ISP1181A [NXP]

Full-speed Universal Serial Bus peripheral controller; 全速通用串行总线外设控制器
ISP1181A
型号: ISP1181A
厂家: NXP    NXP
描述:

Full-speed Universal Serial Bus peripheral controller
全速通用串行总线外设控制器

控制器
文件: 总70页 (文件大小:327K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISP1181A  
Full-speed Universal Serial Bus peripheral controller  
Rev. 05 — 08 December 2004  
Product data  
1. General description  
The ISP1181A is a Universal Serial Bus (USB) peripheral controller that complies  
with Universal Serial Bus Specification Rev. 2.0, supporting data transfer at full-speed  
(12 Mbit/s). It provides full-speed USB communication capacity to microcontroller or  
microprocessor-based systems. The ISP1181A communicates with the system’s  
microcontroller or microprocessor through a high-speed general-purpose parallel  
interface.  
The ISP1181A supports fully autonomous, multi-configurable Direct Memory Access  
(DMA) operation.  
The modular approach to implementing a USB peripheral controller allows the  
designer to select the optimum system microcontroller from the wide variety available.  
The ability to reuse existing architecture and firmware investments shortens  
development time, eliminates risks and reduces costs. The result is fast and efficient  
development of the most cost-effective USB peripheral solution.  
The ISP1181A is ideally suited for application in many personal computer peripherals  
such as printers, communication devices, scanners, external mass storage (Zip®  
drive) devices and digital still cameras. It offers an immediate cost reduction for  
applications that currently use SCSI implementations.  
2. Features  
Complies with Universal Serial Bus Specification Rev. 2.0 and most Device Class  
specifications  
Supports data transfer at full-speed (12 Mbit/s)  
High performance USB peripheral controller with integrated Serial Interface  
Engine (SIE), FIFO memory, transceiver and 3.3 V voltage regulator  
High speed (11.1 Mbyte/s or 90 ns read/write cycle) parallel interface  
Fully autonomous and multi-configuration DMA operation  
Up to 14 programmable USB endpoints with 2 fixed control IN/OUT endpoints  
Integrated physical 2462 bytes of multi-configuration FIFO memory  
Endpoints with double buffering to increase throughput and ease real-time data  
transfer  
Seamless interface with most microcontrollers/microprocessors  
Bus-powered capability with low power consumption and low ‘suspend’ current  
6 MHz crystal oscillator input with integrated PLL for low EMI  
Controllable LazyClock (100 kHz ± 50 %) output during ‘suspend’  
Software controlled connection to the USB bus (SoftConnect™)  
Good USB connection indicator that blinks with traffic (GoodLink™)  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Clock output with programmable frequency (up to 48 MHz)  
Complies with the ACPI™, OnNow™ and USB power management requirements  
Internal power-on and low-voltage reset circuit, with possibility of a software reset  
Operation over the extended USB bus voltage range (4.0 V to 5.5 V) with 5 V  
tolerant I/O pads  
Operating temperature range 40 °C to +85 °C  
Full-scan design with high fault coverage  
Available in TSSOP48 and HVQFN48 packages.  
3. Applications  
Personal Digital Assistant (PDA)  
Digital camera  
Communication device, for example:  
Router  
Modem  
Mass storage device, for example:  
Zip drive  
Printer  
Scanner.  
4. Ordering information  
Table 1:  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
ISP1181ADGG  
ISP1181ABS  
TSSOP48  
Plastic thin shrink small outline package; 48 leads; body width 6.1 mm  
SOT362-1  
SOT619-2  
HVQFN48 Plastic thermal enhanced very thin quad flat package; no leads;  
48 terminals; body 7 × 7 × 0.85 mm  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
2 of 70  
xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxx xxxxxxxxxx xxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx  
xxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxxxx xxxxxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxx x x  
to/from USB  
6 MHz  
V
D+  
D−  
GL  
to LED  
CLKOUT  
45  
DREQ EOT, DACK  
2
BUS  
sense  
input  
6
XTAL1  
48  
XTAL2  
47  
5
4
7
11  
10, 12  
to/from  
48  
microcontroller  
MHz  
3.3 V  
HUB  
GoodLink  
PLL  
OSCILLATOR  
17  
18  
PROGR.  
DIVIDER  
DMA  
HANDLER  
BUS_CONF0  
1.5  
kΩ  
BUS_CONF1  
BIT CLOCK  
RECOVERY  
SoftConnect  
38, 35 to 27,  
24 to 19  
AD0,  
16  
5
PHILIPS  
SIE  
DATA1 to DATA9,  
DATA10 to DATA15  
MICRO  
CONTROLLER  
HANDLER  
MEMORY  
MANAGEMENT  
UNIT  
BUS  
INTERFACE  
ANALOG  
Tx/Rx  
43 to 39  
CS, ALE, WR,  
RD, A0  
44  
RESET  
POWER-ON  
RESET  
internal  
reset  
15  
INTEGRATED  
RAM  
ENDPOINT  
HANDLER  
INT  
INTERNAL  
SUPPLY  
I/O PIN  
SUPPLY  
1
VOLTAGE  
REGULATOR  
V
3.3 V  
3.3 V  
CC  
ISP1181A  
2
3
9
8
25, 36, 46  
3
37  
26  
004aaa020  
V
V
REGGND  
SUSPEND WAKEUP  
GND  
V
CC(3.3)  
reg(3.3)  
ref  
Fig 1. Block diagram.  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
6. Pinning information  
6.1 Pinning  
V
1
2
3
4
5
6
7
8
9
48 XTAL1  
47 XTAL2  
46 GND  
45 CLKOUT  
44 RESET  
43 CS  
CC  
REGGND  
V
reg(3.3)  
D−  
D+  
V
BUS  
GL  
WAKEUP  
SUSPEND  
42 ALE  
41 WR  
40 RD  
EOT 10  
DREQ 11  
DACK 12  
39  
A0  
38 AD0  
V
37  
CC(3.3)  
ISP1181ADGG  
13  
14  
36 GND  
TEST1  
TEST2  
35 DATA1  
34 DATA2  
33 DATA3  
32 DATA4  
31 DATA5  
30 DATA6  
29 DATA7  
28 DATA8  
27 DATA9  
INT 15  
TEST3  
16  
BUS_CONF0 17  
BUS_CONF1 18  
DATA15 19  
DATA14 20  
DATA13 21  
DATA12 22  
V
DATA11 23  
26  
ref  
DATA10 24  
25 GND  
004aaa019  
Fig 2. Pin configuration TSSOP48.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
4 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
12  
11  
10  
9
25  
BUS_CONF0  
TEST3  
INT  
DATA6  
26  
DATA5  
27  
DATA4  
28  
TEST2  
TEST1  
DACK  
DATA3  
8
29  
30  
31  
32  
DATA2  
DATA1  
GND  
7
ISP1181ABS  
6
DREQ  
V
5
EOT  
CC(3.3)  
4
33 AD0  
34 A0  
35 RD  
SUSPEND  
WAKEUP  
GL  
3
2
WR  
36  
1
V
BUS  
Bottom view  
004aaa021  
Fig 3. Pin configuration HVQFN48.  
6.2 Pin description  
Table 2:  
Symbol[1]  
Pin description  
Pin  
TSSOP48 HVQFN48  
Type Description  
VCC  
1
2
3
44  
45  
46  
-
-
-
supply voltage (3.3 V or 5.0 V)  
voltage regulator ground supply  
REGGND  
Vreg(3.3)  
regulated supply voltage (3.3 V ± 10 %)  
from internal regulator; used to connect  
decoupling capacitor and pull-up resistor on  
D+ line;  
Remark: Cannot be used to supply external  
devices.  
D−  
4
5
6
7
47  
48  
1
AI/O USB Dconnection (analog)  
AI/O USB D+ connection (analog)  
D+  
VBUS  
GL  
I
VBUS sensing input  
2
O
GoodLink LED indicator output (open-drain,  
8 mA); the LED is default ON, blinks OFF  
upon USB traffic; to connect an LED use a  
series resistor of 470 (VCC = 5.0 V) or  
330 (VCC = 3.3 V)  
WAKEUP  
8
9
3
4
I
wake-up input (edge triggered,  
LOW to HIGH); generates a remote  
wake-up from ‘suspend’ state  
SUSPEND  
O
‘suspend’ state indicator output (4 mA);  
used as power switch control output (active  
LOW) for powered-off application  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
5 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Table 2:  
Symbol[1]  
Pin description…continued  
Pin  
Type Description  
TSSOP48 HVQFN48  
EOT  
10  
11  
12  
5
6
7
I
End-Of-Transfer input (programmable  
polarity, see Table 21); used by the DMA  
controller to force the end of a DMA transfer  
to the ISP1181A  
DREQ  
DACK  
O
I
DMA request output (4 mA; programmable  
polarity, see Table 21); signals to the DMA  
controller that the ISP1181A wants to start  
a DMA transfer  
DMA acknowledge input (programmable  
polarity, see Table 21); used by the DMA  
controller to signal the start of a DMA  
transfer requested by the ISP1181A  
TEST1  
TEST2  
INT  
13  
14  
15  
8
I
test input; this pin must be connected to  
VCC via an external 10 kresistor  
9
I
test input; this pin must be connected to  
VCC via an external 10 kresistor  
10  
O
interrupt output; programmable polarity  
(active HIGH or LOW) and signalling (level  
or pulse); see Table 21  
TEST3  
16  
11  
O
test output; this pin is used for test  
purposes only  
BUS_CONF0 17  
BUS_CONF1 18  
12  
13  
14  
I
bus configuration selector; see Table 3  
bus configuration selector; see Table 3  
I
DATA15  
DATA14  
DATA13  
DATA12  
DATA11  
DATA10  
19  
20  
21  
22  
23  
24  
I/O  
bit 15 of D[15:0]; bidirectional data line  
(slew-rate controlled output, 4 mA)  
15  
16  
17  
18  
19  
I/O  
I/O  
I/O  
I/O  
I/O  
bit 14 of D[15:0]; bidirectional data line  
(slew-rate controlled output, 4 mA)  
bit 13 of D[15:0]; bidirectional data line  
(slew-rate controlled output, 4 mA)  
bit 12 of D[15:0]; bidirectional data line  
(slew-rate controlled output, 4 mA)  
bit 11 of D[15:0]; bidirectional data line  
(slew-rate controlled output, 4 mA)  
bit 10 of D[15:0]; bidirectional data line  
(slew-rate controlled output, 4 mA)  
GND  
Vref  
25  
26  
20  
21  
-
-
ground supply  
I/O pin reference voltage (3.3 V); no  
connection if VCC = 5.0 V  
DATA9  
DATA8  
DATA7  
DATA6  
27  
28  
29  
30  
22  
23  
24  
25  
I/O  
I/O  
I/O  
I/O  
bit 9 of D[15:0]; bidirectional data line  
(slew-rate controlled output, 4 mA)  
bit 8 of D[15:0]; bidirectional data line  
(slew-rate controlled output, 4 mA)  
bit 7 of D[15:0]; bidirectional data line  
(slew-rate controlled output, 4 mA)  
bit 6 of D[15:0]; bidirectional data line  
(slew-rate controlled output, 4 mA)  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
6 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Table 2:  
Symbol[1]  
Pin description…continued  
Pin  
Type Description  
TSSOP48 HVQFN48  
DATA5  
DATA4  
DATA3  
DATA2  
DATA1  
31  
32  
33  
34  
35  
26  
27  
28  
29  
30  
I/O  
I/O  
I/O  
I/O  
I/O  
bit 5 of D[15:0]; bidirectional data line  
(slew-rate controlled output, 4 mA)  
bit 4 of D[15:0]; bidirectional data line  
(slew-rate controlled output, 4 mA)  
bit 3 of D[15:0]; bidirectional data line  
(slew-rate controlled output, 4 mA)  
bit 2 of D[15:0]; bidirectional data line  
(slew-rate controlled output, 4 mA)  
bit 1 of D[15:0]; bidirectional data line  
(slew-rate controlled output, 4 mA)  
GND  
36  
37  
31  
32  
-
-
ground supply  
VCC(3.3)  
supply voltage (3.0 V to 3.6 V); leave this  
pin unconnected when using VCC = 5.0 V  
AD0  
38  
33  
I/O  
multiplexed bidirectional address and data  
line; represents address A0 or bit 0 of  
D[15:0] in conjunction with input ALE;  
level-sensitive input or slew-rate controlled  
output (4 mA)  
Address phase: a HIGH-to-LOW transition  
on input ALE latches the level on this pin as  
address A0 (1 = command, 0 = data)  
Data phase: during reading this pin outputs  
bit D[0]; during writing the level on this pin is  
latched as bit D[0]  
A0  
39  
34  
I
address input; selects command (A0 = 1) or  
data (A0 = 0); in a multiplexed address/data  
bus configuration this pin is not used and  
must be tied LOW (connect to GND)  
RD  
40  
41  
42  
35  
36  
37  
I
I
I
read strobe input  
write strobe input  
WR  
ALE  
address latch enable input; a HIGH-to-LOW  
transition latches the level on pin AD0 as  
address information in a multiplexed  
address/data bus configuration; must be  
tied LOW (connect to GND) for a separate  
address/data bus configuration  
CS  
43  
44  
38  
39  
I
I
chip select input  
RESET  
reset input (Schmitt trigger); a LOW level  
produces an asynchronous reset; connect  
to VCC for power-on reset (internal POR  
circuit)  
CLKOUT  
45  
40  
O
programmable clock output (2 mA)  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
7 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Table 2:  
Symbol[1]  
Pin description…continued  
Pin  
Type Description  
TSSOP48 HVQFN48  
GND  
46  
47  
41  
42  
-
ground supply  
XTAL2  
O
crystal oscillator output (6 MHz); connect a  
fundamental parallel-resonant crystal; leave  
this pin open when using an external clock  
source on pin XTAL1  
XTAL1  
48  
43  
I
crystal oscillator input (6 MHz); connect a  
fundamental parallel-resonant crystal or an  
external clock source (leave pin XTAL2  
unconnected)  
[1] Symbol names with an overscore (for example, NAME) represent active LOW signals.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
8 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
7. Functional description  
The ISP1181A is a full-speed USB peripheral controller with up to 14 configurable  
endpoints. It has a fast general-purpose parallel interface for communication with  
many types of microcontrollers or microprocessors. It supports different bus  
configurations (see Table 3) and local DMA transfers of up to 16 bytes per cycle. The  
block diagram is given in Figure 1.  
The ISP1181A has 2462 bytes of internal FIFO memory, which is shared among the  
enabled USB endpoints. The type and FIFO size of each endpoint can be individually  
configured, depending on the required packet size. Isochronous and bulk endpoints  
are double-buffered for increased data throughput.  
The ISP1181A requires a single supply voltage of 3.3 V or 5.0 V and has an internal  
3.3 V voltage regulator for powering the analog USB transceiver. It supports  
bus-powered operation.  
The ISP1181A operates on a 6 MHz oscillator frequency. A programmable clock  
output is available up to 48 MHz. During ‘suspend’ state the 100 kHz ± 50 %  
LazyClock frequency can be output.  
7.1 Analog transceiver  
The transceiver is compliant with the Universal Serial Bus Specification Rev. 2.0 (full  
speed). It interfaces directly with the USB cable through external termination  
resistors.  
7.2 Philips Serial Interface Engine (SIE)  
The Philips SIE implements the full USB protocol layer. It is completely hardwired for  
speed and needs no firmware intervention. The functions of this block include:  
synchronization pattern recognition, parallel/serial conversion, bit (de-)stuffing, CRC  
checking/generation, Packet IDentifier (PID) verification/generation, address  
recognition, handshake evaluation/generation.  
7.3 Memory Management Unit (MMU) and integrated RAM  
The MMU and the integrated RAM provide the conversion between the USB speed  
(12 Mbit/s bursts) and the parallel interface to the microcontroller (max. 12 Mbyte/s).  
This allows the microcontroller to read and write USB packets at its own speed.  
7.4 SoftConnect  
The connection to the USB is accomplished by bringing D+ (for full-speed USB  
peripherals) HIGH through a 1.5 kpull-up resistor. In the ISP1181A, the 1.5 kΩ  
pull-up resistor is integrated on-chip and is not connected to VCC by default. The  
connection is established by a command sent from the external/system  
microcontroller. This allows the system microcontroller to complete its initialization  
sequence before deciding to establish connection with the USB. Reinitialization of the  
USB connection can also be performed without disconnecting the cable.  
The ISP1181A will check for USB VBUS availability before the connection can be  
established. VBUS sensing is provided through pin VBUS  
.
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
9 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
VBUS sensing prevents the peripheral from wake-up when VBUS is not present.  
Without VBUS sensing, any activity or noise on (D+, D-) might wake up the peripheral.  
With VBUS sensing, (D+, D-) is decoupled when no VBUS is present. Therefore, even if  
there is noise on the (D+, D-) lines, it is not taken into account. This ensures that the  
peripheral remains in the suspend state.  
Remark: Note that the tolerance of the internal resistors is 25 %. This is higher than  
the 5 % tolerance specified by the USB specification. However, the overall voltage  
specification for the connection can still be met with a good margin. The decision to  
make use of this feature lies with the USB equipment designer.  
7.5 GoodLink  
Indication of a good USB connection is provided at pin GL through GoodLink  
technology. During enumeration, the LED indicator will blink on momentarily. When  
the ISP1181A has been successfully enumerated (the peripheral address is set), the  
LED indicator will remain permanently on. Upon each successful packet transfer (with  
ACK) to and from the ISP1181A, the LED will blink off for 100 ms. During ‘suspend’  
state, the LED will remain off.  
This feature provides a user-friendly indication of the status of the USB peripheral,  
the connected hub, and the USB traffic. It is a useful field diagnostics tool for isolating  
faulty equipment. It can therefore help to reduce field support and hotline overhead.  
7.6 Bit clock recovery  
The bit clock recovery circuit recovers the clock from the incoming USB data stream  
using a 4 times over-sampling principle. It is able to track jitter and frequency drift as  
specified by the USB Specification Rev. 2.0.  
7.7 Voltage regulator  
A 5 V-to-3.3 V voltage regulator is integrated on-chip to supply the analog transceiver  
and internal logic. This voltage is available at pin Vreg(3.3) to supply an external 1.5 kΩ  
pull-up resistor on the D+ line. Alternatively, the ISP1181A provides SoftConnect  
technology via an integrated 1.5 kpull-up resistor (see Section 7.4).  
7.8 PLL clock multiplier  
A 6 MHz to 48 MHz clock multiplier Phase-Locked Loop (PLL) is integrated on-chip.  
This allows for the use of a low-cost 6 MHz crystal, which also minimizes EMI. No  
external components are required for the operation of the PLL.  
7.9 Parallel I/O (PIO) and Direct Memory Access (DMA) interface  
A generic PIO interface is defined for speed and ease-of-use. It also allows direct  
interfacing to most microcontrollers. To a microcontroller, the ISP1181A appears as a  
memory device with an 8/16-bit data bus and a 1-bit address line. The ISP1181A  
supports both multiplexed and non-multiplexed address and data buses.  
The ISP1181A can also be configured as a DMA slave device to allow more efficient  
data transfer. One of the 14 endpoint FIFOs may directly transfer data to/from the  
local shared memory. The DMA interface can be configured independently from the  
PIO interface.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
10 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
8. Modes of operation  
The ISP1181A has four bus configuration modes, selected via pins BUS_CONF1 and  
BUS_CONF0:  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
16-bit I/O port shared with 16-bit DMA port  
reserved  
8-bit I/O port shared with 8-bit DMA port  
reserved.  
The bus configurations for each of these modes are given in Table 3. Typical interface  
circuits for each mode are given in Section 21.1.  
Table 3:  
Mode  
Bus configuration modes  
BUS_CONF[1:0]  
PIO width  
DMA width  
Description  
DMAWD = 0  
DMAWD = 1  
0
0
0
D[15:1], AD0  
-
D[15:1], AD0 multiplexed address/data on pin AD0;  
bus is shared by 16-bit I/O port and  
16-bit DMA port  
1
2
0
1
1
0
reserved  
reserved  
reserved  
-
reserved  
D[7:1], AD0  
D[7:1], AD0  
multiplexed address/data on pin AD0;  
bus is shared by 8-bit I/O port and 8-bit  
DMA port  
3
1
1
reserved  
reserved  
reserved  
reserved  
9. Endpoint descriptions  
Each USB peripheral is logically composed of several independent endpoints. An  
endpoint acts as a terminus of a communication flow between the host and the  
peripheral. At design time each endpoint is assigned a unique number (endpoint  
identifier, see Table 4). The combination of the peripheral address (given by the host  
during enumeration), the endpoint number, and the transfer direction allows each  
endpoint to be uniquely referenced.  
The ISP1181A has 16 endpoints: endpoint 0 (control IN and OUT) plus 14  
configurable endpoints, which can be individually defined as  
interrupt/bulk/isochronous, IN or OUT. Each enabled endpoint has an associated  
FIFO, which can be accessed either via the parallel I/O interface or via DMA.  
9.1 Endpoint access  
Table 4 lists the endpoint access modes and programmability. All endpoints support  
I/O mode access. Endpoints 1 to 14 also support DMA access. FIFO DMA access is  
selected and enabled via bits EPIDX[3:0] and DMAEN of the DMA Configuration  
Register. A detailed description of the DMA operation is given in Section 10.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
11 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Table 4:  
Endpoint access and programmability  
Endpoint  
identifier  
FIFO size (bytes)[1]  
Double  
buffering  
I/O mode  
access  
DMA mode  
access  
Endpoint type  
0
64 (fixed)  
no  
yes  
no  
control OUT[2]  
control IN[2]  
0
64 (fixed)  
no  
yes  
no  
1
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
supported  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
[1] The total amount of FIFO storage allocated to enabled endpoints must not exceed 2462 bytes.  
[2] IN: input for the USB host (ISP1181A transmits); OUT: output from the USB host (ISP1181A receives). The data flow direction is  
determined by bit EPDIR in the Endpoint Configuration Register.  
9.2 Endpoint FIFO size  
The size of the FIFO determines the maximum packet size that the hardware can  
support for a given endpoint. Only enabled endpoints are allocated space in the  
shared FIFO storage, disabled endpoints have zero bytes. Table 5 lists the  
programmable FIFO sizes.  
The following bits in the Endpoint Configuration Register (ECR) affect FIFO  
allocation:  
Endpoint enable bit (FIFOEN)  
Size bits of an enabled endpoint (FFOSZ[3:0])  
Isochronous bit of an enabled endpoint (FFOISO).  
Remark: Register changes that affect the allocation of the shared FIFO storage  
among endpoints must not be made while valid data is present in any FIFO of the  
enabled endpoints. Such changes will render all FIFO contents undefined.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
12 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Table 5:  
Programmable FIFO size  
Non-isochronous  
FFOSZ[3:0]  
Isochronous  
16 bytes  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
8 bytes  
16 bytes  
32 bytes  
64 bytes  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
32 bytes  
48 bytes  
64 bytes  
96 bytes  
128 bytes  
160 bytes  
192 bytes  
256 bytes  
320 bytes  
384 bytes  
512 bytes  
640 bytes  
768 bytes  
896 bytes  
1023 bytes  
Each programmable FIFO can be configured independently via its ECR, but the total  
physical size of all enabled endpoints (IN plus OUT) must not exceed 2462 bytes.  
Table 6 shows an example of a configuration fitting in the maximum available space of  
2462 bytes. The total number of logical bytes in the example is 1311. The physical  
storage capacity used for double buffering is managed by the peripheral hardware  
and is transparent to the user.  
Table 6:  
Memory configuration example  
Physical size  
(bytes)  
Logical size  
(bytes)  
Endpoint description  
64  
64  
control IN (64 byte fixed)  
64  
64  
control OUT (64 byte fixed)  
double-buffered 1023-byte isochronous endpoint  
16-byte interrupt OUT  
2046  
16  
1023  
16  
16  
16  
16-byte interrupt IN  
128  
128  
64  
double-buffered 64-byte bulk OUT  
double-buffered 64-byte bulk IN  
64  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
13 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
9.3 Endpoint initialization  
In response to the standard USB request, Set Interface, the firmware must program  
all 16 ECRs of the ISP1181A in sequence (see Table 4), whether the endpoints are  
enabled or not. The hardware will then automatically allocate FIFO storage space.  
If all endpoints have been configured successfully, the firmware must return an empty  
packet to the control IN endpoint to acknowledge success to the host. If there are  
errors in the endpoint configuration, the firmware must stall the control IN endpoint.  
When reset by hardware or via the USB bus, the ISP1181A disables all endpoints  
and clears all ECRs, except for the control endpoint which is fixed and always  
enabled.  
Endpoint initialization can be done at any time; however, it is valid only after  
enumeration.  
9.4 Endpoint I/O mode access  
When an endpoint event occurs (a packet is transmitted or received), the associated  
endpoint interrupt bits (EPn) of the Interrupt Register (IR) will be set by the SIE. The  
firmware then responds to the interrupt and selects the endpoint for processing.  
The endpoint interrupt bit will be cleared by reading the Endpoint Status Register  
(ESR). The ESR also contains information on the status of the endpoint buffer.  
For an OUT (= receive) endpoint, the packet length and packet data can be read from  
ISP1181A using the Read Buffer command. When the whole packet has been read,  
the firmware sends a Clear Buffer command to enable the reception of new packets.  
For an IN (= transmit) endpoint, the packet length and data to be sent can be written  
to ISP1181A using the Write Buffer command. When the whole packet has been  
written to the buffer, the firmware sends a Validate Buffer command to enable data  
transmission to the host.  
9.5 Special actions on control endpoints  
Control endpoints require special firmware actions. The arrival of a SETUP packet  
flushes the IN buffer and disables the Validate Buffer and Clear Buffer commands for  
the control IN and OUT endpoints. The microcontroller needs to re-enable these  
commands by sending an Acknowledge Setup command to both control endpoints.  
This ensures that the last SETUP packet stays in the buffer and that no packets can  
be sent back to the host until the microcontroller has explicitly acknowledged that it  
has seen the SETUP packet.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
14 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
10. DMA transfer  
Direct Memory Access (DMA) is a method to transfer data from one location to  
another in a computer system, without intervention of the central processor (CPU).  
Many different implementations of DMA exist. The ISP1181A supports two methods:  
8237 compatible mode: based on the DMA subsystem of the IBM personal  
computers (PC, AT and all its successors and clones); this architecture uses the  
Intel 8237 DMA controller and has separate address spaces for memory and I/O  
DACK-only mode: based on the DMA implementation in some embedded RISC  
processors, which has a single address space for both memory and I/O.  
The ISP1181A supports DMA transfer for all 14 configurable endpoints (see Table 4).  
Only one endpoint at a time can be selected for DMA transfer. The DMA operation of  
the ISP1181A can be interleaved with normal I/O mode access to other endpoints.  
The following features are supported:  
Single-cycle or burst transfers (up to 16 bytes per cycle)  
Programmable transfer direction (read or write)  
Multiple End-Of-Transfer (EOT) sources: external pin, internal conditions,  
short/empty packet  
Programmable signal levels on pins DREQ, DACK and EOT.  
10.1 Selecting an endpoint for DMA transfer  
The target endpoint for DMA access is selected via bits EPDIX[3:0] in the DMA  
Configuration Register, as shown in Table 7. The transfer direction (read or write) is  
automatically set by bit EPDIR in the associated ECR, to match the selected endpoint  
type (OUT endpoint: read; IN endpoint: write).  
Asserting input DACK automatically selects the endpoint specified in the DMA  
Configuration Register, regardless of the current endpoint used for I/O mode access.  
Table 7:  
Endpoint  
identifier  
Endpoint selection for DMA transfer  
EPIDX[3:0]  
Transfer direction  
EPDIR = 0  
EPDIR = 1  
IN: write  
IN: write  
IN: write  
IN: write  
IN: write  
IN: write  
IN: write  
IN: write  
IN: write  
IN: write  
IN: write  
1
2
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
OUT: read  
OUT: read  
OUT: read  
OUT: read  
OUT: read  
OUT: read  
OUT: read  
OUT: read  
OUT: read  
OUT: read  
OUT: read  
3
4
5
6
7
8
9
10  
11  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
15 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Table 7:  
Endpoint selection for DMA transfer…continued  
Endpoint  
identifier  
EPIDX[3:0]  
Transfer direction  
EPDIR = 0  
EPDIR = 1  
IN: write  
IN: write  
IN: write  
12  
13  
14  
1101  
1110  
1111  
OUT: read  
OUT: read  
OUT: read  
10.2 8237 compatible mode  
The 8237 compatible DMA mode is selected by clearing bit DAKOLY in the Hardware  
Configuration Register (see Table 20). The pin functions for this mode are shown in  
Table 8.  
Table 8:  
Symbol  
DREQ  
DACK  
EOT  
8237 compatible mode: pin functions  
Description  
DMA request  
DMA acknowledge  
end of transfer  
read strobe  
I/O  
Function  
O
I
ISP1181A requests a DMA transfer  
DMA controller confirms the transfer  
DMA controller terminates the transfer  
instructs ISP1181A to put data on the bus  
I
RD  
I
WR  
write strobe  
I
instructs ISP1181A to get data from the  
bus  
The DMA subsystem of an IBM compatible PC is based on the Intel 8237 DMA  
controller. It operates as a ‘fly-by’ DMA controller: the data is not stored in the DMA  
controller, but it is transferred between an I/O port and a memory address. A typical  
example of ISP1181A in 8237 compatible DMA mode is given in Figure 4.  
The 8237 has two control signals for each DMA channel: DREQ (DMA Request) and  
DACK (DMA Acknowledge). General control signals are HRQ (Hold Request) and  
HLDA (Hold Acknowledge). The bus operation is controlled via MEMR (Memory  
Read), MEMW (Memory Write), IOR (I/O read) and IOW (I/O write).  
MEMR  
MEMW  
AD0,  
DATA1 to DATA15  
RAM  
DMA  
CPU  
CONTROLLER  
8237  
ISP1181A  
DREQ  
DACK  
DREQ  
HRQ  
HRQ  
HLDA  
DACK  
HLDA  
RD  
IOR  
WR  
IOW  
004aaa022  
Fig 4. ISP1181A in 8237 compatible DMA mode.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
16 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
The following example shows the steps which occur in a typical DMA transfer:  
1. ISP1181A receives a data packet in one of its endpoint FIFOs; the packet must  
be transferred to memory address 1234H.  
2. ISP1181A asserts the DREQ signal requesting the 8237 for a DMA transfer.  
3. The 8237 asks the CPU to release the bus by asserting the HRQ signal.  
4. After completing the current instruction cycle, the CPU places the bus control  
signals (MEMR, MEMW, IOR and IOW) and the address lines in three-state and  
asserts HLDA to inform the 8237 that it has control of the bus.  
5. The 8237 now sets its address lines to 1234H and activates the MEMW and IOR  
control signals.  
6. The 8237 asserts DACK to inform the ISP1181A that it will start a DMA transfer.  
7. The ISP1181A now places the byte or word to be transferred on the data bus  
lines, because its RD signal was asserted by the 8237.  
8. The 8237 waits one DMA clock period and then de-asserts MEMW and IOR. This  
latches and stores the byte or word at the desired memory location. It also  
informs the ISP1181A that the data on the bus lines has been transferred.  
9. The ISP1181A de-asserts the DREQ signal to indicate to the 8237 that DMA is  
no longer needed. In Single cycle mode this is done after each byte or word, in  
Burst mode following the last transferred byte or word of the DMA cycle.  
10. The 8237 de-asserts the DACK output indicating that the ISP1181A must stop  
placing data on the bus.  
11. The 8237 places the bus control signals (MEMR, MEMW, IOR and IOW) and the  
address lines in three-state and de-asserts the HRQ signal, informing the CPU  
that it has released the bus.  
12. The CPU acknowledges control of the bus by de-asserting HLDA. After activating  
the bus control lines (MEMR, MEMW, IOR and IOW) and the address lines, the  
CPU resumes the execution of instructions.  
For a typical bulk transfer the above process is repeated 64 times, once for each byte.  
After each byte the address register in the DMA controller is incremented and the  
byte counter is decremented. When using 16-bit DMA, the number of transfers is 32,  
and address incrementing and byte counter decrementing is done by 2 for each word.  
10.3 DACK-only mode  
The DACK-only DMA mode is selected by setting bit DAKOLY in the Hardware  
Configuration Register (see Table 20). The pin functions for this mode are shown in  
Table 9. A typical example of ISP1181A in DACK-only DMA mode is given in Figure 5.  
Table 9:  
Symbol  
DREQ  
DACK-only mode: pin functions  
Description  
I/O  
O
I
Function  
DMA request  
ISP1181A requests a DMA transfer  
DACK  
DMA acknowledge  
DMA controller confirms the transfer;  
also functions as data strobe  
EOT  
RD  
End-Of-Transfer  
read strobe  
I
I
I
DMA controller terminates the transfer  
not used  
not used  
WR  
write strobe  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
17 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
In DACK-only mode the ISP1181A uses the DACK signal as data strobe. Input  
signals RD and WR are ignored. This mode is used in CPU systems that have a  
single address space for memory and I/O access. Such systems have no separate  
MEMW and MEMR signals: the RD and WR signals are also used as memory data  
strobes.  
ISP1181A  
DMA  
CONTROLLER  
CPU  
DREQ  
DREQ  
DACK  
DACK  
HRQ  
HRQ  
HLDA  
HLDA  
RD  
AD0,  
DATA1 to DATA15  
RAM  
WR  
004aaa023  
Fig 5. ISP1181A in DACK-only DMA mode.  
10.4 End-Of-Transfer conditions  
10.4.1 Bulk endpoints  
A DMA transfer to/from a bulk endpoint can be terminated by any of the following  
conditions (bit names refer to the DMA Configuration Register, see Table 24):  
An external End-Of-Transfer signal occurs on input EOT  
The DMA transfer completes as programmed in the DMA Counter register  
(CNTREN = 1)  
A short packet is received on an enabled OUT endpoint (SHORTP = 1)  
DMA operation is disabled by clearing bit DMAEN.  
External EOT: When reading from an OUT endpoint, an external EOT will stop the  
DMA operation and clear any remaining data in the current FIFO. For a double-  
buffered endpoint the other (inactive) buffer is not affected.  
When writing to an IN endpoint, an EOT will stop the DMA operation and the data  
packet in the FIFO (even if it is smaller than the maximum packet size) will be sent to  
the USB host at the next IN token.  
DMA Counter Register: An EOT from the DMA Counter Register is enabled by  
setting bit CNTREN in the DMA Configuration Register. The ISP1181A has a 16-bit  
DMA Counter Register, which specifies the number of bytes to be transferred. When  
DMA is enabled (DMAEN = 1), the internal DMA counter is loaded with the value from  
the DMA Counter Register. When the internal counter completes the transfer as  
programmed in the DMA counter, an EOT condition is generated and the DMA  
operation stops.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
18 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Short packet: Normally, the transfer byte count must be set via a control endpoint  
before any DMA transfer takes place. When a short packet has been enabled as EOT  
indicator (SHORTP = 1), the transfer size is determined by the presence of a short  
packet in the data. This mechanism permits the use of a fully autonomous data  
transfer protocol.  
When reading from an OUT endpoint, reception of a short packet at an OUT token  
will stop the DMA operation after transferring the data bytes of this packet.  
Table 10: Summary of EOT conditions for a bulk endpoint  
EOT condition  
EOT input  
OUT endpoint  
IN endpoint  
EOT is active  
EOT is active  
DMA Counter Register  
transfer completes as  
programmed in the DMA  
Counter register  
transfer completes as  
programmed in the DMA  
Counter register  
Short packet  
short packet is received and counter reaches zero in the  
transferred  
DMAEN = 0[1]  
middle of the buffer  
DMAEN = 0[1]  
DMAEN bit in DMA  
Configuration Register  
[1] The DMA transfer stops. However, no interrupt is generated.  
10.4.2 Isochronous endpoints  
A DMA transfer to/from an isochronous endpoint can be terminated by any of the  
following conditions (bit names refer to the DMA Configuration Register, see  
Table 24):  
An external End-Of-Transfer signal occurs on input EOT  
The DMA transfer completes as programmed in the DMA Counter register  
(CNTREN = 1)  
An End-Of-Packet (EOP) signal is detected  
DMA operation is disabled by clearing bit DMAEN.  
Table 11: Recommended EOT usage for isochronous endpoints  
EOT condition  
OUT endpoint  
do not use  
do not use  
preferred  
IN endpoint  
preferred  
EOT input active  
DMA Counter Register zero  
End-Of-Packet  
preferred  
do not use  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
19 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
11. Suspend and resume  
11.1 Suspend conditions  
The ISP1181A detects a USB suspend status when a constant idle state is present  
on the USB bus for more than 3 ms.  
The bus-powered devices that are suspended must not consume more than 500 µA  
of current. This is achieved by shutting down power to system components or  
supplying them with a reduced voltage.  
The steps leading up to suspend status are as follows:  
1. On detecting a wakeup-to-suspend transition, the ISP1181A sets bit SUSPND in  
the Interrupt register. This will generate an interrupt if bit IESUSP in the Interrupt  
Enable register is set.  
2. When the firmware detects a suspend condition, it must prepare all system  
components for the suspend state:  
a. All signals connected to the ISP1181A must enter appropriate states to meet  
the power consumption requirements of the suspend state.  
b. All input pins of the ISP1181A must have a CMOS LOW or HIGH level.  
3. In the interrupt service routine, the firmware must check the current status of the  
USB bus. When bit BUSTATUS in the Interrupt register is logic 0, the USB bus  
has left the suspend mode and the process must be aborted. Otherwise, the next  
step can be executed.  
4. To meet the suspend current requirements for a bus-powered device, the internal  
clocks must be switched off by clearing bit CLKRUN in the Hardware  
Configuration register.  
5. When the firmware has set and cleared bit GOSUSP in the Mode register, the  
ISP1181A enters the suspend state. In powered-off application, the ISP1181A  
asserts output SUSPEND and switches off the internal clocks after 2 ms.  
Figure 6 shows a typical timing diagram.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
20 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
A
C
> 5 ms  
10 ms  
idle state  
K-state  
USB BUS  
INT_N  
> 3 ms  
suspend  
interrupt  
resume  
interrupt  
D
GOSUSP  
WAKEUP  
B
SUSPEND  
004aaa359  
0.5 ms to 3.5 ms  
1.8 ms to 2.2 ms  
Fig 6. Suspend and resume timing.  
In Figure 6:  
A: indicates the point at which the USB bus enters the idle state.  
B: indicates resume condition, which can be a 20 ms K-state on the USB bus, a  
HIGH level on pin WAKEUP, or a LOW level on pin CS.  
C: indicates remote wake-up. The ISP1181A will drive a K-state on the USB bus  
for 10 ms after pin WAKEUP goes HIGH or pin CS goes LOW.  
D: after detecting the suspend interrupt, set and clear bit GOSUSP in the Mode  
register.  
11.1.1 Powered-off application  
Figure 7 shows a typical bus-powered modem application using the ISP1181A. The  
SUSPEND output switches off power to the microcontroller and other external circuits  
during the suspend state. The ISP1181A is woken up through the USB bus (global  
resume) or by the ring detection circuit on the telephone line.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
21 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
V
BUS  
V
CC  
8031  
RST  
V
BUS  
DP  
DM  
USB  
ISP1181A  
SUSPEND  
WAKEUP  
RING DETECTION  
LINE  
004aaa673  
Fig 7. SUSPEND and WAKEUP signals in a powered-off modem application.  
11.2 Resume conditions  
A wake-up from the suspend state is initiated either by the USB host or by the  
application:  
USB host: drives a K-state on the USB bus (global resume)  
Application: remote wake-up through a HIGH level on input WAKEUP or a LOW  
level on input CS (if enabled using bit WKUPCS in the Hardware Configuration  
register). Wake-up on CS will work only if VBUS is present.  
The steps of a wake-up sequence are as follows:  
1. The internal oscillator and the PLL multiplier are re-enabled. When stabilized, the  
clock signals are routed to all internal circuits of the ISP1181A.  
2. The SUSPEND output is deasserted, and bit RESUME in the Interrupt register is  
set. This will generate an interrupt if bit IERESUME in the Interrupt Enable  
register is set.  
3. Maximum 15 ms after starting the wake-up sequence, the ISP1181A resumes its  
normal functionality.  
4. In case of a remote wake-up, the ISP1181A drives a K-state on the USB bus for  
10 ms.  
5. Following the deassertion of output SUSPEND, the application restores itself and  
other system components to the normal operating mode.  
6. After wake-up, the internal registers of the ISP1181A are write-protected to  
prevent corruption by inadvertent writing during power-up of external  
components. The firmware must send an Unlock Device command to the  
ISP1181A to restore its full functionality.  
11.3 Control bits in suspend and resume  
Table 12: Summary of control bits  
Register  
Bit  
Function  
Interrupt  
SUSPND  
BUSTATUS  
a transition from awake to the suspend state was detected  
monitors USB bus status (logic 1 = suspend); used when  
interrupt is serviced  
RESUME  
a transition from suspend to the resume state was detected  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
22 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Table 12: Summary of control bits…continued  
Register Bit Function  
Interrupt Enable IESUSP enables output INT to signal the suspend state  
IERESUME enables output INT to signal the resume state  
Mode  
SOFTCT  
GOSUSP  
EXTPUL  
WKUPCS  
PWROFF  
all  
enables SoftConnect pull-up resistor to USB bus  
a HIGH-to-LOW transition enables the suspend state  
selects internal (SoftConnect) or external pull-up resistor  
enables wake-up on LOW level of input CS  
Hardware  
Configuration  
selects powered-off mode during the suspend state  
Unlock  
sending data AA37H unlocks the internal registers for  
writing after a resume  
12. Commands and registers  
The functions and registers of ISP1181A are accessed via commands, which consist  
of a command code followed by optional data bytes (read or write action). An  
overview of the available commands and registers is given in Table 13.  
A complete access consists of two phases:  
1. Command phase: when address bit A0 = 1, the ISP1181A interprets the data on  
the lower byte of the bus bits D[7:0] as a command code. Commands without a  
data phase are executed immediately.  
2. Data phase (optional): when address bit A0 = 0, the ISP1181A transfers the  
data on the bus to or from a register or endpoint FIFO. Multi-byte registers are  
accessed least significant byte/word first.  
The following applies for register or FIFO access in 16-bit bus mode:  
The upper byte (bits D15 to D8) in command phase or the undefined byte in data  
phase are ignored.  
The access of registers is word-aligned: byte access is not allowed.  
If the packet length is odd, the upper byte of the last word in an IN endpoint buffer  
is not transmitted to the host. When reading from an OUT endpoint buffer, the  
upper byte of the last word must be ignored by the firmware. The packet length is  
stored in the first 2 bytes of the endpoint buffer.  
Table 13: Command and register summary  
Name  
Destination  
Code (Hex)  
Transaction[1]  
Initialization commands  
Write Control OUT Configuration  
Endpoint Configuration Register  
endpoint 0 OUT  
20  
write 1 byte[2]  
write 1 byte[2]  
write 1 byte[2][3]  
read 1 byte[2]  
Write Control IN Configuration  
Endpoint Configuration Register  
endpoint 0 IN  
21  
Write Endpoint n Configuration  
(n = 1 to 14)  
Endpoint Configuration Register  
endpoint 1 to 14  
22 to 2F  
30  
Read Control OUT Configuration  
Endpoint Configuration Register  
endpoint 0 OUT  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
23 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Table 13: Command and register summary…continued  
Name  
Destination  
Code (Hex)  
Transaction[1]  
Read Control IN Configuration  
Endpoint Configuration Register  
endpoint 0 IN  
31  
read 1 byte[2]  
Read Endpoint n Configuration  
(n = 1 to 14)  
Endpoint Configuration Register  
endpoint 1 to 14  
32 to 3F  
read 1 byte[2]  
Write/Read Device Address  
Write/Read Mode Register  
Address Register  
Mode Register  
B6/B7  
B8/B9  
BA/BB  
C2/C3  
write/read 1 byte[2]  
write/read 1 byte[2]  
write/read 2 bytes  
write/read 4 bytes  
Write/Read Hardware Configuration Hardware Configuration Register  
Write/Read Interrupt Enable  
Register  
Interrupt Enable Register  
Write/Read DMA Configuration  
Write/Read DMA Counter  
Reset Device  
DMA Configuration Register  
DMA Counter Register  
resets all registers  
F0/F1  
F2/F3  
F6  
write/read 2 bytes  
write/read 2 bytes  
-
Data flow commands  
Write Control OUT Buffer  
Write Control IN Buffer  
illegal: endpoint is read-only  
FIFO endpoint 0 IN  
(00)  
-
01  
N 64 bytes  
Write Endpoint n Buffer  
(n = 1 to 14)  
FIFO endpoint 1 to 14  
(IN endpoints only)  
02 to 0F  
isochronous: N 1023 bytes  
interrupt/bulk: N 64 bytes  
N 64 bytes  
Read Control OUT Buffer  
Read Control IN Buffer  
FIFO endpoint 0 OUT  
10  
illegal: endpoint is write-only  
(11)  
-
Read Endpoint n Buffer  
(n = 1 to 14)  
FIFO endpoint 1 to 14  
(OUT endpoints only)  
12 to 1F  
isochronous:  
N 1023 bytes[4]  
interrupt/bulk: N 64 bytes  
Stall Control OUT Endpoint  
Stall Control IN Endpoint  
Endpoint 0 OUT  
Endpoint 0 IN  
40  
-
-
-
41  
Stall Endpoint n  
(n = 1 to 14)  
Endpoint 1 to 14  
42 to 4F  
Read Control OUT Status  
Endpoint Status Register  
endpoint 0 OUT  
50  
read 1 byte[2]  
read 1 byte[2]  
read 1 byte[2]  
-
Read Control IN Status  
Endpoint Status Register  
endpoint 0 IN  
51  
Read Endpoint n Status  
(n = 1 to 14)  
Endpoint Status Register n  
endpoint 1 to 14  
illegal: IN endpoints only[5]  
FIFO endpoint 0 IN[5]  
52 to 5F  
Validate Control OUT Buffer  
Validate Control IN Buffer  
(60)  
[3]  
61  
-
[3]  
Validate Endpoint n Buffer  
(n = 1 to 14)  
FIFO endpoint 1 to 14  
(IN endpoints only)[5]  
62 to 6F  
-
[3]  
Clear Control OUT Buffer  
Clear Control IN Buffer  
FIFO endpoint 0 OUT  
illegal[6]  
70  
-
(71)  
-
[3]  
Clear Endpoint n Buffer  
(n = 1 to 14)  
FIFO endpoint 1 to 14  
(OUT endpoints only)[6]  
72 to 7F  
Unstall Control OUT Endpoint  
Unstall Control IN Endpoint  
Endpoint 0 OUT  
Endpoint 0 IN  
80  
81  
-
-
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
24 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Table 13: Command and register summary…continued  
Name  
Destination  
Code (Hex)  
Transaction[1]  
Unstall Endpoint n  
(n = 1 to 14)  
Endpoint 1 to 14  
82 to 8F  
-
Check Control OUT Status[7]  
Endpoint Status Image Register  
endpoint 0 OUT  
D0  
read 1 byte[2]  
read 1 byte[2]  
read 1 byte[2]  
Check Control IN Status[7]  
Endpoint Status Image Register  
endpoint 0 IN  
D1  
Check Endpoint n Status  
(n = 1 to 14)[7]  
Endpoint Status Image Register n  
endpoint 1 to 14  
D2 to DF  
F4  
[3]  
Acknowledge Setup  
Endpoint 0 IN and OUT  
-
General commands  
Read Control OUT Error Code  
Error Code Register  
endpoint 0 OUT  
A0  
read 1 byte[2]  
read 1 byte[2]  
read 1 byte[2]  
Read Control IN Error Code  
Error Code Register  
endpoint 0 IN  
A1  
Read Endpoint n Error Code  
(n = 1 to 14)  
Error Code Register  
endpoint 1 to 14  
A2 to AF  
Unlock Device  
all registers with write access  
Scratch Register  
B0  
write 2 bytes  
Write/Read Scratch Register  
Read Frame Number  
Read Chip ID  
B2/B3  
B4  
write/read 2 bytes  
read 1 or 2 bytes  
read 2 bytes  
Frame Number Register  
Chip ID Register  
B5  
Read Interrupt Register  
Interrupt Register  
C0  
read 4 bytes  
[1] With N representing the number of bytes, the number of words for 16-bit bus width is: (N + 1) DIV 2.  
[2] When accessing an 8-bit register in 16-bit mode, the upper byte is invalid.  
[3] In 8-bit bus mode this command requires more time to complete than other commands. See Table 58.  
[4] During isochronous transfer in 16-bit mode, because N 1023, the firmware must take care of the upper byte.  
[5] Validating an OUT endpoint buffer causes unpredictable behavior of ISP1181A.  
[6] Clearing an IN endpoint buffer causes unpredictable behavior of ISP1181A.  
[7] Reads a copy of the Status Register: executing this command does not clear any status bits or interrupt bits.  
12.1 Initialization commands  
Initialization commands are used during the enumeration process of the USB  
network. These commands are used to configure and enable the embedded  
endpoints. They also serve to set the USB assigned address of ISP1181A and to  
perform a device reset.  
12.1.1 Write/Read Endpoint Configuration  
This command is used to access the Endpoint Configuration Register (ECR) of the  
target endpoint. It defines the endpoint type (isochronous or bulk/interrupt), direction  
(OUT/IN), FIFO size and buffering scheme. It also enables the endpoint FIFO. The  
register bit allocation is shown in Table 14. A bus reset will disable all endpoints.  
The allocation of FIFO memory only takes place after all 16 endpoints have been  
configured in sequence (from endpoint 0 OUT to endpoint 14). Although the control  
endpoints have fixed configurations, they must be included in the initialization  
sequence and be configured with their default values (see Table 4). Automatic FIFO  
allocation starts when endpoint 14 has been configured.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
25 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Remark: If any change is made to an endpoint configuration which affects the  
allocated memory (size, enable/disable), the FIFO memory contents of all endpoints  
becomes invalid. Therefore, all valid data must be removed from enabled endpoints  
before changing the configuration.  
Code (Hex): 20 to 2F — write (control OUT, control IN, endpoint 1 to 14)  
Code (Hex): 30 to 3F — read (control OUT, control IN, endpoint 1 to 14)  
Transaction — write/read 1 byte  
Table 14: Endpoint Configuration Register: bit allocation  
Bit  
7
FIFOEN  
0
6
EPDIR  
0
5
DBLBUF  
0
4
FFOISO  
0
3
2
1
0
Symbol  
Reset  
Access  
FFOSZ[3:0]  
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 15: Endpoint Configuration Register: bit description  
Bit  
Symbol  
Description  
7
FIFOEN  
A logic 1 indicates an enabled FIFO with allocated memory.  
A logic 0 indicates a disabled FIFO (no bytes allocated).  
6
EPDIR  
This bit defines the endpoint direction (0 = OUT, 1 = IN). It also  
determines the DMA transfer direction (0 = read, 1 = write).  
5
4
DBLBUF  
FFOISO  
A logic 1 indicates that this endpoint has double buffering.  
A logic 1 indicates an isochronous endpoint. A logic 0 indicates  
a bulk or interrupt endpoint.  
3 to 0  
FFOSZ[3:0]  
Selects the FIFO size according to Table 5  
12.1.2 Write/Read Device Address  
This command is used to set the USB assigned address in the Address Register and  
enable the USB device. The Address Register bit allocation is shown in Table 16.  
A USB bus reset sets the device address to 00H (internally) and enables the device.  
The value of the Address Register (accessible by the micro) is not altered by the bus  
reset. In response to the standard USB request Set Address the firmware must issue  
a Write Device Address command, followed by sending an empty packet to the host.  
The new device address is activated when the host acknowledges the empty packet.  
Code (Hex): B6/B7 — write/read Address Register  
Transaction — write/read 1 byte  
Table 16: Address Register: bit allocation  
Bit  
7
DEVEN  
0
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
DEVADR[6:0]  
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
26 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Table 17: Address Register: bit description  
Bit  
7
Symbol  
Description  
A logic 1 enables the device.  
DEVEN  
6 to 0  
DEVADR[6:0] This field specifies the USB device address.  
12.1.3 Write/Read Mode Register  
This command is used to access the ISP1181A Mode Register, which consists of  
1 byte (bit allocation: see Table 18). In 16-bit bus mode the upper byte is ignored.  
The Mode Register controls the DMA bus width, resume and suspend modes,  
interrupt activity and SoftConnect operation. It can be used to enable debug mode,  
where all errors and Not Acknowledge (NAK) conditions will generate an interrupt.  
Code (Hex): B8/B9 — write/read Mode Register  
Transaction — write/read 1 byte  
Table 18: Mode Register: bit allocation  
Bit  
7
DMAWD  
0[1]  
6
reserved  
0
5
GOSUSP  
0
4
reserved  
0
3
INTENA  
0[1]  
2
DBGMOD  
0[1]  
1
reserved  
0[1]  
0
SOFTCT  
0[1]  
Symbol  
Reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
[1] Unchanged by a bus reset.  
Table 19: Mode Register: bit description  
Bit  
Symbol  
Description  
7
DMAWD  
A logic 1 selects 16-bit DMA bus width (bus configuration modes  
0 and 2). A logic 0 selects 8-bit DMA bus width. Bus reset value:  
unchanged.  
6
5
-
reserved  
GOSUSP  
Writing a logic 1 followed by a logic 0 will activate ‘suspend’  
mode.  
4
3
2
-
reserved  
INTENA  
DBGMOD  
A logic 1 enables all interrupts. Bus reset value: unchanged.  
A logic 1 enables debug mode. where all NAKs and errors will  
generate an interrupt. A logic 0 selects normal operation, where  
interrupts are generated on every ACK (bulk endpoints) or after  
every data transfer (isochronous endpoints). Bus reset value:  
unchanged.  
1
0
-
reserved  
SOFTCT  
A logic 1 enables SoftConnect (see Section 7.4). This bit is  
ignored if EXTPUL = 1 in the Hardware Configuration Register  
(see Table 20). Bus reset value: unchanged.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
27 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
12.1.4 Write/Read Hardware Configuration  
This command is used to access the Hardware Configuration Register, which  
consists of 2 bytes. The first (lower) byte contains the device configuration and  
control values, the second (upper) byte holds the clock control bits and the clock  
division factor. The bit allocation is given in Table 20. A bus reset will not change any  
of the programmed bit values.  
The Hardware Configuration Register controls the connection to the USB bus, clock  
activity and power supply during ‘suspend’ state, output clock frequency, DMA  
operating mode and pin configurations (polarity, signalling mode).  
Code (Hex): BA/BB — write/read Hardware Configuration Register  
Transaction — write/read 2 bytes  
Table 20: Hardware Configuration Register: bit allocation  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
Reset  
Access  
Bit  
reserved  
EXTPUL  
NOLAZY  
CLKRUN  
CLKDIV[3:0]  
0
R/W  
7
0
R/W  
6
1
R/W  
5
0
R/W  
4
0
0
R/W  
2
1
R/W  
1
1
R/W  
0
R/W  
3
WKUPCS  
0
Symbol  
Reset  
Access  
DAKOLY  
0
DRQPOL  
1
DAKPOL  
0
EOTPOL  
0
PWROFF  
0
INTLVL  
0
INTPOL  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 21: Hardware Configuration Register: bit description  
Bit  
15  
14  
Symbol  
-
Description  
reserved  
EXTPUL  
A logic 1 indicates that an external 1.5 kpull-up resistor is  
used on pin D+ and that SoftConnect is not used. Bus reset  
value: unchanged.  
13  
12  
NOLAZY  
CLKRUN  
A logic 1 disables output on pin CLKOUT of the LazyClock  
frequency (100 kHz ± 50 %) during ‘suspend’ state. A logic 0  
causes pin CLKOUT to switch to LazyClock output after  
approximately 2 ms delay, following the setting of bit GOSUSP  
in the Mode Register. Bus reset value: unchanged.  
A logic 1 indicates that the internal clocks are always running,  
even during ‘suspend’ state. A logic 0 switches off the internal  
oscillator and PLL, when they are not needed. During ‘suspend’  
state this bit must be made logic 0 to meet the suspend current  
requirements. The clock is stopped after a delay of  
approximately 2 ms, following the setting of bit GOSUSP in the  
Mode Register. Bus reset value: unchanged.  
11 to 8  
CLKDIV[3:0]  
DAKOLY  
This field specifies the clock division factor N, which controls the  
clock frequency on output CLKOUT. The output frequency in  
MHz is given by 48 (N + 1) . The clock frequency range is  
3 MHz to 48 MHz (N = 0 to 15). with a reset value of 12 MHz  
(N = 3). The hardware design guarantees no glitches during  
frequency change. Bus reset value: unchanged.  
7
A logic 1 selects DACK-only DMA mode. A logic 0 selects 8237  
compatible DMA mode. Bus reset value: unchanged.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
28 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Table 21: Hardware Configuration Register: bit description…continued  
Bit  
Symbol  
Description  
6
DRQPOL  
Selects DREQ signal polarity (0 = active LOW, 1 = active  
HIGH). Bus reset value: unchanged.  
5
4
3
DAKPOL  
EOTPOL  
WKUPCS  
Selects DACK signal polarity (0 = active LOW, 1 = active HIGH).  
Bus reset value: unchanged.  
Selects EOT signal polarity (0 = active LOW, 1 = active HIGH).  
Bus reset value: unchanged.  
A logic 1 enables remote wake-up via a LOW level on input CS  
(For wake-up on CS to work, VBUS must be present.).  
Bus reset value: unchanged.  
2
PWROFF  
A logic 1 enables powering-off during ‘suspend’ state. Output  
SUSPEND is configured as a power switch control signal for  
external devices (HIGH during ‘suspend’). This value should  
always be initialized to logic 1. Bus reset value: unchanged.  
1
0
INTLVL  
Selects the interrupt signalling mode on output INT (0 = level,  
1 = pulsed). In pulsed mode an interrupt produces an 166 ns  
pulse. See Section 13 for details. Bus reset value: unchanged.  
INTPOL  
Selects INT signal polarity (0 = active LOW, 1 = active HIGH).  
Bus reset value: unchanged.  
12.1.5 Write/Read Interrupt Enable Register  
This command is used to individually enable/disable interrupts from all endpoints, as  
well as interrupts caused by events on the USB bus (SOF, SOF lost, EOT, suspend,  
resume, reset). A bus reset will not change any of the programmed bit values.  
The command accesses the Interrupt Enable Register, which consists of 4 bytes. The  
bit allocation is given in Table 22.  
Code (Hex): C2/C3 — write/read Interrupt Enable Register  
Transaction — write/read 4 bytes  
Table 22: Interrupt Enable Register: bit allocation  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
Reset  
Access  
Bit  
reserved  
0
R/W  
23  
0
R/W  
22  
0
R/W  
21  
0
0
R/W  
19  
0
R/W  
18  
0
R/W  
17  
0
R/W  
16  
R/W  
20  
Symbol  
Reset  
Access  
Bit  
IEP14  
0
IEP13  
0
IEP12  
0
IEP11  
0
IEP10  
0
IEP9  
0
IEP8  
0
IEP7  
0
R/W  
15  
R/W  
14  
R/W  
13  
R/W  
12  
R/W  
11  
R/W  
10  
R/W  
9
R/W  
8
Symbol  
Reset  
Access  
IEP6  
0
IEP5  
0
IEP4  
0
IEP3  
0
IEP2  
0
IEP1  
0
IEP0IN  
0
IEP0OUT  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
29 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Bit  
7
6
5
IEPSOF  
0
4
IESOF  
0
3
IEEOT  
0
2
IESUSP  
0
1
IERESM  
0
0
IERST  
0
Symbol  
Reset  
Access  
reserved  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 23: Interrupt Enable Register: bit description  
Bit  
Symbol  
Description  
31 to 24  
-
reserved; must write logic 0  
23 to 10  
IEP14 to IEP1 A logic 1 enables interrupts from the indicated endpoint.  
9
IEP0IN  
IEP0OUT  
-
A logic 1 enables interrupts from the control IN endpoint.  
A logic 1 enables interrupts from the control OUT endpoint.  
reserved  
8
7, 6  
5
IEPSOF  
A logic 1 enables 1 ms interrupts upon detection of Pseudo  
SOF.  
4
3
2
1
0
IESOF  
IEEOT  
A logic 1 enables interrupt upon SOF detection.  
A logic 1 enables interrupt upon EOT detection.  
IESUSP  
IERESM  
IERST  
A logic 1 enables interrupt upon detection of ‘suspend’ state.  
A logic 1 enables interrupt upon detection of a ‘resume’ state.  
A logic 1 enables interrupt upon detection of a bus reset.  
12.1.6 Write/Read DMA Configuration  
This command defines the DMA configuration of ISP1181A and enables/disables  
DMA transfers. The command accesses the DMA Configuration Register, which  
consists of 2 bytes. The bit allocation is given in Table 24. A bus reset will clear bit  
DMAEN (DMA disabled), all other bits remain unchanged.  
Code (Hex): F0/F1 — write/read DMA Configuration  
Transaction — write/read 2 bytes  
Table 24: DMA Configuration Register: bit allocation  
Bit  
15  
CNTREN  
0[1]  
14  
SHORTP  
0[1]  
13  
12  
11  
10  
9
8
Symbol  
Reset  
Access  
Bit  
reserved  
0[1]  
R/W  
5
0[1]  
R/W  
4
0[1]  
R/W  
3
0[1]  
R/W  
2
0[1]  
R/W  
1
0[1]  
R/W  
0
R/W  
R/W  
6
7
Symbol  
Reset  
Access  
EPDIX[3:0]  
DMAEN  
0
reserved  
0
BURSTL[1:0]  
0[1]  
0[1]  
0[1]  
0[1]  
0[1]  
0[1]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
[1] Unchanged by a bus reset.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
30 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Table 25: DMA Configuration Register: bit description  
Bit  
Symbol  
Description  
15  
CNTREN  
A logic 1 enables the generation of an EOT condition, when the  
DMA Counter Register reaches zero. Bus reset value:  
unchanged.  
14  
SHORTP  
A logic 1 enables short/empty packet mode. When receiving  
(OUT endpoint) a short/empty packet an EOT condition is  
generated. When transmitting (IN endpoint) this bit should be  
cleared. Bus reset value: unchanged.  
13 to 8  
7 to 4  
3
-
reserved  
EPDIX[3:0]  
DMAEN  
Indicates the destination endpoint for DMA, see Table 7.  
Writing a logic 1 enables DMA transfer, a logic 0 forces the end  
of an ongoing DMA transfer. Reading this bit indicates whether  
DMA is enabled (0 = DMA stopped, 1 = DMA enabled). This bit  
is cleared by a bus reset.  
2
-
reserved  
1 to 0  
BURSTL[1:0] Selects the DMA burst length:  
00 — single-cycle mode (1 byte)  
01 — burst mode (4 bytes)  
10 — burst mode (8 bytes)  
11 — burst mode (16 bytes).  
Bus reset value: unchanged.  
12.1.7 Write/Read DMA Counter  
This command accesses the DMA Counter Register, which consists of 2 bytes. The  
bit allocation is given in Table 26. Writing to the register sets the number of bytes for a  
DMA transfer. Reading the register returns the number of remaining bytes in the  
current transfer. A bus reset will not change the programmed bit values.  
The internal DMA counter is automatically reloaded from the DMA Counter Register  
when DMA is re-enabled (DMAEN = 1). See Section 12.1.6 for more details.  
Code (Hex): F2/F3 — write/read DMA Counter Register  
Transaction — write/read 2 bytes  
Table 26: DMA Counter Register: bit allocation  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
Reset  
Access  
Bit  
DMACRH[7:0]  
0
R/W  
7
0
R/W  
6
0
R/W  
5
0
R/W  
4
0
R/W  
3
0
R/W  
2
0
R/W  
1
0
R/W  
0
Symbol  
Reset  
Access  
DMACRL[7:0]  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
31 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Table 27: DMA Counter Register: bit description  
Bit  
Symbol  
Description  
15 to 8  
7 to 0  
DMACRH[7:0] DMA Counter Register (high byte)  
DMACRL[7:0] DMA Counter Register (low byte)  
12.1.8 Reset Device  
This command resets the ISP1181A in the same way as an external hardware reset  
via input RESET. All registers are initialized to their ‘reset’ values.  
Code (Hex): F6 — reset the device  
Transaction — none  
12.2 Data flow commands  
Data flow commands are used to manage the data transmission between the USB  
endpoints and the system microcontroller. Much of the data flow is initiated via an  
interrupt to the microcontroller. The data flow commands are used to access the  
endpoints and determine whether the endpoint FIFOs contain valid data.  
Remark: The IN buffer of an endpoint contains input data for the host, the OUT buffer  
receives output data from the host.  
12.2.1 Write/Read Endpoint Buffer  
This command is used to access endpoint FIFO buffers for reading or writing. First,  
the buffer pointer is reset to the beginning of the buffer. Following the command, a  
maximum of (N + 2) bytes can be written or read, N representing the size of the  
endpoint buffer. For 16-bit access the maximum number of words is (M + 1), with M  
given by (N + 1) DIV 2. After each read/write action the buffer pointer is automatically  
incremented by 1 (8-bit bus width) or by 2 (16-bit bus width).  
In DMA access the first 2 bytes or the first word (the packet length) are skipped:  
transfers start at the third byte or the second word of the endpoint buffer. When  
reading, the ISP1181A can detect the last byte/word via the EOP condition. When  
writing to a bulk/interrupt endpoint, the endpoint buffer must be completely filled  
before sending the data to the host. Exception: when a DMA transfer is stopped by an  
external EOT condition, the current buffer content (full or not) is sent to the host.  
Remark: Reading data after a Write Endpoint Buffer command or writing data after a  
Read Endpoint Buffer command data will cause unpredictable behavior of ISP1181A.  
Code (Hex): 01 to 0F — write (control IN, endpoint 1 to 14)  
Code (Hex): 10, 12 to 1F — read (control OUT, endpoint 1 to 14)  
Transaction — write/read maximum N + 2 bytes (isochronous endpoint: N 1023,  
bulk/interrupt endpoint: N 32)  
The data in the endpoint FIFO must be organized as shown in Table 28. Examples of  
endpoint FIFO access are given in Table 29 (8-bit bus) and Table 30 (16-bit bus).  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
32 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Table 28: Endpoint FIFO organization  
Byte #  
Word #  
Description  
(8-bit bus)  
(16-bit bus)  
0
0 (lower byte)  
0 (upper byte)  
1 (lower byte)  
1 (upper byte)  
packet length (lower byte)  
packet length (upper byte)  
data byte 1  
1
2
3
data byte 2  
(N + 1)  
M = (N + 1) DIV 2  
data byte N  
Table 29: Example of endpoint FIFO access (8-bit bus width)  
A0  
1
Phase  
command  
data  
Bus lines  
D[7:0]  
D[7:0]  
D[7:0]  
D[7:0]  
D[7:0]  
D[7:0]  
D[7:0]  
Byte #  
Description  
-
command code (00H to 1FH)  
packet length (lower byte)  
packet length (upper byte)  
data byte 1  
0
0
1
2
3
4
5
0
data  
0
data  
0
data  
data byte 2  
0
data  
data byte 3  
0
data  
data byte 4  
Table 30: Example of endpoint FIFO access (16-bit bus width)  
A0  
Phase  
Bus lines  
D[7:0]  
Word #  
Description  
1
command  
-
command code (00H to 1FH)  
D[15:8]  
D[15:0]  
D[15:0]  
D[15:0]  
-
ignored  
0
data  
data  
data  
0
1
2
packet length  
0
data word 1 (data byte 2, data byte 1)  
data word 2 (data byte 4, data byte 3)  
0
Remark: There is no protection against writing or reading past a buffer’s boundary,  
against writing into an OUT buffer or reading from an IN buffer. Any of these actions  
could cause an incorrect operation. Data residing in an OUT buffer are only  
meaningful after a successful transaction. Exception: during DMA access of a  
double-buffered endpoint, the buffer pointer automatically points to the secondary  
buffer after reaching the end of the primary buffer.  
12.2.2 Read Endpoint Status  
This command is used to read the status of an endpoint FIFO. The command  
accesses the Endpoint Status Register, the bit allocation of which is shown in  
Table 31. Reading the Endpoint Status Register will clear the interrupt bit set for the  
corresponding endpoint in the Interrupt Register (see Table 48).  
All bits of the Endpoint Status Register are read-only. Bit EPSTAL is controlled by the  
Stall/Unstall commands and by the reception of a SETUP token (see Section 12.2.3).  
Code (Hex): 50 to 5F — read (control OUT, control IN, endpoint 1 to 14)  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
33 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Transaction — read 1 byte  
Table 31: Endpoint Status Register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
EPSTAL  
EPFULL1  
EPFULL0  
DATA_PID  
OVER  
SETUPT  
CPUBUF  
reserved  
WRITE  
Reset  
0
0
0
0
0
0
0
0
Access  
R
R
R
R
R
R
R
R
Table 32: Endpoint Status Register: bit description  
Bit  
Symbol  
Description  
7
EPSTAL  
This bit indicates whether the endpoint is stalled or not  
(1 = stalled, 0 = not stalled).  
Set to logic 1 by a Stall Endpoint command, cleared to logic 0 by  
an Unstall Endpoint command. The endpoint is automatically  
unstalled upon reception of a SETUP token.  
6
5
4
EPFULL1  
EPFULL0  
DATA_PID  
A logic 1 indicates that the secondary endpoint buffer is full.  
A logic 1 indicates that the primary endpoint buffer is full.  
This bit indicates the data PID of the next packet (0 = DATA PID,  
1 = DATA1 PID).  
3
OVERWRITE This bit is set by hardware, a logic 1 indicating that a new Setup  
packet has overwritten the previous setup information, before it  
was acknowledged or before the endpoint was stalled. This bit is  
cleared by reading, if writing the setup data has finished.  
Firmware must check this bit before sending an Acknowledge  
Setup command or stalling the endpoint. Upon reading a logic 1  
the firmware must stop ongoing setup actions and wait for a new  
Setup packet.  
2
1
SETUPT  
CPUBUF  
A logic 1 indicates that the buffer contains a Setup packet.  
This bit indicates which buffer is currently selected for CPU  
access (0 = primary buffer, 1 = secondary buffer).  
0
-
reserved  
12.2.3 Stall Endpoint/Unstall Endpoint  
These commands are used to stall or unstall an endpoint. The commands modify the  
content of the Endpoint Status Register (see Table 31).  
A stalled control endpoint is automatically unstalled when it receives a SETUP token,  
regardless of the packet content. If the endpoint should stay in its stalled state, the  
microcontroller can restall it with the Stall Endpoint command.  
When a stalled endpoint is unstalled (either by the Unstall Endpoint command or by  
receiving a SETUP token), it is also reinitialized. This flushes the buffer: if it is an OUT  
buffer it waits for a DATA 0 PID, if it is an IN buffer it writes a DATA 0 PID.  
Code (Hex): 40 to 4F — stall (control OUT, control IN, endpoint 1 to 14)  
Code (Hex): 80 to 8F — unstall (control OUT, control IN, endpoint 1 to 14)  
Transaction — none  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
34 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
12.2.4 Validate Endpoint Buffer  
This command signals the presence of valid data for transmission to the USB host, by  
setting the Buffer Full flag of the selected IN endpoint. This indicates that the data in  
the buffer is valid and can be sent to the host, when the next IN token is received. For  
a double-buffered endpoint this command switches the current FIFO for CPU access.  
Remark: For special aspects of the control IN endpoint see Section 9.5.  
Code (Hex): 61 to 6F — validate endpoint buffer (control IN, endpoint 1 to 14)  
Transaction — none  
12.2.5 Clear Endpoint Buffer  
This command unlocks and clears the buffer of the selected OUT endpoint, allowing  
the reception of new packets. Reception of a complete packet causes the Buffer Full  
flag of an OUT endpoint to be set. Any subsequent packets are refused by returning a  
NAK condition, until the buffer is unlocked using this command. For a double-buffered  
endpoint this command switches the current FIFO for CPU access.  
Remark: For special aspects of the control OUT endpoint see Section 9.5.  
Code (Hex): 70, 72 to 7F — clear endpoint buffer (control OUT, endpoint 1 to 14)  
Transaction — none  
12.2.6 Check Endpoint Status  
This command is used to check the status of the selected endpoint FIFO without  
clearing any status or interrupt bits. The command accesses the Endpoint Status  
Image Register, which contains a copy of the Endpoint Status Register. The bit  
allocation of the Endpoint Status Image Register is shown in Table 33.  
Code (Hex): D0 to DF — check status (control OUT, control IN, endpoint 1 to 14)  
Transaction — write/read 1 byte  
Table 33: Endpoint Status Image Register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
EPSTAL  
EPFULL1  
EPFULL0  
DATA_PID  
OVER  
SETUPT  
CPUBUF  
reserved  
WRITE  
Reset  
0
0
0
0
0
0
0
0
Access  
R
R
R
R
R
R
R
R
Table 34: Endpoint Status Image Register: bit description  
Bit  
Symbol  
Description  
7
EPSTAL  
This bit indicates whether the endpoint is stalled or not  
(1 = stalled, 0 = not stalled).  
6
5
4
EPFULL1  
EPFULL0  
DATA_PID  
A logic 1 indicates that the secondary endpoint buffer is full.  
A logic 1 indicates that the primary endpoint buffer is full.  
This bit indicates the data PID of the next packet  
(0 = DATA0 PID, 1 = DATA1 PID).  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
35 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Table 34: Endpoint Status Image Register: bit description…continued  
Bit  
Symbol  
Description  
3
OVERWRITE This bit is set by hardware, a logic 1 indicating that a new Setup  
packet has overwritten the previous setup information, before it  
was acknowledged or before the endpoint was stalled. This bit is  
cleared by reading, if writing the setup data has finished.  
Firmware must check this bit before sending an Acknowledge  
Setup command or stalling the endpoint. Upon reading a logic 1  
the firmware must stop ongoing setup actions and wait for a new  
Setup packet.  
2
1
SETUPT  
CPUBUF  
A logic 1 indicates that the buffer contains a Setup packet.  
This bit indicates which buffer is currently selected for CPU  
access (0 = primary buffer, 1 = secondary buffer).  
0
-
reserved  
12.2.7 Acknowledge Setup  
This command acknowledges to the host that a SETUP packet was received. The  
arrival of a SETUP packet disables the Validate Buffer and Clear Buffer commands  
for the control IN and OUT endpoints. The microcontroller needs to re-enable these  
commands by sending an Acknowledge Setup command, see Section 9.5.  
Code (Hex): F4 — acknowledge setup  
Transaction — none  
12.3 General commands  
12.3.1 Read Endpoint Error Code  
This command returns the status of the last transaction of the selected endpoint, as  
stored in the Error Code Register. Each new transaction overwrites the previous  
status information. The bit allocation of the Error Code Register is shown in Table 35.  
Code (Hex): A0 to AF — read error code (control OUT, control IN, endpoint 1 to 14)  
Transaction — read 1 byte  
Table 35: Error Code Register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
RTOK  
0
Symbol  
Reset  
Access  
UNREAD  
DATA01  
reserved  
ERROR[3:0]  
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Table 36: Error Code Register: bit description  
Bit  
Symbol  
Description  
7
UNREAD  
A logic 1 indicates that a new event occurred before the  
previous status was read.  
6
DATA01  
This bit indicates the PID type of the last successfully received  
or transmitted packet (0 = DATA0 PID, 1 = DATA1 PID).  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
36 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Table 36: Error Code Register: bit description…continued  
Bit  
5
Symbol  
-
Description  
reserved  
4 to 1  
0
ERROR[3:0]  
RTOK  
Error code. For error description, see Table 37.  
A logic 1 indicates that data was received or transmitted  
successfully.  
Table 37: Transaction error codes  
Error code  
(Binary)  
Description  
0000  
0001  
0010  
0011  
no error  
PID encoding error; bits 7 to 4 are not the inverse of bits 3 to 0  
PID unknown; encoding is valid, but PID does not exist  
unexpected packet; packet is not of the expected type (token, data, or  
acknowledge), or is a SETUP token to a non-control endpoint  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
token CRC error  
data CRC error  
time-out error  
babble error  
unexpected end-of-packet  
sent or received NAK (Not AcKnowledge)  
sent Stall; a token was received, but the endpoint was stalled  
overflow; the received packet was larger than the available buffer space  
sent empty packet (ISO only)  
bit stuffing error  
sync error  
wrong (unexpected) toggle bit in DATA PID; data was ignored  
12.3.2 Unlock Device  
This command unlocks the ISP1181A from write-protection mode after a ‘resume’. In  
‘suspend’ state all registers and FIFOs are write-protected to prevent data corruption  
by external devices during a ‘resume’. Also, the register access for reading is possible  
only after the ‘Unlock Device’ command is executed.  
After waking up from ‘suspend’ state, the firmware must unlock the registers and  
FIFOs via this command, by writing the unlock code (AA37H) into the Lock Register  
(8-bit bus: lower byte first). The bit allocation of the Lock Register is given in Table 38.  
Code (Hex): B0 — unlock the device  
Transaction — write 2 bytes (unlock code)  
Table 38: Lock Register: bit allocation  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
Reset  
Access  
UNLOCKH[7:0] = AAH  
1
0
1
0
1
0
1
0
W
W
W
W
W
W
W
W
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
37 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
UNLOCKL[7:0] = 37H  
0
0
1
1
0
1
1
1
W
W
W
W
W
W
W
W
Table 39: Lock Register: bit description  
Bit  
Symbol  
Description  
15 to 0  
UNLOCK[15:0] Sending data AA37H unlocks the internal registers and FIFOs  
for writing, following a ‘resume’.  
12.3.3 Write/Read Scratch Register  
This command accesses the 16-bit Scratch Register, which can be used by the  
firmware to save and restore information, for example, the device status before  
powering down in ‘suspend’ state. The register bit allocation is given in Table 40.  
Code (Hex): B2/B3 — write/read Scratch Register  
Transaction — write/read 2 bytes  
Table 40: Scratch Information Register: bit allocation  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
Reset  
Access  
Bit  
reserved  
SFIRH[6:0]  
0
R/W  
7
0
R/W  
6
0
R/W  
5
0
R/W  
4
0
R/W  
3
0
R/W  
2
0
R/W  
1
0
R/W  
0
Symbol  
Reset  
Access  
SFIRL[7:0]  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 41: Scratch Information Register: bit description  
Bit  
Symbol  
-
Description  
15  
reserved; must be logic 0  
14 to 8  
7 to 0  
SFIRH[6:0]  
SFIRL[7:0]  
Scratch Information Register (high byte)  
Scratch Information Register (low byte)  
12.3.4 Read Frame Number  
This command returns the frame number of the last successfully received SOF. It is  
followed by reading one or two bytes from the Frame Number Register, containing the  
frame number (lower byte first). The Frame Number Register is shown in Table 42.  
Remark: After a bus reset, the value of the Frame Number Register is undefined.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
38 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Code (Hex): B4 — read frame number  
Transaction — read 1 or 2 bytes  
Table 42: Frame Number Register: bit allocation  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
Reset[1]  
Access  
Bit  
reserved  
SOFRH[2:0]  
0
R
7
0
R
6
0
R
5
0
R
4
0
R
3
0
R
2
0
R
1
0
R
0
Symbol  
Reset[1]  
Access  
SOFRL[7:0]  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
[1] Reset value undefined after a bus reset.  
Table 43: Frame Number Register: bit description  
Bit  
Symbol  
-
Description  
15 to 11  
10 to 8  
7 to 0  
reserved  
SOFRH[2:0]  
SOFRL[7:0]  
SOF frame number (upper byte)  
SOF frame number (lower byte)  
Table 44: Example of Frame Number Register access (8-bit bus width)  
A0  
1
Phase  
command  
data  
Bus lines  
D[7:0]  
Byte #  
Description  
-
command code (B4H)  
frame number (lower byte)  
frame number (upper byte)  
0
D[7:0]  
0
1
0
data  
D[7:0]  
Table 45: Example of Frame Number Register access (16-bit bus width)  
A0  
Phase  
Bus lines  
D[7:0]  
Word #  
Description  
1
command  
-
command code (B4H)  
ignored  
D[15:8]  
D[15:0]  
-
0
data  
0
frame number  
12.3.5 Read Chip ID  
This command reads the chip identification code and hardware version number. The  
firmware must check this information to determine the supported functions and  
features. This command accesses the Chip ID Register, which is shown in Table 46.  
Code (Hex): B5 — read chip ID  
Transaction — read 2 bytes  
Table 46: Chip ID Register: bit allocation  
Bit  
15  
14  
13  
12  
CHIPIDH[7:0]  
81H  
11  
10  
9
8
Symbol  
Reset  
Access  
R
R
R
R
R
R
R
R
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
39 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
CHIPIDL[7:0]  
41H  
R
R
R
R
R
R
R
R
Table 47: Chip ID Register: bit description  
Bit  
Symbol  
Description  
15 to 8  
7 to 0  
CHIPIDH[7:0] chip ID code (81H)  
CHIPIDL[7:0] silicon version (41H, with 41H representing the BCD encoded  
version number)  
12.3.6 Read Interrupt Register  
This command indicates the sources of interrupts as stored in the 4-byte Interrupt  
Register. Each individual endpoint has its own interrupt bit. The bit allocation of the  
Interrupt Register is shown in Table 48. Bit BUSTATUS is used to verify the current  
bus status in the interrupt service routine. Interrupts are enabled via the Interrupt  
Enable Register, see Section 12.1.5.  
While reading the interrupt register, read all the 4 bytes completely.  
Code (Hex): C0 — read interrupt register  
Transaction — read 4 bytes  
Table 48: Interrupt Register: bit allocation  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
Reset  
Access  
Bit  
reserved  
0
0
0
R
0
R
0
R
0
0
0
R
R
R
R
R
23  
22  
21  
EP12  
0
20  
EP11  
0
19  
EP10  
0
18  
17  
16  
Symbol  
Reset  
Access  
Bit  
EP14  
EP13  
EP9  
EP8  
EP7  
0
0
0
0
0
R
R
R
R
R
R
R
R
15  
14  
13  
EP4  
0
12  
EP3  
0
11  
EP2  
0
10  
9
8
Symbol  
Reset  
Access  
Bit  
EP6  
EP5  
EP1  
EP0IN  
EP0OUT  
0
0
0
0
0
R
R
R
R
R
R
R
R
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
BUSTATUS  
reserved  
PSOF  
0
SOF  
0
EOT  
0
SUSPND  
RESUME  
RESET  
0
0
0
0
0
R
R
R
R
R
R
R
R
Table 49: Interrupt Register: bit description  
Bit  
Symbol  
Description  
31 to 24  
23 to 10  
9
-
reserved  
EP14 to EP1 A logic 1 indicates the interrupt source(s): endpoint 14 to 1.  
EP0IN  
A logic 1 indicates the interrupt source: control IN endpoint.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
40 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Table 49: Interrupt Register: bit description…continued  
Bit  
8
Symbol  
Description  
EP0OUT  
BUSTATUS  
A logic 1 indicates the interrupt source: control OUT endpoint.  
7
It monitors the current USB bus status (0 = awake,  
1 = suspend).  
6
5
-
reserved  
PSOF  
A logic 1 indicates that an interrupt is issued every 1 ms  
because of the Pseudo SOF; after 3 missed SOFs ‘suspend’  
state is entered.  
4
3
SOF  
EOT  
A logic 1 indicates that a SOF condition was detected.  
A logic 1 indicates that an internal EOT condition was generated  
by the DMA Counter reaching zero.  
2
SUSPND  
A logic 1 indicates that an ‘awake’ to ‘suspend’ change of state  
was detected on the USB bus.  
1
0
RESUME  
RESET  
A logic 1 indicates that a ‘resume’ state was detected.  
A logic 1 indicates that a bus reset condition was detected.  
13. Interrupts  
Figure 8 shows the interrupt logic of the ISP1181A. Each of the indicated USB events  
is logged in a status bit of the Interrupt Register. Corresponding bits in the Interrupt  
Enable Register determine whether or not an event will generate an interrupt.  
Interrupts can be masked globally by means of the INTENA bit of the Mode Register  
(see Table 19).  
The active level and signalling mode of the INT output is controlled by the INTPOL  
and INTLVL bits of the Hardware Configuration Register (see Table 21). Default  
settings after reset are active LOW and level mode. When pulse mode is selected, a  
pulse of 166 ns is generated when the OR-ed combination of all interrupt bits  
changes from logic 0 to logic 1.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
41 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
interrupt register  
RESET  
SUSPND  
RESUME  
.
.
SOF  
.
.
.
.
EP14  
...  
EP0IN  
EP0OUT  
EOT  
.
.
.
device mode  
register  
INTENA  
interrupt enable  
register  
PULSE  
GENERATOR  
IERST  
IESUSP  
1
0
IERESM  
.
.
.
hardware configuration  
register  
IESOF  
IEP14  
INTLVL  
INTPOL  
...  
IEP0IN  
IEP0OUT  
IEEOT  
INT  
MGS772  
Fig 8. Interrupt logic.  
Bits RESET, RESUME, EOT and SOF are cleared upon reading the Interrupt  
Register. The endpoint bits (EP0OUT to EP14) are cleared by reading the associated  
Endpoint Status Register.  
Bit BUSTATUS follows the USB bus status exactly, allowing the firmware to get the  
current bus status when reading the Interrupt Register.  
SETUP and OUT token interrupts are generated after ISP1181A has acknowledged  
the associated data packet. In bulk transfer mode, the ISP1181A will issue interrupts  
for every ACK received for an OUT token or transmitted for an IN token.  
In isochronous mode, an interrupt is issued upon each packet transaction. The  
firmware must take care of timing synchronization with the host. This can be done via  
the Pseudo Start-Of-Frame (PSOF) interrupt, enabled via bit IEPSOF in the Interrupt  
Enable Register. If a Start-Of-Frame is lost, PSOF interrupts are generated every  
1 ms. This allows the firmware to keep data transfer synchronized with the host. After  
3 missed SOF events the ISP1181A will enter ‘suspend’ state.  
An alternative way of handling isochronous data transfer is to enable both the SOF  
and the PSOF interrupts and disable the interrupt for each isochronous endpoint.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
42 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
14. Power supply  
The ISP1181A is powered from a single supply voltage, ranging from 4.0 V to 5.5 V.  
An integrated voltage regulator provides a 3.3 V supply voltage for the internal logic  
and the USB transceiver. This voltage is available at pin Vreg(3.3) for connecting an  
external pull-up resistor on USB connection D+. See Figure 9.  
The ISP1181A can also be operated from a 3.0 V to 3.6 V supply, as shown in  
Figure 10. In this case, the internal voltage regulator is disabled and pin Vreg(3.3) must  
be connected to VCC  
.
ISP1181A  
ISP1181A  
V
V
4.0 V to 5.5 V  
3.0 V to 3.6 V  
CC  
CC  
V
V
CC(3.3)  
CC(3.3)  
V
V
ref  
ref  
V
V
reg(3.3)  
reg(3.3)  
004aaa026  
004aaa027  
Fig 9. ISP1181A with a 4.0 V to 5.5 V supply.  
Fig 10. ISP1181A with a 3.0 V to 3.6 V supply.  
15. Crystal oscillator and LazyClock  
The ISP1181A has a crystal oscillator designed for a 6 MHz parallel-resonant crystal  
(fundamental). A typical circuit is shown in Figure 11. Alternatively, an external clock  
signal of 6 MHz can be applied to input XTAL1, while leaving output XTAL2 open.  
CLKOUT  
ISP1181A  
18 pF  
XTAL2  
6 MHz  
XTAL1  
18 pF  
004aaa028  
Fig 11. Typical oscillator circuit.  
The 6 MHz oscillator frequency is multiplied to 48 MHz by an internal PLL. This  
frequency is used to generate a programmable clock output signal at pin CLKOUT,  
ranging from 3 MHz to 48 MHz.  
In ‘suspend’ state the normal CLKOUT signal is not available, because the crystal  
oscillator and the PLL are switched off to save power. Instead, the CLKOUT signal  
can be switched to the LazyClock frequency of 100 kHz ± 50 %.  
The oscillator operation and the CLKOUT frequency are controlled via the Hardware  
Configuration Register, as shown in Figure 12. The following bits are involved:  
CLKRUN switches the oscillator on and off  
CLKDIV[3:0] is the division factor determining the normal CLKOUT frequency  
NOLAZY controls the LazyClock signal output during ‘suspend’ state.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
43 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
hardware  
configuration  
register  
CLKRUN  
SUSPEND  
enable  
6 MHz  
enable  
48 MHz  
PLL 8×  
.
.
.
1
XTAL OSC  
÷
(N + 1)  
N
CLKOUT  
0
4
[
]
CLKDIV 3:0  
NOLAZY  
100 (±50 %) kHz  
LAZYCLOCK  
.
.
.
enable  
NOLAZY  
MGS775  
Fig 12. Oscillator and LazyClock logic.  
When ISP1181A enters ‘suspend’ state (by setting and clearing bit GOSUSP in the  
Mode Register), outputs SUSPEND and CLKOUT change state after approximately  
2 ms delay. When NOLAZY = 0, the clock signal on output CLKOUT does not stop,  
but changes to the 100 kHz ± 50 % LazyClock frequency.  
When resuming from ‘suspend’ state by a positive pulse on input WAKEUP, output  
SUSPEND is cleared and the clock signal on CLKOUT is restarted after a 0.5 ms  
delay. The timing of the CLKOUT signal at ‘suspend’ and ‘resume’ is given in  
Figure 13.  
GOSUSP  
WAKEUP  
1.8 to 2.2 ms  
0.5 ms  
SUSPEND  
CLKOUT  
PLL circuit stable  
3 to 4 ms  
MGS776  
If enabled, the 100 kHz ± 50 % LazyClock frequency will be output on pin CLKOUT during ‘suspend’ state.  
Fig 13. CLKOUT signal timing at ‘suspend’ and ‘resume’.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
44 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
16. Power-on reset  
The ISP1181A has an internal power-on reset (POR) circuit. Input pin RESET can be  
directly connected to VCC. The clock signal on output CLKOUT starts 0.5 ms after  
power-on and normally requires 3 to 4 ms to stabilize.  
The triggering voltage of the POR circuit is 2.0 V nominal. A POR is automatically  
generated when VCC goes below the trigger voltage for a duration longer than 50 µs.  
POR  
(1)  
V
CC  
350 µs  
1 ms  
1 ms  
2.0 V  
0 V  
t
t
t
3
1
2
> 50 µs  
MGT026  
t1: clock is running  
t2: BUS_CONF pins are sampled  
t3: registers are accessible  
(1) Supply voltage (5 V or 3.3 V), connected externally to pin RESET.  
Fig 14. Power-on reset timing.  
A hardware reset disables all USB endpoints and clears all ECRs, except for the  
control endpoint which is fixed and always enabled. Section 9.3 explains how to  
(re-)initialize the endpoints.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
45 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
17. Limiting values  
Table 50: Absolute maximum ratings  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VCC  
Parameter  
Conditions  
Min  
0.5  
0.5  
-
Max  
Unit  
V
supply voltage  
+6.0  
VI  
input voltage  
VCC + 0.5  
100  
V
Ilatchup  
Vesd  
Tstg  
latch-up current  
VI < 0 or VI > VCC  
mA  
V
[1]  
electrostatic discharge voltage  
storage temperature  
total power dissipation  
ILI < 1 µA  
-
±2000  
+150  
165  
60  
-
°C  
mW  
Ptot  
VCC = 5.5 V  
[1] Equivalent to discharging a 100 pF capacitor via a 1.5 kresistor (Human Body Model).  
18. Recommended operating conditions  
Table 51: Recommended operating conditions  
Symbol Parameter  
Conditions  
Min  
4.0  
3.0  
0
Typ  
5.0  
3.3  
-
Max  
5.5  
Unit  
V
VCC  
supply voltage  
input voltage  
with regulator  
without regulator  
3.6  
V
VI  
VCC  
3.6  
V
VI(AI/O)  
input voltage on analog I/O pins  
0
-
V
(D+/D)  
VO(od)  
Tamb  
open-drain output pull-up voltage  
ambient temperature  
0
-
-
VCC  
V
40  
+85  
°C  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
46 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
19. Static characteristics  
Table 52: Static characteristics; supply pins  
VGND = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Vreg(3.3)  
ICC  
Parameter  
Conditions  
Min  
3.0[2]  
Typ  
3.3  
26  
22  
-
Max  
3.6  
-
Unit  
V
[1]  
regulated supply voltage  
operating supply current  
VCC = 4.0 V to 5.5 V  
VCC = 5.0 V; Tamb = 25 °C  
VCC = 3.3 V; Tamb = 25 °C  
VCC = 5.0 V; Tamb = 25 °C  
VCC = 3.3 V; Tamb = 25 °C  
-
-
-
-
mA  
mA  
µA  
µA  
-
ICC(susp  
)
suspend supply current  
20[3]  
70[3]  
-
[1] For 3.3 V operation, pin Vreg(3.3) must be connected to pin VCC(3.3)  
[2] In ‘suspend’ mode the minimum voltage is 2.7 V.  
[3] External loading is not included.  
.
Table 53: Static characteristics: digital pins  
VCC = 3.3 V ± 10 % or 5.0 V ± 10 %; VGND = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Input levels  
VIL  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
LOW-level input voltage  
HIGH-level input voltage  
-
-
-
0.8  
-
V
V
VIH  
2.0  
Schmitt trigger inputs  
Vth(LH) positive-going threshold  
1.4  
0.9  
0.4  
-
-
-
1.9  
1.5  
0.7  
V
V
V
voltage  
Vth(HL)  
negative-going threshold  
voltage  
Vhys  
hysteresis voltage  
Output levels  
VOL  
LOW-level output voltage  
HIGH-level output voltage  
IOL = rated drive  
IOL = 20 µA  
-
-
-
-
0.4  
0.1  
-
V
V
V
-
[1]  
VOH  
IOH = rated drive  
2.4  
Leakage current  
ILI  
input leakage current  
-
-
-
-
±5  
±5  
µA  
µA  
Open-drain outputs  
IOZ  
OFF-state output current  
[1] Not applicable for open-drain outputs.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
47 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Table 54: Static characteristics: analog I/O pins (D+, D)[1]  
VCC = 3.3 V ±10 % or 5.0 V ±10 %; VGND = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Input levels  
VDI  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
differential input sensitivity  
|VI(D+) VI(D)  
|
0.2  
0.8  
-
-
-
V
V
VCM  
differential common mode  
voltage  
includes VDI range  
2.5  
VIL  
LOW-level input voltage  
HIGH-level input voltage  
-
-
-
0.8  
-
V
V
VIH  
2.0  
Output levels  
VOL  
VOH  
LOW-level output voltage  
HIGH-level output voltage  
RL = 1.5 kto +3.6 V  
RL = 15 kto GND  
-
-
-
0.3  
3.6  
V
V
2.8  
Leakage current  
ILZ  
OFF-state leakage current  
-
-
-
-
±10  
µA  
Capacitance  
CIN  
transceiver capacitance  
pin to GND  
20  
pF  
Resistance  
RPU  
pull-up resistance on D+  
driver output impedance  
input impedance  
SoftConnect = ON  
steady-state drive  
1
-
-
-
2
kΩ  
[2]  
ZDRV  
29  
10  
44  
-
ZINP  
MΩ  
Termination  
[3]  
VTERM  
termination voltage for  
3.0[4]  
-
3.6  
V
upstream port pull-up (RPU  
)
[1] D+ is the USB positive data pin; Dis the USB negative data pin.  
[2] Includes external resistors of 22 Ω ±1 % on both D+ and D.  
[3] This voltage is available at pin Vreg(3.3)  
.
[4] In ‘suspend’ mode the minimum voltage is 2.7 V.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
48 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
20. Dynamic characteristics  
Table 55: Dynamic characteristics  
VCC = 3.3 V ± 10 % or 5.0 V ± 10 %; VGND = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Reset  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tW(RESET)  
pulse width on input RESET  
crystal oscillator running  
crystal oscillator stopped  
50  
-
-
-
-
µs  
3[1]  
ms  
Crystal oscillator  
fXTAL  
crystal frequency  
-
6
-
MHz  
[1] Dependent on the crystal oscillator start-up time.  
Table 56: Dynamic characteristics: analog I/O pins (D+, D)[1]  
VCC = 3.3 V ± 10 % or 5.0 V ± 10 %; VGND = 0 V; Tamb = 40 °C to +85 °C; CL = 50 pF; RPU = 1.5 kon D+ to VTERM; unless  
otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Driver characteristics  
tFR  
rise time  
CL = 50 pF;  
10 % to 90 % of |VOH VOL  
4
-
-
-
-
20  
ns  
ns  
%
V
|
tFF  
fall time  
CL = 50 pF;  
90 % to 10 % of |VOH VOL  
4
20  
|
[2]  
FRFM  
VCRS  
differential rise/fall time  
matching (tFR/tFF  
90  
1.3  
111.11  
2.0  
)
[2][3]  
output signal crossover  
voltage  
Data source timing  
tFEOPT source EOP width  
tFDEOP  
[3]  
[3]  
see Figure 15  
see Figure 15  
160  
-
-
175  
ns  
ns  
source differential  
data-to-EOP transition  
skew  
2  
+5  
Receiver timing  
[3]  
[3]  
tJR1 receiver data jitter  
see Figure 16  
see Figure 16  
18.5  
9  
-
-
+18.5  
+9  
ns  
ns  
tolerance for consecutive  
transitions  
tJR2  
receiver data jitter  
tolerance for paired  
transitions  
[3]  
[3]  
tFEOPR  
tFST  
receiver SE0 width  
accepted as EOP; see  
Figure 15  
82  
-
-
-
-
ns  
ns  
width of SE0 during  
differential transition  
rejected as EOP; see  
Figure 17  
14  
[1] Test circuit: see Figure 33.  
[2] Excluding the first transition from Idle state.  
[3] Characterized only, not tested. Limits guaranteed by design.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
49 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
T
PERIOD  
+3.3 V  
crossover point  
extended  
crossover point  
differential  
data lines  
0 V  
differential data to  
SE0/EOP skew  
N × T + t  
source EOP width: t  
EOPT  
receiver EOP width: t  
EOPR  
mgr776  
PERIOD  
DEOP  
TPERIOD is the bit duration corresponding with the USB data rate.  
Full-speed timing symbols have a subscript prefix ‘F’, low-speed timings a prefix ‘L.  
Fig 15. Source differential data-to-EOP transition skew and EOP width.  
T
PERIOD  
+3.3 V  
differential  
data lines  
0 V  
mgr871  
t
t
t
JR2  
JR  
JR1  
consecutive  
transitions  
N × T  
+ t  
PERIOD  
JR1  
paired  
transitions  
N × T  
+ t  
PERIOD  
JR2  
TPERIOD is the bit duration corresponding with the USB data rate.  
Fig 16. Receiver differential data jitter.  
t
FST  
+3.3 V  
V
IH(min)  
differential  
data lines  
0 V  
mgr872  
Fig 17. Receiver SE0 width tolerance.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
50 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
20.1 Parallel I/O timing  
Table 57: Dynamic characteristics: parallel interface timing  
Symbol  
Parameter  
Conditions  
8-bit bus  
Min  
16-bit bus  
Min  
Unit  
Max  
Max  
Read timing (see Figure 18)  
tRHAX  
tAVRL  
tSHDZ  
tRHSH  
address hold time after RD  
HIGH  
0
0
-
-
0
0
-
-
ns  
ns  
ns  
ns  
address setup time before RD  
LOW  
-
-
data outputs high-impedance  
time after CS HIGH  
3
-
3
-
chip deselect time after RD  
HIGH  
0
0
tRLRH  
tRLDV  
tSHRL  
RD pulse width  
25  
-
-
25  
-
-
ns  
ns  
ns  
data valid time after RD LOW  
22  
-
22  
-
CS HIGH until next ISP1181A  
RD  
60  
120  
tSHRL+tRLRH read cycle time  
Write timing (see Figure 19)  
90  
-
180  
-
ns  
tWHAX  
tAVWL  
tSHWL  
address hold time after WR  
HIGH  
1
-
-
-
1
-
-
-
ns  
ns  
ns  
address setup time before WR  
LOW  
0
0
CS HIGH until next ISP1181A  
WR  
60  
120  
t
SHWL+tWLWH write cycle time  
90/180[1]  
-
-
-
180  
22  
0
-
-
-
ns  
ns  
ns  
tWLWH  
tWHSH  
WR pulse width  
22  
0
chip deselect time after WR  
HIGH  
tDVWH  
data setup time before WR  
HIGH  
5
3
-
-
5
3
-
-
ns  
ns  
tWHDZ  
data hold time after WR HIGH  
ALE timing (see Figure 20)  
tLH  
ALE pulse width  
20  
10  
-
-
20  
10  
-
-
ns  
ns  
tAVLL  
address setup time before ALE  
LOW  
tLLAX  
address hold time after ALE  
LOW  
reading  
writing  
0
0
10  
-
0
0
10  
-
ns  
ns  
[1] Commands Acknowledge Setup, Clear Buffer, Validate Buffer and Write Endpoint Configuration require 180 ns to complete.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
51 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
t
t
RHAX  
A0  
t
AVRL  
SHDZ  
CS/DACK  
(1)  
t
t
SHRL  
RLRH  
RD  
t
RHSH  
t
RLDV  
DATA  
MGS787  
(1) For tSHRL, both CS and RD must be de-asserted.  
Fig 18. Parallel interface read timing (I/O and 8237 compatible DMA).  
t
WHAX  
A0  
t
AVWL  
CS/DACK  
t
WLWH  
(1)  
t
SHWL  
t
WHSH  
WR  
t
t
DVWH  
WHDZ  
DATA  
MGS789  
(1) For tSHWL, both CS and WR must be de-asserted.  
Fig 19. Parallel interface write timing (I/O and 8237 compatible DMA).  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
52 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
t
LH  
ALE  
t
LLAX  
t
AVLL  
AD0  
DATA  
A0  
D0  
MGS790  
Fig 20. ALE timing.  
20.2 Access cycle timing  
Table 58: Dynamic characteristics: access cycle timing  
Symbol  
Parameter  
Conditions  
8-bit bus  
Max  
16-bit bus  
Max  
Unit  
Min  
Min  
Write command + write data (see Figure 21 and Figure 22)  
Tcy(WC-WD)  
cycle time for write command,  
then write data  
100[1]  
-
205  
-
ns  
Tcy(WD-WD)  
Tcy(WD-WC)  
cycle time for write data  
90  
90  
-
-
205  
205  
-
-
ns  
ns  
cycle time for write data, then  
write command  
Write command + read data (see Figure 23 and Figure 24)  
Tcy(WC-RD)  
cycle time for write command,  
then read data  
100[1]  
-
205  
-
ns  
Tcy(RD-RD)  
Tcy(RD-WC)  
cycle time for read data  
90  
90  
-
-
205  
205  
-
-
ns  
ns  
cycle time for read data, then  
write command  
[1] Commands Acknowledge Setup, Clear Buffer, Validate Buffer and Write Endpoint Configuration require 180 ns to complete.  
DATA  
command  
data  
data  
T
T
cy(WD-WD)  
cy(WC-WD)  
WR  
CS  
MGT022  
Fig 21. Write command + write data cycle timing.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
53 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
DATA  
WR  
data  
command  
data  
T
cy(WD-WC)  
(1)  
RD  
CS  
MGT025  
(1) Example: read data.  
Fig 22. Write data + write command cycle timing.  
DATA  
WR  
command  
data  
data  
T
cy(WC-RD)  
RD  
CS  
T
cy(RD-RD)  
MGT023  
Fig 23. Write command + read data cycle timing.  
DATA  
WR  
data  
command  
data  
T
cy(RD-WC)  
(1)  
RD  
CS  
MGT024  
(1) Example: read data.  
Fig 24. Read data + write command cycle timing.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
54 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
20.3 DMA timing: single-cycle mode  
Table 59: Dynamic characteristics: single-cycle DMA timing  
Symbol Parameter  
Conditions  
8-bit bus  
Max  
16-bit bus  
Max  
Unit  
Min  
Min  
8237 compatible mode (see Figure 25)  
tASRP  
DREQ off after DACK on  
-
40  
-
-
40  
-
ns  
ns  
Tcy(DREQ) cycle time signal DREQ  
90  
180  
Read in DACK-only mode (see Figure 26)  
tASRP  
tASAP  
tASAP  
tAPRS  
tASDV  
tAPDZ  
DREQ off after DACK on  
DACK pulse width  
-
40  
-
-
40  
-
ns  
ns  
ns  
25  
90  
25  
180  
+
DREQ on after DACK off  
-
-
data valid after DACK on  
data hold after DACK off  
-
-
22  
3
-
-
22  
3
ns  
ns  
Write in DACK-only mode (see Figure 27)  
tASRP  
DREQ off after DACK on  
DREQ on after DACK off  
-
40  
-
-
40  
-
ns  
ns  
tASAP  
tAPRS  
tDVAP  
tAPDZ  
+
90  
180  
data setup before DACK off  
data hold after DACK off  
5
3
-
-
5
3
-
-
ns  
ns  
Single-cycle EOT (see Figure 28)  
tRSIH  
tIHAP  
tEOT  
input RD/WR HIGH after DREQ on  
22  
0
-
-
-
22  
0
-
-
-
ns  
ns  
ns  
DACK off after input RD/WR HIGH  
EOT pulse width  
EOT on;  
22  
22  
DACK on;  
RD/WR LOW  
tRLIS  
tWLIS  
input EOT on after RD LOW  
input EOT on after WR LOW  
-
-
22  
22  
-
-
89  
89  
ns  
ns  
T
cy(DREQ)  
t
ASRP  
DREQ  
DACK  
MGS792  
Fig 25. DMA timing in 8237 compatible mode.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
55 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
t
t
ASRP  
APRS  
DREQ  
DACK  
t
t
APDZ  
ASDV  
DATA  
MGS793  
Fig 26. DMA read timing in DACK-only mode.  
t
ASAP  
t
t
APRS  
ASRP  
DREQ  
t
t
DVAP  
APDZ  
DACK  
DATA  
MGS794  
Fig 27. DMA write timing in DACK-only mode.  
t
RSIH  
DREQ  
t
t
ASRP  
(1)  
IHAP  
DACK  
RD/WR  
(2)  
t
RLIS  
t
EOT  
(3)  
t
WLIS  
EOT  
MGS795  
(1) tASRP starts from DACK or RD/WR going LOW, whichever occurs later.  
(2) The RD/WR signals are not used in DACK-only DMA mode.  
(3) The EOT condition is considered valid if DACK, RD/WR and EOT are all active (= LOW).  
Fig 28. EOT timing in single-cycle DMA mode.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
56 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
20.4 DMA timing: burst mode  
Table 60: Dynamic characteristics: burst mode DMA timing  
Symbol  
Parameter  
Conditions  
8-bit bus  
Max  
16-bit bus  
Max  
Unit  
Min  
Min  
Burst (see Figure 29)  
tRSIH  
tILRP  
tIHAP  
tIHIL  
input RD/WR HIGH after DREQ on  
22  
-
-
22  
-
-
ns  
ns  
ns  
ns  
DREQ off after input RD/WR LOW  
DACK off after input RD/WR HIGH  
60  
-
60  
-
0
0
DMA burst repeat interval (input  
RD/WR HIGH to LOW)  
90  
-
180  
-
Burst EOT (see Figure 30)  
tEOT  
EOT pulse width  
EOT on;  
22  
-
22  
-
ns  
DACK on;  
RD/WR LOW  
tISRP  
tRLIS  
tWLIS  
DREQ off after input EOT on  
input EOT on after RD LOW  
input EOT on after WR LOW  
-
-
-
40  
22  
22  
-
-
-
40  
89  
89  
ns  
ns  
ns  
t
t
ILRP  
RSIH  
DREQ  
t
IHAP  
DACK  
t
IHIL  
RD/WR  
MGS796  
Fig 29. Burst mode DMA timing.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
57 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
t
ISRP  
DREQ  
DACK  
t
RLIS  
t
WLIS  
RD/WR  
EOT  
(1)  
t
EOT  
MGS797  
(1) The EOT condition is considered valid if DACK, RD/WR and EOT are all active (= LOW).  
Fig 30. EOT timing in burst mode DMA.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
58 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
21. Application information  
21.1 Typical interface circuits  
V
CC  
A1  
AD0  
D0  
D1  
LINK LED  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
DATA8  
DATA9  
DATA10  
DATA11  
DATA12  
DATA13  
DATA14  
DATA15  
D2  
V
reg(3.3)  
D3  
V
CC  
D4  
0.1  
µF  
0.1  
µF  
RESET  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
USB  
upstream  
connector  
H8S/2357  
V
1
2
3
4
BUS  
22 Ω  
22 Ω  
D−  
D+  
ISP1181A  
A0  
CSn  
RD  
ALE  
CS  
WR  
RD  
IRQ  
WR  
P1.1  
XTAL1  
XTAL2  
INT  
DREQ0  
DACK  
TEND  
SUSPEND  
WAKEUP  
DREQ  
(1)  
470  
GL  
6 MHz  
18 pF  
DACK  
EOT  
18 pF  
BUS_CONF1  
BUS_CONF0  
004aaa029  
(1) Use of a 470 resistor assumes that VCC is 5.0 V.  
Fig 31. Typical interface circuit for bus configuration mode 0 (shared ports: 16-bit PIO, 16-bit DMA).  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
59 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
V
CC  
AD0  
D1  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
ALE  
LINK LED  
D2  
V
reg(3.3)  
D3  
V
CC  
D4  
0.1  
0.1  
µF  
RESET  
D5  
µF  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
PSEN  
8051  
USB  
upstream  
connector  
RD  
WR  
IRQ  
V
1
2
3
4
BUS  
22 Ω  
22 Ω  
D−  
D+  
ISP1181A  
A0  
ALE  
CS  
P2.3  
P2.0  
P2.1  
RD  
WR  
XTAL1  
XTAL2  
INT  
SUSPEND  
WAKEUP  
DREQ  
DACK  
(1)  
470 Ω  
GL  
6 MHz  
EOT  
18 pF  
18 pF  
BUS_CONF1  
BUS_CONF0  
BUS_REQ  
BUS_GNT  
MCU_WR  
MCU_RD  
CS  
RD  
WR  
CS1  
CS2  
RD  
WR  
DREQ  
DACK  
8-BIT  
DMA PORT  
EOT  
DMA  
CONTROLLER  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
004aaa030  
(1) Use of a 470 resistor assumes that VCC is 5.0 V.  
Fig 32. Typical interface circuit for bus configuration mode 2 (shared ports: 8-bit PIO, 8-bit DMA).  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
60 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
21.2 Interfacing ISP1181A with an H8S/2357 microcontroller  
This section gives a summary of the ISP1181A interface with a H8S/2357 (or  
compatible) microcontroller. Aspects discussed are: interrupt handling, address  
mapping, DMA and I/O port usage for suspend and remote wake-up control. A typical  
interface circuit is shown in Figure 31.  
21.2.1 Interrupt handling  
ISP1181A: program the Hardware Configuration register to select an active LOW  
level for output INT (INTPOL = 0, see Table 20)  
H8S/2357: program the IRQ Sense Control Register (ISCRH and ISCRL) to  
specify low-level sensing for the IRQ input.  
21.2.2 Address mapping in H8S/2357  
The H8S/2357 bus controller partitions its 16 Mbyte address space into eight areas  
(0 to 7) of 2 Mbyte each. The bus controller will activate one of the outputs CS0 to  
CS7 when external address space for the associated area is accessed.  
The ISP1181A can be mapped to any address area, allowing easy interfacing when  
the ISP1181A is the only peripheral in that area. If in the example circuit for bus  
configuration mode 0 (see Figure 31) the ISP1181A is mapped to address FFFF08H  
(in area 7), output CS7 of the H8S/2357 can be directly connected to input CS of the  
ISP1181A.  
The external bus specifications, bus width, number of access states and number of  
program wait states can be programmed for each address area. The recommended  
settings of H8S/2357 for interfacing the ISP1181A are:  
8-bit bus in Bus Width Control Register (ABWCR)  
enable wait states in Access State Control Register (ASTCR)  
1 program wait state in the Wait Control Register (WCRH and WCRL).  
21.2.3 Using DMA  
The ISP1181A can be configured for several methods of DMA with the H8S/2357 and  
other devices. The interface circuit in Figure 31 shows an example of the ISP1181A  
working with the H8S/2357 in single-address DACK-only DMA mode. External  
devices are not shown.  
For single-address DACK-only mode, firmware must program the following settings:  
ISP1181A:  
program the DMA Counter register with the total transfer byte count  
program the Hardware Configuration Register to select active level LOW for  
DREQ and DACK  
select the target endpoint and transfer direction  
select DACK-only mode and enable DMA transfer.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
61 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
21.2.4 Using H8S/2357 I/O Ports  
In the interface circuit of Figure 31 pin P1.1 of the H8S/2357 is configured as a  
general purpose output port. This pin drives the ISP1181A’s WAKEUP input to  
generate a remote wake-up.  
The H8S/2357 has 3 registers to configure port 1: Port 1 Data Direction Register  
(P1DDR), Port 1 Data Register (P1DR) and Port 1 Register (PORT1). Only registers  
P1DDR and P1DR must be configured, register PORT1 is only used to read the  
actual levels on the port pins.  
H8S/2357:  
select pin P1.1 to be an output in register P1DDR  
program the desired bit value for P1.1 in register P1DR.  
22. Test information  
The dynamic characteristics of the analog I/O ports (D+ and D−) as listed in Table 56,  
were determined using the circuit shown in Figure 33.  
test point  
22 Ω  
D.U.T  
C
L
50 pF  
15 kΩ  
MGS784  
Load capacitance:  
CL = 50 pF (full-speed mode)  
Speed:  
full-speed mode only: internal 1.5 kpull-up resistor on D+  
Fig 33. Load impedance for D+ and Dpins.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
62 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
23. Package outline  
TSSOP48: plastic thin shrink small outline package; 48 leads; body width 6.1 mm  
SOT362-1  
E
D
A
X
c
H
v
M
A
y
E
Z
48  
25  
Q
A
2
(A )  
3
A
A
1
pin 1 index  
θ
L
p
L
detail X  
1
24  
w
M
b
e
p
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions).  
A
(1)  
(2)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
8o  
0o  
0.15  
0.05  
1.05  
0.85  
0.28  
0.17  
0.2  
0.1  
12.6  
12.4  
6.2  
6.0  
8.3  
7.9  
0.8  
0.4  
0.50  
0.35  
0.8  
0.4  
mm  
1.2  
0.5  
1
0.25  
0.25  
0.08  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT362-1  
MO-153  
Fig 34. TSSOP48 package outline.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
63 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
HVQFN48: plastic thermal enhanced very thin quad flat package; no leads;  
48 terminals; body 7 x 7 x 0.85 mm  
SOT619-2  
D
B
D
A
1
terminal 1  
index area  
A
4
A
E
E
A
1
1
c
detail X  
C
e
1
e
y
y
v
M
M
C
C
A
B
C
1
1/2 e  
b
w
13  
24  
L
25  
12  
e
e
E
2
h
1/2 e  
1
36  
terminal 1  
index area  
48  
37  
D
h
X
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
A
b
c
E
e
e
1
e
2
y
D
D
D
E
E
1
L
v
w
y
1
1
4
h
max.  
1
h
0.05 0.80 0.30  
0.00 0.65 0.18  
7.15 6.85 5.25 7.15 6.85  
6.85 6.65 4.95 6.85 6.65  
5.25  
4.95  
0.5  
0.3  
mm  
0.05  
0.1  
1
0.2  
0.5  
5.5  
5.5  
0.1  
0.05  
REFERENCES  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
JEDEC  
JEITA  
02-05-17  
02-10-22  
SOT619-2  
- - -  
MO-220  
- - -  
Fig 35. HVQFN48 package outline.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
64 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
24. Soldering  
24.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account  
of soldering ICs can be found in our Data Handbook IC26; Integrated Circuit  
Packages (document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine  
pitch SMDs. In these situations reflow soldering is recommended. In these situations  
reflow soldering is recommended.  
24.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling  
or pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 to 270 °C depending on solder  
paste material. The top-surface temperature of the packages should preferably be  
kept:  
below 225 °C (SnPb process) or below 245 °C (Pb-free process)  
for all BGA, HTSSON..T and SSOP..T packages  
for packages with a thickness 2.5 mm  
for packages with a thickness < 2.5 mm and a volume 350 mm3 so called  
thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with  
a thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.  
Moisture sensitivity precautions, as indicated on packing, must be respected at all  
times.  
24.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging  
and non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal  
results:  
Use a double-wave soldering method comprising a turbulent wave with high  
upward pressure followed by a smooth laminar wave.  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
9397 750 13959  
Product data  
Rev. 05 — 08 December 2004  
65 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle  
to the transport direction of the printed-circuit board. The footprint must  
incorporate solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 to 4 seconds at 250 °C or  
265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in  
most applications.  
24.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low  
voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time  
must be limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 to 5 seconds between 270 and 320 °C.  
24.5 Package related soldering information  
Table 61: Suitability of surface mount IC packages for wave and reflow soldering  
methods  
Package[1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, USON, VFBGA  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, not suitable[4]  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5][6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note  
(AN01026); order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal  
or external package cracks may occur due to vaporization of the moisture in them (the so called  
popcorn effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated  
Circuit Packages; Section: Packing Methods.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
66 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must  
on no account be processed through more than one soldering cycle or subjected to infrared reflow  
soldering with peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow  
oven. The package body peak temperature must be kept as low as possible.  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom  
side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with  
the heatsink on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it  
is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSOP packages with a pitch (e) equal to or  
larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than  
0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex  
foil by using a hot bar soldering process. The appropriate soldering profile can be provided on  
request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
67 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
25. Revision history  
Table 62: Revision history  
Rev Date  
CPCN  
Description  
05 20041208 200412002 Product data (9397 750 13959)  
Modifications:  
Updated terminology from device to peripheral, where applicable  
Updated to the current document style  
Figure 3 “Pin configuration HVQFN48.: made CS active LOW  
Section 9.2 “Endpoint FIFO size”: removed “(512 bytes for non-isochronous FIFOs)”  
from the second last paragraph  
Section 11 “Suspend and resume”: updated the complete section  
Section 12.1.4 “Write/Read Hardware Configuration”: changed bit name from CKDIV to  
CLKDIV  
Table 32 “Endpoint Status Register: bit description”: changed the description for bit 7  
from “The endpoint automatically resumes upon reception of a SETUP token.to “The  
endpoint is automatically unstalled upon reception of a SETUP token.”  
Section 12.2.3 “Stall Endpoint/Unstall Endpoint”: updated second and third paragraphs:  
second paragraph: changed “A stalled control endpoint automatically resumes when  
it receives a SETUP token, regardless of the packet content.to “A stalled control  
endpoint is automatically unstalled when it receives a SETUP token, regardless of  
the packet content.”  
third paragraph: changed “When a stalled endpoint resumes (either by the Unstall  
Endpoint command or by receiving a SETUP token), it is also re-initialized.to “When  
a stalled endpoint is unstalled (either by the Unstall Endpoint command or by  
receiving a SETUP token), it is also re-initialized.”  
Created a separate section for “Recommended operating conditions”  
Removed old Section 19.1 “Timing symbols”  
Table 57 “Dynamic characteristics: parallel interface timing”: updated values of  
parameters tRHAX and tWHAX. Added parameters tSHRL and tSHWL  
.
04 20020716 -  
03 20020108 -  
02 20010919 -  
01 20010725 -  
Product data (9397 750 09613)  
Product data (9397 750 09007)  
Preliminary data (9397 750 08734)  
Objective data (9397 750 08602)  
9397 750 13959  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 05 — 08 December 2004  
68 of 70  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
26. Data sheet status  
Level Data sheet status[1]  
Product status[2][3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
27. Definitions  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
licence or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
29. Trademarks  
ACPI — is an open industry specification for PC power management,  
co-developed by Intel Corp., Microsoft Corp. and Toshiba  
GoodLink — is a trademark of Koninklijke Philips Electronics N.V.  
OnNow — is a trademark of Microsoft Corp.  
SoftConnect — is a trademark of Koninklijke Philips Electronics N.V.  
Zip — is a registered trademark of Iomega Corp.  
28. Disclaimers  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
Contact information  
For additional information, please visit http://www.semiconductors.philips.com.  
For sales office addresses, send e-mail to: sales.addresses@www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
69 of 70  
9397 750 13959  
Product data  
Rev. 05 — 08 December 2004  
ISP1181A  
Full-speed USB peripheral controller  
Philips Semiconductors  
Contents  
1
2
3
4
5
General description. . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
12.2.3  
12.2.4  
12.2.5  
12.2.6  
12.2.7  
12.3  
12.3.1  
12.3.2  
12.3.3  
12.3.4  
12.3.5  
12.3.6  
Stall Endpoint/Unstall Endpoint . . . . . . . . . . . . . . . . 34  
Validate Endpoint Buffer . . . . . . . . . . . . . . . . . . . . . . 35  
Clear Endpoint Buffer . . . . . . . . . . . . . . . . . . . . . . . . 35  
Check Endpoint Status . . . . . . . . . . . . . . . . . . . . . . . 35  
Acknowledge Setup . . . . . . . . . . . . . . . . . . . . . . . . . 36  
General commands . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Read Endpoint Error Code . . . . . . . . . . . . . . . . . . . . 36  
Unlock Device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Write/Read Scratch Register . . . . . . . . . . . . . . . . . . 38  
Read Frame Number . . . . . . . . . . . . . . . . . . . . . . . . 38  
Read Chip ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Read Interrupt Register . . . . . . . . . . . . . . . . . . . . . . 40  
6
Pinning information. . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
6.1  
6.2  
7
Functional description . . . . . . . . . . . . . . . . . . . . . . . . 9  
Analog transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Philips Serial Interface Engine (SIE) . . . . . . . . . . . . . 9  
Memory Management Unit (MMU) and integrated  
RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SoftConnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
GoodLink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Bit clock recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
PLL clock multiplier . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Parallel I/O (PIO) and Direct Memory Access  
7.1  
7.2  
7.3  
13  
14  
15  
16  
17  
18  
19  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Crystal oscillator and LazyClock . . . . . . . . . . . . . . . 43  
Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Recommended operating conditions. . . . . . . . . . . . 46  
Static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 47  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
(DMA) interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
20  
Dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . 49  
Parallel I/O timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Access cycle timing . . . . . . . . . . . . . . . . . . . . . . . . . 53  
DMA timing: single-cycle mode . . . . . . . . . . . . . . . . 55  
DMA timing: burst mode . . . . . . . . . . . . . . . . . . . . . . 57  
8
Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
20.1  
20.2  
20.3  
20.4  
9
Endpoint descriptions. . . . . . . . . . . . . . . . . . . . . . . . 11  
Endpoint access. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Endpoint FIFO size . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Endpoint initialization . . . . . . . . . . . . . . . . . . . . . . . . 14  
Endpoint I/O mode access. . . . . . . . . . . . . . . . . . . . 14  
Special actions on control endpoints . . . . . . . . . . . . 14  
9.1  
9.2  
9.3  
9.4  
9.5  
21  
Application information. . . . . . . . . . . . . . . . . . . . . . . 59  
Typical interface circuits . . . . . . . . . . . . . . . . . . . . . . 59  
Interfacing ISP1181A with an H8S/2357  
21.1  
21.2  
microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Interrupt handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Address mapping in H8S/2357. . . . . . . . . . . . . . . . . 61  
Using DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Using H8S/2357 I/O Ports . . . . . . . . . . . . . . . . . . . . 62  
10  
DMA transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Selecting an endpoint for DMA transfer . . . . . . . . . . 15  
8237 compatible mode. . . . . . . . . . . . . . . . . . . . . . . 16  
DACK-only mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
End-Of-Transfer conditions. . . . . . . . . . . . . . . . . . . . 18  
Bulk endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Isochronous endpoints. . . . . . . . . . . . . . . . . . . . . . . 19  
21.2.1  
21.2.2  
21.2.3  
21.2.4  
10.1  
10.2  
10.3  
10.4  
10.4.1  
10.4.2  
22  
23  
Test information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
11  
Suspend and resume . . . . . . . . . . . . . . . . . . . . . . . . 20  
Suspend conditions . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Powered-off application . . . . . . . . . . . . . . . . . . . . . . 21  
Resume conditions. . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Control bits in suspend and resume. . . . . . . . . . . . . 22  
24  
Soldering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Introduction to soldering surface mount packages . . 65  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Package related soldering information . . . . . . . . . . . 66  
11.1  
11.1.1  
11.2  
11.3  
24.1  
24.2  
24.3  
24.4  
24.5  
12  
Commands and registers . . . . . . . . . . . . . . . . . . . . . 23  
Initialization commands . . . . . . . . . . . . . . . . . . . . . . 25  
Write/Read Endpoint Configuration . . . . . . . . . . . . . 25  
Write/Read Device Address. . . . . . . . . . . . . . . . . . . 26  
Write/Read Mode Register. . . . . . . . . . . . . . . . . . . . 27  
Write/Read Hardware Configuration . . . . . . . . . . . . 28  
Write/Read Interrupt Enable Register . . . . . . . . . . . 29  
Write/Read DMA Configuration . . . . . . . . . . . . . . . . 30  
Write/Read DMA Counter . . . . . . . . . . . . . . . . . . . . 31  
Reset Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Data flow commands . . . . . . . . . . . . . . . . . . . . . . . . 32  
Write/Read Endpoint Buffer . . . . . . . . . . . . . . . . . . . 32  
Read Endpoint Status . . . . . . . . . . . . . . . . . . . . . . . 33  
12.1  
25  
26  
27  
28  
29  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
12.1.1  
12.1.2  
12.1.3  
12.1.4  
12.1.5  
12.1.6  
12.1.7  
12.1.8  
12.2  
12.2.1  
12.2.2  
© Koninklijke Philips Electronics N.V. 2004.  
Printed in The Netherlands  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or  
contract, is believed to be accurate and reliable and may be changed without notice. No  
liability will be accepted by the publisher for any consequence of its use. Publication  
thereof does not convey nor imply any license under patent- or other industrial or  
intellectual property rights.  
Date of release: 08 December 2004  
Document order number: 9397 750 13959  

相关型号:

ISP1181ABS

Full-speed Universal Serial Bus peripheral controller
NXP

ISP1181ABS,557

IC UNIVERSAL SERIAL BUS CONTROLLER, PQCC48, 7 X 7 MM, 0.85 MM HEIGHT, PLASTIC, MO-220, SOT-619-2, HVQFN-48, Bus Controller
NXP

ISP1181ADGG

Full-speed Universal Serial Bus peripheral controller
NXP

ISP1181ADGG,112

IC UNIVERSAL SERIAL BUS CONTROLLER, PDSO48, 6.10 MM, PLASTIC, MO-153, SOT-362-1, TSSOP-48, Bus Controller
NXP

ISP1181B

Full-speed Universal Serial Bus peripheral controller
NXP

ISP1181BBS

Full-speed Universal Serial Bus peripheral controller
NXP

ISP1181BBS,518

IC UNIVERSAL SERIAL BUS CONTROLLER, PQCC48, 7 X 7 MM, 0.85 MM HEIGHT, PLASTIC, MO-220, SOT-619-2, HVQFN-48, Bus Controller
NXP

ISP1181BBS,551

IC UNIVERSAL SERIAL BUS CONTROLLER, PQCC48, 7 X 7 MM, 0.85 MM HEIGHT, PLASTIC, MO-220, SOT-619-2, HVQFN-48, Bus Controller
NXP

ISP1181BDGG

Full-speed Universal Serial Bus peripheral controller
NXP

ISP1181BDGG,112

IC UNIVERSAL SERIAL BUS CONTROLLER, PDSO48, 6.10 MM, PLASTIC, MO-153, SOT-362-1, TSSOP-48, Bus Controller
NXP

ISP1181BDGG,118

IC UNIVERSAL SERIAL BUS CONTROLLER, PDSO48, 6.10 MM, PLASTIC, MO-153, SOT-362-1, TSSOP-48, Bus Controller
NXP

ISP1181BS

BUS CONTROLLER
ETC