits inside channel control registers #2:#7 or the output control register #8. When the  
corresponding CHx signal is:  
• toggled (turn off and then on), the OCHI window counter resets and the full OCHI windows is applied  
current  
IOCHI1  
Overcurrent threshold profile  
IOCHI2  
IOCHI3  
OCLO fault detection  
IOCLO  
Channel current  
time  
ON bit =0  
ON bit=1  
Figure 18. Resetable overcurrent profile  
• rewritten (logic [1]), the OCHI window time is proceeding without reset of the OCHI counter  
current  
OCLO fault detection  
IOCLO  
time  
ON bit=1 rewriting  
Figure 19. Overcurrent level fixed to OCLO  
Fail mode  
The enabling of the high current window (OCHI1:OCHI3) is dependent on INx_ON toggle signal. The enabling of output (OUT1:5) is  
dependent on CHx signal.  
6.1.3.1.1  
Overcurrent control programming  
A set of overcurrent control programming functions are implemented to provide a flexible and robust system behavior:  
HID ballast profile (NO_HID)  
A smart overcurrent window control strategy is implemented to turn on an HID ballast, even in the case of a long power on reset time.  
When the output is in 100 % PWM mode (including PWM clock failure in normal mode and iINx = 1 in fail mode), the clock for the OCHI2  
time counter is divided by 8, when no load current is demanded from the output driver:  
• the clock for the tOCHI2 counter is divided by 8 when the open load signal is high (logic[1]), to accommodate the HID ballast while  
in power on reset mode  
• the clock for the tOCHI2 counter is connected directly to the window time counter when the open load signal is low (logic[0]), to  
accommodate the HID demanding load current from the output  
12XS6D1  
NXP Semiconductors  
31  
current  
IOCHI1  
IOCHI2  
IOCHI3  
Overcurrent threshold profile  
IOCLO  
Channel current  
time  
8 x tOCHI2  
tOCHI3  
tOCHI1  
Figure 20. HID ballast overcurrent profile  
This feature extends the OCHI2 time, depending on the status of the HID ballast, and ensures to bypass even a long power on reset time  
of HID ballast. Nominal tOCHI2 duration is up to 64 ms (instead of 8.0 ms). This feature is automatically active at the beginning of smart  
overcurrent window, except for OCHI on demand as described by the following. The functionality is controlled by the NO_HID1 and  
NO_HID0 bits inside the initialization #2 register. When the NO_HID1 and NO_HID0 bits are respectively:  
• [0 0]: smart HID feature is available for all channels (default status and during fail mode)  
• [0 1]: smart HID feature is available for channel 3 only  
• [1 0]: smart HID feature is available for channels 3 and 4 only  
• [1 1]: smart HID feature is not available for any channel  
OCHI on demand (OCHI OD)  
In some instances, a lamp might be de-powered when its supply is interrupted by the opening of a switch (as in a door), or by disconnecting  
the load (as in a trailer harness). In these cases, the driver should be tolerant of the inrush current occurring when the load is reconnected.  
The OCHI on demand feature allows such control individually for each channel through the OCHI ODx bits inside the Initialization #2  
register. When the OCHI ODx bit is:  
• low (logic[0]), the channel operates in its normal, default mode. After end of OCHI window timeout the output is protected with an  
OCLO threshold  
• high (logic[1], the channel operates in the OCHI on demand mode and uses the OCHI2 and OCHI3 windows and times after an  
OCLO event  
To reset the OCHI ODx bit (logic[0]) and change the response of the channel, first change the bit in the Initialization #2 register and then  
turn the channel off. The OCHI ODx bit is also reset after an overcurrent event at the corresponding output. The fault detection status is  
reported in the quick status register #1 and the corresponding channel status registers #2:#6, as presented in Figure 21.  
12XS6D1  
32  
NXP Semiconductors  
current  
solid line: nominal operation  
dotted lines: fault conditions  
OCHI2 fault reported  
IOCHI2  
OCHI3 fault reported  
IOCHI3  
IOCLO  
OCLO fault reported  
OCHI OD fault reported  
tOCHI2  
tOCHI3  
time  
Figure 21. OCHI on demand profile  
OCLO threshold setting  
The static overcurrent threshold can be programmed individually for each output in two levels to adapt low duty cycle dimming and a  
variety of loads. The CSNS recopy factor and OCLO threshold depend on OCLO and ACM settings. The OCLO setting is controlled by  
the OCLOx bits inside the overcurrent control register #10-1. When the OCLOx bit is  
• low (logic[0]), the output is protected with the higher OCLO threshold (default status and during fail mode)  
• high (logic[1]), the lower OCLO threshold is applied  
Short OCHI  
The length of the OCHI windows can be shortened by a factor of 2, to accelerate the availability of the CSNS diagnosis and to reduce the  
potential stress inside the switch during an overload condition. The setting is controlled individually for each output by the SHORT OCHIx  
bits inside the overload control register #10-2. When the SHORT OCHIx bit is:  
• low (logic[0]), the default OCHI window times are applied (default status and during fail mode)  
• high (logic[1]), the short OCHI window times are applied (50 % of the regular OCHI window time)  
No OCHI  
The switch on process of an output can be done without an OCHI window, to accelerate the availability of the CSNS diagnosis. The setting  
is controlled individually for each channel by the no OCHIx bits inside the overcurrent control register #10-2. When the no OCHIx bit is:  
• low (logic[0]), the regular OCHI window is applied (default status and during fail mode)  
• high (logic[1]), the turn on of the output is provided without OCHI windows  
The NO OCHI bit is applied in real time. The OCHI window is left immediately when the no OCHI is high (logic[1]). The overcurrent  
threshold is set to OCLO when:  
• the no OCHIx bit is set to logic [1] while CHx is on or  
• CHx turns on if no OCHIx is already set  
Thermal OCHI  
To minimize the electro-thermal stress inside the device in case of a short-circuit, the OCHI1 level can be automatically adjusted in regards  
to the control die temperature. The functionality is controlled for all channels by the OCHI thermal bit inside the initialization 2.  
When the OCHI thermal bit is:  
• low (logic[0]), the output is protected with default OCHI1 level  
• high (logic[1]), the output is protected with the OCHI1 level reduced by RTHERMAL OCHI = 15 % (typ.) when the control die  
temperature is above TTHERMAL OCHI = 63 °C (typ.)  
12XS6D1  
NXP Semiconductors  
33  
Transient OCHI  
To minimize the electro-thermal stress inside the device in case of a short-circuit, the OCHIx levels can be dynamically evaluated during  
the off-to-on output transition. The functionality is controlled for all channels by the OCHI transient bit inside the initialization 2 register.  
When the OCHI TRANSIENT bit is:  
• low (logic[0]), the output is protected with default OCHIx levels  
• high (logic[1]), the output is protected with an OCHIx levels depending on the output voltage (VOUT):  
• OCHIx level reduced by RTRANSIENT OCHI = 50 % typ. for 0 < VOUT < VOUT DETECT (VBAT/2 typ.)  
• Default OCHIx level for VOUT DETECT < VOUT  
If the resistive load is less than VBAT/IOCHI1, the overcurrent threshold is exceeded before output reaches VBAT/2, and the output current  
reaches IOCHI1. The output is then switched off at much lower and safer currents. When the load has significant series inductance, the  
output current transition falls behind voltage with LLOAD/RLOAD constant time. The intermediate overcurrent threshold could not reach and  
the output current continues to rise up to OCHIx levels.  
6.1.3.1.2  
Electrical characterization  
Table 10. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25°C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Power outputs OUT1:OUT5  
High overcurrent level 1 for 7.0 mΩ power channel  
• TJ = -40 °C and 25 °C  
IOCHI1  
100  
96  
111  
106  
126.5  
126.5  
A
A
• TJ = 150 °C  
High overcurrent level 2 for 7.0 mΩ power channel  
• TJ = -40 °C and 25 °C  
IOCHI2  
61.2  
60  
70  
69  
77.5  
77.5  
• TJ = 150 °C  
IOCHI3  
High overcurrent level 3 for 7.0 mΩ power channel  
34  
39  
43.5  
A
A
Low overcurrent for 7.0 mΩ power channel  
IOCLO  
• High level  
• Low level  
17.6  
8.8  
21.9  
10.8  
26.4  
13.2  
Low overcurrent for 7.0 mΩ power channel in ACM mode  
IOCLO ACM  
• High level  
8.8  
4.4  
10.8  
5.5  
13.2  
6.6  
A
A
• Low level  
High overcurrent level 1 for 17 mΩ power channel  
• TJ = -40 °C and 25 °C  
IOCHI1  
42  
40  
48  
46  
54.4  
54.4  
• TJ = 150 °C  
IOCHI2  
IOCHI3  
High overcurrent level 2 for 17 mΩ power channel  
High overcurrent level 3 for 17 mΩ power channel  
24.5  
14.8  
28.2  
17.3  
32.2  
19.5  
A
A
Low overcurrent for 17 mΩ power channel  
IOCLO  
• High level  
8.8  
4.4  
10.8  
5.3  
13.2  
6.6  
A
A
• Low level  
Low overcurrent for 17 mΩ power channel in ACM mode  
IOCLO ACM  
• High level  
• Low level  
4.4  
2.2  
5.3  
2.6  
6.6  
3.3  
RTRANSIENT OCHI  
RTHERMAL OCHI  
TTHERMAL OCHI  
High overcurrent ratio 1  
0.45  
0.835  
50  
0.5  
0.85  
63  
0.55  
0.865  
70  
High overcurrent ratio 2  
Temperature threshold for IOCHI1 level adjustment  
°C  
12XS6D1  
34  
NXP Semiconductors  
Table 10. Electrical characteristics (continued)  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25°C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Power outputs OUT1:OUT5 (continued)  
High overcurrent time 1  
tOCHI1  
• Default value  
• Short OCHI option  
1.5  
0.75  
2.0  
1.0  
2.5  
1.25  
ms  
ms  
ms  
mΩ  
µs  
High overcurrent time 2  
• Default value  
tOCHI2  
6.0  
3.0  
8.0  
4.0  
10  
5.0  
• Short OCHI option  
High overcurrent time 3  
• Default value  
tOCHI3  
48  
24  
64  
32  
80  
40  
• Short OCHI option  
Minimum severe short-circuit detection  
• 7.0 mΩ power channel  
RSC MIN  
5.0  
10  
• 17 mΩ power channel  
Fault deglitch time  
(18)  
tFAULT SD  
• OCLO and OCHI OD  
• OCHI1:3 and SSC  
1.0  
1.0  
2.0  
2.0  
3.0  
3.0  
tAUTO  
RESTART  
Fault autorestart time in fail mode  
Fault blanking time after wake-up  
48  
64  
50  
80  
ms  
µs  
tBLANKING  
100  
Notes  
18.  
Guaranteed by test mode.  
6.1.3.2  
Overtemperature protection  
A dedicated temperature sensor is located on each power transistor, to protect the transistors and provide SPI status monitoring. The  
protection is based on a two stage strategy. When the temperature at the sensor exceeds the:  
• selectable overtemperature warning threshold (TOTW1, TOTW2), the output stays on and the event is reported in the SPI  
• overtemperature threshold (TOTS), the output is switched off immediately after the deglitch time tFAULT SD and the event is reported  
in the SPI after the deglitch time tFAULT SD  
6.1.3.2.1  
Overtemperature warning (OTW)  
In case of an overtemperature warning:  
• the output remains in current state  
• the status is reported in the quick status register #1 and the corresponding channel status register #2:#6  
The OTW threshold can be selected by the OTW SEL bit inside the initialization 2 register #1. When the bit is:  
• low (logic[0]), the high overtemperature threshold is enabled (default status)  
• high (logic[1]), the low overtemperature threshold is enabled  
To delatch the OTW bit (OTWx):  
• the temperature has to drop below the corresponding overtemperature warning threshold  
• a read command of the corresponding channel status register #2:#6 must be performed  
12XS6D1  
NXP Semiconductors  
35  
6.1.3.2.2  
Overtemperature shutdown (OTS)  
During an overtemperature shutdown:  
• the corresponding output is disabled immediately after the deglitch time tFAULT SD  
• the status is reported after tFAULT SD in the quick status register #1 and the corresponding channel status register #2:#6  
To restart the output after an overtemperature shutdown event in normal mode:  
• the overtemperature condition must be removed, and the channel must be restarted by a write command of the on bit in the  
corresponding channel control register #2:#6, or in the output control register #8  
To delatch the diagnosis:  
• the overtemperature condition must be removed  
• a read command of the corresponding channel status register #2:#6 must be performed  
To restart the output after an overtemperature shutdown event in fail mode:  
• a mode transition is needed. Refer to Mode transitions on page 15  
6.1.3.2.3  
Electrical characterization  
Table 11. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Power outputs OUT1:OUT5  
Overtemperature warning  
(19)  
(19)  
• TOW1 level  
• TOW2 level  
TOW  
100  
120  
115  
135  
130  
150  
°C  
TOTS  
Overtemperature shutdown  
155  
2.0  
170  
5.0  
185  
10  
°C  
µs  
Fault deglitch time  
• OTS  
tFAULT SD  
Notes  
19.  
Guaranteed by test mode.  
6.1.3.3  
6.1.3.3.1  
Undervoltage and overvoltage protections  
Undervoltage  
During an undervoltage condition (VBATPOR < VBAT < VBAT UVF), all outputs (OUT1:OUT5) are switched off immediately after deglitch time  
tFAULT SD. The undervoltage condition is reported after the deglitch time tFAULT SD  
:
• in the device status flag (DSF) in the registers #1:#7  
• in the undervoltage flag (UVF) inside the device status register #7  
Normal mode  
The reactivation of the outputs is controlled by the microcontroller. To restart, the output the undervoltage condition must be removed and:  
• a write command of the on bit must be performed in the corresponding channel control register #2:#6 or in the output control register  
#8  
To delatch the diagnosis:  
• the undervoltage condition must be removed  
• a read command of the device status register #7 must be performed  
Fail mode  
When the device is in fail mode, the restart of the outputs is controlled by the autorestart feature.  
12XS6D1  
36  
NXP Semiconductors  
6.1.3.3.2  
Overvoltage  
The device is protected against overvoltage on VBAT. During:  
• jump start condition, the device may be operated, but with respect to the device limits  
• load dump condition (VBAT LD MAX = 40 V) the device does not conduct energy to the loads  
The overvoltage condition (VBAT > VBAT OVF) is reported in the:  
• device status flag (DSF) in the registers #1:#7  
• overvoltage flag (OVF) inside the device status register #7  
To delatch the diagnosis:  
• the overvoltage condition must be removed  
• a read command of the device status register #7 must be performed  
During an overvoltage (VBAT > VBAT HIGH), the device is not “short-circuit” proof.  
6.1.3.3.3  
Electrical characterization  
Table 12. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Battery VBAT  
VBAT UVF  
Battery undervoltage  
5.0  
200  
28  
5.25  
350  
30  
1.0  
5.5  
500  
32  
1.5  
V
mV  
V
VBAT UVF HYS  
VBAT OVF  
Battery undervoltage hysteresis  
Battery overvoltage  
VBAT OVF HYS  
VBAT LD MAX  
VBAT HIGH  
Battery overvoltage hysteresis  
0.5  
40  
V
Battery load dump voltage (2.0 min at 25 °C)  
Maximum battery voltage for short-circuit protection  
V
32  
V
Fault deglitch time  
• UV and OV  
tFAULT SD  
2.0  
3.5  
5.5  
µs  
6.1.3.4  
Charge pump protection  
The charge pump voltage is monitored in order to protect the smart switches in case of:  
• power up  
• failure of external capacitor  
• failure of charge pump circuitry  
During power up, when the charge pump voltage has not yet settled to its nominal output voltage range, the outputs can not be turned on.  
Any turn on command during this phase is executed immediately after settling of the charge pump. When the charge pump voltage is not  
within its nominal output voltage range:  
• the power outputs are disabled immediately after the deglitch time tFAULT SD  
• the failure status is reported after tFAULT SD in the device status flag DSF in the registers #1:#7 and the CPF in the quick status  
register #1  
• Any turn on command during this phase is executed including the OCHI windows immediately after the charge pump output voltage  
has reached its valid range  
To delatch the diagnosis:  
• the charge pump failure condition must be removed  
• a read command of the quick status register #1 is necessary  
12XS6D1  
NXP Semiconductors  
37  
6.1.3.4.1  
Electrical characterization  
Table 13. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Charge pump CP  
CCP  
Charge pump capacitor range (ceramic type X7R)  
Maximum charge pump voltage  
47  
220  
16  
nF  
V
VCP MAX  
Fault deglitch time  
• CPF  
tFAULT SD  
4.0  
6.0  
µs  
6.1.3.5  
Reverse battery protection  
The device is protected against reverse polarity of the VBAT line. In reverse polarity condition:  
• the output transistors OUT1:5 are turned on in order to prevent the device from thermal overload  
• the OUT6 pin is pulled down to GND. An external current limit resistor must be added in series with OUT6 pin  
• no output protection is available in this condition  
6.1.4 Output clamps  
6.1.4.1  
Negative output clamp  
In case of an inductive load (L), the energy is dissipated after the turn-off inside the N-channel MOSFET. When tCL (=Io x L/VCL) > 1.0 ms,  
the turn-off waveform can be simplified with a rectangle as shown in Figure 22.  
Output Current  
Io  
time  
tCL  
Output Voltage  
V
BAT  
time  
time  
V
CL  
Figure 22. Simplified negative output clamp waveform  
The energy dissipated in the N-channel MOSFET is: ECL = 1/2 x L x Io² x (1+ VBAT/|VCL|). In the case of tCL < 1.0 ms, contact the factory  
for guidance.  
12XS6D1  
38  
NXP Semiconductors  
6.1.4.2  
Battery clamp  
The device is protected against dynamic overvoltage on the VBAT line by means of an active gate clamp, which activates the output  
transistors in order to limit the supply voltage (VDCCLAMP). In case of an overload on an output the corresponding switch is turned off,  
which leads to high voltage at VBAT with an inductive VBAT line. The maximum VBAT voltage is limited at VDCCLAMP by active clamp circuitry  
through the load.  
In case of an open load condition, the positive transient pulses (acc. ISO 7637/pulse 2 and inductive battery line) is handled by the  
application. In case of negative transients on the VBAT line (acc. ISO7637-2/pulse 1), the energy of the pulses are dissipated inside the  
load, or must be drained by an external clamping circuit, during a high ohmic load.  
6.1.4.3  
Electrical characterization  
Table 14. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Battery VBAT  
VDCCLAMP  
Battery clamp voltage  
41  
50  
V
V
Power outputs OUT1:OUT5  
Negative power channel clamp voltage  
VCL  
• 7.0 mΩ  
• 17 mΩ  
-20.5  
-21  
-17.5  
-18  
6.1.5 Digital diagnostics  
The device offers several modes for load status detection in on state and off state through the SPI.  
6.1.5.1  
Open load detections  
Open load in on state  
6.1.5.1.1  
Open load detection during on state is provided for each power output (OUT1:OUT5), based on the current monitoring circuit. The  
detection is activated automatically when the output is in on state. The detection threshold is dependent on:  
• the OLLED EN bits inside the OLLED control register #13-2  
The detection result is reported in:  
• the corresponding QSFx bit in the quick status register #1  
• the global open load flag OLF (registers #1:#7)  
• the OLON bit of the corresponding channel status registers #2:#6  
To delatch the diagnosis:  
• the open load condition must be removed  
• a read command of the corresponding channel status register #2:#6 must be performed  
When an open load has been detected, the output remains in on state. The deglitch time of the open load in on state can be controlled  
individually for each output to be compliant with different load types. The setting is dependent on the OLON DGL bits inside the open load  
control register #13-1:  
• low (logic[0]) the deglitch time is tOLON DGL = 64 µs typ (bulb mode)  
• high (logic[1]) the deglitch time is tOLON DGL = 2.0 ms typ (converter mode)  
The deglitching filter is reset whenever output falls low and is only active when the output is high.  
6.1.5.1.2  
Open load in on state for LED  
For detection of small load currents (e.g. LED) in on state of the switch a special low current detection mode is implemented by using the  
OLLED EN bit. The detection principle is based on a digital decision during regular switch off of the output. Thereby a current source  
(IOLLED) is switched on and the falling edge of the output voltage is evaluated by a comparator at VBAT - 0.75 V (typ).  
12XS6D1  
NXP Semiconductors  
39  
Figure 23. Open load in on state diagram for LED  
The OLLED fault is reported when the output voltage is above VBAT - 0.75 V after 2.0 ms off-time or at each turn-on command in case of  
off-time < 2.0 ms. The detection mode is enabled individually for each channel with the OLLED EN bits inside the LED control register  
#13-2. When the corresponding OLLED EN bit is:  
• low (logic[0]), the standard open load in on state (OLON) is enabled  
• high (logic[1]), the OLLED detection is enabled  
The detection result is reported in:  
• the corresponding QSFx bit in the quick status register #1  
• the global open load flag OLF (register #1:#7)  
• the OLON bit of the corresponding channel status register #2:#6  
When an open load has been detected, the output remains in the on state. When output is in PWM operation:  
• the detection is performed at the end of the on time of each PWM cycle  
• the detection is active during the off time of the PWM signal, up to 2.0 ms max.  
The current source (IOLLED) is disabled after “no OLLED” detection or after 2.0 ms.  
hson_1  
128*DCLOCK (prescaler=0’)  
En_OLLed_1  
OUT_1  
VBAT-0.75  
OUT_high  
check  
Analog Comparator output  
1 : olled detected  
TimeOut = 2.0 msec  
0 : no olled detected  
Figure 24. Open load in on state for LED in PWM operation (off time > 2.0 ms)  
12XS6D1  
40  
NXP Semiconductors  
hson_1  
128*DCLOCK(prescaler=‘0’)  
En_OLLed_1  
OUT_1  
VBAT-0.75  
OUT_high  
check  
Analog Comparator output  
1 : olled detected  
0 : no olled detected  
TimeOut = 2.0 msec  
Figure 25. Open load in on state for LED in PWM operation (off time < 2.0 ms)  
When output is in fully on operation (100 % PWM):  
• the detection on all outputs is triggered by setting the OLLED TRIG bit inside the LED control register #13-2  
• at the end of detection time, the current source (IOLLED) is disabled 100 µsec (typ.) after the output reactivation  
OLLED TRIG 1  
Note: OLLED TRIG bit is reset after the detection  
ONoff & PWM  
hson_1  
FF  
100 sec  
100 sec  
En_OLLed_1  
VBAT-0.75  
OUT_1  
check  
OUT_high  
Analog Comparator output  
Check  
Precision ~9600 ns  
1 : olled detected  
0 : no olled detected  
TimeOut = 2.0 msec  
Figure 26. Open load in on state for LED in fully on operation  
The OLLED TRIG bit is reset after the detection. To delatch the diagnosis:  
• a read command of the corresponding channel status register #2:#6 must be performed  
A false “open” result could be reported in the OLON bit:  
• for high duty cycles, the PWM off-time becomes too short  
• for capacitive load, the output voltage slope becomes too slow  
12XS6D1  
NXP Semiconductors  
41  
6.1.5.1.3  
Open load in off state  
An open load in off state detection is provided individually for each power output (OUT1:OUT5). The detection is enabled individually for  
each channel by the OLOFF EN bits inside the open load control register #13-1. When the corresponding OLOFF EN is:  
• low (logic[0]), the diagnosis mode is disabled (default status)  
• high (logic[1]), the diagnosis mode is started for tOLOFF. It is not possible to restart any OLOFF or disable the diagnosis mode during  
active OLOFF state  
This detection can be activated independently for each power output (OUT1:OUT5). When it is activated, it is always activated  
synchronously for all selected outputs (with positive edge of CSB). When the detection is started, the corresponding output channel is  
turned on with a fixed overcurrent threshold of IOLOFF threshold. When this overcurrent threshold is:  
• reached within the detection timeout tOLOFF, the output is turned off and the OLOFF EN bit is reset. No OCLOx and no OLOFFx is  
reported  
• not reached within the detection timeout tOLOFF, the output is turned off after tOLOFF and the OLOFF EN bit is reset. The OLOFFx  
is reported  
The overcurrent behavior as commanded by the overcurrent control settings (NO OCHIx, OCHI ODx, SHORTOCHIx, OCLOx, and ACM  
ENx) is not be affected by applying the OLOFF ENx bit. The same is true for the output current feedback and the current sense  
synchronization. The detection result is reported in:  
• the corresponding QSFx bit in the quick status register #1  
• the global open load flag OLF (register #1:#7)  
• the OLOFF bit of the corresponding channel status register #2:#6  
To delatch the diagnosis, a read command of the corresponding channel status register #2:#6 must be performed. In case of any fault  
during tOLOFF (OTS, UV, CPF,), the open load in off state detection is disabled and the output(s) is (are) turned off after the deglitch time  
tFAULT SD. The corresponding fault is reported in the SPI SO registers.  
6.1.5.1.4  
Electrical characterization  
Table 15. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Power outputs OUT1:OUT5  
Open load current threshold in on state  
• 7.0 mΩ power channel at TJ = -40 °C  
• 7.0 mΩ power channel at TJ = 25 °C and 125 °C  
• 17 mΩ power channel at TJ = -40 °C  
50  
100  
30  
200  
200  
100  
100  
350  
300  
160  
150  
IOL  
mA  
50  
• 17 mΩ power channel at TJ = 25 °C and 125 °C  
Output PWM duty cycle range for open load detection in on state  
• Low frequency range (25 Hz to 100 Hz)  
18  
18  
17  
δPWM OLON  
LSB  
• Medium frequency range (100 Hz to 200 Hz)  
• High frequency range (200 Hz to 400 Hz)  
IOLLED  
tOLLED100  
tOLOFF  
Open load current threshold in on state/OLLED mode  
2.0  
1.5  
0.9  
4.0  
2.0  
1.2  
5.0  
2.6  
1.5  
mA  
ms  
ms  
Maximum open load detection time/OLLED mode with 100 % duty  
cycle  
Open load detection time in off state  
Fault deglitch time  
• OLOFF  
• OLON with OLON DGL = 0  
• OLON with OLON DGL = 1  
2.0  
48  
1.5  
3.3  
64  
2.0  
5.0  
80  
2.5  
µs  
µs  
ms  
tFAULT SD  
Open load current threshold in off state  
• 7.0 mΩ power channel  
IOLOFF  
0.77  
1.1  
1.43  
A
• 17 mΩ power channel  
0.385  
0.55  
0.715  
12XS6D1  
42  
NXP Semiconductors  
6.1.5.2  
Output shorted to V  
in off state  
BAT  
A short to VBAT detection during off state is provided individually for each power output OUT1:OUT5, based on an output voltage  
comparator referenced to VBAT/2 (VOUT DETECT) and an external pull-down circuitry. The detection result is reported in the OUTx bits of  
the I/O status register #8 in real time. In case of UVF, the OUTx bits are undefined.  
6.1.5.2.1  
Electrical characterization  
Table 16. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Power outputs OUT1:OUT5  
VOUTDETECT  
Output voltage comparator threshold  
0.42  
0.5  
0.58  
VBAT  
6.1.5.3  
SPI fault reporting  
Protection and monitoring of the outputs during normal mode is provided by digital switch diagnosis via the SPI. The selection of the SO  
data word is controlled by the SOA0:SOA3 bits inside the initialization 1 register #0. The device provides two different reading modes,  
depending on the SOA MODE bit. When the SOA MODE bit is:  
• low (logic[0]), the programmed SO address is used for a single read command. After the reading, the SO address returns to quick  
status register #1 (default state)  
• high (logic[1]), the programmed SO address is used for the next and all further read commands until a new programming  
The “quick status register” #1 provides one glance failure overview. As long as no failure flag is set (logic[1]), no control action by the  
microcontroller is necessary.  
SO address  
D14  
SO data  
D6 D5  
RCF CLKF QSF5 QSF4 QSF3 QSF2 QSF1  
Register  
#
D15  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D4  
D3  
D2  
D1  
D0  
quick  
address  
1
0
0
0
1
FM  
DSF OVLF OLF  
CPF  
• FM: fail mode indication. This bit is also present in all other SO data words, and indicates the fail mode by a logic[1]. When the  
device is in normal mode, the bit is logic[0]  
• global device status flags (D10:D8): These flags are also present in the channel status registers #2:#6, the device status register  
#7, and are cleared when all fault bits are cleared by reading the registers #2:#7  
• DSF = device status flag (RCF, or UVF, or OVF, or CPF, or CLKF, or TMF). UVF and TMF are also reported in the device status  
register #7  
• OVLF = over load flag (wired OR of all OC and OTS signals)  
• OLF = open load flag  
• CPF: charge pump flag  
• RCF: registers clear flag: this flag is set (logic[1]) when all SI and SO registers are reset  
• CLKF: clock fail flag. Refer to Logic I/O plausibility check on page 55  
• QSF1:QSF5: channel quick status flags (QSFx = OC0x, or OC1x, or OC2x, or OTWx, or OTSx, or OLONx, or OLOFFx)  
The SOA address #0 is also mapped to register #1 (D15:D12 bits report logic [0001]). When a fault condition is indicated by one of the  
quick status bits (QSF1:QSF5, OVLF, OLF), the detailed status can be evaluated by reading of the corresponding channel status registers  
#2:#6.  
12XS6D1  
NXP Semiconductors  
43  
SO address  
SO data  
D6 D5  
Register  
#
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D4  
D3  
D2  
D1  
D0  
OLON  
1
CH1 status  
CH2 status  
CH3 status  
CH4 status  
CH5 status  
2
0
0
0
0
0
0
1
1
0
0
1
0
FM  
DSF OVLF OLF  
DSF OVLF OLF  
DSF OVLF OLF  
DSF OVLF OLF  
DSF OVLF OLF  
res  
OTS1 OTW1 OC21 OC11 OC01  
OTS2 OTW2 OC22 OC12 OC02  
OTS3 OTW3 OC23 OC13 OC03  
OTS4 OTW4 OC24 OC14 OC04  
OTS5 OTW5 OC25 OC15 OC05  
OLOFF1  
OLON  
2
3
4
5
6
0
1
1
1
1
0
1
0
FM  
FM  
FM  
FM  
res  
res  
res  
res  
OLOFF2  
OLOFF3  
OLOFF4  
OLOFF5  
OLON  
3
OLON  
4
OLON  
5
• OTSx: overtemperature shutdown flag  
• OTWx: overtemperature warning flag  
• OC0x:OC2x: overcurrent status flags  
• OLONx: open load in on state flag  
• OLOFFx: open load in off state flag  
The most recent OC fault is reported by the OC0x:OC2x bits, if a new OC occurs before an old OC on the same output that was read.  
#2~#6  
OC2x OC1x OC0x over currentstatus  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
no ov erc urrent  
OCHI1  
OCHI2  
OCHI3  
OCLO  
OCHIOD  
SSC  
not us ed  
When a fault condition is indicated by one of the global status bits (FM, DSF), the detailed status can be evaluated by reading of the device  
status registers #7:  
SO address  
D14  
SO data  
Register  
#
D15  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
res  
D5  
D4  
D3  
D2  
D1  
D0  
device  
status  
7
0
1
1
1
FM  
DSF OVLF OLF  
res  
res  
TMF  
OVF  
UVF  
SPIF iLMP  
• TMF: test mode activation flag. Test mode is used for manufacturing testing only. If this bit is set to logic [1], the MCU must reset  
the device  
• OVF: overvoltage flag  
• UVF: undervoltage flag  
• SPIF: SPI fail flag  
• iLIMP (real time reporting after the tIN_DGL, not latched)  
The I/O status register #8 can be used for system test, fail mode test and the power down procedure:  
12XS6D1  
44  
NXP Semiconductors  
SO address  
D14  
SO data  
D6 D5  
iIN2 iIN1 OUT5 OUT4 OUT3 OUT2 OUT1  
Register  
#
D15  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D4  
D3  
D2  
D1  
D0  
TOGG  
LE  
I/O status  
8
1
0
0
0
FM  
res  
iIN4  
iIN3  
The register provides the status of the control inputs, the toggle signal, and the power outputs state in real time (not latched).  
Toggle = status of the 4 input toggle signals (IN1_ON, or IN2_ON, or IN3_ON, or IN4_ON), reported in real time  
• iINx = status of iINx signal (real time reporting after the tIN_DGL, not latched)  
• OUTx = status of output pins OUTx (the detection threshold is VBAT/2) when undervoltage condition does not occur  
The device can be clearly identified by the device ID register #9 when the battery voltage is within its nominal range:  
SO address  
D14  
SO data  
Register  
#
D15  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DEVID DEVID DEVID DEVID DEVID DEVID DEVID DEVID  
device ID  
9
1
0
0
1
X
X
X
X4  
7
6
5
4
3
2
1
0
The register delivers DEVIDx bits = 40hex for the 07XS6517. During undervoltage condition (UVF = 1), DEVIDx bits report 00hex.  
6.1.6 Analog diagnostics  
The analog feedback circuit (CSNS) is implemented to provide load and device diagnostics during normal mode. During fail and sleep  
modes, the analog feedback is not available. The routing of the integrated multiplexer is controlled by MUX0:MUX2 bits inside the  
initialization 1 register #0.  
6.1.6.1  
Output current monitoring  
The current sense monitor provides a current proportional to the current of the selected output (OUT1:OUT5). CSNS output delivers  
1.0 mA full scale range current source reporting channel 1:5 current feedback (IFSR).  
ICSNS  
1.0 mA  
ICSNS / IOUT = 1.0 mA / (100 % FSR) typ  
Note: FSR value depends on SPI setting  
IOUT  
0 mA  
1 % FSR  
Figure 27. Output current sensing  
100 % FSR  
The feedback is suppressed during OCHI window (t < tOCHI1 + tOCHI2 + tOCHI3) and only enabled during low overcurrent shutdown  
threshold (OCLO). During PWM operation, the current feedback circuit (CSNS) delivers current only during the on time of the output  
switch. Current sense settling time, tCSNS(SET), varies with current amplitude. Current sense valid time, tCSNS(VAL), depends on the PWM  
frequency (see Electrical characterization on page 50).  
12XS6D1  
NXP Semiconductors  
45  
An advanced current sense mode (ACM) is implemented in order to diagnose LED loads in normal mode and to improve current sense  
accuracy for low current loads. In the ACM mode, the offset sign of current sense amplifier is toggled on every CSNS SYNCB rising edge.  
The error amplifier offset contribution to the CSNS error can be fully eliminated from the measurement result by averaging each two  
sequential current sense measurements. The ACM mode is enabled with the ACM ENx bits inside the ACM control register #10-1. When  
the ACM ENx bit is:  
• low (logic[0]), ACM disabled (default status and during fail mode)  
• high (logic[1]), ACM enabled  
In ACM mode:  
• the precision of the current recopy feature (CSNS) is improved, especially at low output currents by averaging CSNS reporting on  
sequential PWM periods  
• the current sense full scale range (FSR) is reduced by a factor of two  
• the overcurrent protection threshold OCLO is reduced by a factor of two  
Figure 28 describes the timings between the selected channel current and the analog feedback current. Current sense validation time  
pertains to stabilization time needed after turn on. Current sense settling time pertains to the stabilization time needed after the load current  
changes while the output is continuously on or when another output signal is selected.  
HSONx  
time  
time  
time  
tDLY(ON)  
tDLY(OFF)  
IOUTx  
tCSNS(SET)  
tCSNS(VAL)  
CSNS  
+/- 5% of new value  
Figure 28. Current sensing response time  
Internal circuitry limits the voltage of the CSNS pin when its sense resistor is absent. This feature prevents damage to other circuitry  
sharing that electrical node, such as a microcontroller pin, for example. Several 12XS6 may be connected to one shared CSNS resistor.  
6.1.6.2  
Battery voltage monitoring  
The VBAT monitor provides a voltage proportional to the battery supply tab. The CSNS voltage is proportional to the VBAT voltage as shown  
in Figure 29.  
12XS6D1  
46  
NXP Semiconductors  
VCSNS  
5.0 V  
VCSNS / VBAT = ¼ typ  
0 V  
VBAT  
VBATPOR  
20 V  
Figure 29. Battery voltage reporting  
6.1.6.3  
Temperature monitoring  
The average temperature of the control die is monitored by an analog temperature sensor. The CSNS pin can report the voltage of this  
sensor.  
The chip temperature monitor output voltage is independent of the resistor connected to the CSNS pin, provided the resistor is within the  
min/max range of 5.0 kΩ to 50 kΩ. Temperature feedback range, TFB, -40 °C to 150 °C.  
VCSNS  
VCSNS / TJ = VFBS  
VFB  
TJ  
25°C  
Figure 30. Temperature reporting  
-40°C  
150°C  
6.1.6.4  
Analog diagnostic synchronization  
A current sense synchronization pin is provided to simplify the synchronous sampling of the CSNS signal. The CSNS SYNCB pin is an  
open drain requiring an external 5.0 kΩ (min.) pull-up resistor to VCC. The CSNS SYNC signal is:  
• available during normal mode only  
• behavior depends on the type of signal selected by the MUX2:MUX0 bits in the initialization 1 register #0. This signal is either a  
current proportional to an output current or a voltage proportional to temperature or the battery voltage  
Current sense signal  
When a current sense signal is selected:  
• the pin delivers a recopy of the output control signal during on phase of the PWM defined by the SYNC EN0, SYNC EN1 bits inside  
the initialization 1 register #0  
12XS6D1  
NXP Semiconductors  
47  
SYNC EN1 SYNC EN0  
Setting  
Behavior  
0
0
0
1
OFF  
CSNS SYNC is inactive (high)  
CSNS SYNC is active (low) when CSNS is valid. During switching the output of MUXMUX, the CSNS SYNC  
is inactive (high)  
VALID  
TRIG0  
As in setting VALID, but after a change of the MUX, the CSNS SYNC is inactive (high) until the next PWM cycle  
is started  
1
1
0
1
Pulses (active low) from the middle of the CSNS pulse to its end are generated. Switching phases (output and  
MUX) and the time from the MUX switching to the next middle of the CSNS pulse are blanked (high)  
TRIG1/2  
.
OUT1  
time  
OUT2  
CSNS  
time  
time  
CSNS SYNC\ blanked  
CSNS SYNC\  
active (low)  
SYNCB  
tDLY(ON)+tCSNS(SET)  
change of CSNS MUX  
from OUT1 to OUT2  
OUT1 for  
OUT2 for CSNS selected  
CSNS selected  
Figure 31. CSNS SYNCB valid setting  
12XS6D1  
48  
NXP Semiconductors  
OUT1  
OUT2  
time  
time  
time  
CSNS SYNC\ blanked until  
rising edge of the 1st  
complete PWM cycle  
CSNS  
SYNC\  
change of CSNS MUX  
from OUT1 to OUT2  
OUT1 for  
OUT2 for CSNS selected  
CSNS selected  
Figure 32. CSNS SYNCB TRIG0 setting  
OUT1  
time  
time  
time  
OUT2  
CSNS SYNC\ blanked until 1rst valid edge  
generated in the middle of the OUT2 pulse  
CSNS  
SYNC\  
change of CSNS MUX  
from OUT1 to OUT2  
OUT1 for  
OUT2 for CSNS selected  
CSNS selected  
Figure 33. CSNS SYNCB TRIG1/2 setting  
• the CSNS SYNCB pulse is suppressed during OCHI and during off phase of the PWM  
• the CSNS SYNCB is blanked during settling time of the CSNS multiplexer and ACM switching by a fixed time of tDLY(ON)  
tCSNS(SET)  
+
• when a PWM clock fail is detected, the CSNS SYNCB delivers a signal with 50 % duty cycle at a fixed period of 6.5 ms  
• when the output is programmed with 100 % PWM, the CSNS SYNCB delivers a logic[0] a high pulse with the length of 100 µs (typ.)  
during the PWM counter overflow for TRIG0 and TRIG1/2 settings, as shown in Figure 34  
12XS6D1  
NXP Semiconductors  
49  
OUT1  
OUT2  
time  
time  
time  
CSNS  
SYNC\  
tDLY(ON)+tCSNS(SET)  
change of CSNS MUX  
from OUT1 to OUT2  
OUT1 for  
OUT2 for CSNS selected  
CSNS selected  
Figure 34. CSNS SYNCB when the output is programmed with 100 %  
• In case of output fault, the CSNS SYNCB signal for current sensing does not deliver a trigger signal until the output is enabled again  
Temperature signal or VBAT monitor signal  
When a voltage signal (average control die temperature or battery voltage) is selected:  
• the CSNS SYNCB delivers a signal with 50 % duty cycle and the period of the lowest prescaler setting (fCLK/1024)  
• and a PWM clock fail is detected, the CSNS SYNCB delivers a signal with 50 % duty cycle at a fixed period of 6.5 ms (tSYNC DEFAULT  
)
6.1.6.5  
Electrical characterization  
Table 17. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Current sense CSNS  
RCSNS  
Current sense resistor range  
5.0  
-1.0  
6.0  
50  
+1.0  
8.0  
kΩ  
µA  
V
ICSNS LEAK  
VCS  
Current sense leakage current when CSNS is disabled  
Current sense clamp voltage  
Current sense full scale range for 7.0 mΩ power channel  
• High OCLO and ACM = 0  
22  
11  
11  
5.5  
IFSR  
• Low OCLO and ACM = 0  
• High OCLO and ACM = 1  
• Low OCLO and ACM = 1  
A
Current sense accuracy for 9.0 V < VBAT < 18 V for 7.0 mΩ power channel  
• IOUT = 80 % FSR  
-11  
-14  
-20  
-29  
+11  
+14  
+20  
+29  
• IOUT = 25 % FSR  
• IOUT = 10 % FSR  
• IOUT = 5.0 % FSR  
ACC ICSNS  
%
12XS6D1  
50  
NXP Semiconductors  
Table 17. Electrical characteristics (continued)  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Current sense CSNS (continued)  
(24) (22)  
Current sense accuracy for 9.0 V < VBAT < 18 V with one calibration point  
at 25 °C for 50 % FSR and VBAT = 14 V for 7.0 mΩ power channel  
• IOUT = 80 % FSR  
• IOUT = 25 % FSR  
• IOUT = 10 % FSR  
• IOUT = 5.0 % FSR  
ACC ICSNS 1 CAL  
-7.0  
-7.0  
-20  
-29  
+7.0  
+7.0  
+20  
+29  
%
(24) (22)  
Current sense accuracy for 9.0 V < VBAT < 18 V with two calibration points  
at 25 °C for 2.0 % and 50 % FSR and VBAT = 14 V for 7.0 mΩ power  
channel  
-6.0  
-6.0  
-8.0  
-12  
+6.0  
+6.0  
+8.0  
+12  
• IOUT = 80 % FSR  
• IOUT = 25 % FSR  
• IOUT = 10 % FSR  
• IOUT = 5.0 % FSR  
ACC ICSNS 2 CAL  
%
(20) (23)  
Minimum current sense reporting for 7.0 mΩ  
ICSNSMIN  
1.0  
%
A
• 9.0 V < VBAT < 18 V  
Current sense full scale range for 17 mΩ power channel  
• High OCLO and ACM = 0  
11  
5.5  
5.5  
IFSR  
• Low OCLO and ACM = 0  
• High OCLO and ACM = 1  
• Low OCLO and ACM = 1  
2.75  
(20)  
Current sense accuracy for 9.0 V < VBAT < 18 V for 17 mΩ power channel  
• IOUT = 80 % FSR  
-11  
-14  
-20  
-29  
+11  
+14  
+20  
+29  
• IOUT = 25 % FSR  
• IOUT = 10 % FSR  
• IOUT = 5.0 % FSR  
ACC ICSNS  
%
%
(20) (22)  
Current sense accuracy for 9.0 V < VBAT < 18 V with one calibration point  
at 25 °C for 2.0 % or 50 % FSR and VBAT = 14 V for 17 mΩ power channel  
• IOUT = 80 % FSR  
• IOUT = 25 % FSR  
• IOUT = 10 % FSR  
• IOUT = 5.0 % FSR  
ACC ICSNS 1 CAL  
-7.0  
-7.0  
-20  
-29  
+7.0  
+7.0  
+20  
+29  
(20) (22)  
Current sense accuracy for 9.0 V < VBAT < 18 V with two calibration points  
at 25 °C for 2.0 % and 50 % FSR and VBAT = 14 V for 17 mΩ power  
channel  
• IOUT = 80 % FSR  
• IOUT = 25 % FSR  
• IOUT = 10 % FSR  
• IOUT = 5.0 % FSR  
ACC ICSNS 2 CAL  
-6.0  
-6.0  
-8.0  
-12  
+6.0  
+6.0  
+8.0  
+12  
%
(20) (23)  
Minimum current sense reporting for 17 mΩ  
ICSNSMIN  
VBAT  
1.0  
20  
%
V
• 9.0 V < VBAT < 18 V  
VBATMAX  
Battery voltage feedback range  
(22)  
Battery feedback precision  
• Default (for 07XS6517 and 17XS6500)  
• Default (for 17XS6400)  
• 1 calibration point at 25 °C and VBAT = 12 V, for 7.0 V < VBAT < 20 V  
-5.0  
-6.0  
-1.5  
-2.2  
+5.0  
+6.0  
+1.5  
+2.2  
ACC VBAT  
%
• 1 calibration point at 25 °C and VBAT = 12 V, for 6.0 V < VBAT < 7.0 V  
(21)  
TFB  
Temperature feedback range  
-40  
150  
°C  
12XS6D1  
NXP Semiconductors  
51  
Table 17. Electrical characteristics (continued)  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Current sense CSNS (continued)  
VFB  
Temperature feedback voltage at 25 °C  
2.31  
7.72  
V
(22)  
(22)  
COEF VFB  
Temperature feedback thermal coefficient  
mV/°C  
Temperature feedback voltage precision  
• Default  
ACC TFB  
-15  
-5.0  
+15  
+5.0  
°C  
µs  
• 1 calibration point at 25 °C and VBAT = 7.0 V  
(21)  
(24)  
Current sense settling time  
• Current sensing feedback for IOUT from 75 % FSR to 50 % FSR  
40  
260  
10  
tCSNS(SET)  
• Current sensing feedback for IOUT from 10 % FSR to 1.0 % FSR  
Temperature and battery voltage feedback  
Current sense valid time  
Current sensing feedback  
• Low/medium frequency range for IOUT > 20 % FSR  
10  
70  
5.0  
70  
150  
300  
75  
300  
10  
• Low/medium frequency range for IOUT < 20 % FSR  
• High frequency range for IOUT > 20 % FSR  
• High frequency range for IOUT < 20 % FSR  
tCSNS(VAL)  
µs  
Temperature voltage feedback  
Battery voltage feedback  
15  
tSYNC DEFAULT  
Current sense synchronization period for PWM clock failure  
4.8  
6.5  
8.2  
ms  
Current sense synchronization CSNS SYNCB  
RCSNS SYNC  
VOL  
Pull-up current sense synchronization resistor range  
5.0  
kΩ  
Current sense synchronization logic output low state level at 1.0 mA  
0.4  
V
Current sense synchronization leakage current in tri-state (CSNS SYNC  
from 0 to 5.5 V)  
IOUT MAX  
-1.0  
+1.0  
µA  
Notes  
20.  
21.  
22.  
23.  
24.  
Precision either OCLO and ACM setting.  
Parameter is derived mainly from simulations.  
Parameter is guaranteed by design characterization. Measurements are taken from a statistically relevant sample size across process variations.  
Error of 100 % without calibration for all modes and 50 % with 1 calibration point done at 25 °C in ACM mode ( 70 % in non-ACM).  
Tested at 5.0 % of final value at VBAT = 14 V, current step from 0 A to 2.8 A (or 5.6 A). Parameter guaranteed by design at 1.0 % of final value.  
12XS6D1  
52  
NXP Semiconductors  
6.2  
Power supply functional block description and application  
information  
6.2.1 Introduction  
The device is functional when wake = [1] with supply voltages from 5.5 V to 40 V (VBAT), but is fully specification compliant only between  
7.0 V and 18 V. The VBAT pin supplies power to the internal regulator, analog, and logic circuit blocks. The VCC pin (5.0 V typ.) supplies  
the output register of the serial peripheral interface (SPI) and the OUT6 driver. Consequently, the SPI registers cannot be read without  
presence of VCC. The employed IC architecture guarantees a low quiescent current in sleep mode (wake = [0]).  
6.2.2 Wake state reporting  
The CLK input/output pin is also used to report the wake state of the device to the microcontroller as long as RSTB is logic [0].  
When the device is in:  
• “wake state” and RSTB is inactive, the CLK pin reports a high signal (logic[1])  
• “sleep mode” or the device is wake by the RSTB pin, the CLK is an input pin  
6.2.2.1 Electrical characterization  
Table 18. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Clock input/output CLK  
VOH  
Logic output high state level (CLK) at 1.0 mA  
VCC - 0.6  
V
6.2.3 Supply voltages disconnection  
6.2.3.1 Loss of V  
BAT  
In case of a VBAT disconnection (VBAT < VBAT POR) the device behavior depends on VCC voltage value:  
• VCC < VCC POR: the device enters the power off mode. All outputs are shut off immediately. All registers and faults are cleared  
• VCC > VCC POR: all registers and faults are maintained. OUT1:5 are shut off immediately. The on/off state of OUT6 depends on the  
current SPI configuration. SPI reporting is available when VCC remains within its operating voltage range (4.5 V to 5.5 V)  
The wake-up event is not reported to the CLK pin. The clamping structures (battery clamp, negative output clamp) are available to protect  
the device. No current is conducted from VCC to VBAT. An external current path must be available to drain the energy from an inductive  
load, in case a battery disconnection occurs when an output is on.  
6.2.3.2 Loss of V  
CC  
In case of a VCC disconnection, the device behavior depends on VBAT voltage:  
• VBAT < VBAT POR: the device enters the power off mode. All outputs are shut off immediately. All registers and faults are cleared  
• VBAT > VBAT POR: the SPI is not available. Therefore, the device enters WD timeout  
The clamping structures (battery clamp, negative output clamp) are available to protect the device. No current is conducted from VBAT to  
VCC  
.
6.2.3.3 Loss of device GND  
During loss of ground, the device cannot drive the loads, therefore the OUT1:OUT5 outputs are switched off and the OUT6 voltage is  
pulled up. The device must not be damaged by this failure condition. For protection of the digital inputs series resistors (1.0 kΩ typ) can  
be provided externally in order to limit the current to I  
.
CL  
12XS6D1  
NXP Semiconductors  
53  
6.2.3.4  
Electrical characterization  
Table 19. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
3.0  
3.0  
Max.  
Unit  
Notes  
Battery VBAT  
VBAT POR  
Battery power on reset  
VCC power on reset  
2.0  
4.0  
V
V
V
VCC  
VCC POR  
2.0  
4.0  
Ground GND  
VGND SHIFT  
Maximum ground shift between GND pin and load grounds  
-1.5  
+1.5  
6.3  
Communication interface and device control functional block  
description and application information  
6.3.1 Introduction  
In normal mode, the power output channels are controlled by the embedded PWM module, which is configured by the SPI register settings.  
For bidirectional SPI communication, VCC has to be in the authorized range. Failure diagnostics and configuration are also performed  
through the SPI port. The reported failure types are: open load, short-circuit to battery, severe short-circuit to ground, overcurrent,  
overtemperature, clock fail, and under and overvoltage. For direct input control, the device must be in Fail-safe mode. VCC is not required  
and this mode can be forced by the LIMP input pin.  
6.3.2 Fail mode input (LIMP)  
The fail mode of the component can be activated by the LIMP direct input. The fail mode is activated when the input is logic [1]. In fail  
mode, the channel power outputs are controlled by the corresponding inputs. Even though the input thresholds are logic level compatible,  
the input structure of the pins are able to withstand battery voltage level (max. 40 V) without damage. External current limit resistors (i.e.  
1.0 kΩ:10 kΩ) can be used to handle reverse current conditions. The direct inputs have an integrated pull-down resistor. The LIMP input  
has an integrated pull-down resistor. The status of the LIMP input can be monitored by the LIMP IN bit inside the device status register #7.  
6.3.2.1  
Electrical characterization  
Table 20. Electrical characteristics  
Characteristics noted under conditions 4.5 V VBAT 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Fail mode input LIMP  
VIH  
VIL  
Logic input high state level  
Logic input low state level  
3.5  
V
V
1.5  
+0.5  
100  
20  
IIN  
Logic input leakage current in inactive state (LIMP = [0])  
Logic input pull-down resistor  
-0.5  
25  
µA  
kΩ  
pF  
RPULL  
CIN  
(25)  
Logic input capacitance  
12XS6D1  
54  
NXP Semiconductors  
Table 20. Electrical characteristics  
Characteristics noted under conditions 4.5 V VBAT 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Direct inputs IN1:IN4  
VIH  
VIH(WAKE)  
VIL  
Logic input high state level  
3.5  
3.75  
V
V
Logic input high state level for wake-up  
Logic input low state level  
1.5  
+0.5  
100  
20  
V
IIN  
Logic input leakage current in inactive state (forced to [0])  
Logic input pull-down resistor  
-0.5  
25  
µA  
kΩ  
pF  
RPULL  
CIN  
(25)  
Logic input capacitance  
Notes  
25.  
Parameter is derived mainly from simulations.  
6.3.3 MCU communication interface protections  
6.3.3.1  
Loss of communication interface  
If a SPI communication error occurs, the device is switched into fail mode. A SPI communication fault is detected if:  
• the WD bit is not toggled with each SPI message or  
• WD timeout is reached or  
• protocol length error (modulo 16 check)  
The SI stuck to static levels during CSB period and VCC fail (SPI not functional) are indirectly detected by a WD toggle error. The SPI  
communication error is reported in:  
• SPI failure flag (SPIF) inside the device status register #7 in the next SPI communication  
As long as the device is in fail mode, the SPIF bit retains its state. The SPIF bit is delatched during the transition from fail-to-normal modes.  
6.3.3.2  
Logic I/O plausibility check  
The logic and signal I/O are protected against fatal mistreatment by a signal plausibility check, according following table:  
I/O  
Signal check strategy  
IN1 ~ IN4  
LIMP  
frequency above limit (low pass filter)  
frequency above limit (low pass filter)  
frequency above limit (low pass filter)  
frequency above limit (low pass filter)  
RSTB  
CLK  
The LIMP and IN1:IN4 have an input symmetrically deglitch time tIN_DGL = 200 µs (typ). If the LIMP input is set to logic [1] for a delay  
longer than 200 µs typ, the device is switched into fail mode (internal signal called iLIMP).  
12XS6D1  
NXP Semiconductors  
55  
LIMP  
iLIMP  
tIN_DGL  
200µs typ.  
tIN_DGL  
200µs typ.  
time  
time  
Figure 35. LIMP and iLIMP signal  
If the INx input is set to logic [1] for a delay longer than 200 µs (typ.), the corresponding channel is controlled by the direct signal (internal  
signal called iINx).  
INx  
tIN_DGL  
time  
tIN_DGL  
tIN_DGL  
tIN_DGL  
tIN_DGL  
tIN_DGL  
iINx  
200µs typ.  
time  
ttoggle  
1024ms typ.  
ttoggle  
INx_ON  
time  
Figure 36. IN, iIN and IN_ON signal  
The RSTB has an input deglitch time tRST_DGL = 10 µs (typ.) for the falling edge only. The CLK has an input symmetrically deglitch time  
tCLK_DGL = 2.0 µs (typ). Due to the input deglitcher (at the CLK input) a very high input frequency leads to a clock fail detection. The CLK  
fail detection (clock input frequency detection fCLK LOW) is started immediately with the positive edge of RSTB signal. If the CLK frequency  
is below fCLK LOW limit, the output state depends on the corresponding CHx signal. As soon as the CLK signal is valid, the output duty  
cycle depends on the corresponding SPI configuration. To delatch the CLK fail diagnosis:  
• the clock failure condition must be removed  
• a read command of the quick status register #1 must be performed  
12XS6D1  
56  
NXP Semiconductors  
6.3.3.3  
Electrical characterization  
Table 21. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Logic I/O LIMP IN1:IN4 CLK  
SPI watchdog timeout  
tWD  
• WD SEL = 0  
• WD SEL = 1  
24  
96  
32  
128  
40  
160  
ms  
ms  
tTOGGLE  
Input toggle time for IN1:IN4  
768  
1024  
1280  
Input deglitching time  
• LIMP and IN1:IN4  
• CLK  
150  
1.5  
7.5  
200  
2.0  
10  
250  
2.5  
12.5  
tDGL  
µs  
• RSTB  
fCLOCK LOW  
Clock low frequency detection  
50  
100  
200  
Hz  
6.3.4 External smart power control (OUT6)  
The device provides a control output to drive an external smart power device in normal mode only. The control is according to the channel  
6 settings in the SPI input data register.  
• The protection and current feedback of the external SMARTMOS device are under the responsibility of the microcontroller  
• The output delivers a 5.0 V CMOS logic signal from VCC  
The output is protected against overvoltage. An external current limit resistor (i.e. 1.0 kΩ:10 kΩ) must be used to handle negative output  
voltage conditions. The output has an integrated pull-down resistor to provide a stable off condition in sleep mode and fail mode. In case  
of a ground disconnection, the OUT6 voltage is pulled up. External components are mandatory to define the state of external smart power  
device and to limit possible reverse OUT6 current (i.e. resistor in series).  
6.3.4.1  
Electrical characterization  
Table 22. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
External smart power output OUT6  
tOUT6 RISE  
ROUT6 DWN  
VOH  
OUT6 rising edge for 100 pF capacitive load  
OUT6 Pull-down resistor  
10  
5.0  
30  
µs  
kΩ  
V
5.0  
VCC - 0.6  
Logic output high state level (OUT6)  
Logic output low state level (OUT6)  
VOL  
0.6  
V
12XS6D1  
NXP Semiconductors  
57  
7
Typical applications  
7.1  
Introduction  
The 12XS6 is the latest achievement in automotive drivers for all types of centralized automotive lighting applications.  
7.1.1 Application diagram  
VBAT RIGHT  
20V  
5V Regulator  
VBAT  
VCC  
10µ  
10n…100n  
100n  
GND  
100n  
5k  
VCC VBAT  
VCC  
SI  
CP  
SO  
CS\  
CS\  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
10n  
10n  
10n  
10n  
10n  
Parking Light  
Flasher  
SCLK  
SI  
SCLK  
VCC  
SO  
Main MCU  
VCC Clamp  
RST\  
RST\  
CLK  
CSNS  
SYNC\  
LIMP  
IN1  
GND  
CLK  
A/D1  
Low Beam  
Fog Light  
High Beam  
Spare  
10k  
TRIG1  
A/D2  
A/D3  
GND  
10n  
IN2  
1k  
1k  
5k  
VBAT  
IN3  
IN  
OUT  
10n  
1k  
IN4  
Smart Power  
CSNS  
GND  
GND  
1k  
GND  
CSNS  
GND  
IN4  
Smart Power  
IN OUT  
Spare  
High Beam  
Fog Light  
Low Beam  
Flasher  
1k  
IN3  
OUT6  
OUT5  
OUT4  
OUT3  
OUT2  
OUT1  
VBAT  
10n  
IN2  
IN1  
10n  
LIMP  
SYNC\  
CSNS  
CLK  
RST\  
SO  
10n  
10n  
VBAT  
LIMP  
IN1  
1k  
10n  
10n  
1k  
1k  
1k  
1k  
SCLK  
CS\  
Parking Light  
IN2  
Watchdog  
IN3  
IN4  
SI  
CP  
VCC VBAT  
GND  
100n  
10n…100n  
100n  
20V  
VBAT LEFT  
Figure 37. Typical automotive front lighting (featuring 07XS6517)  
12XS6D1  
58  
NXP Semiconductors  
7.1.2 Application instructions  
7.1.3 Bill of materials  
Table 23. 12XS6 Bill of materials (26)  
Signal  
Location  
Mission  
Value  
close to 12XS6  
eXtreme Switch  
VBAT  
improve emission and immunity performances  
100 nF (X7R 50 V)  
close to 12XS6  
eXtreme Switch  
CP  
charge pump tank capacitor  
100 nF (X7R 50 V)  
close to 12XS6  
eXtreme Switch  
VCC  
improve emission and immunity performances  
10 to 100 nF (X7R 16 V)  
close to output  
connector  
sustain ESG gun and fast transient pulses improve emission and immunity  
performances  
OUT1:OUT4/5  
CSNS  
10 to 22 nF (X7R 50 V)  
5.0 k ( 1.0 %)  
close to MCU  
close to MCU  
output current sensing  
10 kΩ ( 1.0 %) and 10 nF (X7R  
CSNS  
low pass filter removing noise  
16 V)  
CSNS SYNCB N/A  
pull-up resistor for the synchronization of A/D conversion  
sustain high-voltage  
5.0 k ( 1.0 %)  
1.0 kΩ ( 1.0 %)  
1.0 kΩ ( 1.0 %)  
IN1:IN4  
OUT6  
N/A  
N/A  
sustain reverse battery  
To increase fast transient pulses robustness  
20 V zener diode and diode in series  
per battery line  
VBAT  
VBAT  
close to connector sustain pulse #1 in case of LED loads or without loads  
close to 12XS6  
sustain pulse #2 without loads  
eXtreme Switch  
additional 10 µF (X7R 50 V)  
To sustain 5.0 V voltage regulator failure mode  
close to 5.0 V  
5.0 V zener diode and a bipolar  
transistor  
VCC  
prevent high-voltage application on the MCU  
voltage regulator  
Notes  
26.  
NXP does not assume liability, endorse, or warrant components from external manufacturers that are referenced in circuit drawings or tables.  
While NXP offers component recommendations in this configuration, it is the customer’s responsibility to validate their application.  
12XS6D1  
NXP Semiconductors  
59  
7.2  
EMC and EMI considerations  
7.2.1 EMC/EMI tests  
This paragraph gives EMC/EMI performances. Further generic design recommendations can be found on the NXP website www.nxp.com.  
Table 24. EMC/EMI Performances  
Test  
Signals  
Conditions  
Standard  
Criteria  
VPWR  
CISPR25  
Class 5  
150 Ω method  
150 Ω method  
Conducted emission  
Global pins: 12-K level for  
VBAT pin - 11-L for OUT1: 5 pins  
Local pins: 10-J level  
Global pins: VBAT and OUT1:OUT5  
Local pins: VCC, CP, and CSNS  
IEC 61967-4  
IEC 62132-4  
outputs off  
outputs on  
in PWM  
Class A related to the outputs state  
and the analog diagnostics ( 20 %)  
30 dBm for Global pins  
12 dBm for Local pins  
Global pins: VBAT and OUT1:OUT5  
Local pins: VCC  
Conducted immunity  
7.2.2 Fast transient pulse tests  
This paragraph gives the device performances.against fast transient disturbances.  
Table 25. Fast transient capability on VBAT  
Test  
Conditions  
Standard  
Criteria  
Pulse 1  
Pulse 2a  
outputs loaded with lamps  
other cases with external transient voltage suppressor  
ISO 7637-2  
Class A  
Pulse 3a/3b  
Pulse 5b (40 V)  
outputs loaded  
outputs unloaded  
7.3  
Robustness considerations  
The short-circuit protections embedded in 12XS6 are preferred to conventional current limitations, to minimize the thermal overstress  
within the device in case of an overload condition. The junction temperature elevation is drastically reduced to a value which does not  
affect the device’s reliability. Moreover, the availability of the lighting is guaranteed in fail mode by the unlimited autorestart feature.  
The chapter 12 of AEC-Q100 specification published by the automotive electronics council presents turn-on into short-circuit condition. It  
is not enough, because the short-circuit event can also occur in on-state. The test plan at TA = 70 °C is presented in Table 26. The tests  
are performed on 30 parts from three engineering lots (total 90 pieces).  
Table 26. 12XS6 repetitive short-circuit test results at TA = 70 °C  
7.0 mΩ output cycle  
17 mΩ output cycle  
without failure  
Short-circuit case  
Battery voltage  
Supply line  
Load line  
without failure  
5.0 m/1.0 mm²  
500 k  
500 k  
500 k  
500 k  
500 k  
500 k  
500 k  
500 k  
500 k  
500 k  
500 k  
500 k  
0.3 m/2.5 mm²  
5.0 m/2.5 mm²  
0.3 m/2.5 mm²  
Turn-on into short-circuit  
condition  
16 V  
0.3 m/1.0 mm²  
5.0 m/1.0 mm²  
0.3 m/1.0 mm²  
Short-circuit in on-state (27)  
14 V  
16 V  
5.0 m/2.5 mm²  
0.3 m/6.0 mm²  
On-state overload 95 % of min  
OCHI1/2/3 levels  
0.3 m/6.0 mm²  
500 k  
500 k  
Notes  
27.  
The channel was loaded in the on-state with 100 mA.  
12XS6D1  
60  
NXP Semiconductors  
7.4  
PCB layout recommendations  
This new generation of high-side switch products family facilitates ECU design thanks to compatible MCU software and PCB foot print for  
each device variant. The PCB Copper layer is similar for all devices in the 12XS6 family, only the solder Stencil opening is different.  
Figure 38 shows superposition of SOIC54 (in black) and SOIC32 packages (in blue). To keep pin-to-pin compatibility in the same PCB  
footprint, pin 1 of the SOIC32 package must be located at pin 3 of the SOIC54 package.  
Figure 38. PCB copper layer and solder stencil opening recommendations  
12XS6D1  
NXP Semiconductors  
61  
7.5  
Thermal information  
This section provides thermal information.  
7.5.1 Thermal transient  
Figure 39. Transient thermal response curve  
7.5.2 R/C thermal model  
Contact the local field application engineer (email: support@NXP.com).  
12XS6D1  
62  
NXP Semiconductors  
8
Packaging  
8.1  
Marking information  
Device markings indicate information on the week and year of manufacturing. The date is coded with the last four characters of the nine  
character build information code (e.g. “CTKAH1229”). The date is coded as four numerical digits where the first two digits indicate the year  
and the last two digits indicate the week. For instance, the date code “1229” indicates the 29th week of the year 2012.  
8.2  
Package mechanical dimensions  
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.nxp.com and  
perform a keyword search for the drawing’s document number.  
Table 27. Package outline  
Package  
Suffix  
Package outline drawing number  
32-pin SOIC-EP  
32-pin SOIC-EP  
54-pin SOIC-EP  
BEK and EEK  
CEK  
98ASA00368D  
98ASA00894D  
98ASA00367D  
BEK and DEK  
12XS6D1  
NXP Semiconductors  
63  
12XS6D1  
64  
NXP Semiconductors  
12XS6D1  
NXP Semiconductors  
65  
12XS6D1  
66  
NXP Semiconductors  
12XS6D1  
NXP Semiconductors  
67  
12XS6D1  
68  
NXP Semiconductors  
12XS6D1  
NXP Semiconductors  
69  
12XS6D1  
70  
NXP Semiconductors  
9
Revision history  
Revision  
Date  
Description of changes  
1.0  
12/2014  
5/2016  
Initial release  
Updated 98A packages per PCN 17161  
Updated document format and style  
2.0  
3.0  
Added MC17XS6400BEK to Table 1, Orderable part variations  
Updated to NXP document form and style  
8/2016  
Removed MC17XS6400EK device due to end of life  
4.0  
5.0  
5/2018  
Added MC17XS6500CEK and MC17XS6400CEK parts and associated 98ASA00894D package information  
Added note 16 to Table 7, Electrical characteristics and note 27 to Table 22, Electrical characteristics as per CIN  
201811005I  
11/2018  
Changed document status from Advance Information to Technical Data  
Added values for RPULL-CSB to Table 7, Electrical characteristics  
6.0  
9/2020  
1/2021  
Updated the max value for ROUT6 DWN in Table 22, Electrical characteristics (replaced 20 by 30)  
Updated as per CIN 202012022I  
Added MC07XS6517DEK and MC17XS6500EEK to Table 1, Orderable part variations  
Updated Features list (added “AEC-Q100 grade 1 automotive qualified”)  
Added values for tWRST to Table 7, Electrical characteristics  
7.0  
Updated unit for tFAULT SD (OLON with OLON DGL = 0) in Table 15, Electrical characteristics (replaced ms by µs)  
Updated package outline drawings  
• 98ASA00368D: Rev A drawings replaced by Rev B  
• 98ASA00367D: Rev B drawings replaced by Rev D  
12XS6D1  
NXP Semiconductors  
71  
Information in this document is provided solely to enable system and software implementers to use NXP products.  
There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits  
based on the information in this document. NXP reserves the right to make changes without further notice to any  
products herein.  
How to Reach Us:  
Home Page:  
NXP.com  
Web Support:  
http://www.nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular  
purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation, consequential or incidental damages. "Typical"  
parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications,  
and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each  
customer application by the customer's technical experts. NXP does not convey any license under its patent rights nor  
the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the  
following address:  
http://www.nxp.com/terms-of-use.html.  
NXP, the NXP logo, Freescale, the Freescale logo and SMARTMOS are trademarks of NXP B.V. All other product or  
service names are the property of their respective owners. All rights reserved.  
© NXP B.V. 2021.  
Document Number: MC12XS6D1  
Rev. 7.0  
1/2021  

相关型号:

98ASA00466D

Addendum for New QFN Package Migration
NXP

98ASA00473D

Addendum for New QFN Package Migration
NXP

98ASA00474D

Addendum for New QFN Package Migration
NXP

98ASA00602D

Addendum for New QFN Package Migration
NXP

98ASA00671D

Addendum for New QFN Package Migration
NXP

98ASA00672D

Addendum for New QFN Package Migration
NXP

98ASA00734D

Addendum for New QFN Package Migration
NXP

98ASA00735D

Addendum for New QFN Package Migration
NXP

98ASA00736D

Addendum for New QFN Package Migration
NXP

98ASA00894D

17 mOhm and 7.0 mOhm high-side switches
NXP

98ASB42844B

MC9S08PA60 Series
FREESCALE

98ASH00962A

MC9S08PA60 Series
FREESCALE