DSP56F803BU80ER [NXP]

16-BIT, 80MHz, OTHER DSP, PQFP100, ROHS COMPLIANT, PLASTIC, LQFP-100;
DSP56F803BU80ER
型号: DSP56F803BU80ER
厂家: NXP    NXP
描述:

16-BIT, 80MHz, OTHER DSP, PQFP100, ROHS COMPLIANT, PLASTIC, LQFP-100

时钟 外围集成电路
文件: 总52页 (文件大小:589K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
56F803  
Data Sheet  
Preliminary Technical Data  
56F800  
16-bit Digital Signal Controllers  
DSP56F803  
Rev. 16  
09/2007  
freescale.com  
Document Revision History  
Version History  
Rev. 16  
Description of Change  
Added revision history.  
Added this text to footnote 2 in Table 3-8: “However, the high pulse width does not have to  
be any particular percent of the low pulse width.”  
56F803 General Description  
Up to 40 MIPS at 80MHz core frequency  
6-channel PWM module  
DSP and MCU functionality in a unified,  
C-efficient architecture  
Two 4-channel 12-bit ADCs  
Quadrature Decoder  
Hardware DO and REP loops  
CAN 2.0 B module  
MCU-friendly instruction set supports both DSP and  
controller functions: MAC, bit manipulation unit, 14  
addressing modes  
Serial Communication Interface (SCI)  
Serial Peripheral Interface (SPI)  
Up to two General Purpose Quad Timers  
31.5K × 16-bit words (64KB) Program Flash  
512 × 16-bit words (1KB) Program RAM  
4K × 16-bit words (8KB) Data Flash  
2K × 16-bit words (4KB) Data RAM  
2K × 16-bit words (4KB) Boot Flash  
TM  
JTAG/OnCE port for debugging  
16 shared GPIO lines  
100–pin LQFP package  
Up to 64K × 16-bit words each of external Program  
and Data memory  
6
PWM Outputs  
EXTBOOT  
IRQB  
PWMA  
Current Sense Inputs  
Fault Inputs  
3
3
RESET  
IRQA  
VCAPC  
2
V
V
V
V
SSA  
DD  
SS  
DDA  
6
6
6*  
Digital Reg  
JTAG/  
OnCE  
Port  
Analog Reg  
Low Voltage  
Supervisor  
A/D1  
4
4
A/D2  
ADC  
VREF  
Interrupt  
Controller  
Data ALU  
Quadrature  
Decoder 0 /  
Quad Timer A  
Address  
Generation  
Unit  
Bit  
Manipulation  
Unit  
Program Controller  
and  
Hardware Looping Unit  
16 x 16 + 36 36-Bit MAC  
Three 16-bit Input Registers  
Two 36-bit Accumulators  
4
Program Memory  
32252 x 16 Flash  
512 x 16 SRAM  
PAB  
PLL  
CLKO  
PDB  
16-Bit  
56800  
Core  
XTAL  
Quad Timer B  
Boot Flash  
2048 x 16 Flash  
Clock Gen  
EXTAL  
XDB2  
Quad Timer C  
Quad Timer D  
CGDB  
Data Memory  
4096 x 16 Flash  
2048 x 16 SRAM  
XAB1  
2
2
XAB2  
CAN 2.0A/B  
INTERRUPT  
IPBB  
CONTROLS  
16  
CONTROLS  
SCI  
or  
A[00:05]  
External  
Address Bus  
Switch  
16  
6
A[06:15] or  
GPIO-E2:E3 &  
GPIO-A0:A7  
COP/  
GPIO  
2
COP RESET  
Watchdog  
External  
Bus  
Interface  
Unit  
10  
16  
External  
Data Bus  
Switch  
MODULE CONTROLS  
Applica-  
tion-Specific  
Memory &  
Peripherals  
D[00:15]  
IPBus Bridge  
(IPBB)  
SPI  
or  
ADDRESS BUS [8:0]  
DATA BUS [15:0]  
PS Select  
DS Select  
WR Enable  
RD Enable  
Bus  
Control  
GPIO  
4
56F803 Block Diagram  
*includes TCS pin which is reserved for factory use and is tied to VSS  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
3
Part 1 Overview  
1.1 56F803 Features  
1.1.1  
Processing Core  
Efficient 16-bit 56800 family controller engine with dual Harvard architecture  
As many as 40 Million Instructions Per Second (MIPS) at 80MHz core frequency  
Single-cycle 16 × 16-bit parallel Multiplier-Accumulator (MAC)  
Two 36-bit accumulators, including extension bits  
16-bit bidirectional barrel shifter  
Parallel instruction set with unique processor addressing modes  
Hardware DO and REP loops  
Three internal address buses and one external address bus  
Four internal data buses and one external data bus  
Instruction set supports both DSP and controller functions  
Controller style addressing modes and instructions for compact code  
Efficient C compiler and local variable support  
Software subroutine and interrupt stack with depth limited only by memory  
JTAG/OnCE debug programming interface  
1.1.2  
Memory  
Harvard architecture permits as many as three simultaneous accesses to Program and Data memory  
On-chip memory including a low-cost, high-volume Flash solution  
— 31.5K × 16-bit words of Program Flash  
— 512K × 16-bit words of Program RAM  
— 4K × 16-bit words of Data Flash  
— 2K × 16-bit words of Data RAM  
— 2K × 16-bit words of Boot Flash  
Off-chip memory expansion capabilities programmable for 0, 4, 8, or 12 wait states  
— As much as 64K × 16 bits of Data memory  
— As much as 64K × 16 bits of Program memory  
1.1.3  
Peripheral Circuits for 56F803  
Pulse Width Modulator module (PWM) with six PWM outputs, three Current Sense inputs, and three Fault  
inputs, fault-tolerant design with dead time insertion, supports both center- and edge- aligned modes,  
supports Freescale’s patented dead time distortion correction  
Two 12-bit Analog-to-Digital Converters (ADCs), which support two simultaneous conversions; ADC and  
PWM modules can be synchronized  
Quadrature Decoder with four inputs (shares pins with Quad Timer)  
56F803 Technical Data, Rev. 16  
4
Freescale Semiconductor  
56F803 Description  
Four General Purpose Quad Timers: Timer A (sharing pins with Quad Dec0), Timers B &C without external  
pins and Timer D with two pins  
CAN 2.0 B module with 2-pin ports for transmit and receive  
Serial Communication Interface (SCI) with two pins (or two additional GPIO lines)  
Serial Peripheral Interface (SPI) with configurable 4-pin port (or four additional GPIO lines)  
Computer Operating Properly (COP) Watchdog timer  
Two dedicated external interrupt pins  
Sixteen multiplexed General Purpose I/O (GPIO) pins  
External reset input pin for hardware reset  
JTAG/On-Chip Emulation (OnCE™) for unobtrusive, processor speed-independent debugging  
Software-programmable, Phase Locked Loop-based frequency synthesizer for the controller core clock  
1.1.4  
Energy Information  
Fabricated in high-density CMOS with 5V-tolerant, TTL-compatible digital inputs  
Uses a single 3.3V power supply  
On-chip regulators for digital and analog circuitry to lower cost and reduce noise  
Wait and Stop modes available  
1.2 56F803 Description  
The 56F803 is a member of the 56800 core-based family of processors. It combines, on a single chip, the  
processing power of a DSP and the functionality of a microcontroller with a flexible set of peripherals to  
create an extremely cost-effective solution. Because of its low cost, configuration flexibility, and compact  
program code, the 56F803 is well-suited for many applications. The 56F803 includes many peripherals  
that are especially useful for applications such as motion control, smart appliances, steppers, encoders,  
tachometers, limit switches, power supply and control, automotive control, engine management, noise  
suppression, remote utility metering, and industrial control for power, lighting, and automation.  
The 56800 core is based on a Harvard-style architecture consisting of three execution units operating in  
parallel, allowing as many as six operations per instruction cycle. The MCU-style programming model and  
optimized instruction set allow straightforward generation of efficient, compact device and control code.  
The instruction set is also highly efficient for C compilers to enable rapid development of optimized  
control applications.  
The 56F803 supports program execution from either internal or external memories. Two data operands can  
be accessed from the on-chip Data RAM per instruction cycle. The 56F803 also provides two external  
dedicated interrupt lines, and up to 16 General Purpose Input/Output (GPIO) lines, depending on  
peripheral configuration.  
The 56F803 controller includes 31.5K words (16-bit) of Program Flash and 4K words of Data Flash (each  
programmable through the JTAG port) with 512 words of Program RAM and 2K words of Data RAM. It  
also supports program execution from external memory.  
A total of 2K words of Boot Flash is incorporated for easy customer-inclusion of field-programmable  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
5
software routines that can be used to program the main Program and Data Flash memory areas. Both  
Program and Data Flash memories can be independently bulkerased or erased in page sizes of 256 words.  
The Boot Flash memory can also be either bulk- or page-erased.  
A key application-specific feature of the 56F803 is the inclusion of a Pulse Width Modulator (PWM)  
module. This module incorporates three complementary, individually programmable PWM signal outputs  
(the module is also capable of supporting three independent PWM functions, for a total of six PWM  
outputs) to enhance motor control functionality. Complementary operation permits programmable dead  
time insertion, distortion correction via current sensing by software, and separate top and bottom output  
polarity control. The up-counter value is programmable to support a continuously variable PWM  
frequency. Edge- and center-aligned synchronous pulse width control (0% to 100% modulation) is  
supported. The device is capable of controlling most motor types: ACIM (AC Induction Motors), both  
BDC and BLDC (Brush and Brushless DC motors), SRM and VRM (Switched and Variable Reluctance  
Motors), and stepper motors. The PWM incorporates fault protection and cycle-by-cycle current limiting  
with sufficient output drive capability to directly drive standard opto-isolators. A “smoke-inhibit”,  
write-once protection feature for key parameters and patented PWM waveform distortion correction  
circuit are also provided. The PWM is double-buffered and includes interrupt controls to permit integral  
reload rates to be programmable from 1 to 16. The PWM module provides a reference output to  
synchronize the ADC.  
The 56F803 incorporates a separate Quadrature Decoder capable of capturing all four transitions on the  
two-phase inputs, permitting generation of a number proportional to actual position. Speed computation  
capabilities accommodate both fast and slow moving shafts. The integrated watchdog timer in the  
Quadrature Decoder can be programmed with a time-out value to alarm when no shaft motion is detected.  
Each input is filtered to ensure only true transitions are recorded.  
This controller also provides a full set of standard programmable peripherals that include a Serial  
Communications Interface (SCI), one Serial Peripheral Interface (SPI), and four Quad Timers. Any of  
these interfaces can be used as General Purpose Input/Outputs (GPIO) if that function is not required. A  
Controller Area Network interface (CAN Version 2.0 A/B-compliant) and an internal interrupt controller  
are also included on the 56F803.  
1.3 State of the Art Development Environment  
Processor ExpertTM (PE) provides a Rapid Application Design (RAD) tool that combines easy-to-use  
component-based software application creation with an expert knowledge system.  
The Code Warrior Integrated Development Environment is a sophisticated tool for code navigation,  
compiling, and debugging. A complete set of evaluation modules (EVMs) and development system cards  
will support concurrent engineering. Together, PE, Code Warrior and EVMs create a complete, scalable  
tools solution for easy, fast, and efficient development.  
56F803 Technical Data, Rev. 16  
6
Freescale Semiconductor  
Product Documentation  
1.4 Product Documentation  
The four documents listed in Table 1-1 are required for a complete description and proper design with the  
56F803. Documentation is available from local Freescale distributors, Freescale Semiconductor sales  
offices, Freescale Literature Distribution Centers, or online at: www.freescale.com  
Table 1-1 56F803 Chip Documentation  
Topic  
Description  
Order Number  
56800EFM  
56800E  
Detailed description of the 56800 family architecture, and  
16-bit core processor and the instruction set  
Family Manual  
DSP56F801/803/805/807  
User’s Manual  
Detailed description of memory, peripherals, and interfaces  
of the 56F801, 56F803, 56F803, and 56F807  
DSP56F801-7UM  
DSP56F803  
56F803  
Technical Data Sheet  
Electrical and timing specifications, pin descriptions, and  
package descriptions (this document)  
56F803  
Errata  
Details any chip issues that might be present  
DSP56F803E  
1.5 Data Sheet Conventions  
This data sheet uses the following conventions:  
OVERBAR  
This is used to indicate a signal that is active when pulled low. For example, the RESET pin is  
active when low.  
“asserted”  
“deasserted”  
Examples:  
A high true (active high) signal is high or a low true (active low) signal is low.  
A high true (active high) signal is low or a low true (active low) signal is high.  
Voltage1  
Signal/Symbol  
Logic State  
True  
Signal State  
Asserted  
PIN  
PIN  
PIN  
PIN  
VIL/VOL  
False  
Deasserted  
Asserted  
VIH/VOH  
VIH/VOH  
VIL/VOL  
True  
False  
Deasserted  
1. Values for VIL, VOL, VIH, and VOH are defined by individual product specifications.  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
7
Part 2 Signal/Connection Descriptions  
2.1 Introduction  
The input and output signals of the 56F803 are organized into functional groups, as shown in Table 2-1  
and as illustrated in Figure 2-1. In Table 2-2 through Table 2-17, each table row describes the signal or  
signals present on a pin.  
Table 2-1 Functional Group Pin Allocations  
Number of  
Pins  
Detailed  
Description  
Functional Group  
Power (VDD or VDDA  
)
7
7
Table 2-2  
Table 2-3  
Ground (VSS or VSSA  
)
Supply Capacitors  
PLL and Clock  
2
3
Table 2-4  
Table 2-5  
Table 2-6  
Address Bus1  
Data Bus  
16  
16  
4
Table 2-7  
Table 2-8  
Table 2-9  
Table 2-10  
Table 2-11  
Bus Control  
Interrupt and Program Control  
4
Pulse Width Modulator (PWM) Port  
12  
4
Serial Peripheral Interface (SPI) Port1  
Quadrature Decoder Port2  
4
2
Table 2-12  
Table 2-13  
Serial Communications Interface (SCI) Port1  
CAN Port  
2
9
2
6
Table 2-14  
Table 2-15  
Table 2-16  
Table 2-17  
Analog to Digital Converter (ADC) Port  
Quad Timer Module Port  
JTAG/On-Chip Emulation (OnCE)  
1. Alternately, GPIO pins  
2. Alternately, Quad Timer pins  
56F803 Technical Data, Rev. 16  
8
Freescale Semiconductor  
Introduction  
VDD  
VSS  
Power Port  
Ground Port  
Power Port  
Ground Port  
6
6*  
1
VDDA  
VSSA  
1
PWMA0-5  
ISA0-2  
6
3
3
PWMA  
Port  
VCAPC  
Other  
Supply  
Ports  
2
FAULTA0-2  
EXTAL  
XTAL  
PLL  
and  
Clock  
1
1
1
56F803  
CLKO  
SCLK (GPIOE4)  
MOSI (GPIOE5)  
MISO (GPIOE6)  
SS (GPIOE7)  
1
1
1
1
A0-A5  
A6-7 (GPIOE2-E3)  
A8-15 (GPIOA0-A7)  
6
2
8
External  
Address Bus or  
GPIO  
SPI Port  
or GPIO  
External  
Data Bus  
D0–D15  
16  
TXD0 (GPIOE0)  
RXD0 (GPIOE1)  
SCI0 Port  
or GPIO  
1
1
PS  
DS  
1
1
1
1
External  
Bus Control  
RD  
WR  
ANA0-7  
VREF  
8
1
ADCA  
Port  
PHASEA0 (TA0)  
PHASEB0 (TA1)  
INDEX0 (TA2)  
HOME0 (TA3)  
1
1
1
1
Quadrature  
Decoder or  
Quad Timer A  
MSCAN_RX  
MSCAN_TX  
1
1
CAN  
Quad  
Timer D  
TD1-2  
2
TCK  
TMS  
TDI  
1
1
1
1
1
1
IRQA  
1
1
1
1
IRQB  
JTAG/OnCE™  
Interrupt/  
Program  
Control  
TDO  
TRST  
DE  
Port  
RESET  
EXTBOOT  
*includes TCS pin which is reserved for factory use and is tied to VSS  
1
Figure 2-1 56F803 Signals Identified by Functional Group  
1. Alternate pin functionality is shown in parenthesis.  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
9
2.2 Power and Ground Signals  
Table 2-2 Power Inputs  
No. of Pins  
Signal Name  
VDD  
Signal Description  
6
Power—These pins provide power to the internal structures of the chip, and should all  
be attached to VDD.  
1
VDDA  
Analog Power—This pin is a dedicated power pin for the analog portion of the chip and  
should be connected to a low noise 3.3V supply.  
Table 2-3 Grounds  
No. of Pins  
Signal Name  
VSS  
Signal Description  
5
GND—These pins provide grounding for the internal structures of the chip, and should all  
be attached to VSS.  
1
1
VSSA  
TCS  
Analog Ground—This pin supplies an analog ground.  
TCS—This Schmitt pin is reserved for factory use and must be tied to VSS for normal use.  
In block diagrams, this pin is considered an additional VSS.  
Table 2-4 Supply Capacitors  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Signal Description  
Reset  
2
VCAPC  
Supply  
Supply  
VCAPC—Connect each pin to a 2.2 μF or greater bypass capacitor in  
order to bypass the core logic voltage regulator (required for proper chip  
operation). For more information, please refer to Section 5.2.  
56F803 Technical Data, Rev. 16  
10  
Freescale Semiconductor  
Clock and Phase Locked Loop Signals  
2.3 Clock and Phase Locked Loop Signals  
Table 2-5 PLL and Clock  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Reset  
Signal Description  
1
EXTAL  
Input  
Input  
External Crystal Oscillator Input—This input should be connected to  
an 8MHz external crystal or ceramic resonator. For more information,  
please refer to Section 3.5.  
1
XTAL  
Input/  
Output  
Chip-driven  
Crystal Oscillator Output—This output should be connected to an  
8MHz external crystal or ceramic resonator. For more information,  
please refer to Section 3.5.  
This pin can also be connected to an external clock source. For more  
information, please refer to Section 3.5.3.  
1
CLKO  
Output  
Chip-driven  
Clock Output—This pin outputs a buffered clock signal. By  
programming the CLKOSEL[4:0] bits in the CLKO Select Register  
(CLKOSR), the user can select between outputting a version of the  
signal applied to XTAL and a version of the device’s master clock at the  
output of the PLL. The clock frequency on this pin can also be disabled  
by programming the CLKOSEL[4:0] bits in CLKOSR.  
2.4 Address, Data, and Bus Control Signals  
Table 2-6 Address Bus Signals  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Reset  
Signal Description  
6
A0–A5  
Output  
Tri-stated  
Address Bus—A0–A5 specify the address for external Program or Data  
memory accesses.  
2
A6–A7  
Output  
Tri-stated  
Address Bus—A6–A7 specify the address for external Program or Data  
memory accesses.  
GPIOE2Input/O  
Input  
Port E GPIO—These two pins are General Purpose I/O (GPIO) pins that  
GPIOE3  
utput  
can be individually programmed as input or output pins.  
After reset, the default state is Address Bus.  
8
A8–A15  
Output  
Tri-stated  
Input  
Address Bus—A8–A15 specify the address for external Program or  
Data memory accesses.  
GPIOA0Input/O  
GPIOA7 utput  
Port A GPIO—These eight pins are General Purpose I/O (GPIO) pins  
that can be individually programmed as input or output pins.  
After reset, the default state is Address Bus.  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
11  
Table 2-7 Data Bus Signals  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Signal Description  
Reset  
16  
D0–D15  
Input/O  
utput  
Tri-stated  
Data Bus— D0–D15 specify the data for external Program or Data  
memory accesses. D0–D15 are tri-stated when the external bus is  
inactive. Internal pull-ups may be active.  
Table 2-8 Bus Control Signals  
No. of  
Pins  
Signal  
Name  
Signal State During  
Signal Description  
Type  
Reset  
1
PS  
Output  
Tri-stated  
Program Memory Select—PS is asserted low for external Program memory  
access.  
1
1
DS  
Output  
Output  
Tri-stated  
Tri-stated  
Data Memory Select—DS is asserted low for external Data memory access.  
WR  
Write Enable—WR is asserted during external memory write cycles. When  
WR is asserted low, pins D0–D15 become outputs and the device puts data  
on the bus. When WR is deasserted high, the external data is latched inside  
the external device. When WR is asserted, it qualifies the A0–A15, PS, and  
DS pins. WR can be connected directly to the WE pin of a Static RAM.  
1
RD  
Output  
Tri-stated  
Read Enable—RD is asserted during external memory read cycles. When  
RD is asserted low, pins D0–D15 become inputs and an external device is  
enabled onto the device data bus. When RD is deasserted high, the external  
data is latched inside the controller. When RD is asserted, it qualifies the  
A0–A15, PS, and DS pins. RD can be connected directly to the OE pin of a  
Static RAM or ROM.  
2.5 Interrupt and Program Control Signals  
Table 2-9 Interrupt and Program Control Signals  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Reset  
Signal Description  
1
IRQA  
Input  
(Schmitt)  
Input  
Input  
External Interrupt Request A—The IRQA input is a synchronized  
external interrupt request indicating an external device is requesting  
service. It can be programmed to be level-sensitive or  
negative-edge- triggered.  
1
IRQB  
Input  
(Schmitt)  
External Interrupt Request B—The IRQB input is an external  
interrupt request indicating an external device is requesting service.  
It can be programmed to be level-sensitive or  
negative-edge-triggered.  
56F803 Technical Data, Rev. 16  
12  
Freescale Semiconductor  
Pulse Width Modulator (PWM) Signals  
Table 2-9 Interrupt and Program Control Signals (Continued)  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Reset  
Signal Description  
1
RESET  
Input  
(Schmitt)  
Input  
Reset—This input is a direct hardware reset on the processor.  
When RESET is asserted low, the controller is initialized and placed  
in the Reset state. A Schmitt trigger input is used for noise immunity.  
When the RESET pin is deasserted, the initial chip operating mode  
is latched from the EXTBOOT pin. The internal reset signal will be  
deasserted synchronous with the internal clocks, after a fixed  
number of internal clocks.  
To ensure a complete hardware reset, RESET and TRST should be  
asserted together. The only exception occurs in a debugging  
environment when a hardware device reset is required and it is  
necessary not to reset the OnCE/JTAG module. In this case, assert  
RESET, but do not assert TRST.  
1
EXTBOOT  
Input  
Input  
External Boot—This input is tied to VDD to force device to boot from  
(Schmitt)  
off-chip memory. Otherwise, it is tied to VSS  
.
2.6 Pulse Width Modulator (PWM) Signals  
Table 2-10 Pulse Width Modulator (PWMA) Signals  
No.of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Reset  
Signal Description  
6
3
Output  
Tri-stated  
Input  
PWMA05  
ISA02  
PWMA05— These are six PWMA output pins.  
Input  
(Schmitt)  
ISA02— These three input current status pins are used for  
top/bottom pulse width correction in complementary channel  
operation for PWMA.  
3
Input  
(Schmitt)  
Input  
FAULTA02  
FAULTA02— These three fault input pins are used for disabling  
selected PWMA outputs in cases where fault conditions originate  
off-chip.  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
13  
2.7 Serial Peripheral Interface (SPI) Signals  
Table 2-11 Serial Peripheral Interface (SPI) Signals  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Reset  
Signal Description  
1
MISO  
Input/Out  
put  
Input  
SPI Master In/Slave Out (MISO)—This serial data pin is an input to a  
master device and an output from a slave device. The MISO line of a  
slave device is placed in the high impedance state if the slave device  
is not selected.  
GPIOE6  
MOSI  
Input/Out  
put  
Input  
Input  
Port E GPIO—This General Purpose I/O (GPIO) pin can be  
individually programmed as an input or output pin.  
After reset, the default state is MISO.  
1
Input/Out  
put  
SPI Master Out/Slave In (MOSI)—This serial data pin is an output  
from a master device and an input to a slave device. The master  
device places data on the MOSI line a half-cycle before the clock  
edge that the slave device uses to latch the data.  
Port E GPIO—This General Purpose I/O (GPIO) pin can be  
GPIOE5  
SCLK  
Input/Out  
put  
Input  
Input  
individually programmed as an input or output pin.  
After reset, the default state is MOSI.  
1
Input/Out  
put  
SPI Serial Clock—In master mode, this pin serves as an output,  
clocking slaved listeners. In slave mode, this pin serves as the data  
clock input.  
GPIOE4  
Input/Out  
put  
Input  
Port E GPIO—This General Purpose I/O (GPIO) pin can be  
individually programmed as an input or output pin.  
After reset, the default state is SCLK.  
1
SS  
Input  
Input  
Input  
SPI Slave Select—In master mode, this pin is used to arbitrate  
multiple masters. In slave mode, this pin is used to select the slave.  
Port E GPIO—This General Purpose I/O (GPIO) pin can be  
individually programmed as an input or output pin.  
GPIOE7  
Input/Out  
put  
After reset, the default state is SS.  
56F803 Technical Data, Rev. 16  
14  
Freescale Semiconductor  
Quadrature Decoder Signals  
2.8 Quadrature Decoder Signals  
Table 2-12 Quadrature Decoder (Quad Dec0) Signals  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Signal Description  
Reset  
1
1
1
1
PHASEA0  
Input  
Input  
Phase A—Quadrature Decoder #0 PHASEA input  
TA0  
Input/Output  
Input  
Input  
Input  
TA0—Timer A Channel 0  
PHASEB0  
Phase B—Quadrature Decoder #0 PHASEB input  
TA1  
Input/Output  
Input  
Input  
Input  
TA1—Timer A Channel 1  
INDEX0  
Index—Quadrature Decoder #0 INDEX input  
TA2  
Input/Output  
Input  
Input  
Input  
TA2—Timer A Channel 2  
HOME0  
Home—Quadrature Decoder #0 HOME input  
TA3  
Input/Output  
Input  
TA3—Timer A Channel 3  
2.9 Serial Communications Interface (SCI) Signals  
Table 2-13 Serial Communications Interface (SCI0) Signals  
No. of  
Pins  
Signal  
Name  
State During  
Reset  
Signal Type  
Signal Description  
1
TXD0  
Output  
Input  
Input  
Transmit Data (TXD0)—SCI0 transmit data output  
GPIOE0  
Input/Output  
Port E GPIO—This General Purpose I/O (GPIO) pin can be  
individually programmed as an input or output pin.  
After reset, the default state is SCI output.  
1
RXD0  
Input  
Input  
Input  
Receive Data (RXD0)— SCI0 receive data input  
GPIOE1  
Input/Output  
Port E GPIO—This General Purpose I/O (GPIO) pin can be  
individually programmed as an input or output pin.  
After reset, the default state is SCI input.  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
15  
2.10 CAN Signals  
Table 2-14 CAN Module Signals  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Signal Description  
Reset  
1
MSCAN_ RX  
Input  
Input  
MSCAN Receive Data—This is the MSCAN input. This pin has an  
(Schmitt)  
internal pull-up resistor.  
1
MSCAN_ TX  
Output  
Output  
MSCAN Transmit Data—MSCAN output. CAN output is  
open-drain output and a pull-up resistor is needed.  
2.11 Analog-to-Digital Converter (ADC) Signals  
Table 2-15 Analog to Digital Converter Signals  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Reset  
Signal Description  
4
4
1
Input  
Input  
Input  
Input  
Input  
Input  
ANA03  
ANA47  
VREF  
ANA03—Analog inputs to ADC channel 1  
ANA47—Analog inputs to ADC channel 2  
VREF—Analog reference voltage for ADC. Must be set to VDDA-0.3V  
for optimal performance.  
2.12 Quad Timer Module Signals  
Table 2-16 Quad Timer Module Signals  
No. of Pins  
Signal Name  
TD12  
Signal Type  
State During Reset  
Signal Description  
2
Input/Output  
Input  
TD12— Timer D Channel 12  
56F803 Technical Data, Rev. 16  
16  
Freescale Semiconductor  
JTAG/OnCE  
2.13 JTAG/OnCE  
Table 2-17 JTAG/On-Chip Emulation (OnCE) Signals  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Reset  
Signal Description  
1
TCK  
Input  
Input, pulled low Test Clock Input—This input pin provides a gated clock to synchronize the  
(Schmitt)  
internally  
test logic and shift serial data to the JTAG/OnCE port. The pin is connected  
internally to a pull-down resistor.  
1
TMS  
Input  
Input, pulled  
Test Mode Select Input—This input pin is used to sequence the JTAG  
(Schmitt) high internally TAP controller’s state machine. It is sampled on the rising edge of TCK and  
has an on-chip pull-up resistor.  
Note: Always tie the TMS pin to VDD through a 2.2K resistor.  
1
1
1
TDI  
TDO  
TRST  
Input  
Input, pulled  
Test Data Input—This input pin provides a serial input data stream to the  
(Schmitt) high internally JTAG/OnCE port. It is sampled on the rising edge of TCK and has an  
on-chip pull-up resistor.  
Output  
Tri-stated  
Test Data Output—This tri-statable output pin provides a serial output data  
stream from the JTAG/OnCE port. It is driven in the Shift-IR and Shift-DR  
controller states, and changes on the falling edge of TCK.  
Input  
Input, pulled  
Test Reset—As an input, a low signal on this pin provides a reset signal to  
(Schmitt) high internally the JTAG TAP controller. To ensure complete hardware reset, TRST  
should be asserted at power-up and whenever RESET is asserted. The  
only exception occurs in a debugging environment when a hardware device  
reset is required and it is necessary not to reset the OnCE/JTAG module. In  
this case, assert RESET, but do not assert TRST.  
Note: For normal operation, connect TRST directly to VSS. If the design is to be  
used in a debugging environment, TRST may be tied to VSS through a 1K resistor.  
1
DE  
Output  
Output  
Debug Event—DE provides a low pulse on recognized debug events.  
Part 3 Specifications  
3.1 General Characteristics  
The 56F803 is fabricated in high-density CMOS with 5-V tolerant TTL-compatible digital inputs. The  
term “5-V tolerant” refers to the capability of an I/O pin, built on a 3.3V-compatible process technology,  
to withstand a voltage up to 5.5V without damaging the device. Many systems have a mixture of devices  
designed for 3.3V and 5V power supplies. In such systems, a bus may carry both 3.3V and 5V-compatible  
I/O voltage levels (a standard 3.3V I/O is designed to receive a maximum voltage of 3.3V ± 10% during  
normal operation without causing damage). This 5V-tolerant capability therefore offers the power savings  
of 3.3V I/O levels while being able to receive 5V levels without being damaged.  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
17  
Absolute maximum ratings given in Table 3-1 are stress ratings only, and functional operation at the  
maximum is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent  
damage to the device.  
The 56F803 DC/AC electrical specifications are preliminary and are from design simulations. These  
specifications may not be fully tested or guaranteed at this early stage of the product life cycle. Finalized  
specifications will be published after complete characterization and device qualifications have been  
completed.  
CAUTION  
This device contains protective circuitry to guard against damage due  
to high static voltage or electrical fields. However, normal precautions  
are advised to avoid application of any voltages higher than maximum  
rated voltages to this high-impedance circuit. Reliability of operation is  
enhanced if unused inputs are tied to an appropriate voltage level.  
Table 3-1 Absolute Maximum Ratings  
Characteristic  
Symbol  
VDD  
VIN  
Min  
VSS – 0.3  
VSS – 0.3  
- 0.3  
Max  
VSS + 4.0  
VSS + 5.5V  
0.3  
Unit  
V
Supply voltage  
All other input voltages, excluding Analog inputs  
Voltage difference VDD to VDDA  
V
ΔVDD  
ΔVSS  
VIN  
V
Voltage difference VSS to VSSA  
- 0.3  
0.3  
V
Analog inputs ANA0-7 and VREF  
Analog inputs EXTAL and XTAL  
VSSA– 0.3  
VSSA– 0.3  
VDDA+ 0.3  
VSSA+ 3.0  
10  
V
VIN  
V
Current drain per pin excluding VDD, VSS, PWM outputs, TCS,  
VPP, VDDA, VSSA  
I
mA  
Table 3-2 Recommended Operating Conditions  
Characteristic  
Supply voltage, digital  
Symbol  
VDD  
Min  
3.0  
Typ  
3.3  
3.3  
-
Max  
3.6  
Unit  
V
Supply Voltage, analog  
VDDA  
ΔVDD  
3.0  
3.6  
V
Voltage difference VDD to VDDA  
-0.1  
0.1  
V
56F803 Technical Data, Rev. 16  
18  
Freescale Semiconductor  
General Characteristics  
Table 3-2 Recommended Operating Conditions  
Characteristic  
Symbol  
ΔVSS  
VREF  
TA  
Min  
-0.1  
2.7  
Typ  
Max  
Unit  
Voltage difference VSS to VSSA  
-
0.1  
V
ADC reference voltage  
VDDA  
85  
V
Ambient operating temperature  
–40  
°C  
6
Table 3-3 Thermal Characteristics  
Value  
Characteristic  
Symbol  
Unit  
Notes  
Comments  
100-pin LQFP  
Junction to ambient  
Natural convection  
RθJA  
41.7  
°C/W  
2
Junction to ambient (@1m/sec)  
RθJMA  
37.2  
34.2  
°C/W  
°C/W  
2
Junction to ambient  
Natural convection  
Four layer board (2s2p)  
Four layer board (2s2p)  
RθJMA  
(2s2p)  
1,2  
Junction to ambient (@1m/sec)  
Junction to case  
RθJMA  
RθJC  
ΨJT  
32  
10.2  
0.8  
°C/W  
°C/W  
°C/W  
W
1,2  
3
Junction to center of case  
I/O pin power dissipation  
Power dissipation  
4, 5  
P I/O  
User Determined  
P D = (IDD x VDD + P I/O  
(TJ - TA) /RθJA  
P D  
)
W
Junction to center of case  
PDMAX  
W
7
Notes:  
1. Theta-JA determined on 2s2p test boards is frequently lower than would be observed in an application.  
Determined on 2s2p thermal test board.  
2. Junction to ambient thermal resistance, Theta-JA (R ) was simulated to be equivalent to the JEDEC  
θJA  
specification JESD51-2 in a horizontal configuration in natural convection. Theta-JA was also simulated on  
a thermal test board with two internal planes (2s2p where “s” is the number of signal layers and “p” is the  
number of planes) per JESD51-6 and JESD51-7. The correct name for Theta-JA for forced convection or with  
the non-single layer boards is Theta-JMA.  
3. Junction to case thermal resistance, Theta-JC (R ), was simulated to be equivalent to the measured values  
θJC  
using the cold plate technique with the cold plate temperature used as the “case” temperature. The basic cold  
plate measurement technique is described by MIL-STD 883D, Method 1012.1. This is the correct thermal  
metric to use to calculate thermal performance when the package is being used with a heat sink.  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
19  
4. Thermal Characterization Parameter, Psi-JT (Ψ ), is the “resistance” from junction to reference point  
JT  
thermocouple on top center of case as defined in JESD51-2. Ψ is a useful value to use to estimate junction  
JT  
temperature in steady state customer environments.  
5. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
6. See Section 5.1 from more details on thermal design considerations.  
7. TJ = Junction Temperature  
TA = Ambient Temperature  
3.2 DC Electrical Characteristic  
Table 3-4 DC Electrical Characteristics  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Input high voltage (XTAL/EXTAL)  
Input low voltage (XTAL/EXTAL)  
Symbol  
VIHC  
VILC  
VIHS  
VILS  
VIH  
Min  
2.25  
0
Typ  
Max  
2.75  
0.5  
5.5  
0.8  
5.5  
0.8  
1
Unit  
V
V
Input high voltage (Schmitt trigger inputs)1  
2.2  
-0.3  
2.0  
-0.3  
-1  
V
Input low voltage (Schmitt trigger inputs)1  
Input high voltage (all other digital inputs)  
V
V
Input low voltage (all other digital inputs)  
Input current high (pullup/pulldown resistors  
VIL  
V
IIH  
μA  
disabled, VIN=VDD  
)
Input current low (pullup/pulldown resistors  
disabled, VIN=VSS  
IIL  
-1  
1
μA  
)
Input current high (with pullup resistor, VIN=VDD  
Input current low (with pullup resistor, VIN=VSS  
Input current high (with pulldown resistor, VIN=VDD  
)
IIHPU  
IILPU  
IIHPD  
IILPD  
-1  
-210  
20  
30  
1
-50  
180  
1
μA  
μA  
μA  
μA  
KΩ  
μA  
μA  
)
)
Input current low (with pulldown resistor, VIN=VSS  
Nominal pullup or pulldown resistor value  
Output tri-state current low  
)
-1  
R
PU, RPD  
IOZL  
-10  
-10  
10  
10  
Output tri-state current high  
IOZH  
56F803 Technical Data, Rev. 16  
20  
Freescale Semiconductor  
DC Electrical Characteristic  
Table 3-4 DC Electrical Characteristics (Continued)  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
2
IIHA  
-15  
15  
μA  
Input current high (analog inputs, VIN=VDDA  
)
2
IILA  
-15  
15  
μA  
Input current low (analog inputs, VIN=VSSA  
Output High Voltage (at IOH)  
Output Low Voltage (at IOL)  
Output source current  
)
VOH  
VOL  
IOH  
VDD – 0.7  
8
0.4  
V
4
V
mA  
mA  
mA  
mA  
pF  
pF  
Output sink current  
IOL  
4
PWM pin output source current3  
IOHP  
IOLP  
CIN  
10  
16  
PWM pin output sink current4  
Input capacitance  
Output capacitance  
VDD supply current  
COUT  
12  
5
IDDT  
Run 6  
126  
105  
152  
129  
mA  
mA  
Wait7  
Stop  
60  
84  
mA  
V
Low Voltage Interrupt, external power supply8  
Low Voltage Interrupt, internal power supply9  
Power on Reset10  
VEIO  
VEIC  
2.4  
2.7  
3.0  
2.0  
2.2  
1.7  
2.4  
2.0  
V
V
VPOR  
1.  
1. Schmitt Trigger inputs are: EXTBOOT, IRQA, IRQB, RESET, ISA0-2, FAULTA0-3, TCS, TCK, TRST, TMS, TDI, and  
MSCAN_RX  
2. Analog inputs are: ANA[0:7], XTAL and EXTAL. Specification assumes ADC is not sampling.  
3. PWM pin output source current measured with 50% duty cycle.  
4. PWM pin output sink current measured with 50% duty cycle.  
5. IDDT = IDD + IDDA (Total supply current for VDD + VDDA  
)
6. Run (operating) IDD measured using 8MHz clock source. All inputs 0.2V from rail; outputs unloaded. All ports configured  
as inputs; measured with all modules enabled.  
7. Wait IDD measured using external square wave clock source (fosc = 8MHz) into XTAL; all inputs 0.2V from rail; no DC  
loads; less than 50pF on all outputs. CL = 20pF on EXTAL; all ports configured as inputs; EXTAL capacitance linearly affects  
wait IDD; measured with PLL enabled.  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
21  
8. This low-voltage interrupt monitors the VDDA external power supply. VDDA is generally connected to the same potential  
as VDD via separate traces. If VDDA drops below VEIO, an interrupt is generated. Functionality of the device is guaranteed  
under transient conditions when VDDA>VEIO (between the minimum specified VDD and the point when the VEIO interrupt is  
generated).  
9. This low voltage interrupt monitors the internally regulated core power supply. If the output from the internal voltage is  
regulator drops below VEIC, an interrupt is generated. Since the core logic supply is internally regulated, this interrupt will not  
be generated unless the external power supply drops below the minimum specified value (3.0V).  
10. Poweron reset occurs whenever the internally regulated 2.5V digital supply drops below 1.5V typical. While power is  
ramping up, this signal remains active as long as the internal 2.5V is below 1.5V typical, no matter how long the ramp-up rate  
is. The internally regulated voltage is typically 100mV less than VDD during ramp-up, until 2.5V is reached, at which time it  
self-regulates.  
180  
IDD Analog  
IDD Total  
IDD Digital  
150  
120  
90  
60  
30  
0
20  
60  
80  
40  
Freq. (MHz)  
Figure 3-1 Maximum Run IDD vs. Frequency (see Note 6. in Table 3-14)  
3.3 AC Electrical Characteristics  
Timing waveforms in Section 3.3 are tested using the VIL and VIH levels specified in the DC Characteristics  
table. In Figure 3-2 the levels of VIH and VIL for an input signal are shown.  
56F803 Technical Data, Rev. 16  
22  
Freescale Semiconductor  
Flash Memory Characteristics  
Low  
VIL  
High  
VIH  
90%  
50%  
10%  
Input Signal  
Midpoint1  
Fall Time  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Rise Time  
Figure 3-2 Input Signal Measurement References  
Figure 3-3 shows the definitions of the following signal states:  
Active state, when a bus or signal is driven, and enters a low impedance state  
Tri-stated, when a bus or signal is placed in a high impedance state  
Data Valid state, when a signal level has reached VOL or VOH  
Data Invalid state, when a signal level is in transition between VOL and VOH  
Data2 Valid  
Data2  
Data1 Valid  
Data1  
Data3 Valid  
Data3  
Data  
Tri-stated  
Data Invalid State  
Data Active  
Data Active  
Figure 3-3 Signal States  
3.4 Flash Memory Characteristics  
Table 3-5 Flash Memory Truth Table  
XE1  
YE2  
SE3  
OE4  
PROG5  
ERASE6  
MAS17  
NVSTR8  
Mode  
Standby  
L
L
H
H
L
L
H
L
L
L
L
H
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
Read  
H
H
H
H
Word Program  
Page Erase  
Mass Erase  
L
H
H
H
H
H
L
1. X address enable, all rows are disabled when XE = 0  
2. Y address enable, YMUX is disabled when YE = 0  
3. Sense amplifier enable  
4. Output enable, tri-state Flash data out bus when OE = 0  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
23  
5. Defines program cycle  
6. Defines erase cycle  
7. Defines mass erase cycle, erase whole block  
8. Defines non-volatile store cycle  
Table 3-6 IFREN Truth Table  
Mode  
IFREN = 1  
IFREN = 0  
Read  
Read information block  
Program information block  
Erase information block  
Erase both block  
Read main memory block  
Program main memory block  
Erase main memory block  
Erase main memory block  
Word program  
Page erase  
Mass erase  
Table 3-7 Flash Timing Parameters  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6V, TA = –40° to +85°C, CL 50pF  
Characteristic  
Program time  
Symbol  
Min  
20  
Typ  
Max  
Unit  
us  
Figure  
Figure 3-4  
Figure 3-5  
Figure 3-6  
Tprog*  
Erase time  
20  
ms  
Terase*  
Mass erase time  
100  
10,000  
10  
ms  
Tme*  
ECYC  
Endurance1  
20,000  
30  
cycles  
years  
Data Retention1  
DRET  
The following parameters should only be used in the Manual Word Programming Mode  
PROG/ERASE to NVSTR set up time  
NVSTR hold time  
5
5
us  
us  
Figure 3-4,  
Figure 3-5,  
Figure 3-6  
Tnv*  
Figure 3-4,  
Figure 3-5  
Tnvh*  
NVSTR hold time (mass erase)  
NVSTR to program set up time  
Recovery time  
100  
10  
1
us  
us  
us  
Figure 3-6  
Figure 3-4  
Tnvh1*  
Tpgs*  
Trcv*  
Figure 3-4,  
Figure 3-5,  
Figure 3-6  
56F803 Technical Data, Rev. 16  
24  
Freescale Semiconductor  
Flash Memory Characteristics  
Table 3-7 Flash Timing Parameters (Continued)  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6V, TA = –40° to +85°C, CL 50pF  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Figure  
Cumulative program  
HV period2  
3
ms  
Figure 3-4  
Thv  
Program hold time3  
Address/data set up time3  
Address/data hold time3  
Figure 3-4  
Figure 3-4  
Figure 3-4  
Tpgh  
Tads  
Tadh  
1. One cycle is equal to an erase program and read.  
2. Thv is the cumulative high voltage programming time to the same row before next erase. The same address cannot be programmed  
twice before next erase.  
3. Parameters are guaranteed by design in smart programming mode and must be one cycle or greater.  
*The Flash interface unit provides registers for the control of these parameters.  
IFREN  
XADR  
XE  
Tadh  
YADR  
YE  
DIN  
Tads  
PROG  
Tnvs  
Tprog  
Tpgh  
NVSTR  
Tpgs  
Tnvh  
Trcv  
Thv  
Figure 3-4 Flash Program Cycle  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
25  
IFREN  
XADR  
XE  
YE=SE=OE=MAS1=0  
ERASE  
NVSTR  
Tnvs  
Tnvh  
Trcv  
Terase  
Figure 3-5 Flash Erase Cycle  
IFREN  
XADR  
XE  
MAS1  
YE=SE=OE=0  
ERASE  
NVSTR  
Tnvs  
Tnvh1  
Trcv  
Tme  
Figure 3-6 Flash Mass Erase Cycle  
56F803 Technical Data, Rev. 16  
26  
Freescale Semiconductor  
External Clock Operation  
3.5 External Clock Operation  
The 56F803 system clock can be derived from an external crystal or an external system clock signal. To  
generate a reference frequency using the internal oscillator, a reference crystal must be connected between  
the EXTAL and XTAL pins.  
3.5.1  
Crystal Oscillator  
The internal oscillator is also designed to interface with a parallel-resonant crystal resonator in the  
frequency range specified for the external crystal in Table 3-9. In Figure 3-7 a recommended crystal  
oscillator circuit is shown. Follow the crystal supplier’s recommendations when selecting a crystal,  
because crystal parameters determine the component values required to provide maximum stability and  
reliable start-up. The crystal and associated components should be mounted as close as possible to the  
EXTAL and XTAL pins to minimize output distortion and start-up stabilization time. The internal  
56F80x oscillator circuitry is designed to have no external load capacitors present. As shown in  
Figure 3-8 no external load capacitors should be used.  
The 56F80x components internally are modeled as a parallel resonant oscillator circuit to provide a  
capacitive load on each of the oscillator pins (XTAL and EXTAL) of 10pF to 13pF over temperature and  
process variations. Using a typical value of internal capacitance on these pins of 12pF and a value of 3pF  
as a typical circuit board trace capacitance the parallel load capacitance presented to the crystal is 9pF as  
determined by the following equation:  
CL1 * CL2  
CL1 + CL2  
12 * 12  
12 + 12  
CL =  
+ Cs =  
+ 3 = 6 + 3 = 9pF  
This is the value load capacitance that should be used when selecting a crystal and determining the actual  
frequency of operation of the crystal oscillator circuit.  
Recommended External Crystal  
Parameters:  
Rz = 1 to 3 MΩ  
EXTAL XTAL  
Rz  
fc = 8MHz (optimized for 8MHz)  
fc  
Figure 3-7 Connecting to a Crystal Oscillator  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
27  
3.5.2  
Ceramic Resonator  
It is also possible to drive the internal oscillator with a ceramic resonator, assuming the overall system  
design can tolerate the reduced signal integrity. In Figure 3-8, a typical ceramic resonator circuit is  
shown. Refer to supplier’s recommendations when selecting a ceramic resonator and associated  
components. The resonator and components should be mounted as close as possible to the EXTAL and  
XTAL pins. The internal 56F80x oscillator circuitry is designed to have no external load capacitors  
present. As shown in Figure 3-7 no external load capacitors should be used.  
Recommended Ceramic Resonator  
Parameters:  
Rz = 1 to 3 MΩ  
EXTAL XTAL  
Rz  
fc = 8MHz (optimized for 8MHz)  
fc  
Figure 3-8 Connecting a Ceramic Resonator  
Note: Freescale recommends only two terminal ceramic resonators vs. three terminal resonators  
(which contain an internal bypass capacitor to ground).  
3.5.3  
External Clock Source  
The recommended method of connecting an external clock is given in Figure 3-9. The external clock  
source is connected to XTAL and the EXTAL pin is grounded.  
56F803  
XTAL  
EXTAL  
V
External  
Clock  
SS  
Figure 3-9 Connecting an External Clock Signal  
56F803 Technical Data, Rev. 16  
28  
Freescale Semiconductor  
External Clock Operation  
3
Table 3-8 External Clock Operation Timing Requirements  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C  
Characteristic  
Symbol  
fosc  
Min  
0
Typ  
Max  
80  
Unit  
MHz  
ns  
Frequency of operation (external clock driver)1  
Clock Pulse Width2, 3  
tPW  
6.25  
1. See Figure 3-9 for details on using the recommended connection of an external clock driver.  
2. The high or low pulse width must be no smaller than 6.25ns or the chip will not function. However, the high pulse width  
does not have to be any particular percent of the low pulse width.  
3. Parameters listed are guaranteed by design.  
VIH  
External  
Clock  
90%  
50%  
10%  
90%  
50%  
10%  
tPW  
tPW  
VIL  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Figure 3-10 External Clock Timing  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
29  
3.5.4  
Phase Locked Loop Timing  
Table 3-9 PLL Timing  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C  
Characteristic  
Symbol  
fosc  
Min  
4
Typ  
8
Max  
10  
Unit  
MHz  
MHz  
ms  
External reference crystal frequency for the PLL1  
PLL output frequency 2  
fout/2  
tplls  
40  
110  
10  
PLL stabilization time 3 0o to +85oC  
PLL stabilization time3 -40o to 0oC  
1
tplls  
100  
200  
ms  
1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work  
correctly. The PLL is optimized for 8MHz input crystal.  
2. ZCLK may not exceed 80MHz. For additional information on ZCLK and fout/2, please refer to the OCCS chapter in the  
User Manual. ZCLK = fop  
3. This is the minimum time required after the PLL set-up is changed to ensure reliable operation.  
3.6 External Bus Asynchronous Timing  
1, 2  
Table 3-10 External Bus Asynchronous Timing  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Symbol  
Unit  
Min  
Max  
Address Valid to WR Asserted  
tAWR  
tWR  
6.5  
ns  
WR Width Asserted  
Wait states = 0  
Wait states > 0  
7.5  
ns  
ns  
(T*WS) + 7.5  
WR Asserted to D0–D15 Out Valid  
tWRD  
tDOH  
tDOS  
4.2  
ns  
ns  
Data Out Hold Time from WR Deasserted  
4.8  
Data Out Set Up Time to WR Deasserted  
Wait states = 0  
Wait states > 0  
2.2  
ns  
ns  
(T*WS) + 6.4  
RD Deasserted to Address Not Valid  
tRDA  
0
ns  
Address Valid to RD Deasserted  
Wait states = 0  
Wait states > 0  
tARDD  
18.7  
(T*WS) + 18.7  
ns  
ns  
56F803 Technical Data, Rev. 16  
30  
Freescale Semiconductor  
External Bus Asynchronous Timing  
1, 2  
Table 3-10 External Bus Asynchronous Timing  
(Continued)  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Symbol  
Unit  
Min  
Max  
Input Data Hold to RD Deasserted  
tDRD  
tRD  
0
ns  
RD Assertion Width  
Wait states = 0  
Wait states > 0  
19  
ns  
ns  
(T*WS) + 19  
Address Valid to Input Data Valid  
Wait states = 0  
Wait states > 0  
tAD  
1
ns  
ns  
(T*WS) + 1  
Address Valid to RD Asserted  
tARDA  
tRDD  
-4.4  
ns  
RD Asserted to Input Data Valid  
Wait states = 0  
Wait states > 0  
2.4  
ns  
ns  
(T*WS) + 2.4  
WR Deasserted to RD Asserted  
RD Deasserted to RD Asserted  
WR Deasserted to WR Asserted  
RD Deasserted to WR Asserted  
tWRRD  
tRDRD  
tWRWR  
tRDWR  
6.8  
0
ns  
ns  
ns  
ns  
14.1  
12.8  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
31  
1. Timing is both wait state and frequency dependent. In the formulas listed, WS = the number of wait states and  
T = Clock Period. For 80MHz operation, T = 12.5ns.  
2. Parameters listed are guaranteed by design.  
To calculate the required access time for an external memory for any frequency < 80Mhz, use this formula:  
Top = Clock period @ desired operating frequency  
WS = Number of wait states  
Memory Access Time = (Top*WS) + (Top- 11.5)  
A0–A15,  
PS, DS  
tARDD  
(See Note)  
tRDA  
tARDA  
tRDRD  
tRD  
tAWR  
tWRWR  
RD  
tWRRD  
tWR  
tRDWR  
WR  
tRDD  
tAD  
tDOH  
tWRD  
tDRD  
tDOS  
Data In  
Data Out  
D0–D15  
Note: During read-modify-write instructions and internal instructions, the address lines do not change state.  
Figure 3-11 External Bus Asynchronous Timing  
3.7 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
1, 5  
Table 3-11 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6V, TA = –40° to +85°C, CL 50pF  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Figure 3-12  
RESET Assertion to Address, Data and Control  
Signals High Impedance  
tRAZ  
21  
ns  
Minimum RESET Assertion Duration2  
OMR Bit 6 = 0  
OMR Bit 6 = 1  
tRA  
Figure 3-12  
Figure 3-12  
275,000T  
128T  
ns  
ns  
RESET De-assertion to First External Address Output  
tRDA  
33T  
34T  
ns  
56F803 Technical Data, Rev. 16  
32  
Freescale Semiconductor  
Reset, Stop, Wait, Mode Select, and Interrupt Timing  
1, 5  
Table 3-11 Reset, Stop, Wait, Mode Select, and Interrupt Timing (Continued)  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6V, TA = –40° to +85°C, CL 50pF  
Characteristic  
Symbol  
tIRW  
Min  
1.5T  
15T  
Max  
Unit  
ns  
See Figure  
Figure 3-13  
Figure 3-14  
Edge-sensitive Interrupt Request Width  
IRQA, IRQB Assertion to External Data Memory  
Access Out Valid, caused by first instruction execution  
in the interrupt service routine  
tIDM  
ns  
IRQA, IRQB Assertion to General Purpose Output  
Valid, caused by first instruction execution in the  
interrupt service routine  
tIG  
16T  
ns  
Figure 3-14  
Figure 3-15  
IRQA Low to First Valid Interrupt Vector Address Out  
recovery from Wait State3  
tIRI  
13T  
2T  
ns  
ns  
IRQA Width Assertion to Recover from Stop State4  
tIW  
tIF  
Figure 3-16  
Figure 3-16  
Delay from IRQA Assertion to Fetch of first instruction  
(exiting Stop)  
OMR Bit 6 = 0  
OMR Bit 6 = 1  
275,000T  
12T  
ns  
ns  
Duration for Level Sensitive IRQA Assertion to Cause  
the Fetch of First IRQA Interrupt Instruction (exiting  
Stop)  
OMR Bit 6 = 0  
OMR Bit 6 = 1  
tIRQ  
Figure 3-17  
Figure 3-17  
275,000T  
12T  
ns  
ns  
Delay from Level Sensitive IRQA Assertion to First  
Interrupt Vector Address Out Valid (exiting Stop)  
OMR Bit 6 = 0  
tII  
275,000T  
12T  
ns  
ns  
OMR Bit 6 = 1  
1. In the formulas, T = clock cycle. For an operating frequency of 80MHz, T = 12.5ns.  
2. Circuit stabilization delay is required during reset when using an external clock or crystal oscillator in two cases:  
• After power-on reset  
• When recovering from Stop state  
3. The minimum is specified for the duration of an edge-sensitive IRQA interrupt required to recover from the Stop state. This is  
not the minimum required so that the IRQA interrupt is accepted.  
4. The interrupt instruction fetch is visible on the pins only in Mode 3.  
5. Parameters listed are guaranteed by design.  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
33  
RESET  
tRA  
tRAZ  
tRDA  
First Fetch  
A0–A15,  
D0–D15  
PS, DS,  
RD, WR  
First Fetch  
Figure 3-12 Asynchronous Reset Timing  
IRQA,  
IRQB  
tIRW  
Figure 3-13 External Interrupt Timing (Negative-Edge-Sensitive)  
56F803 Technical Data, Rev. 16  
34  
Freescale Semiconductor  
Reset, Stop, Wait, Mode Select, and Interrupt Timing  
A0–A15,  
PS, DS,  
RD, WR  
First Interrupt Instruction Execution  
tIDM  
IRQA,  
IRQB  
a) First Interrupt Instruction Execution  
General  
Purpose  
I/O Pin  
tIG  
IRQA,  
IRQB  
b) General Purpose I/O  
Figure 3-14 External Level-Sensitive Interrupt Timing  
IRQA,  
IRQB  
tIRI  
A0–A15,  
PS, DS,  
RD, WR  
First Interrupt Vector  
Instruction Fetch  
Figure 3-15 Interrupt from Wait State Timing  
tIW  
IRQA  
tIF  
A0–A15,  
PS, DS,  
RD, WR  
First Instruction Fetch  
Not IRQA Interrupt Vector  
Figure 3-16 Recovery from Stop State Using Asynchronous Interrupt Timing  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
35  
tIRQ  
IRQA  
tII  
A0–A15  
PS, DS,  
RD, WR  
First IRQA Interrupt  
Instruction Fetch  
Figure 3-17 Recovery from Stop State Using IRQA Interrupt Service  
3.8 Serial Peripheral Interface (SPI) Timing  
1
Table 3-12 SPI Timing  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6V, TA = –40° to +85°C, CL 50pF, fOP = 80MHz  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Cycle time  
Master  
Slave  
tC  
Figures 3-18, ,  
3-20, 3-21  
50  
25  
ns  
ns  
Enable lead time  
Master  
Slave  
tELD  
tELG  
tCH  
tCL  
tDS  
tDH  
tA  
Figure 3-21  
Figure 3-21  
25  
ns  
ns  
Enable lag time  
Master  
Slave  
100  
ns  
ns  
Clock (SCLK) high time  
Master  
Slave  
ns  
ns  
Figures 3-18, ,  
3-20, 3-21  
17.6  
12.5  
Clock (SCLK) low time  
Master  
Slave  
Figures 3-18, ,  
3-20, 3-21  
24.1  
25  
ns  
ns  
Data set-up time required for inputs  
Master  
Slave  
Figures 3-18, ,  
3-20, 3-21  
20  
0
ns  
ns  
Data hold time required for inputs  
Master  
Slave  
Figures 3-18, ,  
3-20, 3-21  
0
2
ns  
ns  
Access time (time to data active from high-impedance  
state)  
Slave  
Figure 3-21  
Figure 3-21  
4.8  
3.7  
15  
ns  
ns  
Disable time (hold time to high-impedance state)  
Slave  
tD  
15.2  
56F803 Technical Data, Rev. 16  
36  
Freescale Semiconductor  
Serial Peripheral Interface (SPI) Timing  
1
Table 3-12 SPI Timing  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6V, TA = –40° to +85°C, CL 50pF, fOP = 80MHz  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Data Valid for outputs  
Master  
Slave (after enable edge)  
tDV  
Figures 3-18, ,  
3-20, 3-21  
4.5  
20.4  
ns  
ns  
Data invalid  
Master  
Slave  
tDI  
tR  
tF  
Figures 3-18, ,  
3-20, 3-21  
0
0
ns  
ns  
Rise time  
Master  
Slave  
Figures 3-18, ,  
3-20, 3-21  
11.5  
10.0  
ns  
ns  
Fall time  
Master  
Slave  
Figures 3-18, ,  
3-20, 3-21  
9.7  
9.0  
ns  
ns  
1. Parameters listed are guaranteed by design.  
SS  
(Input)  
SS is held High on master  
tC  
tR  
tF  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tCL  
tF  
tR  
SCLK (CPOL = 1)  
(Output)  
tDH  
tCH  
tDS  
MISO  
(Input)  
MSB in  
tDI  
Bits 14–1  
LSB in  
tDI(ref)  
tDV  
MOSI  
(Output)  
Master MSB out  
tF  
Bits 14–1  
Master LSB out  
tR  
Figure 3-18 SPI Master Timing (CPHA = 0)  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
37  
SS  
(Input)  
SS is held High on master  
tF  
tC  
tR  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tCL  
tF  
SCLK (CPOL = 1)  
(Output)  
tCH  
tDS  
tDH  
tR  
MISO  
(Input)  
MSB in  
Bits 14–1  
LSB in  
tDI  
tDV  
tDV(ref)  
MOSI  
(Output)  
Master MSB out  
tF  
Bits 14– 1  
Master LSB out  
tR  
Figure 3-19 SPI Master Timing (CPHA = 1)  
56F803 Technical Data, Rev. 16  
38  
Freescale Semiconductor  
Serial Peripheral Interface (SPI) Timing  
SS  
(Input)  
tC  
tF  
tR  
tELG  
tCL  
SCLK (CPOL = 0)  
(Input)  
tCH  
tCL  
tELD  
SCLK (CPOL = 1)  
(Input)  
tF  
tCH  
tA  
tR  
tD  
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
tDV  
Slave LSB out  
tDI  
tDS  
tDI  
tDH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 3-20 SPI Slave Timing (CPHA = 0)  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
39  
SS  
(Input)  
tC  
tF  
tR  
tCL  
SCLK (CPOL = 0)  
(Input)  
tCH  
tCL  
tELG  
tELD  
SCLK (CPOL = 1)  
(Input)  
tDV  
tCH  
tR  
tD  
tF  
tA  
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
tDV  
Slave LSB out  
tDS  
tDI  
tDH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 3-21 SPI Slave Timing (CPHA = 1)  
3.9 Quad Timer Timing  
1, 2  
Table 3-13 Timer Timing  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6V, TA = –40° to +85°C, CL 50pF, fOP = 80MHz  
Characteristic  
Timer input period  
Symbol  
PIN  
Min  
4T+6  
2T+3  
2T  
Max  
Unit  
ns  
Timer input high/low period  
Timer output period  
PINHL  
POUT  
ns  
ns  
56F803 Technical Data, Rev. 16  
40  
Freescale Semiconductor  
Quadrature Decoder Timing  
1, 2  
Table 3-13 Timer Timing  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6V, TA = –40° to +85°C, CL 50pF, fOP = 80MHz  
Timer output high/low period POUTHL 1T ns  
1. In the formulas listed, T = clock cycle. For 80MHz operation, T = 12.5ns.  
2. Parameters listed are guaranteed by design.  
Timer Inputs  
PIN  
PINHL  
PINHL  
Timer Outputs  
POUT  
POUTHL  
POUTHL  
Figure 3-22 Timer Timing  
3.10 Quadrature Decoder Timing  
1,2  
Table 3-14 Quadrature Decoder Timing  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6V, TA = –40° to +85°C, CL 50pF, fOP = 80MHz  
Characteristic  
Quadrature input period  
Symbol  
PIN  
Min  
8T+12  
4T+6  
2T+3  
Max  
Unit  
ns  
Quadrature input high/low period  
Quadrature phase period  
PHL  
ns  
PPH  
ns  
1. In the formulas listed, T = clock cycle. For 80MHz operation, T = 12. ns. VSS = 0 V, VDD = 3.0 – 3.6V,  
A = –40° to +85°C, CL 50pF.  
T
2. Parameters listed are guaranteed by design.  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
41  
PPH PPH PPH PPH  
Phase A  
(Input)  
PHL  
PIN  
PHL  
Phase B  
(Input)  
PIN  
PHL  
PHL  
Figure 3-23 Quadrature Decoder Timing  
3.11 Serial Communication Interface (SCI) Timing  
4
Table 3-15 SCI Timing  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C, CL 50pF, fOP = 80MHz  
Characteristic  
Symbol  
Min  
Max  
Unit  
Baud Rate1  
BR  
(fMAX*2.5)/(80)  
Mbps  
RXD2 Pulse Width  
TXD3 Pulse Width  
RXDPW  
TXDPW  
0.965/BR  
0.965/BR  
1.04/BR  
1.04/BR  
ns  
ns  
1. fMAX is the frequency of operation of the system clock in MHz.  
2. The RXD pin in SCI0 is named RXD0 and the RXD pin in SCI1 is named RXD1.  
3. The TXD pin in SCI0 is named TXD0 and the TXD pin in SCI1 is named TXD1.  
4. Parameters listed are guaranteed by design.  
RXD  
SCI receive  
data pin  
RXDPW  
(Input)  
Figure 3-24 RXD Pulse Width  
56F803 Technical Data, Rev. 16  
42  
Freescale Semiconductor  
Analog-to-Digital Converter (ADC) Characteristics  
TXD  
SCI receive  
data pin  
TXDPW  
(Input)  
Figure 3-25 TXD Pulse Width  
3.12 Analog-to-Digital Converter (ADC) Characteristics  
Table 3-16 ADC Characteristics  
Characteristic  
ADC input voltages  
Symbol  
Min  
Typ  
Max  
Unit  
2
01  
12  
VREF  
VADCIN  
V
Resolution  
RES  
INL  
12  
Bits  
Integral Non-Linearity3  
Differential Non-Linearity  
LSB4  
LSB4  
+/- 2.5  
+/- 0.9  
+/- 4  
+/- 1  
DNL  
Monotonicity  
GUARANTEED  
ADC internal clock5  
Conversion range  
fADIC  
RAD  
0.5  
VSSA  
5
MHz  
V
VDDA  
tAIC cycles6  
tAIC cycles6  
tAIC cycles6  
Power-up time  
Conversion time  
Sample time  
tADPU  
16  
tADC  
tADS  
6
1
pF6  
Input capacitance  
CADI  
EGAIN  
VOFFSET  
THD  
0.95  
-80  
60  
55  
9
5
1.00  
-15  
64  
1.10  
+20  
Gain Error (transfer gain)5  
Offset Voltage5  
mV  
dB  
Total Harmonic Distortion5  
Signal-to-Noise plus Distortion5  
Effective Number of Bits5  
SINAD  
ENOB  
SFDR  
BW  
60  
dB  
10  
bit  
Spurious Free Dynamic Range5  
Bandwidth  
65  
70  
dB  
100  
KHz  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
43  
Table 3-16 ADC Characteristics  
Characteristic  
Symbol  
IADC  
Min  
Typ  
50  
Max  
Unit  
mA  
ADC Quiescent Current (both ADCs)  
VREF Quiescent Current (both ADCs)  
IVREF  
12  
16.5  
mA  
1. For optimum ADC performance, keep the minimum VADCIN value > 25mV. Inputs less than 25mV may convert to a digital  
output code of 0.  
2. VREF must be equal to or less than VDDA and must be greater than 2.7V. For optimal ADC performance, set VREF to VD-  
DA-0.3V.  
3. Measured in 10-90% range.  
4. LSB = Least Significant Bit.  
5. Guaranteed by characterization.  
6. tAIC = 1/fADIC  
3
ADC analog input  
1
2
4
1. Parasitic capacitance due to package, pin to pin, and pin to package base coupling. (1.8pf)  
2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing. (2.04pf)  
3. Equivalent resistance for the ESD isolation resistor and the channel select mux. (500 ohms)  
4. Sampling capacitor at the sample and hold circuit. (1pf)  
Figure 3-26 Equivalent Analog Input Circuit  
3.13 Controller Area Network (CAN) Timing  
2
Table 3-17 CAN Timing  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40× to +85×C, CL £ 50pF, MSCAN Clock = 30MHz  
Characteristic  
Symbol  
BRCAN  
Min  
5
Max  
1
Unit  
Mbps  
μs  
Baud Rate  
Bus Wakeup detection 1  
T WAKEUP  
56F803 Technical Data, Rev. 16  
44  
Freescale Semiconductor  
Controller Area Network (CAN) Timing  
1. If Wakeup glitch filter is enabled during the design initialization and also CAN is put into SLEEP mode then, any bus event  
(on MSCAN_RX pin) whose duration is less than 5 micro seconds is filtered away. However, a valid CAN bus wakeup detec-  
tion takes place for a wakeup pulse equal to or greater than 5 microseconds. The value of 5 microseconds originates from the  
fact that the CAN wakeup message consists of 5 dominant bits at the highest possible baud rate of 1Mbps.  
2. Parameters listed are guaranteed by design.  
MSCAN_RX  
CAN receive  
data pin  
T WAKEUP  
(Input)  
Figure 3-27 Bus Wakeup Detection  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
45  
3.14 JTAG Timing  
1, 3  
Table 3-18 JTAG Timing  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C, CL 50pF, fOP = 80MHz  
Characteristic  
TCK frequency of operation2  
Symbol  
fOP  
Min  
DC  
100  
50  
Max  
10  
Unit  
MHz  
ns  
TCK cycle time  
tCY  
TCK clock pulse width  
TMS, TDI data set-up time  
TMS, TDI data hold time  
TCK low to TDO data valid  
TCK low to TDO tri-state  
TRST assertion time  
DE assertion time  
tPW  
ns  
tDS  
0.4  
1.2  
ns  
tDH  
ns  
tDV  
26.6  
23.5  
ns  
tTS  
ns  
tTRST  
tDE  
50  
ns  
4T  
ns  
1. Timing is both wait state and frequency dependent. For the values listed, T = clock cycle. For 80MHz  
operation, T = 12.5ns.  
2. TCK frequency of operation must be less than 1/8 the processor rate.  
3. Parameters listed are guaranteed by design.  
tCY  
tPW  
tPW  
VIH  
VM  
VIL  
VM  
TCK  
(Input)  
VM = VIL + (VIH – VIL)/2  
Figure 3-28 Test Clock Input Timing Diagram  
56F803 Technical Data, Rev. 16  
46  
Freescale Semiconductor  
JTAG Timing  
TCK  
(Input)  
tDS  
tDH  
TDI  
TMS  
Input Data Valid  
(Input)  
tDV  
TDO  
(Output)  
Output Data Valid  
tTS  
TDO  
(Output)  
tDV  
TDO  
(Output)  
Output Data Valid  
Figure 3-29 Test Access Port Timing Diagram  
TRST  
(Input)  
tTRST  
Figure 3-30 TRST Timing Diagram  
DE  
tDE  
Figure 3-31 OnCE—Debug Event  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
47  
Part 4 Packaging  
4.1 Package and Pin-Out Information 56F803  
This section contains package and pin-out information for the 100-pin LQFP configuration of the 56F803.  
PWMA5  
PWMA4  
PWMA3  
PWMA2  
PWMA1  
PWMA0  
HOME0  
D10  
D11  
D12  
D13  
D14  
PIN 76  
ORIENTATION  
MARK  
PIN 1  
D15  
A0  
VDD  
INDEX0  
VSS  
A1  
A2  
A3  
VSS  
VDD  
PHASEB0  
PHASEA0  
VSS  
A4  
A5  
VDD  
A6  
A7  
A8  
A9  
VDD  
VDDA  
VSSA  
EXTAL  
XTAL  
AN7  
A10  
A11  
AN6  
AN5  
AN4  
AN3  
AN2  
A12  
A13  
VDD  
PS  
PIN 51  
PIN 26  
DS  
Figure 4-1 Top View, 56F803 100-pin LQFP Package  
56F803 Technical Data, Rev. 16  
48  
Freescale Semiconductor  
Package and Pin-Out Information 56F803  
Table 4-1 56F803 Pin Identification By Pin Number  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
1
2
3
D10  
D11  
D12  
26  
27  
28  
A14  
A15  
VSS  
51  
52  
53  
AN2  
AN3  
AN4  
76  
77  
78  
TXD0  
RXD0  
EXTBOOT  
4
5
6
7
8
D13  
D14  
D15  
A0  
29  
30  
31  
32  
33  
WR  
RD  
54  
55  
56  
57  
58  
AN5  
AN6  
79  
80  
81  
82  
83  
RESET  
DE  
IRQA  
IRQB  
TCS  
AN7  
CLKO  
TD1  
XTAL  
EXTAL  
VDD  
TD2  
9
VSS  
A1  
A2  
A3  
A4  
34  
35  
36  
37  
38  
TCK  
TMS  
TDI  
59  
60  
61  
62  
63  
VSSA  
VDDA  
VDD  
84  
85  
86  
87  
88  
SS  
10  
11  
12  
13  
MISO  
MOSI  
SCLK  
VCAPC  
TDO  
TRST  
VDD  
VSS  
14  
15  
16  
A5  
A6  
A7  
39  
40  
41  
VCAPC  
ISA0  
64  
65  
66  
PHASEA0  
PHASEB0  
VDD  
89  
90  
91  
D0  
D1  
D2  
ISA1  
17  
18  
A8  
A9  
42  
43  
ISA2  
67  
68  
VSS  
92  
93  
VDD  
VSS  
FAULTA0  
INDEX0  
19  
20  
21  
22  
23  
A10  
A11  
A12  
A13  
VDD  
44  
45  
46  
47  
48  
MSCAN_TX  
FAULTA1  
MSCAN_RX  
FAULTA2  
VREF  
69  
70  
71  
72  
73  
HOME0  
PWMA0  
PWMA1  
PWMA2  
PWMA3  
94  
95  
96  
97  
98  
D3  
D4  
D5  
D6  
D7  
24  
25  
PS  
DS  
49  
50  
AN0  
AN1  
74  
75  
PWMA4  
PWMA5  
99  
D8  
D9  
100  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
49  
S
S
S
S
0.15 (0.006)  
AC T-U  
Z
-T-  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE -AB- IS LOCATED AT BOTTOM  
OF LEAD AND IS COINCIDENT WITH THE  
LEAD WHERE THE LEAD EXITS THE PLASTIC  
BODY AT THE BOTTOM OF THE PARTING  
LINE.  
4. DATUMS-T-, -U-, AND-Z-TOBEDETERMINED  
AT DATUM PLANE -AB-.  
5. DIMENSIONS S AND V TO BE DETERMINED  
AT SEATING PLANE -AC-.  
-Z-  
6. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE  
PROTRUSION IS 0.250 (0.010) PER SIDE.  
DIMENSIONS A AND B DO INCLUDE MOLD  
MISMATCH AND ARE DETERMINED AT  
DATUM PLANE -AB-.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION.DAMBARPROTRUSIONSHALL  
NOT CAUSE THE D DIMENSION TO EXCEED  
0.350 (0.014). DAMBAR CAN NOTBELOCATED  
ON THE LOWER RADIUS OR THE FOOT.  
MINIMUM SPACE BETWEEN PROTRUSION  
AND AN ADJACENT LEAD IS 0.070 (0.003).  
8. MINIMUM SOLDER PLATE THICKNESS  
SHALL BE 0.0076 (0.003).  
-U-  
9. EXACT SHAPE OF EACH CORNER MAY VARY  
FROM DEPICTION.  
A
9
MILLIMETERS  
DIM MIN MAX MIN MAX  
INCHES  
S
S
S
0.15 (0.006)  
AB T-U  
Z
A
B
C
D
E
13.950 14.050 0.549 0.553  
13.950 14.050 0.549 0.553  
1.400 1.600 0.055 0.063  
0.170 0.270 0.007 0.011  
1.350 1.450 0.053 0.057  
0.170 0.230 0.007 0.009  
AE  
AE  
AD  
F
G
H
J
K
M
N
Q
R
S
0.500 BSC  
0.020 BSC  
-AB-  
0.050 0.150 0.002 0.006  
0.090 0.200 0.004 0.008  
0.500 0.700 0.020 0.028  
-AC-  
SEATING  
PLANE  
G
96X  
12 REF  
12 REF  
°
°
(24X PER SIDE)  
0.090 0.160 0.004 0.006  
1
5
1
°
5
°
°
°
0.150 0.250 0.006 0.010  
15.950 16.050 0.628 0.632  
15.950 16.050 0.628 0.632  
0.100 (0.004) AC  
V
W
X
0.200 REF  
1.000 REF  
0.008 REF  
0.039 REF  
°
M
R
D
F
0.25 (0.010)  
E
C
GAUGE PLANE  
J
N
W
°
Q
H
K
M
S
S
0.20 (0.008)  
AC T-U  
Z
X
SECTION AE-AE  
DETAIL AD  
Figure 4-2 100-pin LQPF Mechanical Information  
56F803 Technical Data, Rev. 16  
50  
Freescale Semiconductor  
Thermal Design Considerations  
Please see www.freescale.com for the most current case outline.  
Part 5 Design Considerations  
5.1 Thermal Design Considerations  
An estimation of the chip junction temperature, T , in °C can be obtained from the equation:  
J
Equation 1:TJ = TA + (PD × RθJA  
)
Where:  
TA = ambient temperature °C  
RθJA = package junction-to-ambient thermal resistance °C/W  
PD = power dissipation in package  
Historically, thermal resistance has been expressed as the sum of a junction-to-case thermal resistance and  
a case-to-ambient thermal resistance:  
Equation 2:RθJA = RθJC + RθCA  
Where:  
RθJA = package junction-to-ambient thermal resistance °C/W  
RθJC = package junction-to-case thermal resistance °C/W  
RθCA = package case-to-ambient thermal resistance °C/W  
R
is device-related and cannot be influenced by the user. The user controls the thermal environment to  
θJC  
change the case-to-ambient thermal resistance, R  
. For example, the user can change the air flow around  
θCA  
the device, add a heat sink, change the mounting arrangement on the Printed Circuit Board (PCB), or  
otherwise change the thermal dissipation capability of the area surrounding the device on the PCB. This  
model is most useful for ceramic packages with heat sinks; some 90% of the heat flow is dissipated through  
the case to the heat sink and out to the ambient environment. For ceramic packages, in situations where  
the heat flow is split between a path to the case and an alternate path through the PCB, analysis of the  
device thermal performance may need the additional modeling capability of a system level thermal  
simulation tool.  
The thermal performance of plastic packages is more dependent on the temperature of the PCB to which  
the package is mounted. Again, if the estimations obtained from R  
the thermal performance is adequate, a system level model may be appropriate.  
do not satisfactorily answer whether  
θJA  
Definitions:  
A complicating factor is the existence of three common definitions for determining the junction-to-case  
thermal resistance in plastic packages:  
Measure the thermal resistance from the junction to the outside surface of the package (case) closest to the  
chip mounting area when that surface has a proper heat sink. This is done to minimize temperature variation  
56F803 Technical Data, Rev. 16  
Freescale Semiconductor  
51  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
RoHS-compliant and/or Pb-free versions of Freescale products have the  
functionality and electrical characteristics of their non-RoHS-compliant  
and/or non-Pb-free counterparts. For further information, see  
http://www.freescale.com or contact your Freescale sales representative.  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064, Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor,  
Inc. All other product or service names are the property of their respective owners.  
This product incorporates SuperFlash® technology licensed from SST.  
© Freescale Semiconductor, Inc. 2005. All rights reserved.  
DSP56F803  
Rev. 16  
09/2007  

相关型号:

DSP56F803E

16-bit Digital Signal Controllers
FREESCALE

DSP56F803EVMUM

56F803 Evaluation Module Hardware User's Manual
ETC

DSP56F803PB

56F803 16-Bit Hybrid Controller Product Brief
ETC

DSP56F805

16-bit Hybrid Controller
MOTOROLA

DSP56F805

16-bit Digital Signal Controllers
FREESCALE

DSP56F805ACIM

Targeting Document for the 56F805 3-Phase AC Induction Motor V/Hz Control
ETC

DSP56F805BLDCQE

Targeting Document for the 56F805 BLDC Motor Control Application with Quadrature Encoder
ETC

DSP56F805D

16-bit Hybrid Controller
MOTOROLA

DSP56F805E

16-bit Digital Signal Controllers
FREESCALE

DSP56F805EVMUM

56F805 Evaluation Module Hardware User's Manual
ETC

DSP56F805FV80

16-bit Hybrid Controller
MOTOROLA

DSP56F805FV80

16-bit Digital Signal Controllers
FREESCALE