ADC1213D125HN/C1 [NXP]

Dual 12-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps; 双通道12位ADC ; 65 MSPS, 80 MSPS, 105 Msps的或125 MSPS
ADC1213D125HN/C1
型号: ADC1213D125HN/C1
厂家: NXP    NXP
描述:

Dual 12-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps
双通道12位ADC ; 65 MSPS, 80 MSPS, 105 Msps的或125 MSPS

转换器 模数转换器
文件: 总41页 (文件大小:286K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADC1213D series  
Dual 12-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps  
Rev. 05 — 23 April 2010  
Preliminary data sheet  
1. General description  
The ADC1213D is a dual-channel 12-bit Analog-to-Digital Converter (ADC) optimized for  
high dynamic performances and low power at sample rates up to 125 Msps. Pipelined  
architecture and output error correction ensure the ADC1213D is accurate enough to  
guarantee zero missing codes over the entire operating range. Supplied from a 3 V  
source for analog and a 1.8 V source for the output driver, it embeds two serial outputs.  
Each lane is differential and complies with the JESD204A standard. An integrated Serial  
Peripheral Interface (SPI) allows the user to easily configure the ADC. A set of IC  
configurations is also available via the binary level control pins taken, which are used at  
power-up. The device also includes a SPI programmable full-scale to allow flexible input  
voltage range from 1 V to 2 V (peak-to-peak).  
Excellent dynamic performance is maintained from the baseband to input frequencies of  
170 MHz or more, making the ADC1213D ideal for use in communications, imaging, and  
medical applications.  
2. Features and benefits  
„ SNR, 70 dBFS; SFDR, 86 dBc  
„ Input bandwidth, 600 MHz  
„ Sample rate up to 125 Msps  
„ Power dissipation, 995 mW at 80 Msps  
„ SPI register programming  
„ Clock input divider by 2 for less jitter  
contribution  
„ 3 V, 1.8 V single supplies  
„ Duty cycle stabilizer  
„ High IF capability  
„ Flexible input voltage range:  
1 V to 2 V (peak-to-peak)  
„ Two configurable serial outputs  
„ Offset binary, two’s complement, gray  
code  
„ INL ± 1 LSB; DNL ± 0.5 LSB  
„ Pin compatible with the ADC1213D  
series  
„ Power-down mode and Sleep mode  
„ Compliant with JESD204A serial  
transmission standard  
„ HVQFN56 package  
3. Applications  
„ Wireless and wired broadband  
„ Portable instrumentation  
communications  
„ Spectral analysis  
„ Imaging systems  
„ Ultrasound equipment  
„ Software defined radio  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Sampling  
frequency  
(Msps)  
Package  
Name  
Description  
Version  
ADC1213D125HN/C1 125  
ADC1213D105HN/C1 105  
ADC1213D080HN/C1 80  
ADC1213D065HN/C1 65  
HVQFN56 plastic thermal enhanced very thin quad flat package; SOT684-7  
no leads; 56 terminals; body 8 × 8 × 0.85 mm  
HVQFN56 plastic thermal enhanced very thin quad flat package; SOT684-7  
no leads; 56 terminals; body 8 × 8 × 0.85 mm  
HVQFN56 plastic thermal enhanced very thin quad flat package; SOT684-7  
no leads; 56 terminals; body 8 × 8 × 0.85 mm  
HVQFN56 plastic thermal enhanced very thin quad flat package; SOT684-7  
no leads; 56 terminals; body 8 × 8 × 0.85 mm  
5. Block diagram  
SDIO/DCS  
SCLK/DCS  
CFG (0 to 3)  
CS  
ERROR  
CORRECTION AND  
DIGITAL  
SPI  
SYNCP  
SYNCN  
PROCESSING  
INAP  
INAM  
SWING_n  
T/H  
INPUT  
STAGE  
ADCA CORE  
12-BIT  
PIPELINED  
D11 to D0  
OTR  
SERIALIZER A  
CMLPA  
CMLNA  
8-bit  
8-bit  
10-bit  
CLOCK INPUT  
STAGE & DUTY  
CYCLE CONTROL  
OUTPUT  
BUFFER A  
CLKP  
CLKM  
DLL  
PLL  
ERROR  
CORRECTION AND  
DIGITAL  
CMLPB  
CMLNB  
SERIALIZER B  
8-bit  
8-bit  
10-bit  
PROCESSING  
OUTPUT  
BUFFER B  
OTR  
INBP  
INBM  
T/H  
INPUT  
STAGE  
ADCB CORE  
12-BIT  
PIPELINED  
D11 to D0  
SWING_n  
CLOCK INPUT  
STAGE & DUTY  
CYCLE CONTROL  
SYSTEM  
REFERENCE AND  
POWER  
MANAGEMENT  
ADC1213D  
REFBT  
REFBB  
VCMB  
SENSE VREF  
REFAB  
REFAT  
VCMA  
SCRAMBLER RESET  
005aaa120  
Fig 1. Block diagram  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
2 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
6. Pinning information  
6.1 Pinning  
1
2
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
INAP  
INAM  
DGND  
DGND  
VDDD  
CMLPA  
CMLNA  
VDDD  
DGND  
DGND  
VDDD  
CMLNB  
CMLPB  
VDDD  
DGND  
DGND  
3
VCMA  
REFAT  
REFAB  
AGND  
CLKP  
4
5
6
7
ADC1213D  
8
CLKN  
AGND  
REFBB  
REFBT  
VCMB  
INBM  
9
10  
11  
12  
13  
14  
INBP  
005aaa121  
Transparent top view  
Fig 2. Pinning diagram  
6.2 Pin description  
Table 2.  
Symbol  
INAP  
Pin description  
Pin  
1
Type [1]  
Description  
I
channel A analog input  
INAM  
2
I
channel A complementary analog input  
channel A output common voltage  
channel A top reference  
channel A bottom reference  
analog ground  
VCMA  
REFAT  
REFAB  
AGND  
CLKP  
3
O
O
O
G
I
4
5
6
7
clock input  
CLKM  
AGND  
REFBB  
REFBT  
VCMB  
8
I
complementary clock input  
analog ground  
9
G
O
O
O
10  
11  
12  
channel B bottom reference  
channel B top reference  
channel B output common voltage  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
3 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
Table 2.  
Pin description …continued  
Symbol  
INBM  
Pin  
13  
14  
15  
16  
17  
Type [1]  
Description  
I
channel B complementary analog input  
channel B analog input  
analog power supply 3 V  
analog power supply 3 V  
SPI clock  
INBP  
I
VDDA  
P
P
I
VDDA  
SCLK/DCS  
data format select  
SDIO/DCS  
18  
I/O  
SPI data input/output  
duty cycle stabilizer  
CS  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
I
chip select bar  
AGND  
RESET  
SCRAMBLER  
CFG0  
G
I
analog ground  
JEDEC digital IP reset  
scrambler enable and disable  
see Table 28 (input) or OTRA (output)[2]  
see Table 28 (input) or OTRB (output)[2]  
see Table 28 (input)  
I
I/O  
I/O  
I/O  
I/O  
P
G
G
G
P
O
O
P
G
G
P
O
O
P
G
G
I
CFG1  
CFG2  
CFG3  
see Table 28 (input)  
VDDD  
DGND  
DGND  
DGND  
VDDD  
CMLPB  
CMLNB  
VDDD  
DGND  
DGND  
VDDD  
CMLNA  
CMLPA  
VDDD  
DGND  
DGND  
SYNCP  
SYNCN  
DGND  
VDDD  
SWING_0  
SWING_1  
DNC  
digital power supply 1.8 V  
digital ground  
digital ground  
digital ground  
digital power supply 1.8 V  
channel B output  
channel B complementary output  
digital power supply 1.8 V  
digital ground  
digital ground  
digital power supply 1.8 V  
channel A complementary output  
channel A output  
digital power supply 1.8 V  
digital ground  
digital ground  
synchronization from FPGA  
synchronization from FPGA  
digital ground  
I
G
P
I
digital power supply 1.8 V  
JESD204 serial buffer programmable output swing  
JESD204 serial buffer programmable output swing  
do not connect  
I
O
P
G
VDDA  
analog power supply 3 V  
analog ground  
AGND  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
4 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
Table 2.  
Pin description …continued  
Symbol  
AGND  
VDDA  
SENSE  
VREF  
Pin  
52  
53  
54  
55  
56  
Type [1]  
Description  
G
P
analog ground  
analog power supply 3 V  
reference programming pin  
voltage reference input/output  
analog power supply 3 V  
I
I/O  
P
VDDA  
[1] P: power supply; G: ground; I: input; O: output; I/O: input/output.  
[2] OTRA stands for “OuT of Range” A. OTRB stands for “OuT of Range” B  
7. Limiting values  
Table 3.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDDA  
VDDD  
ΔVCC  
Tstg  
Parameter  
Conditions  
Min  
0.4  
0.4  
Max  
+4.6  
+2.5  
Unit  
V
[1]  
[2]  
analog supply voltage  
digital supply voltage  
supply voltage difference  
storage temperature  
ambient temperature  
junction temperature  
V
VDDA VDDD  
<tbd> <tbd>  
V
55  
40  
-
+125  
+85  
°C  
°C  
°C  
Tamb  
Tj  
125  
[1] The supply voltage VDDA may have any value between 0.5 V and +7.0 V provided that the supply voltage  
differences ΔVCC are respected.  
[2] The supply voltage VDDD may have any value between 0.5 V and +5.0 V provided that the supply voltage  
differences ΔVCC are respected.  
8. Thermal characteristics  
Table 4.  
Thermal characteristics  
Symbol  
Rth(j-a)  
Parameter  
Conditions  
Typ  
17.8  
6.8  
Unit  
K/W  
K/W  
[1]  
[1]  
thermal resistance from junction to ambient  
thermal resistance from junction to case  
Rth(j-c)  
[1] Value for six layers board in still air with a minimum of 25 thermal vias.  
9. Static characteristics  
Table 5.  
Symbol  
Supplies  
VDDA  
Characteristics[1]  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
analog supply voltage  
digital supply voltage  
analog supply current  
2.85  
1.65  
-
3.0  
1.8  
343  
3.4  
V
VDDD  
1.95  
-
V
IDDA  
fclk = 125 Msps;  
fi =70 MHz  
mA  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
5 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
Table 5.  
Symbol  
IDDD  
Characteristics[1] …continued  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
digital supply current  
fclk = 125 Msps;  
fi = 70 MHz  
-
150  
-
mA  
Ptot  
total power dissipation  
power dissipation  
fclk = 125 Msps  
fclk = 105 Msps  
fclk = 80 Msps  
fclk = 65 Msps  
-
-
-
-
-
-
1270  
1150  
995  
885  
30  
-
-
-
-
-
-
mW  
mW  
mW  
mW  
mW  
mW  
P
power-down mode  
standby mode  
200  
Digital inputs  
Clock inputs: pins CLKP and CLKM, AC coupled  
LVPECL  
Vi(clk)dif  
differential clock input  
voltage  
peak-to-peak  
peak-to-peak  
peak-to-peak  
-
±0.8  
±0.4  
±1.5  
-
-
-
V
V
V
LVDS  
Vi(clk)dif  
differential clock input  
voltage  
-
SINE wave  
Vi(clk)dif  
differential clock input  
voltage  
±0.8  
LVCMOS mode  
VIL  
VIH  
LOW-level input voltage  
HIGH-level input voltage  
-
-
-
0.3VDDA  
-
V
V
0.7VDDA  
Logic inputs, Power-down: pins CFG0 to CFG3, SCRAMBLER, SWING_0, and SWING_1  
VIL  
VIH  
IIL  
LOW-level input voltage  
HIGH-level input voltage  
LOW-level input current  
HIGH-level input current  
-
0
-
V
-
0.66VDDD  
-
V
6  
30  
-
-
+6  
+30  
μA  
μA  
IIH  
SPI: pins CS, SDIO/DCS, and SCLK/DCS  
VIL  
VIH  
IIL  
LOW-level input voltage  
HIGH-level input voltage  
LOW-level input current  
HIGH-level input current  
input capacitance  
0
-
0.3VDDA  
VDDA  
+10  
V
0.7VDDA  
10  
50  
-
-
V
-
μA  
μA  
pF  
IIH  
CI  
-
+50  
4
-
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
6 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
Table 5.  
Symbol  
Characteristics[1] …continued  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Analog inputs: pins INAP, INAM, INBP, and INBM  
II  
input current  
track mode  
track mode  
track mode  
track mode  
5  
-
-
+5  
-
μA  
Ω
RI  
input resistance  
input capacitance  
15  
5
CI  
-
-
pF  
V
VI(cm)  
common-mode input  
voltage  
0.9  
1.5  
2
Bi  
input bandwidth  
-
600  
-
-
MHz  
V
VI(dif)  
differential input voltage peak-to-peak  
1
2
Voltage controlled regulator output: pins VCMA and VCMB  
VO(cm)  
common-mode output  
voltage  
-
-
0.5VDDA  
<tbd>  
-
-
V
IO(cm)  
common-mode output  
current  
μA  
Reference voltage input/output: pin VREF  
VVREF  
voltage on pin VREF  
output  
input  
0.5  
0.5  
-
-
1
1
V
V
Reference mode selection: pin SENSE  
VSENSE voltage on pin SENSE  
-
pin AGND;  
-
V
VVREF; VDDA  
Data outputs: CMLPA, CMLNA  
Output levels, VDDD = 1.8 V; SWING_SEL[2:0] = 000  
VOL  
LOW-level output  
voltage  
DC coupled; output  
AC coupled  
-
-
-
-
1.5  
-
-
-
-
V
V
V
V
1.65  
1.8  
VOH  
HIGH-level output  
voltage  
DC coupled; output  
AC coupled  
1.35  
Output levels, VDDD = 1.8 V; SWING_SEL[2:0] = 001  
VOL  
LOW-level output  
voltage  
DC coupled; output  
AC coupled  
-
-
-
-
1.45  
1.625  
1.8  
-
-
-
-
V
V
V
V
VOH  
HIGH-level output  
voltage  
DC coupled; output  
AC coupled  
1.275  
Output levels, VDDD = 1.8 V; SWING_SEL[2:0] = 010  
VOL  
LOW-level output  
voltage  
DC coupled; output  
AC coupled  
-
-
-
-
1.4  
1.6  
1.8  
1.2  
-
-
-
-
V
V
V
V
VOH  
HIGH-level output  
voltage  
DC coupled; output  
AC coupled  
Output levels, VDDD = 1.8 V; SWING_SEL[2:0] = 011  
VOL  
LOW-level output  
voltage  
DC coupled; output  
AC coupled  
-
-
-
-
1.35  
1.575  
1.8  
-
-
-
-
V
V
V
V
VOH  
HIGH-level output  
voltage  
DC coupled; output  
AC coupled  
1.125  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
7 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
Table 5.  
Symbol  
Characteristics[1] …continued  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Output levels, VDDD = 1.8 V; SWING_SEL[2:0] = 100  
VOL  
LOW-level output  
voltage  
DC coupled; output  
AC coupled  
-
-
-
-
1.3  
-
-
-
-
V
V
V
V
1.55  
1.8  
VOH  
HIGH-level output  
voltage  
DC coupled; output  
AC coupled  
1.05  
Serial configuration: SYNCCP, SYNCCN  
VIL  
LOW-level input voltage differential; input  
High-level input voltage differential; input  
-
-
0.95  
1.47  
-
-
V
V
VIH  
Accuracy  
INL  
integral non-linearity  
5  
±1  
+5  
LSB  
LSB  
DNL  
differential non-linearity no missing codes  
guaranteed  
0.95  
±0.5  
+0.95  
Eoffset  
EG  
offset error  
-
-
-
±2  
-
-
-
mV  
%
gain error  
full-scale  
± 0.5  
<tbd>  
MG(CTC)  
channel-to-channel gain  
matching  
%
Supply  
PSRR  
power supply rejection  
ratio  
100 mV (p-p) on VDDA  
-
35  
-
dBc  
[1] Typical values measured at VDDA = 3 V, VDDD = 1.8 V, Tamb = 25 °C. Minimum and maximum values are across the full temperature  
range Tamb = 40 °C to +85 °C at VDDA = 3 V, VDDD = 1.8 V; VI (INAP, INBP) VI (INAM, INBM) = 1 dBFS; internal reference mode;  
100 Ω differential applied to serial outputs; unless otherwise specified.  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
8 of 41  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
10. Dynamic characteristics  
Table 6.  
Characteristics[1]  
Symbol Parameter  
Conditions  
ADC1213D065  
Min Typ  
ADC1213D080  
Max Min Typ  
ADC1213D105  
Max Min Typ  
ADC1213D125  
Max Min Typ  
Unit  
Max  
Analog signal processing  
α2H  
second harmonic level  
fi = 3 MHz  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
87  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
87  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
86  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
88  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
bits  
fi = 30 MHz  
fi = 70 MHz  
fi = 170 MHz  
fi = 3 MHz  
86  
86  
86  
87  
85  
85  
84  
85  
82  
82  
81  
83  
α3H  
third harmonic level  
86  
86  
85  
87  
fi = 30 MHz  
fi = 70 MHz  
fi = 170 MHz  
85  
85  
85  
86  
84  
84  
83  
84  
81  
81  
80  
82  
THD  
ENOB  
SNR  
SFDR  
total harmonic distortion fi = 3 MHz  
fi = 30 MHz  
85  
85  
84  
86  
84  
84  
84  
85  
fi = 70 MHz  
83  
83  
82  
83  
fi = 170 MHz  
80  
80  
79  
81  
effective number of bits  
signal-to-noise ratio  
fi = 3 MHz  
11.3  
11.3  
11.2  
11.1  
70.0  
69.5  
69.2  
68.8  
86  
11.3  
11.3  
11.2  
11.1  
69.9  
69.5  
69.2  
68.8  
86  
11.3  
11.3  
11.2  
11.1  
69.8  
69.5  
69.1  
68.7  
85  
11.3  
11.2  
11.2  
11.1  
69.6  
69.4  
69.0  
68.6  
87  
fi = 30 MHz  
fi = 70 MHz  
fi = 170 MHz  
fi = 3 MHz  
bits  
bits  
bits  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
dBc  
dBc  
dBc  
fi = 30 MHz  
fi = 70 MHz  
fi = 170 MHz  
fi = 3 MHz  
spurious-free dynamic  
range  
fi = 30 MHz  
fi = 70 MHz  
fi = 170 MHz  
85  
85  
85  
86  
84  
84  
83  
84  
81  
81  
80  
82  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 6.  
Characteristics[1] …continued  
Symbol Parameter  
Conditions  
ADC1213D065  
Min Typ  
ADC1213D080  
Max Min Typ  
ADC1213D105  
Max Min Typ  
ADC1213D125  
Max Min Typ  
Unit  
Max  
IMD  
intermodulation distortion fi = 3 MHz  
fi = 30 MHz  
-
-
-
-
-
89  
-
-
-
-
-
-
-
-
-
-
89  
88  
87  
85  
-
-
-
-
-
-
-
-
-
-
88  
88  
86  
83  
100  
-
-
-
-
-
-
-
-
-
-
89  
88  
86  
84  
100  
-
-
-
-
-
dBc  
dBc  
dBc  
dBc  
dBc  
88  
fi = 70 MHz  
87  
fi = 170 MHz  
84  
αct(ch)  
crosstalk between  
channels  
fi = 70 MHz  
100  
100  
[1] Typical values measured at VDDA = 3 V, VDDD = 1.8 V, Tamb = 25 °C. Minimum and maximum values are across the full temperature range Tamb = 40 °C to +85 °C at VDDA = 3 V,  
DDD = 1.8 V; VI (INAP, INBP) VI (INAM, INBM) = 1 dBFS; internal reference mode; 100 Ω differential applied to serial outputs; unless otherwise specified.  
V
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
11. Clock and digital output timing  
Table 7.  
Symbol Parameter  
Characteristics[1]  
Conditions  
ADC1213D065  
ADC1213D080  
ADC1213D105  
ADC1213D125  
Unit  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Clock timing input: pins CLKP and CLKM  
fclk  
clock frequency  
data latency time  
clock duty cycle  
20  
-
65  
60  
-
80  
75  
-
105  
226  
70  
100  
160  
30  
-
125  
170  
70  
Msps  
ns  
tlat(data)  
δclk  
clock cycles  
307  
30  
-
850  
70  
250  
30  
-
283  
70  
190  
30  
-
-
DCS_EN = 1:  
en  
50  
50  
50  
50  
%
DCS_EN = 0:  
dis  
45  
50  
55  
45  
50  
55  
45  
50  
55  
45  
50  
55  
%
td(s)  
sampling delay time  
wake-up time  
-
-
0.8  
-
-
-
-
0.8  
-
-
-
-
0.8  
-
-
-
-
0.8  
-
-
ns  
ns  
twake  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
[1] Typical values measured at VDDA = 3 V, VDDD = 1.8 V, Tamb = 25 °C. Minimum and maximum values are across the full temperature range Tamb = 40 °C to +85 °C at VDDA = 3 V,  
DDD = 1.8 V; VI (INAP, INBP) VI (INAM, INBM) = 1 dBFS; internal reference mode; 100 W differential applied to serial outputs; unless otherwise specified.  
V
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
12. Serial output timings  
The eye diagram of the serial output is shown in Figure 3 and Figure 4. Test conditions  
are:  
3.125 Gbps data rate  
Tamb = 25 °C  
DC coupling with two different receiver common-mode voltages  
005aaa088  
Fig 3. Eye diagram at 1 V receiver common-mode  
005aaa089  
Fig 4. Eye diagram at 2 V receiver common-mode  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
12 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
13. SPI timing  
Table 8.  
Symbol  
Characteristics  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Serial Peripheral Interface timings  
tw(SCLK)  
tw(SCLKH)  
tw(SCLKL)  
tsu  
SCLK pulse width  
SCLK HIGH pulse width  
SCLK LOW pulse width  
set-up time  
40  
16  
16  
5
-
-
-
-
-
-
-
-
-
ns  
-
ns  
-
ns  
data to SCLKH  
CS to SCLKH  
data to SCLKH  
CS to SCLKH  
-
ns  
5
-
ns  
th  
hold time  
2
-
ns  
2
-
ns  
fclk(max)  
maximum clock frequency  
-
25  
MHz  
[1] Typical values measured at VDDA = 3 V, VDDD = 1.8 V, Tamb = 25 °C. Minimum and maximum values are across the full temperature  
range Tamb = 40 °C to +85 °C at VDDA = 3 V, VDDD = 1.8 V; VI (INAP, INBP) VI (INAM,INBM) = 1 dBFS; internal reference mode;  
100 Ω differential applied to serial outputs; unless otherwise specified.  
t
t
su  
w(SCLKL)  
t
h
t
h
su  
t
t
w(SCLKH)  
t
w(SCLK)  
CS  
SCLK  
SDIO  
W1  
W0  
A12  
A11  
D2  
D1  
D0  
R/W  
005aaa065  
Fig 5. SPI timings  
14. Application information  
14.1 Analog inputs  
14.1.1 Input stage description  
The analog input of the ADC1213D supports differential or single-ended input drive.  
Optimal performance is achieved using differential inputs with the common-mode input  
voltage (VI(cm)) on pins INxP and INxM set to 0.5VDDA  
.
The full scale analog input voltage range is configurable between ± 1 V (p-p) and  
± 2 V (p-p) via a programmable internal reference (see Section 14.2 and Table 21 for  
further details).  
Figure 6 shows the equivalent circuit of the sample and hold input stage, including  
ElectroStatic Discharge (ESD) protection and circuit and package parasitics.  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
13 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
Package  
ESD  
Parasitics  
Switch  
R
= 15 Ω  
on  
4 pF  
1, 14  
INAP  
INBP  
C
s
Internal  
clock  
Switch  
on  
R
= 15 Ω  
4 pF  
2, 13  
INAM  
INBM  
C
s
Internal  
clock  
005aaa069  
Fig 6. Input sampling circuit  
The sample phase occurs when the internal clock (derived from the clock signal on pin  
CLKP/CLKM) is HIGH. The voltage is then held on the sampling capacitors. When the  
clock signal goes LOW, the stage enters the hold phase and the voltage information is  
transmitted to the ADC core.  
14.1.2 Anti-kickback circuitry  
Anti-kickback circuitry (RC filter in Figure 7) is needed to counteract the effects of a  
charge injection generated by the sampling capacitance.  
The RC filter is also used to filter noise from the signal before it reaches the sampling  
stage. The value of the capacitor should be chosen to maximize noise attenuation without  
degrading the settling time excessively.  
R
INP  
C
R
INM  
005aaa073  
Fig 7. Anti-kickback circuit  
The component values are determined by the input frequency and should be selected so  
as not to affect the input bandwidth.  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
14 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
Table 9.  
RC coupling versus input frequency - typical values  
Input frequency  
3 MHz  
R
C
25 Ω  
12 Ω  
12 Ω  
12 pF  
8 pF  
8 pF  
70 MHz  
170 MHz  
14.1.3 Transformer  
The configuration of the transformer circuit is determined by the input frequency. The  
configuration shown in Figure 8 would be suitable for a baseband application.  
100 nF  
25 Ω  
INAP  
100 nF  
ADT1-1WT  
Analog  
INBP  
input  
25 Ω  
12 pF  
100 nF  
25 Ω  
100 nF  
25 Ω  
INAM  
INBM  
VCM  
100 nF  
100 nF  
005aaa070  
Fig 8. Single transformer configuration  
ADT1-1WT  
ADT1-1WT  
12 Ω  
12 Ω  
INAP  
INBP  
100 nF  
50 Ω  
50 Ω  
50 Ω  
Analog  
input  
8.2 pF  
50 Ω  
INAM  
INBM  
100 nF  
VCM  
100 nF  
100 nF  
005aaa071  
Fig 9. Dual transformer configuration  
The configuration shown in Figure 9 is recommended for high frequency applications. In  
both cases, the choice of transformer will be a compromise between cost and  
performance.  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
15 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
14.2 System reference and power management  
14.2.1 Internal/external reference  
The ADC1213D has a stable and accurate built-in internal reference voltage to adjust the  
ADC full-scale. This reference voltage can be set internally via SPI or with pin VREF an  
SENSE (see Figure 11, Figure 12, Figure 13 and Figure 14), in 1 dB steps between 0 dB  
and 6 dB, via SPI control bits INTREF[2:0] (when bit INTREF_EN = 1; see Table 21).  
The equivalent reference circuit is shown in Figure 10. External reference is also possible  
by providing a voltage on pin VREF as described in Figure 13.  
REFT  
REFERENCE  
REFB  
AMP  
VREF  
EXT_ref  
EXT_ref  
BANDGAP  
REFERENCE  
BUFFER  
ADC CORE  
SENSE  
SELECTION  
LOGIC  
005aaa164  
Fig 10. Reference equivalent schematic  
Table 10 shows how to choose between the different internal/external modes:  
Table 10. Reference modes  
Mode  
SPI bit, “Internal  
reference”  
SENSE pin  
VREF pin  
Full Scale,  
V (p-p)  
Internal (Figure 11)  
Internal (Figure 12)  
External (Figure 13)  
0
0
0
1
GND  
330 pF capacitor  
to GND  
2
VREF pin = SENSE pin and  
330 pF capacitor to GND  
1
VDDA  
External voltage 1 to 2  
from 0.5 V to 1 V  
Internal, SPI mode  
(Figure 14)  
VREF pin = SENSE pin and  
330 pF capacitor to GND  
1 to 2  
Figure 11 to Figure 14 indicate how to connect the SENSE and VREF pins.  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
16 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
VREF  
VREF  
330 pF  
330  
pF  
REFERENCE  
EQUIVALENT  
SCHEMATIC  
REFERENCE  
EQUIVALENT  
SCHEMATIC  
SENSE  
SENSE  
005aaa116  
005aaa117  
Fig 11. Internal reference, 2 V (p-p) full-scale  
Fig 12. Internal reference, 1 V (p-p) full-scale  
VREF  
VREF  
330 pF  
0.1 μF  
V
REFERENCE  
EQUIVALENT  
SCHEMATIC  
REFERENCE  
EQUIVALENT  
SCHEMATIC  
SENSE  
SENSE  
VDDA  
005aaa119  
005aaa118  
Fig 13. External reference, 1 V (p-p) to 2 V (p-p)  
full-scale  
Fig 14. Internal reference via SPI, 1 V (p-p) to 2 V (p-p)  
full-scale  
14.2.2 Reference gain control  
The reference gain is programmable between 0 dB to 6 dB in steps of 1 dB via the SPI  
(see Table 21). The corresponding full scale input voltage range varies between 2 V (p-p)  
and 1 V (p-p), as shown in Table 11:  
Table 11. Reference SPI gain control  
INTREF[2:0]  
000  
Level  
0 dB  
Full Scale, V (p-p)  
2
001  
1 dB  
2 dB  
3 dB  
4 dB  
5 dB  
6 dB  
not used  
1.78  
1.59  
1.42  
1.26  
1.12  
1
010  
011  
100  
101  
110  
111  
x
14.2.3 Common-mode output voltage (VI(cm)  
)
An 0.1 μF filter capacitor should be connected between on the one hand the pins VCMA  
and VCMB and on the other hand ground to ensure a low-noise common-mode output  
voltage. When AC-coupled, these pins can be used to set the common-mode reference  
for the analog inputs, for instance via a transformer middle point.  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
17 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
PACKAGE  
ESD  
PARASITICS  
COMMON MODE  
REFERENCE  
1.5 V  
VCMA  
VCMB  
0.1 μF  
ADC CORE  
005aaa077  
Fig 15. Reference equivalent schematic  
14.2.4 Biasing  
The common-mode output voltage, VO(cm), should be set externally to 1.5 V (typical). The  
common-mode input voltage, VI(cm), at the inputs to the sample and hold stage  
(pins INAM, INBM, INAP, and INBP) must be between 0.9 V and 2 V for optimal  
performance.  
14.3 Clock input  
14.3.1 Drive modes  
The ADC1213D can be driven differentially (SINE, LVPECL or LVDS) with little or no  
influence on dynamic performances. It can also be driven by a single-ended LVCMOS  
signal connected to pin CLKP (CLKM should be connected to ground via a capacitor).  
CLKP  
CLKM  
LVCMOS  
clock input  
CLKP  
CLKM  
LVCMOS  
clock input  
005aaa174  
005aaa053  
a. Rising edge LVCMOS  
b. Falling edge LVCMOS  
Fig 16. LVCMOS single-ended clock input  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
18 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
CLKP  
CLKM  
Sine  
clock input  
CLKP  
CLKM  
Sine  
clock input  
005aaa173  
005aaa054  
a. Sine clock input  
b. Sine clock input (with transformer)  
CLKP  
CLKP  
LVPECL  
clock input  
LVDS  
clock input  
CLKM  
CLKM  
005aaa055  
005aaa172  
c. LVDS clock input  
d. LVPECL clock input  
Fig 17. Differential clock input  
14.3.2 Equivalent input circuit  
The equivalent circuit of the input clock buffer is shown in Figure 18. The common-mode  
voltage of the differential input stage is set via internal resistors of 5 kΩ resistors.  
Package  
ESD  
Parasitics  
CLKP  
CLKM  
V
cm(clk)  
SE_SEL SE_SEL  
5 kΩ  
5 kΩ  
005aaa081  
Fig 18. Equivalent input circuit  
Single-ended or differential clock inputs can be selected via the SPI (see Table 20). If  
single-ended is selected, the input pin (CLKM or CLKP) is selected via control bit  
SE_SEL.  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
19 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
If single-ended is implemented without setting SE_SEL accordingly, the unused pin  
should be connected to ground via a capacitor.  
14.3.3 Clock input divider  
The ADC1413D contains an input clock divider that divides the incoming clock by a factor  
of 2 (when bit CLKDIV = 1; see Table 20). This feature allows the user to deliver a higher  
clock frequency with better jitter performance, leading to a better SNR result once  
acquisition has been performed.  
14.3.4 Duty cycle stabilizer  
The duty cycle stabilizer can improve the overall performances of the ADC by  
compensating the input clock signal duty cycle. When the duty cycle stabilizer is active  
(bit DCS_EN = 1; see Table 20), the circuit can handle signals with duty cycles of between  
30 % and 70 % (typical). When the duty cycle stabilizer is disabled (DCS_EN = 0), the  
input clock signal should have a duty cycle of between 45 % and 55 %.  
Table 12. Duty cycle stabilizer  
DCS_enable SPI  
Description  
0
1
duty cycle stabilizer disable  
duty cycle stabilizer enable  
14.4 Digital outputs  
14.4.1 Serial output equivalent circuit  
The JESD204A standard specify that in case of connecting the receiver and the  
transmitter in DC coupling, both of them need to be provided by the same supply.  
VDDD  
50 Ω  
CMLPA/CLMPB  
100 Ω  
RECEIVER  
CMLNA/CLMNB  
AGND  
+
12 mA to 26 mA  
005aaa082  
Fig 19. CML output connection to the receiver in DC coupling  
The output should be terminated when 100 Ω (typical) has been reached at the receiver  
side.  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
20 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
VDDD  
50 Ω  
CMLPA/CMLPB  
10 nF  
100 Ω  
RECEIVER  
CMLNA/CMLNB  
10 nF  
+
12 mA to 26 mA  
005aaa083  
Fig 20. CML output connection to the receiver in AC coupling  
14.5 JESD204A serializer  
14.5.1 Digital JESD204A formatter  
The block placed after the ADC cores is used to implement all functionalities of the  
JESD204A standard. This ensures signal integrity and guarantees the clock and the data  
recovery at the receiver side.  
The block is highly parameterized and can be configured in various ways depending on  
the sampling frequency and the number of lanes used.  
M CONVERTERS  
L LANES  
FRAME  
TO  
OCTETS  
ALIGNMENT  
CHARACTER  
GENERATOR  
N bits from Cr  
CS bits for control  
+
8-bit/  
10-bit  
0
F octets  
SCRAMBLER  
SER  
LANE0  
TX transport layer  
SYNC~  
TX CONTROLLER  
samples stream to  
lane stream mapping  
FRAME  
TO  
OCTETS  
ALIGNMENT  
CHARACTER  
GENERATOR  
N bits from Cr  
CS bits for control  
+
8-bit/  
10-bit  
M1  
F octets  
SCRAMBLER  
SER  
LANE1  
N' = N+CS  
S samples per frame cycle  
CF: position of controls bits  
HD: frame boundary break  
Padding with Tails bits (TT)  
005aaa084  
Mx(N'xS) bits  
Lx(F) octets  
L octets  
Fig 21. General overview of the JESD204A serializer  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
21 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
ADC_MODE[1:0]  
SCRAMB_IN_MODE[1:0]  
PRBS  
11  
N
&
CS  
LANE_MODE[1:0]  
8-bit/  
DUMMY  
12 + 1 10  
12 + 1  
N + CS  
8
00  
01  
SCR  
10 00  
10-bit  
PRBS  
LANE_POLARITY  
ADC_PD  
ADCA  
'0'  
01  
SER  
12 + 1 00  
'0/1'  
10  
PRBS  
11  
× 1  
× F  
frame CLK  
char CLK  
PLL  
AND  
DLL  
FSM (f assy,  
char repl, ILA,  
test mode)  
FRAME  
ASSEMBLY  
SWING_SEL[2:0]  
× 10F bit CLK  
PRBS  
'0/1'  
'0'  
11  
10  
SER  
ADCB  
12 + 1 00  
01  
ADC_D  
LANE_POLARITY  
PRBS  
8
01  
00  
8-bit/  
10-bit  
10 00  
SCR  
N
&
CS  
12 + 1 10  
11  
12 + 1  
N + CS  
DUMMY  
PRBS  
LANE_MODE[1:0]  
SCAMB_IN_MODE[1:0]  
ADC_MODE[1:0]  
005aaa175  
sync_request  
Fig 22. Detailed view of the JESD204A serializer with debug functionality  
14.5.2 ADC core output codes versus input voltage  
Table 13 shows the data output codes for a given analog input voltage.  
Table 13. Output codes versus input voltage  
INP-INM (V)  
< 1  
Offset binary  
0000 0000 0000  
0000 0000 0000  
0000 0000 0001  
0000 0000 0010  
0000 0000 0011  
0000 0000 0100  
....  
Two’s complement  
1000 0000 0000  
1000 0000 0000  
1000 0000 0001  
1000 0000 0010  
1000 0000 0011  
1000 0000 0100  
....  
OTR  
1
0
0
0
0
0
0
0
0
0
0
0
1.0000000  
0.9995117  
0.9990234  
0.9985352  
0.9980469  
....  
0.0009766  
0.0004883  
0.0000000  
+0.0004883  
+0.0009766  
0111 1111 1110  
0111 1111 1111  
1000 0000 0000  
1000 0000 0001  
1000 0000 0010  
1111 1111 1110  
1111 1111 1111  
0000 0000 0000  
0000 0000 0001  
0000 0000 0010  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
22 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
Table 13. Output codes versus input voltage …continued  
INP-INM (V)  
Offset binary  
....  
Two’s complement  
....  
OTR  
....  
0
0
0
0
0
0
1
+0.9980469  
+0.9985352  
+0.9990234  
+0.9995117  
+1.0000000  
> +1  
1111 1111 1011  
1111 1111 1100  
1111 1111 1101  
1111 1111 1110  
1111 1111 1111  
1111 1111 1111  
0111 1111 1011  
0111 1111 1100  
0111 1111 1101  
0111 1111 1110  
0111 1111 1111  
0111 1111 1111  
14.6 Serial Peripheral Interface (SPI)  
14.6.1 Register description  
The ADC1213D serial interface is a synchronous serial communications port allowing for  
easy interfacing with many industry microprocessors. It provides access to the registers  
that control the operation of the chip in both read and write modes.  
This interface is configured as a 3-wire type (SDIO as bidirectional pin).  
SCLK acts as the serial clock, and CS acts as the serial chip select bar.  
Each read/write operation is sequenced by the CS signal and enabled by a LOW level to  
to drive the chip with 2 bytes to 5 bytes, depending on the content of the instruction byte  
(see Table 14).  
Table 14. Instruction bytes for the SPI  
MSB  
LSB  
0
Bit  
7
6
5
4
3
2
1
Description  
R/W[1]  
A7  
W1  
A6  
W0  
A5  
A12  
A4  
A11  
A3  
A10  
A2  
A9  
A1  
A8  
A0  
[1] R/W indicates whether a read or write transfer occurs after the instruction byte  
Table 15. Read or Write mode access description  
R/W[1]  
Description  
0
1
Write mode operation  
Read mode operation  
[1] Bits W1 and W0 indicate the number of bytes transferred after the instruction byte.  
Table 16. Number of bytes to be transferred  
W1  
0
W0  
0
Number of bytes  
1 byte transferred  
2 bytes transferred  
3 bytes transferred  
0
1
1
0
1
1
4 or more bytes transferred  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
23 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
Bits A12 to A0 indicate the address of the register being accessed. In the case of a  
multiple byte transfer, this address is the first register to be accessed. An address counter  
is incremented to access subsequent addresses.  
The steps involved in a data transfer are as follows:  
1. The falling edge on CS in combination with a rising edge on SCLK determine the start  
of communications.  
2. The first phase is the transfer of the 2-byte instruction.  
3. The second phase is the transfer of the data which can be vary in length but will  
always be a multiple of 8 bits. The MSB is always sent first (for instruction and data  
bytes):  
CSB  
SCLK  
SDIO  
R/W W1 W0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0  
Instruction bytes  
Register N (data)  
Register N + 1 (data)  
005aaa086  
Fig 23. Transfer diagram for two data bytes (3-wire type)  
14.6.2 Channel control  
The two ADC channels can be configured at the same time or separately. By using the  
register “Channel index”, the user can choose which ADC channel will receive the next  
SPI-instruction. By default the channel A and B will receive the same instructions in write  
mode. In read mode only A is active.  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
24 of 41  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 17. Register allocation map  
Addr  
Hex  
Register name  
R/W[1] Bit definition  
Default[2]  
Bin  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADC control register  
0003  
0005  
Channel index  
R/W  
R/W  
RESERVED[5:0]  
ADCB  
ADCA  
1111 1111  
Reset and  
Operating modes  
SW_  
RST  
RESERVED[2:0]  
-
-
-
PD[1:0]  
0000 0000  
0006  
0008  
Clock  
R/W  
R/W  
-
-
-
-
-
SE_SEL  
-
DIFF_SE  
CLKDIV2_  
SEL  
DCS_EN  
0000  
000X  
Vref  
-
INTREF_  
EN  
INTREF[2:0]  
0000 0000  
0013  
0014  
0015  
0016  
Offset  
R/W  
R/W  
R/W  
R/W  
-
-
-
-
DIG_OFFSET[5:0]  
-
0000 0000  
0000 0000  
0000 0000  
0000 0000  
Test pattern 1  
Test pattern 2  
Test pattern 3  
-
-
TESTPAT_1[2:0]  
-
TESTPAT_2[13:6]  
TESTPAT_3[5:0]  
-
-
JESD204A control  
0801  
Ser_Status  
R
RXSYNC_  
ERROR  
RESERVED[2:0]  
0
0
0
POR_TST  
0
RESERVED 0000 0000  
0802  
Ser_Reset  
R/W  
SW_  
RST  
0
0
0
0
0
0
FSM_SW_  
RST  
0
0000 0000  
0803  
0805  
Ser_Cfg_Setup  
Ser_Control1  
R/W  
R/W  
0
0
CFG_SETUP[3:0]  
0000 ****  
TriState_  
CFG_PAD  
SYNC_  
POL  
SYNC_SING  
LEENDED  
1
0
RESERVED[2:0]  
0100 1001  
0806  
Ser_Control2  
R/W  
0
0
0
0
0
0
SWAP_  
LANE_1_2  
SWAP_  
0000 00**  
ADC_0_1  
0808  
0809  
080A  
080B  
0820  
0821  
0822  
0823  
0824  
0825  
Ser_Analog_Ctrl R/W  
Ser_ScramblerA R/W  
Ser_ScramblerB R/W  
0
0
0
0
0
SWING_SEL[2:0]  
0000 00**  
0000 0000  
1111 1111  
0000 0000  
1110 1101  
0000 1010  
*000 000*  
0000 0***  
000* ****  
LSB_INIT[6:0]  
MSB_INIT[7:0]  
Ser_PRBS_Ctrl  
Cfg_0_DID  
Cfg_1_BID  
Cfg_3_SCR_L  
Cfg_4_F  
R/W  
0
0
0
0
0
0
0
PRBS_TYPE[1:0]  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
DID[7:0]  
0
SCR  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BID[3:0]  
0
0
0
L
F[2:0]  
0
Cfg_5_K  
0
K[4:0]  
0
Cfg_6_M  
0
0
0
M
0000 000*  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 17. Register allocation map …continued  
Addr  
Hex  
Register name  
R/W[1] Bit definition  
Default[2]  
Bin  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0826  
0827  
0828  
0829  
082C  
082D  
084C  
084D  
0870  
Cfg_7_CS_N  
Cfg_8_Np  
R/W*  
R
0
CS[0]  
0
0
N[3:0]  
0100 0***  
0000 1111  
0000 0000  
*000 0000  
0001 1011  
0001 1100  
**** ****  
0
0
0
0
0
0
0
0
0
0
0
0
NP[4:0]  
Cfg_9_S  
R/W*  
R/W*  
R/W*  
R/W*  
R
0
0
0
0
0
0
S
Cfg_10_HD_CF  
Cfg_01_2_LID  
Cfg_02_2_LID  
Cfg01_13_FCHK  
Cfg02_13_FCHK  
LaneA_0_Ctrl  
HD  
0
0
CF[1:0]  
LID[4:0]  
LID[4:0]  
0
FCHK[7:0]  
FCHK[7:0]  
0
R
**** ****  
R/W  
0
0
SCR_IN_  
MODE  
LANE_MODE[1:0]  
LANE_MODE[1:0]  
LANE_  
POL  
LANE_CLK_  
POS_EDGE  
LANE_PD  
LANE_PD  
0000 000*  
0871  
LaneB_0_Ctrl  
R/W  
SCR_IN_  
MODE  
0
LANE_  
POL  
LANE_CLK_  
POS_EDGE  
0000 000*  
0890  
0891  
ADCA_0_Ctrl  
ADCB_0_Ctrl  
R/W  
R/W  
0
0
0
0
ADC_MODE[1:0]  
ADC_MODE[1:0]  
0
0
0
0
0
0
ADC_PD  
ADC_PD  
0000 000*  
0000 000*  
[1] an "*" in the Access column means that this register is subject to control access conditions in Write mode.  
[2] an "*" in the Default column replaces a bit of which the value depends on the binary level of external pins (e.g. CFG[3:0], Swing[1:0], Scrambler).  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
14.6.3 Register description  
14.6.3.1 ADC control register  
Table 18. Register channel Index (address 0003h)  
Bit  
Symbol  
Access Value  
Description  
7 to 2 RESERVED[5:0]  
-
111111  
reserved  
1
0
ADCB  
ADCA  
R/W  
ADCB will get the next SPI command:  
ADCB not selected  
0
1
ADCB selected  
R/W  
ADCA will get the next SPI command:  
ADCA not selected  
0
1
ADCA selected  
Table 19. Register reset and Power-down mode (address 0005h)  
Bit  
Symbol  
Access Value  
Description  
7
SW_RST  
R/W  
reset digital part:  
no reset  
0
1
performs a reset of the digital part  
reserved  
6 to 4 RESERVED[2:0]  
3 to 2  
1 to 0 PD[1-0]  
-
000  
-
-
00  
not used  
R/W  
power-down mode:  
normal (power-up)  
full power-down  
sleep  
00  
01  
10  
11  
normal (power-up)  
Table 20. Register clock (address 0006h)  
Bit  
7 to 5  
4
Symbol  
-
Access Value  
Description  
-
000  
not used  
SE_SEL  
R/W  
select SE clock input pin:  
0
Select CLKM input  
1
Select CLKP input  
3
DIFF_SE  
R/W  
differential/single ended clock input select:  
0
1
0
Fully differential  
Single-ended  
2
1
-
-
not used  
CLKDIV2_SEL  
R/W  
select clock input divider by 2:  
0
disable  
1
active  
0
DCS_EN  
R/W  
duty cycle stabilizer enable:  
0
1
disable  
active  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
27 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
Table 21. Register Vref (address 0008h)  
Bit  
7 to 4  
3
Symbol  
Access Value  
Description  
-
-
0000  
not used  
INTREF_EN  
R/W  
enable internal programmable VREF mode:  
disable  
0
1
active  
2 to 0 INTREF[2:0]  
R/W  
programmable internal reference:  
0 dB (FS=2 V)  
000  
001  
010  
011  
100  
101  
110  
111  
1 dB (FS=1.78 V)  
2 dB (FS=1.59 V)  
3 dB (FS=1.42 V)  
4 dB (FS=1.26 V)  
5 dB (FS=1.12 V)  
6 dB (FS=1 V)  
not used  
Table 22. Digital offset adjustment (address 0013h)  
Register offset: (address 0013h)  
Decimal  
DIG_OFFSET[5:0]  
+31  
...  
011111  
...  
+31 LSB  
...  
0
000000  
...  
0
...  
...  
32  
100000  
32 LSB  
Table 23. Register test pattern 1 (address 0014h)  
Bit  
Symbol  
Access Value  
Description  
7 to 3  
-
-
00000  
not used  
2 to 0 TESTPAT_1[2:0]  
R/W  
digital test pattern:  
000  
001  
010  
011  
100  
101  
110  
111  
off  
mid-scale  
FS  
+ FS  
toggle ‘1111..1111’/’0000..0000’  
custom test pattern, to be written in register 0015h and 0016h  
‘010101...’  
‘101010...’  
Table 24. Register test pattern 2 (address 0015h)  
Bit  
Symbol  
Access Value  
Description  
7 to 0  
TESTPAT_2[13:6]  
R/W  
00000000 custom digital test pattern (bit 13 to 6)  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
28 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
Table 25. Register test pattern 3 (address 0016h)  
Bit  
7 to 3 TESTPAT_3[5:0]  
2 to 0  
Symbol  
Access Value  
Description  
R/W  
-
00000  
custom digital test pattern (bit 5 to 0)  
-
000  
not used  
14.6.4 JESD204A digital control registers  
Table 26. SER status (address 0801h)  
Bit  
Symbol  
Access Value  
Description  
7
RXSYNC_ERROR R/W  
0
set to 1 when a synchronization error occurs  
6 to 4 RESERVED[2:0]  
-
010  
0
reserved  
3 to 2  
-
-
not used  
1
0
POR_TST  
RESERVED  
R
-
1
power-on-reset  
reserved  
-
Table 27. SER reset (address 0802h)  
Bit  
7
Symbol  
SW_RST  
-
Access Value  
Description  
R/W  
-
0
initiates a software reset of the JEDEC204A unit  
not used  
6 to 4  
3
000  
0
FSM_SW_RST  
R/W  
initiates a software reset of the internal state machine of JEDEC204A  
unit  
2 to 0  
-
-
000  
not used  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
29 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
Table 28. SER cfg set-up (address 0803h)[1]  
Bit  
Symbol  
Access Value  
Description  
7 to 4  
-
R
0000  
not used  
3 to 0 CFG_SETUP[3:0]  
R/W  
0000  
(reset)  
defines quick JESD204A configuration. These settings overrule the  
CFG_PAD configuration  
0000  
ADC0: ON; ADC1: ON; Lane0: ON; Lane1: ON; F = 2; HD = 0; K = 9;  
M = 2; L = 2[2]  
0001  
ADC0: ON; ADC1: ON; Lane0: ON; Lane1: OFF; F = 4; HD = 0; K = 5;  
M = 2; L = 1[2]  
0010  
0011  
ADC0: ON; ADC1: ON; Lane0: OFF[2]  
ADC0: ON; ADC1: OFF; Lane0: ON; Lane1: ON; F = 1; HD = 1; K = 17;  
M = 1; L = 2[2]  
0100  
0101  
0110  
0111  
1000  
ADC0: OFF; ADC1: ON; Lane0: ON; Lane1: ON; F = 1; HD = 1; K = 17;  
M = 1; L = 2; SWAP_ADC_0_1 = 1[2]  
ADC0: ON; ADC1: OFF; Lane0: ON; Lane1: OFF; F = 2; HD = 0; K = 9;  
M = 1; L = 1[2]  
ADC0: ON; ADC1: OFF; Lane0: OFF; Lane1: ON; F = 2; HD = 0; K = 9;  
M = 1; L = 1; SWAP_LANE_1_2 = 1[2]  
ADC0: OFF; ADC1: ON; Lane0: ON; Lane1: OFF; F = 2; HD = 0; K = 9;  
M = 1; L = 1; SWAP_ADC_0_1 = 1[2]  
ADC0: OFF; ADC1: ON; Lane0: OFF; Lane1: ON; F = 2; HD = 0; K = 9;  
M = 1; L = 1; SWAP_ADC_0_1[2]  
1001 to  
1101  
reserved  
1110  
ADC0: OFF; ADC1: OFF; Lane0: ON; Lane1: ON; F = 2; HD = 0; K = 9;  
M = 2; L = 2; loop alignment = 1[2]  
1111  
ADC0: OFF; ADC1: OFF; Lane0: OFF; Lane1: OFF; F = 2; HD = 0;  
K = 9; M = 2; L = 2 PD[2]  
[1] The default value for this register depends on the external pull-up/pull-down on CFG0, CFG1, CFG2 or CFG3. Writing to the register  
overwrites this value.  
[2] F: number of byte per frame; HD: High density; K: number of frames per multi frame; M: number of converters; L: number of lanes  
See the information about the JESD204A standard on the JEDEC web site.  
Table 29. SER control1 (address 0805h)  
Bit  
7
Symbol  
Access Value  
Description  
-
R
0
not used  
6
TRISTATE_CFG_PAD  
R/W  
1
CFG pads (3 to 0) are set to high-impedance. Switch to 0  
automatically after start-up or reset.  
5
4
3
SYNC_POL  
R/W  
defines the sync signal polarity:  
0
synchronization signal is active low  
synchronization signal is active high  
defines the input mode of the sync signal:  
synchronization input mode is set in Differential mode  
synchronization input mode is set in Single-ended mode  
not used  
1
SYNC_SINGLE_ENDED R/W  
0
1
1
-
R
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
30 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
Table 29. SER control1 (address 0805h) …continued  
Bit  
Symbol  
Access Value  
Description  
2
REV_SCR  
-
enables swapping bits at the scrambler input  
0
1
-
LSB are swapped to MSB at the scrambler input  
1
0
REV_ENCODER  
REV_SERIAL  
enables swapping bits at the 8b/10b encoder input:  
0
1
-
LSB are swapped to MSB at the 8b/10b encoder input  
enables swapping bits at the lane input (before serializer):  
0
1
LSB are swapped to MSB at the lane input  
Table 30. SER control2 (address 0806h)  
Bit  
7 to 2  
1
Symbol  
Access Value  
Description  
-
R
000000  
not used  
SWAP_LANE_1_2  
R/W  
controls the JESD204A output multiplexer:  
0
1
outputs of the JESD204A unit are swapped. (Output0 is  
connected to Lane1, Output1 is connected to Lane0)  
0
SWAP_ADC_0_1  
R/W  
controls the JESD204A input multiplexer:  
0
1
inputs of the JESD204A unit are swapped. (ADC0 output is  
connected to Input1, ADC1 is connected to Input0)  
Table 31. SER analog ctrl (address 0808h)  
Bit  
Symbol  
Access Value  
Description  
7 to 3  
-
R
00000  
not used  
2 to 0 SWING_SEL[2:0]  
R/W  
0**  
defines the swing output for the lane pads  
Table 32. SER scramblerA (address 0809h)  
Bit  
Symbol  
Access Value  
Description  
7
-
R
0
not used  
6 to 0 LSB_INIT[6:0]  
R/W  
0000000 defines the initialization vector for the scrambler polynomial  
(lower)  
Table 33. SER scramblerB (address 080Ah)  
Bit Symbol Access Value  
Description  
7 to 0 MSB_INIT[7:0]  
R/W  
11111111 defines the initialization vector for the scrambler polynomial  
(upper)  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
31 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
Table 34. SER PRBS Ctrl (address 080Bh)  
Bit  
Symbol  
Access Value  
Description  
7 to 2  
-
R
000000  
not used  
1 to 0 PRBS_TYPE[1:0]  
R/W  
defines the type of Pseudo-Random Binary Sequence (PRBS)  
generator to be used:  
00 (reset)  
PRBS-7  
PRBS-7  
PRBS-23  
PRBS-31  
01  
10  
11  
Table 35. Cfg_0_DID (address 0820h)  
Bit Symbol Access Value  
7 to 0 DID[7:0]  
Description  
R
11101101 defines the device (= link) identification number  
Table 36. Cfg_1_BID (address 0821h)  
Bit  
Symbol  
Access Value  
Description  
7 to 4  
-
R
0000  
not used  
3 to 0 BID[3:0]  
R/W  
1010  
defines the bank ID – extension to DID  
Table 37. Cfg_3_SCR_L (address 0822h)  
Bit  
7
Symbol  
Access Value  
Description  
SCR  
R/W  
R
*
scrambling enabled  
6 to 1  
0
-
000000  
not used  
L
R/W  
*
defines the number of lanes per converter device, minus 1  
Table 38. Cfg_4_F (address 0823h)  
Bit  
Symbol  
Access Value  
Description  
7 to 3  
-
R
00000  
not used  
2 to 0 F[2:0]  
R/W  
***  
defines the number of octets per frame, minus 1  
Table 39. Cfg_5_K (address 0824h)  
Bit  
Symbol  
Access Value  
Description  
7 to 5  
-
R
000  
not used  
4 to 0 K[4:0]  
R/W  
*****  
defines the number of frames per multiframe, minus 1  
Table 40. Cfg_6_M (address 0825h)  
Bit  
7 to 1  
0
Symbol  
Access Value  
Description  
-
R
0000000 not used  
M
R/W  
*
defines the number of converters per device, minus 1  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
32 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
Table 41. Cfg_7_CS_N (address 0826h)  
Bit  
7
Symbol  
Access Value  
Description  
-
R
0
not used  
6
CS[0]  
-
R/W  
R
*
defines the number of control bits per sample, minus 1  
not used  
5 to 4  
00  
****  
3 to 0 N[3:0]  
R/W  
defines the converter resolution  
Table 42. Cfg_8_Np (address 0827h)  
Bit  
Symbol  
Access Value  
Description  
7 to 5  
-
R
000  
not used  
4 to 0 NP[4:0]  
R/W  
*****  
defines the total number of bits per sample, minus 1  
Table 43. Cfg_9_S (address 0828h)  
Bit  
7 to 1  
0
Symbol  
Access Value  
Description  
-
R
0000000 not used  
S
R/W  
1
defines number of samples per converter per frame cycle  
Table 44. Cfg_10_HD_CF (address 0829h)  
Bit  
7
Symbol  
Access Value  
Description  
HD  
-
R/W  
R
*
defines high density format  
6 to 2  
00000  
not used  
1 to 0 CF[1:0]  
R/W  
**  
defines number of control words per frame clock cycle per link.  
Table 45. Cfg01_2_LID (address 082Ch)  
Bit  
Symbol  
Access Value  
Description  
7 to 5  
-
R
000  
not used  
4 to 0 LID[4:0]  
R/W  
11011  
defines lane1 identification number  
Table 46. Cfg02_2_LID (address 082Dh)  
Bit  
Symbol  
Access Value  
Description  
7 to 5  
-
R
000  
not used  
4 to 0 LID[4:0]  
R/W  
11100  
defines lane2 identification number  
Table 47. Cfg02_13_fchk (address 084Ch)  
Bit Symbol Access Value  
********  
Description  
7 to 0 FCHK[7:0]  
R
defines the checksum value for lane1  
checksum corresponds to the sum of all the link configuration  
parameters modulo 256 (as defined in JEDEC Standard  
No.204A)  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
33 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
Table 48. Cfg01_13_fchk (address 084Dh)  
Bit  
Symbol  
Access Value  
********  
Description  
7 to 0 FCHK[7:0]  
R
defines the checksum value for lane1  
checksum corresponds to the sum of all the link configuration  
parameters module 256 (as defined in JEDEC Standard  
No.204A)  
Table 49. LaneA_0_ctrl (address 0870h)  
Bit  
7
Symbol  
Access Value  
Description  
-
R
0
not used  
6
SCR_IN_MODE  
R/W  
defines the input type for scrambler and 8-bit/10-bit units:  
0 (reset)  
(normal mode) = Input of the scrambler and 8-bit/10-bit units is  
the output of the frame assembly unit.  
1
input of the scrambler and 8-bit/10-bit units is the PRSB  
generator (PRBS type is defined with “PRBS_TYPE”  
(Ser_PRBS_ctrl register)  
5 to 4 LANE_MODE[1:0]  
R/W  
defines output type of Lane output unit:  
00 (reset)  
normal mode: Lane output is the 8-bit/10-bit output unit  
constant mode: Lane output is set to a constant (0 × 0)  
toggle mode: Lane output is toggling between 0 × 0 and 0 × 1  
01  
10  
11  
PRBS mode: Lane output is the PRBS generator (PRBS type is  
defined with “PRBS_TYPE” (Ser_PRBS_ctrl register)  
3
2
-
R
0
not used  
LANE_POL  
R/W  
defines lane polarity:  
0
lane polarity is normal  
1
lane polarity is inverted  
1
0
LANE_CLK_POS_EDGE R/W  
defines lane clock polarity:  
0
lane clock provided to the serializer is active on positive edge  
lane clock provided to the serializer is active on negative edge  
lane power-down control:  
1
Lane_PD  
R/W  
0
1
lane is operational  
lane is in Power-down mode  
Table 50. LaneB_0_ctrl (address 0871h)  
Bit  
7
Symbol  
Access Value  
Description  
-
R
0
not used  
6
SCR_IN_MODE  
R/W  
defines the input type for scrambler and 8b/10b units:  
0 (reset)  
(normal mode) = Input of the scrambler and 8b/10b units is the  
output of the Frame Assembly unit.  
1
input of the scrambler and 8b/10b units is the PRBS generator  
(PRBS type is defined with “PRBS_TYPE” (Ser_PRBS_ctrl  
register)  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
34 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
Table 50. LaneB_0_ctrl (address 0871h) …continued  
Bit  
Symbol  
Access Value  
Description  
5 to 4 LANE_MODE[1:0]  
R/W  
defines output type of lane output unit:  
00 (reset)  
normal mode: Lane output is the 8b/10b output unit  
constant mode: Lane output is set to a constant (0x0)  
toggle mode: Lane output is toggling between 0x0 and 0x1  
01  
10  
11  
PRBS mode: Lane output is the PRSB generator (PRBS type is  
defined with “PRBS_TYPE” (Ser_PRBS_ctrl register)  
3
2
-
R
0
not used  
LANE_POL  
R/W  
defines lane polarity:  
0
lane polarity is normal  
1
lane polarity is inverted  
1
0
LANE_CLK_POS_EDGE R/W  
defines lane clock polarity:  
0
lane clock provided to the serializer is active on positive edge  
lane clock provided to the serializer is active on negative edge  
lane power-down control:  
1
Lane_PD  
R/W  
0
1
lane is operational  
lane is in Power-down mode  
Table 51. ADCA_0_ctrl (address 0890h)  
Bit  
Symbol  
Access Value  
Description  
7 to 6  
-
R
00  
not used  
5 to 4 ADC_MODE[1:0]  
R/W  
defines input type of JESD204A unit:  
ADC output is connected to the JESD204A input  
not used  
00 (reset)  
01  
10  
JESD204A input is fed with a dummy constant, set to: OTR = 0  
and ADC[11:0] = “100110111010”  
11  
JESD204A is fed with a PRBS generator (PRBS type is defined  
with “PRBS_TYPE” (Ser_PRBS_ctrl register)  
3 to 1  
0
-
R
000  
not used  
ADC_PD  
R/W  
ADC power-down control:  
ADC is operational  
ADC is in Power-down mode  
0
1
Table 52. ADCB_0_ctrl (address 0891h)  
Bit  
Symbol  
Access Value  
Description  
7 to 6  
-
R
00  
not used  
5 to 4 ADC_MODE[1:0]  
R/W  
defines input type of JESD204A unit  
00 (reset) ADC output is connected to the JESD204A input  
01  
10  
not used  
JESD204A input is fed with a dummy constant, set to: OTR = 0  
and ADC[11:0] = “100110111010”  
11  
JESD204A is fed with a PRBS generator (PRBS type is defined  
with “PRBS_TYPE” (Ser_PRBS_ctrl register)  
3 to 1  
-
R
000  
not used  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
35 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
Table 52. ADCB_0_ctrl (address 0891h) …continued  
Bit  
Symbol  
Access Value  
Description  
0
ADC_PD  
R/W  
ADC power-down control:  
ADC is operational  
0
1
ADC is in Power-down mode  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
36 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
15. Package outline  
HVQFN56: plastic thermal enhanced very thin quad flat package; no leads;  
56 terminals; body 8 x 8 x 0.85 mm  
SOT684-7  
D
B
A
terminal 1  
index area  
E
A
A
1
c
detail X  
e
1
C
e
v
w
C A  
B
C
1/2 e  
b
L
y
C
1
y
15  
28  
14  
29  
e
E
h
e
2
1/2 e  
1
42  
terminal 1  
index area  
56  
43  
X
D
h
0
2.5  
5 mm  
scale  
Dimensions  
Unit  
(1)  
(1)  
(1)  
E
A
A
1
b
c
D
D
h
E
h
e
e
1
e
2
L
v
w
y
y
1
max 1.00 0.05 0.30  
mm nom 0.85 0.02 0.21 0.2 8.0 5.80 8.0 6.40 0.5 6.5 6.5 0.4 0.1 0.05 0.05 0.1  
min 0.80 0.00 0.18 7.9 5.65 7.9 6.25 0.3  
8.1 5.95 8.1 6.55  
0.5  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
sot684-7_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
- - -  
JEDEC  
JEITA  
- - -  
08-11-19  
09-03-04  
SOT684-7  
MO-220  
Fig 24. Package outline SOT684-7 (HVQFN56)  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
37 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
16. Revision history  
Table 53. Revision history  
Document ID  
Release date  
Data sheet status  
Change Supersedes  
notice  
ADC1213D_SER_5  
Modifications:  
20100423  
Preliminary data sheet  
-
ADC1213D_SER_4  
Product status changed from Objective to Preliminary  
ADC1213D_SER_4  
20100412  
Objective data sheet  
Objective data sheet  
Objective data sheet  
Objective data sheet  
-
-
-
-
ADC1213D065_080_105_125_3  
ADC1213D065_080_105_125_2  
ADC1213D065_080_105_125_1  
-
ADC1213D065_080_105_125_3 20090617  
ADC1213D065_080_105_125_2 20090604  
ADC1213D065_080_105_125_1 20090528  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
38 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
17. Legal information  
17.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of an NXP Semiconductors product can reasonably be expected  
17.2 Definitions  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
17.3 Disclaimers  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
39 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
17.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
18. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
ADC1213D_SER_5  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 05 — 23 April 2010  
40 of 41  
ADC1213D series  
NXP Semiconductors  
ADC1213D series  
19. Contents  
1
2
3
4
5
General description. . . . . . . . . . . . . . . . . . . . . . 1  
17.2  
17.3  
17.4  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
18  
19  
Contact information . . . . . . . . . . . . . . . . . . . . 40  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 3  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3  
7
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Thermal characteristics . . . . . . . . . . . . . . . . . . 5  
Static characteristics. . . . . . . . . . . . . . . . . . . . . 5  
Dynamic characteristics . . . . . . . . . . . . . . . . . . 9  
Clock and digital output timing . . . . . . . . . . . 11  
Serial output timings . . . . . . . . . . . . . . . . . . . 12  
SPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
8
9
10  
11  
12  
13  
14  
14.1  
Application information. . . . . . . . . . . . . . . . . . 13  
Analog inputs . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Input stage description . . . . . . . . . . . . . . . . . . 13  
Anti-kickback circuitry . . . . . . . . . . . . . . . . . . . 14  
Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
System reference and power management . . 16  
Internal/external reference . . . . . . . . . . . . . . . 16  
Reference gain control . . . . . . . . . . . . . . . . . . 17  
Common-mode output voltage (VI(cm)) . . . . . . 17  
Biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Clock input . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Drive modes . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Equivalent input circuit . . . . . . . . . . . . . . . . . . 19  
Clock input divider . . . . . . . . . . . . . . . . . . . . . 20  
Duty cycle stabilizer . . . . . . . . . . . . . . . . . . . . 20  
Digital outputs. . . . . . . . . . . . . . . . . . . . . . . . . 20  
Serial output equivalent circuit . . . . . . . . . . . . 20  
JESD204A serializer. . . . . . . . . . . . . . . . . . . . 21  
Digital JESD204A formatter . . . . . . . . . . . . . . 21  
ADC core output codes versus input voltage . 22  
Serial Peripheral Interface (SPI). . . . . . . . . . . 23  
Register description . . . . . . . . . . . . . . . . . . . . 23  
Channel control . . . . . . . . . . . . . . . . . . . . . . . 24  
Register description . . . . . . . . . . . . . . . . . . . . 27  
14.1.1  
14.1.2  
14.1.3  
14.2  
14.2.1  
14.2.2  
14.2.3  
14.2.4  
14.3  
14.3.1  
14.3.2  
14.3.3  
14.3.4  
14.4  
14.4.1  
14.5  
14.5.1  
14.5.2  
14.6  
14.6.1  
14.6.2  
14.6.3  
14.6.3.1 ADC control register . . . . . . . . . . . . . . . . . . . . 27  
14.6.4  
JESD204A digital control registers . . . . . . . . . 29  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 37  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 38  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 39  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 39  
15  
16  
17  
17.1  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2010.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 23 April 2010  
Document identifier: ADC1213D_SER_5  

相关型号:

ADC1213D125HN/C1,1

IC IC,A/D CONVERTER,DUAL,12-BIT,LLCC,56PIN, Analog to Digital Converter
NXP

ADC1213D125HN/C1,5

Dual 12-bit ADC; 125 Msps, SOT684-7 Package, Standard Markigg, Reel Dry Pack, SMD, 13&quot;
IDT

ADC1213D_11

Dual 12-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps; serial JESD204A interface
NXP

ADC1213D_1106

Dual 12-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps serial JESD204A interface
NXP

ADC1213S

Single 12-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps serial JESD204A interface
NXP

ADC1213S

Single 12-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps; serial JESD204A interface
IDT

ADC1213S065C1

Single 12-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps serial JESD204A interface
NXP

ADC1213S065HN

Single 12-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps serial JESD204A interface
NXP

ADC1213S065HN-C1

Single 12-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps; serial JESD204A interface
IDT

ADC1213S065HN/C1

IC 1-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, PQCC32, 7 X 7 MM, 0.80 MM HEIGHT, PLASTIC, SOT1152-1, HVQFN-32, Analog to Digital Converter
IDT

ADC1213S065HN/C1,5

Single 12 bits ADC; 65 Msps; serial JESD204A, SOT1152-1 Package, Standard Markigg, Reel Dry Pack, SMD, 13&quot;
IDT

ADC1213S080C1

Single 12-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps serial JESD204A interface
NXP