DAC-08 [NXP]

8-bit high-speed multiplying D/A converter; 8位高速乘法D / A转换器
DAC-08
型号: DAC-08
厂家: NXP    NXP
描述:

8-bit high-speed multiplying D/A converter
8位高速乘法D / A转换器

转换器
文件: 总16页 (文件大小:163K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DAC-08 SERIES  
8-bit high-speed multiplying D/A converter  
Product data  
2001 Aug 03  
Supersedes data of 1994 Aug 31  
File under Integrated Circuits, Handbook IC11  
Philips  
Semiconductors  
Philips Semiconductors  
Product data  
8-bit high-speed multiplying D/A converter  
DAC-08 Series  
DESCRIPTION  
PIN CONFIGURATIONS  
The DAC-08 series of 8-bit monolithic multiplying Digital-to-Analog  
Converters provide very high-speed performance coupled with low  
cost and outstanding applications flexibility.  
N Package  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
COMP  
V
LC  
Advanced circuit design achieves 70 ns settling times with very low  
glitch and at low power consumption. Monotonic multiplying  
performance is attained over a wide 20-to-1 reference current range.  
Matching to within 1 LSB between reference and full-scale currents  
eliminates the need for full-scale trimming in most applications.  
Direct interface to all popular logic families with full noise immunity is  
provided by the high swing, adjustable threshold logic inputs.  
I
V
O
REF–  
V–  
V
REF+  
V+  
I
O
B
(MSB)  
B
B
8
(LSB)  
1
B
7
2
B
B
B
6
3
4
Dual complementary outputs are provided, increasing versatility and  
enabling differential operation to effectively double the peak-to-peak  
output swing. True high voltage compliance outputs allow direct  
output voltage conversion and eliminate output op amps in many  
applications.  
B
5
TOP VIEW  
1
D Package  
All DAC-08 series models guarantee full 8-bit monotonicity and  
linearities as tight as 0.1% over the entire operating temperature  
range. Device performance is essentially unchanged over the ±4.5 V  
to ±18 V power supply range, with 37 mW power consumption  
attainable at ±5 V supplies.  
1
2
3
4
5
6
7
8
V+  
16  
B
B
(LSB)  
8
15  
14  
13  
12  
11  
10  
9
V
V
7
6
5
4
REF+  
B
B
REF–  
The compact size and low power consumption make the DAC-08  
attractive for portable and military aerospace applications.  
COMPEN  
V
B
LC  
B
B
I
3
2
1
O
FEATURES  
Fast settling output current—70 ns  
V–  
I
B
(MSB)  
O
Full-scale current prematched to ±1 LSB  
Direct interface to TTL, CMOS, ECL, HTL, PMOS  
Relative accuracy to 0.1% maximum over temperature range  
High output compliance –10 V to +18 V  
True and complemented outputs  
TOP VIEW  
NOTE:  
1. SO and non-standard pinouts.  
SL00001  
Figure 1. Pin Configuration  
Wide range multiplying capability  
Low FS current drift — ±10ppm/°C  
Wide power supply range—±4.5 V to ±18 V  
Low power consumption—37 mW at ±5 V  
APPLICATIONS  
8-bit, 1 µs A-to-D converters  
Servo-motor and pen drivers  
Waveform generators  
Audio encoders and attenuators  
Analog meter drivers  
Programmable power supplies  
CRT display drivers  
High-speed modems  
Other applications where low cost, high speed and complete  
input/output versatility are required  
Programmable gain and attenuation  
Analog-Digital multiplication  
2
2001 Aug 03  
853-0045 26832  
Philips Semiconductors  
Product data  
8-bit high-speed multiplying D/A converter  
DAC-08 Series  
ORDERING INFORMATION  
DESCRIPTION  
TEMPERATURE RANGE  
0 to +70°C  
ORDER CODE  
DWG #  
SOT38-4  
SOT38-4  
SOT109-1  
SOT38-4  
16-Pin Plastic Dual In-Line Package (DIP)  
16-Pin Plastic Dual In-Line Package (DIP)  
16-Pin Plastic Small Outline (SO) Package  
16-Pin Plastic Dual In-Line Package (DIP)  
DAC-08CN  
DAC-08EN  
DAC-08ED  
DAC-08HN  
0 to +70°C  
0 to +70°C  
0 to +70°C  
BLOCK DIAGRAM  
MSB  
LSB  
V+  
V
1
B
B
B
B
B
B
B
B
8
LC  
1
2
3
4
5
6
7
13  
5
6
7
8
9
10  
11  
12  
4
I
BIAS  
OUT  
NETWORK  
CURRENT  
SWITCHES  
I
14  
15  
OUT  
2
V
V
(+)  
(–)  
REF  
+
REF  
REFERENCE  
AMPLIFIER  
3
16  
COMP.  
V–  
SL00002  
Figure 2. Block Diagram  
ABSOLUTE MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
RATING  
UNIT  
V+ to V–  
V –V  
Power supply voltage  
Digital input voltage  
36  
V
V– to V– plus 36 V  
V– to V+  
5
12  
V
LC  
V
0
Logic threshold control  
Applied output voltage  
Reference current  
V– to +18  
5.0  
V
I
14  
mA  
V
P
, V  
15  
Reference amplifier inputs  
V to V  
EE CC  
14  
1
Maximum power dissipation T  
= 25 °C (still-air)  
D
amb  
N package  
D package  
1450  
1090  
mW  
mW  
T
Lead soldering temperature (10 sec max)  
Operating temperature range  
230  
°C  
°C  
°C  
SOLD  
T
amb  
0 to +70  
–65 to +150  
T
stg  
Storage temperature range  
NOTE:  
1. Derate above 25 °C, at the following rates:  
N package at 11.6mW/°C  
D package at 8.7mW/°C  
3
2001 Aug 03  
Philips Semiconductors  
Product data  
8-bit high-speed multiplying D/A converter  
DAC-08 Series  
DC ELECTRICAL CHARACTERISTICS  
Pin 3 must be at least 3 V more negative than the potential to which R is returned. V = ±15V , I  
= 2.0 mA.  
15  
CC  
REF  
Output characteristics refer to both I  
and I  
unless otherwise noted. T = 0 °C to 70 °C.  
amb  
OUT  
OUT  
DAC-08C  
DAC-08E  
UNIT  
SYMBOL  
PARAMETER  
Resolution  
TEST CONDITIONS  
Min  
8
Typ  
8
Max  
8
Min  
8
Typ  
Max  
8
8
Bits  
Bits  
Monotonicity  
8
8
8
8
8
8
Relative accuracy  
Over temperature range  
±0.39  
±0.78  
±0.19  
±0.39  
%FS  
%FS  
ppm/°C  
V
Differential non-linearity  
Full-scale tempco  
TCI  
±10  
±10  
FS  
V
OC  
Output voltage compliance  
Full-scale current change< 1/2LSB –10  
+18  
–10  
+18  
V
= 10.000V;  
REF  
I
Full-scale current  
1.94  
1.99  
2.04  
1.94  
1.99  
2.04  
mA  
FS4  
R
, R =5.000 kΩ  
14  
15  
I
I
I
Full-scale symmetry  
Zero-scale current  
I
-I  
±2.0  
±16  
±1.0  
±8.0  
µA  
µA  
FSS  
FS4 FS2  
0.2  
4.0  
0.2  
2.0  
ZS  
Full-scale output current  
range  
R
, R =5.000 kΩ  
FSR  
14  
15  
V
V
= +15.0 V, V– = –10 V  
= +25.0 V, V– = –12 V  
2.1  
4.2  
2.1  
4.2  
mA  
mA  
REF  
REF  
Logic input levels  
V
LC  
= 0 V  
V
V
Low  
0.8  
0.8  
V
V
IL  
High  
2.0  
2.0  
IH  
Logic input current  
V
LC  
= 0 V  
I
I
Low  
V
= –10 V to +0.8 V  
–2.0  
–10  
10  
–2.0  
–10  
10  
µA  
µA  
IL  
IN  
High  
V
= 2.0 V to 18 V  
V– = –15 V  
0.002  
0.002  
IH  
IN  
V
V
Logic input swing  
–10  
–10  
+18  
–10  
+18  
+13.5  
–3.0  
V
V
IS  
Logic threshold range  
Reference bias current  
Reference input slew rate  
Power supply sensitivity  
Positive  
V
S
= ±15 V  
+13.5 –10  
–3.0  
THR  
I
15  
–1.0  
8.0  
–1.0  
8.0  
µA  
dl/dt  
4.0  
4.0  
mA/µs  
I
= 1 mA  
REF  
PSSI  
V+ = 4.5 to 5.5 V, V– = –15 V;  
V+ = 13.5 to 16.5 V, V– = –15 V  
0.0003 0.01  
0.0003 0.01 %FS/%VS  
FS+  
PSI  
Negative  
V– = –4.5 to –5.5 V, V+ = +15 V;  
V– = –13.5 to –16.5 V, V+ = +15 V  
0.002  
0.01  
0.002  
0.01 %FS/%VS  
FS–  
Power supply current  
Positive  
I+  
I–  
3.1  
3.8  
3.1  
3.8  
mA  
mA  
V
S
= ±5 V, I  
= 1.0 mA  
REF  
Negative  
–4.3  
–5.8  
–4.3  
–5.8  
I+  
I–  
Positive  
3.1  
3.8  
3.1  
3.8  
mA  
mA  
V
S
= +5 V, 15 V, I  
= 2.0 mA  
REF  
Negative  
–7.1  
–7.8  
–7.1  
–7.8  
I+  
I–  
Positive  
3.2  
3.8  
3.2  
3.8  
mA  
mA  
V
S
= ±15 V, I  
= 2.0 mA  
REF  
Negative  
–7.2  
–7.8  
–7.2  
–7.8  
±5 V, I  
= 1.0 mA  
37  
48  
37  
48  
mW  
mW  
mW  
REF  
P
D
Power dissipation  
+5 V, –15 V, I  
= 2.0 mA  
122  
156  
136  
174  
122  
156  
136  
174  
REF  
±15 V, I  
= 2.0 mA  
REF  
4
2001 Aug 03  
Philips Semiconductors  
Product data  
8-bit high-speed multiplying D/A converter  
DAC-08 Series  
DC ELECTRICAL CHARACTERISTICS (Continued)  
Pin 3 must be at least 3 V more negative than the potential to which R is returned. V = +15 V, I  
= 2.0 mA.  
15  
CC  
REF  
Output characteristics refer to both I  
and I , unless otherwise noted. T = 0 °C to 70 °C.  
OUT amb  
OUT  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
DAC-08H  
UNIT  
Min  
Typ  
Max  
Resolution  
8
8
8
8
8
8
Bits  
Bits  
Monotonicity  
Relative accuracy  
Over temperature range  
±0.1  
%FS  
%FS  
Differential non-linearity  
±0.19  
TCI  
Full-scale tempco  
±10  
±50  
+18  
ppm/°C  
V
FS  
V
OC  
Output voltage compliance  
Full-scale current  
Full-scale current change 1/2LSB  
–10  
I
I
I
I
V
= 10.000 V, R , R = 5.000 kΩ  
1.984  
1.992  
±1.0  
0.2  
2.000  
±4.0  
1.0  
mA  
µA  
FS4  
FSS  
ZS  
REF  
14  
15  
Full-scale symmetry  
Zero-scale current  
I
–I  
FS4 FS2  
µA  
Full-scale output current range  
R
, R = 5.000 kΩ  
14 15  
FSR  
V
= +15.0 V, V– = –10 V  
2.1  
4.2  
mA  
mA  
REF  
V
=+25.0V, V–=–12V  
REF  
Logic input levels  
V
LC  
= 0 V  
V
V
Low  
0.8  
V
V
IL  
High  
2.0  
IH  
Logic input current  
V
LC  
= 0 V  
I
I
Low  
V
= –10 V to +0.8 V  
–2.0  
–10  
10  
µA  
µA  
IL  
IN  
High  
V
= 2.0 V to 18 V  
V– = –15 V  
0.002  
IH  
IN  
V
V
Logic input swing  
–10  
–10  
+18  
+13.5  
–3.0  
V
V
IS  
Logic threshold range  
Reference bias current  
Reference input slew rate  
Power supply sensitivity  
Positive  
V = ±15 V  
S
THR  
I
15  
–1.0  
8.0  
µA  
dl/dt  
4.0  
mA/µs  
I
= 1 mA  
REF  
PSSI  
V+ = 4.5 to 5.5 V, V– = –15 V;  
V+ = 13.5 to 16.5 V, V– = –15 V  
0.0003  
0.002  
0.01  
0.01  
%FS/%VS  
%FS/%VS  
FS+  
PSI  
Negative  
V– = –4.5 to –5.5 V, V+ = +15 V;  
V– = –13.5 to –16.5 V, V+ = +15 V  
FS–  
Power supply current  
Positive  
I+  
I–  
3.1  
3.8  
mA  
mA  
V
S
= ±5 V, I  
= 1.0 mA  
REF  
Negative  
–4.3  
–5.8  
I+  
I–  
Positive  
3.1  
3.8  
mA  
mA  
V
S
= +5 V, 15 V, I  
= 2.0 mA  
REF  
Negative  
–7.1  
–7.8  
I+  
I–  
Positive  
3.2  
3.8  
mA  
mA  
V
S
= ±15 V, I  
= 2.0 mA  
REF  
Negative  
–7.2  
–7.8  
P
D
Power dissipation  
±5 V, I  
= 1.0 mA  
REF  
37  
48  
mW  
mW  
mW  
+5 V, –15 V, I  
= 2.0 mA  
122  
156  
136  
174  
REF  
±15 V, I  
= 2.0 mA  
REF  
5
2001 Aug 03  
Philips Semiconductors  
Product data  
8-bit high-speed multiplying D/A converter  
DAC-08 Series  
AC ELECTRICAL CHARACTERISTICS  
DAC-08C  
DAC-08E  
Typ  
DAC-08H  
UNIT  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
Min  
Typ  
Max  
Min  
Max  
Min  
Typ  
Max  
To ± 1/2LSB, all bits  
t
Settling time  
switched on or off,  
70  
135  
70  
135  
70  
135  
ns  
ns  
S
T
amb  
= 25 °C  
Propagation delay  
Low-to-High  
t
t
T
= 25 °C, each bit.  
PLH  
amb  
High-to-Low  
All bits switched  
35  
60  
35  
60  
35  
60  
PHL  
TEST CIRCUITS  
V–  
3
V+  
V
REF  
R
REF  
16  
14  
13  
DAC-08  
4
R
f
15  
5-12  
1
2
R15  
CONTROL  
LOGIC  
ERROR  
OUTPUT  
NE5534  
+
REFERENCE DAC  
ACCURACY > 0.006%  
SL00003  
Figure 3. Relative Accuracy Test Circuit  
V
CC  
0.1 µF  
2.4 V  
1.4 V  
e
IN  
13  
0.4 V  
+2.0 V  
DC  
t
= t = 10 ns  
5
PHL PLH  
USE R to GND  
L
1.0 kΩ  
1.0 V  
14  
15  
6
7
8
FOR TURN OFF  
MEASUREMENT  
SETTLING TIME  
0.1 µF  
FOR SETTLING TIME  
1
2
4
16  
R
R = 500 Ω  
L
1.0 kΩ  
L
DAC-08  
9
10  
11  
MEASUREMENT  
(ALL BITS  
0
e
O
t
= 70 ns TYPICAL  
TO ±1/2 LSB  
S
SWITCHED LOW  
TO HIGH)  
12  
e
IN  
51 Ω  
15 pF  
C
25 pF  
O
0
TRANSIENT  
RESPONSE  
0.1 µF  
R
= 50 Ω  
3
L
PIN 4 TO GND  
-100 mV  
V
t
t
EE  
PLH  
PHL  
SL00004  
Figure 4. Transient Response and Settling Time  
6
2001 Aug 03  
Philips Semiconductors  
Product data  
8-bit high-speed multiplying D/A converter  
DAC-08 Series  
TEST CIRCUITS (Continued)  
V
CC  
2V  
0
R
IN  
V
13  
IN  
1 kΩ  
5
6
7
R
= 200 Ω  
EQ  
R
P
14  
15  
8
9
1
2
DAC-08  
10  
11  
12  
4
16  
OPEN  
10%  
0
dI  
dt  
dV  
dt  
I
90%  
SCOPE  
R
L
+
2.0 mA  
R
0.1 µF  
L
3
SLEWING TIME  
V
EE  
SL00005  
Figure 5. Reference Current Slew Rate Measurement  
V
CC  
I
CC  
13  
I
14  
R
14  
R
5
6
7
14  
A
A
A
V
(+)  
REF  
1
2
3
I
15  
15  
1
8
9
15  
A
A
4
5
DAC-08  
DIGITAL  
INPUTS  
2
4
10  
11  
12  
V
A
A
A
O
6
7
8
OUTPUT  
16  
I
O
(+)  
I
R
I
I
L
C
V
3
I
EE  
NOTES:  
(See text for values of C.)  
V
EE  
Typical values of R = R = 1 kΩ  
14  
15  
V
= +2.0 V  
REF  
C = 15 pF  
V and I apply to inputs A through A  
8
I
I
1
The resistor tied to Pin 15 is to temperature compensate the bias current and may not be necessary for all applications.  
A
A
A
A
8
256  
A
A
A
A
7
128  
3
5
6
1
2
4
I
+ K  
)
)
)
)
)
)
)
Ť
Ť
O
2
4
8
16  
32  
64  
V
REF  
where K [  
R
14  
and A = ‘1’ if A is at High Level  
N
N
A
= ‘0’ if A is at Low Level  
N
N
SL00006  
Figure 6. Notation Definitions  
7
2001 Aug 03  
Philips Semiconductors  
Product data  
8-bit high-speed multiplying D/A converter  
DAC-08 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Current vs Output Voltage  
(Output Voltage Compliance)  
True and Complementary Output  
Operation  
Fast Pulsed Reference Operation  
ALL BITS ON  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
T
= T  
TO T  
A
min  
max  
2.5V  
0mA  
I
V
OUT  
IN  
I
= 2mA  
V– = –15V V– = –5V  
REF  
0.5V  
1.0mA  
2.0mA  
–0.5mA  
I
OUT  
I
= 1mA  
REF  
I
–2.5mA  
OUT  
I
= 0.2mA  
REF  
(00000000)  
(11111111)  
200ns/division  
–14 –10 –6 –2  
0
2
6
10  
14 18  
OUTPUT VOLTAGE (V)  
R
= 200, R = 100, CC = 0  
EQ  
L
Full-Scale Current vs  
Reference Current  
Full-Scale Settling Time  
LSB Switching  
5.0  
4.0  
3.0  
2.0  
1.0  
0
ALL BITS SWITCHED ON  
LIMIT FOR  
V–=–15V  
T
= T  
TO T  
max  
A
min  
ALL BITS “HIGH”  
2.4V  
0.4V  
2.4V  
BIT 8  
LOGIC  
INPUT  
0.4V  
0V  
OUTPUT – 1/2LSB  
0
8µA  
SETTLING +1/2LSB  
LIMIT FOR  
V–=–5V  
I
OUT  
0
50ns/DIVISIOM  
50ns/DIVISIOM  
I
=2mA, R =1k1/2LSB=4µA  
FS  
L
0
1.0  
2.0  
3.0  
4.0  
5.0  
I
— REFERENCE CURRENT (mA)  
REF  
LSB Propagation Delay vs IFS  
Reference Input Frequency Response  
500  
400  
300  
200  
100  
0
6
4
2
0
–2  
–4  
–6  
–8  
1
2
R14=R15=1kΩ  
500Ω  
3
1LSB=7.8µA  
R
L
–10 ALL BITS “ON”  
–12 VR15 = 0V  
–14  
1LSB=78nA  
0.1  
0.2  
0.5  
1.0  
2.0  
5.0  
10  
FREQUENCY (MHz)  
I
— OUTPUT FULL SCALE CURRENT (mA)  
FS  
NOTES:  
Curve 1: CC = 15pF, V = 2.0V  
centered at +1.0V  
P-P  
P-P  
IN  
Curve 1: CC = 15pF, V = 5m0V  
centered at +200mV  
centered at 0V  
P-P  
IN  
Curve 1: CC = 15pF, V = 100m0V  
IN  
and applied through 50connected to Pin 14.  
+2.0V applied to R  
.
14  
SL00007  
Figure 7. Typical Performance Characteristics  
8
2001 Aug 03  
Philips Semiconductors  
Product data  
8-bit high-speed multiplying D/A converter  
DAC-08 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Reference AMP Common-Mode Range  
Logic Input Current vs Input Voltage  
V
TH  
– V vs Temperature  
All Bits On  
LC  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
8.0  
6.0  
4.0  
2.0  
0
2.0  
T
= T  
to T  
MIN MAX  
A
1.8  
1.6  
1.4  
1.2  
1.o  
0.8  
0.6  
0.4  
0.2  
0
V– = –15V V– = –5V V+ = +5V  
I
= 2mA  
REF  
I
I
= 1mA  
REF  
= 0.2mA  
REF  
–14 –10 –6 –2  
0
2
6
10 14 18  
–50  
0
50  
100  
150  
–12 –8 –4  
0
4
8
12 16  
TEMPERATURE (°C)  
V
— REFERENCE COMMON MODE VOLTAGE (V)  
LOGIC INPUT VOLTAGE (V)  
15  
POSITIVE COMMON-MODE RANGE IS ALWAYS (V+) –1.5V.  
Output Voltage Compliance  
vs Temperature  
Bit Transfer Characteristics  
Power Supply Current vs V+  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
8
20  
16  
ALL BITS HIGH OR LOW  
7
I–  
I
= 2.0mA  
6
5
4
3
REF  
B
1
12  
Shaded area indicates  
permissible output voltage  
8
range for V– = -15V, I  
2.0mA  
REF  
REF  
4
0
I+  
For other V– or I  
2
B
2
See “Output Current vs Output  
Voltage” curve on previous page  
1
0
B
B
3
4
5
–4  
V– = –15V  
V– = –5V  
–50  
0
50  
100  
150  
V+ – POSITIVE POWER SUPPLY (V  
)
DC  
–8  
B
–12  
–12  
–8  
–4  
0
4
8
12  
16  
–50  
0
50  
100  
150  
LOGIC INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
NOTES:  
through B have identical transfer characteristics.  
Bits are fully switched, with less than 1/2LSB error, at  
less than ±100mV from actual threshold. These  
switching points are guaranteed to lie between 0.8 and  
2.0V over the operating temperature range  
B
1
8
(V  
= 0.0V).  
LC  
Maximum Reference Input Frequency  
vs Compensation Capacitor Value  
Power Supply Current vs V–  
Power Supply Current vs Temperature  
8
8
10,000  
1,000  
100  
BITS MAY BE HIGH OR LOW  
BITS MAY BE HIGH OR LOW  
7
7
6
5
4
3
2
1
0
I– WITH I  
= 2mA  
REF  
V– = +15V  
I–  
6
5
4
3
2
1
0
I
= 2.0mA  
REF  
I– WITH I  
= 1mA  
REF  
I– WITH I  
= 0.2mA  
REF  
V+ = +15V  
I+  
I+  
0
–4.0  
–8.0  
–12  
–16  
–20  
–50  
0
50  
100  
150  
V– — NEGATIVE POWER SUPPLY (V  
)
TEMPERATURE (°C)  
DC  
10  
1
1000  
100  
10  
C
(pF)  
C
SL00008  
Figure 8. Typical Performance Characteristics (cont.)  
9
2001 Aug 03  
Philips Semiconductors  
Product data  
8-bit high-speed multiplying D/A converter  
DAC-08 Series  
TYPICAL APPLICATION  
Output Voltage Range  
The voltage at Pin 4 must always be at least 4.5 V more positive  
than the voltage of the negative supply (Pin 3) when the reference  
current is 2 mA or less, and at least 8 V more positive than the  
negative supply when the reference current is between 2 mA and  
4 mA. This is necessary to avoid saturation of the output transistors,  
which would cause serious accuracy degradation.  
+V  
REF  
OPTIONAL RESISTOR  
FOR OFFSET  
INPUTS  
R
IN  
R
R
REF  
14  
15  
4
2
0V  
REQ  
=200Ω  
16  
P
Output Current Range  
NO CAP  
Any time the full-scale current exceeds 2 mA, the negative supply  
must be at least 8 V more negative than the output voltage. This is  
due to the increased internal voltage drops between the negative  
supply and the outputs with higher reference currents.  
NOTES:  
REQ = R || R  
IN  
Typical Values  
P
R
= 5kΩ  
IN  
+V = 10V  
Accuracy  
IN  
Absolute accuracy is the measure of each output current level with  
respect to its intended value, and is dependent upon relative  
accuracy, full-scale accuracy and full-scale current drift. Relative  
accuracy is the measure of each output current level as a fraction of  
the full-scale current after zero-scale current has been nulled out.  
The relative accuracy of the DAC-08 series is essentially constant  
over the operating temperature range due to the excellent  
temperature tracking of the monolithic resistor ladder. The reference  
current may drift with temperature, causing a change in the absolute  
accuracy of output current. However, the DAC-08 series has a very  
low full-scale current drift over the operating temperature range.  
SL00009  
Pulsed Referenced Operation  
Figure 9. Typical Application  
FUNCTIONAL DESCRIPTION  
Reference Amplifier Drive and Compensation  
The reference amplifier input current must always flow into Pin 14  
regardless of the setup method or reference supply voltage polarity.  
Connections for a positive reference voltage are shown in Figure 3.  
The reference voltage source supplies the full reference current. For  
The DAC-08 series is guaranteed accurate to within ± LSB at  
+25 °C at a full-scale output current of 1.992 mA. The relative  
accuracy test circuit is shown in Figure 3. The 12-bit converter is  
calibrated to a full-scale output current of 1.99219 mA, then the  
bipolar reference signals, as in the multiplying mode, R can be  
15  
tied to a negative voltage corresponding to the minimum input level.  
R
may be eliminated with only a small sacrifice in accuracy and  
15  
DAC-08 full-scale current is trimmed to the same value with R so  
14  
temperature drift.  
that a zero value appears at the error amplifier output. The counter  
is activated and the error band may be displayed on the  
The compensation capacitor value must be increased as R value  
14  
oscilloscope, detected by comparators, or stored in a peak detector.  
is increased. This is in order to maintain proper phase margin. For  
R
values of 1.0, 2.5, and 5.0 k, minimum capacitor values are  
14  
Two 8-bit D-to-A converters may not be used to construct a 16-bit  
accurate D-to-A converter. 16-bit accuracy implies a total of ± part in  
65,536, or ±0.00076%, which is much more accurate than the  
±0.19% specification of the DAC-08 series.  
15, 37, and 75 pF, respectively. The capacitor may be tied to either  
or ground, but using V increases negative supply rejection.  
V
EE  
EE  
(Fluctuations in the negative supply have more effect on accuracy  
than do any changes in the positive supply.)  
Monotonicity  
A negative reference voltage may be used if R is grounded and  
14  
A monotonic converter is one which always provides analog output  
greater than or equal to the preceding value for a corresponding  
increment in the digital input code. The DAC-08 series is monotonic  
for all values of reference current above 0.5 mA. The recommended  
range for operation is a DC reference current between 0.5 mA and  
4.0 mA.  
the reference voltage is applied to R as shown. A high input  
impedance is the main advantage of this method. The negative  
15  
reference voltage must be at least 3.0 V above the V supply.  
EE  
Bipolar input signals may be handled by connecting R to a positive  
14  
reference voltage equal to the peak positive input level at Pin 15.  
When using a DC reference voltage, capacitive bypass to ground is  
recommended. The 5.0 V logic supply is not recommended as a  
reference voltage, but if a well regulated 5.0V supply which drives  
Settling Time  
The worst-case switching condition occurs when all bits are  
switched on, which corresponds to a low-to-high transition for all  
input bits. This time is typically 70 ns for settling to within LSB for  
logic is to be used as the reference, R should be formed of two  
14  
series resistors with the junction of the two resistors bypassed with  
0.1 µF to ground. For reference voltages greater than 5.0 V, a clamp  
diode is recommended between Pin 14 and ground.  
8-bit accuracy. This time applies when R <500 and C <25 pF.  
L
O
The slowest single switch is the least significant bit, which typically  
turns on and settles in 65 ns. In applications where the DAC  
functions in a positive-going ramp mode, the worst-case condition  
does not occur and settling times less than 70 ns may be realized.  
If Pin 14 is driven by a high impedance such as a transistor current  
source, none of the above compensation methods applies and the  
amplifier must be heavily compensated, decreasing the overall  
bandwidth.  
Extra care must be taken in board layout since this usually is the  
dominant factor in satisfactory test results when measuring settling  
time. Short leads, 100 µF supply bypassing for low frequencies,  
minimum scope lead length, and avoidance of ground loops are all  
mandatory.  
10  
2001 Aug 03  
Philips Semiconductors  
Product data  
8-bit high-speed multiplying D/A converter  
DAC-08 Series  
SETTLING TIME AND PROPAGATION DELAY  
V
+ = +15V  
S
V
IN  
C
3
V
ADJ  
Q
1
D
3
R
= 1000Ω  
2
R
= 1000Ω  
1
V
OUT  
R
= 5kΩ  
5
6 7 8 9 10 11 12  
14  
V
= 10V  
REF  
14  
15  
4
V
OUT  
I
= 2mA  
REF  
DUT  
16  
D
2
1
R
= 500Ω  
3
3
1
C
4
D
2
50Ω  
C
5
C
R
= 5kΩ  
C
S
1
15  
2
V
– = –15V  
NOTES:  
D
D
C
, D = IN6263 or equivalent  
= IN914 or equivalent  
= 0.01µF  
1
3
1
2
2
C
, C = 0.1µF  
3
Q
= 2N3904  
1
C
, C = 15pF and includes all probe and fixturing capacitance.  
4
5
SL00010  
Figure 10. Settling Time and Propagation Delay  
BASIC DAC-08 CONFIGURATION  
MSB  
2
3
4
8
5
6
7
LSB  
+V  
REF  
I
REF  
R
REF  
5
6
7
9 10 11 12  
I
I
(LOW T.C.)  
O
14  
4
2
DAC-08  
15  
O
3
16  
1
13  
V–  
V+  
C
COMP  
0.1µF  
0.1µF  
NOTES:  
) V  
255  
256  
REF  
I
[
x
;
I
) I  
+ I  
for all logic states  
FS  
O
O
FS  
R
REF  
SL00011  
Figure 11. Basic DAC-08 Configuration  
11  
2001 Aug 03  
Philips Semiconductors  
Product data  
8-bit high-speed multiplying D/A converter  
DAC-08 Series  
RECOMMENDED FULL-SCALE AND ZERO-SCALE ADJUST  
V
REF  
R
1
R
2
14  
15  
4
2
DAC-08  
R
3
R
= 1MΩ  
4
V–  
V+  
R
= 20kΩ  
S
NOTES:  
R
R
R
= low T.C.  
1
3
2
= R + R  
1
2
0.1 R to minimize pot. contribution to full-scale drift  
1
SL00012  
Figure 12. Recommended Full-Scale and Zero-Scale Adjust  
UNIPOLAR VOLTAGE OUTPUT FOR LOW IMPEDANCE OUTPUT  
5k(LOW T.C.)  
I
R
= 2mA  
4
2
NE531  
OR  
EQUIV  
V
=
OUT  
14  
15  
DAC-08  
0 TO +10V  
+
5kΩ  
SL00013  
Figure 13. Unipolar Voltage Output for Low Impedance Output  
12  
2001 Aug 03  
Philips Semiconductors  
Product data  
8-bit high-speed multiplying D/A converter  
DAC-08 Series  
UNIPOLAR VOLTAGE OUTPUT FOR HIGH IMPEDANCE OUTPUT  
V = 10V  
5kΩ  
5kΩ  
V
V
OUT  
OUT  
4
2
I
R
= 2mA  
DAC-08  
14  
a. Positive Output  
V
OUT  
4
I
R
= 2mA  
DAC-08  
14  
2
V
OUT  
a. Negative Output  
SL00014  
Figure 14. Unipolar Voltage Output for High Impedance Output  
BASIC BIPOLAR OUTPUT OPERATION (OFFSET BINARY)  
V = 10V  
10kΩ  
10kΩ  
4
2
I
R
= 2mA  
DAC-08  
V
14  
OUT  
V
OUT  
B
B
B
3
B
B
B
B
B
8
V
V
OUT  
1
2
4
5
6
7
OUT  
Positive full-scale  
1
1
1
1
1
1
1
1
1
1
0
–9.920V  
–9.840V  
+10.000  
+9.920  
Positive FS – 1LSB  
1
1
1
1
1
+ Zero-scale + 1LSB  
Zero-scale  
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
–0.080V  
0.000  
+0.160  
+0.080  
Zero-scale – 1LSB  
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
0
0.080  
+9.920  
0.000  
–9.840  
–9.920  
Negative full scale – 1LSB  
Negative full scale  
+10.000  
SL00015  
Figure 15. Basic Bipolar Output Operation (Offset Binary)  
13  
2001 Aug 03  
Philips Semiconductors  
Product data  
8-bit high-speed multiplying D/A converter  
DAC-08 Series  
DIP16: plastic dual in-line package; 16 leads (300 mil)  
SOT38-4  
14  
2001 Aug 03  
Philips Semiconductors  
Product data  
8-bit high-speed multiplying D/A converter  
DAC-08 Series  
SO16: plastic small outline package; 16 leads; body width 3.9 mm  
SOT109-1  
15  
2001 Aug 03  
Philips Semiconductors  
Product data  
8-bit high-speed multiplying D/A converter  
DAC-08 Series  
Data sheet status  
Product  
status  
Definitions  
[1]  
Data sheet status  
[2]  
Objective data  
Development  
This data sheet contains data from the objective specification for product development.  
Philips Semiconductors reserves the right to change the specification in any manner without notice.  
Preliminary data  
Product data  
Qualification  
Production  
This data sheet contains data from the preliminary specification. Supplementary data will be  
published at a later date. Philips Semiconductors reserves the right to change the specification  
without notice, in order to improve the design and supply the best possible product.  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply.  
Changes will be communicated according to the Customer Product/Process Change Notification  
(CPCN) procedure SNW-SQ-650A.  
[1] Please consult the most recently issued data sheet before initiating or completing a design.  
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL  
http://www.semiconductors.philips.com.  
Definitions  
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one  
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or  
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended  
periods may affect device reliability.  
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips  
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or  
modification.  
Disclaimers  
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications  
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.  
RighttomakechangesPhilipsSemiconductorsreservestherighttomakechanges, withoutnotice, intheproducts, includingcircuits,standard  
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless  
otherwise specified.  
Koninklijke Philips Electronics N.V. 2001  
Contact information  
All rights reserved. Printed in U.S.A.  
For additional information please visit  
http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
Date of release: 10-01  
9397 750 08922  
For sales offices addresses send e-mail to:  
sales.addresses@www.semiconductors.philips.com.  
Document order number:  
Philips  
Semiconductors  

相关型号:

DAC-0805MR

Video DAC without Color Palette
ETC

DAC-0812

8-Bit, 125MSPS, Low-Power D/A Converters
DATEL

DAC-0812-QL

8-Bit, 125MSPS, Low-Power D/A Converters
DATEL

DAC-0812/883

8-Bit, 125MSPS, Low-Power D/A Converters
DATEL

DAC-0812SE

8-Bit, 125MSPS, Low-Power D/A Converters
DATEL

DAC-0812SM

8-Bit, 125MSPS, Low-Power D/A Converters
DATEL

DAC-08AD/883B

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, 0.085us Settling Time, CDIP16,
RAYTHEON

DAC-08AD/883B

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, 0.135us Settling Time, CDIP16, CERAMIC, DIP-16
FAIRCHILD

DAC-08AF-B

8-Bit Digital-to-Analog Converter
ETC

DAC-08AQ

PARALLEL, 8 BITS INPUT LOADING, 0.1us SETTLING TIME, 8-BIT DAC, CDIP16, CERAMIC, DIP-16
TI

DAC-08AQ/883

IC PARALLEL, 8 BITS INPUT LOADING, 0.085 us SETTLING TIME, 8-BIT DAC, CDIP16, CERDIP-16, Digital to Analog Converter
ADI

DAC-08BC

8-Bit Digital-to-Analog Converter
ETC