DAC1627D1G25 [NXP]

Dual 16-bit DAC, LVDS interface, up to 1.25 Gsps, x2, x4 and x8 interpolating; 双16位DAC , LVDS接口,高达1.25 GSPS , X2,X4和X8插值
DAC1627D1G25
型号: DAC1627D1G25
厂家: NXP    NXP
描述:

Dual 16-bit DAC, LVDS interface, up to 1.25 Gsps, x2, x4 and x8 interpolating
双16位DAC , LVDS接口,高达1.25 GSPS , X2,X4和X8插值

转换器 数模转换器
文件: 总69页 (文件大小:1677K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC1627D1G25  
Dual 16-bit DAC, LVDS interface, up to 1.25 Gsps, x2, x4 and  
x8 interpolating  
Rev. 1 — 29 April 2011  
Objective data sheet  
1. General description  
The DAC1627D1G25 is a high-speed 16-bit dual channel Digital-to-Analog Converter  
(DAC) with selectable ×2, ×4 and ×8 interpolating filters optimized for multi-carrier and  
broadband wireless transmitters at sample rates of up to 1.25 Gsps. Supplied from a  
3.3 V and a 1.8 V source, the DAC1627D1G25 integrates a differential scalable output  
current up to 31.8 mA.  
The DAC1627D1G25 is capable of meeting multi-carrier GSM specifications. For  
example, with an output frequency of 150 MHz and a DAC clock frequency of 1.22 Gsps  
the full-scale dynamic range is:  
SFDRRBW = 85 dBc (bandwidth = 250 MHz)  
IMD3 = 85 dBc  
The Serial Peripheral Interface (SPI) provides full control of the DAC1627D1G25.  
The DAC1627D1G25 integrates a Low Voltage Differential Signaling (LVDS) Double Data  
Rate (DDR) receiver interface, with an on-chip 100 Ω termination. The LVDS DDR  
interface accepts a multiplex input data stream such as interleaved or folded. An internal  
LVDS input auto-calibration ensures the robustness and stability of the interface.  
Digital on-chip modulation converts the complex I and Q inputs from baseband to IF. The  
mixer frequency is set by a 40-bit Numerically Controlled Oscillator (NCO). High resolution  
internal gain, phase and offset control provide outstanding image and Local Oscillator  
(LO) signal rejection at the system analog modulator output.  
An inverse (sin x) / x function ensures a controlled flatness 0.5 dB for high bandwidths at  
the DAC output.  
Multiple device synchronization allows synchronization of the outputs of multiple DAC  
devices. MDS guarantees a maximum skew of one output clock period between several  
devices.  
The DAC1627D1G25 includes a very low noise capacitor-free integrated Phase-Locked  
Loop (PLL) multiplier which generates a DAC clock rate from the LVDS clock rate.  
The DAC1627D1G25 is available in a HVQFN72 package (10 mm × 10 mm).  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
2. Features and benefits  
„ Dual 16-bit resolution  
„ Synchronization of multiple DAC  
devices  
„ 1.25 Gsps maximum update rate  
„ Selectable ×2, ×4 and ×8 interpolation  
filters  
„ 3 or 4 wires mode SPI interface  
„ Differential scalable output current from  
6.95 mA to 31.8 mA  
„ Very low noise capacitor-free integrated „ External analog offset control  
Phase-Locked Loop (PLL)  
(10-bit auxiliary DACs)  
„ Embedded Numerically Controlled  
Oscillator (NCO) with 40-bit  
programmable frequency  
„ High resolution internal digital gain and  
offset control to support high  
performance IQ-modulator image  
rejection  
„ Embedded complex modulator  
„ 1.8 V and 3.3 V power supplies  
„ Internal phase correction  
„ Inverse (sin x) / x function  
„ LVDS DDR compatible input interface  
with on-chip 100 Ω terminations  
„ Power-down mode and Sleep mode;  
5-bit NCO low power mode  
„ LVDS DDR input clock up to 312.5 MHz „ On-chip 1.25 V reference  
„ LVDS or LVPECL compatible DAC clock „ Industrial temperature range 40 °C to  
+85 °C  
„ Interleaved or folded I and Q data input „ 72 pins small form factor HVQFN  
mode  
package  
3. Applications  
„ Wireless infrastructure: MG_GSM, LTE, WiMAX, GSM, CDMA, WCDMA, TD-SCDMA  
„ Communication: LMDS/MMDS, point-to-point  
„ Direct Digital Synthesis (DDS)  
„ Broadband wireless systems  
„ Digital radio links  
„ Instrumentation  
„ Automated Test Equipment (ATE)  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
DAC1627D1G25  
HVQFN72  
plastic thermal enhanced very thin quad flat package; no leads;  
SOT813-3  
72 terminals; body 10 × 10 × 0.85 mm  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
2 of 69  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
5. Block diagram  
SDO  
SDIO  
SCS_N  
SCLK  
DAC1627D  
NCO  
10-BIT  
OFFSET  
CONTROL  
SPI  
AUXAP  
AUXAN  
40-bit frequency setting  
16-bit phase adjustment  
AUX.  
DAC  
cos  
sin  
DCMSU  
10-BIT  
ANALOG GAIN  
CONTROL  
FIR 1  
FIR 2  
FIR 3  
IOUTAP  
IOUTAN  
+
-
DAC A  
X
sin X  
PHASE  
COMP  
+
ALIGNP  
x2  
x2  
x2  
16  
ALIGNN  
REF.  
BANDGAP  
AND  
LD(15)P to  
LVDS  
GAPOUT  
VIRES  
MDS  
COARSE  
OFFSET  
CONTROL  
LD(0)P  
DDR/  
CDI  
DIF  
LD(15)N to  
LD(0)N  
BIASING  
16  
LDCLKP  
LDCLKN  
FIR 1  
FIR 2  
FIR 3  
+
+
+
X
sin X  
PHASE  
COMP  
IOUTBP  
IOUTBN  
DAC B  
x2  
x2  
x2  
10-BIT  
ANALOG GAIN  
CONTROL  
CLKP  
CLKN  
CLOCK GENERATOR/PLL  
COMPLEX MODULATOR  
10-BIT  
OFFSET  
CONTROL  
AUXBP  
AUXBN  
MDSP  
MDSN  
AUX.  
DAC  
MULTI-DAC  
SYNCHRONIZATION  
RESET_N  
001aan827  
Fig 1. Block diagram  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
6. Pinning information  
6.1 Pinning  
terminal 1  
index area  
1
2
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
CLKP  
CLKN  
RESET_N  
SCS_N  
SCLK  
SDIO  
3
MDSP  
4
MDSN  
5
TM  
SDO  
6
ALIGNP  
ALIGNN  
LD[15]P  
LD[15]N  
LD[14]P  
LD[14]N  
IO0  
7
IO1  
8
LD[0]N  
LD[0]P  
LD[1]N  
LD[1]P  
9
DAC1627D1G25  
10  
11  
12  
13  
14  
15  
16  
17  
18  
V
V
DDD(1V8)  
DDD(1V8)  
LD[13]P  
LD[2]N  
LD[2]P  
LD[3]N  
LD[3]P  
LD[4]N  
LD[4]P  
LD[13]N  
LD[12]P  
LD[12]N  
LD[11]P  
LD[11]N  
001aan828  
Transparent top view  
Fig 2. Pin configuration  
6.2 Pin description  
Table 2.  
Symbol  
CLKP  
Pin description  
Pin  
1
Type[1] Description  
I
DAC clock positive input  
DAC clock negative input  
CLKN  
2
I
MDSP  
MDSN  
TM  
3
IO  
multi-device synchronization positive signal  
multi-device synchronization negative signal  
Test mode selection (connect to GND)  
positive input for data alignment  
4
IO  
5
I
I
I
I
I
ALIGNP  
ALIGNN  
LD[15]P  
LD[15]N  
6
7
negative input for data tanglement  
LVDS positive input bit 15[2]  
LVDS negative input bit 15[2]  
8
9
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
4 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 2.  
Pin description …continued  
Type[1] Description  
Symbol  
LD[14]P  
LD[14]N  
VDDD(1V8)  
LD[13]P  
LD[13]N  
LD[12]P  
LD[12]N  
LD[11]P  
LD[11]N  
VDDD(1V8)  
LD[10]P  
LD[10]N  
LD[9]P  
LD[9]N  
LD[8]P  
LD[8]N  
VDDD(1V8)  
LCKP  
Pin  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
I
LVDS positive input bit 14[2]  
I
LVDS negative input bit 14[2]  
1.8 V digital power supply  
LVDS positive input bit 13[2]  
LVDS negative input bit 13[2]  
LVDS positive input bit 12[2]  
LVDS negative input bit 12[2]  
LVDS positive input bit 11[2]  
LVDS negative input bit 11[2]  
1.8 V digital power supply  
LVDS positive input bit 10[2]  
LVDS negative input bit 10[2]  
LVDS positive input bit 9[2]  
LVDS negative input bit 9[2]  
LVDS positive input bit 8[2]  
LVDS negative input bit 8[2]  
1.8 V digital power supply  
LVDS positive data clock input  
LVDS negative data clock input  
connect to ground  
LVDS positive input bit 7[2]  
LVDS negative input bit 7[2]  
LVDS positive input bit 6[2]  
LVDS negative input bit 6[2]  
LVDS positive input bit 5[2]  
LVDS negative input bit 5[2]  
1.8 V digital power supply  
LVDS positive input bit 4[2]  
LVDS negative input bit 4[2]  
LVDS positive input bit 3[2]  
LVDS negative input bit 3[2]  
LVDS positive input bit 2[2]  
LVDS negative input bit 2[2]  
1.8 V digital power supply  
LVDS positive input bit 1[2]  
LVDS negative input bit 1[2]  
LVDS positive input bit 0[2]  
LVDS negative input bit 0[2]  
IO port bit 1  
P
I
I
I
I
I
I
P
I
I
I
I
I
I
P
I
LCKN  
I
GND_DP  
LD[7]P  
LD[7]N  
LD[6]P  
LD[6]N  
LD[5]P  
LD[5]N  
VDDD(1V8)  
LD[4]P  
LD[4]N  
LD[3]P  
LD[3]N  
LD[2]P  
LD[2]N  
VDDD(1V8)  
LD[1]P  
LD[1]N  
LD[0]P  
LD[0]N  
IO1  
G
I
I
I
I
I
I
P
I
I
I
I
I
I
P
I
I
I
I
IO  
IO  
O
IO0  
IO port bit 0  
SDO  
SPI data output  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
5 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 2.  
Pin description …continued  
Type[1] Description  
Symbol  
SDIO  
Pin  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
H
IO  
I
SPI data input/output  
SCLK  
SPI clock  
SCS_N  
I
SPI chip select (active LOW)  
general reset (active LOW)  
RESET_N  
VDDA(1V8)_D  
IOUTBN  
IOUTBP  
VDDA(1V8)_D  
VDDA(3V3)  
AUXBP  
I
P
O
O
P
P
O
O
P
IO  
IO  
P
O
O
P
P
O
O
P
G
1.8 V analog power supply (DAC core)  
complementary DAC B output current  
DAC B output current  
1.8 V analog power supply (DAC core)  
3.3 V analog power supply  
auxiliary DAC B output current  
complementary auxiliary DAC B output current  
1.8 V analog power supply (PLL)  
DAC biasing resistor  
AUXBN  
VDDA(1V8)_P1  
VIRES  
GAPOUT  
VDDA(1V8)_P2  
AUXAN  
band gap input/output voltage  
1.8 V analog power supply (PLL)  
complementary auxiliary DAC A output current  
auxiliary DAC A output current  
3.3 V analog power supply  
AUXAP  
VDDA(3V3)  
VDDA1V8_D  
IOUTAP  
IOUTAN  
VDDA(1V8)_D  
GND  
1.8 V analog power supply (DAC core)  
DAC A output current  
complementary DAC A output current  
1.8 V analog power supply (DAC core)  
ground (exposed die pad)  
[1] P: power supply; G: ground; I: input; O: output.  
[2] The LVDS input data bus order can be reversed and each element can be swapped between P and N using  
dedicated registers (see Table 86, Table 87 and Table 88).  
7. Limiting values  
Table 3.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter  
Conditions  
Min  
Max  
Unit  
VDDA(3V3) analog supply voltage  
(3.3 V)  
0.5  
+4.6  
V
VDDD(1V8) digital supply voltage  
(1.8 V)  
0.5  
0.5  
+2.5  
+2.5  
V
V
[1]  
VDDA(1V8) analog supply voltage  
(1.8 V)  
VI  
input voltage  
input pins referenced to GND  
0.5  
0.5  
<tbd>  
+4.6  
V
V
VO  
output voltage  
pins IOUTAP, IOUTAN,  
IOUTBP, IOUTBN, AUXAP,  
AUXAN, AUXBP and AUXBN  
referenced to GND  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
6 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 3.  
Limiting values …continued  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter Conditions  
Min  
55  
40  
40  
Max  
+150  
+85  
Unit  
°C  
Tstg  
Tamb  
Tj  
storage temperature  
ambient temperature  
junction temperature  
°C  
+125  
°C  
[1] The analog 1.8 V power supply must be connected to pins VDDA1V8_D, VDDA1V8_P1, and  
VDDA1V8_P2.  
8. Thermal characteristics  
Table 4.  
Thermal characteristics  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
[1]  
[1]  
Rth(j-a)  
thermal resistance from junction  
to ambient  
16.2  
K/W  
Rth(j-c)  
thermal resistance from junction  
to case  
6.7  
K/W  
[1] Value for six layers board in still air with a minimum of 49 thermal vias.  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
7 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
9. Characteristics  
Table 5.  
Characteristics  
VDDA(1V8) = 1.8 V; VDDD(1V8) = 1.8 V; VDDA(3V3) = 3.3 V; Typical values measured at Tamb = +25 °C; RL = 50 Ω; IO(fs) = 20 mA;  
maximum sample rate used; external PLL; no auxiliary DAC; no inverse sinus x/x; no output correction; output load condition  
defined in Figure 22; output level = 1 V (p-p).  
Symbol  
VDDA(3V3)  
VDDD(1V8)  
VDDA(1V8)  
IDDA(3V3)  
IDDD(1V8)  
Parameter  
Conditions  
Test  
Min  
Typ  
3.3  
1.8  
1.8  
63  
Max  
3.45  
1.9  
Unit  
[1]  
analog supply  
voltage (3.3 V)  
C
C
C
C
C
3.15  
1.7  
V
digital supply  
voltage (1.8 V)  
V
[2]  
analog supply  
voltage (1.8 V)  
1.7  
1.9  
V
analog supply  
current (3.3 V)  
Aux DAC on  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
mA  
mA  
digital supply  
current (1.8 V)  
fs = 983.04 67;  
×4 interpolation; no NCO;  
MDS on  
520  
fs = 620 Msps;  
C
<tbd>  
440  
<tbd>  
mA  
×2 interpolation; NCO on;  
no MDS  
[2]  
IDDA(1V8)  
analog supply  
current (1.8 V)  
fs = 983.04 Msps; 1 V (p-p)  
fs = 620 Msps; 1 V (p-p)  
C
C
C
<tbd>  
<tbd>  
-
210  
<tbd>  
<tbd>  
-
mA  
mA  
mW  
210  
Ptot  
total power  
dissipation  
fs = 1228.8 Msps;  
×4 interpolation; NCO on;  
MDS off  
1770  
fs = 983.04 Msps;  
×4 interpolation; 5-bit NCO;  
MDS off  
C
C
C
-
-
-
-
1530  
<tbd>  
1540  
1400  
-
-
-
-
mW  
mW  
mW  
mW  
fs = 983.04 Msps;  
×4 interpolation; NCO off;  
MDS off  
fs = 737.28 Msps;  
×4 interpolation; 5-bit NCO;  
MDS off  
fs = 620 Msps;  
×2 interpolation; 40-bit NCO;  
MDS off  
full power-down  
C
C
-
1.2  
-
-
mW  
mV  
Clock inputs (pins CLKP, CLKN)  
Vi(clk)dif  
differential clock peak-to-peak  
200  
2000  
input voltage  
Ri  
Ci  
input resistance  
input capacitance  
D
D
-
-
<tbd>  
<tbd>  
-
-
MΩ  
pF  
Digital inputs (pins LD[15]P to LD[0]P, LD[15]N to LD[0]N, LCKP and LCKN)  
Vi  
input voltage  
input differential |Vgpd| < 50 mV[3]  
|Vgpd| < 50 mV[3]  
C
C
825  
-
-
1575  
+100  
mV  
mV  
Vidth  
100  
threshold voltage  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
8 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 5.  
Characteristics …continued  
VDDA(1V8) = 1.8 V; VDDD(1V8) = 1.8 V; VDDA(3V3) = 3.3 V; Typical values measured at Tamb = +25 °C; RL = 50 Ω; IO(fs) = 20 mA;  
maximum sample rate used; external PLL; no auxiliary DAC; no inverse sinus x/x; no output correction; output load condition  
defined in Figure 22; output level = 1 V (p-p).  
Symbol  
Parameter  
Conditions  
Test  
[1]  
Min  
Typ  
Max  
Unit  
Ri  
Ci  
input resistance  
D
D
-
-
100  
-
-
Ω
input capacitance  
<tbd>  
pF  
Digital inputs/outputs (pins MDSN, MDSP)  
Vo(dif)(p-p)  
peak-to-peak  
differential output  
voltage  
C
-
600  
-
mV  
Co(L)  
Ci  
output load  
capacitance  
between GND and pin  
MDSN or MDSP  
D
D
-
-
-
<tbd>  
-
pF  
pF  
input capacitance between GND and pin  
MDSN or MDSP  
<tbd>  
Ri  
input resistance  
D
C
C
-
100  
-
Ω
Vi  
input voltage  
input differential |Vgpd| < 50 mV[3]  
|Vgpd| < 50 mV[3]  
825  
100  
-
-
1575  
+100  
mV  
mV  
Vidth  
threshold voltage  
Digital inputs/outputs (pins SDO, SDIO, SCLK, SCS_N, RESET_N)  
VIL  
VIH  
VOL  
VOH  
IIL  
LOW-level input  
voltage  
C
C
C
C
I
GND  
-
0.3VDD(1V8)  
V
HIGH-level input  
voltage  
0.7VDD(1V8)  
-
VDD(1V8)  
V
LOW-level output pins SDO and SDIO  
voltage  
0
-
<tbd>  
V
HIGH-level  
output voltage  
pins SDO and SDIO  
<tbd>  
-
VDD(1V8)  
V
LOW-level input VIL = <tbd> V  
current  
-
-
-
<tbd>  
<tbd>  
<tbd>  
-
-
-
μA  
μA  
pF  
IIH  
HIGH-level input VIH = <tbd> V  
current  
I
Ci  
input capacitance  
D
Analog outputs (pins IOUTAP, IOUTAN, IOUTBP, IOUTBN)  
IO(fs)  
full-scale output controlled by the analog  
D
6.19  
-
31.8  
mA  
current  
GAIN registers (see Table 46  
to Table 49)  
default value  
D
D
D
-
20  
-
-
mA  
V
VO  
output voltage  
compliance range  
<tbd>  
-
VDDA(3V3)  
-
VO(cm)  
common-mode  
output voltage  
2.8  
V
Ro  
Co  
output resistance  
D
D
-
-
250  
3
-
-
kΩ  
output  
pF  
capacitance  
NDAC(mono)  
DAC  
guaranteed  
D
-
<tbd>  
-
bits  
monotonicity  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
9 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 5.  
Characteristics …continued  
VDDA(1V8) = 1.8 V; VDDD(1V8) = 1.8 V; VDDA(3V3) = 3.3 V; Typical values measured at Tamb = +25 °C; RL = 50 Ω; IO(fs) = 20 mA;  
maximum sample rate used; external PLL; no auxiliary DAC; no inverse sinus x/x; no output correction; output load condition  
defined in Figure 22; output level = 1 V (p-p).  
Symbol  
Parameter  
Conditions  
Test  
[1]  
Min  
Typ  
Max  
Unit  
ΔEO  
offset error  
variation  
D
D
-
-
<tbd>  
<tbd>  
-
-
ppm/°C  
ppm/°C  
ΔEG  
gain error  
variation  
Reference voltage output (pin GAPOUT)  
VO(ref)  
reference output Tamb = +25 °C  
voltage  
I
<tbd>  
1.25  
40  
<tbd>  
V
IO(ref)  
reference output 1.25 V external voltage  
current  
D
C
-
-
-
-
μA  
ΔVO(ref)  
reference output  
voltage variation  
<tbd>  
ppm/°C  
Analog auxiliary outputs (pins AUXAP, AUXAN, AUXBP and AUXBN)  
IO(fs)  
full-scale output auxiliary DAC A;  
I
-
2.2  
2.2  
-
-
mA  
mA  
V
current  
differential outputs  
auxiliary DAC B;  
differential outputs  
I
-
-
VO(aux)  
auxiliary output  
voltage  
compliance range  
guaranteed  
C
D
0
-
2
-
NDAC(aux)mono auxiliary DAC  
monotonicity  
10  
Bits  
LVDS input timing  
fdata  
data rate  
input; ×2 interpolation  
input; ×4 interpolation  
input; ×8 interpolation  
C
C
C
C
<tbd>  
<tbd>  
<tbd>  
<tbd>  
-
-
-
-
312.5  
MHz  
MHz  
MHz  
ps  
312.5  
156.25  
+<tbd>  
tsk(clk-D)  
skew time from  
clock to data  
input  
DAC output timing  
fs  
ts  
sampling rate  
settling time  
C
D
-
-
-
1250  
-
Msps  
ns  
to ± 0.5 LSB  
20  
Internal PLL timing  
fs sampling rate  
40-bit NCO frequency range; fs = 1000 Msps  
C
-
-
1000  
Msps  
fNCO  
NCO frequency  
two’s complement coding  
reg value = 8000000000h  
D
-
-
-
-
-
-
500  
-
-
-
-
MHz  
mHz  
Hz  
reg value = FFFFFFFFFFh D  
0.9095  
0
reg value = 0000000000h  
reg value = 0000000001h  
D
D
+0.9095  
mHz  
MHz  
mHz  
reg value = 7FFFFFFFFFh D  
D
+499.99909 -  
0.9095  
fstep  
step frequency  
-
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
10 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 5.  
Characteristics …continued  
VDDA(1V8) = 1.8 V; VDDD(1V8) = 1.8 V; VDDA(3V3) = 3.3 V; Typical values measured at Tamb = +25 °C; RL = 50 Ω; IO(fs) = 20 mA;  
maximum sample rate used; external PLL; no auxiliary DAC; no inverse sinus x/x; no output correction; output load condition  
defined in Figure 22; output level = 1 V (p-p).  
Symbol  
Parameter  
Conditions  
Test  
[1]  
Min  
Typ  
Max  
Unit  
Low power NCO frequency range; fs = 1000 MHz  
fNCO  
NCO frequency  
two’s complement coding  
reg value = F8000000000h  
reg value = F8000000000h  
reg value = 00000000000h  
reg value = 08000000000h  
reg value = 7FFFFFFFFFh  
D
D
D
D
D
D
-
-
-
-
-
-
500  
-
-
-
-
-
-
MHz  
MHz  
Hz  
31.25  
0
+31.25  
+468.75  
31.25  
MHz  
MHz  
MHz  
fstep  
step frequency  
Dynamic performance  
SFDR  
spurious-free  
fdata = 307.2 MHz;  
dynamic range  
fs = 1228.8 Msps; BW = fs / 2  
fo = 20 MHz at 1 dBFS;  
I
I
-
-
83  
85  
-
-
dBc  
dBc  
fdata = 245.76 MHz;  
fs = 983.04 Msps; BW = fs / 2  
fo = 20 MHz at 1 dBFS  
SFDRRBW  
restricted  
bandwidth  
spurious-free  
dynamic range  
fdata = 245.76 MHz;  
fs = 983.04 Msps;  
fo = 150 MHz  
BW = 100 MHz  
BW = 180 MHz  
I
I
-
-
90  
-
-
dBc  
dBc  
<tbd>  
fdata = 307.2 MHz;  
fs = 1228.8 Msps;  
fo = 210 MHz  
BW = 100 MHz  
BW = 180 MHz  
I
I
I
-
-
-
<tbd>  
<tbd>  
93  
-
-
-
dBc  
dBc  
dBc  
IMD3  
third-order  
fdata = 245.76 MHz;  
fs = 983.04 Msps;  
intermodulation  
distortion  
fo1 = 20 MHz; fo2 = 21 MHz;  
×4 interpolation;  
output level = 1 dBFS  
fdata = 245.76 MHz;  
I
-
85  
-
dBc  
fs = 983.04 Msps;  
fo1 = 152 MHz;  
fo2 = 155.1 MHz;  
fs = 1228.8 MHz;  
×4 interpolation;  
output level = 1 dBFS  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
11 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 5.  
Characteristics …continued  
VDDA(1V8) = 1.8 V; VDDD(1V8) = 1.8 V; VDDA(3V3) = 3.3 V; Typical values measured at Tamb = +25 °C; RL = 50 Ω; IO(fs) = 20 mA;  
maximum sample rate used; external PLL; no auxiliary DAC; no inverse sinus x/x; no output correction; output load condition  
defined in Figure 22; output level = 1 V (p-p).  
Symbol  
Parameter  
Conditions  
Test  
[1]  
Min  
Typ  
Max  
Unit  
ACPR  
adjacent channel fs = 1228.8 Msps;  
power ratio  
×4 interpolation;  
fo = 210 MHz  
1 carrier; BW = 5 MHz  
2 carriers; BW = 10 MHz  
4 carriers; BW = 20 MHz  
D
D
D
D
-
-
-
-
77  
-
-
-
-
dBc  
73  
dBc  
72  
dBc  
NSD  
noise spectral  
density  
fs = 983.04 Msps;  
×4 interpolation;  
-164  
dBm/Hz  
fo = 20 MHz at 1 dBFS  
fs = 983.04 Msps;  
D
-
-161  
-
dBm/Hz  
×4 interpolation;  
fo = 153.6 MHz at 1 dBFS  
[1] D = guaranteed by design; C = guaranteed by characterization; I = 100 % industrially tested.  
[2] VDDA(1V8)_D, VDDA(1V8)_P1 and VDDA(1V8)_P2 must be connected to the same 1.8 V analog power supply. it is recommended to use  
dedicated filters for the three power pins.  
[3] |Vgpd| represents the ground potential difference voltage. This voltage is the result of current flowing through the finite resistance and the  
inductance between the receiver and the driver circuit ground voltages.  
10. Application information  
10.1 General description  
The DAC1627D1G25 is a dual 16-bit DAC operating up to 1250 Msps. Each DAC consists  
of a segmented architecture, comprising a 6-bit thermometer sub-DAC and a 10-bit binary  
weighted sub-DAC.  
A maximum input LVDS DDR data rate of up to 312.5 MHz and a maximum output  
sampling rate of 1250 Msps ensure more flexibility for wide bandwidth and multi-carrier  
systems. The internal 40-bit NCO of the DAC1627D1G25 simplifies the frequency  
selection of the system. The DAC1627D1G25 provides ×2, ×4 or ×8 interpolation filters  
that are very useful for removing the undesired images.  
Each DAC generates two complementary current outputs on pins IOUTAP and IOUTAN  
and pins IOUTBP and IOUTBN. These outputs provide a full-scale output current (IO(fs)) of  
up to 31.8 mA. An internal reference is available for the reference current which is  
externally adjustable using pin VIRES.  
High resolution internal gain, phase and offset control provide outstanding image and  
Local Oscillator (LO) signal rejection at the system analog modulator output.  
Multiple device synchronization enables synchronization of the outputs of multiple DAC  
devices. MDS guarantees a maximum skew of one output clock period between several  
devices.  
All functions can be set using an SPI interface.  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
12 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
10.2 Serial Peripheral Interface (SPI)  
10.2.1 Protocol description  
The DAC1627D1G25 serial interface is a synchronous serial communication port ensures  
easy interface with many industry microprocessors. It provides access to the registers that  
define the operating modes of the chip in both write and read mode.  
This interface can be configured as a 3-wire type (pin SDIO as bidirectional pin) or 4-wire  
type (pins SDIO and SDO as unidirectional pins, input and output port respectively). In  
both configurations, SCLK acts as the serial clock and SCS_N as the serial chip select.  
Figure 3 shows the SPI protocol. Each read/write operation is followed by an SCS_N  
signal and enabled by a LOW assertion to drive the chip with two to five bytes, depending  
on the content of the instruction byte (see Table 7).  
RESET_N  
(optional)  
SCS_N  
SCLK  
SDIO  
R/W  
N1  
N0  
A4  
A3  
A2  
A1  
A0  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
SDO  
(optional)  
001aan829  
Fig 3. SPI protocol  
R/W indicates the mode access (see Table 6)  
Table 6.  
Read or Write mode access description  
Description  
R/W  
0
Write mode operation  
1
Read mode operation  
Table 7 shows the number of bytes to be transferred. N1 and N0 indicate the number of  
bytes transferred after the instruction byte.  
Table 7.  
Number of bytes to be transferred  
N1  
0
N0  
0
Number of bytes transferred  
1 byte  
0
1
2 bytes  
3 bytes  
4 bytes  
1
0
1
1
A[4:0] indicates which register is being addressed. If a multiple transfer occurs, this  
address concerns the first register. Next are those which follow directly in a decreasing  
order (see Table 23, Table 55 and Table 79).  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
13 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
The DAC1627D1G25 incorporates more than the 32 SPI registers allowed by the address  
value A[4:0]. It uses three SPI register pages (page_00, page_01, and page_0A), each  
containing 32 registers. The 32nd register of each page indicates which page is currently  
addressed (00h, 01h or 0Ah).  
10.2.2 SPI timing description  
The SPI interface can operate at a frequency up to 15 MHz. The SPI timings are shown in  
Figure 4.  
t
w(RESET_N)  
RESET_N  
(optional)  
50 %  
t
t
h(SCS_N)  
su(SCS_N)  
SCS_N  
50 %  
t
w(SCLK)  
SCLK  
SDIO  
50 %  
50 %  
t
h(SDIO)  
t
001aan830  
su(SDIO)  
Fig 4. SPI timing diagram  
The SPI timing characteristics are given in Table 8.  
Table 8.  
Symbol  
fSCLK  
SPI timing characteristics  
Parameter  
Min  
-
Typ  
Max  
25  
-
Unit  
MHz  
ns  
SCLK frequency  
-
-
tw(SCLK)  
SCLK pulse  
width  
30  
tsu(SCS_N)  
th(SCS_N)  
tsu(SDIO)  
SCS_N set-up  
time  
20  
20  
10  
-
-
-
-
-
-
ns  
ns  
ns  
SCS_N hold  
time  
SDIO set-up  
time  
th(SDIO)  
SDIO hold time  
5
-
-
-
-
ns  
ns  
tw(RESET_N)  
RESET_N pulse  
width  
30  
10.3 Power-on sequence  
There are three steps for the power-on sequence (see Figure 5):  
1. The board is power-on. At the turn-on time, all DAC1627D1G25 supplies have  
reached their specification ranges.  
2. At least 1 μs after the turn-on time pin RESET_N must be released.  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
14 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
3. When the DAC clock and LVDS clock are stable, the SPI configuration is sent to the  
DAC1627D1G25. Writing 0 in bits RST_DCLK and RST_LCLK of the register  
MAIN_CNTRL (see Table 80) starts the automatic calibration. 30 μs after this  
calibration, the DAC1627D1G25 is operational.  
WRITE DAC CONFIGURATION  
START CLOCK CALIBRATION  
SPI bus  
RESET_N  
power supplies  
time  
t
on  
t
rst  
t
spi_start  
power in  
specification  
range  
001aan810  
Fig 5. Power-on sequence  
10.4 LVDS Data Input Format (DIF) block  
The Data Input Formatting (DIF) block captures and resynchronizes data on the LVDS bus  
with its own LCLKP/LCLKN clock. Each LVDS input buffer has an internal resistance of  
100 Ω, so an external resistor is not required. The DIF block includes two sub-blocks:  
LDVS receiver:  
Provides high flexibility for the LVDS interface, especially for the PCB layout and the  
control of the input port polarity and the input port mapping.  
Data format block:  
Enables the adaptation, which ensures the support of several data encoding modes.  
16 PA[15..0]  
16 PB[15..0]  
16 I[15..0]  
16 Q[15..0]  
LD[15]P  
LD[15]N  
to DAC A  
to DAC B  
LD[0]P  
LD[0]N  
LVDS  
RECEIVER  
DATA  
FORMAT  
LCLKP  
LCLKN  
LCLK  
001aan392  
Fig 6. LVDS Data Input Format (DIF) block diagram  
10.4.1 Input port polarity  
The polarity of each individual LVDS input (LD[15]P to LD[0]P and LD[15]N to LD[0]N) can  
be changed, ensuring a much easier PCB layout design. The input polarity is controlled  
with bits LD_POL[7:0] in register LD_POL_LSB (see Table 86) and bits LD_POL[15:8] in  
register LD_POL_MSB (see Table 87).  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
15 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
10.4.2 Input port mapping  
Inverting the order of the LSB and the MSB of the LVDS bus using bit WORD_SWAP in  
register LD_CNTRL (see Table 88) also simplifies the design of the PCB (see Table 9).  
Table 9.  
Input LVDS bus swapping  
Internal LVDS bus  
External LVDS bus  
(WORD_SWAP = 0)  
External LVDS bus  
(WORD_SWAP = 1)  
LDI[15]P,N  
LDI[14]P,N  
LDI[13]P,N  
LDI[12]P,N  
LDI[11]P,N  
LDI[10]P,N  
LDI[9]P,N  
LDI[8]P,N  
LDI[7]P,N  
LDI[6]P,N  
LDI[5]P,N  
LDI[4]P,N  
LDI[3]P,N  
LDI[2]P,N  
LDI[1]P,N  
LDI[0]P,N  
LD[15]P,N  
LD[14]P,N  
LD[13]P,N  
LD[12]P,N  
LD[11]P,N  
LD[10]P,N  
LD[9]P,N  
LD[8]P,N  
LD[7]P,N  
LD[6]P,N  
LD[5]P,N  
LD[4]P,N  
LD[3]P,N  
LD[2]P,N  
LD[1]P,N  
LD[0]P,N  
LD[0]P,N  
LD[1]P,N  
LD[2]P,N  
LD[3]P,N  
LD[4]P,N  
LD[5]P,N  
LD[6]P,N  
LD[7]P,N  
LD[8]P,N  
LD[9]P,N  
LD[10]P,N  
LD[11]P,N  
LD[12]P,N  
LD[13]P,N  
LD[14]P,N  
LD[15]P,N  
10.4.3 Input port swapping  
The LVDS DDR receiver block internally maps the incoming LVDS data bus into two  
buses with a single data rate (Figure 7).  
A0  
A1  
A2  
A3  
PA[15..0]  
LD[15..0]P/N  
to DAC A  
A0 B0 A1 B1 A2 B2 A3 B3  
LVDS  
RECEIVER  
B0  
B1  
B2  
B3  
PB[15..0]  
LCLK  
to DAC B  
LCLKP/N  
001aan393  
Fig 7. LVDS DDR receiver mapping LDAB SWAP = 0  
These two buses can be swapped internally using bit LDAB_SWAP of register  
LD_CNTRL (see Table 88 and Figure 8).  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
16 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
B0  
A0  
B1  
B2  
A2  
B3  
PA[15..0]  
LD[15..0]P/N  
to DAC A  
A0 B0 A1 B1 A2 B2 A3 B3  
LVDS  
RECEIVER  
A1  
A3  
PB[15..0]  
LCLK  
to DAC B  
LCLKP/N  
001aan394  
Fig 8. LVDS DDR receiver mapping LDAB SWAP = 1  
10.4.4 Input port formatting  
The LVDS DDR input bus multiplexes two 16-bit streams. The LVDS receiver block  
demultiplexes these two streams.  
The two streams can carry two data formats:  
Folded  
Interleaved  
The data format block is in charge of the data format adaptation (see Figure 9).  
A0  
A1  
A2  
A3  
I0  
I1  
I2  
I3  
PA[15..0]  
LD[15..0]P/N  
to DAC A  
A0 B0 A1 B1 A2 B2 A3 B3  
LVDS  
RECEIVER  
DATA  
FORMAT  
B0  
B1  
B2  
B3  
Q0  
Q1  
Q2  
Q3  
PB[15..0]  
LCLK  
to DAC B  
LCLKP/N  
001aan395  
Fig 9. LVDS DDR data formats  
The DAC1627D1G25 can correctly decode the input stream using bit IQ_FORMAT of  
register LD_CNTRL (see Table 88), because it can determine which format is used on the  
LVDS DDR bus.  
Table 10 shows the format mapping between the LVDS input data and the data sent to the  
two DAC channels depending on the data format selected.  
Table 10. Folded and interleaved format mapping  
Data format  
Data bit mapping  
interleaved format (IQ_FORMAT = 1)  
folded format (IQ_FORMAT = 0)  
In[15..0] = An[15..0]; Qn[15..0] = Bn[15..0]  
In[15..8] = An[15..8]; In[7..0] = Bn[15..8]  
Qn[15..8] = An[7..0]; Qn[7..0] = Bn[7..0]  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
17 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
10.5 Input clock  
The DAC1627D1G25 operates with two clocks, one for the LVDS DDR interface and one  
for the DAC core.  
10.5.1 LVDS DDR clock  
The LVDS DDR clock can be interfaced as shown in Figure 10 because the clock buffer  
contains a 100 Ω internal resistor.  
DAC1627D  
LCLKP  
Z = 100 Ω  
LVDS  
100 Ω LVDS  
LCLKN  
001aan811  
Fig 10. LVDS DDR clock configuration  
10.5.2 DAC core clock  
The DAC core clock can achieve a frequency of up to 1.25 Gsps. It includes internal  
biasing to support both AC-coupling and DC-coupling. The clock can be easily connected  
to any LVDS, CML or PECL clock sources.  
Depending on the interface selected, the hardware configuration varies  
(see Figure 11 to Figure 13).  
CLKP  
Z = 100 Ω  
100 Ω  
LVDS  
DAC1627D  
CLKN  
001aan813  
a. DC-coupling  
100 nF  
CLKP  
CLKN  
Z = 100 Ω  
100 Ω  
100 nF  
LVDS  
DAC1627D  
001aan812  
b. AC-coupling  
Fig 11. DAC core clock: LVDS configuration  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
18 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
50 Ω  
3.3 V  
100 nF  
CLKP  
Z = 50 Ω  
CML  
DAC1627D  
100 nF  
CLKN  
Z = 50 Ω  
50 Ω  
3.3 V  
001aan831  
Fig 12. DAC core clock: CML configuration with AC-coupling  
200 Ω  
100 nF  
CLKP  
Z = 50 Ω  
PECL  
100 Ω  
CLKN  
DAC1627D  
100 nF  
Z = 50 Ω  
200 Ω  
001aan832  
Fig 13. DAC core clock: PECL configuration with AC-coupling  
10.6 Timing  
The DAC1627D1G25 can operate at an update rate (fs) of up to 1.25 Gsps and with an  
input data rate (fdata) of up to 312.5 MHz.  
The sampling position of the LVDS data can be tuned using a 16-step compensation delay  
clock. The delay clock (see Figure 14, signals LDCLKPcp and LDCLKNcp) is used  
internally to obtain a control signal, which enables calibrating the compensation delay at  
start-up and monitoring if the sampling position is properly aligned.  
Figure 14 shows how the compensation delay helps to recover the LVDS DDR data on  
both the A and B paths.  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
19 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
LDCLKN  
LDCLKP  
LD[i]N  
D [i]  
n
D
n + 1  
[i]  
D
n + 2  
[i]  
LD[i]P  
t
cmp  
LDCLKNcp  
LDCLKPcp  
D
D
[i]  
[i]  
D [i]  
D
D
[i]  
[i]  
LDA[i]  
LDB[i]  
n 1  
n
n + 2  
D
[i]  
n 1  
n + 1  
n + 3  
001aan400  
Fig 14. LVDS DDR demux timing (LVDS A and B paths not swapped; LDAB_SWAP = 0)  
The compensation delay time, referred to as tcmp in Figure 14, can be tuned automatically  
or manually.  
Automatic tuning is recommended for a high-speed LVDS data rate (> 300 MHz). The  
external LVDS data and clock signals aligns the rising and falling edges. The timing  
requirement is defined in Figure 15 and in Table 5.  
V
V
IH  
IH  
LVDS data  
V
V
IL  
IL  
t
sk(min)  
t
sk(max)  
LVDS clock  
001aan833  
tsk(min) = minimum skew time  
tsk(max) = maximum skew time  
Fig 15. Timing requirement automatic tuning  
When tuning manually, the compensation delay time (tcmp in Figure 14), can be tuned as  
shown in Table 11 using bits LDCLK_DEL[3:0] of register MAN_LDCLKDEL  
(see Table 81) and bit CAL_CNTRL of register MAIN_CNTRL (see Table 80).  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
20 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 11. Compensation delay values for manual tuning  
LDCLK_DEL[3:0]  
CAL_CNTRL  
Typical compensation delay  
time  
xxx  
0
tcmp controlled by DCSMU  
block (automatic control)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
360 ps to 405 ps  
435 ps to 540 ps  
525 ps to 645 ps  
600 ps to 720 ps  
690 ps to 825 ps  
780 ps to 900 ps  
885 ps to 1035 ps  
960 ps to 1200 ps  
1260 ps to 1980 ps  
1350 ps to 2160 ps  
1440 ps to 2340 ps  
1512 ps to 2556 ps  
1566 ps to 2754 ps  
1620 ps to 2952 ps  
1674 ps to 3060 ps  
1710 ps to 3186 ps  
10.7 Operating modes  
The DAC1627D1G25 requires two differential clocks:  
The LVDS clock (LDCLKP, LDCLKN) for the LVDS DDR interface  
The data clock (CLKP, CLKN) for the internal PLL and the dual DAC core  
The Clock Domain Interface (CDI) and the PLL have to be set correctly to configure the  
DAC1627D1G25 for an application mode. The default application is a ×2 upsampling  
mode (see Section 10.7.1). The CDI can also support ×4 and ×8 upsampling modes  
(see Section 10.7.2 and Section 10.7.3).  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
21 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
10.7.1 CDI mode 0 (x2 interpolation)  
CDI mode 0 (×2 interpolation) is required when the value of the LVDS DDR clock is twice  
the internal maximum CDI frequency. Table 12 shows examples of applications using an  
internal PLL or an external clock for the DAC core.  
Table 12. CDI mode 0: operating modes examples  
LVDS DDR  
rate (MHz)  
I rate;  
Q rate  
(Msps)  
CDI  
mode[1]  
FIR mode[2]  
SSBM  
rate[3]  
(Msps)  
DAC rate  
(Msps)  
PLL configuration  
DAC input  
PLL  
status[5]  
PLL  
clock[4]  
(MHz)  
divider[6]  
320  
320  
320  
320  
0
0
×2  
×2  
640  
640  
640  
640  
320  
640  
enabled  
disabled  
2
n.a.  
[1] Bits CDI_MODE[1:0] of register MISC_CNTRL (see Table 89).  
[2] Bits INTERPOLATION[1:0] of register TXCFG (see Table 25).  
[3] If a Single Sideband Modulator (SSBM) is used, see bits NCO_ON and MODULATION[2:0] of register TXCFG (see Table 25).  
[4] Pins CLKP and CLKN (see Figure 2).  
[5] Bit PLL_PD of register PLLCFG (see Table 26).  
[6] Bits PLL_DIV[1:0] of register PLLCFG (see Table 26).  
10.7.2 CDI mode 1 (x4 interpolation)  
CDI mode 1 (×4 interpolation) is required when the values of the LVDS DDR clock and the  
internal CDI frequency are equal. Table 13 shows examples of applications using an  
internal PLL or an external clock for the DAC core.  
Table 13. CDI mode 1: operating modes examples  
LVDS DDR  
rate (MHz)  
I rate;  
Q rate  
(Msps)  
CDI  
mode[1]  
FIR mode[2]  
SSBM  
rate[3]  
(Msps)  
DAC rate  
(Msps)  
PLL configuration  
DAC input  
PLL  
status[5]  
PLL  
clock[4]  
(MHz)  
divider[6]  
250  
250  
250  
250  
1
1
×4  
×4  
1000  
1000  
1000  
1000  
250  
enabled  
disabled  
4
1000  
n.a.  
[1] Bits CDI_MODE[1:0] of register MISC_CNTRL (see Table 89).  
[2] Bits INTERPOLATION[1:0] of register TXCFG (see Table 25).  
[3] If SSBM is used, see bits NCO_ON and MODULATION[2:0] of register TXCFG (see Table 25).  
[4] Pins CLKP and CLKN (see Figure 2).  
[5] Bit PLL_PD of register PLLCFG (see Table 26).  
[6] Bits PLL_DIV[1:0] of register PLLCFG (see Table 26).  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
22 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
10.7.3 CDI mode 2 (x8 interpolation)  
CDI mode 2 (×8 interpolation) is required when the LVDS DDR clock is half the maximum  
CDI frequency or less. Table 14 shows examples of applications using an internal PLL or  
an external clock for the DAC core.  
Table 14. CDI mode 2: operating modes examples  
LVDS DDR  
rate (MHz)  
I rate;  
Q rate  
(Msps)  
CDI  
mode[1]  
FIR mode[2]  
SSBM  
rate[3]  
(Msps)  
DAC rate  
(Msps)  
PLL configuration  
DAC input  
PLL  
status[5]  
PLL  
clock[4]  
(MHz)  
divider[6]  
125  
125  
125  
125  
2
2
×8  
×8  
1000  
1000  
1000  
1000  
125  
enabled  
disabled  
4
1000  
n.a.  
[1] Bits CDI_MODE[1:0] of register MISC_CNTRL (see Table 89).  
[2] Bits INTERPOLATION[1:0] of register TXCFG (see Table 25).  
[3] If SSBM is used, see bits NCO_ON and MODULATION[2:0] of register TXCFG (see Table 25).  
[4] Pins CLKP and CLKN (see Figure 2).  
[5] Bit PLL_PD of register PLLCFG (see Table 26).  
[6] Bits PLL_DIV[1:0] of register PLLCFG (see Table 26).  
10.8 FIR filters  
The DAC1627D1G25 integrates three selectable Finite Impulse Response (FIR) filters  
which enable the use of the device with ×2, ×4 or ×8 interpolation rates. All three  
interpolation FIR filters have a stop-band attenuation of at least 80 dBc and a pass-band  
ripple of less than 0.0005 dB. Table 15 shows the coefficients of the interpolation filters.  
001aao039  
0
magnitude  
(dB)  
-20  
-40  
-60  
-80  
-100  
0
0.1  
0.2  
0.3  
0.4  
0.5  
NF (fs)  
Fig 16. First stage half-band filter response  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
23 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
001aao040  
0
magnitude  
(dB)  
-20  
-40  
-60  
-80  
-100  
0
0.1  
0.2  
0.3  
0.4  
0.5  
NF (fs)  
Fig 17. Second stage half-band filter response  
001aao041  
0
magnitude  
(dB)  
-20  
-40  
-60  
-80  
-100  
0
0.1  
0.2  
0.3  
0.4  
0.5  
NF (fs)  
Fig 18. Third stage half-band filter response  
Table 15: Interpolation filter coefficients  
First interpolation filter  
Second interpolation filter  
Third interpolation filter  
Lower  
H(14)  
H(13)  
H(12)  
H(11)  
H(10)  
H(9)  
Upper  
-
Value  
65536  
41501  
13258  
7302  
Lower  
H(6)  
H(5)  
H(4)  
H(3)  
H(2)  
H(1)  
H(0)  
-
Upper  
-
Value  
32768  
20272  
5358  
1986  
654  
159  
Lower  
H(4)  
H(3)  
H(2)  
H(1)  
H(0)  
-
Upper  
Value  
1024  
615  
127  
27  
-
H(15)  
H(16)  
H(17)  
H(18)  
H(19)  
H(20)  
H(21)  
H(7)  
H(8)  
H(9)  
H(10)  
H(11)  
H(12)  
-
H(5)  
H(6)  
H(7)  
H(8)  
-
4580  
2987  
3  
-
H(8)  
1951  
1250  
21  
-
-
-
H(7)  
-
-
-
-
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
24 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 15: Interpolation filter coefficients …continued  
First interpolation filter Second interpolation filter  
Third interpolation filter  
Lower  
H(6)  
H(5)  
H(4)  
H(3)  
H(2)  
H(1)  
H(0)  
Upper  
H(22)  
H(23)  
H(24)  
H(25)  
H(26)  
H(27)  
H(28)  
Value  
773  
456  
252  
128  
58  
22  
Lower  
Upper  
Value  
Lower  
Upper  
Value  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6  
10.9 Single SideBand Modulator (SSBM)  
The SSBM is a quadrature modulator that enables mixing the I data and Q data with the  
sine and cosine signals generated by the NCO to generate path A and path B  
(see Figure 19).  
cos  
A
I
sin  
+/  
sin  
+/−  
Q
B
cos  
+/−  
001aan575  
Fig 19. SSBM principle  
The frequency of the NCO is programmed over 40 bits. NCO enables inverting the sine  
component to operate a positive or negative, lower or upper SSB upconversion  
(see register TXCFG in Table 25).  
10.9.1 NCO in 40 bits  
When using NCO, the frequency can be set over 40 bits by five registers, FREQNCO_B0  
to FREQNCO_B4 (see Table 27 to Table 31).  
The frequency is calculated with Equation 1.  
M × fs  
240  
fNCO  
=
(1)  
--------------  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
25 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Where:  
M is the two’s complement coding representation of FREQ_NCO[40:0]  
fs is the DAC clock sampling frequency  
The default settings are:  
fNCO = 96 MHz  
fs = 640 Msps  
The phase of the NCO can be set by registers PHINCO_LSB and PHINCO_MSB over  
16 bits from 0 to 360° (see Table 44 and Table 45).  
10.9.2 NCO low power  
When using NCO low power (bit NCO_LP_SEL; see Table 25), the frequency can be set  
by the five MSB-bits of register FREQNCO_B4 (bits FREQ_NCO[39:35]; see Table 31).  
The frequency is calculated with Equation 2.  
M × fs  
25  
fNCO  
=
(2)  
--------------  
Where:  
M is the two’s complement coding representation of FREQ_NCO[39:35]  
fs is the DAC clock sampling frequency  
The phase of the NCO low power can be set by the five MSB-bits of register  
PHINCO_MSB (see Table 45).  
10.9.3 Complex modulator  
The complex modulator upconverts the single side band by mixing NCO signals and I and  
Q input signals. Table 16 shows the various possibilities set by bits MODULATION[2:0] of  
register TXCFG (see Table 25).  
Table 16. Complex modulator operation mode  
MODULATION[2:0] Mode Path A  
Path B  
000  
001  
bypass  
I(t)  
Q(t)  
positive  
upper ssb  
I(t) × cosNCO × t) Q(t) × sinNCO × t) I(t) × sinNCO × t) + Q(t) × cosNCO × t)  
I(t) × cosNCO × t) + Q(t) × sinNCO × t) I(t) × sinNCO × t) Q(t) × cosNCO × t)  
I(t) × cosNCO × t) Q(t) × sinNCO × t) I(t) × sinNCO × t) Q(t) × cosNCO × t)  
I(t) × cosNCO × t) + Q(t) × sinNCO × t) I(t) × sinNCO × t) + Q(t) × cosNCO × t)  
010  
positive  
lower ssb  
011  
negative  
upper ssb  
100  
negative  
lower ssb  
others  
not defined  
-
-
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
26 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
10.9.4 Minus 3dB  
In normal use, a full-scale pattern is also full-scale at the DAC output. Nevertheless, when  
the I data and Q data come close to full-scale simultaneously, some clipping can occur.  
The Minus 3dB function (bit MINUS_3DB of register DAC_OUT_CTRL; see Table 38) can  
be used to reduce the 3 dB gain in the modulator. It retains a full-scale range at the DAC  
output without added interferers.  
10.10 Inverse sinx / x  
A selectable FIR filter is incorporated to compensate the sinx / x effect caused by the  
roll-off effect of the DAC. This filter introduces a loss of 3.4 dB at DC. The coefficients are  
represented in Table 17.  
Table 17. Inversion filter coefficients  
First interpolation filter  
Lower  
H(1)  
H(2)  
H(3)  
H(4)  
H(5)  
Upper  
H(9)  
H(8)  
H(7)  
H(6)  
-
Value  
+1  
4  
+13  
51  
+610  
10.11 DAC transfer function  
The full-scale output current for each DAC is the sum of the two complementary current  
outputs:  
IOA(fs) = IIOUTAP + IIOUTAN  
IOB(fs)) = IIOUTBP + IIOUTBN  
The output current of DAC A depends on the digital input data and the gain factor defined  
by bits DAC_A_DGAIN[7:0] of register DAC_A_DGAIN_LSB (see Table 34) and bits  
DAC_A_DGAIN[11:8] of register DAC_A_DGAIN_MSB (see Table 35).  
(DACADGAIN)  
DATA  
((65535))  
-----------------------------------------  
------------------------  
IIOUTAP = IOA(fs)  
×
×
(3)  
(4)  
1024  
(DACADGAIN)  
DATA  
((65535))  
⎞⎞  
⎠⎠  
-----------------------------------------  
------------------------  
IIOUTAN = IOA(fs) × 1 –  
×
1024  
The output current of DAC B depends on the digital input data and the gain factor defined  
by bits DAC_B_DGAIN[7:0] of register DAC_B_DGAIN_LSB (see Table 36) and bits  
DAC_B_DGAIN[11:8] of register DAC_B_DGAIN_MSB (see Table 37).  
(DACBDGAIN)  
DATA  
((65535))  
-----------------------------------------  
------------------------  
IIOUTBP = IOB(fs)  
×
×
(5)  
(6)  
1024  
(DACBDGAIN)  
DATA  
((65535))  
⎞⎞  
⎠⎠  
-----------------------------------------  
------------------------  
IIOUTBN = IOB(fs) × 1 –  
×
1024  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
27 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
It is possible to define if the DAC1627D1G25 operates with a binary input or a  
two's complement input (bit CODING; see Table 24).  
Table 18 shows the output current as a function of the input data, when  
IOA(fs) = IOB(fs) = 20 mA.  
Table 18. DAC transfer function  
Data  
I15 to I0/Q15 to Q0  
(binary coding)  
I15 to I0/Q15 to Q0  
(two’s complement  
coding  
IOUTAP/IOUTBP IOUTAN/IOUTBN  
0
0000 0000 0000 0000 1000 0000 0000 0000 0 mA  
... ... ...  
1000 0000 0000 0000 0000 0000 0000 0000 10 mA  
20 mA  
....  
...  
32768  
...  
10 mA  
...  
...  
...  
...  
65535  
1111 1111 1111 1111  
0111 1111 1111 1111  
20 mA  
0 mA  
10.12 Full-scale current  
10.12.1 Regulation  
The DAC1627D1G25 reference circuitry integrates an internal band gap reference voltage  
which delivers a 1.25 V reference on the GAPOUT pin. It is recommended to decouple pin  
GAPOUT using a 100 nF capacitor.  
The reference current is generated via an external resistor of 910 Ω (1 %) connected to  
VIRES and a control amplifier sets the appropriate full-scale current (IOA(fs) and IOB(fs)) for  
both DACs (see Figure 20)).  
DAC1627D  
BAND GAP  
REFERENCE  
100 nF  
GAPOUT  
AGND  
DAC  
910 Ω (1 %)  
VIRES  
CURRENT  
SOURCES  
ARRAY  
AGND  
001aan834  
Fig 20. Internal reference configuration  
Figure 20 shows the optimal configuration for temperature drift compensation because the  
band gap reference voltage can be matched to the voltage across the feedback resistor.  
The DAC current can also be adjusted by applying an external reference voltage to the  
non-inverting input pin GAPOUT and by disabling the internal band gap reference voltage  
(bit GAP_PON of the COMMON register; see Table 24).  
10.12.2 Full-scale current adjustment  
The default full-scale current (IO(fs)) is 20 mA but further adjustments can be made by the  
user to both DACs independently via the serial interface from 6.95 mA to 28.7 mA, ±11 %.  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
28 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
The settings applied to DAC_A_GAIN_COARSE[3:0] (register 17h; see Table 46 and  
register 18h see Table 47;) and to DAC_B_GAIN COARSE[3:0]  
(register 19h; see Table 48 and register 1Ah see Table 49;) define the coarse variation of  
the full-scale current (see Table 19).  
Table 19. IO(fs) coarse adjustment  
Default settings are shown highlighted.  
DAC_GAIN_COARSE[3:0]  
IO(fs) (mA)  
Decimal  
Binary  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0
6.95  
8.4  
1
2
9.85  
11.3  
3
4
12.75  
14.2  
15.65  
17.1  
18.55  
20  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
21.45  
22.9  
24.35  
25.8  
27.25  
28.7  
The settings applied to DAC_A_GAIN_FINE[5:0] (see register 17h in Table 46) and to  
DAC_B_GAIN_FINE[5:0] (see register 19h in Table 48) define the fine variation of the  
full-scale current (see Table 20).  
Table 20. IO(fs) fine adjustment  
Default settings are shown highlighted.  
DAC_GAIN_FINE[5:0]  
ΔIO(fs) (%)  
Decimal  
Two’s complement  
32  
...  
10 0000  
...  
11  
...  
0
00 0000  
...  
0
...  
...  
+31  
01 1111  
+11  
10.13 Digital offset adjustment  
The DAC1627D1G25 provides digital offset correction (bits DAC_A_OFFSET[7:0] in  
Table 40 and bits DAC_A_OFFSET[15:8] in Table 41 and register DAC_B_OFFSET[7:0]  
in Table 42 and bits DAC_B_OFFSET[15:8] in Table 43) which can be used to adjust the  
common-mode level at the output of each DAC. It adds an offset at the end of the digital  
part, just before the DACs. Table 21 shows the range of variation of the digital offset.  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
29 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 21. Digital offset adjustment  
DAC_A_OFFSET[15:0]  
Offset applied  
DAC_B_OFFSET[15:0]  
(two’s complement)  
1000 0000 0000 0000  
1000 0000 0000 0001  
...  
32768  
32767  
...  
1111 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0001  
...  
1  
0
+1  
...  
0111 1111 1111 1110  
0111 1111 1111 1111  
+32766  
+32767  
10.14 Analog output  
The device has two output channels, producing two complementary current outputs,  
which enable the reduction of even-order harmonics and noise. The pins are  
IOUTAP/IOUTAN and IOUTBP/IOUTBN. They have to be connected via a load resistor RL  
to the 3.3 V analog power supply (VDDA(3V3)).  
Figure 21 shows the equivalent analog output circuit of one DAC. This circuit includes a  
parallel combination of NMOS current sources and associated switches for each  
segment.  
3.3 V 3.3 V  
R
R
L
L
IOUTAP/IOUTBP  
IOUTAN/IOUTBN  
GND  
GND  
001aan835  
Fig 21. Equivalent analog output circuit  
The cascode source configuration increases the output impedance of the source, which  
improves the dynamic performance of the DAC because there is less distortion.  
Depending on the application, the various stages and the targeted performances, the  
device can be used for an output level of up to 2 V (p-p).  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
30 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
10.15 Auxiliary DACs  
The DAC1627D1G25 integrates two auxiliary DACs, which are used to compensate any  
offset between the DACs and the next stage in the transmission path. Both auxiliary DACs  
have a 10-bit resolution and are current sources (referenced to ground).  
The full-scale output current for each DAC is the sum of the two complementary current  
outputs:  
IOAUXA(fs) = IAUXAP + IAUXAN  
IOAUXB(fs) = IAUXBP + IAUXBN  
The output current depends on the digital input data set by SPI registers  
DAC_A_Aux_MSB (bits AUX_A[9:2]; see Table 50), DAC_A_Aux_LSB (bits AUX_A[1:0];  
see Table 51), DAC_B_Aux_MSB (bits AUX_B[9:2]; see Table 52) and DAC_B_Aux_LSB  
(bits AUX_B[1:0]; see Table 53).  
DATAA  
1023  
-------------------  
IAUXAP = IOAUXA(fs)  
IAUXAN = IOAUXA(fs)  
IAUXBP = IOAUXB(fs)  
IAUXBN = IOAUXB(fs)  
×
×
×
×
(7)  
(8)  
1023 DATAA  
-------------------------------------  
1023  
DATAB  
1023  
-------------------  
(9)  
1023 DATAB  
-------------------------------------  
(10)  
1023  
Table 22 shows the output current as a function of the auxiliary DACs data DATAA and  
DATAB above.  
Table 22. Auxiliary DAC transfer function  
DATAA; DATAB  
AUX_A[9:2]/AUX_A[1:0]; IAUXAP; IAUXBP (mA)  
AUX_B[9:0]/AUX_B[1:0]  
IAUXAN; IAUXBN (mA)  
(binary coding  
0
00 0000 0000  
...  
0
2.2  
...  
...  
...  
512  
...  
10 0000 0000  
...  
1.1  
...  
1.1  
...  
1023  
11 1111 1111  
2.2  
0
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
31 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
10.16 Output configuration  
10.16.1 Basic output configuration  
The use of a differentially coupled transformer output (see Figure 22) provides optimum  
distortion performance. In addition, it helps to match the impedance and provides  
electrical isolation.  
3.3 V  
DAC1627D  
50 Ω  
0 mA to 20 mA  
IOUTAP/IOUTBP  
2:1  
50 Ω  
0 mA to 20 mA  
IOUTAN/IOUTBN  
50 Ω  
3.3 V  
IOUTAP/IOUTAN  
IOUTBP/IOUTBN  
V
O(cm)  
V
O(dif)  
= 2.8 V  
= 1 V  
001aan836  
Fig 22. 1 V (p-p) differential output with transformer  
The DAC1627D1G25 can operate a differential output of up to 2 V (p-p). In this  
configuration, it is recommended to connect the center tap of the transformer to a 62 Ω  
resistor, which is connected to the 3.3 V analog power supply. This adjusts the DC  
common-mode to around 2.7 V (see Figure 23).  
3.3 V  
3.3 V  
DAC1627D  
100 Ω  
62 Ω  
4:1  
0 mA to 20 mA  
0 mA to 20 mA  
IOUTAP/IOUTBP  
50 Ω  
IOUTAN/IOUTBN  
100 Ω  
3.3 V  
IOUTAP/IOUTAN  
IOUTBP/IOUTBN  
V
O(cm)  
V
O(dif)  
= 2.7 V  
= 2 V  
001aan837  
Fig 23. 2 V (p-p) differential output with transformer  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
32 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
10.16.2 IQ-modulator - BGX7100 interface  
The DAC1627D1G25 can be easily connected to the BGX7100 NXP IQ-modulator. The  
offset compensation for local oscillator can be cancelled using the digital offset control in  
the device.  
Figure 24 shows an example of a connection between the DAC1627D1G25 and the  
BGX7100 interface.  
3.3 V  
DAC1627D  
BGX7100  
IQ-modulator  
51.1 Ω  
51.1 Ω  
IOUTAP/IOUTBP  
IOUTAN/IOUTBN  
BBAP/BBBP  
BBAN/BBBN  
0 mA to 20 mA  
AUXAP/AUXBP  
AUXAN/AUXBN  
001aan814  
Fig 24. DAC1627D1G25 with BGX7100 IQ-modulator interface  
10.16.3 IQ-modulator - DC interface  
When the system operation requires to keep the DC component of the spectrum, the  
DAC1627D1G25 can use a DC interface to connect an IQ-modulator. In this case, the  
offset compensation for local oscillator can be cancelled using the digital offset control in  
the device.  
Figure 25 shows an example of a connection to an IQ modulator with a 1.7 V common  
input level.  
3.3 V  
IQ-modulator (V  
= 1.7 V)  
I(cm)  
DAC1627D  
51.1 Ω  
51.1 Ω  
442 Ω  
IOUTAP/IOUTBP  
IOUTAN/IOUTBN  
BBAP/BBBP  
BBAN/BBBN  
442 Ω  
0 mA to 20 mA  
768 Ω  
768 Ω  
IOUTAP/IOUTAN  
BBAP/BBAN  
BBBP/BBBN  
IOUTBP/IOUTBN  
V
O(cm)  
V
O(dif)  
= 2.67 V  
= 1.98 V  
V
V
= 1.7 V  
I(cm)  
I(dif)  
= 1.26 V  
001aan838  
Fig 25. IQ-modulator: DC interface with a 1.7 V common input level  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
33 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Figure 26 shows an example of a connection to an IQ-modulator with a 3.3 V common  
input level.  
3.3 V  
54.9 Ω  
5 V  
DAC1627D  
IQ-modulator (V  
= 3.3 V)  
I(cm)  
54.9 Ω  
750 Ω  
750 Ω  
237 Ω  
237 Ω  
IOUTAP/IOUTBP  
IOUTAN/IOUTBN  
BBAP/BBBP  
BBAN/BBBN  
1.27 kΩ  
1.27 kΩ  
IOUTAP/IOUTAN  
IOUTBP/IOUTBN  
O(cm)  
O(dif)  
BBAP/BBAN  
BBBP/BBBN  
V
V
= 2.75 V  
= 1.97 V  
V
V
= 3.3 V  
I(cm)  
I(dif)  
= 1.5 V  
001aan839  
Fig 26. IQ-modulator: DC interface with a 3.3 V common input level  
The auxiliary DACs can be used to control the offset within an accurate range or with  
accurate steps.  
Figure 27 shows an example of a connection to an IQ-modulator with a 1.7 V common  
input level and auxiliary DACs.  
3.3 V  
DAC1627D  
51.1 Ω  
51.1 Ω  
442 Ω  
IOUTAP/IOUTBP  
IOUTAN/IOUTBN  
BBAP/BBBP  
BBAN/BBBN  
442 Ω  
0 mA to 20 mA  
698 Ω  
698 Ω  
AUXAP/AUXBP  
AUXAN/AUXBN  
1.1 mA (typical)  
51.1 Ω  
51.1 Ω  
IOUTAP/IOUTAN  
BBAP/BBAN  
BBBP/BBBN  
IOUTBP/IOUTBN  
V
O(cm)  
V
O(dif)  
= 2.67 V  
= 1.94 V  
V
V
= 1.7 V  
I(cm)  
I(dif)  
= 1.23 V  
offset correction = up to 50 mV  
001aan840  
Fig 27. IQ-modulator: DC interface with a 1.7 V common input level and auxiliary DACs  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
34 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Figure 28 shows an example of a connection to an IQ-modulator with a 3.3 V common  
input level and auxiliary DACs.  
3.3 V  
54.9 Ω  
5 V  
DAC1627D  
54.9 Ω  
237 Ω  
750 Ω  
750 Ω  
IOUTAP/IOUTBP  
IOUTAN/IOUTBN  
BBAP/BBBP  
BBAN/BBBN  
237 Ω  
634 Ω  
442 Ω  
634 Ω  
AUXAP/AUXBP  
AUXAN/AUXBN  
442 Ω  
IOUTAP/IOUTAN  
IOUTBP/IOUTBN  
O(cm)  
O(dif)  
BBAP/BBAN  
BBBP/BBBN  
V
V
= 2.75 V  
= 1.96 V  
V
V
= 3.3 V  
I(cm)  
I(dif)  
= 1.5 V  
offset correction = up to 36 mV  
001aan841  
Fig 28. IQ-modulator: DC interface with a 3.3 V common input level and auxiliary DACs  
The constraints to adjust the interface are:  
The output compliance range of the DAC  
The output compliance range of the auxiliary DACs  
The input common-mode level of the IQ-modulator  
The range of offset correction  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
35 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
10.16.4 IQ-modulator - AC interface  
When the IQ-modulator common-mode voltage is close to ground, the DAC1627D1G25  
must be used AC-coupled and the auxiliary DACs are required for local oscillator  
cancellation.  
Figure 29 shows an example of a connection to an IQ-modulator with a 0.5 V common  
input level and auxiliary DACs.  
3.3 V  
65.5 Ω  
5 V  
DAC1627D  
IQ-modulator (V  
= 0.5 V)  
I(cm)  
65.5 Ω  
2 kΩ  
2 kΩ  
10 nF  
IOUTAP/IOUTBP  
IOUTAN/IOUTBN  
BBAP/BBBP  
BBAN/BBBN  
10 nF  
0 mA to 20 mA  
1.1 mA (typical)  
174 Ω  
34 Ω  
174 Ω  
34 Ω  
AUXAP/AUXBP  
AUXAN/AUXBN  
IOUTAP/IOUTAN  
BBAP/BBAN  
BBBP/BBBN  
IOUTBP/IOUTBN  
V
V
= 2.65 V  
= 1.96 V  
V
V
= 0.5 V  
O(cm)  
O(dif)  
I(cm)  
I(dif)  
= 1.96 V  
offset correction = up to 70 mV  
001aan842  
Fig 29. IQ-modulator: AC interface with a 0.5 V common input level and auxiliary DACs  
10.17 Design recommendations  
10.17.1 Power and grounding  
Use a separate power supply regulator for the generation of the 1.8 V analog power  
(pins 65, 62, 55, 69, 72 and 58) and the 1.8 V digital power (pins 12, 19, 36, 26 and 43) to  
ensure optimal performance.  
Also, include individual LC decoupling for the following six sets of power pins:  
VDDA(1V8)_P1 (pin 62)  
VDDA(1V8)_P2 (pin 65)  
VDDA(1V8) (pins 55, 69, 72 and 58)  
VDDD(1V8) (core: pins 12, 26 and 43)  
VDDD(1V8) (LVDS: pins 19 and 36)  
VDDA(3V3) (pins 59 and 68)  
At least two capacitors must be used for each power pin decoupling. These capacitors  
must be located as close as possible to the DAC1627D1G25 power pins.  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
36 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
The die pad is used for both the power dissipation and electrical grounding. Insert several  
vias (typically 7 × 7) to connect the internal ground plane to the top layer die area.  
10.18 Configuration interface  
10.18.1 Register description  
The DAC1627D1G25 incorporates more than the 32 SPI registers allowed by the address  
value A[4:0]. It uses three SPI register pages (page_00, page_01, and page_0A), each  
containing 32 registers. The 32nd register of each page indicates which page is currently  
addressed (00h, 01h or 0Ah).  
Page 00h (see Table 23) is dedicated to the main control of the DAC1627D1G25:  
Mode selection  
NCO control  
Auxiliary DAC control  
Gain/phase/offset control  
Power-down control  
Page 01h (see Table 55) is dedicated to:  
Multi-Device Synchronization (MDS)  
DAC analog core control (biasing current, Sleep mode)  
Page 0Ah (seeTable 79) is dedicated to the LVDS input interface configuration.  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
37 of 69  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
10.18.2 Page 0 register allocation map  
Table 23 shows an overview of all registers on page 0 (00h in hexadecimal). See Section 10.18.3 for detailed descriptions of  
the registers.  
Table 23. Page_00 register allocation map  
Address Register name  
R/W  
Bit definition  
Default  
Bin Hex Dec  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
1
2
4
5
6
7
8
9
00h COMMON  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
3W_SPI SPI_RST  
-
-
-
CODING  
IC_PON GAP_PON 1000 87h 135  
0111  
01h TXCFG  
NCO_ON NCO_LP INV_SIN  
_SEL _SEL  
MODULATION[2:0]  
PLL_DIV[1:0]  
INTERPOLATION[1:0] 0000 01h  
0001  
1
02h PLLCFG  
PLL_BP PLL_BUF PLL_PLL  
PLL_PHASE[1:0]  
PLL_  
1010 A1h 161  
_PD  
_PD  
OSC_PD 0001  
04h FREQNCO_B0  
05h FREQNCO_B1  
06h FREQNCO_B2  
07h FREQNCO_B3  
08h FREQNCO_B4  
09h PH_CORR_CTL0  
FREQ_NCO[7:0]  
FREQ_NCO[15:8]  
FREQ_NCO[23:16]  
FREQ_NCO[31:24]  
FREQ_NCO[39:32]  
PHASE_COR[7:0]  
0110 66h 102  
0110  
0110 66h 102  
0110  
0110 66h 102  
0110  
0010 66h 102  
0110  
0010 26h 38  
0110  
0000 00h  
0000  
0
10 0Ah PH_CORR_CTL1  
11 0Bh DAC_A_DGAIN_LSB  
12 0Ch DAC_A_DGAIN_MSB  
13 0Dh DAC_B_DGAIN_LSB  
14 0Eh DAC_B_DGAIN_MSB  
15 0Fh DAC_OUT_CTRL  
PH_COR  
_ENA  
-
-
-
-
PHASE_COR[12:8]  
DAC_A_DGAIN[7:0]  
0000 00h  
0000  
0
1101 50h 80  
0100  
-
-
DAC_A_DGAIN[11:8]  
0000 0Bh 11  
1011  
DAC_B_DGAIN[7:0]  
-
1101 50h 80  
0100  
-
-
-
-
-
-
DAC_B_DGAIN[11:8]  
0000 0Bh 11  
0010  
-
A_DGAIN_E B_DGAIN_E MINUS CLIPPING 0000 00h  
_3DB _ENA 0000  
0
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 23. Page_00 register allocation map …continued  
Address Register name  
R/W  
Bit definition  
Bit 3  
Default  
Bin Hex Dec  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 2  
Bit 1  
Bit 0  
16 10h DAC_CLIPPING  
R/W  
CLIPPING_LEVEL[7:0]  
DAC_A_OFFSET[7:0]  
DAC_A_OFFSET[15:8]  
DAC_B_OFFSET[7:0]  
DAC_B_OFFSET[15:8]  
PH_NCO[7:0]  
1111 FFh 255  
1111  
17 11h  
DAC_A_OFFSET_LSB R/W  
0000 00h  
0000  
0
0
0
0
0
0
18 12h DAC_A_OFFSET_MSB R/W  
19 13h DAC_B_OFFSET_LSB R/W  
20 14h DAC_B_OFFSET_MSB R/W  
0000 00h  
0000  
0000 00h  
0000  
0000 00h  
0000  
21 15h PHINCO_LSB  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0000 00h  
0000  
22 16h PHINCO_MSB  
23 17h DAC_A_GAIN1  
24 18h DAC_A_GAIN2  
25 19h DAC_B_GAIN1  
26 1Ah DAC_B_GAIN2  
27 1Bh DAC_A_AUX_MSB  
28 1Ch DAC_A_AUX_LSB  
29 1Dh DAC_B_AUX_MSB  
30 1Eh DAC_B_AUX_LSB  
31 1Fh PAGE_ADDRESS  
PH_NCO[15:8]  
0000 00h  
0000  
DAC_A_GAIN_  
COARSE[1:0]  
DAC_A_GAIN_FINE[5:0]  
0100 40h 64  
0000  
DAC_A_GAIN_  
COARSE[3:2]  
-
-
-
-
-
-
-
-
-
-
-
-
1000 80h 128  
0000  
DAC_B_GAIN_  
COARSE[1:0]  
DAC_B_GAIN_FINE[5:0]  
0100 40h 192  
0000  
DAC_B_GAIN_  
COARSE[3:2]  
-
-
-
-
1000 80h 128  
0000  
AUX_A[9:2]  
1000 80h 128  
0000  
AUX_A  
-
-
AUX_A[1:0]  
0000 00h  
0000  
0
_PD  
AUX_B[9:2]  
1000 80h 128  
0000  
AUX_B  
_PD  
-
-
-
-
-
-
-
-
AUX_B[1:0]  
PAGE_ADD[2:0]  
0000 00h  
0000  
0
-
0000 00h  
0000  
0
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
10.18.3 Page 0 bit definition detailed description  
Table 24. Register COMMON (address 00h) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7
3W_SPI  
R/W  
serial interface bus type  
4-wire SPI  
0
1
3-wire SPI  
6
2
1
SPI_RST  
CODING  
IC_PON  
R/W  
R/W  
R/W  
serial interface reset  
no reset  
0
1
performs a reset on all registers except address 00h  
coding of input word  
two complement’s coding  
unsigned format  
0
1
IC power control  
0
all circuits (digital and analog, except SPI) are in  
power-down  
1
all circuits (digital and analog, except SPI) are  
switched on  
0
GAP_PON  
R/W  
internal band gap power control  
0
band gap is power-down  
1
internal band gap references are switched on  
Table 25. Register TXCFG (address 01h) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7
NCO_ON  
R/W  
NCO  
0
NCO disabled, the NCO phase is reset to 0  
NCO enabled  
1
6
5
NCO_LP_SEL  
INV_SIN_SEL  
R/W  
NCO low power selection  
low power NCO disabled  
0
1
low power NCO enabled (frequency and phase  
given by the five MSB of the registers 06h and 08h,  
respectively)  
R/W  
R/W  
inverse (sin x) / x function selection  
disable  
0
1
enable  
4 to 2 MODULATION[2:0]  
modulation  
000  
dual DAC: no modulation  
positive upper single sideband upconversion  
positive lower single sideband upconversion  
negative upper single sideband upconversion  
negative lower single sideband upconversion  
not defined  
001  
010  
011  
100  
others  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
40 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 25. Register TXCFG (address 01h) bit description …continued  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
1 to 0 INTERPOLATION[1:0]  
R/W  
interpolation  
00  
01  
10  
11  
no interpolation  
×2 interpolation  
×4 interpolation  
×8 interpolation  
Table 26. Register PLLCFG (address 02h) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7
PLL_BP  
R/W  
PLL bypass  
0
DAC clock generated by PLL  
1
DAC clock provided via external pins CLKN and  
CLKP (PLL bypass mode)  
6
5
PLL_BUF_PD  
PLL_PLL_PD  
R/W  
R/W  
R/W  
PLL test buffer control  
Power-down mode  
enabled  
0
1
PLL and CKGEN control  
Power-down mode  
enable  
0
1
4 to 3 PLL_DIV[1:0]  
PLL divider factor  
fs = 2 × fdata  
00  
01  
10  
11  
fs = 4 × fdata  
fs = 8 × f  
undefined  
2 to 1 PLL_PHASE[1:0]  
R/W  
R/W  
PLL phase shift  
00  
01  
10  
11  
0 degrees phase shift of fs  
120 degrees phase shift of fs  
240 degrees phase shift of fs  
240 degrees phase shift of fs  
PLL oscillator output power-down  
Power-down mode  
enabled  
0
PLL_OSC_PD  
0
1
Table 27. Register FREQNCO_B0 (address 04h)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 FREQ_NCO[7:0]  
R/W  
NCO frequency (two complement’s coding)  
least significant 8 bits for the NCO frequency setting  
-
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
41 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 28. Register FREQNCO_B1 (address 05h)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 FREQ_NCO[15:8]  
R/W  
NCO frequency  
-
intermediate 8 bits for the NCO frequency setting  
Table 29. Register FREQNCO_B2 (address 06h)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 FREQ_NCO[23:16]  
R/W  
NCO frequency  
-
intermediate 8 bits for the NCO frequency setting  
Table 30. Register FREQNCO_B3 (address 07h)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 FREQ_NCO[31:24]  
R/W  
NCO frequency  
-
intermediate 8 bits for the NCO frequency setting  
Table 31. Register FREQNCO_B4 (address 08h)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 FREQ_NCO[39:32]  
R/W  
NCO frequency (MSB)  
-
most significant 8 bits for the NCO frequency setting  
Table 32. Register PH_CORR_CTL0 (address 09h)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 PHASE_COR[7:0]]  
R/W  
DAC output phase correction factor (LSB)  
-
least significant 8 bits for the DAC output phase  
correction factor  
Table 33. Register PH_CORR_CTL1 (address 0Ah)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7
PH_COR_ENA  
R/W  
DAC output phase correction control  
DAC output phase correction disabled  
DAC output phase correction enabled  
DAC output phase correction factor MSB  
0
1
4 to 0 PHASE_COR[12:8]  
R/W  
00000  
most significant 5 bits for the DAC output phase  
correction factor  
Table 34. Register DAC_A_DGAIN_LSB (address 0Bh)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 DAC_A_DGAIN[7:0]  
R/W  
DAC A digital gain control  
-
least significant 8 bits for the DAC A digital gain  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
42 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 35. Register DAC_A_DGAIN_MSB (address 0Ch)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
3 to 0 DAC_A_DGAIN[11:8]  
R/W  
DAC A digital gain control  
-
most significant 4 bits for the DAC A digital gain  
Table 36. Register DAC_B_DGAIN_LSB (address 0Dh)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 DAC_B_DGAIN[7:0]  
R/W  
DAC B digital gain control  
-
least significant 8 bits for the DAC B digital gain  
Table 37. Register DAC_B_DGAIN_MSB (address 0Eh)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
3 to 0 DAC_B_DGAIN[11:8]  
R/W  
DAC B digital gain control  
-
most significant 4 bits for the DAC B digital gain  
Table 38. Register DAC_OUT_CTRL (address 0Fh)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
3
A_DGAIN_E  
R/W  
DAC A digital gain control  
disable  
0
1
enable  
2
1
0
B_DGAIN_E  
R/W  
R/W  
R/W  
DAC B digital gain control  
disable  
0
1
enable  
MINUS_3DB  
CLIPPING_ENA  
DAC attenuation control  
unity gain  
0
1
3 dB gain  
Digital DAC output clipping control  
disable  
0
1
enable  
Table 39. Register DAC_CLIPPING (address 10h)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 CLIPPING_LEVEL[7:0]  
R/W  
-
Digital DAC output clipping level value  
Table 40. Register DAC_A_OFFSET_LSB (address 11h)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 DAC_A_OFFSET[7:0]  
R/W  
DAC A digital offset value  
-
least significant 8 bits for the DAC A digital offset  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
43 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 41. Register DAC_A_OFFSET_MSB (address 12h)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 DAC_A_OFFSET[15:8]  
R/W  
DAC A digital offset value  
-
most significant 8 bits for the DAC A digital offset  
Table 42. Register DAC_B_OFFSET_LSB (address 13h)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 DAC_B_OFFSET[7:0]  
R/W  
DAC B digital offset value  
-
least significant 8 bits for the DAC B digital offset  
Table 43. Register DAC_B_OFFSET_MSB (address 14h)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 DAC_B_OFFSET[15:8]  
R/W  
DAC B digital offset value  
-
most significant 8 bits for the DAC B digital offset  
Table 44. Register PHINCO_LSB (address 15h)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 PH_NCO[7:0]  
R/W  
NCO phase offset LSB  
-
least significant 8 bits for the NCO phase setting  
Table 45. Register PHINCO_MSB (address 16h)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 PH_NCO[15:8]  
R/W  
NCO phase offset MSB  
-
most significant 8 bits for the NCO phase setting  
Table 46. Register DAC_A_GAIN1 (address 17h)  
Default values are shown highlighted.  
Bit  
7 to 6 DAC_A_GAIN_COARSE[1:0] R/W  
5 to 0 DAC_A_GAIN_FINE[5:0] R/W  
Symbol  
Access  
Value  
Description  
-
-
DAC A analog coarse gain control (LSB)  
DAC A analog fine gain control  
Table 47. Register DAC_A_GAIN2 (address 18h)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 6 DAC_A_GAIN_COARSE[3:2] R/W  
DAC A analog gain coarse control (MSB)  
Table 48. Register DAC_B_GAIN1 (address 19h)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 6 DAC_B_GAIN_COARSE[1:0] R/W  
-
-
DAC B analog coarse gain control (LSB)  
DAC B analog fine gain control  
5 to 0 DAC_B_GAIN_FINE[5:0]  
R/W  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
44 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 49. Register DAC_B_GAIN2 (address 1Ah)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 6 DAC_B_GAIN_COARSE[3:2] R/W  
-
DAC B analog coarse gain control (MSB)  
Table 50. DAC_A_Aux_MSB register (address 1Bh) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 AUX_A[9:2]  
R/W  
-
most significant 8 bits for auxiliary DAC A  
Table 51. DAC_A_Aux_LSB register (address 1Ch) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7
AUX_A_PD  
R/W  
auxiliary DAC A power  
0
1
-
on  
off  
1 to 0 AUX_A[1:0]  
R/W  
least significant 2 bits for auxiliary DAC A  
Table 52. DAC_B_Aux_MSB register (address 1Dh) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 AUX_B[9:2]  
R/W  
-
most significant 8 bits for auxiliary DAC B  
Table 53. DAC_B_Aux_LSB register (address 1Eh) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7
AUX_B_PD  
R/W  
auxiliary DAC B power  
0
1
-
on  
off  
1 to 0 AUX_B[1:0]  
R/W  
least significant 2 bits for auxiliary DAC B  
Table 54. SPI_PAGE register (address 1Fh) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
2 to 0 PAGE[2:0]  
R/W  
-
SPI page address  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
45 of 69  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
10.18.4 Page 1 allocation map  
Table 55 shows an overview of all registers on page 1 (01h in hexadecimal). See Section 10.18.5 for detailed descriptions of  
the registers.  
Table 55. Page 1 register allocation map  
Address Register name  
R/W  
Bit definition  
Default[1]  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bin  
Hex  
0
00h MDS_MAIN  
R/W  
MDS_EQCHECK[1:0]  
MDS_  
RUN  
MDS_  
NCO  
MDS_  
NCO_  
PULSE  
MDS_  
SREF_  
DIS  
MDS_  
MASTER  
MDS_  
ENA  
0000 04h  
0100  
1
2
3
01h MDS_WIN_PERIOD_A  
02h MDS_WIN_PERIOD_B  
03h MDS_MISCCNTRL0  
R/W  
R/W  
R/W  
MDS_WIN_PERIOD_A[7:0]  
MDS_WIN_PERIOD_B[7:0]  
1000 80h  
0000  
0100 40h  
0000  
-
-
-
MDS_  
EVAL_  
ENA  
MDS_  
PRERUN_E  
MDS_PULSEWIDTH[2:0]  
0001 10h  
0000  
4
5
6
7
8
9
04h MDS_MAN_ADJUSTDLY R/W  
MDS_  
MAN  
MDS_MAN_ADJUSTDLY[6:0]  
0100 40h  
0000  
05h MDS_AUTO_CYCLES  
06h MDS_MISCCNTRL1  
07h MDS_OFFSET_DLY  
08h MDS_ADJDELAY  
09h MDS_STATUS0  
R/W  
R/W  
RW  
RW  
R
MDS_AUTO_CYCLES[7:0]  
1000 80h  
0000  
MDS_SR_ MDS_SR_  
CKEN  
MDS_  
MDS_  
MDS_LOCK_DELAY[3:0]  
MDS_OFFSET_DLY[4:0]  
MDS_ADJDELAY[6:0]  
0000 0Fh  
1111  
LOCKOUT SR_LOCK RELOCK  
-
-
-
0000 00h  
0000  
-
0000 00h  
0000  
EARLY  
LATE  
EQUAL  
MDS_EQ  
EARLY_  
ERROR  
LATE_  
ERROR  
EQUAL_  
FOUND  
MDS_  
uuuu uuh  
ACTIVE uuuu  
10 0Ah MDS_STATUS1  
R
-
-
-
-
-
-
-
-
ADD_ERR MDS_EN_PHASE[1:0]  
MDS_  
PRERUN LOCKOUT  
MDS_  
MDS_  
LOCK  
uuuu uuh  
uuuu  
14 0Eh DAC_CURRENT_AUX  
15 0Fh DAC_CURRENT_0  
16 10h DAC_CURRENT_1  
R/W  
R/W  
R/W  
-
-
-
-
-
-
DAC_AUX_BIAS[3:0]  
0000 03h  
0011  
DAC_DIG_BIAS[3:0]  
DAC_MST_BIAS[3:0]  
0000 03h  
0011  
0000 03h  
0011  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 55. Page 1 register allocation map …continued  
Address Register name  
R/W  
Bit definition  
Default[1]  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bin  
Hex  
17 11h DAC_CURRENT_2  
18 12h DAC_CURRENT_3  
19 13h DAC_CURRENT_4  
20 14h DAC_CURRENT_5  
21 15h DAC_CURRENT_6  
22 16h DAC_PON_SLEEP  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
-
-
-
-
-
-
-
-
DAC_DRV_BIAS[3:0]  
DAC_SLV_BIAS[3:0]  
DAC_CK_BIAS[3:0]  
DAC_CAS_BIAS[3:0]  
DAC_BLD_BIAS[3:0]  
0000 03h  
0011  
-
-
-
-
-
-
-
-
-
-
-
-
0000 03h  
0011  
0000 03h  
0011  
0000 03h  
0011  
0000 03h  
0011  
DAC_B_  
PON  
DAC_B_  
SLEEP  
DAC_B_  
COM_PD  
DAC_B_  
BLEED_  
PD  
DAC_A_  
PD  
DAC_A_  
SLEEP  
DAC_A_  
COM_PD  
DAC_A_ 1011 BBh  
BLEED_ 1011  
PD  
23 17h DAC_CLKDIG_DELAY  
31 1Fh PAGE_ADDRESS  
R/W  
R/W  
-
-
-
-
-
-
-
-
-
PLL_DIG_DELAY[2:0]  
PAGE[2:0]  
0000 02h  
0010  
-
0000 00h  
0000  
[1] u = undefined at power-up or after reset.  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
10.18.5 Page 1 bit definition detailed description  
Table 56. MDS_MAIN register (address 00h) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 6 MDS_EQCHECK[1:0]  
R/W  
lock mode  
00  
01  
10  
11  
lock when (early = 1 and late = 1)  
lock when (early = 1, late = 1 and equal = 1)  
lock when equal = 1  
force lock (equal-check = 1)  
evaluation process restart control  
no action  
5
4
3
2
1
0
MDS_RUN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
1
(0 1) transition restarts evaluation_counter  
NCO synchronization  
no action  
MDS_NCO  
0
1
enable  
MDS_NCO_PULSE  
MDS_SREF_DIS  
MDS_MASTER  
MDS_ENA  
NCO pulse  
0
no action  
1
manual control NCO tuning  
internal pulse generation  
normal mode  
0
1
disable  
MDS mode selection  
slave mode  
0
1
master mode  
MDS function control  
disable  
0
1
enable  
Table 57. MDS_WIN_PERIOD_A register (address 01h) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 MDS_WIN_PERIOD_A[7:0]  
R/W  
-
determines MDS window LOW time  
Table 58. MDS_WIN_PERIOD_B register (address 02h) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 MDS_WIN_PERIOD_B[7:0]  
R/W  
-
determines MDS window HIGH time  
Table 59. MDS_MISCCNTRL0 register (address 03h) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
MDS evaluation  
disable  
4
MDS_EVAL_ENA  
R/W  
0
1
enable  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
48 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 59. MDS_MISCCNTRL0 register (address 03h) bit description …continued  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
3
MDS_PRERUN_ENA  
R/W  
automatic MDS start-up  
0
no mds_win/mds_ref generation in advance  
mds_win/mds_ref run-in before mds_evaluation  
width of MDS (in output clk-periods)  
1 DAC clk-period  
1
2 to 0 MDS_PULSEWIDTH[2:0]  
R/W  
000  
001  
2 DAC clk-periods  
010 to 111  
(mds_pulsewidth 1) × 4 DAC clk-periods  
Table 60. MDS_MAN_ADJUSTDLY register (address 04h) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7
MDS_MAN  
R/W  
adjustment delays mode  
0
auto-control adjustment delays  
manual control adjustment delays  
adjustment delay value  
1
6 to 0 MDS_MAN_ADJUSTDLY[6:0] R/W  
-
-
if MDS_MAN = 0 then initial value adjustment delay  
if MDS_MAN = 1 then controls adjustment delay  
Table 61. MDS_AUTO_CYCLES register (address 05h) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 MDS_AUTO_CYCLES[7:0]  
R/W  
-
number of evaluation cycles applied for MDS. If set to  
255 then IC continuously generates/monitors the MDS  
pulse  
Table 62. MDS_MISCCNTRL1 register (address 06h) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7
MDS_SR_CKEN  
R/W  
-
lock mode  
0
1
free-running MDS_SR_CKEN  
MDS_SR_CKEN forced low  
lockout detector soft reset  
MDS_SR_LOCKOUT in use  
MDS_SR_LOCKOUT forced low  
lock detector soft reset  
MDS_SR_LOCK in use  
MDS_SR_LOCK forced low  
relock mode  
6
5
4
MDS_SR_LOCKOUT  
MDS_SR_LOCK  
MDS_RELOCK  
R/W  
R/W  
R/W  
R/W  
0
1
0
1
0
1
-
no action  
relock when lockout occurs  
number of succeeding 'equal'-detections until lock  
3 to 0 MDS_LOCK_DELAY[3:0]  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
49 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 63. MDS_OFFSET_DLY register (address 07h) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
4 to 0 MDS_OFFSET_DLY[6:0]  
R/W  
-
delay offset for dataflow (two’s complement [16 to 15]  
Table 64. MDS_ADJDELAY register (address 08h) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
6 to 0 MDS_ADJDELAY[6:0]  
R
-
actual value adjustment delay  
Table 65. MDS_STATUS0 register (address 09h) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7
EARLY  
R
early signal (sampled) from early-to-late detector  
0
1
false  
true  
6
5
4
3
2
1
0
LATE  
R
R
R
R
R
R
R
late signal (sampled) from early-to-late detector  
0
1
false  
true  
EQUAL  
equal signal (sampled) from early-to-late detector  
0
1
false  
true  
MDS_LOCK  
EARLY_ERROR  
LATE_ERROR  
EQUAL_FOUND  
MDS_ACTIVE  
result equal-check  
0
1
false  
true  
adjustment delay maximum value stops the search  
0
1
false  
true  
adjustment delay minimum value stops the search  
0
1
false  
true  
evaluation logic has detected equal condition  
0
1
false  
true  
evaluation logic active  
0
1
false  
true  
Table 66. MDS_STATUS1 register (address 0Ah) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
5
ADD_ERR  
R
adjustment delay error detection  
0
1
OK  
delay offset cannot be applied in available range  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
50 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 66. MDS_STATUS1 register (address 0Ah) bit description …continued  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
4 to 3 MDS_EN_PHASE[1:0]  
R
MDS enable phase  
00  
01  
10  
11  
enable phase = 0  
enable phase = 1 (only for ×2)  
enable phase = 2 (only for ×2 and ×4)  
enable phase = 3 (only for ×2)  
2
1
0
MDS_PRERUN  
MDS_LOCKOUT  
MDS_LOCK  
R
R
R
MDS-PRERUN phase active flag  
0
1
false  
true  
MDS_LOCKOUT detected flag  
0
1
false  
true  
MDS_LOCK flag  
0
1
false  
true  
Table 67. DAC_CURRENT_AUX register (address 0Eh) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
3 to 0 DAC_AUX_BIAS[3:0]  
R/W  
-
bias current control (see Table 75)  
Table 68. DAC_CURRENT_0 register (address 0Fh) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
3 to 0 DAC_DIG_BIAS[3:0]  
R/W  
-
bias current control (see Table 75)  
Table 69. DAC_CURRENT_1 register (address 10h) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
3 to 0 DAC_MST_BIAS[3:0]  
R/W  
-
bias current control (see Table 75)  
Table 70. DAC_CURRENT_2 register (address 11h) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
3 to 0 DAC_DRV_BIAS[3:0]  
R/W  
-
bias current control (see Table 75)  
Table 71. DAC_CURRENT_3 register (address 12h) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
3 to 0 DAC_SLV_BIAS[3:0]  
R/W  
-
bias current control (see Table 75)  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
51 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 72. DAC_CURRENT_4 register (address 13h) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
3 to 0 DAC_CK_BIAS[3:0]  
R/W  
-
bias current control (see Table 75)  
Table 73. DAC_CURRENT_5 register (address 14h) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
3 to 0 DAC_CAS_BIAS[3:0]  
R/W  
-
bias current control (see Table 75)  
Table 74. DAC_CURRENT_6 register (address 15h) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
3 to 0 DAC_BLD_BIAS[3:0]  
R/W  
-
bias current control (see Table 75)  
Table 75. Bias current control table  
BIAS[3:0]  
0 0 0  
Deviation from nominal current  
30 %  
20 %  
10 %  
0 %  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
+10 %  
+20 %  
+30 %  
+40 %  
1 0 1  
1 1 0  
1 1 1  
Table 76. DAC_PON_SLEEP register (address 16h) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7
DAC_B_PON  
R/W  
-
DAC B power control  
power-down  
0
1
power on  
6
5
4
3
DAC_B_SLEEP  
DAC_B_COM_PD  
DAC_B_BLEED_PD  
DAC_A_PON  
R
R
R
R
DAC B mode selection  
normal operation  
Sleep mode  
0
1
commutator B control  
disable (power-down)  
enable  
0
1
DAC B bleed current control  
disable (power-down)  
enable  
0
1
DAC A power control  
power-down  
0
1
power on  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
52 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 76. DAC_PON_SLEEP register (address 16h) bit description …continued  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
2
DAC_A_SLEEP  
R
DAC B mode selection  
normal operation  
Sleep mode  
0
1
1
0
DAC_A_COM_PD  
R
R
commutator A control  
disable (power-down)  
enable  
0
1
DAC_A_BLEED_PD  
DAC A bleed current control  
disable (power-down)  
enable  
0
1
Table 77. DAC_TEST_8 register (address 17h) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
2 to 0 PLL_DIG_DELAY[2:0]  
R/W  
-
digital clock delay offset of PLL/CKGEN_DIV8  
Table 78. SPI_PAGE register (address 1Fh) bit description  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
2 to 0 PAGE[2:0]  
R/W  
-
SPI page address  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
53 of 69  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
10.18.6 Page A register allocation map  
Table 79 shows an overview of all registers on page A (0Ah in hexadecimal). See Section 10.18.7 for detailed descriptions of  
the registers.  
Table 79. Page_0A register allocation map  
Address Register name  
R/W  
Bit definition  
Default  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bin Hex Dec  
0
1
2
4
5
6
8
9
00h MAIN_CNTRL  
R/W  
-
-
-
LD_PD  
PD_CNTRL  
CAL_  
CNTRL  
RST_  
DCKL  
RST_  
LCKL  
0000 03h  
0011  
3
0
0
01h MAN_LDCLKDEL R/W  
02h DBG_LVDS R/W  
04h RST_EXT_LDCLK R/W  
05h RST_EXT_DCLK R/W  
06h DCMSU_PREDIV R/W  
-
-
-
-
-
-
-
-
LDCLK_DEL[3:0]  
RESERVED  
0000 00h  
0000  
SBER  
0000 00h  
0000  
RST_EXT_LCLK_TIME[7:0]  
RST_EXT_DCLK_TIME[7:0]  
DCMSU_PREDIVIDER[7:0]  
LD_POL[7:0]  
0011 3Fh 63  
1111  
0010 20h 32  
0000  
0001 1Eh 30  
1110  
08h LD_POL_LSB  
09h LD_POL_MSB  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0000 00h  
0000  
0
0
3
0
0
LD_POL[15:8]  
0000 00h  
0000  
10 0Ah LD_CNTRL  
PARITYC DESCRAMBLE  
SEL_EN[1:0]  
WORD_SWAP  
LDAB_  
SWAP  
IQ_  
EDGE_ 0000 03h  
FORMAT LDCLK 0011  
11 0Bh MISC_CNTRL  
12 0Ch I_DC_LVL_LSB  
13 0Dh I_DC_LVL_MSB  
14 0Eh Q_DC_LVL_LSB  
15 0Fh Q_DC_LVL_MSB  
27 1Bh TYPE_ID  
SR_CDI  
RESERVED  
I_LEV_  
Q_LEV_CNTRL[1:0]  
CDI_MODE[1:0] 0000 00h  
CNTRL[1:0]  
0000  
I_DC_LEVEL[7:0]  
0000 00h  
0000  
I_DC_LEVEL[15:8]  
Q_DC_LEVEL[7:0]  
Q_DC_LEVEL[15:8]  
0100 20h 32  
0000  
0000 00h  
0000  
0
0100 20h 32  
0000  
DAC  
FRONTEND[1:0]  
DUAL  
DSP[1:0]  
BIT_RES[1:0]  
0011 3Ch 60  
1010  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 79. Page_0A register allocation map …continued  
Address Register name  
R/W  
Bit definition  
Default  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bin Hex Dec  
28 1Ch DAC_VERSION  
29 1Dh DIG_VERSION  
30 1Eh LD_VERSION  
R
R
R
DAC_VERSION_ID[7:0]  
0000 01h  
0001  
1
1
1
0
DIG_VERSION_ID[7:0]  
LVDS_VERSION_ID[7:0]  
0000 01h  
0001  
0000 01h  
0001  
31 1Fh PAGE_ADDRESS R/W  
-
-
-
-
-
PAGE_ADD[2:0]  
0000 00h  
0000  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
10.18.7 Page A bit definition detailed description  
Table 80. Register MAIN_CNTRL (address 00h)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
4
LD_PD  
R/W  
LVDS interface power-down (control possible only  
when PD_CNTRL = 1)  
0
switched on  
1
switched off  
3
2
1
0
PD_CNTRL  
CAL_CNTRL  
RST_DCLK  
RST_LCLK  
R/W  
R/W  
R/W  
R/W  
power-down modes controlled by  
DCMSU block  
0
1
SPI registers  
compensation delay controlled by  
DCMSU block (automatic calibration)  
SPI registers (manual control)  
reset DCLK  
0
1
0
disable  
1
enable  
reset LVDS clock  
disable  
0
1
enable  
Table 81. Register MAN_LDCLKDEL (address 01h)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
3 to 0 LDCLK_DEL[3:0]  
R/W  
LVDS clock compensation delay (control only if  
CAL_CNTRL = 1)  
-
4-bit compensation delay for LVDS clock  
Table 82. Register DBG_LVDS (address 02h)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
3
SBER  
R/W  
simple BER control  
no action  
0
1
simple BER active  
reserved  
2 to 0 RESERVED  
R/W  
000  
Table 83. Register RST_EXT_LCLK (address 04h)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 RST_EXT_LCLK_TIME[7:0] R/W  
specify extension time reset, expressed in LVDS clock  
period  
-
8 bits for the extension time reset  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
56 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 84. Register RST_EXT_DCLK (address 05h)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 RST_EXT_DCLK_TIME[7:0] R/W  
specify extension time reset, expressed in  
DCLK period  
-
8 bits for the extension time reset  
Table 85. Register DCSMU_PREDIV (address 06h)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 DCMSU_PREDIVIDER[7:0]  
R/W  
predivider value for the DCMSU, expressed in LVDS  
clock period  
-
8 bits for the predivider value  
Table 86. Register LD_POL_LSB (address 08h)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 LD_POL[7:0]  
R/W  
toggles polarity of corresponding bit pair within LD[7:0]  
most significant 6 bits for the polarity toggle  
-
Table 87. Register LD_POL_MSB (address 09h)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 LD_POL[15:8]  
R/W  
toggles polarity of corresponding bit pair within LD[7:0]  
most significant 6 bits for the polarity toggle  
-
Table 88. Register LD_CNTRL (address 0Ah)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7
PARITYC  
R/W  
parity check  
0
1
disable  
enable  
6
DESCRAMBLE  
R/W  
R/W  
Descramble control  
0
disable descrambling  
enable descrambling  
LDVS data enable  
1
5 to 4 SEL_EN[1:0]  
00  
01  
10  
11  
LDVS data enable = align signal from channel A  
LDVS data enable = align signal from channel B  
LDVS data enable = 0  
LDVS data enable = 1  
reverse order for LVDS path  
normal operation  
3
WORD_SWAP  
R/W  
0
1
MSB to LSB order reversed  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
57 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 88. Register LD_CNTRL (address 0Ah) …continued  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
2
LDAB_SWAP  
R/W  
swaps LVDS A and LVDS B paths  
normal operation  
0
1
LVDS A and LVDS B paths are swapped  
specify IQ supplied format  
folded  
1
0
IQ_FORMAT  
R/W  
R/W  
0
1
interleaved  
EDGE_LDCLK  
specify sampling edge for LVDS data path  
falling edge of LDCLK  
rising edge of LDCLK  
0
1
Table 89. Register MISC_CNTRL (address 0Bh)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7
SR_CDI  
R/W  
CDI block software reset control  
no action  
0
1
0
perform a software reset on CDI  
reserved  
6
RESERVED  
R/W  
R/W  
5 to 4 I_LEV_CNTRL[1:0]  
3 to 2 Q_LEV_CNTRL[1:0]  
1 to 0 CDI_MODE[1:0]  
specifies output from CDI for I path  
00  
normal operation (CDI data output sent to digital  
signal processing input)  
01  
if LDVS data enable = 1, then normal operation; if  
LDVS data enable = 0, then digital signal processing  
input = I_DC_LEVEL register value  
10  
11  
digital signal processing input = I_DC_LEVEL  
digital signal processing input = I_DC_LEVEL  
specifies output from CDI for Q path  
R/W  
00  
normal operation (CDI data output sent to digital  
signal processing input)  
01  
if LDVS data enable = 1, then normal operation; if  
LDVS data enable = 0, then digital signal processing  
input = Q_DC_LEVEL register value  
10  
11  
digital signal processing input = Q_DC_LEVEL  
digital signal processing input = Q_DC_LEVEL  
specifies CDI mode  
R/W  
00  
01  
10  
11  
cdi_mode 0 (×2 mode)  
cdi_mode 1 (×4 mode)  
cdi_mode 2 (×8 mode)  
not used  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
58 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 90. Register I_DC_LVL_LSB(address 0Ch)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 I_DC_LEVEL[7:0]  
R/W  
I_DC_LEVEL  
-
least significant 8 bits for I_DC_LEVEL  
Table 91. Register I_DC_LVL_MSB(address 0Dh)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 I_DC_LEVEL[15:8]  
R/W  
I_DC_LEVEL  
-
most significant 8 bits for I_DC_LEVEL  
Table 92. Register Q_DC_LVL_LSB(address 0Eh)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 Q_DC_LEVEL[7:0]  
R/W  
Q_DC_LEVEL  
-
least significant 8 bits for Q_DC_LEVEL  
Table 93. Register Q_DC_LVL_MSB(address 0Fh)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 Q_DC_LEVEL[15:8]  
R/W  
Q_DC_LEVEL  
-
most significant 8 bits for Q_DC_LEVEL  
Table 94. Register TYPE_ID (address 1Bh)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7
DAC  
R
calibration  
0
uncalibrated device  
calibrated device  
LVDS input interface  
dual DAC  
1
6 to 5 FRONTEND  
DUAL  
R
R
R
01  
0
4
3 to 2 DSP  
internal digital signal processing  
interpolation filter + SSBM  
SSBM  
11  
10  
01  
00  
interpolation filter  
none  
1 to 0 BIT_RES  
R
DAC bit resolution  
16 bits  
00  
01  
10  
11  
14 bits  
12 bits  
10 bits  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
59 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 95. Register DAC_VERSION (address 1Ch)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 DAC_VERSION_ID[7:0]  
R/W  
DAC version number  
8 bits for the DAC version number  
-
Table 96. Register DIG_VERSION (address 1Dh)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 DIG_VERSION_ID[7:0]  
R/W  
digital version number  
8 bits for the digital version number  
-
Table 97. Register DIG_VERSION (address 1Eh)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0 LVDS_VERSION_ID[7:0]  
R/W  
LVDS receiver version number  
8 bits for the LVDS receiver version number  
-
Table 98. Register PAGE_ADD (address 1Fh)  
Default values are shown highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
2 to 0 PAGE_ADD[2:0]  
R/W  
Page address  
-
current page address  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
60 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
11. Package outline  
HVQFN72: plastic thermal enhanced very thin quad flat package; no leads;  
72 terminals; body 10 x 10 x 0.85 mm  
SOT813-3  
D
B
A
terminal 1  
index area  
E
A
A
1
c
detail X  
e
1
C
e
v
w
C
C
A
B
1/2 e  
b
y
1
y
C
19  
36  
37  
18  
e
E
h
e
2
1/2 e  
1
54  
terminal 1  
index area  
72  
55  
X
D
h
0
5
10 mm  
scale  
Dimensions  
Unit  
max 1.00 0.05 0.30  
(1)  
(1)  
A
A
1
b
c
D
D
h
E
E
h
e
e
1
e
2
L
v
w
y
y
1
10.1 7.2 10.1 7.2  
0.5  
mm nom 0.85 0.02 0.21 0.2 10.0 7.1 10.0 7.1 0.5 8.5 8.5 0.4 0.1 0.05 0.05 0.1  
min 0.80 0.00 0.18 9.9 7.0 9.9 7.0 0.3  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
sot813-3_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
- - -  
JEDEC  
- - -  
JEITA  
- - -  
10-03-23  
10-04-02  
SOT813-3  
Fig 30. Package outline SOT813-3 (HVQFN72)  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
61 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
12. Abbreviations  
Table 99. Abbreviations  
Acronym  
BW  
Description  
BandWidth  
BWA  
CDI  
Broadband Wireless Access  
Clock Domain Interface  
CDMA  
CML  
Code Division Multiple Access  
Current Mode Logic  
CMOS  
DAC  
Complementary Metal Oxide Semiconductor  
Digital-to-Analog Converter  
Enhanced Data rates for GSM Evolution  
Finite Impulse Response  
EDGE  
FIR  
GSM  
IF  
Global System for Mobile communications  
Intermediate Frequency  
IMD3  
LMDS  
LO  
Third Order InterModulation  
Local Multipoint Distribution Service  
Local Oscillator  
LVDS  
NCO  
NMOS  
PLL  
Low-Voltage Differential Signaling  
Numerically Controlled Oscillator  
Negative Metal-Oxide Semiconductor  
Phase-Locked Loop  
SFDR  
SPI  
Spurious-Free Dynamic Range  
Serial Peripheral Interface  
WCDMA  
WLL  
Wide band Code Division Multiple Access  
Wireless Local Loop  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
62 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
13. Glossary  
13.1 Static parameters  
INL — IThe deviation of the transfer function from a best fit straight line (linear regression  
computation).  
DNL — The difference between the ideal and the measured output value between  
successive DAC codes.  
13.2 Dynamic parameters  
Spurious-Free Dynamic Range (SFDR) — The ratio between the RMS value of the  
reconstructed output sine wave and the RMS value of the largest spurious observed  
(harmonic and non-harmonic, excluding DC component) in the frequency domain.  
Decibels relative to full scale (dBFS) — Unit used in a digital system in order to  
measure the amplitude level in decibel relative to the maximum peak value.  
InterModulation Distortion (IMD) — From a dual-tone digital input sine wave (these two  
frequencies being close together), the intermodulation distortion products IMD2 and IMD3  
(second order and third order components) are defined below.  
IMD2 — The ratio between the RMS value of either tone and the RMS value of the worst  
second order inter modulation product.  
IMD3 — The ratio between the RMS value of either tone and the RMS value of the worst  
third order inter modulation product.  
Total Harmonic Distortion (THD) — The ratio between the RMS value of the harmonics  
of the output frequency and the RMS value of the output sine wave. Usually, the  
calculation of THD is done on the first 5 harmonics.  
Signal-to-Noise Ratio (SNR) — The ratio between the RMS value of the reconstructed  
output sine wave and the RMS value of the noise excluding the harmonics and the DC  
component.  
Restricted BandWidth Spurious-Free Dynamic Range (SFDRRBW) — the ratio  
between the RMS value of the reconstructed output sine wave and the RMS value of the  
noise, including the harmonics, in a given bandwidth centered around foffset  
.
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
63 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
14. Revision history  
Table 100. Revision history  
Document ID  
Release date  
20110429  
Data sheet status  
Change notice  
Supersedes  
DAC1627D1G25 v.1  
Objective data sheet  
-
-
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
64 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
15. Legal information  
15.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of an NXP Semiconductors product can reasonably be expected  
15.2 Definitions  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
15.3 Disclaimers  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
65 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
15.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
16. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
66 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
17. Tables  
Table 1. Ordering information . . . . . . . . . . . . . . . . . . . . .2  
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Table 3. Limiting values . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Table 4. Thermal characteristics . . . . . . . . . . . . . . . . . . .7  
Table 5. Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Table 6. Read or Write mode access description . . . . .13  
Table 7. Number of bytes to be transferred . . . . . . . . . .13  
Table 8. SPI timing characteristics . . . . . . . . . . . . . . . .14  
Table 9. Input LVDS bus swapping . . . . . . . . . . . . . . . .16  
Table 10. Folded and interleaved format mapping. . . . . .17  
Table 11. Compensation delay values for manual  
(address 13h) . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 43. Register DAC_B_OFFSET_MSB  
(address 14h) . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 44. Register PHINCO_LSB (address 15h) . . . . . . 44  
Table 45. Register PHINCO_MSB (address 16h) . . . . . . 44  
Table 46. Register DAC_A_GAIN1 (address 17h) . . . . . 44  
Table 47. Register DAC_A_GAIN2 (address 18h) . . . . . 44  
Table 48. Register DAC_B_GAIN1 (address 19h) . . . . . 44  
Table 49. Register DAC_B_GAIN2 (address 1Ah) . . . . . 45  
Table 50. DAC_A_Aux_MSB register (address 1Bh)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 51. DAC_A_Aux_LSB register (address 1Ch)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 52. DAC_B_Aux_MSB register (address 1Dh)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 53. DAC_B_Aux_LSB register (address 1Eh)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 54. SPI_PAGE register (address 1Fh)  
tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Table 12. CDI mode 0: operating modes examples . . . .22  
Table 13. CDI mode 1: operating modes examples . . . .22  
Table 14. CDI mode 2: operating modes examples . . . .23  
Table 15: Interpolation filter coefficients . . . . . . . . . . . . .24  
Table 16. Complex modulator operation mode . . . . . . . .26  
Table 17. Inversion filter coefficients . . . . . . . . . . . . . . . .27  
Table 18. DAC transfer function . . . . . . . . . . . . . . . . . . .28  
Table 19. IO(fs) coarse adjustment . . . . . . . . . . . . . . . . . .29  
Table 20. IO(fs) fine adjustment . . . . . . . . . . . . . . . . . . . .29  
Table 21. Digital offset adjustment . . . . . . . . . . . . . . . . .30  
Table 22. Auxiliary DAC transfer function . . . . . . . . . . . .31  
Table 23. Page_00 register allocation map . . . . . . . . . . .38  
Table 24. Register COMMON (address 00h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 55. Page 1 register allocation map . . . . . . . . . . . . 46  
Table 56. MDS_MAIN register (address 00h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 57. MDS_WIN_PERIOD_A register (address 01h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 58. MDS_WIN_PERIOD_B register (address 02h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 59. MDS_MISCCNTRL0 register (address 03h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 60. MDS_MAN_ADJUSTDLY register (address 04h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 61. MDS_AUTO_CYCLES register (address 05h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 62. MDS_MISCCNTRL1 register (address 06h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 63. MDS_OFFSET_DLY register (address 07h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 64. MDS_ADJDELAY register (address 08h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 65. MDS_STATUS0 register (address 09h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 66. MDS_STATUS1 register (address 0Ah)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 67. DAC_CURRENT_AUX register (address 0Eh)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 68. DAC_CURRENT_0 register (address 0Fh)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 69. DAC_CURRENT_1 register (address 10h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . 51  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .40  
Table 25. Register TXCFG (address 01h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .40  
Table 26. Register PLLCFG (address 02h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .41  
Table 27. Register FREQNCO_B0 (address 04h) . . . . . .41  
Table 28. Register FREQNCO_B1 (address 05h) . . . . . .42  
Table 29. Register FREQNCO_B2 (address 06h) . . . . . .42  
Table 30. Register FREQNCO_B3 (address 07h) . . . . . .42  
Table 31. Register FREQNCO_B4 (address 08h) . . . . . .42  
Table 32. Register PH_CORR_CTL0 (address 09h) . . . .42  
Table 33. Register PH_CORR_CTL1 (address 0Ah) . . .42  
Table 34. Register DAC_A_DGAIN_LSB (address 0Bh) .42  
Table 35. Register DAC_A_DGAIN_MSB (address 0Ch) 43  
Table 36. Register DAC_B_DGAIN_LSB (address 0Dh) 43  
Table 37. Register DAC_B_DGAIN_MSB (address 0Eh) 43  
Table 38. Register DAC_OUT_CTRL (address 0Fh) . . .43  
Table 39. Register DAC_CLIPPING (address 10h) . . . . .43  
Table 40. Register DAC_A_OFFSET_LSB  
(address 11h) . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Table 41. Register DAC_A_OFFSET_MSB  
(address 12h) . . . . . . . . . . . . . . . . . . . . . . . . .44  
Table 42. Register DAC_B_OFFSET_LSB  
continued >>  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
67 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
Table 70. DAC_CURRENT_2 register (address 11h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .51  
Table 71. DAC_CURRENT_3 register (address 12h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .51  
Table 72. DAC_CURRENT_4 register (address 13h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .52  
Table 73. DAC_CURRENT_5 register (address 14h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .52  
Table 74. DAC_CURRENT_6 register (address 15h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .52  
Table 75. Bias current control table . . . . . . . . . . . . . . . . .52  
Table 76. DAC_PON_SLEEP register (address 16h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .52  
Table 77. DAC_TEST_8 register (address 17h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .53  
Table 78. SPI_PAGE register (address 1Fh)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .53  
Table 79. Page_0A register allocation map . . . . . . . . . . .54  
Table 80. Register MAIN_CNTRL (address 00h) . . . . . .56  
Table 81. Register MAN_LDCLKDEL (address 01h) . . . .56  
Table 82. Register DBG_LVDS (address 02h) . . . . . . . .56  
Table 83. Register RST_EXT_LCLK (address 04h) . . . .56  
Table 84. Register RST_EXT_DCLK (address 05h) . . . .57  
Table 85. Register DCSMU_PREDIV (address 06h) . . . .57  
Table 86. Register LD_POL_LSB (address 08h) . . . . . . .57  
Table 87. Register LD_POL_MSB (address 09h) . . . . . .57  
Table 88. Register LD_CNTRL (address 0Ah) . . . . . . . .57  
Table 89. Register MISC_CNTRL (address 0Bh) . . . . . .58  
Table 90. Register I_DC_LVL_LSB(address 0Ch) . . . . .59  
Table 91. Register I_DC_LVL_MSB(address 0Dh) . . . . .59  
Table 92. Register Q_DC_LVL_LSB(address 0Eh) . . . . .59  
Table 93. Register Q_DC_LVL_MSB(address 0Fh) . . . .59  
Table 94. Register TYPE_ID (address 1Bh) . . . . . . . . . .59  
Table 95. Register DAC_VERSION (address 1Ch) . . . . .60  
Table 96. Register DIG_VERSION (address 1Dh) . . . . .60  
Table 97. Register DIG_VERSION (address 1Eh) . . . . .60  
Table 98. Register PAGE_ADD (address 1Fh) . . . . . . . .60  
Table 99. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Table 100. Revision history . . . . . . . . . . . . . . . . . . . . . . . .64  
DAC1627D1G25  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 1 — 29 April 2011  
68 of 69  
DAC1627D1G25  
NXP Semiconductors  
Dual 16-bit DAC: up to 1.25 Gsps; x2, x4 and x8 interpolating  
18. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
Features and benefits . . . . . . . . . . . . . . . . . . . . 2  
10.16.2 IQ-modulator - BGX7100 interface . . . . . . . . 33  
10.16.3 IQ-modulator - DC interface. . . . . . . . . . . . . . 33  
10.16.4 IQ-modulator - AC interface. . . . . . . . . . . . . . 36  
2
3
4
5
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
10.17  
10.17.1 Power and grounding. . . . . . . . . . . . . . . . . . . 36  
10.18 Configuration interface. . . . . . . . . . . . . . . . . . 37  
Design recommendations . . . . . . . . . . . . . . . 36  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
10.18.1 Register description . . . . . . . . . . . . . . . . . . . . 37  
10.18.2 Page 0 register allocation map . . . . . . . . . . . 38  
10.18.3 Page 0 bit definition detailed description . . . . 40  
10.18.4 Page 1 allocation map . . . . . . . . . . . . . . . . . . 46  
10.18.5 Page 1 bit definition detailed description . . . . 48  
10.18.6 Page A register allocation map . . . . . . . . . . . 54  
10.18.7 Page A bit definition detailed description. . . . 56  
7
8
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal characteristics . . . . . . . . . . . . . . . . . . 7  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 8  
10  
10.1  
10.2  
10.2.1  
10.2.2  
10.3  
Application information. . . . . . . . . . . . . . . . . . 12  
General description . . . . . . . . . . . . . . . . . . . . 12  
Serial Peripheral Interface (SPI). . . . . . . . . . . 13  
Protocol description . . . . . . . . . . . . . . . . . . . . 13  
SPI timing description. . . . . . . . . . . . . . . . . . . 14  
Power-on sequence . . . . . . . . . . . . . . . . . . . . 14  
LVDS Data Input Format (DIF) block . . . . . . . 15  
Input port polarity . . . . . . . . . . . . . . . . . . . . . . 15  
Input port mapping . . . . . . . . . . . . . . . . . . . . . 16  
Input port swapping . . . . . . . . . . . . . . . . . . . . 16  
Input port formatting . . . . . . . . . . . . . . . . . . . . 17  
Input clock . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
LVDS DDR clock. . . . . . . . . . . . . . . . . . . . . . . 18  
DAC core clock. . . . . . . . . . . . . . . . . . . . . . . . 18  
Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Operating modes . . . . . . . . . . . . . . . . . . . . . . 21  
CDI mode 0 (x2 interpolation). . . . . . . . . . . . . 22  
CDI mode 1 (x4 interpolation). . . . . . . . . . . . . 22  
CDI mode 2 (x8 interpolation). . . . . . . . . . . . . 23  
FIR filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Single SideBand Modulator (SSBM). . . . . . . . 25  
NCO in 40 bits . . . . . . . . . . . . . . . . . . . . . . . . 25  
NCO low power . . . . . . . . . . . . . . . . . . . . . . . 26  
Complex modulator . . . . . . . . . . . . . . . . . . . . 26  
Minus 3dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Inverse sinx / x . . . . . . . . . . . . . . . . . . . . . . . . 27  
DAC transfer function . . . . . . . . . . . . . . . . . . . 27  
Full-scale current . . . . . . . . . . . . . . . . . . . . . . 28  
11  
12  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 61  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 62  
13  
13.1  
13.2  
Glossary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Static parameters. . . . . . . . . . . . . . . . . . . . . . 63  
Dynamic parameters . . . . . . . . . . . . . . . . . . . 63  
10.4  
14  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 64  
10.4.1  
10.4.2  
10.4.3  
10.4.4  
10.5  
10.5.1  
10.5.2  
10.6  
15  
Legal information . . . . . . . . . . . . . . . . . . . . . . 65  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 65  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
15.1  
15.2  
15.3  
15.4  
16  
17  
18  
Contact information . . . . . . . . . . . . . . . . . . . . 66  
Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
10.7  
10.7.1  
10.7.2  
10.7.3  
10.8  
10.9  
10.9.1  
10.9.2  
10.9.3  
10.9.4  
10.10  
10.11  
10.12  
10.12.1 Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
10.12.2 Full-scale current adjustment . . . . . . . . . . . . . 28  
10.13  
10.14  
10.15  
10.16  
Digital offset adjustment . . . . . . . . . . . . . . . . . 29  
Analog output . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Auxiliary DACs . . . . . . . . . . . . . . . . . . . . . . . . 31  
Output configuration . . . . . . . . . . . . . . . . . . . . 32  
10.16.1 Basic output configuration . . . . . . . . . . . . . . . 32  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2011.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 29 April 2011  
Document identifier: DAC1627D1G25  

相关型号:

DAC1627D1G25HN/C1,

Dual 16-bit DAC, up to 1.25 Gsps; 2x 4x and 8x interpolating, SOT813-3 Package, Standard Markigg, Reel Dry Pack, SMD, 13&quot;
IDT

DAC1628D1G25HN

D/A Converter, 2 Func, PQCC56
IDT

DAC1653D1G0NLGA

D/A Converter, 1 Func, Serial Input Loading, 0.02us Settling Time, 8 X 8 MM, 0.85 MM HEIGHT, 0.50 MM PITCH, VFQFP-56
IDT

DAC1653D1G5NLGA

D/A Converter, 1 Func, Serial Input Loading, 0.02us Settling Time, 8 X 8 MM, 0.85 MM HEIGHT, 0.50 MM PITCH, VFQFP-56
IDT

DAC1653D2G0NLGA

D/A Converter, 1 Func, Serial Input Loading, 0.02us Settling Time, 8 X 8 MM, 0.85 MM HEIGHT, 0.50 MM PITCH, VFQFP-56
IDT

DAC1653Q

Quad 16-bit DAC: 10 Gbps JESD204B interface: up to 1.50
IDT

DAC1653Q1G0NAGA

Quad 16-bit DAC: 10 Gbps JESD204B interface: up to 1.50
IDT

DAC1653Q1G25NAGA

Quad 16-bit DAC: 10 Gbps JESD204B interface: up to 1.50
IDT

DAC1653Q1G5NAGA

Quad 16-bit DAC: 10 Gbps JESD204B interface: up to 1.50
IDT

DAC1658D1G0NLGA

D/A Converter, 1 Func, Serial Input Loading, 0.02us Settling Time, 8 X 8 MM, 0.85 MM HEIGHT, 0.50 MM PITCH, VFQFP-56
IDT

DAC1658D1G5NLGA

D/A Converter, 1 Func, Serial Input Loading, 0.02us Settling Time, 8 X 8 MM, 0.85 MM HEIGHT, 0.50 MM PITCH, VFQFP-56
IDT

DAC1658D2G0NLGA

D/A Converter, 1 Func, Serial Input Loading, 0.02us Settling Time, 8 X 8 MM, 0.85 MM HEIGHT, 0.50 MM PITCH, VFQFP-56
IDT