HT1ICS3002W/V9F [NXP]

IC SPECIALTY TELECOM CIRCUIT, UUC5, WAFER-5, Telecom IC:Other;
HT1ICS3002W/V9F
型号: HT1ICS3002W/V9F
厂家: NXP    NXP
描述:

IC SPECIALTY TELECOM CIRCUIT, UUC5, WAFER-5, Telecom IC:Other

电信 电信集成电路
文件: 总53页 (文件大小:1591K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HITAG 1  
Transponder IC  
Rev. 3.0 — 26 February 2010  
187530  
Product data sheet  
CONFIDENTIAL  
1. Introduction  
HITAG 1 is part of the well known and established HITAG family.  
Contactless read/write systems based on HITAG 1 passive transponders are suitable for  
various applications.  
The HITAG product family can be used, in the proximity area (operating range up to about  
200 mm) as well as in the long range area (operating range up to about 1000 mm).  
2. General description  
HITAG 1 based transponders are highly integrated and do not need any additional  
components beside the external coil.  
Data between Key (RWD) and transponder is transmitted bidirectionally, in half duplex  
mode. The HITAG 1 transponder IC offers also an encrypted data transmission.  
The Anticollision (AC) Mode, which is used mainly in long range operation, allows to  
handle several transponders that are at the same time in the communication field of the  
antenna, thus achieving highest operating reliability and permitting to handle several  
transponders quickly and simultaneously.  
The HITAG 1 transponder IC provides two protocol modes, Standard and Advanced  
Mode. The Advanced Protocol Mode operates compared to the Standard Protocol Mode  
with an increased number of Startbits and a 8-bit Cyclic Redundancy Check (CRC) sent  
by the transponder IC at read operations.  
HITAG 1 transponder IC offer a memory of 2 kbit.  
HITAG 1  
NXP Semiconductors  
Transponder IC  
3. Features and benefits  
„ Identification transponder for use in contactless applications  
„ Operating frequency 125 kHz  
„ Data transmission and energy supply via RF link, no internal battery  
„ Non-volatile memory of 2 kbit  
„ Organized in 64 pages, 4 bytes each  
„ 10 years non-volatile data retention  
„ 100 000 erase/write cycles  
„ Selective read/write protection of memory content  
„ Mutual authentication function  
4. Applications  
„ Logistics  
„ Asset tracking  
„ Gas cylinder ID  
„ Industrial automation  
5. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Type  
Version  
HT1ICS3002W/V9F  
HT1MOA2S30/E/3  
Wafer  
sawn wafer on FFC, 150 µm, 8 inch, UV, inked  
and mapped  
-
-
MOA2  
plastic leadless module carrier package; 35 mm  
wide tape  
-
SOT500-2  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
2 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
6. Block diagram  
The HITAG 1 transponder IC requires no external power supply. The contactless interface  
generates the power supply and the system clock via the resonant circuitry by inductive  
coupling to the RWD. The interface also demodulates data transmitted from the RWD to  
the HITAG 1 transponder IC, and modulates the magnetic field for data transmission from  
the HITAG 1 transponder IC to the RWD.  
Data are stored in a non-volatile memory (EEPROM). The memory has a capacity of  
2 kbit and is organized in blocks.  
ANALOGUE  
RF INTERFACE  
DIGITAL CONTROL  
ANTICOLLISION  
EEPROM  
VREG  
PAD  
VDD  
RECT  
Cres  
DEMOD  
READ/WRITE  
CONTROL  
data  
in  
TRANSPONDER  
ACCESS CONTROL  
MOD  
data  
out  
R/W  
EEPROM INTERFACE  
CONTROL  
CLK  
PAD  
clock  
RF INTERFACE  
CONTROL  
SEQUENCER  
CHARGE PUMP  
001aai334  
Fig 1. Block diagram of HITAG 1 transponder IC  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
3 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
7. Pinning information  
1412  
Poly Silicon  
Realized Bow  
cHT1V0  
134.2  
205  
232  
153.4  
110.4  
Fig 2. Bond plan of HT1ICS3002 [units in µm]  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
4 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
8. Mechanical specification  
8.1 Wafer specification  
See Ref. 2 “General specification for 8’’ wafer on UV-tape”  
8.1.1 Wafer  
Designation:  
each wafer is scribed with batch number and  
wafer number  
Diameter:  
Thickness:  
Process:  
Batch size:  
PGDW:  
200 mm (8’’)  
150 µm ± 15 µm  
C150EE  
25 wafers  
8610  
8.1.2 Wafer backside  
Material:  
Si  
Treatment:  
Roughness:  
ground and stress release  
Ra max. 0.5 µm, Rt max. 5 µm  
8.1.3 Chip dimensions  
Die size without scribe:  
2102 µm x 1412 µm = 2968024 µm  
Scribe line width:  
X-dimension:  
108 µm  
108 µm  
5
Y-dimension:  
Number of pads:  
8.1.4 Passivation on front  
Type:  
single layer  
Material/Thickness:  
TEOS 300 nm, Nitride 700nm  
8.1.5 Bondpads  
Pad size:  
IN1, IN2  
120 x 90 µm  
90 x 90 µm  
AlCu  
TOUT, VSS, VDD  
Material:  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
5 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
8.1.6 Fail die identification  
Every die is 100% electrically tested. Identification of dies which do not confirm with the  
electrical parameters is done by inking and wafer mapping.  
Electronic wafer mapping (SECS II format) covers the electrical test results and  
additionally the results of mechanical/visual inspection.  
See Ref. 2 “General specification for 8’’ wafer on UV-tape”.  
8.1.7 Map file distribution  
See Ref. 2 “General specification for 8’’ wafer on UV-tape”.  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
6 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
9. Functional description  
9.1 Memory map  
The 2 kbit memory area of the HITAG 1 transponder IC is divided into 16 blocks. Each  
block comprises 4 pages with 4 bytes (1 byte = 8 bits) each. A page is the smallest access  
unit.  
Addressing is done pagewise (page 0 to 63) whereas access is gained either pagewise or  
blockwise by entering the respective start address.  
Block access is only available for blocks 2 to 15, page access is available for pages 0 to  
63..  
Serial Number  
Configuration  
Key A  
Block 0  
Block 1  
public  
secret  
secret  
user data  
Block 4  
wo or 0  
Key B  
r/w  
or  
OTP  
Logdata 1B  
Logdata 0A  
Logdata 1A  
Logdata 0B  
secret  
or  
public  
r/w  
or  
0
user data  
Block 7  
Block 8  
ro  
read only  
read/write  
write only  
one time programmable  
neither read nor write  
r/w  
wo  
OTP  
0
public  
user data  
r/w  
Configuration of the memory is  
done in the configuration page  
Block 15  
Fig 3. Memory map  
Areas (or settings) with light dark background can be configured by the customer within  
the Configuration Page (page 1 of block 0).  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
7 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
9.2 General definitions  
Secret memory areas:  
These memory areas can only be accessed encrypted after an authentication.  
Public memory areas:  
Access to these memory areas is in plain and requires no authentication.  
Block 0 defines the unique serial number (programmed during production), the  
Configuration Page and the Keys.  
Block 1 defines the Logdata.  
Blocks 4 to 7 can be configured either as secret or public areas. Access to Blocks 2 to 7  
can be set either to read/write or read only.  
Keys and Logdata can be modified and also locked to prevent them from being accessed.  
Finally the Configuration Page itself can be set to read only.  
Attention:  
It is extremely important to be particularly careful when using the Configuration Page,  
Keys and Logdata as an error can result in loss of access to the secret area on the  
transponder.  
Changing of the Configuration Page (page 1), Keys and Logdata must be done in secure  
environment.  
It is recommended to put the transponder close to the antenna (zero-distance) and not to  
remove it during programming!  
9.2.1 Definition of the Keys  
Keys are cryptographic codes, which determine data encryption during data transfer  
between the RWD and transponder.  
The keys (Key A and Key B) are predefined (see Table 5 “Delivery configuration”) by NXP  
Semiconductors by means of defined transport keys (both keys show the same bitmap)  
and can be changed by the customer.  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
8 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
9.2.2 Definition of the Logdata  
Logdata represent "passwords" needed to gain access to secret areas on the  
transponder. Every key (Key A and Key B) includes a pair of Logdata. This Logdata pair  
has to be identical both on the transponder and the RWD.  
Table 2.  
Key  
Definition of the Logdata  
Logdata  
Description  
ad Key A  
Logdata 0 A  
"Password A" that the transponder sends to the RWD and  
which is verified by the latter.  
Logdata 1 A  
Logdata 0 B  
Logdata 1 B  
"Password A" that the RWD sends to the transponder and  
which is checked for identity by the latter.  
ad Key B  
"Password B" that the transponder sends to the RWD and  
which is verified by the latter.  
"Password B" that the RWD sends to the transponder and  
which is checked for identity by the latter.  
The Logdata are also predefined (see Table 5 “Delivery configuration”) by NXP  
Semiconductors using defined transport Logdata (all Logdata show the same bitmap).  
Both can be changed by customer. Logdata 0A and 1A, as well as Logdata 0B and 1B do  
not have to show the same values, but Logdata 0A/B and 1A/B have to be identical on the  
RWD and on the transponder!  
Attention:  
Keys and Logdata can only be changed if the transport key and the transport Logdata are  
known!  
9.2.3 Configuration of transponder  
HITAG 1 IC can be configured via the Configuration Page.  
9.2.3.1 Organization of the Configuration Page  
The Configuration Page (page 1) consists of 2 bytes configuration data (byte 0 and 1) and  
2 bytes for free use (byte 2 and 3).  
7
6
5
4
3
2
1
0
7
6
......  
1
0
7
6
......  
1
0
7
6
......  
1
0
byte 0  
byte 1  
byte 2  
byte 3  
The bits in Configuration Page bytes 0 and 1 determine the configuration of the memory  
(secret/public, read/write (r/w), read only (ro), write only (wo) or neither read nor write).  
The configuration bytes can be freely allocated until the Configuration Page is locked (bit  
4 of byte 1 is set to ’0’). After lock these bytes are read only bytes and cannot be changed  
any more.  
Attention:  
Once set to read only the Configuration Page cannot be changed back to read/write again  
(transponder is hardware protected)!  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
9 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
Configuration Page: Byte 0  
first out  
7
6
5
4
3
2
1
0
block 7: "1"...r/w  
"0"...ro  
block 6: "1"...r/w  
"0"...ro  
block 5: "1"...r/w  
"0"...ro  
block 4: "1"...r/w  
"0"...ro  
block 3: "1"...r/w  
"0"...ro  
block 2: "1"...r/w  
"0"...ro  
key A and key B: "1"...wo  
"0"...0  
logdata A and B: "1"...r/w  
"0"...0  
001aak309  
Fig 4. Configuration Page: Byte 0  
Table 3.  
Bit  
Description of Configuration Page: Byte 0  
Description  
0 to 5  
determine if the corresponding block can be accessed ro or r/w  
'1': the corresponding block can be read and written  
'0': the corresponding block can only be read.  
The configuration is identical for all 4 pages within the corresponding block.  
6
7
is used to protect the keys A and B against further write operations  
'1': Keys can only be written to.  
’0': Keys cannot be accessed.  
is used to protect the Logdata A and B against further write operations  
'1': Logdata can be read and written to.  
'0': Logdata cannot be accessed.  
The bits can be changed until bit 4 of byte 1 of the Configuration Page is set to '0'.  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
10 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
Configuration Page: Byte 1  
first out  
7
6
5
4
3
2
1
0
access type for blocks 4 to 7: "0"...SECRET  
"1"...PUBLIC  
reserved  
reserved  
reserved  
OEM lock bit: "1"...configuration page is r/w  
"0"...configuration page is ro  
reserved  
reserved  
reserved  
001aak310  
Fig 5. Configuration Page: Byte1  
Table 4.  
Description of Configuration Page: Byte 1  
Description  
Bit  
0
determines if block 4 to 7 must be accessed enciphered or plain  
'0': Access type for blocks 4 to 7 is SECRET.  
'1': Access type for blocks 4 to 7 is PUBLIC.  
1, 2, 3, 5, 6, 7  
4
reserved, must not be changed  
locks the Configuration Page.  
'1': Configuration Page can be read and written to.  
'0': Configuration Page can only be read. This process is irreversible!  
ATTENTION:  
When writing a new value to Configuration Page byte 1, Bit positions marked as  
"reserved" must not be altered.  
It is recommended to read out the content of the Configuration Page byte 1, mask out the  
reserved bits and change the values of bit 0 and bit 4 accordingly.  
Do not set bit 4 of the Configuration Page byte 1 to '0' before having written the final data  
into the Configuration Page.  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
11 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
9.2.3.2 Delivery configuration of HITAG 1  
The HITAG 1 transponder IC is pre programmed by NXP Semiconductors with the  
following configuration:  
Table 5.  
Delivery configuration  
Unique serial number  
Serial number  
read only  
Configuration Page: Byte 0  
Logdata  
'1' = r/w  
'1' = wo  
'1' = r/w  
Key A, Key B  
Blocks 2 to 7  
Configuration Page: Byte 1  
OEM Lock bit  
'1' = Configuration Page is r/w  
'1' = public  
Blocks 4 to 7  
Transport values for Logdata and keys  
Logdata A and Logdata B  
Key A and Key B  
0000 0000h  
0000 0000h  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
12 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
9.3 HITAG 1 transponder IC air interface  
9.3.1 Electromagnetic characteristics  
9.3.1.1 Magnetic flux densities  
Since magnetic coupling is used for the data transmission between transponder and RWD  
the magnetic field is the most important attribute. Figure 6 shows the direction of the  
magnetic field lines with the transponder placed in the antenna field.  
Fig 6. Magnetic coupling between RWD and transponder  
9.3.1.2 Equivalent circuit for data and energy transfer  
Figure 7 shows the model for the transmission channel realized as an inductive coupled  
circuit. The primary side (L1) represents the RWD antenna and the secondary side (L2)  
the antenna of the transponder.  
Fig 7. Equivalent circuit  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
13 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
9.3.2 Data transmission transponder RWD  
9.3.2.1 Coding  
Load modulation is used, when transmitting data from the transponder to the RWD. For  
the transmission of data to the RWD two different codings are used.  
Table 6.  
Mode  
Coding and Bit length  
Coding  
Bit length T[1]  
64 T0  
Bit rate  
2 kbit/s  
2 kbit/s  
2 kbit/s  
Anticollision Mode  
SELECT Mode  
HALT Mode  
AC  
Manchester  
Manchester  
32 T0  
32 T0  
[1] T0 ... Carrier period time (1/125 kHz = 8 µsec nominal)  
Fig 8. Data coding: transponder RWD  
The first bit of the transmitted data always starts with the Modulator ON (loaded) state.  
AC-Coding realizes the lower baudrate, which is used for anticollision mode. The main  
part of communication uses the SELECT Mode of the transponder IC.  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
14 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
9.3.2.2 Modulation  
Figure 9 shows the voltage at the antenna coil of the transponder IC which is measured  
by using an additional coil fixed on the transponder.  
The minimum modulation ratio depends on the coupling factor of the configuration (RWD  
antenna, transponder antenna size).  
Fig 9. Transponder antenna coil voltage  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
15 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
9.3.3 Data transmission RWD transponder  
9.3.3.1 Coding  
Data are transmitted from the RWD to the transponder by switching the current through  
the RWD antenna on/off. When the current is switched off, the physical state is named low  
field, otherwise high field.  
Binary puls length modulation (BPLM) is used to encode the data stream.  
All coded data bits and the stop condition, start with a low field of length tlow. Afterwards  
the field is switched on:  
'0' and '1' can be distinguished by the duration of T[0] and T[1].  
The end of the data transmission is characterized by a stop condition.  
The following figure shows the data transmission from the RWD to the transponder.  
Fig 10. Data coding: RWD transponder  
Table 7.  
Symbol  
tlow  
Timing RWDtransponder  
Description  
Duration  
4 to 10  
18 to 22  
26 to 32  
> 36  
Unit[2]  
[1]  
low field time  
T0  
T[0]  
logic 0 pulse length  
logic 1 pulse length  
high field for stop condition  
T0  
T0  
T0  
T[1]  
tstop  
[1] This application specific value will be within this frame, but has to be optimized for each application  
depending on antenna current and quality factor!  
[2] T0 Carrier period time (1/125 kHz = 8 µsec nominal)  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
16 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
The average bit rate from the RWD to transponder is:  
2
··  
= 5, 2kB s  
--------------------------------  
Bitrate =  
(1)  
T 0 + T 1  
Remark: The end of each data sequence from RWD to transponder has to be a stop  
condition.  
Depending on transient and decay times caused by different RWDs the timing for T[0],  
T[1] and tlow has to be adapted.  
The following two examples show the timing for two RWDs from NXP Semiconductors.  
Used timing values with Proximity Reader Modul are:  
Table 8.  
Symbol  
tlow  
Timing values with Proximity Reader Modul  
Description  
Duration  
Unit  
T0  
low field time  
6
T[0]  
logic 0 pulse length  
22  
28  
T0  
T[1}  
logic 1 pulse length  
T0  
Used timing values with Long Range Reader Modul are:  
Table 9.  
Symbol  
tlow  
Timing values with Long Reader Modul  
Description  
Duration  
Unit  
T0  
low field time  
8
T[0]  
logic 0 pulse length  
logic 1 pulse length  
22  
28  
T0  
T[1}  
T0  
Remark: These application specific values have to be optimized for each application!  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
17 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
9.3.3.2 Modulation  
Figure 11 shows the antenna voltage of the RWD.  
The minimum modulation depends on the quality factor of the antennas (transponder and  
RWD) and on the coupling between the antennas. A recommended value for the quality  
factor of the RWD antenna is approx. 40.  
Uo  
Um  
Fig 11. RWD antenna coil voltage  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
18 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
9.3.3.3 Switching the transmission direction  
When switching between receiving and sending, the RWD has to consider time frames, in  
which transmission of data is not allowed:  
tWAIT1  
:
:
When receiving the last bit from the RWD, the transponder waits before  
answering.  
tWAIT2  
After receiving the last bit from the transponder, the RWD has to wait before  
sending data. Data transmitted to the transponder within twait, will not be  
recognized by the transponder.  
Table 10. Timing - transmission direction switching  
Symbol  
Description  
Duration  
Min  
Unit  
Max  
tWAIT1  
tWAIT2  
transponder switching from receive to transmit, wait  
time after end of data  
204  
213  
T0  
transponder switching from transmit to receive, wait  
time after end of data  
128[1][2]  
96[1][3]  
-
-
T0  
T0  
[1] tWAIT2 must not exceed 5000 T0!  
[2] in AC Coding  
[3] in Manchester Coding  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
19 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
10. Modes  
10.1 Standard Protocol Modes  
10.1.1 General comments  
The Standard Protocol Mode also allows operation with transponders based on the  
transponder IC HT1ICS3001x.  
(HT1ICS3001x is the predecessor version of the transponder IC HT1ICS3002x.)  
The response time of the transponder starts with the detection of the last pause of the  
carrier signal in a RWD command.  
10.1.2 Anticollision Mode  
The command to read the serial numbers of all transponders presently located in the field  
of the read/write antenna uses Anticollision Mode. As the serial number (SN) is 32 bits  
long, theoretically up to 232 transponders can be in this mode.  
Use the SELECT command to exit AC-Mode.  
10.1.2.1 Commands  
SET_CC:  
After transmitting this command from the RWD, all transponders presently located in the  
field of the RWD antenna respond with a ’1’ (Start bit) followed by the corresponding 32 bit  
serial number. The response of the transponder is transmitted in AC coding.  
RWD  
10110  
Transponder  
1
SN31 ...............SN0  
32 Bit serial number  
first in  
tCOM  
tWAIT1  
tSN  
tWAIT2  
Table 11. Timing - SET_CC  
Symbol  
tCOM  
Min  
119.5  
204  
-
Typ  
Max  
Unit  
T0  
122  
124.5  
tWAIT1  
tSN  
208.5  
2112  
-
213  
T0  
-
T0  
tWAIT2  
Total  
128  
-
5000  
-
T0  
2570  
T0  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
20 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
READ_ID:  
If more than one transponder is in the field of the RWD antenna a special designed RWD  
can recognize a collision at the bit position n after sending the command SET_CC. As a  
result the RWD sends the command READ_ID.  
This command consists of the first (n-1) bits of the recognized serial number and the bit at  
the position, where the collision occurred. This bit is replaced by a ’1’ (or ’0’).  
In advance the RWD informs the transponders in a 5 bit number (n4 to n0) about the  
number of the sent serial number bits. An 8 bit CRC is also sent to the transponders.  
After transmitting this command, all transponders which first n bits of the serial number  
match the n bits sent in the Read_ID command, answer with the start sequence and the  
rest of their serial number.  
If a collision occurs again the described cycle has to be repeated until one serial number  
is determined.  
RWD  
n4 n3 n2 n1 n0 SN31.......SN(31-n+1) CRC7.....CRC0  
n Bit SN Part  
Transponder first in  
1
SN(31-n).......SN0  
32 -n Bit SN-Rest  
tSNPART  
tCOM  
tWAIT1  
tWAIT2  
Table 12. Timing - READ_ID  
Standard protocol mode  
Advanced protocol mode  
Symbol  
tCOM  
Min  
327  
204  
128  
128  
Typ  
770,5  
204.5  
1088  
-
Max  
1214  
205  
Min  
327  
204  
256  
128  
Typ  
770,5  
204.5  
1216  
-
Max  
1214  
205  
Unit[1]  
T0  
T0  
T0  
T0  
T0  
tWAIT1  
tSNPART  
tWAIT2  
Total  
2048  
5000  
2176  
5000  
2191  
2319  
[1] T0 Carrier period time (1/125 kHz = 8 µsec nominal)  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
21 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
10.1.2.2 SELECT  
The command SELECT consists of 5 Zero-bits followed by the determined 32 bit serial  
number and an 8 bit CRC. The selected transponder then responds with a ’1’ (Start bit),  
followed by 32 bits representing the Configuration Page. The transponder response is  
already done in Manchester Code not in Anticollision Code.  
RWD  
00000 SN31...SN0  
CRC7.....CRC0 →  
Transponder first in  
1
OTP07 OTP00 ....... OTP37..OTP30  
OTP-Byte  
tWAIT1  
0
tCOM  
Table 13. Timing - SELECT  
tOTP  
tWAIT2  
Symbol  
Min  
-
Typ  
1110  
208.5  
1056  
-
Max  
-
Unit  
T0  
[1]  
tCOM  
tWAIT1  
tOTP  
204  
-
213  
-
T0  
T0  
tWAIT2  
Total  
96  
5000  
T0  
2500  
T0  
[1] depends on the data sent to the transponder (intervals for logic 0 and logic 1 are different)  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
22 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
10.1.3 SELECT Mode  
The SELECT Mode is used to read data from and write data to a transponder. This mode  
can be operated encrypted or plain (see Section 10.1.5 “Authentication”).  
A transponder can be read or written or muted after processing.  
Command set-up in SELECT_MODE  
COMMAND  
ADDRESS  
CRC  
CMD3 ......... CMD0  
COMMAND:  
ADDRESS:  
Command (4 bits)  
Address (8 bits, MSB first), indicates the start of a page or block respectively.  
A7 and A6 must be 0 (highest page number is 63, see also Section 9.1  
“Memory map”)  
CRC:  
Check byte (8 bits, MSB first)  
The following commands are supported:  
Table 14. Commands in SELECT Mode  
COMMAND CODE  
CMD3..CMD0  
Read  
Write  
Block CMD Encrypted Plain  
Notes  
WRPPAGE  
WRPBLK  
1 0 0 0  
1 0 0 1  
no  
yes  
yes  
yes  
yes  
no  
no  
no  
no  
yes  
yes  
no  
no  
yes  
yes  
-
yes  
yes  
no  
Writes a page plain  
no  
yes  
no  
Writes a block plain  
WRCPAGE 1 0 1 0  
no  
Writes a page encrypted  
Writes a block encrypted  
Reads a page plain  
WRCBLK  
RDPPAGE  
RDPBLK  
RDCPAGE  
RDCBLK  
HALT  
1 0 1 1  
1 1 0 0  
1 1 0 1  
1 1 1 0  
1 1 1 1  
0 1 1 1  
no  
yes  
no  
no  
yes  
yes  
yes  
yes  
no  
yes  
yes  
no  
no  
yes  
no  
Reads a block plain  
no  
Reads a page encrypted  
Reads a block encrypted  
Turns into HALT Mode  
no  
yes  
no  
no  
no  
-
10.1.3.1 Command length  
Length [Bits] = L {COMMAND} + L {ADDRESS} + L {CRC}  
+ 8  
=
4
+
8
= 20 bits  
The number of bits for a command is always 20 bits, no matter which command.  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
23 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
10.1.3.2 Order of a Read Sequence  
After transmitting a READ command, the address and the 8 bit CRC, the transponder  
responds with a ’1’ (Start bit) and 32, 64, 96 or 128 bits data. It depends on whether the  
command was a READ Page or a READ Block command.  
In case of a READ Block command where the specified address is not the starting  
address of the block, but a page address within the block, all pages starting from this  
address to the end of the block will be sent to the RWD.  
RWD  
READ Com. A7.........A0  
CRC7.....CRC0 →  
page resp.  
block address  
32, 64, 96 or 128 bit read data  
Page 0 Page 1 Page 2 Page 3  
Transponder  
1
tCOM  
tWAIT1  
tREAD  
tWAIT2  
Table 15. Timing - Read sequence  
Symbol  
tCOM  
Min  
440  
204  
1056  
96  
Typ  
Max  
550  
213  
4128  
5000  
-
Unit  
T0  
[1]  
[2]  
500  
tWAIT1  
tREAD  
tWAIT2  
Total  
208.5  
-
T0  
T0  
-
T0  
[3]  
[4]  
-
1857  
4929  
T0  
T0  
Total  
-
-
[1] depends on the data (read command, address, CRC)  
[2] depends on page- or block access  
[3] page access  
[4] block access  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
24 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
10.1.3.3 Order of a Write Sequence  
The memory is organized bytewise. However, the protocol from the RWD to the  
transponder supports only access to a page or a complete block. To avoid temporary  
storage of a block in the transponder (before programming takes place) data is  
transmitted to the transponder only pagewise with a check byte. The transponder confirms  
the correct programming with an acknowledge which is always sent in plain.  
RWD  
Write Com.  
A7.........A0  
CRC7.....CRC0 →  
page resp.  
block address  
Transponder  
1
0
1
ACK.  
tACK  
tCOM  
tWAIT1  
tWAIT2  
32 bits data  
RWD  
D7 ... D0  
Byte 0  
D7 ... D0  
D7 ... D0  
D7 ... D0  
3
CRC7 ... CRC0  
1
2
Transponder  
1
0
1
ACK.  
tACK  
tDATA  
tPROG  
tWAIT2  
For a Write Page command the acknowledge is sent once, whereas for a Write Block  
command the acknowledge is executed one to four times, depending on whether the  
address indicates the beginning of a block or the beginning of one of the three remaining  
pages within that block.  
Table 16. Timing - Write sequence  
Symbol  
tCOM  
Min  
440  
204  
-
Typ  
500  
208.5  
96  
Max  
Unit  
T0  
[1]  
550  
tWAIT1  
tACK  
tWAIT2  
tDATA  
213  
T0  
-
T0  
96  
-
-
5000  
T0  
[2]  
1000  
721  
2800  
8550  
-
T0  
tPROG  
Total  
Total  
716  
-
726[3]  
T0  
[4]  
[5]  
-
-
T0  
T0  
-
[1] depends on the data (write command, address, CRC)  
[2] depends on page- or block access and on the data  
[3] for flexibility reasons (perhaps the use of future EEPROM blocks with different timing) we recommend to  
calculate with tPROG of max. 1250 T0.  
[4] page access  
[5] block access  
Attention: For transponders based on HT1ICS3001x tPROG must be max. 1250 T0!  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
25 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
10.1.4 HALT Mode  
The HALT Mode is used to disable a selected transponder in the field of the RWD. By  
bringing a selected transponder in HALT Mode, another transponder that is also in the  
communication field, can be recognized.  
This mode will be used mainly in multi-transponder long-range applications, but might be  
also an useful mode in proximity applications.  
A transponder, once switched to HALT Mode, can be enabled again only with a power on  
reset. This means either the power supply (magnetic field) of the transponder must be  
interrupted for about 10 ms or the transponder must be moved out of the RWD antenna  
field.  
RWD  
0
1
1
1
DUMMY  
CRC7.....CRC0 →  
HALT command  
Transponder  
1
0
1
ACK.  
tACK  
tCOM  
Table 17. Timing - Halt mode  
tWAIT1  
tWAIT2  
Symbol  
tCOM  
Min  
448  
204  
-
Typ  
500  
208.5  
96  
Max  
564  
213  
-
Unit  
T0  
T0  
T0  
T0  
T0  
tWAIT1  
tACK  
tWAIT2  
Total  
96  
-
-
5000  
-
900  
DUMMY  
This parameter (8 bit) must be sent for command length reasons only. CRC must be valid  
although the transponder does not process this data. As the HALT command is a plain  
command, the dummy data must be a valid address of the plain memory area and  
therefore greater than or equal to 0010 0000. (A7 and A6 have to be ’0’).  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
26 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
10.1.5 Authentication  
In order to be able to operate HITAG 1 transponder IC in encrypted mode an  
authentication protocol has to be processed. Within this protocol it is checked if the Keys  
and Logdata of the RWD and the transponder match.  
Encrypted communication is only possible after a successful authentication.  
The authentication process is started by using the WRCPAGE command, followed by 8 bit  
Key information (see table below), indicating which key with the respective Logdata is  
used, and the 8 bit CRC. The transponder responds with an acknowledge.  
In the next step a 32 bit random number is sent to the transponder.  
Up to this point the protocol uses plain text whereas the following communication is in  
encrypted form.  
The transponder responds to the random number with the Start bit and the 32 bit Logdata  
(0A or 0B), then the RWD sends 32 bit Logdata (1A or 1B to) to the transponder. The  
transponder responds with an acknowledge.  
The authentication protocol contains the information, which of the two sets of Key and  
Logdata (A or B) are used (see Section 9.2.2 “Definition of the Logdata”).  
The following table shows the connection between Key information and set of Key and  
Logdata:  
Table 18. Connection between Key set and Logdata  
Key information Logdata transponder RWD  
Logdata RWD transponder  
Logdata 1A  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 1 0  
Logdata 0A  
Logdata 0B  
Logdata 1B  
The RWD has to use the according Key for encoding and decoding of the data.  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
27 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
10.1.5.1 Authentication protocol  
RWD  
CMD3 ...CMD0  
Key Information CRC7.....CRC0 →  
WRCPAGE- command  
Transponder  
1
0
1
ACK.  
tACK  
tCOM  
tWAIT1  
tWAIT2  
RWD  
32 Bit random number  
plain text  
encrypted  
Transponder  
1
32 Bit Logdata 0A (0B)  
tLOG0  
tPZZ  
tWAIT1  
tWAIT2  
RWD  
32 Bit Logdata 1A (1B)  
Transponder  
1
0
1
ACK.  
tACK  
[1]  
tLOG1  
tWAIT1  
tWAIT2  
[1] Attention: For transponders based on the TAG ASIC HT1ICS3001x this tWAIT1 only is 72 ± 1/2 T0.  
Table 19. Timing - Authentication protocol  
Symbol  
tCOM  
Min  
470  
204  
-
Typ  
473  
208.5  
96  
Max  
476  
213  
-
Unit  
T0  
tWAIT1  
tACK  
tWAIT2  
tPZZ  
T0  
T0  
96  
704  
-
-
5000  
896  
-
T0  
800  
1056  
800  
4220  
T0  
tLOG0  
tLOG1  
Total  
T0  
704  
-
896  
-
T0  
T0  
After the authentication process the protocol for the selected transponder runs in  
encrypted mode. However, acknowledge is sent in plain text.  
To return to plain text mode a Plain Command has to be sent. As the transponder is still in  
Encrypted Mode the plain command has is sent in encrypted whereas the response is  
already in plain. (e.g. for a READ command the response is already sent in plain text)  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
28 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
10.2 Advanced Protocol Modes  
10.2.1 General comments  
The Advanced Protocol Mode works compared to the Standard Protocol Mode with an  
increased number of Startbits and a 8 bit CRC sent by the transponder IC.  
This communication protocol is not supported by transponders based on HT1ICS3001x  
transponder ICs.  
The response time of the transponder IC starts with the detection of the last pause of the  
carrier signal in a RWD command.  
10.2.2 Anticollision Mode  
The command to read the serial numbers of all transponders presently located in the field  
of the RWD antenna uses Anticollision Mode. As the serial number (SN) is 32 bits,  
theoretically up to 232 transponders can be in this mode.  
The SELECT command is used to exit AC-Mode.  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
29 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
10.2.2.1 Commands  
SET_CCNEW:  
After transmitting this command from the RWD, all transponders presently located in the  
field of the RWD antenna respond with three ’1’ (Start bits) followed by the corresponding  
32 bit serial number. The response of the transponder is transmitted in AC coding.  
RWD  
11001  
Transponder  
111  
SN31 ..........SN0  
first in  
tCOM  
32 Bit serial number  
tSN  
tWAIT1  
tWAIT2  
Table 20. Timing - SET_CCNEW  
Symbol  
tCOM  
Min  
125  
204  
-
Typ  
Max  
131  
213  
-
Unit  
T0  
128  
208,5  
2240  
-
tWAIT1  
tSN  
T0  
T0  
tWAIT2  
Total  
128  
-
5000  
-
T0  
2635  
T0  
The command SET_CCNEW can be repeated as long as the transponder is in AC Mode.  
PLEASE NOTE:  
If the command SET_CCNEW is transmitted once the transponder stays in the Advanced  
Protocol Mode, even if a SET_CC command (Standard Protocol Mode) is transmitted.  
With a power on reset (supply interrupted for about 10 ms) the transponder IC can be  
reset.  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
30 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
READ_ID:  
If more than one transponder is in the field of the RWD antenna a special designed RWD  
can recognizes a collision at the bit position n after sending the command SET_CC. As a  
result the RWD sends the command READ_ID.  
This command consists of the first (n-1) bits of the recognized serial number (SN) and the  
bit at the position, where the collision occurred. This bit is replaced by a ’1’ (or ’0’).  
The RWD sends to the transponders a 5 bit number (n4 through n0) indicating the number  
of sent SN bits, the SN bits itself and a 8 bit CRC.  
After transmitting this command, all transponders which first n bits of the serial number  
match the n sent Bits in the Read_ID command, answer with the start sequence and the  
rest of their serial number.  
If a collision occurs again the described cycle has to be repeated until one serial number  
is determined.  
RWD  
n4 n3 n2 n1 n0 SN31...SN(31-n+1) CRC7.....CRC0 →  
n Bit SN Part  
Transponder  
first in  
111111 SN(31-n).......SN0  
32-n Bit SN-Rest  
tSNPART  
tCOM  
tWAIT1  
tWAIT2  
Table 21. Timing READ_ID  
Standard protocol mode  
Advanced protocol mode  
Symbol  
tCOM  
Min  
327  
204  
128  
128  
Typ  
770,5  
204.5  
1088  
-
Max  
1214  
205  
Min  
327  
204  
256  
128  
Typ  
770.5  
204,5  
1216  
-
Max  
1214  
205  
Unit[1]  
T0  
T0  
T0  
T0  
T0  
tWAIT1  
tSNPART  
tWAIT2  
Total  
2048  
5000  
2176  
5000  
2191  
2319  
[1] T0 Carrier period time (1/125 kHz = 8 µsec nominal)  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
31 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
SELECT:  
The command SELECT consists of 5 Zero-Bits followed by the determined 32 bit serial  
number and an 8 bit CRC. The selected transponder then responds with the start  
sequence (6 ones) followed by 32 bits representing the Configuration Page and 8 bits  
CRC. The transponder response is not carried in Manchester Code.  
RWD  
00000 SN31..SN0 CRC7..CRC0 →  
Transponder first in  
1 1 1 1 1 1 OTP07.. OTP00 ... OTP37..OTP30 CRC7..0  
OTP-Byte  
tWAIT1  
0
1,2  
tOTP  
3
tCOM  
tWAIT2  
Table 22. Timing - SELECT  
Symbol  
Min  
967  
204  
-
Typ  
1125  
208.5  
1472  
-
Max  
Unit  
T0  
[1]  
tCOM  
1253  
213  
-
tWAIT1  
tOTP  
T0  
T0  
tWAIT2  
Total  
96  
5000  
T0  
2900  
T0  
[1] depends on the data sent to the transponder (intervals for logic 0 and logic 1 are different)  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
32 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
10.2.3 SELECT Mode  
The SELECT Mode is used to read data from and write data to a transponder. This mode  
can be operated encrypted or plain (see Section 10.1.5 “Authentication”). A transponder  
can be read or written or muted after processing.  
Command set-up in SELECT_MODE  
COMMAND  
ADDRESS  
CRC  
CMD3 ......... CMD0  
COMMAND:  
ADDRESS:  
Command (4 bits)  
Address (8 bits, MSB first), indicates the start of a page or block respectively.  
A7 and A6 must be 0 (highest page number is 63, see also Section 9.1  
“Memory map”)  
CRC:  
Check byte (8 bits, MSB first)  
The following commands are supported:  
Table 23. Commands in SELECT Mode  
COMMAND CODE  
CMD3..CMD0  
Read  
Write  
Block CMD Encrypted Plain  
Notes  
WRPPAGE  
WRPBLK  
1 0 0 0  
1 0 0 1  
no  
yes  
yes  
yes  
yes  
no  
no  
no  
no  
yes  
yes  
no  
no  
yes  
yes  
-
yes  
yes  
no  
Writes a page plain  
no  
yes  
no  
Writes a block plain  
WRCPAGE 1 0 1 0  
no  
Writes a page encrypted  
Writes a block encrypted  
Reads a page plain  
WRCBLK  
RDPPAGE  
RDPBLK  
RDCPAGE  
RDCBLK  
HALT  
1 0 1 1  
1 1 0 0  
1 1 0 1  
1 1 1 0  
1 1 1 1  
0 1 1 1  
no  
yes  
no  
no  
yes  
yes  
yes  
yes  
no  
yes  
yes  
no  
no  
yes  
no  
Reads a block plain  
no  
Reads a page encrypted  
Reads a block encrypted  
Turns into HALT Mode  
no  
yes  
no  
no  
no  
-
10.2.3.1 Command length  
Length [Bits] = L {COMMAND} + L {ADDRESS} + L {CRC}  
+ 8  
=
4
+
8
= 20 bits  
The number of bits for a command is always 20, no matter which command.  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
33 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
10.2.3.2 Order of a Read Sequence  
After transmitting a READ command, the address and the 8 bit CRC, the transponder  
responds with the start sequence (6 ones) and 32, 64, 96 or 128 bits data depending on  
whether the command was a READ Page or a READ Block command.  
In case of a READ Block command where the specified address is not the starting  
address of the block, but a page address within the block, all pages starting from this  
address to the end of the block will be sent to the RWD.  
RWD READ Com. A7........A0 CRC7.....CRC0 →  
page or block address  
32, 64, 96 or 128 bit read data  
TAG  
1 1 1 1 1 1 Page 0 Page 1 Page 2 Page 3 CRC7..0  
tCOM  
tWAIT1  
tREAD  
tWAIT2  
Table 24. Timing - Read Sequence  
Symbol  
tCOM  
Min  
442  
204  
1472  
96  
Typ  
500  
208.5  
-
Max  
564  
213  
4544  
5000  
-
Unit  
T0  
[1]  
[2]  
tWAIT1  
tREAD  
tWAIT2  
Total  
T0  
T0  
-
T0  
[3]  
[4]  
-
2280  
5346  
T0  
T0  
Total  
-
-
[1] depends on the data (read command, address, CRC)  
[2] depends on page- or block access  
[3] page access  
[4] block access  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
34 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
10.2.3.3 Order of a Write Sequence  
The memory is organized bytewise. However, the protocol from the RWD to the  
transponder supports only access to a page or a complete block. To avoid temporary  
storage of a block in the transponder (before programming takes place) data is  
transmitted to the transponder only pagewise with a check byte. The transponder confirms  
the correct programming with an acknowledge which is always sent in plain.  
RWD  
Write Com. A7.........A0  
CRC7.....CRC0 →  
page or block address  
Transponder  
1 1 1 1 1 1  
ACK.  
0
1
tCOM  
tWAIT1  
tACK  
tWAIT2  
32 bits data  
RWD  
D7 ... D0 D7 ... D0  
Byte 0  
D7 ... D0  
2
D7 ... D0 CRC7 ... CRC0  
3
1
Transponder  
1 1 1 1 1 1 0  
1
ACK.  
tDATA  
tPROG  
tACK  
tWAIT2  
For a Write Page command the acknowledge is sent once, whereas for a Write Block  
command the acknowledge is executed one to four times, depending on whether the  
address indicates the beginning of a block or the beginning of one of the three remaining  
pages within that block.  
Table 25. Timing - Write sequence  
Symbol  
tCOM  
Min  
442  
204  
-
Typ  
500  
208,5  
256  
-
Max  
Unit  
T0  
[1]  
564  
tWAIT1  
tACK  
tWAIT2  
tDATA  
213  
T0  
-
T0  
96  
-
5000  
T0  
[2]  
1000  
721  
3125  
9330  
-
T0  
tPROG  
Total  
Total  
716  
-
726[3]  
T0  
[4]  
[5]  
-
-
T0  
T0  
-
[1] depends on the data (write command, address, CRC)  
[2] depends on page- or block access and on the data  
[3] for flexibility reasons (perhaps the use of future EEPROM blocks with different timing) we recommend to  
calculate with tPROG of max. 1250 T0.  
[4] page access  
[5] block access  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
35 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
10.2.4 HALT Mode  
The HALT Mode is used to disable a selected transponder in the field of the RWD. By  
bringing a selected transponder in HALT Mode, another transponder that is also in the  
communication field, can be recognized.  
This mode will be used mainly in multi-transponder long-range applications, but might be  
also an useful mode in proximity applications.  
A transponder, once switched to HALT Mode, can be enabled again only with a power on  
reset. This means either the power supply of the transponder (magnetic field) must be  
interrupted for about 10 ms or the transponder must be moved out of the RWD antenna  
field.  
RWD  
TAG  
0
1
1
1
DUMMY  
CRC7.....CRC0  
HALT command  
1 1 1 1 1 1 0  
1
ACK.  
tCOM  
Table 26. Timing - Halt  
tWAIT1  
tACK  
tWAIT2  
Symbol  
tCOM  
Min  
448  
204  
-
Typ  
500  
208.5  
256  
-
Max  
Unit  
564  
213  
-
T0  
T0  
T0  
T0  
T0  
tWAIT1  
tACK  
tWAIT2  
Total  
96  
-
5000  
-
1060  
DUMMY  
This parameter (8 bit) must be sent for command length reasons only. CRC must be valid  
although the transponder does not process this data. As the HALT command is a plain  
command, the dummy data must be a valid address of the plain memory area and  
therefore greater than or equal to 0010 0000. (A7 and A6 have to be ’0’).  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
36 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
10.2.5 Authentication  
In order to be able to operate HITAG 1 transponder IC in encrypted mode an  
authentication protocol has to be processed. Within this protocol it is checked if the Keys  
and Logdata of the RWD and the transponder match. Encrypted communication is only  
possible after a successful authentication.  
The authentication process is started by using the WRCPAGE command, followed by  
some 8 Bit Key information (see table below), indicating which Key with the respective  
Logdata is used, and the 8 bit CRC. The transponder responds with an acknowledge.  
In the next step a 32 bit random number is sent to the transponder.  
Up to this point the protocol uses plain text where as the following protocol is encrypted.  
The transponder responds to the random number with the Start bit (6 ones) and the 32 Bit  
Logdata (0A or 0B), then the RWD sends 32 Bit Logdata (1A or 1B to) to the transponder.  
The transponder responds with an acknowledge.  
The authentication protocol contains the information, which of the two sets of Key and  
Logdata (A or B) are used (see Section 9.2.2 “Definition of the Logdata”).  
The following table shows the connection between Key information and set of Key and  
Logdata:  
Table 27. Connection between Key set and Logdata  
Key information Logdata transponder RWD  
Logdata RWD transponder  
Logdata 1A  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 1 0  
Logdata 0A  
Logdata 0B  
Logdata 1B  
The RWD has to use the according Key for encoding and decoding of the data.  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
37 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
10.2.5.1 Authentication protocol  
RWD  
CMD3 ...CMD0  
Key Information CRC7.....CRC0 →  
WRCPAGE- command  
Transponder  
111111  
ACK.  
tACK  
0
1
tCOM  
tWAIT1  
tWAIT2  
RWD  
32 Bit random number  
plain text  
encrypted  
Transponder  
111111 32 Bit Logdata 0A (0B)  
tLOG0  
tPZZ  
tWAIT1  
tWAIT2  
RWD  
32 Bit Logdata 1A (1B)  
Transponder  
111111  
ACK.  
tACK  
0
1
[1]  
tLOG1  
tWAIT1  
tWAIT2  
Table 28. Timing - Authentication  
Symbol  
tCOM  
Min  
470  
204  
-
Typ  
473  
208.5  
256  
-
Max  
Unit  
T0  
476  
213  
-
tWAIT1  
tACK  
tWAIT2  
tPZZ  
T0  
T0  
96  
704  
-
5000  
896  
-
T0  
800  
1216  
800  
4710  
T0  
tLOG0  
tLOG1  
Total  
T0  
704  
-
896  
-
T0  
T0  
After authentication process the protocol for the selected transponder runs in encrypted  
mode. However, acknowledge is sent in plain text.  
To return to plain text mode a Plain command has to be sent. As the transponder is still in  
Encrypted Mode this Plain command is sent in encrypted form. If e.g. a READ command  
is applied the response is already sent in plain.  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
38 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
11. Flow Chart  
Fig 12. Flow chart  
Table 29. Commands  
Command  
Description  
POWER OFF  
The RWD turns off the field to put the transponder in its initial (reset)  
state.  
POWER ON  
The RWD activates the field to supply the transponder with energy  
(transponder IC power up time ~ 3 ms).  
SET_CC,  
After receiving the SET_CC (SET_CC NEW) command the transponder  
responds with its serial number.  
SET_CC NEW  
SELECT  
The transponder is selected by its serial number and responds with its  
configuration (Configuration Page).  
AUTHENTICATION  
HALT  
Authentication procedure is carried out to enter the Encrypted Mode.  
The transponder is deactivated (not necessary for single transponder  
operation).  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
39 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
12. Data Integrity/Calculation of CRC  
12.1 Basic concept for data reliability  
The following explanations show the features of the HITAG system to protect read and  
write access to transponders from undetected errors. It is sufficient to investigate the plain  
read and write operations because the encryption does not effect the data integrity of the  
transmission.  
12.2 Transmission RWD to transponder  
Every data stream (commands, addresses, user data) sent to the transponder includes an  
8 bit CRC calculated by the RWD. The data stream is first checked for data errors by the  
transponder IC and then executed.  
The CRC is formed over commands and addresses or the plain data respectively and in  
case of Encrypted Mode it is also encrypted.  
The generator polynomial for the CRC reads:  
u8 + u4 + u3 + u2 + 1 =  
1Dh  
and the CRD pre-assignment is FFh  
For better understanding the protocols for read and write are outlined.  
12.2.1 Read sequence  
RWD  
CMD  
ADDR  
CRC  
Transponder  
DATA  
Table 30. Read sequence  
Abbreviation  
RWD  
Description  
RWD  
CMD  
Command, 4 bits (read page, read block, read page encrypted, read block  
encrypted)  
ADDR  
CRC  
Address, 8 bits (page or block address for page or block read)  
Cyclic redundancy check, 8 bits (check sum of CMD and ADDR)  
Read data, 32 bits to 128 bits (one to four pages for page or block read)  
DATA  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
40 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
12.2.2 Write sequence  
RWD  
CMD  
ADDR  
CRC 1  
CRC 2  
Transponder  
QUIT  
QUIT  
RWD  
DATA  
1 to 4 times  
Transponder  
Table 31. Write sequence  
Abbreviation  
Description  
CMD  
Command, 4 bits (write page, write block, write page encrypted, write block  
encrypted)  
ADDR  
CRC 1  
QUIT  
Address, 8 bits (page or block address for page or block write)  
Cyclic redundancy check, 8 bits (check sum of CMD and ADDR)  
Static confirmation, 3 bits  
DATA  
CRC 2  
Write data, 32 bits (one page data)  
Cyclic redundancy check, 8 bits (check sum of write data)  
The write block command transmits one to four pages and the transponder confirms  
(QUIT) each of the blocks.  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
41 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
12.3 Transmission transponder to RWD  
12.3.1 Standard protocol mode  
The parts of protocol transmitted by the transponder to the RWD do not include any check  
sum because of flexibility reasons. To get the data integrity required by the application,  
check sums have to be calculated by the user software and stored together with the  
information in the transponder memory. This seems inconvenient because the check  
sums allocate parts of the memory in the transponder. The advantage of this solution is  
the flexibility to choose large checksums for applications requiring high data integrity and  
smaller check sums for applications requiring short access times, which means short  
protocols.  
12.3.2 Advanced protocol mode  
In Advanced Protocol Mode the parts of the selected command, the Read Rage command  
and the Read Block command, transmitted by the transponder to the RWD, include a  
check sum.  
The generator polynomial for the CRC reads:  
u8 + u4 + u3 + u2 + 1 =  
1Dh  
and the CRC pre-assignment is FFh  
The following explanation shows the feature of this protocol mode to provide a CRC in  
those commands.  
RWD  
CMD DATA 1 CRC 1 →  
Transponder  
STARTSEQ DATA 2  
CRC 2  
Abbreviation  
RWD  
Description  
RWD  
CMD  
Command, 4 bits (read page, read block, read page ciphered, read block  
ciphered) or 5 bits (select)  
DATA 1  
CRC 1  
32 bit serial number for select, 8 bits address for page or block read (ciphered  
or plain)  
Cyclic redundancy check, 8 bits (check sum of CMD and DATA 1), calculated  
by the RWD, checked by the transponder  
STARTSEQ  
DATA 2  
Start sequence of the transponder (six Ones)  
Read data, 32 bits to 128 bits (one to four pages for page or block read)  
CRC 2  
Cyclic redundancy check, 8 bits (check sum of DATA 2, excluding  
STARTSEQ), calculated by the transponder, checked by the RWD.  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
42 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
12.4 Source Code for CRC-Checksum  
The following lines of C-Code show an example for a CRC-Calculation.  
#include <stdio.h>  
#define CRC_PRESET 0xFF  
#define CRC_POLYNOM 0x1D  
void calc_crc(unsigned char * crc,  
unsigned char data,  
unsigned char bitcount)  
{
*crc ^= data;  
// crc = crc (exor) data  
do  
{
if( *crc & 0x80 )  
// if (MSB-CRC == 1)  
{
*crc<<=1;  
// CRC = CRC bit-shift left  
*crc ^= CRC_POLYNOM;  
// CRC = CRC (exor) CRC_POLYNOM  
}
else  
{
*crc<<=1;  
}
// CRC = CRC bit-shift left  
printf("CRC: %02X ", *crc); // output result step by step  
} while(--bitcount);  
printf("\n");  
}
void main(void)  
{
const cmd=0x00;  
/* 5 bit command, aligned to MSB */  
const ident[4]={0x2C, 0x68, 0x0D, 0xB4 };  
unsigned char crc;  
int i;  
crc = CRC_PRESET;  
calc_crc(&crc, cmd, 5);  
/* initialize crc algorithm */  
/* compute 5 crc bits only */  
for(i=0; i<4; i++)  
calc_crc(&crc, ident[i], 8);  
/* crc = 0x9E at this point */  
printf("%02X\n",crc);  
getch();  
}
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
43 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
13. Limiting values  
Table 32. Limiting values - HT1ICS3002[1]  
Symbol  
VDD  
Parameter  
Conditions  
Min  
-0.5  
2
Max  
Unit  
V
supply voltage  
6.5  
-
VESD  
electrostatic discharge voltage  
MIL-STD 883D, Method  
3015.7, Human Body  
kV  
Ilu  
latch-up current  
MIL-STD 883D, Method 3023  
IN1-IN2  
100  
-
-
mA  
Ii(max)  
Tj  
maximum input current  
junction temperature  
30  
mApeak  
°C  
55  
+140  
[1] Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any conditions other than those described in the Operating Conditions and Electrical  
Characteristics section of this specification is not implied.  
Table 33. Limiting values - HT1MOA2S30[1]  
Symbol  
Tstg  
Parameter  
Conditions  
Min  
55  
25  
Max  
+125  
+85  
Unit  
°C  
storage temperature  
operation temperature  
TA  
RThJunctionAmbient 30K/W @  
°C  
IIN=30mA  
[1] Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any conditions other than those described in the Operating Conditions and Electrical  
Characteristics section of this specification is not implied.  
14. Characteristics  
Table 34. Electrical specifications - HT1ICS3002[1][2]  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Operating range  
TA  
temperature  
supply voltage  
RThJunctionAmbient 30K/W @  
IIN=30mA  
40  
85  
°C  
VDD  
2.8  
5.5  
V
Power consumption  
IVDDQ quiescent current  
IVDDI idle current  
VDD=3.5V, Limiter off  
-
-
4
9
µA  
µA  
VDD=3.5V, VIN=100mV @ 125  
kHz, Limiter off  
Clock recovery  
VCLK sensitivity  
fCLK frequency  
VDD=3.5V  
-
-
100  
250  
mV  
VIN=100mV,  
VDD=3.5V  
kHz  
Demodulator  
VDEMOD sensitivity  
VINHigh - VINLow @ VINHigh=5Vp,  
T0=8µs, TMOD=6*T0  
-
2
V
TDEMOD  
response time  
R_IN1 linear  
VINHigh=5V, VINLow=2.5V,  
T0=8µs, TMOD=6*T0  
4
24  
µs  
Modulator  
RIN1L  
VDD=3.5V, VIN1=0.5V, VIN2=0V  
1.6  
3.0  
kΩ  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
44 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
Table 34. Electrical specifications - HT1ICS3002[1][2]  
Symbol  
RIN1NL  
RIN2L  
Parameter  
Conditions  
Min  
0.48  
3.4  
Max  
Unit  
kΩ  
R_IN1 nonlinear  
R_IN2 linear  
VDD=3.5V, VIN1=1.5V, VIN2=0V  
VDD=3.5V, VIN1=0V, VIN2=0.5V  
1.46  
6.4  
kΩ  
Voltage limiter  
VLimitMin minimum voltage  
VLimitMax maximum voltage  
VDD @ IIN ±10 µA  
VDD @ IIN ±30 µA  
2.7  
-
-
V
V
5.5  
Resonance capacitor  
CResInit  
VDD=3.5V  
189  
231  
pF  
Power on reset  
VPOR  
static power on reset level  
1.3  
1.4  
2.3  
2.6  
V
VDD capacitor  
CVDD  
VDD capacitor value  
VDD=3.5V  
nF  
EEPROM characteristics  
write current  
VDD=2.8V  
VDD=2.8V  
@ 55 °C  
-
25  
9
-
µA  
read current  
-
µA  
tret  
retention time  
10  
year  
cycle  
Nendu(W)  
write endurance  
100000  
-
[1] In normal operation supply voltage is generated by on chip rectification and limitation of the AC voltage applied via antenna to pins IN1  
and IN2, and can be measured at pins VDD and VSS.  
[2] Pins VDD and VSS are not connected for normal operation but can be used for forcing supply voltages during test.  
Table 35. Electrical specifications - HT1MOA2S30 (SOT500-2)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Operating range  
Vi,TH  
input threshold voltage  
start modulation after SETCC  
read E²PROM  
2.8  
3.5  
3.7  
3.9  
4.5  
4.7  
VP  
VP  
VP  
Vi,RD  
input read voltage  
input write voltage  
Vi,WR  
write E²PROM  
Modulator  
RMODL  
RMODNL  
R_MOD linear  
VINLow2.0VP  
VINLow2.0VP  
4.0  
3.6  
kΩ  
kΩ  
R_MOD nonlinear  
Resonance capacitor  
CResInit  
Vi=4.0V  
189  
231  
pF  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
45 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
15. Package outline  
PLLMC: plastic leadless module carrier package; 35 mm wide tape  
SOT500-2  
X
D
A
detail X  
0
10  
20 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
max.  
UNIT  
D
For unspecified dimensions see PLLMC-drawing given in the subpackage code.  
35.05  
34.95  
mm  
0.33  
Note  
1. Total package thickness, exclusive punching burr.  
REFERENCES  
JEDEC  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
JEITA  
03-09-17  
06-05-22  
SOT500-2  
- - -  
- - -  
- - -  
Fig 13. Package outline SOT500-2 (HT1MOA2S30)  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
46 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
16. Abbreviations  
Table 36. Abbreviations  
Abbreviation  
AC  
Definition  
Anticollision Code  
Binary Pulse Length Modulation  
Cyclic Redundancy Check  
Electrically Erasable Programmable Memory  
Integrated Circuit  
BPLM  
CRC  
EEPROM  
IC  
RO  
Read Only  
R/W  
Read/Write  
RWD  
SN  
Read Write Device  
Serial Number  
WO  
Write Only  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
47 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
17. References  
[1] Application note — AN10214, HITAG Coil Design Guide, Transponder IC  
BL-ID Doc.No.: 0814**1  
[2] General specification for 8’’ wafer on UV-tape — Delivery type description, BL-ID  
Doc.No.: 1005**1  
1. ** ... document version number  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
48 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
18. Revision history  
Table 37. Revision history  
Document ID  
Release date  
20100226  
Data sheet status  
Change notice  
Supersedes  
187530  
Product data sheet  
-
-
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
49 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
19. Legal information  
19.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of an NXP Semiconductors product can reasonably be expected  
19.2 Definitions  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on a weakness or default in the  
customer application/use or the application/use of customer’s third party  
customer(s) (hereinafter both referred to as “Application”). It is customer’s  
sole responsibility to check whether the NXP Semiconductors product is  
suitable and fit for the Application planned. Customer has to do all necessary  
testing for the Application in order to avoid a default of the Application and the  
product. NXP Semiconductors does not accept any liability in this respect.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
19.3 Disclaimers  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
Non-automotive qualified products — Unless the data sheet of an NXP  
Semiconductors product expressly states that the product is automotive  
qualified, the product is not suitable for automotive use. It is neither qualified  
nor tested in accordance with automotive testing or application requirements.  
NXP Semiconductors accepts no liability for inclusion and/or use of  
non-automotive qualified products in automotive equipment or applications.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
50 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
19.4 Licenses  
ICs with HITAG functionality  
NXP Semiconductors owns a worldwide perpetual license for the patents  
US 5214409, US 5499017, US 5235326 and for any foreign counterparts  
or equivalents of these patents. The license is granted for the Field-of-Use  
covering: (a) all non-animal applications, and (b) any application for animals  
raised for human consumption (including but not limited to dairy animals),  
including without limitation livestock and fish.  
Please note that the license does not include rights outside the specified  
Field-of-Use, and that NXP Semiconductors does not provide indemnity for  
the foregoing patents outside the Field-of-Use.  
19.5 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
HITAG — is a trademark of NXP B.V.  
20. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
51 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
21. Tables  
Table 1. Ordering information. . . . . . . . . . . . . . . . . . . . . .2  
Table 2. Definition of the Logdata. . . . . . . . . . . . . . . . . . .9  
Table 3. Description of Configuration Page: Byte 0 . . . .10  
Table 4. Description of Configuration Page: Byte 1 . . . .11  
Table 5. Delivery configuration . . . . . . . . . . . . . . . . . . .12  
Table 6. Coding and Bit length . . . . . . . . . . . . . . . . . . . .14  
Table 7. Timing RWDÆ transponder . . . . . . . . . . . . . . .16  
Table 8. Timing values with Proximity Reader Modul. . .17  
Table 9. Timing values with Long Reader Modul . . . . . .17  
Table 10. Timing - transmission direction switching . . . . .19  
Table 11. Timing - SET_CC . . . . . . . . . . . . . . . . . . . . . . .20  
Table 12. Timing - READ_ID . . . . . . . . . . . . . . . . . . . . . .21  
Table 13. Timing - SELECT . . . . . . . . . . . . . . . . . . . . . . .22  
Table 14. Commands in SELECT Mode. . . . . . . . . . . . . .23  
Table 15. Timing - Read sequence. . . . . . . . . . . . . . . . . .24  
Table 16. Timing - Write sequence. . . . . . . . . . . . . . . . . .25  
Table 17. Timing - Halt mode . . . . . . . . . . . . . . . . . . . . . .26  
Table 18. Connection between Key set and Logdata. . . .27  
Table 19. Timing - Authentication protocol . . . . . . . . . . . .28  
Table 20. Timing - SET_CCNEW. . . . . . . . . . . . . . . . . . . 30  
Table 21. Timing READ_ID . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 22. Timing - SELECT . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 23. Commands in SELECT Mode . . . . . . . . . . . . . 33  
Table 24. Timing - Read Sequence . . . . . . . . . . . . . . . . . 34  
Table 25. Timing - Write sequence . . . . . . . . . . . . . . . . . 35  
Table 26. Timing - Halt. . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 27. Connection between Key set and Logdata . . . 37  
Table 28. Timing - Authentication . . . . . . . . . . . . . . . . . . 38  
Table 29. Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 30. Read sequence . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 31. Write sequence . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 32. Limiting values - HT1ICS3002[1] . . . . . . . . . . . 44  
Table 33. Limiting values - HT1MOA2S30[1] . . . . . . . . . . 44  
Table 34. Electrical specifications - HT1ICS3002[1][2] . . . 44  
Table 35. Electrical specifications - HT1MOA2S30  
(SOT500-2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 36. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 37. Revision history . . . . . . . . . . . . . . . . . . . . . . . . 49  
22. Figures  
Fig 1. Block diagram of HITAG 1 transponder IC. . . . . . .3  
Fig 2. Bond plan of HT1ICS3002 [units in mm] . . . . . . . .4  
Fig 3. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Fig 4. Configuration Page: Byte 0 . . . . . . . . . . . . . . . . .10  
Fig 5. Configuration Page: Byte1. . . . . . . . . . . . . . . . . .11  
Fig 6. Magnetic coupling between RWD and  
transponder . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Fig 7. Equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . .13  
Fig 7. Equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . .13  
Fig 8. Data coding: transponder Æ RWD . . . . . . . . . . .14  
Fig 9. Transponder antenna coil voltage . . . . . . . . . . . .15  
Fig 9. Transponder antenna coil voltage . . . . . . . . . . . .15  
Fig 10. Data coding: RWD Æ transponder . . . . . . . . . . .16  
Fig 11. RWD antenna coil voltage . . . . . . . . . . . . . . . . . .18  
Fig 12. Flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Fig 13. Package outline SOT500-2 (HT1MOA2S30). . . .46  
187530  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
187530  
52 of 53  
HITAG 1  
NXP Semiconductors  
Transponder IC  
23. Contents  
1
2
3
4
5
6
7
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
10.1.5  
Authentication . . . . . . . . . . . . . . . . . . . . . . . . 27  
10.1.5.1 Authentication protocol . . . . . . . . . . . . . . . . . 28  
10.2  
10.2.1  
10.2.2  
10.2.2.1 Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
10.2.3  
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features and benefits . . . . . . . . . . . . . . . . . . . . 2  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Advanced Protocol Modes. . . . . . . . . . . . . . . 29  
General comments. . . . . . . . . . . . . . . . . . . . . 29  
Anticollision Mode . . . . . . . . . . . . . . . . . . . . . 29  
SELECT Mode. . . . . . . . . . . . . . . . . . . . . . . . 33  
Command set-up in SELECT_MODE . . . . . . . 33  
10.2.3.1 Command length . . . . . . . . . . . . . . . . . . . . . . 33  
10.2.3.2 Order of a Read Sequence . . . . . . . . . . . . . . 34  
10.2.3.3 Order of a Write Sequence . . . . . . . . . . . . . . 35  
10.2.4  
10.2.5  
8
8.1  
Mechanical specification . . . . . . . . . . . . . . . . . 5  
Wafer specification . . . . . . . . . . . . . . . . . . . . . . 5  
Wafer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Wafer backside. . . . . . . . . . . . . . . . . . . . . . . . . 5  
Chip dimensions. . . . . . . . . . . . . . . . . . . . . . . . 5  
Passivation on front . . . . . . . . . . . . . . . . . . . . . 5  
Bondpads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Fail die identification . . . . . . . . . . . . . . . . . . . . 6  
Map file distribution. . . . . . . . . . . . . . . . . . . . . . 6  
8.1.1  
8.1.2  
8.1.3  
8.1.4  
8.1.5  
8.1.6  
8.1.7  
HALT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Authentication . . . . . . . . . . . . . . . . . . . . . . . . 37  
10.2.5.1 Authentication protocol . . . . . . . . . . . . . . . . . 38  
11  
Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
12  
12.1  
12.2  
12.2.1  
12.2.2  
12.3  
12.3.1  
12.3.2  
Data Integrity/Calculation of CRC . . . . . . . . . 40  
Basic concept for data reliability . . . . . . . . . . 40  
Transmission RWD to transponder . . . . . . . . 40  
Read sequence . . . . . . . . . . . . . . . . . . . . . . . 40  
Write sequence . . . . . . . . . . . . . . . . . . . . . . . 41  
Transmission transponder to RWD . . . . . . . . 42  
Standard protocol mode. . . . . . . . . . . . . . . . . 42  
Advanced protocol mode . . . . . . . . . . . . . . . . 42  
9
9.1  
9.2  
Functional description . . . . . . . . . . . . . . . . . . . 7  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
General definitions . . . . . . . . . . . . . . . . . . . . . . 8  
Definition of the Keys . . . . . . . . . . . . . . . . . . . . 8  
Definition of the Logdata. . . . . . . . . . . . . . . . . . 9  
Configuration of transponder . . . . . . . . . . . . . . 9  
Organization of the Configuration Page . . . . . . 9  
Delivery configuration of HITAG 1 . . . . . . . . . 12  
HITAG 1 transponder IC air interface . . . . . . . 13  
Electromagnetic characteristics . . . . . . . . . . . 13  
Magnetic flux densities . . . . . . . . . . . . . . . . . . 13  
Equivalent circuit for data and energy transfer 13  
Data transmission transponder RWD. . . . . 14  
Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Data transmission RWD transponder. . . . . 16  
Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Switching the transmission direction. . . . . . . . 19  
9.2.1  
9.2.2  
9.2.3  
9.2.3.1  
9.2.3.2  
9.3  
9.3.1  
9.3.1.1  
9.3.1.2  
9.3.2  
9.3.2.1  
9.3.2.2  
9.3.3  
9.3.3.1  
9.3.3.2  
9.3.3.3  
12.4  
13  
Source Code for CRC-Checksum. . . . . . . . . . . 43  
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 44  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 44  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 46  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 47  
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 49  
14  
15  
16  
17  
18  
19  
Legal information . . . . . . . . . . . . . . . . . . . . . . 50  
Data sheet status. . . . . . . . . . . . . . . . . . . . . . 50  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Licenses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
19.1  
19.2  
19.3  
19.4  
19.5  
10  
10.1  
10.1.1  
10.1.2  
Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Standard Protocol Modes . . . . . . . . . . . . . . . . 20  
General comments . . . . . . . . . . . . . . . . . . . . . 20  
Anticollision Mode. . . . . . . . . . . . . . . . . . . . . . 20  
20  
21  
22  
23  
Contact information . . . . . . . . . . . . . . . . . . . . 51  
Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
10.1.2.1 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
10.1.2.2 SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
10.1.3  
SELECT Mode . . . . . . . . . . . . . . . . . . . . . . . . 23  
10.1.3.1 Command length . . . . . . . . . . . . . . . . . . . . . . 23  
10.1.3.2 Order of a Read Sequence . . . . . . . . . . . . . . 24  
10.1.3.3 Order of a Write Sequence. . . . . . . . . . . . . . . 25  
10.1.4  
HALT Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2010.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 26 February 2010  
187530  

相关型号:

HT1ICS3002WV6F

HITAG 1 transponder IC
NXP

HT1MOA2S30/E/3,118

HT1X_SDS - HITAG 1 transponder IC COB 35-Pin
NXP

HT1MOA3S30

HITAGTM1 Chip Module
NXP

HT1MOA3S30/E/1

HITAGTM1 Chip Module
NXP

HT1MOA3S30/E/3

HITAGTM1 Chip Module
NXP

HT1MOA4S30

HITAG 1 transponder IC
NXP

HT1MOA4S30E

HITAG 1 transponder IC
NXP

HT1MOA4S30E3

HITAG 1 transponder IC
NXP

HT2

TRANSISTOR | BJT | NPN | 80V V(BR)CEO | 100MA I(C) | SOT-23
ETC

HT2-12-30

Analog IC
ETC

HT20002000J0G

Barrier Strip Terminal Block
AMPHENOL

HT20003000J0G

Barrier Strip Terminal Block
AMPHENOL