A3G35H100-04SR3 [NXP]

RF Power GaN Transistor;
A3G35H100-04SR3
型号: A3G35H100-04SR3
厂家: NXP    NXP
描述:

RF Power GaN Transistor

文件: 总10页 (文件大小:359K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: A3G35H100--04S  
Rev. 0, 05/2018  
NXP Semiconductors  
Technical Data  
RF Power GaN Transistor  
This 14 W asymmetrical Doherty RF power GaN transistor is designed for  
cellular base station applications requiring very wide instantaneous bandwidth  
capability covering the frequency range of 3400 to 3600 MHz.  
A3G35H100--04SR3  
This part is characterized and performance is guaranteed for applications  
operating in the 3400 to 3600 MHz band. There is no guarantee of performance  
when this part is used in applications designed outside of these frequencies.  
3400–3600 MHz, 14 W AVG., 48 V  
AIRFAST RF POWER GaN  
TRANSISTOR  
3500 MHz  
Typical Doherty Single--Carrier W--CDMA Performance: VDD = 48 Vdc,  
DQA = 80 mA, VGSB = –5.0 Vdc, Pout = 14 W Avg., Input Signal  
PAR = 9.9 dB @ 0.01% Probability on CCDF.  
I
G
Output PAR  
(dB)  
ACPR  
(dBc)  
ps  
D
Frequency  
3400 MHz  
3500 MHz  
3600 MHz  
(dB)  
14.0  
14.0  
14.0  
(%)  
43.8  
41.4  
42.5  
9.6  
9.7  
9.6  
–34.0  
–34.5  
–32.2  
NI--780S--4L  
Features  
Carrier  
High terminal impedances for optimal broadband performance  
Advanced high performance in--package Doherty  
Able to withstand extremely high output VSWR and broadband operating  
conditions  
RF /V  
RF /V  
outA DSA  
3
4
1
2
inA GSA  
RF /V  
inB GSB  
RF /V  
outB DSB  
Peaking  
(Top View)  
Figure 1. Pin Connections  
2018 NXP B.V.  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
125  
Unit  
Vdc  
Vdc  
Vdc  
mA  
C  
Drain--Source Voltage  
Gate--Source Voltage  
Operating Voltage  
V
DSS  
V
–8, 0  
GS  
DD  
V
0 to +55  
13.4  
Maximum Forward Gate Current @ T = 25C  
I
GMAX  
C
Storage Temperature Range  
T
stg  
65 to +150  
55 to +150  
55 to +225  
275  
Case Operating Temperature Range  
Operating Junction Temperature Range  
T
C
C  
T
J
C  
(1)  
Absolute Maximum Junction Temperature  
T
MAX  
C  
Table 2. Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
(2)  
Thermal Resistance by Infrared Measurement, Active Die Surface--to--Case  
R
(IR)  
2.3  
C/W  
JC  
Case Temperature 71C, P = 24.3 W  
D
(3)  
Thermal Resistance by Finite Element Analysis, Junction--to--Case  
R
JC  
(FEA)  
3.88  
C/W  
Case Temperature 90C, P = 24 W  
D
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
1C  
Human Body Model (per JS--001--2017)  
Charge Device Model (per JS--002--2014)  
C2  
Table 4. Electrical Characteristics (T = 25C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(4)  
Off Characteristics  
Drain--Source Breakdown Voltage  
(V = –8 Vdc, I = 5.4 mAdc)  
V
Vdc  
(BR)DSS  
Carrier  
Peaking  
150  
150  
GS  
D
(V = –8 Vdc, I = 8.04 mAdc)  
GS  
D
On Characteristics -- Side A, Carrier  
Gate Threshold Voltage  
V
–3.8  
–3.6  
–1.7  
–3.1  
–2.9  
–2.3  
–2.6  
Vdc  
Vdc  
GS(th)  
(V = 10 Vdc, I = 5.4 mAdc)  
DS  
D
Gate Quiescent Voltage  
(V = 48 Vdc, I = 80 mAdc, Measured in Functional Test)  
V
GSA(Q)  
DD  
DA  
Gate--Source Leakage Current  
(V = 0 Vdc, V = –5 Vdc)  
I
mAdc  
GSS  
DS  
GS  
On Characteristics -- Side B, Peaking  
Gate Threshold Voltage  
V
–3.8  
–2.5  
–3.2  
–2.3  
Vdc  
GS(th)  
(V = 10 Vdc, I = 8.04 mAdc)  
DS  
D
Gate--Source Leakage Current  
(V = 0 Vdc, V = –5 Vdc)  
I
mAdc  
GSS  
DS  
GS  
1. Functional operation above 225C has not been characterized and is not implied. Operation at T  
(275C) reduces median time to failure  
MAX  
by an order of magnitude; operation beyond T  
could cause permanent damage.  
MAX  
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.  
3. R  
(FEA) must be used for purposes related to reliability and limitations on maximum junction temperature. MTTF may be estimated by  
JC  
[A + B/(T + 273)]  
the expression MTTF (hours) = 10  
, where T is the junction temperature in degrees Celsius, A = –10.3 and B = 8260.  
4. Each side of device measured separately.  
(continued)  
A3G35H100--04SR3  
RF Device Data  
NXP Semiconductors  
2
Table 4. Electrical Characteristics (T = 25C unless otherwise noted) (continued)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(1,2)  
Functional Tests  
(In NXP Doherty Test Fixture, 50 ohm system) V = 48 Vdc, I  
= 80 mA, V  
= –5.0 Vdc, P = 14 W Avg.,  
DD  
DQA  
GSB  
out  
f = 3600 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured  
in 3.84 MHz Channel Bandwidth @ 5 MHz Offset. [See note on correct biasing sequence.]  
Power Gain  
G
13.0  
37.7  
8.8  
14.0  
42.5  
9.6  
15.0  
dB  
%
ps  
D
Drain Efficiency  
Output Peak--to--Average Ratio @ 0.01% Probability on CCDF  
Adjacent Channel Power Ratio  
PAR  
dB  
dBc  
ACPR  
–32.2  
–29.5  
(2)  
Load Mismatch (In NXP Doherty Test Fixture, 50 ohm system) I  
= 80 mA, V  
= –5.1 Vdc, f = 3500 MHz, 12 sec(on), 10% Duty  
GSB  
DQA  
Cycle  
VSWR 10:1 at 55 Vdc, 158 W Pulsed CW Output Power  
(3 dB Input Overdrive from 91 W Pulsed CW Rated Power)  
No Device Degradation  
(2)  
Typical Performance  
(In NXP Doherty Test Fixture, 50 ohm system) V = 48 Vdc, I  
= 80 mA, V  
= –5.1 Vdc, 3400–3600 MHz  
GSB  
DD  
DQA  
Bandwidth  
(3)  
P
@ 3 dB Compression Point  
P3dB  
100  
W
out  
AM/PM  
(Maximum value measured at the P3dB compression point across  
–32  
the 3400–3600 MHz bandwidth)  
VBW Resonance Point  
VBW  
260  
MHz  
res  
(IMD Third Order Intermodulation Inflection Point)  
Gain Flatness in 200 MHz Bandwidth @ P = 14 W Avg.  
G
0.31  
dB  
out  
F
Gain Variation over Temperature  
G  
0.011  
dB/C  
(–30C to +85C)  
Output Power Variation over Temperature  
P1dB  
0.006  
dB/C  
(–30C to +85C)  
Table 5. Ordering Information  
Device  
Tape and Reel Information  
R3 Suffix = 250 Units, 32 mm Tape Width, 13--inch Reel  
Package  
A3G35H100--04SR3  
NI--780S--4L  
1. Part internally input matched.  
2. Measurements made with device in an asymmetrical Doherty configuration.  
3. P3dB = P + 7.0 dB where P is the average output power measured using an unclipped W--CDMA single--carrier input signal where  
avg  
avg  
output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.  
NOTE: Correct Biasing Sequence for GaN Depletion Mode Transistors  
Turning the device ON  
1. Set V to –5 V  
GS  
2. Turn on V to nominal supply voltage (48 V)  
DS  
3. Increase V until I current is attained  
GS  
DS  
4. Apply RF input power to desired level  
Turning the device OFF  
1. Turn RF power off  
2. Reduce V down to –5 V  
GS  
3. Reduce V down to 0 V (Adequate time must be allowed  
DS  
for V to reduce to 0 V to prevent severe damage to device.)  
DS  
4. Turn off V  
GS  
A3G35H100--04SR3  
RF Device Data  
NXP Semiconductors  
3
V
V
GGA  
DDA  
R2  
C15  
A3G35H100-04S  
Rev. 5  
C10  
C3  
C9  
C2  
R3 R4  
C4  
C
C 11  
C12  
R1  
Z1  
C1  
C6  
P
cut out  
area  
C5  
R6 R5  
C7  
C13  
D109679  
C8  
C14  
C16  
R7  
V
V
DDB  
GGB  
aaa-- 0 30282  
Figure 2. A3G35H100--04SR3 Test Circuit Component Layout  
Table 6. A3G35H100--04SR3 Test Circuit Component Designations and Values  
Part  
Description  
0.1 pF Chip Capacitor  
Part Number  
Manufacturer  
C1, C6  
ATC600F0R1BT250XT  
C5750X7S2A106M230KB  
ATC600F5R1BT250XT  
ATC600F4R3BT250XT  
MCGPR100V227M16X26  
C10A50Z4  
ATC  
C2, C8, C10, C14  
10 F Chip Capacitor  
TDK  
C3, C4, C5, C7, C9, C11, C13  
5.1 pF Chip Capacitor  
ATC  
C12  
4.3 pF Chip Capacitor  
ATC  
C15, C16  
R1  
220 F, 100 V Electrolytic Capacitor  
50 , 10 W Chip Resistor  
51 k, 1/4 W Chip Resistor  
3 , 1/4 W Chip Resistor  
Multicomp  
Anaren  
Vishay  
Vishay  
Yageo  
Vishay  
Anaren  
MTL  
R2, R7  
R3, R6  
R4  
CRCW120651K0FKEA  
CRCW12063R00JNEA  
RC1206FR--071R5L  
CRCW12061R00FKEA  
X3C35F1-02S  
1.5 , 1/4 W Chip Resistor  
1 , 1/4 W Chip Resistor  
R5  
Z1  
3300--3800 MHz Band, 90, 2 dB Hybrid Coupler  
PCB  
Rogers RO4350B, 0.020, = 3.66  
D109679  
r
A3G35H100--04SR3  
RF Device Data  
NXP Semiconductors  
4
TYPICAL CHARACTERISTICS — 3400–3600 MHz  
14.4  
14.3  
14.2  
14.1  
14  
47  
V
= 48 Vdc, P = 14 W (Avg.), I  
Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth  
= 80 mA, V  
= –5.0 Vdc  
DD  
out  
DQA  
GSB  
45  
D
43  
41  
G
39  
ps  
0
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
–27  
–29  
–31  
–33  
–35  
–37  
Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF  
–0.2  
–0.4  
–0.6  
–0.8  
–1  
PARC  
ACPR  
3380 3410 3440 3470 3500 3530 3560 3590 3620  
f, FREQUENCY (MHz)  
Figure 3. Single--Carrier Output Peak--to--Average Ratio Compression  
(PARC) Broadband Performance @ Pout = 14 Watts Avg.  
–20  
V
V
= 48 Vdc, P = 6 W (PEP), I  
= 80 mA  
DD  
out  
DQA  
IM3--U  
IM3--L  
= –5.0 Vdc, Two--Tone Measurements  
GSB  
–30  
–40  
–50  
–60  
–70  
IM5--U  
IM5--L  
IM7--L  
IM7--U  
(f1 + f2)/2 = Center Frequency of 3500 MHz  
1
10  
100  
300  
TWO--TONE SPACING (MHz)  
Figure 4. Intermodulation Distortion Products  
versus Two--Tone Spacing  
–10  
60  
55  
1
14.5  
14  
V
= 48 Vdc, I  
= 80 mA, V  
= –5.0 Vdc, f = 3500 MHz  
DD  
DQA  
GSB  
Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth  
D
–15  
–20  
–25  
–30  
–35  
–40  
0
G
ps  
13.5  
–1  
–2  
–3  
–4  
–5  
50  
45  
40  
35  
–1 dB =  
17.4 W  
13  
12.5  
12  
ACPR  
–2 dB = 23.4 W  
–3 dB = 31.4 W  
PARC  
50  
Input Signal PAR = 9.9 dB @ 0.01%  
Probability on CCDF  
11.5  
30  
10  
20  
30  
40  
60  
P
, OUTPUT POWER (WATTS)  
out  
Figure 5. Output Peak--to--Average Ratio  
Compression (PARC) versus Output Power  
A3G35H100--04SR3  
RF Device Data  
NXP Semiconductors  
5
TYPICAL CHARACTERISTICS — 3400–3600 MHz  
15  
5
18  
16  
14  
12  
10  
8
65  
55  
45  
35  
25  
15  
5
V
= 48 Vdc, I  
= 80 mA, V = –5.0 Vdc  
GSB  
3600 MHz  
DD  
DQA  
Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth  
3400 MHz  
3600 MHz  
3400 MHz  
G
ps  
3500 MHz  
–5  
D
3500 MHz  
–15  
–25  
–35  
3600 MHz  
3500 MHz  
3400 MHz  
ACPR  
Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF  
10  
–45  
6
1
100  
P
, OUTPUT POWER (WATTS) AVG.  
out  
Figure 6. Single--Carrier W--CDMA Power Gain, Drain  
Efficiency and ACPR versus Output Power  
18  
16  
14  
12  
10  
8
V
P
= 48 Vdc  
= 0 dBm  
= 80 mA  
DD  
in  
I
DQA  
V
= –5.0 Vdc  
GSB  
Gain  
6
2600 2800 3000 3200 3400 3600 3800 4000 4200  
f, FREQUENCY (MHz)  
Figure 7. Broadband Frequency Response  
A3G35H100--04SR3  
RF Device Data  
NXP Semiconductors  
6
PACKAGE DIMENSIONS  
A3G35H100--04SR3  
RF Device Data  
NXP Semiconductors  
7
A3G35H100--04SR3  
RF Device Data  
NXP Semiconductors  
8
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS  
Refer to the following resources to aid your design process.  
Application Notes  
AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
Software  
.s2p File  
Development Tools  
Printed Circuit Boards  
To Download Resources Specific to a Given Part Number:  
1. Go to http://www.nxp.com/RF  
2. Search by part number  
3. Click part number link  
4. Choose the desired resource from the drop down menu  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
May 2018  
Initial release of data sheet  
A3G35H100--04SR3  
RF Device Data  
NXP Semiconductors  
9
Information in this document is provided solely to enable system and software  
implementers to use NXP products. There are no express or implied copyright licenses  
granted hereunder to design or fabricate any integrated circuits based on the information  
in this document. NXP reserves the right to make changes without further notice to any  
products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its  
products for any particular purpose, nor does NXP assume any liability arising out of the  
application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation consequential or incidental damages. “Typical” parameters  
that may be provided in NXP data sheets and/or specifications can and do vary in  
different applications, and actual performance may vary over time. All operating  
parameters, including “typicals,” must be validated for each customer application by  
customer’s technical experts. NXP does not convey any license under its patent rights  
nor the rights of others. NXP sells products pursuant to standard terms and conditions of  
sale, which can be found at the following address: nxp.com/SalesTermsandConditions.  
NXP, the NXP logo and Airfast are trademarks of NXP B.V. All other product or service  
names are the property of their respective owners.  
E 2018 NXP B.V.  
Document Number: A3G35H100--04S  
Rev. 0, 05/2018  

相关型号:

A3G4250D

MEMS motion sensor: 3-axis digital output gyroscope
STMICROELECTR

A3G4250DTR

MEMS motion sensor: 3-axis digital output gyroscope
STMICROELECTR

A3GA-500D

Lighted and non-lighted/convex versions
OMRON

A3GA-500GN

Lighted and non-lighted/convex versions
OMRON

A3GA-500WN

Lighted and non-lighted/convex versions
OMRON

A3GA-510D

Lighted and non-lighted/convex versions
OMRON

A3GA-510GN

Lighted and non-lighted/convex versions
OMRON

A3GA-510WN

Lighted and non-lighted/convex versions
OMRON

A3GA-6011-1

Lighted and non-lighted/convex versions
OMRON

A3GA-6011-3

Lighted and non-lighted/convex versions
OMRON

A3GA-6021-1

Lighted and non-lighted/convex versions
OMRON

A3GA-6021-3

Lighted and non-lighted/convex versions
OMRON