IP4786CZ32S,118 [NXP]

IP4786CZ32S - DVI and HDMI interface ESD and overcurrent protection, DDC/CEC buffering, hot plug detect and backdrive protection QFN 32-Pin;
IP4786CZ32S,118
型号: IP4786CZ32S,118
厂家: NXP    NXP
描述:

IP4786CZ32S - DVI and HDMI interface ESD and overcurrent protection, DDC/CEC buffering, hot plug detect and backdrive protection QFN 32-Pin

商用集成电路
文件: 总34页 (文件大小:1678K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IP4786CZ32S  
DVI and HDMI interface ESD and overcurrent protection,  
DDC/CEC buffering, hot plug detect and backdrive protection  
HXQFN32  
Rev. 2 — 11 July 2013  
Product data sheet  
1. General description  
The IP4786CZ32S is designed to protect High-Definition Multimedia Interface (HDMI)  
transmitter host interfaces. It includes HDMI 5 V overcurrent / overvoltage protection,  
Display Data Channel (DDC) buffering and decoupling, Hot Plug Detect (HPD), backdrive  
protection, Consumer Electronic Control (CEC) buffering and decoupling, and 8 kV  
contact ElectroStatic Discharge (ESD) protection for all I/Os in accordance with the  
IEC 61000-4-2, level 4 standard.  
The IP4786CZ32S incorporates Transmission Line Clamping (TLC) technology on the  
high-speed Transition-Minimized Differential Signaling (TMDS) lines to simplify routing  
and help reduce impedance discontinuities. All TMDS lines are protected by an  
impedance-matched diode configuration that minimizes impedance discontinuities caused  
by typical shunt diodes.  
The enhanced 60 mA overcurrent / overvoltage linear regulator guarantees  
HDMI-compliant 5 V output voltage levels with up to 6.5 V inputs.  
The DDC lines use a new buffering concept which decouples the internal capacitive load  
from the external capacitive load for use with standard Complementary Metal Oxide  
Semiconductor (CMOS) or Low Voltage Transistor-Transistor Logic (LVTTL) I/O cells  
down to 1.8 V. This buffering also redrives the DDC and CEC signals, allowing the use of  
longer or cheaper HDMI cables with a higher capacitance. The internal hot plug detect  
module simplifies the application of the HDMI transmitter to control the hot plug signal.  
All lines provide appropriate integrated pull-ups and pull-downs for HDMI compliance and  
backdrive protection to guarantee that HDMI interface signals are not pulled down if the  
system is powered down or enters Standby mode. Only a single external capacitor is  
required for operation.  
2. Features and benefits  
HDMI High-Speed, 340 MHz, deep color and HDMI Ethernet and Audio return  
Channel (HEAC) compatible  
Impedance matched 100 differential transmission line ESD protection for  
TMDS lines (10 ). No Printed-Circuit Board (PCB) pre-compensation required  
Simplified flow-through routing utilizing less overall PCB space  
DDC capacitive decoupling between system side and HDMI connector side and  
buffering to drive cable with high capacitive load (> 700 pF/25 m)  
All external I/O lines with ESD protection of at least 8 kV in accordance with the  
IEC 61000-4-2, level 4 standard  
Hot plug detect module  
 
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
CEC buffering and isolation, with integrated backdrive-protected 26 kpull-up  
Robust ESD protection without degradation after repeated ESD strikes  
Highest integration in a small footprint, PCB level, optimized RF routing,  
32-pin HXQFN leadless package  
3. Applications  
The IP4786CZ32S can be used for a wide range of HDMI source devices, consumer  
and computing electronics:  
Tablet and notebook PCs  
Portable Media Players  
Digital Still Cameras (DSC)  
High-Definition (HD) and Standard-Definition (SD) Blu-ray and DVD players  
Set-top boxes (STB)  
PC graphic cards  
Game consoles  
HDMI picture performance quality enhancer modules  
Digital Visual Interface (DVI)  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
IP4786CZ32S  
HXQFN32 plastic thermal enhanced extremely thin quad flat  
SOT1318-1  
package; no leads; 32 terminals; body 4 4 0.5 mm  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
2 of 34  
 
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
5. Functional diagram  
TMDS_D2+_SYS  
TMDS_D2+_CON  
ESD  
TMDS_D2–_SYS  
TMDS_D1+_SYS  
TMDS_D1–_SYS  
TMDS_D0+_SYS  
TMDS_D0–_SYS  
TMDS_CK+_SYS  
TMDS_CK–_SYS  
TMDS_D2–_CON  
TMDS_D1+_CON  
TMDS_D1–_CON  
TMDS_D0+_CON  
TMDS_D0–_CON  
TMDS_CK+_CON  
8 kV  
TMDS_CK–_CON  
V
CC(5V0)  
3.3 V VOLTAGE  
REGULATOR  
ESD  
V
ESD  
CC(SYS)  
CEC driver  
10 kΩ  
26 kΩ  
CEC_SYS  
CEC_CON  
2 kV  
ESD  
8 kV  
ESD  
V
V
HDMI_5V0_CON  
1.85 kΩ  
CC(SYS)  
DDC driver  
3.65 kΩ  
DDC_CLK_SYS  
DDC_CLK_CON  
2 kV  
ESD  
8 kV  
ESD  
CC(SYS)  
3.65 kΩ  
HDMI_5V0_CON  
1.85 kΩ  
DDC driver  
DDC_DAT_SYS  
DDC_DAT_CON  
2 kV  
ESD  
8 kV  
ESD  
Hot plug  
HOTPLUG_DET_SYS  
HOTPLUG_DET_CON  
100 kΩ  
100 kΩ  
2 kV  
ESD  
8 kV  
ESD  
V
HDMI_5V0_CON  
ESD_BYPASS  
CC(5V0)  
2 kV  
8 kV  
ESD  
CURRENT LIMITER  
8 kV  
clamp  
V
V
CC(5V0)  
CC(SYS)  
ESD  
enable  
enCEC  
ESD  
2 kV  
enLim  
enRef  
CEC_STBY  
100 kΩ  
POWER  
MANAGEMENT UNIT  
V
CC(SYS)  
2 kV  
ESD  
V
V
CC(5V0)  
CC(SYS)  
n
ibias 1..n  
vref 1..m  
m
UTILITY_CON  
100 kΩ  
CURRENT-/VOLTAGE-  
REFERENCES  
8 kV  
001aan369  
Fig 1. Functional diagram  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
3 of 34  
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
6. Pinning information  
6.1 Pinning  
WHUPLQDOꢀꢄ  
LQGH[ꢀDUHD  
ꢅꢎ  
ꢅꢏ  
ꢅꢅ  
ꢅꢄ  
ꢅꢃ  
ꢄꢍ  
ꢄꢊ  
ꢄꢋ  
70'6B'ꢅꢂB6<6  
70'6B'ꢅꢁB6<6  
70'6B'ꢄꢂB6<6  
70'6B'ꢄꢁB6<6  
70'6B'ꢃꢂB6<6  
70'6B'ꢃꢁB6<6  
70'6B&.ꢂB6<6  
70'6B&.ꢁB6<6  
70'6B'ꢅꢂB&21  
70'6B'ꢅꢁB&21  
70'6B'ꢄꢂB&21  
70'6B'ꢄꢁB&21  
70'6B'ꢃꢂB&21  
70'6B'ꢃꢁB&21  
70'6B&.ꢂB&21  
70'6B&.ꢁB&21  
,3ꢀꢁꢂꢃ&=ꢄꢅ6  
DDDꢀꢁꢁꢂꢃꢁꢁ  
7UDQVSDUHQWꢀWRSꢀYLHZ  
Fig 2. Pin configuration IP4786CZ32S  
6.2 Pin description  
Table 2.  
Pin description  
Pin  
1
Name  
Description  
TMDS_D2+_SYS  
TMDS_D2_SYS  
TMDS_D1+_SYS  
TMDS_D1_SYS  
TMDS_D0+_SYS  
TMDS_D0_SYS  
TMDS_CK+_SYS  
TMDS_CK_SYS  
DDC_CLK_SYS  
DDC_DAT_SYS  
VCC(5V0)  
TMDS to ASIC inside system  
TMDS to ASIC inside system  
TMDS to ASIC inside system  
TMDS to ASIC inside system  
TMDS to ASIC inside system  
TMDS to ASIC inside system  
TMDS to ASIC inside system  
TMDS to ASIC inside system  
DDC clock system side  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
DDC data system side  
5 V supply input  
HOTPLUG_DET_CON  
HDMI_5V0_CON  
hot plug detect connector side  
5 V overcurrent out to connector  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
4 of 34  
 
 
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
Table 2.  
Pin description …continued  
Pin  
14  
Name  
Description  
DDC_DAT_CON  
DDC_CLK_CON  
UTILITY_CON  
TMDS_CK_CON  
TMDS_CK+_CON  
TMDS_D0_CON  
TMDS_D0+_CON  
TMDS_D1_CON  
TMDS_D1+_CON  
TMDS_D2_CON  
TMDS_D2+_CON  
CEC_CON  
DDC data connector side  
15  
DDC clock connector side  
16  
utility line ESD protection  
17  
TMDS ESD protection to connector  
TMDS ESD protection to connector  
TMDS ESD protection to connector  
TMDS ESD protection to connector  
TMDS ESD protection to connector  
TMDS ESD protection to connector  
TMDS ESD protection to connector  
TMDS ESD protection to connector  
CEC signal connector side  
18  
19  
20  
21  
22  
23  
24  
25  
26  
ESD_BYPASS  
VCC(SYS)  
ESD bias voltage  
27  
supply voltage for level shifting  
CEC Standby mode control (LOW for lowest power, CEC-only mode)  
CEC I/O signal system side  
not connected  
28  
CEC_STBY  
29  
CEC_SYS  
30  
n.c.  
31  
n.c.  
not connected  
32  
HOTPLUG_DET_SYS  
GND  
hot plug detect system side  
ground  
ground pad  
7. Limiting values  
Table 3.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter  
Conditions  
Min  
Max  
Unit  
V
VCC(5V0) supply voltage (5.0 V)  
GND 0.5 6.5  
GND 0.5 5.5  
VI  
input voltage  
I/O pins  
V
[1]  
[2]  
VESD  
electrostatic discharge  
voltage  
IEC 61000-4-2, level 4 (contact)  
IEC 61000-4-2, level 1 (contact)  
-
-
-
8  
2  
50  
kV  
kV  
mW  
Ptot  
total power dissipation  
DDC operating at 100 kHz; CEC operating at  
1 kHz; 50 % duty cycle; CEC_STBY = HIGH;  
no current at HDMI_5V0_CON  
DDC and CEC bus in idle mode;  
CEC_STBY = HIGH;  
no current at HDMI_5V0_CON  
-
-
3.0  
1.0  
mW  
mW  
DDC and CEC bus in idle mode;  
CEC_STBY = LOW  
Tamb  
Tstg  
ambient temperature  
storage temperature  
25  
55  
+85  
C  
C  
+125  
[1] Connector-side pins (typically denoted with “_CON” suffix) to ground.  
[2] System-side pins: CEC_SYS, DDC_DAT_SYS, DDC_CLK_SYS, HOTPLUG_DET_SYS, CEC_STBY, VCC(SYS) and VCC(5V0)  
.
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
5 of 34  
 
 
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
8. Static characteristics  
Table 4.  
Supplies  
Tamb = 25 C to +85 C unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
4.5  
Typ  
5.0  
3.3  
Max  
6.5  
Unit  
V
[1]  
VCC(5V0) supply voltage (5.0 V)  
VCC(SYS) system supply voltage  
1.62  
5.5  
V
[1] The IP4786CZ32S contains a 5 V voltage regulator function for higher input voltages.  
Any input voltage of 4.925 V < VCC(5V0) < 6.50 V provides HDMI-compliant output levels of 4.8 V to 5.3 V  
on HDMI_5V0_CON.  
Table 5.  
TMDS protection circuit  
Tamb = 25 C to +85 C unless otherwise specified.  
Symbol  
TMDS channel  
Zi(dif) differential input  
Parameter  
Conditions  
Min Typ Max Unit  
TDR measured;  
tr = 200 ps  
90  
-
100 110  
impedance  
[1][2]  
Ceff  
effective capacitance  
equivalent shunt  
0.6  
-
pF  
capacitance for TDR  
minimum; tr = 200 ps  
Protection diode  
VBRzd Zener diode breakdown  
I = 1.0 mA  
6.0  
-
9.0  
V
voltage  
rdyn  
dynamic resistance  
surge; I = 1.0 A;  
IEC 61000-4-5/9  
positive transient  
negative transient  
TLP  
-
-
1.0  
1.0  
-
-
[3]  
positive transient  
negative transient  
VCC(5V0) < Vch(TMDS)  
VI = 3.0 V  
-
-
-
-
-
-
1.0  
1.0  
-
-
[4][5]  
Ibck  
ILR  
VF  
back current  
0.1 1.0 A  
reverse leakage current  
forward voltage  
1.0  
0.7  
8.0  
-
-
-
A  
V
VCL(ch)trt(pos) positive transient channel  
clamping voltage  
100 ns TLP;  
50 pulser at 50 ns  
V
[1] This parameter is guaranteed by design.  
[2] Capacitive dip at HDMI Time Domain Reflectometer (TDR) measurement conditions.  
[3] ANSI-ESD SP5.5.1-2004, ESD sensitivity testing Transmission Line Pulse (TLP) component level  
method 50 TDR.  
[4] Signal pins:  
TMDS_D0+_CON, TMDS_D0_CON, TMDS_D1+_CON, TMDS_D1_CON, TMDS_D2+_CON,  
TMDS_D2_CON, TMDS_CK+_CON, TMDS_CK_CON,  
TMDS_D0+_SYS, TMDS_D0_SYS, TMDS_D1+_SYS, TMDS_D1_SYS, TMDS_D2+_SYS,  
TMDS_D2_SYS, TMDS_CK+_SYS and TMDS_CK_SYS.  
[5] Backdrive current from TMDS_x_SYS and TMDS_x_CON pins to local VCC(5V0) bias rail at power-down.  
Device does not block backdrive current leakage through the device to/from ASIC I/O pins connected  
to TMDS_x_SYS pins.  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
6 of 34  
 
 
 
 
 
 
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
Table 6.  
HDMI_5V0_CON  
Tamb = 25 C to +85 C unless otherwise specified.  
Symbol Parameter  
rdyn dynamic resistance  
Conditions  
TLP  
Min Typ Max Unit  
[1]  
positive transient  
negative transient  
-
-
-
1.0  
1.0  
8
-
-
-
V
VCL  
clamping voltage  
100 ns TLP;  
50 pulser at 50 ns  
IO(max)  
Ibck  
IO(sc)  
Vdo  
maximum output current V(HDMI_5V0_CON) = 4.8 V  
back current VCC(5V0) < V(HDMI_5V0_CON)  
short-circuit output current V(HDMI_5V0_CON) = 0 V  
55  
-
-
-
-
mA  
10  
A  
-
125 175 mA  
[2]  
[2]  
dropout voltage  
4.5 V < VCC(5V0) < 4.925 V;  
DDC = LOW  
IO = 10 mA  
IO = 55 mA  
-
-
70  
-
-
mV  
125 mV  
VO(LDO)  
LDO output voltage  
IO 55 mA;  
4.8 5.05 5.3  
V
4.925 V < VCC(5V0) < 6.5 V;  
DDC = LOW  
[1] ANSI-ESD SP5.5.1-2004, ESD sensitivity testing TLP component level method 50 TDR.  
[2] The IP4786CZ32S contains a 5 V voltage regulator function for higher input voltages.  
Any input voltage of 4.925 V < VCC(5V0) < 6.50 V provides HDMI-compliant output levels of 4.8 V to 5.3 V  
on HDMI_5V0_CON.  
Table 7.  
UTILITY_CON  
Tamb = 25 C to +85 C unless otherwise specified.  
Symbol Parameter  
Conditions  
Min Typ Max Unit  
Supplies: pins VCC(5V0) and VCC(SYS)  
[1]  
rdyn  
dynamic resistance  
TLP  
positive transient  
negative transient  
-
-
-
1.0  
1.0  
8.0  
-
-
-
V
VCL  
Ci  
clamping voltage  
input capacitance  
100 ns TLP;  
50 pulser at 50 ns  
VCC(5V0) = 0 V;  
-
8.0 10  
pF  
VCC(SYS) = 0 V; Vbias = 2.5 V;  
AC input = 3.5 V(p-p)  
f = 100 kHz  
;
Rpd  
pull-down resistance  
60  
100 140 k  
[1] ANSI-ESD SP5.5.1-2004, ESD sensitivity testing TLP component level method 50 TDR.  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
7 of 34  
 
 
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
Table 8.  
Static characteristics  
Tamb = 25 C to +85 C unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DDC buffer on connector side[1]  
VIH  
HIGH-level input voltage  
LOW-level input voltage  
HIGH-level output voltage  
0.5   
V(HDMI_5V0_CON)  
-
6.5  
V
VIL  
0.5  
-
0.3   
V(HDMI_5V0_CON)  
V
[2]  
VOH  
VOL  
V(HDMI_5V0_CON)  
0.02  
-
V(HDMI_5V0_CON)  
+ 0.02  
V
LOW-level output voltage internal pull-up and  
external sink  
-
100  
200  
mV  
VIK  
CIO  
input clamping voltage  
II = 18 mA  
-
-
-
1.0  
V
[2][3]  
input/output capacitance VCC(5V0) = 5.0 V;  
VCC(SYS) = 3.3 V;  
8.0  
10  
pF  
CEC_STBY = HIGH  
Rpu  
pull-up resistance  
1.6  
1.8  
2.0  
k  
DDC buffer on system side[1][4]  
VIH HIGH-level input voltage VCC(SYS) = 1.8 V  
450  
-
-
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
V
VCC(SYS) = 2.5 V  
VCC(SYS) = 3.3 V  
VCC(SYS) = 5.0 V  
VCC(SYS) = 1.8 V  
VCC(SYS) = 2.5 V  
VCC(SYS) = 3.3 V  
VCC(SYS) = 5.0 V  
620  
-
-
760  
-
-
800  
-
-
VIL  
LOW-level input voltage  
HIGH-level output voltage  
-
-
330  
-
-
380  
-
-
400  
-
-
420  
[2]  
[5]  
[5]  
[5]  
[5]  
VOH  
VOL  
VCC(SYS) 0.02  
-
VCC(SYS) + 0.02  
LOW-level output voltage VCC(SYS) = 1.8 V  
VCC(SYS) = 2.5 V  
-
-
-
-
-
-
490  
640  
685  
720  
-
500  
690  
790  
820  
1.0  
8.0  
mV  
mV  
mV  
mV  
V
VCC(SYS) = 3.3 V  
VCC(SYS) = 5.0 V  
VIK  
CIO  
input clamping voltage  
II = 18 mA  
[2]  
input/output capacitance VCC(5V0) = 0 V;  
VCC(SYS) = 0 V;  
6.0  
pF  
Vbias = 2.5 V;  
AC input = 3.5 V(p-p)  
;
f = 100 kHz  
Rpu  
pull-up resistance  
3.2  
3.65  
4.1  
k  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
8 of 34  
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
Table 8.  
Static characteristics …continued  
Tamb = 25 C to +85 C unless otherwise specified.  
Symbol Parameter  
CEC_CON[1]  
Conditions  
Min  
Typ  
Max  
Unit  
VIH  
VIL  
HIGH-level input voltage  
2.0  
-
-
V
LOW-level input voltage  
HIGH-level output voltage  
-
-
0.80  
3.63  
200  
10  
V
VOH  
VOL  
CIO  
2.88  
3.3  
100  
8.0  
V
LOW-level output voltage IOL = 1.5 mA  
-
-
mV  
pF  
[2]  
input/output capacitance VCC(5V0) = 0 V;  
VCC(SYS) = 0 V;  
Vbias = 1.65 V;  
AC input = 2.5 V(p-p)  
;
f = 100 kHz  
Rpu  
pull-up resistance  
23.4  
26.0  
28.6  
k  
CEC_SYS[1][4]  
VIH  
HIGH-level input voltage VCC(SYS) = 1.8 V  
VCC(SYS) = 2.5 V  
450  
-
-
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
V
620  
-
-
VCC(SYS) = 3.3 V  
760  
-
-
VCC(SYS) = 5.0 V  
800  
-
-
VIL  
LOW-level input voltage  
VCC(SYS) = 1.8 V  
VCC(SYS) = 2.5 V  
VCC(SYS) = 3.3 V  
VCC(SYS) = 5.0 V  
-
-
330  
-
-
380  
-
-
400  
-
-
420  
[2]  
[5]  
[5]  
[5]  
[5]  
[2]  
VOH  
VOL  
HIGH-level output voltage  
VCC(SYS) 0.02  
-
VCC(SYS) + 0.02  
LOW-level output voltage VCC(SYS) = 1.8 V  
VCC(SYS) = 2.5 V  
-
-
-
-
-
490  
640  
675  
710  
6.0  
500  
690  
770  
800  
7.0  
mV  
mV  
mV  
mV  
pF  
VCC(SYS) = 3.3 V  
VCC(SYS) = 5.0 V  
CIO  
input/output capacitance VCC(5V0) = 0 V;  
VCC(SYS) = 0 V;  
Vbias = 1.65 V;  
AC input = 2.5 V(p-p)  
;
f = 100 kHz  
Rpu  
pull-up resistance  
8.5  
10  
11.5  
k  
HOTPLUG_DET_CON[1]  
VIH  
VIL  
Rpd  
Ci  
HIGH-level input voltage  
2.0  
-
-
-
V
LOW-level input voltage  
pull-down resistance  
input capacitance  
-
0.8  
140  
10  
V
60  
-
100  
8.0  
k  
pF  
[2]  
VCC(5V0) = 0 V;  
VCC(SYS) = 0 V;  
Vbias = 2.5 V;  
AC input = 3.5 V(p-p)  
;
f = 100 kHz  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
9 of 34  
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
Table 8.  
Static characteristics …continued  
Tamb = 25 C to +85 C unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
HOTPLUG_DET_SYS[1]  
VOH  
VOL  
Rpd  
HIGH-level output voltage IOL = 1 mA  
LOW-level output voltage IOL = 1 mA  
pull-down resistance  
0.7 VCC(SYS)  
-
-
V
-
200  
100  
300  
140  
mV  
k  
60  
[1] The device is active if the input voltage at pin CEC_STBY is above the HIGH level.  
[2] This parameter is guaranteed by design.  
[3] Capacitive load measured at power-on.  
[4] No external pull-up resistor attached.  
[5] Typical value at Tamb = +25 C.  
Table 9.  
CEC_STBY power management circuit  
VCC(SYS) = 1.62 V to 5.5 V; VCC(5V0) = 4.5 V to 6.5 V; GND = 0 V; Tamb = 25 C to +85 C unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Board side: input pin CEC_STBY[1]  
[2]  
[3]  
VIH  
VIL  
Rpd  
Ci  
HIGH-level input voltage  
LOW-level input voltage  
pull-down resistance  
input capacitance  
HIGH = active  
1.2  
0.5  
60  
-
-
6.5  
0.8  
140  
7
V
LOW = standby  
-
V
100  
6
k  
pF  
VI = 3 V or 0 V  
[1] The CEC_STBY pin should be connected permanently to VCC(5V0) or VCC(SYS) if no enable control is needed.  
[2] DDC buffers, HPD buffer, and HDMI_5V0_CON out enabled; CEC buffer enabled.  
[3] DDC buffers, HPD buffer, and HDMI_5V0_CON out disabled; CEC buffer enabled.  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
10 of 34  
 
 
 
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
9. Dynamic characteristics  
Table 10. Dynamic characteristics  
VCC(5V0) = 5.0 V; VCC(SYS) = 1.8 V; GND = 0 V; Tamb = 25 C to +85 C unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DDC_DAT_SYS, DDC_CLK_SYS, DDC_DAT_CON, DDC_CLK_CON[1]  
tPLH  
tPHL  
tPLH  
tPHL  
tTLH  
tTHL  
tTLH  
tTHL  
LOW to HIGH propagation delay  
HIGH to LOW propagation delay  
LOW to HIGH propagation delay  
HIGH to LOW propagation delay  
LOW to HIGH transition time  
HIGH to LOW transition time  
LOW to HIGH transition time  
HIGH to LOW transition time  
system side to connector side Figure 15  
system side to connector side Figure 15  
connector side to system side Figure 16  
connector side to system side Figure 16  
connector side Figure 17  
-
-
-
-
-
-
-
-
80  
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
60  
120  
80  
150  
100  
250  
80  
connector side Figure 17  
system side Figure 18  
system side Figure 18  
[1] All dynamic measurements are done with a 75 pF load. Rise times are determined by internal pull-up resistors.  
DDDꢀꢁꢁꢃꢃꢃꢄ  
ꢄꢅꢃ  
=
GLI  
ꢆȍꢈ  
70'6B&.  
70'6B'ꢅ  
70'6B'ꢄ  
70'6B'ꢃ  
ꢄꢄꢃ  
ꢄꢃꢃ  
ꢍꢃ  
ꢊꢃ  
ꢃꢉꢄ  
ꢃꢉꢅ  
ꢃꢉꢏ  
ꢃꢉꢎ  
ꢃꢉꢇ  
ꢃꢉꢌ  
WLPHꢀꢆQVꢈ  
tr = 200 ps; no filter; VCC(5V0) = 5 V  
100 differential (CH1 + CH2)  
Fig 3. Differential TDR plot  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
11 of 34  
 
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
018aaa086  
3
Sdd21;  
Scc21  
(dB)  
(1)  
–3  
(2)  
–9  
–15  
6
7
8
9
10  
10  
10  
10  
10  
10  
f (Hz)  
(1) Sdd21  
(2) Scc21  
Normalized to 100 ; differential pairs at signal pins.  
Fig 4. Mixed-mode differential and common-mode insertion loss; typical values  
018aaa087  
3
Sdd21  
(dB)  
(1)  
–3  
(2)  
–9  
–15  
6
7
8
9
10  
10  
10  
10  
10  
10  
f (Hz)  
(1) Sdd21; Near End Crosstalk (NEXT)  
(2) Sdd21; Far End Crosstalk (FEXT)  
normalized to 100 ; differential pairs CH1/CH2 versus CH3/CH4  
Fig 5. Mixed-mode differential and common-mode NEXT / FEXT; typical values  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
12 of 34  
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
DDDꢀꢁꢁꢃꢃꢅꢄ  
227 MHz pixel clock  
Horizontal scale: 90 ps/div  
Vertical scale: 200 mV/div  
Offset: 42.6 mV  
Fig 6. Eye diagram using IP4786CZ32S (1080p, 12 bit)  
DDDꢀꢁꢁꢃꢃꢅꢆ  
297 MHz pixel clock  
Horizontal scale: 67.5 ps/div  
Vertical scale: 200 mV/div  
Offset: 42.6 mV  
Fig 7. Eye diagram using IP4786CZ32S (1080p, 16 bit)  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
13 of 34  
 
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
018aaa090  
0.4  
C
line  
(pF)  
0.2  
0.0  
–0.2  
–0.4  
–1.0  
1.0  
3.0  
5.0  
7.0  
V
(V)  
bias  
Deviation from typical capacitance normalized at Vbias = 2.5 V  
Fig 8. Line capacitance as a function of bias voltage; typical values  
018aaa091  
018aaa092  
4.00  
CL  
2.5  
V
V
CL  
(V)  
(V)  
3.75  
3.50  
3.25  
3.00  
2.0  
1.5  
1.0  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
0.4  
0.6  
0.8  
1.0  
1.2  
I (A)  
I (A)  
IEC 61000-4-5; tp = 8/20 s; positive pulse  
IEC 61000-4-5; tp = 8/20 s; negative pulse  
Fig 9. Dynamic resistance with positive clamping  
Fig 10. Dynamic resistance with negative clamping  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
14 of 34  
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
018aaa093  
018aaa094  
14  
I
0
I
(A)  
(A)  
12  
–2  
–4  
–6  
10  
8
6
–8  
4
–10  
–12  
–14  
2
0
6
10  
14  
18  
22  
–12  
–8  
–4  
0
V
(V)  
V
(V)  
CL  
CL  
tp = 100 ns; TLP; signal pins; typical values  
tp = 100 ns; TLP; signal pins; typical values  
Fig 11. Dynamic resistance with positive clamping  
Fig 12. Dynamic resistance with negative clamping  
018aaa095  
018aaa096  
6.5  
6.0  
V
I
V
O
(V)  
(V)  
(2)  
(1)  
(4)  
6.0  
(5)  
4.0  
5.5  
5.0  
4.5  
(1)  
(3)  
2.0  
0.0  
(4)  
(2)  
(3)  
5.0  
5.5  
6.0  
6.5  
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14  
(A)  
V
(V)  
I
O
CC(5V0)  
(1) 5.3 V; maximum values; HDMI CTS TID 7-11  
(2) 4.8 V; minimum values; HDMI CTS TID 7-11  
(3) I = 0 mA  
(1) VCC(5V0) = 4.5 V  
(2) VCC(5V0) = 5.0 V  
(3) VCC(5V0) = 5.5 V  
(4) I = 55 mA  
(4) VCC(5V0) = 6.5 V  
(5) VCC(5V0) supply input; 4.925 V to 6.5 V  
Fig 13. Overvoltage limiter function (HDMI_5V0_CON)  
Fig 14. Overcurrent limiter function (HDMI_5V0_CON)  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
15 of 34  
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
10. AC waveforms  
10.1 DDC propagation delay  
V
DDC system side  
CC(SYS)  
0.5 V  
CC(SYS)  
0.28 V  
CC(SYS)  
V
OL  
DDC connector side  
V
(HDMI_5V0_CON)  
0.5 V  
0.5 V  
(HDMI_5V0_CON)  
(HDMI_5V0_CON)  
V
OL  
t
t
PLH  
PHL  
018aaa097  
Fig 15. Propagation delay DDC, DDC system side to DDC connector side  
DDC connector side  
V
(HDMI_5V0_CON)  
0.5 V  
0.5 V  
(HDMI_5V0_CON)  
(HDMI_5V0_CON)  
V
OL  
V
DDC system side  
CC(SYS)  
0.5 V  
0.5 V  
CC(SYS)  
CC(SYS)  
V
OL  
t
t
PLH  
PHL  
018aaa098  
Fig 16. Propagation delay DDC, DDC connector side to DDC system side  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
16 of 34  
 
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
10.2 DDC transition time  
DDC system side  
V
V
CC(SYS)  
V
V
OL  
(HDMI_5V0_CON)  
DDC connector side  
80 % V  
20 % V  
(HDMI_5V0_CON)  
(HDMI_5V0_CON)  
OL  
t
t
PLH  
PHL  
018aaa099  
Fig 17. Transition time DDC connector side  
DDC connector side  
V
V
(HDMI_5V0_CON)  
V
V
OL  
DDC system side  
CC(SYS)  
80 % V  
CC(SYS)  
CC(SYS)  
20 % V  
OL  
t
t
PLH  
PHL  
018aaa100  
Fig 18. Transition time DDC system side  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
17 of 34  
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
11. Application information  
11.1 TMDS ESD  
To protect the TMDS lines and also to comply with the impedance requirements of the  
HDMI specification, the IP4786CZ32S provides ESD protection with matched  
TLC ESD structures. Typical Dual Rail Clamp (DRC) or rail-to-rail shunt structures are  
common for low-capacitance ESD protection (Figure 19; left side) where the dominant  
factor for the TMDS line impedance dip is determined by the capacitive load to ground.  
Parasitic lead inductances of the packaging in this case work against the ESD clamping  
performance by including the I/t reactance of the inductance into the path of the ESD  
shunt.  
The IP4786CZ32S utilizes these inherent inductances in series with the transmission line  
in order to present an effective capacitive load of roughly only 0.7 pF. This TLC structure  
minimizes the capacitive dip, for ideal signal integrity (Figure 19; right side) without  
complicated PCB pre-compensation. As a beneficial side effect, this enhances the  
ESD performance of the device as well, since the reactance of the series inductance  
attenuates the fast initial peak of the ESD pulse, for a lower residual pulse delivered to the  
Application Specific Integrated Circuit (ASIC).  
018aaa102  
018aaa101  
a. Classic parallel ESD shunt protection  
b. Improved series shunt TLC clamping  
Fig 19. TLC ESD protection of TMDS lines  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
18 of 34  
 
 
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
11.2 Operating and standby modes  
The operating mode of IP4786CZ32S depends on the availability of the VCC(5V0) and  
CC(SYS) supply voltages and on the state of the CEC_STBY input signal. Without  
V
availability of both supplies, IP4786CZ32S is in Standby mode. As soon as VCC(5V0) and  
VCC(SYS) are within the range specified in Section 8, the part is in an operating mode that  
can be controlled via the CEC_STBY input signal. In case CEC_STBY is LOW, only the  
CEC buffer is active and enabled to receive or send CEC commands. All other outputs are  
in a high-ohmic state. A HIGH input signal enables all parts of IP4786CZ32S and puts the  
device into full operating mode.  
Table 11. IP4786CZ32S operating modes  
VCC(SYS)  
< 1.1 V  
1.1 V  
VCC(5V0)  
< 4.5 V  
4.5 V  
CEC_STBY[1] Mode  
Description  
X
L
Standby mode  
all outputs high-ohmic  
CEC Standby mode CEC circuit active;  
all other outputs high-ohmic  
H
full operating mode all functional blocks active  
[1] X = Don’t care (either LOW or HIGH level); L = LOW-level input; H = HIGH-level input  
If no CEC Standby mode is required, or if no special Power-down modes are desired, the  
CEC_STBY pin can be pulled HIGH to VCC(5V0) or VCC(SYS) for continuous HDMI and CEC  
operation as soon as the supplies are available.  
Strapping the CEC_STBY = VCC(SYS) = VDD of the ASIC guarantees that all interface  
signals ending with the suffix “_SYS” on the system side are disabled when VCC(SYS) goes  
LOW. This configuration protects the ASIC I/O signals from exceeding its local VDD. In this  
mode, even if VCC(5V0) is powered, HDMI_5V0_CON goes active and hot plug events can  
be detected only when the ASIC power supply rail is on.  
Strapping CEC_STBY = VCC(5V0) is the most basic configuration where the buffers are  
enabled whenever the local VCC(5V0) and VCC(SYS) supplies reach minimum operating  
levels.  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
19 of 34  
 
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
11.3 DDC circuit  
The DDC bus circuit integrates all required pull-ups, and provides full capacitive  
decoupling between the HDMI connector and the DDC bus lines on the PCB. The  
capacitive decoupling ensures that the maximum capacitive load is well within the 50 pF  
maximum of the HDMI specification. No external pull-ups or pull-downs are required.  
The bidirectional buffers support high-capacitive load on the HDMI cable-side. Various  
non-compliant but prevalent low-cost cables have been observed with a capacitive load of  
up to 6 nF on the DDC lines, far exceeding the 700 pF HDMI limit. The IP4786CZ32S can  
easily decouple this from the weaker ASIC I/O buffers, and drive the rogue cable  
successfully.  
V
CC(SYS)  
V
ESD_BYPASS HDMI_5V0_CON  
1.85 kΩ  
CC(SYS)  
ESD_BYPASS HDMI_5V0_CON  
1.85 kΩ  
3.65 kΩ  
3.65 kΩ  
DDC_DAT_SYS  
DDC_DAT_CON  
DDC_CLK_SYS  
DDC_CLK_CON  
018aaa103  
018aaa104  
a. DDC clock  
Fig 20. DDC circuit  
b. DDC data  
5
(1)  
(2)  
4
3
V
2
1
0
time  
018aaa105  
(1) Valid I2C signaling example on the cable (connector side) from 5 V (HIGH) to approximately 1 V (LOW).  
(2) Valid logic-level signaling example to the ASIC (system side) from 1.8 V (HIGH) to approximately 0.5 V (LOW).  
Fig 21. DDC level shifting waveform example  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
20 of 34  
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
11.4 Logic low I2C voltage shifter  
The DDC buffers provide an additional feature commonly required for high-integration  
HDMI ASICs. In order to be compatible with the 5 V I2C standard used for DDC  
communication, I/O buffer cells of many HDMI modern transmitter chips require level  
shifting. As FET-based level shifting just limits the HIGH level of the signal, the LOW level  
remains unchanged. As a result, the LOW-level voltages on the DDC bus often exceed  
the 0.3 VDD LOW-level input voltage (VIL) limit of low-voltage I/O buffers.  
To enable proper operation that is independent of the system side I/O voltage, the DDC  
buffers inside IP4786CZ32S shift both the HIGH and the LOW levels by the required  
amount. This ensures that LOW levels on the system side DDC bus match the LOW-level  
input voltage requirements down to I/O voltages of 1.8 V.  
Besides the DDC buffers, this feature is also included in the CEC buffer, allowing standard  
I/O buffer cells to be used in HDMI ASICs and microcontrollers.  
018aaa106  
0.9  
(1)  
V
;V ;  
OL IH  
IL  
(V)  
V
(2)  
(3)  
0.7  
0.5  
0.3  
1.6  
2.6  
3.6  
4.6  
5.6  
V
(V)  
CC(SYS)  
(1) VOL(max) driven to system (ASIC) side when I2C logic LOW (less than 0.3 HDMI_5V0_CON)  
(2) VIH(min) threshold on system (ASIC) side to drive I2C logic HIGH  
(3)  
V
IL(max) threshold on system (ASIC) side to drive I2C logic LOW  
Fig 22. Logic voltage thresholds as a function of supply voltage on system side  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
21 of 34  
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
11.5 Hot plug detect circuit and HEAC support  
The IP4786CZ32S includes a hot plug detect circuit that simplifies the hot plug  
application. The circuit generates a standard logic level from the hot plug signal.  
The hot plug detect circuit is pulling down the signal to avoid any floating signal.  
The comparator guarantees a save detection of the 2 V hot plug signal without any  
glitches or oscillation at the hot plug output.  
The IP4786CZ32S also provides an additional ESD pin to protect the reserved / HEAC pin  
along with hot plug detect to 8 kV IEC 61000-4-2, level 4.  
V
CC(5V0)  
ESD_BYPASS  
HOTPLUG_DET_CON  
HOTPLUG_DET_SYS  
100 kΩ  
100 kΩ  
018aaa107  
Fig 23. Hot plug detect circuit  
11.6 CEC  
The logical multidrop topology of the CEC bus can include complex physical stubs,  
loading cables, and interconnects that may deteriorate signal quality.  
The IP4786CZ32S includes a full bidirectional buffer to drive the CEC bus and isolate  
the CEC microcontroller or ASIC General-Purpose Input/Output (GPIO).  
The CEC buffer derives power from an on-board 3.3 V regulator from the VCC(5V0) domain  
(see Figure 24). This allows extensive system power management configurations and  
guarantees an HDMI-compliant V(CEC_CON) on the connector, as well as the  
backdrive-protected 125 A nominal CEC pull-up which does not degrade the bus when  
powered down.  
By placing the CEC microcontroller and VCC(5V0) input on a 5 V rail as shown in Figure 27,  
the CEC microcontroller can communicate over CEC for power commands, and then  
enable the HDMI port via the CEC_STBY pin, as well as the rest of the system as needed.  
The CEC buffer is always active as soon as both supply voltages are present. For details  
on the operating and Standby modes of IP4786CZ32S, see Section 11.2.  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
22 of 34  
 
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
V
V
CC(SYS)  
CC(5V0)  
3V3  
ESD_BYPASS  
10 kΩ  
26 kΩ  
CEC_CON  
CEC_SYS  
018aaa108  
Fig 24. CEC module  
11.7 Backdrive protection  
The HDMI connector contains various signals which can partly supply current into an  
HDMI device that is powered down.  
Typically, the DDC lines and the CEC signals can force significant current back into the  
powered-down rails as shown in Figure 25, causing power-on reset problems with the  
system, and possible damage. The IP4786CZ32S prevents this backdrive condition  
whenever the I/O voltage is greater than the local supply.  
supply off  
5 V  
HDMI source  
HDMI sink  
backdrive current  
2
HDMI ASIC  
I C-bus ASIC  
018aaa109  
Fig 25. Generalized backdrive protection  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
23 of 34  
 
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
11.8 55 mA overcurrent / overvoltage LDO function  
To isolate faults from the source power supply while still meeting HDMI output  
specifications, IP4786CZ32S integrates a complete linear output overcurrent protection.  
The Low DropOut (LDO) design provides a low-cost solution requiring just a single output  
capacitor (1 F or higher, Equivalent Series Resistance (ESR) < 1 ), eliminating start-up  
and ripple concerns (see Figure 26).  
A typical 100 mV dropout voltage Vdo overcurrent-only solution would require a  
5.1 V 3 % input supply to guarantee 4.8 V to 5.3 V over 0 mA to 55 mA at the HDMI  
connector. The overcurrent / overvoltage feature of the IP4786CZ32S allows the use of  
wider tolerance input supplies up to 6.5 V while still meeting the 4.8 V-to-5.3 V output limit  
required by HDMI. This means, for example, a cost-reduced 5.2 V 5 % or even  
a 5.5 V 10 % supply can be used with the IP4786CZ32S.  
As with all the I/O pins, this block is ESD-protected and also provides backdrive protection  
when a rogue HDMI sink powers the HDMI cable unexpectedly.  
ESD_BYPASS  
V
CC(5V0)  
HDMI_5V0_CON  
DDC/HPD  
buffers  
CEC  
3V3  
regulator  
60 mA  
overcurrent  
control  
CEC  
buffer  
018aaa110  
Fig 26. 5 V LDO with overcurrent / overvoltage protection  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
24 of 34  
 
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
11.9 Schematic view of application  
Only a single external component (CO = 1 F) is required to protect and interface the  
ASIC to a complete and compliant HDMI port. The 100 nF ESD bypass capacitor is  
optional.  
&(&  
—&  
ꢂꢎꢉꢇꢀ9ꢀWRꢀꢌꢉꢇꢀ9ꢀ6833/<  
&(&B67%< &(&B6<6  
ꢅꢊ  
ꢅꢍ  
ꢅꢌ  
ꢄꢄ  
ꢅꢋ  
(6'  
E\SDVV  
ꢆRSWLRQDOꢈ  
ꢂꢄꢉꢌꢅꢀ9ꢀWRꢀꢇꢉꢇꢀ9ꢀ  
6833/<  
ꢄꢃꢃꢀQ)  
9
''  
+'0,  
&211(&725  
70'6B'ꢅꢂB6<6  
70'6B'ꢅꢁB6<6  
ꢅꢎ  
ꢅꢏ  
70'6B'ꢅꢂB&21  
70'6B'ꢅꢁB&21  
70'6B'ꢄꢂB6<6  
70'6B'ꢄꢁB6<6  
ꢅꢅ  
ꢅꢄ  
70'6B'ꢄꢂB&21  
70'6B'ꢄꢁB&21  
,3ꢀꢁꢂꢃ&=ꢄꢅ6  
70'6B'ꢃꢂB6<6  
70'6B'ꢃꢁB6<6  
ꢅꢃ  
ꢄꢍ  
70'6B'ꢃꢂB&21  
70'6B'ꢃꢁB&21  
70'6B&.ꢂB6<6  
70'6B&.ꢁB6<6  
ꢄꢊ  
ꢄꢋ  
70'6B&.ꢂB&21  
70'6B&.ꢁB&21  
ꢅꢇ  
&(&B&21  
''&B&/.B6<6  
''&B'$7B6<6  
ꢄꢇ  
ꢄꢎ  
ꢄꢅ  
''&B&/.B&21  
ꢄꢃ  
ꢏꢅ  
''&B'$7B&21  
+273/8*B'(7B6<6  
+273/8*B'(7B&21  
+'0,Bꢇ9ꢃB&21  
3$'  
ꢄꢏ  
+'0,  
$6,&  
&
2
ꢄꢀ—)  
ꢄꢌ  
87,/,7<B&21  
DDDꢀꢁꢁꢂꢃꢁꢃ  
Fig 27. Schematic view of IP4786CZ32S application  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
25 of 34  
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
11.10 Typical application  
The IP4786CZ32S is designed to simplify routing to the HDMI connector, and ease the  
incorporation of high-level ESD protection into delicately balanced high-speed  
TMDS lines. These lines rely on tightly controlled microstrip or stripline transmission lines  
with minimal impedance discontinuities, which can deteriorate return loss, increase  
deterministic jitter and generally erode overall link signal integrity.  
Normally when designing the PCB with standard shunt ESD clamps, careful consideration  
must be given to manual pre-compensation of the additional load of the added  
ESD component. With the IP4786CZ32S TLCs, the ESD suppressor is designed to  
maintain the characteristic impedance of the PCB microstrip or stripline, and therefore the  
designer needs only be concerned with the standard-controlled impedance of the  
unloaded PCB lines. This simplifies the task of the PCB designer, and minimizes the  
tuning cycles, which are sometimes required when pre-compensation misses the mark.  
A basic application diagram for the ESD protection of an HDMI interface is shown in  
Figure 28 for a type-C HDMI connector.  
The optimized HXQFN32 pinning simplifies the PCB design to keep the ESD protection  
close to the connector where it can minimize the coupling of the ESD pulse onto other  
lines in the system during a strike.  
Due to the integrated pull-up and pull-down resistors, only two external capacitors are  
required to implement a fully compliant HDMI port.  
ꢄꢃꢀPP  
DDDꢀꢁꢁꢂꢃꢁꢅ  
Fig 28. Application of the IP4786CZ32S showing optimized HDMI type-C connector routing  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
26 of 34  
 
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
12. Package outline  
HXQFN32: plastic thermal enhanced extremely thin quad flat package; no leads;  
32 terminals; body 4 x 4 x 0.5 mm  
SOT1318-1  
D
B
A
E
A
terminal 1  
index area  
c
A
1
detail X  
e
1
C
1/2 e  
v
w
C
C
A
B
y
y
e
b
C
1
L
9
16  
e
8
1
17  
e
E
h
2
1/2 e  
24  
terminal 1  
index area  
32  
25  
X
D
h
0
5 mm  
v
scale  
e
Dimensions (mm are the original dimensions)  
(1)  
Unit  
A
A
1
b
c
D
D
h
E
E
h
e
e
L
w
y
y
1
1
2
max 0.50 0.05 0.30  
4.1 2.95 4.1 2.95  
0.4  
mm nom  
min  
0.02 0.21 0.127 4.0 2.80 4.0 2.80 0.4 2.8 2.8 0.3 0.1 0.05 0.05 0.1  
0.00 0.18  
3.9 2.65 3.9 2.65  
0.2  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
sot1318-1_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
- - -  
JEDEC  
- - -  
JEITA  
- - -  
11-11-16  
11-11-27  
SOT1318-1  
Fig 29. Package outline SOT1318-1 (HXQFN32)  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
27 of 34  
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
13. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
13.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
13.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
13.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
28 of 34  
 
 
 
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
13.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 30) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 12 and 13  
Table 12. SnPb eutectic process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 13. Lead-free process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 30.  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
29 of 34  
 
 
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 30. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
14. Glossary  
HDMI sink — Device which receives HDMI signals for example, a TV set.  
HDMI source — Device which transmits HDMI signal for example, DVD player.  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
30 of 34  
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
15. Revision history  
Table 14. Revision history  
Document ID  
IP4786CZ32S v.2  
Modifications:  
Release date  
20130711  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
IP4786CZ32S v.1  
Section 2 “Features and benefits”: updated  
Section 3 “Applications”: updated  
Figure 6 and Figure 7: corrected  
Section 11.2 “Operating and standby modes”: added  
Section 11.4 “Logic low I2C voltage shifter”: updated  
Section 11.6 “CEC”: updated  
IP4786CZ32S v.1  
20120727  
Preliminary data sheet  
-
-
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
31 of 34  
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
16. Legal information  
16.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
16.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
16.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
32 of 34  
 
 
 
 
 
 
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
16.4 Licenses  
Purchase of NXP ICs with HDMI technology  
non-automotive qualified products in automotive equipment or applications.  
Use of an NXP IC with HDMI technology in equipment that complies with  
the HDMI standard requires a license from HDMI Licensing LLC, 1060 E.  
Arques Avenue Suite 100, Sunnyvale CA 94085, USA, e-mail:  
admin@hdmi.org.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
16.5 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
17. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
IP4786CZ32S  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 2 — 11 July 2013  
33 of 34  
 
 
 
IP4786CZ32S  
NXP Semiconductors  
DVI and HDMI interface ESD and overcurrent protection  
18. Contents  
1
2
3
4
5
General description. . . . . . . . . . . . . . . . . . . . . . 1  
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 3  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
7
8
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Static characteristics. . . . . . . . . . . . . . . . . . . . . 6  
Dynamic characteristics . . . . . . . . . . . . . . . . . 11  
10  
10.1  
10.2  
AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . 16  
DDC propagation delay . . . . . . . . . . . . . . . . . 16  
DDC transition time . . . . . . . . . . . . . . . . . . . . 17  
11  
Application information. . . . . . . . . . . . . . . . . . 18  
TMDS ESD. . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Operating and standby modes . . . . . . . . . . . . 19  
DDC circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Logic low I2C voltage shifter . . . . . . . . . . . . . . 21  
Hot plug detect circuit and HEAC support . . . 22  
CEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Backdrive protection. . . . . . . . . . . . . . . . . . . . 23  
55 mA overcurrent / overvoltage LDO function 24  
Schematic view of application . . . . . . . . . . . . 25  
Typical application . . . . . . . . . . . . . . . . . . . . . 26  
11.1  
11.2  
11.3  
11.4  
11.5  
11.6  
11.7  
11.8  
11.9  
11.10  
12  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 27  
13  
Soldering of SMD packages . . . . . . . . . . . . . . 28  
Introduction to soldering . . . . . . . . . . . . . . . . . 28  
Wave and reflow soldering . . . . . . . . . . . . . . . 28  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 28  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 29  
13.1  
13.2  
13.3  
13.4  
14  
15  
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 31  
16  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 32  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 32  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Licenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
16.1  
16.2  
16.3  
16.4  
16.5  
17  
18  
Contact information. . . . . . . . . . . . . . . . . . . . . 33  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2013.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 11 July 2013  
Document identifier: IP4786CZ32S  
 

相关型号:

IP4788CZ32

DVI and HDMI interface ESD and overcurrent protection, DDC/CEC buffering, hot plug detect and backdrive protection
NXP

IP4788CZ32_14

DVI and HDMI interface ESD and overcurrent protection, DDC/CEC buffering, hot plug detect and backdrive protection
NXP

IP4790CZ38

DisplayPort protection
NXP

IP4790CZ38/1,118

IP4790CZ38 - DisplayPort protection TSSOP 38-Pin
NXP

IP4791CZ12

SPECIALTY CONSUMER CIRCUIT, PDSO12, 2.50 X 2.10 MM, 0.50 MM HEIGHT, PLASTIC, SOT1156-1, HXSON-12
NXP

IP4803SA

Regulated Single & Dual Output
XPPOWER

IP4805S

Regulated Single & Dual Output
XPPOWER

IP4805SA

Regulated Single & Dual Output
XPPOWER

IP4812S

Regulated Single & Dual Output
XPPOWER

IP4812SA

Regulated Single & Dual Output
XPPOWER

IP4815S

Regulated Single & Dual Output
XPPOWER

IP4815SA

Regulated Single & Dual Output
XPPOWER