BGY288 [NXP]

Power amplifier with integrated control loop for GSM850, EGSM900, DCS1800 and PCS1900; 功率放大器集成控制回路GSM850 , EGSM900 , DCS1800和PCS1900
BGY288
型号: BGY288
厂家: NXP    NXP
描述:

Power amplifier with integrated control loop for GSM850, EGSM900, DCS1800 and PCS1900
功率放大器集成控制回路GSM850 , EGSM900 , DCS1800和PCS1900

放大器 功率放大器 过程控制系统 分布式控制系统 PCS GSM DCS
文件: 总22页 (文件大小:136K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BGY288  
Power amplifier with integrated control loop for GSM850,  
EGSM900, DCS1800 and PCS1900  
Rev. 01 — 2 February 2005  
Preliminary data sheet  
1. Product profile  
1.1 General description  
The BGY288 is a power amplifier module in a SOT775 surface mounted package with a  
plastic cap. In the module, a mix of state of the art technologies as InGaP, Si-Bicmos and  
Si passive integration are used to combine high performance with a small size. The  
module comprises two functional sections, one for low-band (GSM850/EGSM900) and  
one for high-band (DCS1800/PCS1900) with internal power detection, power control loop,  
input and output matching; see Figure 2. The power control circuit ensures a stable RF  
power output which is set by the voltage level on pin PC. The power control circuit is  
stabilized to compensate for variations in supply voltage, input power and temperature,  
and has a control range fully compliant with European Telecommunication Standards  
Institute (ETSI) time mask and power spectrum requirements.  
1.2 Features  
1.2.1 General features  
Quad band GSM amplifier  
34 dBm controlled output power for  
GSM850/EGSM900  
Very small size (8 mm × 8 mm)  
32.5 dBm controlled output power for  
DCS1800/PCS1900  
Suited for GPRS class 12  
(duty cycle δ = 4 : 8)  
Easy on/off and band select by digital  
control voltage  
Integrated power control loop  
3.6 V nominal supply voltage  
Internal input and output matching  
Specification based on 3GPP TS 45.005  
1.2.2 RF performance  
RF performance with a typical pulsed, controlled output power at Tmb = 25 °C;  
VBAT = 3.6 V; VSTAB = 2.8 V; ZS = ZL = 50 ; PD(LB) = 2 dBm / PD(HB) = 0 dBm; δ = 2 : 8.  
f = 824 MHz to 849 MHz; η @ PSAT = 50 %; PL = 34 dBm  
f = 880 MHz to 915 MHz; η @ PSAT = 55 %; PL = 34 dBm  
f = 1710 MHz to 1785 MHz; η @ PSAT = 50 %; PL = 32.5 dBm  
f = 1850 MHz to 1910 MHz; η @ PSAT = 50 %; PL = 32.5 dBm  
1.3 Applications  
Digital cellular radio systems with Time Division Multiple Access (TDMA) operation  
(GSM systems) in four frequency bands: 824 MHz to 849 MHz, 880 MHz to 915 MHz,  
1710 MHz to 1785 MHz and 1850 MHz to 1910 MHz.  
BGY288  
Philips Semiconductors  
Power amplifier with integrated control loop  
2. Pinning information  
2.1 Pinning  
1
16  
15  
14  
13  
GND  
GND  
V
V
2
3
12  
11  
V
V
BAT  
BAT  
BAT  
BAT  
RFI_HB  
TXON  
4
5
10  
9
RFI_LB  
n.c.  
6
7
8
001aac028  
Transparent top view  
Fig 1. Pin configuration  
2.2 Pin description  
Table 1:  
Symbol  
GND  
Pin description  
Pin  
Type  
Description  
1, 13, 15  
ground  
supply  
supply  
ground  
[1]  
VBAT  
2, 3  
battery supply voltage for DCS1800/PCS1900 section  
battery supply voltage for GSM850/EGSM900 section  
DCS1800/PCS1900 transmit RF input  
RF power control enable input  
11, 12  
RFI_HB  
TXON  
PC  
4
5
6
7
8
analog input  
logic input  
analog input  
supply  
RF power control input  
VSTAB  
BAND  
stabilized supply voltage  
logic input  
Low-Band (LB) (GSM850/EGSM900) or High-Band  
(HB) (DCS1800/PCS1900) select input  
n.c.  
9
not connected  
RFI_LB  
RFO_LB  
RFO_HB  
10  
14  
16  
analog input  
GSM850/EGSM900 transmit RF input  
analog output GSM850/EGSM900 transmit RF output  
analog output DCS1800/PCS1900 transmit RF output  
inner pads ground  
ground  
[1] Pins 2, 3, 11 and 12 (VBAT) are not internally connected and must all be connected to the battery supply  
voltage.  
9397 750 14011  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 2 February 2005  
2 of 22  
BGY288  
Philips Semiconductors  
Power amplifier with integrated control loop  
3. Ordering information  
Table 2:  
Ordering information  
Type number  
Package  
Name  
-
Description  
Version  
BGY288  
leadless surface mounted package; plastic cap;  
16 terminations  
SOT775A  
4. Block diagram  
850 MHz and 900 MHz POWER AMPLIFIER  
10  
14  
OUTPUT  
MATCHING  
RFI_LB  
RFO_LB  
POWER  
BIASING  
SENSE  
POWER CONTROLLER  
6
PC  
7
5
V
STAB  
TXON  
BGY288  
LOGIC  
CONTROL  
(1)  
(1)  
8
4
BAND  
POWER  
SENSE  
BIASING  
16  
OUTPUT  
MATCHING  
RFI_HB  
RFO_HB  
1800 MHz and 1900 MHz POWER AMPLIFIER  
001aab846  
(1) Pull-down resistor.  
Fig 2. Block diagram  
9397 750 14011  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 2 February 2005  
3 of 22  
BGY288  
Philips Semiconductors  
Power amplifier with integrated control loop  
5. Functional description  
5.1 Operating conditions  
The BGY288 is designed to meet the 3GPP TS 45.005 technical specification for the  
ETSI.  
5.2 Power amplifier  
The low band (GSM850 and EGSM900) and the high band (DCS1800 and PCS1900)  
channel power amplifiers each comprises three cascaded gain stages, input and output  
matching and harmonic filters. The output power of each amplifier is determined by the  
bias on each of its 3 gain stages and is controlled by an internal signal generated in the  
power controller block. Each power amplifier block generates a power sense signal which  
is routed internally to the power control block.  
5.3 Control logic  
The control logic block generates the various signals to control the complete BGY288  
depending on the signal levels on pins TXON and BAND, as indicated in Table 3. The  
control logic block supply voltage is via pin VSTAB. When pin VSTAB = 0 V, the BGY288 is in  
Idle mode and the battery current consumption is almost zero. The power control block is  
enabled when pin TXON goes HIGH. The low band (GSM850/EGSM900) channel is  
enabled when pin BAND goes LOW and the high band (DCS1800/PCS1900) channel is  
enabled when pin BAND goes HIGH. Both TXON and BAND inputs have pull-down  
resistors of approximately 1 M.  
5.4 Power controller  
The main inputs to the power controller block are the RF power control signal via pin PC  
and the output power sense signal internally generated by each power amplifier block.  
The PC signal is the reference voltage for the requested level of output power, and is  
usually generated by an external digital-to-analog converter. The PC signal is buffered  
and compared with the output power sense signal. The resultant error signal is then  
amplified by one of two integrators, the selection of which being dependant on the level of  
the BAND signal. The output of the selected integrator is the internal signal which controls  
the biasing circuits of the selected channel.  
5.5 Mode control  
Table 3:  
Mode  
Mode control  
Mode description  
VSTAB  
(V)  
TXON BAND  
LOW LOW  
PC (V)  
Idle  
power amplifier fully off; minimal leakage current  
0
< 0.15  
Standby control logic functioning; power amplifier off  
2.6 to 3 LOW  
HIGH or < 0.15  
LOW  
LB TX  
HB TX  
low-band transmit mode (GSM850/EGSM900)  
2.6 to 3 HIGH LOW  
< 2.5  
< 2.5  
high-band transmit mode (DCS1800/PCS1900) 2.6 to 3 HIGH HIGH  
9397 750 14011  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 2 February 2005  
4 of 22  
BGY288  
Philips Semiconductors  
Power amplifier with integrated control loop  
6. Timing  
dB  
+4  
+1  
1  
6  
P
, P  
L(LB) L(HB)  
(**)  
30  
(***)  
(147 bits)  
(*)  
10 µs 8 µs 10 µs  
10 µs 8 µs 10 µs  
t
7056/13 (542.8) µs  
V
STAB  
t
t
t
d6  
d1  
TXON  
BAND  
t
t
d5  
d4  
t
d2  
d7  
P
, P  
D(LB) D(HB)  
t
t
d8  
d3  
PC  
001aab847  
t
d9  
Fig 3. Timing diagram  
Table 4:  
ZS = ZL = 50 ; PD(LB) = 0 dBm to 4 dBm / PD(HB) = 2 dBm to +2 dBm; VBAT = 3.1 V to 4.6 V;  
STAB = 2.6 V to 3.0 V; Tmb = 20 °C to 85 °C; δ = 1 : 8 to 4 : 8; unless otherwise specified.  
Timing characteristics  
V
Symbol Parameter Min Typ Max Unit  
td1  
td2  
td3  
delay time; VSTAB to high voltage before TXON goes HIGH  
0
-
-
-
-
-
-
µs  
µs  
µs  
delay time; BAND to LOW or HIGH before TXON goes HIGH 0  
delay time; RF signal on RFI_HB or RFI_LB before PC  
ramp-up  
0
td4  
td5  
delay time; PC start of ramp-up after TXON goes HIGH  
10  
0
-
-
-
-
µs  
µs  
delay time; TXON to LOW after transition of PC to off  
condition  
td6  
td7  
td8  
delay time; VSTAB to 0 V, after TXON goes LOW  
delay time; change of BAND after TXON goes LOW  
10  
0
-
-
-
-
-
-
µs  
µs  
µs  
delay time; removal of RF signal on RFI_HB or RFI_LB after  
transition of PC to off condition  
0
td9  
time between PC ramp-up and actual PL increase  
-
-
3
µs  
9397 750 14011  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 2 February 2005  
5 of 22  
BGY288  
Philips Semiconductors  
6.1 Ramp-up  
Power amplifier with integrated control loop  
VSTAB voltage must be available at minimum td1 before TXON goes HIGH (power control  
loop activates).  
BAND selects the correct transmit channel (GSM850/EGSM900, or DCS1800/PCS1900).  
BAND must be at the correct value before the rising edge of TXON.  
The transition of TXON to HIGH enables the power control loop; the TXON minimum td4  
period is a set-up time which allows the correct internal biasing conditions and the charge  
on the integration capacitors to be at the correct starting value before PC starts to  
increase. RF power must be present at the input of the selected channel (PD(LB) or PD(HB)  
before PC starts to ramp-up.  
)
The required RF output power level is reached by increasing PC in steps to the  
corresponding voltage level. The sequence of PC steps can be chosen to have  
approximately a quarter cosine wave ramp-up of PL(LB) or PL(HB) in order to prevent  
violation of the GSM power mask, and at the same time prevent violation of the spectrum  
due to transients.  
To avoid violation of the lowest power level in the GSM power mask (indicated by *;  
see Figure 3), the BGY288 provides sufficient isolation when TXON goes HIGH with PC  
at minimum value and RF power at input of power amplifier.  
In LB TX mode, the system specification for maximum output power of the handset is  
36 dBm. In HB TX mode, the system specification for maximum output power of the  
handset is 48 dBm. In BGY288 transmit mode, the handset antenna switch can be used  
to provide isolation between the power amplifier and the antenna by setting the antenna  
switch to Rx mode. This condition is used for the transmit mode isolation parameters  
given in Section 9.  
6.2 Ramp-down  
PC steps down from the voltage level for the current power level to off state. The  
sequence of PC steps can be chosen to have approximately a quarter cosine wave  
ramp-down of PL(LB) or PL(HB) in order to prevent violation of the GSM power mask, and at  
the same time prevent violation of the spectrum due to transients.  
The power control loop can be switched off (TXON goes LOW) as soon as PC has  
reached the off state level. At the same time, BAND is allowed to change polarity and the  
RF input power at the selected channel (PD(LB) or PD(HB)) can be removed. When input  
power is removed, there is no additional isolation specification required to meet the GSM  
system specification. In LB TX mode, the system specification for maximum output power  
of the handset is 54 dBm. In HB TX mode the system specification for maximum output  
power is 48 dBm.  
At minimum td6 after TXON goes LOW (power control loop deactivates) and when all  
charge in the power control loop capacitors is removed, the BGY288 can go into Idle  
mode (VSTAB = 0 V).  
9397 750 14011  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 2 February 2005  
6 of 22  
BGY288  
Philips Semiconductors  
Power amplifier with integrated control loop  
7. Limiting values  
Table 5:  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
Max  
7
Unit  
V
VBAT  
DC supply voltage  
Idle mode  
-
HB TX or LB TX mode  
-
5.3  
+3.3  
2
V
VSTAB  
ISTAB  
VPC  
stabilized DC supply voltage  
stabilized supply current  
0.5  
V
-
mA  
V
DC output power control voltage  
current into output power control input  
-
3
IPC  
2  
+2  
mA  
dBm  
dBm  
dBm  
V
PD(HB), PD(LB) input drive power on RFI_HB or RFI_LB  
-
10  
PL(LB)  
PL(HB)  
VBAND  
IBAND  
VTXON  
ITXON  
PBAT  
load power on RFO_LB  
load power on RFO_HB  
band switch voltage  
-
37  
-
35  
0.5  
+3.3  
+2  
band switch current  
2  
mA  
V
transmit control signal  
0.5  
+3.3  
+2  
current into transmit control input  
power from supply during pulse  
2  
mA  
W
HB TX mode  
LB TX mode  
HB TX mode  
LB TX mode  
-
4
-
7
W
IBAT  
current from supply during pulse  
-
1.6  
2.2  
+100  
+100  
+90  
±500  
±50  
A
-
A
Tstg  
Tmb  
storage temperature  
40  
30  
30  
-
°C  
°C  
°C  
V
mounting base temperature  
δ = 2 : 8  
δ = 4 : 8  
[1]  
[2]  
Vesd  
electrostatic discharge voltage  
human body model  
machine model  
-
V
[1] Class 1B according to EIA/JESD22-A114B  
[2] Class A according to EIA/JESD22-A115A  
8. Static characteristics  
Table 6:  
Static characteristics  
ZS = ZL = 50 ; PD(HB), PD(LB) = 0 mW; VBAT = 3.6 V; VSTAB = 2.8 V; Tmb = 25 °C; unless otherwise specified.  
Symbol Parameter  
Voltage supply  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
[2]  
VBAT  
battery supply voltage  
2.9  
3.1  
4.6  
-
-
3.1  
4.6  
5.2  
1.5  
10  
V
typical operating range  
3.6  
V
-
V
IBAT  
leakage current  
supply voltage  
Standby mode  
-
mA  
µA  
V
Idle mode  
-
-
VSTAB  
Standby, HB TX or LB TX mode  
Idle mode  
2.6  
0
2.8  
-
3.0  
0.2  
V
9397 750 14011  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 2 February 2005  
7 of 22  
BGY288  
Philips Semiconductors  
Power amplifier with integrated control loop  
Table 6:  
Static characteristics …continued  
ZS = ZL = 50 ; PD(HB), PD(LB) = 0 mW; VBAT = 3.6 V; VSTAB = 2.8 V; Tmb = 25 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
1
Unit  
mA  
mA  
ISTAB  
current consumption  
HB TX or LB TX mode  
Standby mode  
-
-
-
-
1
Digital inputs: TXON, BAND[3]  
VIL  
VIH  
IIL  
LOW-level input voltage  
HIGH-level input voltage  
LOW-level input current  
HIGH-level input current  
input capacitance  
0
-
0.5  
3
V
1.4  
-
V
-
-
-
-
3
µA  
µA  
pF  
IIH  
-
15  
-
Ci  
4
Analog inputs: PC[3]  
VPC  
IPC  
power control voltage  
0
-
2.5  
V
power control current  
PC input capacitance  
PC input resistance  
100  
-
-
-
-
µA  
pF  
MΩ  
CPC  
RPC  
-
-
4
1.2  
[1] Power amplifier is functional from 2.9 V to 3.1 V, but will not meet all electrical specification points.  
[2] Power amplifier is functional from 4.6 V to 5.2 V under 50 conditions, but will not meet all electrical specification points.  
[3] PD(LB) = 0 dBm to 4 dBm / PD(HB) = 2 dBm to +2 dBm; VBAT = 3.1 V to 4.6 V; VSTAB = 2.6 V to 3.0 V; Tmb = 20 °C to +85 °C;  
δ = 1 : 8 to 4 : 8; unless otherwise specified.  
9. Dynamic characteristics  
Table 7:  
Dynamic characteristics GSM850 and EGSM900 transmit mode  
ZS = ZL = 50 ; VBAT = 3.6 V; VSTAB = 2.8 V; Tmb = 25 °C; δ = 1 : 8 to 4 : 8; tp = 575 µs to 2300 µs; PD(LB) = 2 dBm; spurious  
signals on PD(LB) < 50 dBm; LB TX mode selected;  
f = 824 MHz to 849 MHz for GSM850; f = 880 MHz to 915 MHz for EGSM900; unless otherwise specified.  
Symbol  
PD(LB)  
VPC  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
RF input power  
0
-
2
-
4
2
dBm  
V
reference voltage to set  
output power  
f = 897.5 MHz for EGSM900;  
f = 836.5 MHz for GSM850;  
PL(LB) = 35 dBm  
f = 897.5 MHz for EGSM900;  
f = 836.5 MHz for GSM850;  
0.2  
-
-
V
PL(LB) = 3 dBm  
9397 750 14011  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 2 February 2005  
8 of 22  
BGY288  
Philips Semiconductors  
Power amplifier with integrated control loop  
Table 7:  
Dynamic characteristics GSM850 and EGSM900 transmit mode …continued  
ZS = ZL = 50 ; VBAT = 3.6 V; VSTAB = 2.8 V; Tmb = 25 °C; δ = 1 : 8 to 4 : 8; tp = 575 µs to 2300 µs; PD(LB) = 2 dBm; spurious  
signals on PD(LB) < 50 dBm; LB TX mode selected;  
f = 824 MHz to 849 MHz for GSM850; f = 880 MHz to 915 MHz for EGSM900; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
PL(LB)  
available output power  
GSM850  
VPC = 2.2 V  
34.2 35  
-
-
dBm  
dBm  
VPC = 2.0 V; VBAT = 3.2 V;  
32.8  
-
P
D(LB) = 0 dBm; δ = 2 : 8  
VPC = 2.0 V; VBAT = 3.2 V;  
D(LB) = 0 dBm; δ = 2 : 8; Tmb = 85 °C  
32.3  
-
-
dBm  
P
EGSM900  
VPC = 2.2 V  
35.2 36  
-
-
dBm  
dBm  
VPC = 2.0 V; VBAT = 3.2 V;  
33.8  
-
P
D(LB) = 0 dBm; δ = 2 : 8  
VPC = 2.0 V; VBAT = 3.2 V;  
D(LB) = 0 dBm; δ = 2 : 8; Tmb = 85 °C  
33.3  
-
-
dBm  
P
η
efficiency GSM850  
saturated power  
-
50  
45  
55  
50  
-
-
-
-
-
%
%
%
%
PL(LB) = 34 dBm  
-
efficiency EGSM900  
output power variation at  
saturated power  
-
PL(LB) = 34 dBm  
-
[1] [2]  
PL(LB)  
PL(LB) = 31 dBm to 34 dBm for EGSM900  
0.7  
+0.7 dB  
nominal temperature range and PL(LB) = 31 dBm to 33 dBm for  
GSM850; set by PC  
[1] [2]  
[1] [2]  
[1] [3]  
P
L(LB) = 13 dBm to 31 dBm; set by PC  
1.5  
2  
-
-
-
+1.5 dB  
PL(LB) = 6 dBm to 13 dBm; set by PC  
+2  
dB  
output power variation at  
PL(LB) = 31 dBm to 34 dBm for EGSM900  
1.2  
+1.2 dB  
extreme temperature range and PL(LB) = 31 dBm to 33 dBm for  
GSM850; set by PC  
[1] [3]  
[1] [3]  
[1] [4]  
P
L(LB) = 13 dBm to 31 dBm; set by PC  
2  
-
-
-
+2  
+3  
dB  
dB  
PL(LB) = 6 dBm to 13 dBm; set by PC  
PL(LB) = 31 dBm to 34 dBm; set by PC  
3  
output power variation of  
frequency  
0.3  
+0.3 dB  
H2 to H13 harmonics  
P
L(LB) 34 dBm  
-
-
-
-
5  
dBm  
isolation H2 into  
DCS1800/PCS1900  
measured at RFO_HB; PL(LB) = 34 dBm  
15  
dBm  
dBm  
dBm  
dBm  
isolation H3 into  
DCS1800/PCS1900  
measured at RFO_HB; PL(LB) = 34 dBm  
-
-
-
-
-
-
-
25  
36  
36  
6 : 1  
isolation  
PD(LB) = 4 dBm; VPC = 0.15 V; Standby  
mode  
PD(LB) = 4 dBm; VPC = 0.15 V; LB TX  
mode  
VSWRin  
input VSWR  
PL(LB) < 6 dBm  
-
-
PL(LB) = 6 dBm to 34 dBm;  
2 : 1 3 : 1  
9397 750 14011  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 2 February 2005  
9 of 22  
BGY288  
Philips Semiconductors  
Power amplifier with integrated control loop  
Table 7:  
Dynamic characteristics GSM850 and EGSM900 transmit mode …continued  
ZS = ZL = 50 ; VBAT = 3.6 V; VSTAB = 2.8 V; Tmb = 25 °C; δ = 1 : 8 to 4 : 8; tp = 575 µs to 2300 µs; PD(LB) = 2 dBm; spurious  
signals on PD(LB) < 50 dBm; LB TX mode selected;  
f = 824 MHz to 849 MHz for GSM850; f = 880 MHz to 915 MHz for EGSM900; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Pn  
noise power  
RBW = 100 kHz;  
f0 = 897.5 MHz for EGSM900;  
f0 = 836.5 MHz for GSM850  
f0 + 27.5 MHz; PL(LB) < 34 dBm  
f0 + 37.5 MHz; PL(LB) < 34 dBm  
f 1805 MHz; PL(LB) < 34 dBm  
-
-
-
-
-
-
-
-
73  
82  
77  
28  
dBm  
dBm  
dBm  
dB  
CG  
conversion gain  
small signal gain  
AM/AM conversion  
f0 = 915 MHz for EGSM900;  
f0 = 849 MHz for GSM850;  
PL(LB) = 6 dBm to 34 dBm;  
fSS1 = f0 20 MHz; PSS1 = 40 dBm;  
CG = PL(CON) PSS1; see Figure 4  
SSG  
AM/AM  
f0 = 915 MHz for EGSM900;  
f0 = 849 MHz for GSM850;  
-
-
31  
dB  
PL(LB) = 6 dBm to 34 dBm;  
fSS2 = f0 + 20 MHz; PSS2 = 40 dBm;  
SSG = PL(SS2) PSS2; see Figure 4  
PL(LB) = 6 dBm to 34 dBm;  
6.5 % AM modulation with  
fmod = 67 kHz at RFI_LB  
fmod = 140 kHz at RFI_LB  
fmod = 271 kHz at RFI_LB  
PD(LB) = 1.5 dBm to 2.5 dBm;  
-
-
-
-
5
8
%
8
13  
20  
4
%
14  
2
%
AM/PM  
AM/PM conversion  
deg/dB  
PL(LB) = 6 dBm to 34 dBm  
maximum control slope  
carrier rise and fall time  
PL(LB) = 6 dBm to 34 dBm  
-
-
-
-
200  
2
dB/V  
tr, tf  
fCL  
PL(LB) = 5 dBm to 34 dBm or  
34 dBm to 5 dBm  
µs  
control loop bandwidth  
stability  
-
-
200  
-
-
kHz  
P
L(LB) 34 dBm; VSWR 7 : 1 through all  
36  
dBm  
phases; VBAT = 3.2 V to 4.6 V  
ruggedness  
VBAT = 3.2 V to 4.6 V; PL(LB) 34 dBm;  
δ = 4 : 8; VSWR 8 : 1 through all phases  
no degradation  
[1] Condition to set VPC: VBAT = 3.6 V; δ = 2 : 8; PD(LB) = 2 dBm; Tmb = 25 °C; f = 897.5 MHz for EGSM900; f = 836.5 MHz for GSM850.  
[2] Conditions for power variation: PD(LB) = 0 dBm to 4 dBm; f = 824 MHz to 849 MHz for GSM850; f = 880 MHz to 915 MHz for EGSM900;  
Tmb = 15 °C to 70 °C; VBAT = 3.2 V to 4.2 V; VSTAB = 2.8 V ± 20 mV.  
[3] Conditions for power variation: PD(LB) = 0 dBm to 4 dBm; f = 824 MHz to 849 MHz for GSM850; f = 880 MHz to 915 MHz for EGSM900;  
Tmb = 20 °C to +90 °C; VBAT = 3.2 V to 4.2 V; VSTAB = 2.8 V ± 20 mV.  
[4] Conditions for power variation: PD(LB) = 2 dBm; f = 824 MHz to 849 MHz for GSM850; f = 880 MHz to 915 MHz for EGSM900;  
Tmb = 25 °C; VBAT = 3.6 V; VSTAB = 2.8 V ± 20 mV.  
9397 750 14011  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 2 February 2005  
10 of 22  
BGY288  
Philips Semiconductors  
Power amplifier with integrated control loop  
Table 8:  
Dynamic characteristics DCS1800/PCS1900 transmit mode  
ZS = ZL = 50 ; VBAT = 3.6 V; VSTAB = 2.8 V; Tmb = 25 °C; δ = 1 : 8 to 4 : 8; tp = 575 µs to 2300 µs; PD(HB) = 0 dBm; spurious  
signals on PD(HB) < 50 dBm; HB TX mode selected;  
f = 1710 MHz to 1785 MHz for DCS1800; f = 1850 MHz to 1910 MHz for PCS1900; unless otherwise specified.  
Symbol  
PD(HB)  
VPC  
Parameter  
Conditions  
Min  
2  
-
Typ  
Max Unit  
RF input power  
0
-
+2  
2
dBm  
V
reference voltage to set  
output power  
f = 1747.6 MHz for DCS1800;  
f = 1880 MHz for PCS1900;  
PL(HB) = 32.5 dBm  
f = 1747.6 MHz for DCS1800;  
f = 1880 MHz for PCS1900;  
0.2  
-
-
V
PL(HB) = 3 dBm  
PL(HB)  
available output power  
VPC = 2.2 V  
32.7 33.5  
-
-
dBm  
dBm  
VPC = 2.0 V; VBAT = 3.2 V;  
31.8  
-
P
D(HB) = 2 dBm; δ = 2 : 8  
VPC = 2.0 V; VBAT = 3.2 V;  
D(HB) = 2 dBm; δ = 2 : 8; Tmb = 85 °C  
31.3  
-
-
dBm  
P
η
efficiency DCS1800  
efficiency PCS1900  
saturated power  
-
50  
45  
50  
45  
-
-
-
-
-
%
%
%
%
PL(HB) = 31.3 dBm  
-
saturated power  
-
PL(HB) = 31.3 dBm  
-
[1] [2]  
[1] [2]  
[1] [2]  
[1] [2]  
[1] [3]  
[1] [3]  
[1] [3]  
[1] [3]  
[1] [4]  
PL(HB)  
output power variation at  
nominal temperature range  
PL(HB) = 28 dBm to 32 dBm; set by PC  
PL(HB) = 15 dBm to 28 dBm; set by PC  
PL(HB) = 5 dBm to 15 dBm; set by PC  
PL(HB) = 0 dBm to 5 dBm; set by PC  
PL(HB) = 28 dBm to 32 dBm; set by PC  
PL(HB) = 15 dBm to 28 dBm; set by PC  
PL(HB) = 5 dBm to 15 dBm; set by PC  
PL(HB) = 0 dBm to 5 dBm; set by PC  
PL(HB) = 30 dBm to 32 dBm; set by PC  
0.7  
1  
+0.7 dB  
-
+1  
+2  
+3  
dB  
dB  
dB  
2  
-
3  
-
output power variation at  
extreme temperature range  
1.2  
1.5  
2.5  
3.5  
0.3  
-
+1.2 dB  
+1.5 dB  
+2.5 dB  
+3.5 dB  
+0.3 dB  
-
-
-
output power variation of  
frequency  
-
H2 to H7  
harmonics  
isolation  
P
L(HB) 32 dBm  
-
-
-
-
5  
dBm  
PD(HB) = 2 dBm; VPC = 0.15 V; Standby  
mode  
36  
dBm  
PD(HB) = 2 dBm; VPC = 0.15 V; HB TX  
mode  
-
-
-
36  
dBm  
VSWRin  
Pn  
input VSWR  
noise power  
PL(HB) < 0 dBm  
-
-
-
6 : 1  
PL(LB) = 2 dBm to 32 dBm  
2 : 1 3 : 1  
f0 = 1785 MHz for DCS1800;  
f0 = 1910 MHz for PCS1900; f0 + 20 MHz;  
RBW = 100 kHz; PL(HB) < 32 dBm  
-
77  
dBm  
dB  
CG  
conversion gain  
f0 = 1785 MHz for DCS1800;  
f0 = 1910 MHz for PCS1900;  
-
-
25  
PL(HB) = 0 dBm to 32 dBm;  
fSS1 = f0 20 MHz; PSS1 = 40 dBm;  
CG = PL(CON) PSS1; see Figure 4  
9397 750 14011  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 2 February 2005  
11 of 22  
BGY288  
Philips Semiconductors  
Power amplifier with integrated control loop  
Table 8:  
Dynamic characteristics DCS1800/PCS1900 transmit mode …continued  
ZS = ZL = 50 ; VBAT = 3.6 V; VSTAB = 2.8 V; Tmb = 25 °C; δ = 1 : 8 to 4 : 8; tp = 575 µs to 2300 µs; PD(HB) = 0 dBm; spurious  
signals on PD(HB) < 50 dBm; HB TX mode selected;  
f = 1710 MHz to 1785 MHz for DCS1800; f = 1850 MHz to 1910 MHz for PCS1900; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
SSG  
small signal gain  
f0 = 1785 MHz for DCS1800;  
f0 = 1910 MHz for PCS1900;  
-
-
33  
dB  
PL(HB) = 0 dBm to 32 dBm;  
fSS2 = f0 + 20 MHz; PSS2 = 40 dBm;  
SSG = PL(SS2) PSS2; see Figure 4  
AM/AM  
AM/PM  
AM/AM conversion  
AM/PM conversion  
PL(HB) = 0 dBm to 32 dBm;  
6.5 % AM modulation with  
fmod = 67 kHz at RFI_HB  
fmod = 140 kHz at RFI_HB  
fmod = 271 kHz at RFI_HB  
PD(HB) = 0.5 dBm to +0.5 dBm;  
-
-
-
-
5
8
%
8
13  
20  
4
%
14  
2
%
deg/dB  
PL(HB) = 0 dBm to 32 dBm  
maximum control slope  
carrier rise and fall time  
PL(HB) = 0 dBm to 32 dBm  
-
-
-
-
200  
2
dB/V  
tr, tf  
fCL  
PL(HB) from 0 dBm to 32 dBm and  
from 32 dBm to 0 dBm  
µs  
control loop bandwidth  
stability  
-
-
200  
-
-
kHz  
P
L(HB) 32 dBm; VSWR 7 : 1 through all  
36  
dBm  
phases; VBAT = 3.2 V to 4.6 V  
ruggedness  
VBAT = 3.2 V to 4.6 V; PL(HB) 32 dBm;  
δ = 4 : 8; VSWR 8 : 1 through all phases  
no degradation  
[1] Condition to set VPC: VBAT = 3.6 V; δ = 2 : 8; PD(HB) = 0 dBm; Tmb = 25 °C; f = 1747.6 MHz for DCS1800; f = 1880 MHz for PCS1900.  
[2] Conditions for power variation: PD(HB) = 2 dBm to +2 dBm; f = 1710 MHz to 1785 MHz for DCS1800;  
f = 1850 MHz to 1910 MHz for PCS1900; Tmb = 15 °C to 70 °C; VBAT = 3.2 V to 4.2 V; VSTAB = 2.8 V ± 20 mV.  
[3] Conditions for power variation: PD(HB) = 2 dBm to +2 dBm; f = 1710 MHz to 1785 MHz for DCS1800;  
f = 1850 MHz to 1910 MHz for PCS1900; Tmb = 20 °C to +90 °C; VBAT = 3.2 V to 4.2 V; VSTAB = 2.8 V ± 20 mV.  
[4] Conditions for power variation: PD(HB) = 0 dBm; f = 1710 MHz to 1785 MHz for DCS1800; f = 1850 MHz to 1910 MHz for PCS1900;  
Tmb = 25 °C; VBAT = 3.6 V; VSTAB = 2.8 V ± 20 mV.  
9397 750 14011  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 2 February 2005  
12 of 22  
BGY288  
Philips Semiconductors  
Power amplifier with integrated control loop  
P
L
P
P
P
D
POWER  
AMP  
P
L(SS1)  
P
L(CON)  
P
f
SS1  
f
f
f
2f f  
0 SS1  
f
f
SS1  
0
SS1  
0
CG = P  
P  
SS1  
L(CON)  
001aaa701  
a. Conversion gain (CG)  
P
L
P
P
P
D
POWER  
AMP  
P
L(SS2)  
P
f
SS2  
f
f
f
f
f
0
SS2  
0
SS2  
SSG = P  
P  
SS2  
L(SS2)  
001aaa702  
b. Small signal gain (SSG)  
The total noise at the output of the power amplifier is the summation of three sources:  
The noise present at the input of the power amplifier at fSS1 amplified by the conversion gain.  
The noise present at the input of the power amplifier at fSS2 amplified by the small signal gain.  
The noise generated by the power amplifier itself, when the noise at the input of the power  
amplifier is zero.  
Fig 4. Input and output signals  
9397 750 14011  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 2 February 2005  
13 of 22  
BGY288  
Philips Semiconductors  
Power amplifier with integrated control loop  
10. Application information  
V
BAT  
C10  
C3  
C2  
C4  
C5  
L1  
RFI_HB  
2
1
4
3
R1  
R2  
L3  
L4  
5
6
16  
RFO_HB  
TXON  
PC  
15  
C1  
BGY288  
R3  
R4  
14  
13  
RFO_LB  
7
8
V
STAB  
BAND  
9
10 11  
12  
001aab848  
L2  
RFI_LB  
C6  
C8  
C7  
C9  
C11  
V
BAT  
Drive signals must not be applied to pin 9.  
Components listed in Table 9.  
Fig 5. Test circuit  
9397 750 14011  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 2 February 2005  
14 of 22  
BGY288  
Philips Semiconductors  
Power amplifier with integrated control loop  
V
BAT  
C10  
CON1  
CON3  
C2  
C3  
RFI_HB  
RFO_HB  
C4 C5  
BGY288  
R1  
R2  
R3  
R4  
R5  
C1  
CON5  
C6 C7  
C8 C9  
CON2  
CON4  
RFI_LB  
RFO_LB  
C11  
V
BAT  
001aab849  
CON6  
Components listed in Table 9.  
Fig 6. Printed-circuit board test circuit  
Table 9: List of components  
Component  
Description  
Value  
PB005H1  
Dimensions  
Supplier  
PCB  
printed-circuit board  
Roland Haefele  
Johnson Components  
CON1, CON2,  
CON3, CON4  
jack assembly end launch  
SMA connector  
142-0701-881  
CON5  
DC connector 5 pin  
solder ring  
CON6  
C1  
SMD capacitor  
SMD capacitor  
SMD capacitor  
SMD capacitor  
electrolytic capacitor[1]  
SMD resistor  
2.7 nF  
0603 size  
0805 size  
0603 size  
0603 size  
C2, C3, C8, C9  
C4, C5  
100 nF  
10 pF  
C6, C7  
33 pF  
C10, C11  
R1, R3, R4, R5  
R2  
47 µF; 35 V  
0 Ω  
Matsushita  
0605 size  
SMD resistor  
stripline[2]  
1 k; 0.1 W  
Z0 = 50 Ω  
0603 size  
L1, L2, L3, L4  
width 1.4 mm  
[1] C10 and C11 smooth the DC supply voltage (VBAT).  
[2] The striplines are on a double etched printed-circuit board (εr = 4.6); thickness 0.8 mm.  
9397 750 14011  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 2 February 2005  
15 of 22  
BGY288  
Philips Semiconductors  
Power amplifier with integrated control loop  
11. Package outline  
Leadless surface mounted package; plastic cap; 16 terminations  
SOT775A  
Z
(10×)  
Z
(10×)  
D1  
D2  
e
(2×)  
e
e
Z (8×)  
2
1
(2×) (12×)  
Z
3
1
2
3
4
5
Z
(10×)  
Z
(10×)  
E1  
E2  
Z
4
16  
15  
14  
6
7
8
Z
2
L (16×)  
Z
(36×)  
6
13  
(2×)  
12  
11  
10  
9
Z
(36×)  
b
b (14×)  
5
1
Z
1
D
Dimensions solder resist  
D
1
A
y
c
E
E
1
pin 1 index  
0
5
10 mm  
Z
Z
Z
Z
Z
Z
E2  
5
6
D1  
D2  
E1  
scale  
0.6  
0.6  
0.3  
0.6  
0.3  
0.6  
DIMENSIONS (mm are the original dimensions)  
A
y
Z
3
Z
4
b
b
c
D
D
E
E
1
e
e
e
2
L
Z
Z
1
Z
2
UNIT  
1
1
1
max.  
max.  
8.2  
7.8  
7.95  
7.65  
8.2  
7.8  
7.95  
7.65  
mm  
1.6  
0.6  
0.9  
0.56  
1.55  
1.7  
1.85  
0.6  
0.1  
0.9  
1
1.2  
1.7  
1.6  
Note  
1. General tolerance ±0.050 mm, unless specified otherwise.  
REFERENCES  
JEDEC  
EUROPEAN  
PROJECTION  
OUTLINE  
VERSION  
ISSUE DATE  
IEC  
JEITA  
03-10-10  
SOT775A  
Fig 7. Package outline SOT775A  
9397 750 14011  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 2 February 2005  
16 of 22  
BGY288  
Philips Semiconductors  
Power amplifier with integrated control loop  
12. Soldering Recommendations  
12.1 Reflow profile  
The BGY288 is a laminate-based power amplifier module in a Leadless Grid Array (LGA)  
package. The module can be assembled using a standard Surface Mount Technology  
(SMT) reflow process in a convection or IR-oven. The minimum and maximum limits of the  
temperature profile are shown in Figure 8. The actual profile has to be within these limits,  
and will depend on the printed-circuit board material, the number and size of the  
components to be assembled, and the type of solder which is being used.  
temperature  
T
P
T
R
T
E(max)  
T
E(min)  
α
α
β
t
t
t
R
E
001aaa705  
Fig 8. Recommended reflow temperature profile  
It is recommended to use a standard no-clean solder paste like SnPb for profiles having  
leads containing solder, or SnAgCu for lead-free assembly processes. The parameters  
and corresponding values for SnPb and SnAgCu solder are given in Table 10.  
Table 10: Reflow soldering parameters  
Symbol parameter  
SnPb Solder  
3  
SnAgCu solder  
3  
Unit  
°C/s  
°C  
α
temperature gradient  
TE  
tE  
pre-heat (soak) temperature  
pre-heat time  
100 to 150  
60 to 120  
> 183  
150 to 200  
60 to 180  
> 217  
s
TR  
tR  
TP  
β
reflow temperature  
°C  
reflow time  
60 to 150  
240  
60 to 150  
260  
s
maximum peak temperature  
temperature gradient  
time 25 °C to peak temperature  
°C  
< 5  
< 5  
°C/s  
6 minutes max.  
8 minutes max.  
12.2 Printed-circuit board layout  
The printed-circuit board footprint layout is a copy of the metal pattern on the underside of  
the LGA package. It is recommended that the printed-circuit board is designed with a  
large ground plane, and that the solder lands of the ground plane solder mask are defined  
as shown in Figure 9.  
9397 750 14011  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 2 February 2005  
17 of 22  
BGY288  
Philips Semiconductors  
Power amplifier with integrated control loop  
12.3 Stencil design  
The recommended dimensions of the solder stencil are given in Figure 9 and are based  
on a stencil thickness of 125 µm. Using a thinner or thicker stencil will require the stencil  
aperture dimensions to be adjusted.  
12.4 Rework  
If rework is required, it is recommended that a BGA rework station with a programmable  
top and bottom heater is used. The first step of the rework process is to pre-heat the  
printed-circuit board with the bottom heater of the rework station. When the board has  
reached the pre-heat temperature, the top heater can be used to increase the  
temperature above the melting point of the solder. The component which has to be  
replaced can be picked up with a vacuum nozzle. Before placing a new component the  
remaining solder on the board must be removed. Fresh solder can be dispensed, a new  
component placed, and the board heated as described previously.  
12.5 Moisture sensitivity level  
The BGY288 is tested according to the JEDEC standard JESD 22-A113C. The BGY288 is  
classified on MSL3 for a lead soldering profile with a peak temperature of 240 °C, and on  
MSL4 for a lead-free soldering profile with a peak temperature of 260 °C.  
9397 750 14011  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 2 February 2005  
18 of 22  
BGY288  
Philips Semiconductors  
Power amplifier with integrated control loop  
7.40  
1.10  
1.10  
1.10  
0.80  
B
0.60  
0.90  
0.60  
0.60  
0.60  
A
C
0.60  
1.10  
1.10  
1.10  
1.10  
0.60  
0.60  
7.40  
5.40  
0.30  
0.30  
solder lands  
0.40  
0.60  
solder stencil opening  
DIMENSIONS in mm  
5.20  
0.60  
0.57  
0.90  
0.85  
0.60  
0.55  
0.60 0.57  
0.60 0.57  
0.60 0.55  
detail A  
detail B  
detail C  
(14×)  
(2×)  
(36×)  
mgx467  
Fig 9. Footprint layout and solder stencil design  
9397 750 14011  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 2 February 2005  
19 of 22  
BGY288  
Philips Semiconductors  
Power amplifier with integrated control loop  
13. Revision history  
Table 11: Revision history  
Document ID  
Release date Data sheet status  
20050202 Preliminary data sheet  
Change notice Doc. number  
9397 750 14011  
Supersedes  
BGY288_1  
-
-
9397 750 14011  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 2 February 2005  
20 of 22  
BGY288  
Philips Semiconductors  
Power amplifier with integrated control loop  
14. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
15. Definitions  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
ICs with GSM or 3G functionality Purchase of a Philips IC with GSM  
functionality does not convey an implied license under any patent right on the  
GSM or 3G Standard. A license for the Philips portfolio of GSM and 3G  
patents needs to be obtained via Philips Intellectual Property & Standards  
(www.ip.philips.com), e-mail: info.licensing@philips.com.  
16. Disclaimers  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
17. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
9397 750 14011  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 2 February 2005  
21 of 22  
BGY288  
Philips Semiconductors  
Power amplifier with integrated control loop  
18. Contents  
1
Product profile . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
General description. . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
General features. . . . . . . . . . . . . . . . . . . . . . . . 1  
RF performance . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1  
1.2  
1.2.1  
1.2.2  
1.3  
2
2.1  
2.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 2  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 2  
3
4
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
5
Functional description . . . . . . . . . . . . . . . . . . . 4  
Operating conditions. . . . . . . . . . . . . . . . . . . . . 4  
Power amplifier . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Control logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Power controller . . . . . . . . . . . . . . . . . . . . . . . . 4  
Mode control. . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
5.1  
5.2  
5.3  
5.4  
5.5  
6
6.1  
6.2  
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Ramp-up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Ramp-down . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
7
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Static characteristics. . . . . . . . . . . . . . . . . . . . . 7  
Dynamic characteristics . . . . . . . . . . . . . . . . . . 8  
Application information. . . . . . . . . . . . . . . . . . 14  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 16  
8
9
10  
11  
12  
Soldering Recommendations . . . . . . . . . . . . . 17  
Reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Printed-circuit board layout. . . . . . . . . . . . . . . 17  
Stencil design . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Rework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Moisture sensitivity level . . . . . . . . . . . . . . . . . 18  
12.1  
12.2  
12.3  
12.4  
12.5  
13  
14  
15  
16  
17  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 20  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . . 21  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Contact information . . . . . . . . . . . . . . . . . . . . 21  
© Koninklijke Philips Electronics N.V. 2005  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 2 February 2005  
Document number: 9397 750 14011  
Published in The Netherlands  

相关型号:

BGY32

VHF power amplifier modules
NXP

BGY33

VHF power amplifier modules
NXP

BGY33/B

*POWER MODULE VHF
ETC

BGY35

VHF power amplifier modules
NXP

BGY35/B

VHF POWER MODULE
ETC

BGY36

VHF power amplifier modules
NXP

BGY43

VHF power amplifier module
NXP

BGY46A

RF/Microwave Amplifier, 400 MHz - 440 MHz RF/MICROWAVE NARROW BAND HIGH POWER AMPLIFIER
NXP

BGY46A

RF/Microwave Amplifier, Hybrid,
PHILIPS

BGY46B

RF/Microwave Amplifier, 430 MHz - 470 MHz RF/MICROWAVE NARROW BAND HIGH POWER AMPLIFIER
NXP

BGY47A

RF/Microwave Amplifier, 400 MHz - 470 MHz RF/MICROWAVE NARROW BAND HIGH POWER AMPLIFIER
NXP

BGY47A

RF/Microwave Amplifier, Hybrid,
PHILIPS