ATC100B1R3BW500XT [NXP]

RF Power LDMOS Transistor;
ATC100B1R3BW500XT
型号: ATC100B1R3BW500XT
厂家: NXP    NXP
描述:

RF Power LDMOS Transistor

文件: 总16页 (文件大小:389K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: A3T19H455W23S  
Rev. 0, 12/2017  
NXP Semiconductors  
Technical Data  
RF Power LDMOS Transistor  
N--Channel Enhancement--Mode Lateral MOSFET  
This 81 W asymmetrical Doherty RF power LDMOS transistor is designed  
for cellular base station applications requiring very wide instantaneous  
bandwidth capability covering the frequency range of 1930 to 1990 MHz.  
A3T19H455W23SR6  
1930–1990 MHz, 81 W AVG., 30 V  
AIRFAST RF POWER LDMOS  
TRANSISTOR  
1900 MHz  
Typical Doherty Single--Carrier W--CDMA Performance: VDD = 30 Vdc,  
IDQA = 540 mA, VGSB = 0.6 Vdc, Pout = 81 W Avg., Input Signal  
PAR = 9.9 dB @ 0.01% Probability on CCDF.  
G
Output PAR  
(dB)  
ACPR  
(dBc)  
ps  
D
Frequency  
1930 MHz  
1960 MHz  
1990 MHz  
(dB)  
16.2  
16.5  
16.4  
(%)  
49.6  
49.4  
49.1  
8.1  
8.0  
7.8  
–31.0  
–32.1  
–32.6  
Features  
ACP--1230S--4L2S  
Advanced high performance in--package Doherty  
Designed for wide instantaneous bandwidth applications  
Greater negative gate--source voltage range for improved Class C operation  
Able to withstand extremely high output VSWR and broadband operating  
conditions  
(2)  
6
5
VBW  
A
Carrier  
RF /V  
1
2
RF /V  
outA DSA  
inA GSA  
Designed for digital predistortion error correction systems  
(1)  
RF /V  
inB GSB  
RF /V  
outB DSB  
4
3
Peaking  
(2)  
VBW  
B
(Top View)  
Figure 1. Pin Connections  
1. Pin connections 4 and 5 are DC coupled  
and RF independent.  
2. Device can operate with  
V
current  
DD  
supplied through pin 3 and pin 6.  
2017 NXP B.V.  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Vdc  
Vdc  
Vdc  
C  
Drain--Source Voltage  
V
--0.5, +65  
--6.0, +10  
32, +0  
DSS  
Gate--Source Voltage  
V
GS  
DD  
Operating Voltage  
V
Storage Temperature Range  
Case Operating Temperature Range  
T
stg  
--65 to +150  
--40 to +150  
--40 to +225  
T
C
C  
(1,2)  
Operating Junction Temperature Range  
T
J
C  
CW Operation @ T = 25C when DC current is fed through pin 3 and pin 6  
Derate above 25C  
CW  
172  
0.7  
W
W/C  
C
Table 2. Thermal Characteristics  
Characteristic  
(2,3)  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
R
0.14  
C/W  
JC  
Case Temperature 81C, 81 W Avg., W--CDMA, 30 Vdc, I  
= 600 mA,  
DQA  
V
= 0.6 Vdc, 1960 MHz  
GSB  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
2
Human Body Model (per JESD22--A114)  
Charge Device Model (per JESD22--C101)  
C3  
Table 4. Electrical Characteristics (T = 25C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(4)  
Off Characteristics  
Zero Gate Voltage Drain Leakage Current  
I
I
10  
5
Adc  
Adc  
Adc  
DSS  
DSS  
GSS  
(V = 65 Vdc, V = 0 Vdc)  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 32 Vdc, V = 0 Vdc)  
DS  
GS  
Gate--Source Leakage Current  
(V = 5 Vdc, V = 0 Vdc)  
I
1
GS  
DS  
On Characteristics -- Side A, Carrier  
Gate Threshold Voltage  
V
1.4  
2.2  
1.8  
2.6  
2.2  
3.0  
0.3  
Vdc  
Vdc  
Vdc  
GS(th)  
(V = 10 Vdc, I = 160 Adc)  
DS  
D
Gate Quiescent Voltage  
(V = 30 Vdc, I = 540 mAdc, Measured in Functional Test)  
V
GSA(Q)  
DD  
DA  
Drain--Source On--Voltage  
(V = 10 Vdc, I = 1.6 Adc)  
V
0.05  
0.15  
DS(on)  
GS  
D
On Characteristics -- Side B, Peaking  
Gate Threshold Voltage  
V
0.8  
1.2  
1.6  
0.3  
Vdc  
Vdc  
GS(th)  
(V = 10 Vdc, I = 360 Adc)  
DS  
D
Drain--Source On--Voltage  
(V = 10 Vdc, I = 3.6 Adc)  
V
0.05  
0.15  
DS(on)  
GS  
D
1. Continuous use at maximum temperature will affect MTTF.  
2. MTTF calculator available at http://www.nxp.com/RF/calculators.  
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.  
4. Side A and Side B are tied together for this measurement.  
(continued)  
A3T19H455W23SR6  
RF Device Data  
NXP Semiconductors  
2
Table 4. Electrical Characteristics (T = 25C unless otherwise noted) (continued)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(1,2,3)  
Functional Tests  
(In NXP Doherty Test Fixture, 50 ohm system) V = 30 Vdc, I  
= 540 mA, V  
= 0.6 Vdc, P = 81 W Avg.,  
DD  
DQA  
GSB  
out  
f = 1990 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured  
in 3.84 MHz Channel Bandwidth @ 5 MHz Offset.  
Power Gain  
G
15.2  
46.0  
56.0  
16.4  
49.1  
17.7  
dB  
%
ps  
D
Drain Efficiency  
P
@ 3 dB Compression Point, CW  
P3dB  
ACPR  
56.9  
dBm  
dBc  
out  
Adjacent Channel Power Ratio  
–32.6  
–28.0  
(3)  
Load Mismatch  
(In NXP Doherty Test Fixture, 50 ohm system) I  
= 540 mA, V  
= 0.6 Vdc, f = 1960 MHz, 12 sec(on),  
GSB  
DQA  
10% Duty Cycle  
VSWR 10:1 at 32 Vdc, 490 W Pulsed CW Output Power  
(3 dB Input Overdrive from 340 W Pulsed CW Rated Power)  
No Device Degradation  
(3)  
Typical Performance  
(In NXP Doherty Test Fixture, 50 ohm system) V = 30 Vdc, I  
= 540 mA, V  
= 0.6 Vdc,  
GSB  
DD  
DQA  
1930–1990 MHz Bandwidth  
(4)  
P
@ 3 dB Compression Point  
P3dB  
541  
W
out  
AM/PM  
–29  
(Maximum value measured at the P3dB compression point across  
the 1930–1990 MHz bandwidth)  
VBW Resonance Point  
VBW  
200  
MHz  
res  
(IMD Third Order Intermodulation Inflection Point)  
Gain Flatness in 60 MHz Bandwidth @ P = 81 W Avg.  
G
0.3  
dB  
out  
F
Gain Variation over Temperature  
G  
0.009  
dB/C  
(–30C to +85C)  
Output Power Variation over Temperature  
P1dB  
0.004  
dB/C  
(–30C to +85C)  
Table 5. Ordering Information  
Device  
Tape and Reel Information  
R6 Suffix = 150 Units, 56 mm Tape Width, 13--inch Reel  
Package  
A3T19H455W23SR6  
ACP--1230S--4L2S  
1. V  
and V  
must be tied together and powered by a single DC power supply.  
DDB  
DDA  
2. Part internally matched both on input and output.  
3. Measurements made with device in an asymmetrical Doherty configuration.  
4. P3dB = P  
+ 7.0 dB where P  
is the average output power measured using an unclipped W--CDMA single--carrier input signal where  
avg  
avg  
output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.  
A3T19H455W23SR6  
RF Device Data  
NXP Semiconductors  
3
V
V
DDA  
GGA  
D98988  
C3  
C4  
C1  
C7  
A3T19H455W23S  
Rev. 0  
C11  
C15  
C23  
C9  
R1  
C21  
C13  
C
P
R3  
C19  
C18  
Z1  
C20  
C24  
C22  
R4 C17  
C10  
R2  
C16  
C14  
C8  
C12  
C5  
C2  
C6  
V
V
DDB  
GGB  
Note: V  
and V  
must be tied together and powered by a single DC power supply.  
DDB  
DDA  
Figure 2. A3T19H455W23SR6 Test Circuit Component Layout  
Table 6. A3T19H455W23SR6 Test Circuit Component Designations and Values  
Part  
Description  
Part Number  
Manufacturer  
C1, C2  
470 F, 63 V Electrolytic Capacitor  
MCGPR63V477M13X26-RH  
C5750X7S2A106M230KB  
C1206C224Z5VACTU  
ATC100B100JT500XT  
C3225X7S1H106K  
ATC600F100JT250XT  
ATC600F8R2BT250XT  
ATC100B5R1CT500XT  
ATC100B1R3BW500XT  
ATC100B0R3BT500XT  
ATC100B0R2BT500XT  
WCR1206-3R3F  
Multicomp  
C3, C4, C5, C6  
10 F Chip Capacitor  
TDK  
C7, C8  
220 nF Chip Capacitor  
Kemet  
ATC  
C9, C10, C11, C12, C20  
10 pF Chip Capacitor  
C13, C14  
C15, C16, C17  
C18  
10 F Chip Capacitor  
TDK  
10 pF Chip Capacitor  
ATC  
8.2 pF Chip Capacitor  
ATC  
C19  
5.1 pF Chip Capacitor  
ATC  
C21  
1.3 pF Chip Capacitor  
ATC  
C22, C24  
C23  
0.3 pF Chip Capacitor  
ATC  
0.2 pF Chip Capacitor  
ATC  
R1, R2  
R3  
3.3 , 1/4 W Chip Resistor  
50 , 8 W Termination Chip Resistor  
0 , 1/4 W Chip Resistor  
1800-2200 MHz Band, 90, 2 dB Directional Coupler  
Welwyn  
Anaren  
Vishay  
Anaren  
MTL  
C8A50Z4A  
R4  
CWCR08050000Z0EA  
X3C20F1-02S  
Z1  
PCB  
Rogers RO4350B, 0.020, = 3.66  
D98988  
r
A3T19H455W23SR6  
RF Device Data  
NXP Semiconductors  
4
TYPICAL CHARACTERISTICS — 1930–1990 MHz  
17  
16.8  
16.6  
16.4  
16.2  
16  
54  
V
= 30 Vdc, P = 81 W (Avg.), I  
= 540 mA, V  
= 0.6 Vdc  
DD  
out  
DQA  
GSB  
52  
Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth  
50  
D
48  
G
ps  
46  
–1.7  
–1.9  
–2.1  
–2.3  
–2.5  
–2.7  
–25  
–27  
–29  
–31  
–33  
–35  
PARC  
15.8  
15.6  
15.4  
15.2  
15  
ACPR  
Input Signal PAR = 9.9 dB @  
0.01% Probability on CCDF  
1880 1900 1920 1940 1960 1980 2000 2020 2040  
f, FREQUENCY (MHz)  
Figure 3. Single--Carrier Output Peak--to--Average Ratio Compression  
(PARC) Broadband Performance @ Pout = 81 Watts Avg.  
–20  
V
V
= 30 Vdc, P = 39 W (PEP), I  
= 540 mA  
DD  
out  
DQA  
IM3--U  
IM3--L  
= 0.6 Vdc, Two--Tone Measurements  
GSB  
–30  
–40  
–50  
–60  
–70  
(f1 + f2)/2 = Center Frequency of 1960 MHz  
IM5--L  
IM5--U  
IM7--L  
IM7--U  
1
10  
100  
300  
TWO--TONE SPACING (MHz)  
Figure 4. Intermodulation Distortion Products  
versus Two--Tone Spacing  
65  
60  
55  
50  
45  
40  
35  
–27  
1
0
17.5  
17  
V
= 30 Vdc, I  
= 540 mA, V  
= 0.6 Vdc, f = 1960 MHz  
DD  
DQA  
GSB  
Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth  
Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF  
–28  
–29  
–30  
–31  
–32  
–33  
G
ps  
–1  
–2  
–3  
–4  
–5  
16.5  
16  
–1 dB = 53.3 W  
D
–2 dB = 86.2 W  
–3 dB = 115.8 W  
15.5  
ACPR  
15  
PARC  
150  
14.5  
30  
60  
90  
120  
180  
P
, OUTPUT POWER (WATTS)  
out  
Figure 5. Output Peak--to--Average Ratio  
Compression (PARC) versus Output Power  
A3T19H455W23SR6  
RF Device Data  
NXP Semiconductors  
5
TYPICAL CHARACTERISTICS — 1930–1990 MHz  
10  
20  
18  
16  
14  
12  
10  
8
65  
55  
45  
35  
25  
15  
V
= 30 Vdc, I  
= 540 mA, V  
= 0.6 Vdc  
DD  
DQA  
GSB  
Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth  
0
G
ps  
–10  
–20  
–30  
–40  
–50  
1990 MHz  
1990 MHz  
1960 MHz  
1930 MHz  
1960 MHz  
1930 MHz  
D
ACPR  
1990 MHz  
1960 MHz  
1930 MHz  
Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF  
10 100  
, OUTPUT POWER (WATTS) AVG.  
5
500  
1
P
out  
Figure 6. Single--Carrier W--CDMA Power Gain, Drain  
Efficiency and ACPR versus Output Power  
18  
16  
14  
12  
10  
8
V
P
= 30 Vdc  
= 0 dBm  
Gain  
DD  
in  
I
= 540 mA  
= 0.6 Vdc  
DQA  
V
GSB  
6
1550 1650 1750 1850 1950 2050 2150 2250 2350  
f, FREQUENCY (MHz)  
Figure 7. Broadband Frequency Response  
A3T19H455W23SR6  
RF Device Data  
NXP Semiconductors  
6
Table 7. Carrier Side Load Pull Performance — Maximum Power Tuning  
V
= 30 Vdc, I  
= 779 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle  
DD  
DQA  
Max Output Power  
P1dB  
(1)  
Z
AM/PM  
()  
f
Z
Z
in  
()  
load  
()  
D
source  
()  
(%)  
58.8  
57.7  
57.2  
Gain (dB)  
18.6  
(dBm)  
52.9  
(W)  
194  
191  
(MHz)  
1930  
1960  
1990  
3.52 – j7.64  
4.30 – j7.50  
5.95 – j8.89  
3.44 + j7.03  
1.09 – j4.64  
1.03 – j4.61  
1.04 – j4.86  
–14  
–14  
–15  
4.65 + j7.55  
6.72 + j7.83  
18.6  
52.8  
18.4  
52.8  
190  
Max Output Power  
P3dB  
(2)  
Z
()  
AM/PM  
()  
f
Z
Z
()  
load  
D
source  
()  
in  
(%)  
59.3  
57.2  
58.1  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
1930  
1960  
1990  
3.52 – j7.64  
3.33 + j7.60  
1.06 – j4.73  
1.03 – j5.00  
1.04 – j4.94  
16.4  
53.6  
229  
–20  
–19  
–21  
4.30 – j7.50  
5.95 – j8.89  
4.78 + j8.27  
7.14 + j9.00  
16.2  
16.3  
53.6  
53.6  
228  
227  
(1) Load impedance for optimum P1dB power.  
(2) Load impedance for optimum P3dB power.  
Z
Z
Z
= Measured impedance presented to the input of the device at the package reference plane.  
= Impedance as measured from gate contact to ground.  
= Measured impedance presented to the output of the device at the package reference plane.  
source  
in  
load  
Table 8. Carrier Side Load Pull Performance — Maximum Efficiency Tuning  
V
= 30 Vdc, I  
= 779 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle  
DD  
DQA  
Max Drain Efficiency  
P1dB  
(1)  
Z
AM/PM  
()  
f
Z
Z
in  
()  
load  
()  
D
source  
()  
(%)  
73.0  
72.5  
72.5  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
1930  
1960  
1990  
3.52 – j7.64  
4.30 – j7.50  
5.95 – j8.89  
3.49 + j7.36  
2.43 – j3.71  
2.32 – j3.40  
2.19 – j3.23  
21.5  
50.9  
124  
–21  
–21  
–23  
4.78 + j8.04  
6.95 + j8.48  
21.8  
21.9  
50.5  
50.1  
112  
103  
Max Drain Efficiency  
P3dB  
(2)  
Z
()  
AM/PM  
()  
f
Z
Z
()  
load  
D
source  
()  
in  
(%)  
72.0  
71.6  
71.4  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
1930  
1960  
1990  
3.52 – j7.64  
3.46 + j7.73  
2.66 – j4.05  
2.50 – j3.81  
2.07 – j3.99  
19.3  
51.6  
145  
–26  
–27  
–27  
4.30 – j7.50  
5.95 – j8.89  
4.88 + j8.52  
7.08 + j9.14  
19.5  
19.1  
51.4  
51.9  
137  
154  
(1) Load impedance for optimum P1dB efficiency.  
(2) Load impedance for optimum P3dB efficiency.  
Z
Z
Z
= Measured impedance presented to the input of the device at the package reference plane.  
= Impedance as measured from gate contact to ground.  
= Measured impedance presented to the output of the device at the package reference plane.  
source  
in  
load  
Input Load Pull  
Tuner and Test  
Circuit  
Output Load Pull  
Tuner and Test  
Circuit  
Device  
Under  
Test  
Z
Z
in  
Z
load  
source  
A3T19H455W23SR6  
RF Device Data  
NXP Semiconductors  
7
Table 9. Peaking Side Load Pull Performance — Maximum Power Tuning  
V
= 30 Vdc, V  
= 0.6 Vdc, Pulsed CW, 10 sec(on), 10% Duty Cycle  
DD  
GSB  
Max Output Power  
P1dB  
(1)  
Z
AM/PM  
()  
f
Z
Z
in  
()  
load  
()  
D
source  
()  
(%)  
52.9  
54.1  
54.2  
Gain (dB)  
13.5  
(dBm)  
56.0  
(W)  
400  
399  
(MHz)  
1930  
1960  
1990  
2.29 – j6.45  
1.80 + j5.63  
2.37 – j5.99  
2.60 – j5.99  
2.78 – j5.86  
–29  
–28  
–29  
3.54 – j6.53  
4.98 – j6.44  
2.40 + j6.06  
3.24 + j6.51  
13.8  
56.0  
13.9  
55.9  
392  
Max Output Power  
P3dB  
(2)  
Z
()  
AM/PM  
()  
f
Z
Z
()  
load  
D
source  
()  
in  
(%)  
53.9  
54.9  
54.6  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
1930  
1960  
1990  
2.29 – j6.45  
1.90 + j5.91  
2.55 – j6.21  
2.81 – j6.09  
3.13 – j6.18  
11.4  
56.6  
462  
–35  
–35  
–34  
3.54 – j6.53  
4.98 – j6.44  
2.60 + j6.41  
3.69 + j6.91  
11.7  
11.7  
56.6  
56.5  
459  
450  
(1) Load impedance for optimum P1dB power.  
(2) Load impedance for optimum P3dB power.  
Z
Z
Z
= Measured impedance presented to the input of the device at the package reference plane.  
= Impedance as measured from gate contact to ground.  
= Measured impedance presented to the output of the device at the package reference plane.  
source  
in  
load  
Table 10. Peaking Side Load Pull Performance — Maximum Efficiency Tuning  
V
= 30 Vdc, V  
= 0.6 Vdc, Pulsed CW, 10 sec(on), 10% Duty Cycle  
DD  
GSB  
Max Drain Efficiency  
P1dB  
(1)  
Z
AM/PM  
()  
f
Z
Z
in  
()  
load  
()  
D
source  
()  
(%)  
59.4  
60.3  
60.4  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
1930  
1960  
1990  
2.29 – j6.45  
1.66 + j5.59  
3.67 – j4.21  
3.59 – j3.69  
3.32 – j3.45  
14.5  
55.2  
328  
–33  
–33  
–33  
3.54 – j6.53  
4.98 – j6.44  
2.16 + j5.99  
2.92 + j6.48  
14.7  
14.7  
54.8  
54.7  
301  
298  
Max Drain Efficiency  
P3dB  
(2)  
Z
()  
AM/PM  
()  
f
Z
Z
()  
load  
D
source  
()  
in  
(%)  
59.5  
60.1  
60.1  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
1930  
1960  
1990  
2.29 – j6.45  
1.82 + j5.90  
3.95 – j4.87  
4.03 – j4.56  
3.84 – j4.23  
12.2  
56.1  
403  
–39  
–38  
–38  
3.54 – j6.53  
4.98 – j6.44  
2.49 + j6.40  
3.49 + j6.92  
12.4  
12.5  
55.9  
55.8  
393  
384  
(1) Load impedance for optimum P1dB efficiency.  
(2) Load impedance for optimum P3dB efficiency.  
Z
Z
Z
= Measured impedance presented to the input of the device at the package reference plane.  
= Impedance as measured from gate contact to ground.  
= Measured impedance presented to the output of the device at the package reference plane.  
source  
in  
load  
Input Load Pull  
Tuner and Test  
Circuit  
Output Load Pull  
Tuner and Test  
Circuit  
Device  
Under  
Test  
Z
Z
in  
Z
load  
source  
A3T19H455W23SR6  
RF Device Data  
NXP Semiconductors  
8
P1dB – TYPICAL CARRIER SIDE LOAD PULL CONTOURS — 1960 MHz  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–1  
–2  
–3  
68  
66  
64  
58  
70  
62  
60  
E
E
–4  
–5  
–6  
–7  
52  
52.5  
P
51.5  
51  
P
50.5  
50  
49.5  
49  
56  
48.5  
0
1
2
3
REAL ()  
4
5
6
0
1
2
3
4
5
6
REAL ()  
Figure 8. P1dB Load Pull Output Power Contours (dBm)  
Figure 9. P1dB Load Pull Efficiency Contours (%)  
–1  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–26  
–24  
22.5  
–2  
–3  
–22  
–20  
22  
–18  
E
E
–4  
21.5  
–16  
–14  
P
P
–5  
–6  
–7  
21  
20.5  
18.5  
20  
19  
19.5  
–12  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
REAL ()  
REAL ()  
Figure 10. P1dB Load Pull Gain Contours (dB)  
Figure 11. P1dB Load Pull AM/PM Contours ()  
NOTE:  
P
E
= Maximum Output Power  
= Maximum Drain Efficiency  
Gain  
Drain Efficiency  
Linearity  
Output Power  
A3T19H455W23SR6  
RF Device Data  
NXP Semiconductors  
9
P3dB – TYPICAL CARRIER SIDE LOAD PULL CONTOURS — 1960 MHz  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–1  
–2  
68  
–3  
66  
64  
62  
60  
58  
E
E
–4  
–5  
–6  
–7  
70  
52.5  
53  
P
52  
51.5  
51  
P
50.5  
50  
56  
49.5  
54  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
REAL ()  
REAL ()  
Figure 12. P3dB Load Pull Output Power Contours (dBm)  
Figure 13. P3dB Load Pull Efficiency Contours (%)  
–1  
–1  
–32  
–30  
20.5  
–2  
–3  
–2  
–3  
–4  
–5  
–6  
–7  
–28  
20  
–26  
E
E
–4  
–24  
–22  
19.5  
–5  
–6  
–7  
19  
P
P
–20  
–18  
18.5  
16.5  
18  
17  
17.5  
–16  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
REAL ()  
REAL ()  
Figure 14. P3dB Load Pull Gain Contours (dB)  
Figure 15. P3dB Load Pull AM/PM Contours ()  
NOTE:  
P
E
= Maximum Output Power  
= Maximum Drain Efficiency  
Gain  
Drain Efficiency  
Linearity  
Output Power  
A3T19H455W23SR6  
RF Device Data  
NXP Semiconductors  
10  
P1dB – TYPICAL PEAKING SIDE LOAD PULL CONTOURS — 1960 MHz  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–2  
53.5  
53  
54  
52.5  
–3  
54.5  
52  
58  
E
E
56  
–4  
–5  
–6  
–7  
–8  
55  
54  
52  
55.5  
P
P
50  
48  
44  
46  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
REAL ()  
REAL ()  
Figure 16. P1dB Load Pull Output Power Contours (dBm)  
Figure 17. P1dB Load Pull Efficiency Contours (%)  
–2  
–3  
–2  
–36  
–38  
–34  
E
–3  
–4  
–5  
–6  
–7  
–8  
–32  
–28  
E
–4  
14.5  
–30  
–5  
14  
–6  
–7  
–8  
P
P
11  
13.5  
11.5  
12  
2
13  
–26  
12.5  
–24  
0
1
3
4
5
6
0
1
2
3
REAL ()  
4
5
6
REAL ()  
Figure 18. P1dB Load Pull Gain Contours (dB)  
Figure 19. P1dB Load Pull AM/PM Contours ()  
NOTE:  
P
E
= Maximum Output Power  
= Maximum Drain Efficiency  
Gain  
Drain Efficiency  
Linearity  
Output Power  
A3T19H455W23SR6  
RF Device Data  
NXP Semiconductors  
11  
P3dB – TYPICAL PEAKING SIDE LOAD PULL CONTOURS — 1960 MHz  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–2  
54  
54.5  
53.5  
55  
E
–3  
–4  
–5  
–6  
–7  
–8  
53  
58  
52.5  
55.5  
56  
52  
E
56  
54  
P
P
56.5  
50  
44  
48  
46  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
REAL ()  
REAL ()  
Figure 20. P3dB Load Pull Output Power Contours (dBm)  
Figure 21. P3dB Load Pull Efficiency Contours (%)  
–2  
–3  
–2  
–40  
E
–3  
–4  
–5  
–6  
–7  
–8  
–42  
–38  
12.5  
–44  
–4  
–36  
E
–5  
12  
–34  
–6  
P
P
9
11.5  
–7  
–8  
–32  
9.5  
11  
–30  
10  
10.5  
–28  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
REAL ()  
REAL ()  
Figure 22. P3dB Load Pull Gain Contours (dB)  
Figure 23. P3dB Load Pull AM/PM Contours ()  
NOTE:  
P
E
= Maximum Output Power  
= Maximum Drain Efficiency  
Gain  
Drain Efficiency  
Linearity  
Output Power  
A3T19H455W23SR6  
RF Device Data  
NXP Semiconductors  
12  
PACKAGE DIMENSIONS  
A3T19H455W23SR6  
RF Device Data  
NXP Semiconductors  
13  
A3T19H455W23SR6  
RF Device Data  
NXP Semiconductors  
14  
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS  
Refer to the following resources to aid your design process.  
Application Notes  
AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
Software  
Electromigration MTTF Calculator  
RF High Power Model  
.s2p File  
Development Tools  
Printed Circuit Boards  
To Download Resources Specific to a Given Part Number:  
1. Go to http://www.nxp.com/RF  
2. Search by part number  
3. Click part number link  
4. Choose the desired resource from the drop down menu  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
Dec. 2017  
Initial release of data sheet  
A3T19H455W23SR6  
RF Device Data  
NXP Semiconductors  
15  
Information in this document is provided solely to enable system and software  
implementers to use NXP products. There are no express or implied copyright licenses  
granted hereunder to design or fabricate any integrated circuits based on the information  
in this document. NXP reserves the right to make changes without further notice to any  
products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its  
products for any particular purpose, nor does NXP assume any liability arising out of the  
application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation consequential or incidental damages. “Typical” parameters  
that may be provided in NXP data sheets and/or specifications can and do vary in  
different applications, and actual performance may vary over time. All operating  
parameters, including “typicals,” must be validated for each customer application by  
customer’s technical experts. NXP does not convey any license under its patent rights  
nor the rights of others. NXP sells products pursuant to standard terms and conditions of  
sale, which can be found at the following address: nxp.com/SalesTermsandConditions.  
NXP, the NXP logo and Airfast are trademarks of NXP B.V. All other product or service  
names are the property of their respective owners.  
E 2017 NXP B.V.  
Document Number: A3T19H455W23S  
Rev. 0, 12/2017  

相关型号:

ATC100B1R5BT500XT

RF LDMOS Wideband Integrated Power Amplifiers
NXP

ATC100B1R5BT500XT

RF LDMOS Wideband Integrated Power Amplifier
FREESCALE

ATC100B1R8BT500XT

RF Power LDMOS Transistors
FREESCALE

ATC100B1R8BT500XT

RF LDMOS Wideband Integrated Power Amplifiers
NXP

ATC100B201JT300XT

RF Power LDMOS Transistors
FREESCALE

ATC100B221JT200XT

RF Power LDMOS Transistors
FREESCALE

ATC100B240JT500XT

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs
FREESCALE

ATC100B241JT500XT

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs
FREESCALE

ATC100B270JT500XT

RF Power LDMOS Transistors
FREESCALE

ATC100B2R0BT500XT

RF LDMOS Wideband Integrated Power Amplifiers
NXP

ATC100B2R2BT500XT

RF LDMOS Wideband Integrated Power Amplifiers
NXP

ATC100B2R2JT500XT

RF Power LDMOS Transistors
FREESCALE