K32L2A31VLH1A [NXP]

K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM;
K32L2A31VLH1A
型号: K32L2A31VLH1A
厂家: NXP    NXP
描述:

K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM

微控制器 静态存储器
文件: 总96页 (文件大小:1141K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
K32L2Ax  
Data Sheet: Technical Data  
Rev. 3, 02/2021  
K32 L2A Microcontroller with 512  
K32L2A41VLL1A  
K32L2A31VLL1A  
K32L2A41VLH1A  
K32L2A31VLH1A  
KB Flash and 128 KB SRAM  
72 MHz Cortex-M0+ based Microcontroller  
Supports ultra-low-power Arm based microcontroller with crystal-  
less USB feature, large flash and RAM, evolutionary low-power  
peripherals and security features. This is an ideal solution for  
Sensor Hub applications, Smart Energy, Internet of Things, and  
Edge and Concentrator. This device offers:  
• 128 KB SRAM for data processing and connectivity stack  
• Ultra low dynamic and static power consumption with smart  
peripherals for low power applications  
• Advanced LPI2C and LPSPI supporting asynchronous  
DMA master data transition  
100 LQFP  
64 LQFP  
• FlexIO for flexible and high performance interfaces  
• Crypto acceleration with AES/DES/3DES/MD5/SHA and  
TRNG  
14x14 mm P 0.5 mm 10x10 mm P 0.5 mm  
• USB FS 2.0 device operation without need of external  
crystal  
• USB FS OTG controller, capable of USB host or device operation  
Core  
• Arm® Cortex®-M0+ cores up to 72 MHz in Normal  
mode and 96 MHz in High Speed mode  
Communication interfaces  
• Three 16-bit Low Power Serial Peripheral Interface  
(LPSPI) modules  
• One EMVSIM module supporting EMV version 4.3,  
ISO7816  
• Three LPUART modules  
• Three LPI2C modules supporting up to 5 Mbit/s  
• One FlexIO module emulating UART, SPI, camera  
interface, and Motorola 68K/Intel 8080 bus  
• USB FS 2.0 device operation without need of  
external crystal  
Memories  
• Up to 512 KB program flash memory  
• 128 KB SRAM  
• 32 KB ROM with built-in bootloader  
System peripherals  
• 8-channel DMA controller  
• Independent clocked Watchdog  
• Low-leakage wakeup unit  
• SWD debug interface and Micro Trace Buffer  
• Bit Manipulation Engine  
• USB FS OTG controller, capable of USB host or  
device operation  
Analog Modules  
• Memory Mapped Divide and Square Root module  
(MMDVSQ)  
• Cyclic Redundancy Check (CRC) module  
• Nested Vector Interrupt Controller (NVIC) supports 32  
interrupt vectors  
• 16-bit, 24-channel SAR ADC with internal voltage  
reference  
• Two High-speed analog comparators each  
containing a 6-bit DAC and programmable reference  
input  
• Additional peripheral interrupt support via Interrupt  
Multiplexer (INTMUX)  
• One 12-bit DAC  
• 1.2 V and 2.1 V voltage references (Vref)  
Clocks  
Timers  
• One 6-channel Timer/PWM module  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
• System Clock Generator module that includes the  
following clock sources:  
• Two 2-channel Timer/PWM modules  
• Two low-power timers  
• 48 to 60 MHz high accuracy fast internal  
reference clock (FIRC)  
• Two periodic interrupt timers  
• Secure Real time clock  
• 32–40 kHz, or 3–32 MHz crystal oscillator  
• 1 kHz LPO clock  
• 2/8 MHz slow internal reference clock (SIRC)  
• Peripheral Clock Control (PCC) module that  
supports asynchronous clocking and clock divide  
options for peripherals  
• 56-bit software time stamp timer at 1 MHz  
Security and integrity modules  
• 80-bit unique identification number per chip  
• CAU supports acceleration of the DES, 3DES, AES,  
MD5, SHA-1, and SHA-256 algorithms  
• True Random Number Generator (TRNG)  
Human-machine interface  
Operating Characteristics  
• General-purpose input/output up to 97  
• Low-power hardware touch sensor interface (TSI)  
• Voltage range: 1.71 to 3.6 V  
• Temperature range: –40 to 105 °C  
Related Resources  
Type  
Selector  
Description  
Resource  
Solution Advisor  
The NXP Solution Advisor is a web-based tool that features interactive  
application wizards and a dynamic product selector.  
Guide  
Reference  
Manual  
The Reference Manual contains a comprehensive description of the  
structure and function (operation) of a device.  
K32L2AxRM1  
Data Sheet  
The Data Sheet includes electrical characteristics and signal  
connections.  
This document1  
Chip Errata  
The chip mask set Errata provides additional or corrective information for K32L2A41VLL1A_1N52N 1  
a particular device mask set.  
Package  
drawing  
Package dimensions are provided in package drawings.  
• 64-LQFP: 98ASS23234W1  
• 100-LQFP:  
98ASS23308W1  
1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.  
2
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Table of Contents  
1
2
Ordering information............................................................5  
6.4 Voltage and current operating ratings........................35  
Overview............................................................................. 5  
2.1 System features.........................................................6  
7
General............................................................................... 35  
7.1 AC electrical characteristics.......................................35  
7.2 Nonswitching electrical specifications........................36  
2.1.1  
2.1.2  
2.1.3  
2.1.4  
2.1.5  
2.1.6  
2.1.7  
2.1.8  
2.1.9  
Arm Cortex-M0+ core.................................. 6  
NVIC............................................................ 7  
AWIC........................................................... 7  
Memory........................................................8  
Reset and boot............................................ 8  
Clock options............................................... 11  
Security........................................................13  
Power management.....................................14  
LLWU...........................................................16  
7.2.1  
Voltage and current operating  
requirements................................................36  
LVD, HVD, and POR operating  
7.2.2  
requirements................................................37  
Voltage and current operating behaviors.....38  
Power mode transition operating behaviors 39  
Power consumption operating behaviors.....40  
EMC radiated emissions operating  
7.2.3  
7.2.4  
7.2.5  
7.2.6  
2.1.10 Debug controller.......................................... 18  
behaviors..................................................... 48  
Designing with radiated emissions in mind..49  
Capacitance attributes.................................49  
2.2 Peripheral features.....................................................18  
7.2.7  
7.2.8  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
2.2.5  
2.2.6  
2.2.7  
16-bit SAR ADC...........................................18  
Crossbar Switch Lite (AXBS-Lite)................18  
Bit Manipulation Engine2 (BME2)................19  
Cryptographic Acceleration Unit (CAU)....... 19  
Comparator (CMP)...................................... 19  
12-bit DAC................................................... 20  
Direct Memory Access Multiplexer  
7.3 Switching specifications.............................................49  
7.3.1  
7.3.2  
Device clock specifications..........................49  
General switching specifications..................50  
7.4 Thermal specifications............................................... 52  
7.4.1  
7.4.2  
Thermal operating requirements..................52  
Thermal attributes........................................52  
(DMAMUX).................................................. 20  
EMVSIM.......................................................20  
Flexible I/O (FlexIO).....................................20  
8
Peripheral operating requirements and behaviors.............. 53  
8.1 Core modules.............................................................53  
2.2.8  
2.2.9  
8.1.1  
SWD electricals .......................................... 53  
2.2.10 General-Purpose Input/Output (GPIO)........ 21  
2.2.11 Low Power Inter-Integrated Circuit (LPI2C).21  
2.2.12 The Low Power Periodic Interrupt Timer  
8.2 System modules........................................................ 54  
8.3 Clock modules........................................................... 54  
8.3.1  
System Clock Generation (SCG)  
(LPIT)...........................................................21  
specifications............................................... 54  
Oscillator electrical specifications................57  
2.2.13 Low Power Serial Peripheral Interface  
8.3.2  
(LPSPI)........................................................ 22  
8.4 Memories and memory interfaces..............................59  
8.4.1 Flash electrical specifications...................... 59  
2.2.14 Low-Power Timer (LPTMR).........................22  
2.2.15 Low Power Universal Asynchronous  
8.5 Security and integrity modules...................................61  
8.6 Analog........................................................................61  
Receiver/Transmitter (LPUART)..................22  
2.2.16 Peripheral Clock Control (PCC)...................23  
2.2.17 Real Time Clock (RTC)................................23  
2.2.18 Timer/PWM Module (TPM)..........................23  
2.2.19 Touch Sensing Input (TSI)...........................23  
2.2.20 Universal Serial Bus (USB) FS....................24  
2.2.21 Voltage Reference (VREF)..........................24  
2.2.22 Watchdog (WDOG)......................................25  
Memory Map....................................................................... 25  
Pinouts and Packaging....................................................... 27  
4.1 Signal Multiplexing and Pin Assignments.................. 27  
4.2 K32 L2A Pinouts........................................................ 31  
Dimensions..........................................................................33  
5.1 Obtaining package dimensions..................................33  
Ratings................................................................................ 34  
6.1 Thermal handling ratings........................................... 34  
6.2 Moisture handling ratings...........................................34  
6.3 ESD handling ratings................................................. 34  
8.6.1  
8.6.2  
8.6.3  
ADC electrical specifications....................... 61  
Voltage reference electrical specifications...66  
CMP and 6-bit DAC electrical  
specifications............................................... 67  
12-bit DAC electrical characteristics............69  
8.6.4  
8.7 Timers........................................................................72  
8.8 Communication interfaces......................................... 72  
3
4
8.8.1  
8.8.2  
8.8.3  
8.8.4  
8.8.5  
8.8.6  
EMV SIM specifications...............................72  
USB electrical specifications........................77  
USB VREG electrical specifications............ 78  
LPSPI switching specifications.................... 78  
LPI2C...........................................................83  
LPUART.......................................................83  
5
6
8.9 Human-machine interfaces (HMI)..............................84  
8.9.1 TSI electrical specifications......................... 84  
9
Design considerations.........................................................84  
9.1 Hardware design considerations................................84  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
3
NXP Semiconductors  
9.1.1  
9.1.2  
9.1.3  
9.1.4  
9.1.5  
Printed circuit board recommendations.........84  
Power delivery system.................................. 85  
Analog design............................................... 85  
Digital design.................................................86  
Crystal oscillator............................................90  
10 Part identification...................................................................92  
10.1 Description...................................................................92  
10.2 Format......................................................................... 93  
10.3 Fields...........................................................................93  
10.4 Example.......................................................................93  
11 Revision History.................................................................... 94  
9.2 Software considerations.............................................. 92  
4
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Ordering information  
1 Ordering information  
Table 1. Ordering information  
Part number  
Memory  
(Flash/  
SRAM)  
Core  
CPU frequency  
(MHz)  
Crypto  
Serial  
interfaces  
Packages  
K32L2A41VLL1A  
512 KB  
Flash/128 KB  
SRAM  
Single Cortex-  
M0+  
Up to 72 (normal),  
96 (HSRUN)  
Yes  
3xLPI2C,  
3xLPUART,  
3xLPSPI,  
EVMSIM,  
FlexIO, FS USB  
LQFP100  
LQFP100  
LQFP64  
LQFP64  
K32L2A31VLL1A  
K32L2A41VLH1A  
K32L2A31VLH1A  
256 KB  
Flash/128 KB  
SRAM  
Single Cortex-  
M0+  
Up to 72 (normal),  
96 (HSRUN)  
Yes  
Yes  
Yes  
3xLPI2C,  
3xLPUART,  
3xLPSPI,  
EVMSIM,  
FlexIO, FS USB  
512 KB  
Flash/128 KB  
SRAM  
Single Cortex-  
M0+  
Up to 72 (normal),  
96 (HSRUN)  
3xLPI2C,  
3xLPUART,  
3xLPSPI,  
EVMSIM,  
FlexIO, FS USB  
256 KB  
Flash/128 KB  
SRAM  
Single Cortex-  
M0+  
Up to 72 (normal),  
96 (HSRUN)  
3xLPI2C,  
3xLPUART,  
3xLPSPI,  
EVMSIM,  
FlexIO, FS USB  
2 Overview  
The following figure shows the block diagram of this device.  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
5
NXP Semiconductors  
Overview  
WDOG  
Reset  
Timer  
Timer  
Timer  
SPI  
UART  
Clocks/  
Oscillators  
SMC  
XTAL  
OSC  
ANALOG  
Temp  
SCG  
TSTMR  
0
TPM  
2
LPTMR WDOG LPSPI  
LPUART  
2
PMC  
CRC  
0
0
2
ADC  
Inputs  
TSI0  
TSI  
I2C  
ADC0  
DAC0  
CMP0  
CMP1  
FIRC  
PLL  
SIRC  
Monitor  
PCC  
LPI2C  
2
DAC  
Outputs  
VREF  
LPO1K  
LPIT  
0
LLWU  
0
SCG  
SRTC  
RCM  
SIM  
TRG  
MUX  
Reference  
Inputs  
RGPIO  
MSCM  
GPIO  
DMA0  
8-channel  
USB  
MCM  
s2  
s1  
USBVREG  
DMA  
CAU  
DMAMux  
m1  
Requests  
0
Core  
SRAM  
128KB  
DVSQ  
IO Port  
Cortex-M0+  
Platform  
AXBS  
m0  
MTB  
DWT  
CTI  
Cortex-M0+  
ROM  
32KB  
s0  
s3  
System  
m2  
SYSTICK NVIC  
SWD  
SWD-DP  
Interrupts  
FTFA  
DBG  
CTI  
MPU  
AWIC  
MDM-AP  
AHB-AP0  
FLASH 0  
256KB  
FMC  
FLASH 1  
256KB  
M0+ DBG  
AIPS1  
AHB  
EMVSIM  
EMVSIM  
TPM  
0/1  
TRNG  
Timer  
SPI  
USB  
SRAM  
LPSPI  
0/1  
PortA  
PortB  
PortC  
Port A  
Port B  
Port C  
PCC  
LPUART  
0/1  
UART  
I2C  
AIPS0  
TRG  
MUX  
LPI2C  
0/1  
FlexIO  
8/16-bit  
Parallel I/F  
FlexIO0  
LPTMR  
1
Timer  
PortD  
PortE  
Port D  
Port E  
USB  
USB0  
LEGEND:  
Synchronizer  
Bus Components  
Platform Domain  
CM0+ Platform  
Analog Domain  
AHB32  
S
AIPS0 IPBUS  
AIPS1 IPBUS  
Core Memory-  
Mapped Module  
DAP Reference  
sec  
exsc  
Memory protection  
Gaskets  
Other Module such  
as test/analog  
Figure 1. Block diagram  
2.1 System features  
6
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Overview  
2.1.1 Arm Cortex-M0+ core  
The enhanced Arm Cortex M0+ is the member of the Cortex-M series of processors  
targeting microcontroller cores focused on very cost sensitive, low power  
applications. It has a single 32-bit AMBA AHB-Lite interface and includes an NVIC  
component. It also has hardware debug functionality including support for simple  
program trace capability. The processor supports the Armv6-M instruction set  
(Thumb) architecture including all but three 16-bit Thumb opcodes (52 total) plus  
seven 32-bit instructions. It is upward compatible with other Cortex-M profile  
processors.  
2.1.2 NVIC  
The Nested Vectored Interrupt Controller supports nested interrupts and 4 priority  
levels for interrupts. In the NVIC, each source in the IPR registers contains two bits. It  
also differs in number of interrupt sources and supports 32 interrupt vectors.  
The Cortex-M family uses a number of methods to improve interrupt latency to up to  
15 clock cycles for Cortex-M0+. It also can be used to wake the MCU core from Wait  
and VLPW modes.  
2.1.3 AWIC  
The asynchronous wake-up interrupt controller (AWIC) is used to detect  
asynchronous wake-up events in Stop mode and signal to clock control logic to  
resume system clocking. After clock restarts, the NVIC observes the pending interrupt  
and performs the normal interrupt or event processing. The AWIC can be used to  
wake MCU core from Stop and VLPS modes.  
Wake-up sources are listed as below:  
Table 2. AWIC stop wake-up sources  
Wake-up source  
Available system resets  
Low-voltage detect  
Low-voltage warning  
Pin interrupts  
Description  
RESET pin when LPO is its clock source  
Power management controller—functional in Stop mode  
Power management controller—functional in Stop mode  
Port control module—any enabled pin interrupt is capable of waking the system  
The ADC is functional when using internal clock source  
Interrupt in normal or trigger mode  
ADC  
CMP  
Table continues on the next page...  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
7
NXP Semiconductors  
Overview  
Table 2. AWIC stop wake-up sources (continued)  
Wake-up source  
Description  
LPI2C  
LPUART  
RTC  
Any enabled interrupt can be a source as long as the module remains clocked  
Any enabled interrupt can be a source as long as the module remains clocked  
Alarm or seconds interrupt  
TSI  
Any enabled interrupt can be a source as long as the module remains clocked  
NMI_b pin  
NMI  
TPM  
Any enabled interrupt can be a source as long as the module remains clocked  
Any enabled interrupt can be a source as long as the module remains clocked  
Any enabled interrupt can be a source as long as the module remains clocked  
Any enabled interrupt can be a source as long as the module remains clocked  
Any enabled interrupt can be a source as long as the module remains clocked  
Wake-up  
LPTMR  
LPSPI  
LPIT  
FlexIO  
USB  
2.1.4 Memory  
This device has the following features:  
• 128 KB SRAM that can be accessed by bus masters through the cross-bar switch.  
• Peripherals (LPUART, LPI2C, LPSPI , USB) supported by the ROM Bootloader.  
The program flash memory contains a 16-byte flash configuration field that stores  
default protection settings and security information. The page size of program flash  
is 1 KB.  
The protection setting can protect 32 regions of the program flash memory from  
unintended erase or program operations.  
The security circuitry prevents unauthorized access to RAM or flash contents from  
debug port.  
• System register file  
This device contains a 32-byte register file that is powered in all power modes.  
Also, it retains contents during low-voltage detect (LVD) events and is only reset  
during a power-on reset.  
2.1.5 Reset and boot  
The following table lists all the reset sources supported by this device.  
8
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Overview  
Table 3. Reset sources  
Reset sources  
POR reset  
Description  
• Power-on reset (POR)  
External global system resets  
• External pin reset (PIN)  
• Low-voltage detect (LVD)  
• Low leakage wakeup (LLWU) reset  
• Clock monitor reset sources  
• Stop mode acknowledge error (SACKERR)  
Internal Core-generated resets  
Debug reset  
• Watchdog timer reset  
• Software reset (SW)  
• Lockup reset (LOCKUP)  
• MDM DAP system reset request  
• Debug resets  
The CM0+ core adds support for a programmable Vector Table Offset Register  
(VTOR) to relocate the exception vector table after reset. This device supports booting  
from internal flash and RAM.  
The Flash Option (FOPT) register in the Flash Memory module (FTFA_FOPT) allows  
the user to customize the operation of the MCU at boot time. The register contains  
read-only bits that are loaded from the NVM's option byte in the flash configuration  
field. Below is boot flow chart for this device.  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
9
NXP Semiconductors  
Overview  
Enter Boot  
Sequence  
RESET =0  
-Flash Init Complete  
SCG is enabled  
-RESET released  
-Core clock enabled  
-System released  
from reset  
Required Clocks  
are enabled  
Set up  
-Stack Pointer,  
-Program Counter  
-Link Register  
Flash Controller  
is initialized  
NVM option is read  
and stored in  
FTFA_FOPT  
FTFA_FOPT  
[BOOTPIN_OPT]  
Yes  
NMI/BOOTCFG0  
= 0?  
No  
= 0?  
Is  
CPU boots  
from ROM  
Yes  
LBOOT  
programmed  
for alternate  
divider?  
No  
Yes  
CPU begins  
execution at reset  
vector residing  
in flash  
Is NMI enabled  
in FTFA_FOPT?  
No  
No  
Is  
Yes  
No  
FAST_INIT  
cleared?  
Or  
CPU begins  
execution at NMI  
Interrupt Handler  
Yes  
Slower Clock  
Faster Clock  
is used  
is used  
for Flash init  
for Flash init  
Figure 2. Boot flow chart  
The blank chip is default to boot from ROM and remaps the vector table to ROM base  
address, otherwise, it remaps to flash address.  
10  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Overview  
2.1.6 Clock options  
The SCG provides four clock sources that are then distributed and optionally divided  
to the CPU, memory and various peripherals.  
The four clock sources available to the SCG are:  
• SOSC – output of the external oscillator (a crystal or externally applied clock  
input)  
• SIRC – output of the slow (2/8 Mhz) internal RC oscillator  
• FIRC – output of the fast ( 48-60 MHZ) internal RC oscillator  
• SPLL – output of the PLL, which is multiple of the SOSC or FIRC clock source.  
The following diagram shows the clock sources and clock trees.  
Core  
SPLL  
PLL  
(VCO/2)  
DIVCORE_CLK  
DIVSLOW_CLK  
DIVCORE  
DIVSLOW  
DMA  
SOSC  
FIRC  
SIRC  
SPLLDIV1_CLK  
SOSCDIV1_CLK  
FIRCDIV1_CLK  
SIRCDIV1_CLK  
USB  
Functional  
Clock  
DIV1  
DIV1  
DIV1  
DIV1  
USB  
Peripheral  
Functional  
Clocks  
SPLLDIV3_CLK  
SOSCDIV3_CLK  
FIRCDIV3_CLK  
SIRCDIV3_CLK  
DIV3  
DIV3  
DIV3  
DIV3  
Peripherals  
DIV2  
DIV2  
DIV2  
DIV2  
PCC  
SCG  
Figure 3. Clock distribution  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
11  
NXP Semiconductors  
Overview  
The SCG module supplies peripheral interface and functional clocks to the PCC,  
depending on the peripheral. The peripheral interface clock can be either the  
DIVCORE_CLK or the DIVSLOW_CLK, depending on the peripheral. The peripheral  
functional clocks and the peripheral interface clocks for each module/peripheral are  
detailed in table below.  
Table 4. Peripheral Clocks  
Source Module  
Module Reset  
Bus Interface  
Clock  
Bus Interface  
Clock Gating  
Control  
Peripheral  
Functional Clock  
PCCn Functional  
Clock Divider  
System  
Coretex M0+ Core Chip Reset  
controller  
DIVCORE_CLK  
DMA controller  
Chip Reset  
Chip Reset  
DIVCORE_CLK  
DIVSLOW_CLK  
Yes  
Yes  
DMA channel  
multiplexer  
(DMAMUX)  
AXBS  
AIPS  
Chip Reset  
Chip Reset  
Chip Reset  
DIVCORE_CLK  
DIVCORE_CLK  
DIVSLOW_CLK  
DIVSLOW_CLK  
INTMUX  
LLWU  
Chip Reset not  
VLLS  
LPO  
SCG  
PCC  
Chip Reset  
Chip Reset  
Chip Reset  
DIVSLOW_CLK  
DIVSLOW_CLK  
DIVSLOW_CLK  
PORT multiplex  
control  
Yes  
SIM  
Chip Reset  
POR  
DIVSLOW_CLK  
DIVSLOW_CLK  
Power  
Management  
Controller (PMC)  
System Mode  
Controller (SMC)  
Chip Reset not  
VLLS  
DIVSLOW_CLK  
DIVSLOW_CLK  
Reset Control  
Module (RCM)  
POR/LVD/VLLS  
LPO  
Security/Integrity  
WDOG1  
Chip Reset  
DIVSLOW_CLK  
LPO, ERCLK,  
SIRC  
TRNG  
CAU  
Chip Reset  
Chip Reset  
Chip Reset  
DIVSLOW_CLK  
DIVCORE_CLK  
DIVSLOW_CLK  
Yes  
Yes  
Yes  
CRC  
Memory  
Flash Memory Unit Early Reset  
DIVSLOW_CLK  
DIVCORE_CLK  
Flash Memory  
Controller  
Chip Reset  
Table continues on the next page...  
12  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Overview  
Table 4. Peripheral Clocks (continued)  
Source Module  
Module Reset  
Bus Interface  
Clock  
Bus Interface  
Clock Gating  
Control  
Peripheral  
Functional Clock  
PCCn Functional  
Clock Divider  
SRAM  
Chip Reset  
DIVCORE_CLK  
DIVSLOW_CLK  
System Register  
File  
POR  
Analog  
TSI  
Chip Reset not  
VLLS  
DIVSLOW_CLK  
Yes  
ADC  
Chip Reset  
Chip Reset  
Chip Reset  
Chip Reset  
DIVSLOW_CLK  
DIVSLOW_CLK  
DIVSLOW_CLK  
DIVSLOW_CLK  
Yes  
Yes  
Yes  
Yes  
SCG DIV3  
VREF  
DAC  
CMP  
Timers  
TPM  
Chip Reset  
Chip Reset  
DIVSLOW_CLK  
DIVSLOW_CLK  
DIVSLOW_CLK  
Yes  
Yes  
Yes  
SCG DIV3  
SCG DIV3  
LPO, ERCLK2,  
SIRC,  
LPIT  
Low-Power Timer POR/LVD  
(LPTMR)3  
OSC32KCLK  
Real-time Clock  
(RTC)4  
POR  
DIVSLOW_CLK  
DIVSLOW_CLK  
Yes  
OSC32KCLK, LPO  
TSTMR  
Chip Reset  
SIRCLK @ 1 MHz  
Communications  
USB  
Chip Reset  
DIVCORE_CLK5  
Yes  
SCG DIV1,  
3-bit Divide, 1-bit  
Fraction 7  
USB_CLKIN 6  
LPSPI  
Chip Reset  
Chip Reset  
Chip Reset  
Chip Reset  
Chip Reset  
Chip Reset  
DIVSLOW_CLK  
DIVSLOW_CLK  
DIVSLOW_CLK  
DIVSLOW_CLK  
DIVSLOW_CLK  
DIVCORE_CLK  
Yes  
Yes  
Yes  
Yes  
Yes  
SCG DIV3  
SCG DIV3  
SCG DIV3  
SCG DIV3  
SCG DIV3  
LPI2C  
LPUART  
EMVSIM  
FlexIO  
GPIO controller  
1. Watchdog clock sources are selected by WDOGx_CS[CLK]  
2. ERCLK is either from an external pin or from the SCG Internal OSC (SOSC) and configured with the  
SCG_SOSCCFG[EREFS] bit.  
3. LPTMR clock sources are selected by LPTMR_PSR[PCS]  
4. RTC clock sources are selected by RTC_CR[LPOS]  
5. For the USB FS OTG controller to operate, the minimum required DIVCORE_CLK is 24 MHz (half of USB functional  
clock)  
6. An additional external clock USB_CLKIN, can also selected via PCCUSB0FS, and device's PORTx MUX field  
7. Additional 3bit Divide field and 1-bit Fractional field reside in PCCUSB0FS register  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
13  
NXP Semiconductors  
Overview  
2.1.7 Security  
This device implements security based on the mode selected from the flash module.  
The device security provides:  
• Security of the flash and MCU via SEC bit  
• Backdoor Key and NXP Backdoor key access support  
• Disable access to the debugger via the SWD interface-bit unique identification  
number, which is programmed in factory and loaded to SIM register after power-on  
reset.  
2.1.8 Power management  
The System Mode Controller (SMC) provides multiple power options to allow the user  
to optimize power consumption for the level of functionality needed.  
Depending on the stop requirements of the user application, a variety of stop modes are  
available that provide state retention, partial power-down or full power-down of certain  
logic and/or memory. I/O states are held in all modes of operation. The following table  
compares the various power modes available.  
For each run mode, there is a corresponding Wait and Stop mode. Wait modes are  
similar to Arm Sleep modes. Stop modes (VLPS, STOP) are similar to Arm Sleep Deep  
mode. The Very Low Power Run (VLPR) operating mode can drastically reduce  
runtime power when the maximum bus frequency is not required to handle the  
application needs.  
The three primary modes of operation are Run, Wait, and Stop. The WFI instruction  
invokes both Wait and Stop modes for the chip. The primary modes are augmented in a  
number of ways to provide lower power based on application needs.  
Table 5. Chip power modes  
Chip mode  
Description  
Core mode  
Normal  
recovery  
method  
RUN (Normal  
Run)  
• Default mode out of reset  
• On-chip voltage regulator is on.  
Run  
High Speed Run  
Sleep  
HRUN (High Allows maximum performance of chip.  
Speed Run) • On-chip voltage regulator is on.  
WAIT (Normal Allows peripherals to function while the core is in Sleep mode,  
Wait) - via WFI reducing power.  
Interrupt  
• NVIC remains sensitive to interrupts  
• Peripherals continue to be clocked.  
Table continues on the next page...  
14  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Overview  
Table 5. Chip power modes (continued)  
Chip mode  
Description  
Core mode  
Normal  
recovery  
method  
STOP (Normal Places chip in static state. Lowest power mode that retains all  
Stop) - via WFI registers while maintaining LVD protection.  
• NVIC is disabled.  
Sleep Deep  
Interrupt  
• AWIC is used to wake up from interrupt.  
• Peripheral clocks are stopped.  
VLPR (Very  
Low-Power  
Run)  
On-chip voltage regulator is in a low-power mode that supplies only  
enough power to run the chip at a reduced frequency.  
• Reduced frequency Flash access mode (1 MHz)  
• LVD off  
Run  
• In BLPI clock mode, only the fast internal reference oscillator is  
available to provide a low power nominal 4 MHz source for the  
core with the nominal bus and flash clock required to be <800  
kHz  
• Alternatively, BLPE clock mode can be used with an external  
clock or the crystal oscillator providing the clock source.  
VLPW (Very Same as VLPR but with the core in Sleep mode to further reduce  
Sleep  
Interrupt  
Interrupt  
Low-Power  
Wait) -via WFI  
power.  
• NVIC remains sensitive to interrupts (FCLK = ON).  
• On-chip voltage regulator is in a low-power mode that supplies  
only enough power to run the chip at a reduced frequency.  
VLPS (Very  
Low-Power  
Places chip in static state with LVD operation off. Lowest power mode  
with ADC and pin interrupts functional.  
Sleep Deep  
Stop)-via WFI  
• Peripheral clocks are stopped, but OSC, LPTMR,LPUART,  
RTC, CMP, TSI can be used.  
• TPM and UART can optionally be enabled if their clock source  
is enabled.  
• NVIC is disabled (FCLK = OFF); AWIC is used to wake up from  
interrupt.  
• On-chip voltage regulator is in a low-power mode that supplies  
only enough power to run the chip at a reduced frequency.  
• All SRAM is operating (content retained and I/O states held).  
LLS3 (Low-  
Leakage Stop3)  
State retention power mode  
Sleep Deep  
Wake-up  
Interrupt1  
• Most peripherals are in state retention mode (with clocks  
stopped), but OSC, LLWU,LPTMR, RTC, CMP, TSI can be  
used.  
• NVIC is disabled; LLWU is used to wake up.  
NOTE:  
The LLWU interrupt must not be masked  
by the interrupt controller to avoid a  
scenario where the system does not fully  
exit stop mode on an LLS recovery  
• All SRAM is operating (content retained and I/O states held).  
LLS2 (Low-  
Leakage Stop2)  
State retention power mode  
Sleep Deep  
Wake-up  
Interrupt1  
• Most peripherals are in state retention mode (with clocks  
stopped), but OSC, LLWU,LPTMR, RTC, CMP, TSI can be  
used.  
• NVIC is disabled; LLWU is used to wake up.  
NOTE:  
The LLWU interrupt must not be masked  
by the interrupt controller to avoid a  
Table continues on the next page...  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
15  
NXP Semiconductors  
Overview  
Table 5. Chip power modes (continued)  
Chip mode  
Description  
Core mode  
Normal  
recovery  
method  
scenario where the system does not fully  
exit stop mode on an LLS recovery  
• 64 KB SRAM retained, internal logic and I/O states are  
retained.  
VLLS3 (Very  
Low-Leakage  
Stop3)  
• Most peripherals are disabled (with clocks stopped), but OSC,  
LLWU, LPTMR, RTC, CMP, TSI can be used.  
• NVIC is disabled; LLWU is used to wake up.  
• SRAM_U and SRAM_L remain powered on (content retained  
and I/O states held).  
Sleep Deep  
Sleep Deep  
Sleep Deep  
Wake-up  
Reset-1  
VLLS2 (Very  
Low-Leakage  
Stop2)  
• Most peripherals are disabled (with clocks stopped), but OSC,  
LLWU, LPTMR, RTC, CMP, TSI can be used.  
• NVIC is disabled; LLWU is used to wake up.  
• 64K of SRAM_U remains powered on (content retained and I/O  
states held).  
Wake-up  
Reset-1  
VLLS1 (Very  
Low-Leakage  
Stop1)  
• Most peripherals are disabled (with clocks stopped), but OSC,  
LLWU, LPTMR, RTC, CMP, TSI can be used.  
• NVIC is disabled; LLWU is used to wake up.  
• All of SRAM_U and SRAM_L are powered off.  
• The 32-byte system register file remains powered for customer-  
critical data  
Wake-up  
Reset-1  
• The 16-byte system register file remains powered for customer-  
critical data  
VLLS0 (Very  
Low-Leakage  
Stop 0)  
• Most peripherals are disabled (with clocks stopped), but LLWU,  
LPTMR, RTC, TSI can be used.  
• NVIC is disabled; LLWU is used to wake up.  
• All of SRAM_U and SRAM_L are powered off.  
• The 32-byte system register file remains powered for customer-  
critical data  
Sleep Deep  
Wake-up  
Reset-1  
• The 16-byte system register file remains powered for customer-  
critical data  
• LPO disabled, optional POR brown-out detection  
1. Resumes Normal Run mode operation by executing the LLWU interrupt service routine.  
2.1.9 LLWU  
The device uses the following internal peripheral and external pin inputs as wakeup  
sources to the LLWU module. LLWU_Px are external pin inputs, and  
LLWU_M0IFM7IF are connections to the internal peripheral interrupt flags.  
NOTE  
In addition to the LLWU wakeup sources, the device also  
wakes from low power modes when NMI or RESET pins are  
enabled and the respective pin is asserted.  
16  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Overview  
Table 6. LLWU Wakeup Sources  
IRQ  
LLWU_P0  
Module source or pin name  
PTE1  
PTE2  
LLWU_P1  
LLWU_P2  
PTE4  
LLWU_P3  
PTA4  
LLWU_P4  
PTA13  
LLWU_P5  
PTB0  
LLWU_P6  
PTC1  
LLWU_P7  
PTC3  
LLWU_P8  
PTC4  
LLWU_P9  
PTC5  
LLWU_P10  
LLWU_P11  
LLWU_P12  
LLWU_P13  
LLWU_P14  
LLWU_P15  
LLWU_P16  
LLWU_P17  
LLWU_P18  
LLWU_P19  
LLWU_P20  
LLWU_P21  
LLWU_P22  
LLWU_P23  
LLWU_P24  
LLWU_P25  
LLWU_P26  
LLWU_P27  
LLWU_P28  
LLWU_P29 - LLWU_P31  
LLWU_M0IF  
LLWU_M1IF  
LLWU_M2IF  
LLWU_M3IF  
LLWU_M4IF  
LLWU_M5IF  
LLWU_M6IF  
LLWU_M7IF  
PTC6  
PTC11  
PTD0  
PTD2  
PTD4  
PTD6  
PTE6  
Reserved  
Reserved  
PTE17  
PTE18  
PTE25  
PTA10  
PTA11  
PTD8  
PTD11  
VREGIN  
USB0_DM  
USB0_DP  
Reserved  
LPTMR0  
CMP0  
CMP1  
LPTMR1 asynchronous interrupt  
TSI0  
RTC Alarm  
Reserved  
RTC Seconds  
Table continues on the next page...  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
17  
NXP Semiconductors  
Overview  
Table 6. LLWU Wakeup Sources  
(continued)  
IRQ  
Module source or pin name  
LPTMR0 asynchronous DMA  
LPTMR1 asynchronous DMA  
TSI asynchronous DMA  
LPTMR0 trigger  
LLWU_M0DR  
LLWU_M3DR  
LLWU_M4DR  
LLWU_M6DR  
LLWU_M7DR  
LPTMR1 trigger  
2.1.10 Debug controller  
The debug system of this device is based on the Arm CoreSight™ architecture, and is  
configured to provide the maximum flexibility as allowed by the restrictions of the  
pinout and other available resources.  
The MCU has a single M0+ CPU available for customer application use.  
Debug provides register and memory accessibility from the external debugger interface,  
basic run/halt control, plus 2 breakpoints and 2 watchpoints. Additionally, it supports  
Arm's Micro Trace Buffer (MTB) capability to provide simple program trace. Only one  
debug interface is supported: Serial Wire Debug (SWD). The SWD interface provides  
the capability for debugger tools to interface to the CPU.  
2.2 Peripheral features  
2.2.1 16-bit SAR ADC  
This device contains one 16-bit successive approximation ADC. The ADC supports  
both software and hardware triggers.  
The number of ADC channels present on the device is determined by the pinout of the  
specific device package.  
2.2.2 Crossbar Switch Lite (AXBS-Lite)  
The information found here provides information on the layout, configuration, and  
programming of the crossbar switch.  
18  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Overview  
The crossbar switch connects bus masters and bus slaves using a crossbar switch  
structure. This structure allows up to four bus masters to access different bus slaves  
simultaneously, while providing arbitration among the bus masters when they access  
the same slave.  
2.2.3 Bit Manipulation Engine2 (BME2)  
The key features of the BME2 include:  
• Lightweight implementation of decorated storage for selected address spaces  
• Additional access semantics encoded into the reference address  
• Resides between crossbar switch slave port(s) and their associated peripheral  
bridge bus controller(s)  
• Two-stage pipeline design matching the AHB system bus protocol  
• Combinationally passes non-decorated accesses to peripheral bridge bus  
controllers  
• Conversion of decorated loads and stores from processor core into atomic  
readmodify- writes  
• Decorated loads support unsigned bit field extracts, load-and-{set,clear} 1-bit  
operations  
• Decorated stores support bit field inserts, logical AND, OR, and XOR operations  
• Support for byte, halfword and word-sized decorated operations  
• Supports minimum signal toggling on AHB output bus to reduce power  
dissipation  
2.2.4 Cryptographic Acceleration Unit (CAU)  
The CAU provides security encrypt/decrypt acceleration to allow users to share secure  
data with external devices via a serial communication port (such as an LPUART  
module). The CAU clock source is the CPU/platform clock.  
There is 1 CAU module, which is connected to the Core PPB.  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
19  
NXP Semiconductors  
Overview  
2.2.5 Comparator (CMP)  
The device includes two high-speed comparators each with two 8-input multiplexers for  
both the inverting and non-inverting inputs of the comparator. Each CMP input channel  
connects to both muxes. Two of the channels are connected to internal sources, leaving  
resources to support up to 6 input pins. See the channel assignment table for a summary  
of CMP input connections for this device.  
The CMPs also include one 6-bit DAC with a 64-tap resistor ladder network, which  
provides a selectable voltage reference for applications where voltage reference is  
needed for an internal connection to the CMP.  
The CMPs can be optionally on in all modes except VLLS0.  
2.2.6 12-bit DAC  
The 12-bit digital-to-analog converter (DAC) is a low-power, general-purpose DAC.  
The output of the DAC can be placed on an external pin or set as one of the inputs to  
the analog comparator, op-amps, or ADC.  
This device contains one 12-bit digital-to-analog converter (DAC) with programmable  
reference generator output. The DAC includes a 16-word FIFO for DMA support.  
2.2.7 Direct Memory Access Multiplexer (DMAMUX)  
DMAMUX0 is a DMA request mux that allows up to 63 DMA request signals to be  
mapped to any of the 8 DMA channels of DMA0. Because of the mux, there is no hard  
correlation between any of the DMA request sources and a specific DMA channel.  
Some of the modules support asynchronous DMA operation.  
2.2.8 EMVSIM  
The EMVSIM (Euro/Mastercard/Visa/SIM Serial Interface Module) is a standalone ISO  
7816 module that is connected to the AIPS0 Peripheral Bridge. The EMVSIM module’s  
clock source is the CPU/platform clock.  
20  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Overview  
2.2.9 Flexible I/O (FlexIO)  
The FlexIO is a highly configurable module providing a wide range of functionality  
including:  
• Emulation of a variety of serial/parallel communication protocols  
• Flexible 16-bit timers with support for a variety of trigger, reset, enable and  
disable conditions  
• Programmable logic blocks allowing the implementation of digital logic functions  
on-chip and configurable interaction of internal and external modules  
• Programmable state machine for offloading basic system control functions from  
CPU  
2.2.10 General-Purpose Input/Output (GPIO)  
The general-purpose input and output (GPIO) module is accessible via the peripheral  
bus and also communicates to the processor core via a zero wait state interface  
(IOPORT) for maximum pin performance. The GPIO registers support 8-bit, 16-bit or  
32-bit accesses.  
The device includes pins PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6, and PTD7  
with high current drive capability. These pins can be used to drive LED or power  
MOSFETs directly. The high drive capability applies to all functions which are  
multiplexed on these pins.  
2.2.11 Low Power Inter-Integrated Circuit (LPI2C)  
The LPI2C is a low power Inter-Integrated Circuit (I2C) module that supports an  
efficient interface to an I2C bus as a master and/or a slave. The LPI2C can continue  
operating in stop modes provided an appropriate clock is available and is designed for  
low CPU overhead with DMA offloading of FIFO register accesses. The LPI2C  
implements logic support for standard-mode, fast-mode, fast-mode plus and ultra-fast  
modes of operation.  
This device has three LPI2C modules. The LPI2C module provides a low power IIC  
module that can operate in low power stop modes if required. Each of the three LPI2C  
modules will have a 4 word (32-bit) FIFO for transmit and receive of messages.  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
21  
NXP Semiconductors  
Overview  
2.2.12 The Low Power Periodic Interrupt Timer (LPIT)  
LPIT is a multi-channel timer module generating independent pre-trigger and trigger  
outputs. These timer channels can operate individually or can be chained together. The  
LPIT can operate in low power modes if configured to do so. The pre-trigger and  
trigger outputs can be used to trigger other modules on the device.  
The LPIT generates periodic trigger events to the DMA channel mux. The LPIT to the  
DMAMUX trigger is configured in the TRGMUX.  
2.2.13 Low Power Serial Peripheral Interface (LPSPI)  
The LPSPI is a low power Serial Peripheral Interface (SPI) module that supports an  
efficient interface to an SPI bus as a master and/or a slave. The LPSPI can continue  
operating in stop modes provided an appropriate clock is available and is designed for  
low CPU overhead with DMA offloading of FIFO register accesses.  
The LPSPI supports the following features:  
• Word size = 32 bits  
• Command/transmit FIFO of 4 words.  
• Receive FIFO of 4 words.  
• Host request input can be used to control the start time of an SPI bus transfer.  
2.2.14 Low-Power Timer (LPTMR)  
The low-power timer (LPTMR) can be configured to operate as a time counter with  
optional prescaler, or as a pulse counter with optional glitch filter, across all power  
modes, including the low-leakage modes. It can also continue operating through most  
system reset events, allowing it to be used as a time of day counter.  
This device has two low-power timers: LPTMR0 and LPTMR1. Both allow operation  
during all power modes. LPTMR0 is accessed via AIPS0. LPTMR1 is accessed via  
AIPS1.  
2.2.15 Low Power Universal Asynchronous Receiver/Transmitter  
(LPUART)  
The LPUART modules support the basic UART with DMA interface function and x4 to  
x32 oversampling of baud-rate. This module supports LIN slave operation.  
22  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Overview  
The module can remain functional in VLPS mode provided the clock it is using  
remains enabled.  
2.2.16 Peripheral Clock Control (PCC)  
The device deploys two Peripheral Clock Control modules that allow clock gating,  
and clock source selection to each peripheral. Each AIPS bridge has its own  
corresponding PCC module. In addition to this clock, there are optional peripheral  
clock sources that may be asynchronous to the CPU/Platform clock: SCGIRCLK,  
SCGFIRCLK, SCGPCLK, SCGFCLK, LPO, OSCCLK, SCGSPCLK.  
2.2.17 Real Time Clock (RTC)  
The RTC module features include:  
• 32-bit seconds counter with roll-over protection and 32-bit alarm  
• 16-bit prescaler with compensation that can correct errors between 0.12 ppm and  
3906 ppm  
• Option to increment prescaler using the LPO (prescaler increments by 32 every  
clock edge)  
• Register write protection  
• Lock register requires POR or software reset to enable write access  
• Configurable 1, 2, 4, 8, 16, 32, 64 or 128 Hz square wave output with optional  
interrupt  
The device has one secure RTC. The RTC module is accessed via AIPS0 peripheral  
bridge.  
2.2.18 Timer/PWM Module (TPM)  
The TPM (Timer/PWM Module) is a 2- to 8-channel timer which supports input  
capture, output compare, and the generation of PWM signals to control electric motor  
and power management applications.  
This device contains 3 low-power Timer/PWM modules (TPM), which can all be  
functional in Stop/VLPS mode. In Stop/VLPS mode, the clock source is either  
external or internal.  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
23  
NXP Semiconductors  
Overview  
2.2.19 Touch Sensing Input (TSI)  
The TSI module provides capacitive touch sensing detection with high sensitivity and  
enhanced robustness.  
This device includes one TSI module containing the channels as shown in the following  
table. In Stop, VLPS, LLS, and VLLSx modes, any one channel can be enabled to be  
the wake-up source. TSI hardware trigger is from the LPTMR0.  
2.2.20 Universal Serial Bus (USB) FS  
The USB FS subsystem includes these components:  
• Dual-role USB OTG-capable (On-The-Go) controller that supports a full-speed  
(FS) device or FS/LS host. The module complies with the USB 2.0 specification.  
• USB transceiver that includes internal 15 kΩ pulldowns on the D+ and D- lines for  
host mode functionality and a 1.5 kΩ pullup on the D+ line for device mode  
functionality.  
• A 3.3 V regulator.  
• Status detection and wakeup functions for USB data pins, VBUS pin, and OTG ID  
pin.  
• IRC48 with clock recovery block to eliminate the 48MHz crystal. This is available  
for USB device mode only.  
NOTE  
USB OTG is not functional in VLPx, VLLSx, and any Stop  
modes.  
NOTE  
For the USB FS OTG controller to operate, the minimum  
system clock frequency is 20 MHz.  
2.2.21 Voltage Reference (VREF)  
The VREF can be used in applications to provide a reference voltage to external  
devices, or used internally in the device as a reference to analog peripherals (such as the  
ADC, DAC, or CMP). The Voltage Reference (VREF) can supply an accurate voltage  
output that can be trimmed in 0.5 mV steps (for 1.2 V output) or 1.5 mV steps (for 2.1  
V output). The voltage reference has 3 operating modes that provide different levels of  
supply rejection and power consumption.  
24  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Memory Map  
This device includes a voltage reference (VREF) to supply an accurate 1.2 V or 2.1 V  
voltage output.  
2.2.22 Watchdog (WDOG)  
The multiple clock inputs for the WDOG are:  
• 1 kHz clock  
• bus clock  
• 8 MHz or 2 MHz internal reference clock  
• external crystal  
3 Memory Map  
This device contains various memories and memory-mapped peripherals which are  
located in a 4 GB memory space. The following table lists the system memory and  
peripheral addresses.  
Table 7. Memory Map  
Type  
START ADDRESS  
0x0000_0000  
END ADDRESS  
0x0007_FFFF  
Function  
Program Flash  
Code  
0x0008_0000  
0x1C00_0000  
0x1C00_8000  
0x1D00_0000  
0x1D02_0000  
0x1D04_0000  
0x1D20_0000  
0x1D22_0000  
0x1D24_0000  
0x1FFF_8000  
0x1FFF_A000  
0x2000_0000  
0x2001_2000  
0x2001_8000  
0x2D00_0000  
0x2D02_0000  
0x2D04_0000  
0x2D10_0000  
0x1CFF_FFFF  
0x1C00_7FFF  
0x1CFF_FFFF  
0x1D01_FFFF  
0x1D03_FFFF  
0x1D1F_FFFF  
0x1D21_FFFF  
0x1D23_FFFF  
0x1FFF_7FFF  
0x1FFF_9FFF  
0x1FFF_FFFF  
0x2001_1FFF  
0x2001_7FFF  
0x2CFF_FFFF  
0x2D01_FFFF  
0x2D03_FFFF  
0x2D0F_FFFF  
0x2D10_7FFF  
Reserved  
Boot ROM  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
SRAM  
SRAM  
SRAM  
SRAM  
SRAM  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Table continues on the next page...  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
25  
NXP Semiconductors  
Memory Map  
Table 7. Memory Map (continued)  
Type  
START ADDRESS  
0x2D10_4000  
END ADDRESS  
0x2D1F_FFFF  
Function  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
AIPS0  
0x2D20_0000  
0x2D22_0000  
0x2D24_0000  
0x2D30_0000  
0x2D30_4000  
0x4000_0000  
0x4008_0000  
0x4010_0000  
0x4108_0000  
0x4110_0000  
0x4118_0000  
0x4120_0000  
0x4400_0000  
0x2D21_FFFF  
0x2D23_FFFF  
0x2D2F_FFFF  
0x2D30_7FFF  
0x3FFF_FFFF  
0x4007_FFFF  
0x400F_FFFF  
0x4107_FFFF  
0x410F_FFFF  
0x4117_FFFF  
0x411F_FFFF  
0x43FF_FFFF  
0x5FFF_FFFF  
Peripheral  
AIPS1  
USB SRAM  
Reserved  
Reserved  
Reserved  
Reserved  
BME (AIPS0 and AIPS1)  
(448 MB)  
External RAM  
0x6000_0000  
0xE000_0000  
0xE100_0000  
0xE200_0000  
0xE300_0000  
0xE400_0000  
0xE500_0000  
0xE600_0000  
0xE700_0000  
0xE800_0000  
0xE900_0000  
0xEA00_0000  
0xEB00_0000  
0xEC00_0000  
0xF000_0000  
0xF010_0000  
0xF100_0000  
0xF110_0000  
0xF120_0000  
0xF800_0000  
0xF810_0000  
0xF900_0000  
0xF910_0000  
0xDFFF_FFFF  
0xE0FF_FFFF  
0xE1FF_FFFF  
0xE2FF_FFFF  
0xE3FF_FFFF  
0xE4FF_FFFF  
0xE5FF_FFFF  
0xE6FF_FFFF  
0xE7FF_FFFF  
0xE8FF_FFFF  
0xE9FF_FFFF  
0xEAFF_FFFF  
0xEBFF_FFFF  
0xEFFF_FFFF  
0xF00F_FFFF  
0xF0FF_FFFF  
0xF10F_FFFF  
0xF11F_FFFF  
0xF7FF_FFFF  
0xF80F_FFFF  
0xF8FF_FFFF  
0xF90F_FFFF  
0xFFFF_FFFF  
Reserved  
PPB - Arm SYS Modules  
System  
PPB - Arm DBG Modules  
PPB - NXP Modules  
Reserved  
PPB  
Reserved  
Reserved  
Reserved  
Reserved  
SYS IOPORT  
Reserved  
Reserved  
Reserved  
26  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Pinouts and Packaging  
4 Pinouts and Packaging  
4.1 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is  
responsible for selecting which ALT function is available on each pin.  
NOTE  
• A pull-up resistor (typically 4.7 KΩ) must be connected  
to the EMVSIM0_IO pin if this pin is configured as  
EMV SIM function.  
• PTB0/1, PTC3/4, PTD4/5/6/7 have both high drive and  
normal/low drive capability. PTD4, PTD5, PTD6,  
PTD7, PTE20, PTE21, PTE22, PTE23 are also fast pins.  
When a high bit rate is required on the communication  
interface pins, it is recommended to use fast pins. In  
case of high bus loading, the high drive strength of high  
drive pins must be enabled by setting the corresponding  
PORTx_PCRn[DSE] bit.  
• RESET_b pin is open drain with internal pullup device  
and passive analog filter when configured as RESET pin  
(default state after POR). When this pin is configured to  
other shared functions, the passive analog filter is  
disabled.  
• NMI0_b pin has pullup device enabled and passive  
analog filter disabled after POR.  
• SWD_DIO pin has pullup device enabled after POR.  
SWD_CLK has pulldown device enabled after POR.  
100  
LQFP LQFP  
64  
Pin Name  
Default  
ADC0_SE16  
ADC0_SE17  
ADC0_SE18  
ADC0_SE19  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
1
2
3
4
1
2
PTE0  
ADC0_SE16  
ADC0_SE17  
ADC0_SE18  
ADC0_SE19  
PTE0/  
RTC_CLKOUT  
LPSPI1_SIN  
LPUART1_TX  
LPUART1_RX  
CMP0_OUT  
LPI2C1_SDA  
LPI2C1_SCL  
LPI2C1_SDAS  
LPI2C1_SCLS  
PTE1/  
LLWU_P0  
PTE1/  
LLWU_P0  
LPSPI1_  
SOUT  
PTE2/  
LLWU_P1  
PTE2/  
LLWU_P1  
LPSPI1_SCK  
LPUART1_  
CTS_b  
PTE3  
PTE3  
LPSPI1_SIN  
LPUART1_  
RTS_b  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
27  
NXP Semiconductors  
Pinouts and Packaging  
100  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP LQFP  
5
PTE4/  
DISABLED  
PTE4/  
LPSPI1_PCS0  
LLWU_P2  
LLWU_P2  
6
7
PTE5  
DISABLED  
DISABLED  
PTE5  
LPSPI1_PCS1  
LPSPI1_PCS2  
PTE6/  
LLWU_P16  
PTE6/  
LLWU_P16  
USB_SOF_  
OUT  
8
3
4
VDD  
VDD  
VDD  
VSS  
9
VSS  
VSS  
10  
11  
12  
13  
14  
5
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
PTE16  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
6
7
8
ADC0_DP1/  
ADC0_SE1  
ADC0_DP1/  
ADC0_SE1  
PTE16  
LPSPI0_PCS0 LPUART2_TX  
TPM0_CLKIN  
LPSPI1_PCS3 FXIO0_D0  
15  
PTE17/  
LLWU_P19  
ADC0_DM1/  
ADC0_SE5a  
ADC0_DM1/  
ADC0_SE5a  
PTE17/  
LLWU_P19  
LPSPI0_SCK  
LPUART2_RX TPM1_CLKIN  
LPTMR0_  
ALT3/  
FXIO0_D1  
LPTMR1_  
ALT3  
16  
17  
18  
19  
20  
21  
9
PTE18/  
LLWU_P20  
ADC0_DP2/  
ADC0_SE2  
ADC0_DP2/  
ADC0_SE2  
PTE18/  
LLWU_P20  
LPSPI0_  
SOUT  
LPUART2_  
CTS_b  
LPI2C0_SDA  
LPI2C0_SCL  
LPUART0_TX  
LPUART0_RX  
LPUART2_TX  
LPUART2_RX  
FXIO0_D2  
FXIO0_D3  
FXIO0_D4  
FXIO0_D5  
FXIO0_D6  
FXIO0_D7  
PTE19  
PTE20  
PTE21  
PTE22  
PTE23  
VDDA  
ADC0_DM2/  
ADC0_SE6a  
ADC0_DM2/  
ADC0_SE6a  
PTE19  
PTE20  
PTE21  
PTE22  
PTE23  
LPSPI0_SIN  
LPUART2_  
RTS_b  
ADC0_DP0/  
ADC0_SE0  
ADC0_DP0/  
ADC0_SE0  
LPSPI2_SCK  
TPM1_CH0  
TPM1_CH1  
TPM2_CH0  
10  
11  
12  
ADC0_DM0/  
ADC0_SE4a  
ADC0_DM0/  
ADC0_SE4a  
LPSPI2_  
SOUT  
ADC0_DP3/  
ADC0_SE3  
ADC0_DP3/  
ADC0_SE3  
LPSPI2_SIN  
ADC0_DM3/  
ADC0_SE7a  
ADC0_DM3/  
ADC0_SE7a  
LPSPI2_PCS0 TPM2_CH1  
22  
23  
13  
14  
VDDA  
VDDA  
VREFH/  
VREFH/  
VREFH/  
VREF_OUT  
VREF_OUT  
VREF_OUT  
24  
25  
26  
15  
16  
17  
VREFL  
VSSA  
VREFL  
VSSA  
VREFL  
VSSA  
PTE29  
CMP1_IN5/  
CMP0_IN5/  
ADC0_SE4b  
CMP1_IN5/  
CMP0_IN5/  
ADC0_SE4b  
PTE29  
PTE30  
EMVSIM0_  
CLK  
TPM0_CH2  
TPM0_CH3  
TPM0_CLKIN  
TPM1_CLKIN  
27  
18  
PTE30  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23/  
CMP0_IN4  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23/  
CMP0_IN4  
EMVSIM0_  
RST  
28  
19  
PTE31  
DISABLED  
PTE31  
EMVSIM0_  
VCCEN  
TPM0_CH4  
TPM2_CLKIN  
LPI2C0_  
HREQ  
29  
30  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
28  
NXP Semiconductors  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
Pinouts and Packaging  
100  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP LQFP  
31  
32  
20  
21  
PTE24  
ADC0_SE20  
ADC0_SE21  
ADC0_SE20  
ADC0_SE21  
PTE24  
EMVSIM0_IO  
TPM0_CH0  
LPI2C0_SCL  
LPI2C0_SDA  
PTE25/  
PTE25/  
EMVSIM0_PD TPM0_CH1  
LLWU_P21  
LLWU_P21  
33  
34  
PTE26  
DISABLED  
SWD_CLK  
PTE26/  
RTC_CLKOUT  
TPM0_CH5  
LPI2C0_SCLS  
LPI2C0_SDAS  
USB_CLKIN  
SWD_CLK  
22  
PTA0  
TSI0_CH1  
PTA0  
LPUART0_  
CTS_b  
TPM0_CH5  
35  
36  
37  
23  
24  
25  
PTA1  
PTA2  
PTA3  
TSI0_CH2  
TSI0_CH3  
SWD_DIO  
TSI0_CH2  
TSI0_CH3  
TSI0_CH4  
PTA1  
PTA2  
PTA3  
LPUART0_RX TPM2_CH0  
LPUART0_TX  
LPI2C1_SCL  
TPM2_CH1  
TPM0_CH0  
LPUART0_  
RTS_b  
SWD_DIO  
NMI0_b  
38  
39  
26  
27  
PTA4/  
LLWU_P3  
NMI0_b  
TSI0_CH5  
PTA4/  
LLWU_P3  
LPI2C1_SDA  
USB_CLKIN  
TPM0_CH1  
TPM0_CH2  
TPM0_CH3  
PTA5  
DISABLED  
PTA5  
LPI2C2_  
HREQ  
40  
41  
42  
43  
28  
29  
PTA6  
PTA7  
PTA12  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTA6  
PTA7  
PTA12  
LPSPI0_PCS3 TPM0_CH4  
TPM1_CH0  
LPI2C2_SDAS  
LPI2C2_SCL  
LPI2C2_SDA  
PTA13/  
PTA13/  
TPM1_CH1  
LLWU_P4  
LLWU_P4  
44  
45  
46  
PTA14  
PTA15  
PTA16  
DISABLED  
DISABLED  
DISABLED  
PTA14  
PTA15  
PTA16  
LPSPI0_PCS0 LPUART0_TX  
LPI2C2_SCL  
LPSPI0_SCK  
LPUART0_RX  
LPSPI0_  
SOUT  
LPUART0_  
CTS_b  
47  
PTA17  
ADC0_SE22  
ADC0_SE22  
PTA17  
LPSPI0_SIN  
LPUART0_  
RTS_b  
48  
49  
50  
51  
30  
31  
32  
33  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
PTA18  
PTA19  
EXTAL0  
XTAL0  
EXTAL0  
XTAL0  
PTA18  
PTA19  
LPUART1_RX TPM0_CLKIN  
LPUART1_TX  
TPM1_CLKIN  
LPTMR0_  
ALT1/  
LPTMR1_  
ALT1  
52  
53  
34  
35  
PTA20  
RESET_b  
PTA20  
LPI2C0_SCLS  
LPI2C0_SCL  
TPM2_CLKIN  
RESET_b  
PTB0/  
LLWU_P5  
ADC0_SE8/  
TSI0_CH0  
ADC0_SE8/  
TSI0_CH0  
PTB0/  
LLWU_P5  
TPM1_CH0  
TPM1_CH1  
TPM2_CH0  
TPM2_CH1  
FXIO0_D8  
FXIO0_D9  
FXIO0_D10  
FXIO0_D11  
54  
55  
56  
36  
37  
38  
PTB1  
PTB2  
PTB3  
ADC0_SE9/  
TSI0_CH6  
ADC0_SE9/  
TSI0_CH6  
PTB1  
PTB2  
PTB3  
LPI2C0_SDA  
LPI2C0_SCL  
LPI2C0_SDA  
ADC0_SE12/  
TSI0_CH7  
ADC0_SE12/  
TSI0_CH7  
LPUART0_  
RTS_b  
ADC0_SE13/  
TSI0_CH8  
ADC0_SE13/  
TSI0_CH8  
LPSPI1_PCS3 LPUART0_  
CTS_b  
57  
58  
PTB7  
PTB8  
DISABLED  
DISABLED  
PTB7  
PTB8  
LPSPI1_PCS1  
LPSPI1_PCS0  
FXIO0_D12  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
29  
NXP Semiconductors  
Pinouts and Packaging  
100  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP LQFP  
59  
60  
61  
62  
39  
PTB9  
DISABLED  
DISABLED  
DISABLED  
TSI0_CH9  
PTB9  
LPSPI1_SCK  
LPSPI1_PCS0  
LPSPI1_SCK  
FXIO0_D13  
FXIO0_D14  
FXIO0_D15  
PTB10  
PTB11  
PTB16  
PTB10  
PTB11  
PTB16  
TPM2_CLKIN  
TSI0_CH9  
LPSPI1_  
SOUT  
LPUART0_RX TPM0_CLKIN  
LPSPI2_PCS3 FXIO0_D16  
63  
64  
40  
41  
PTB17  
PTB18  
TSI0_CH10  
TSI0_CH11  
TSI0_CH10  
TSI0_CH11  
PTB17  
PTB18  
LPSPI1_SIN  
LPUART0_TX  
TPM2_CH0  
TPM1_CLKIN  
LPSPI2_PCS2 FXIO0_D17  
LPI2C1_  
HREQ  
FXIO0_D18  
65  
66  
67  
68  
42  
PTB19  
PTB20  
PTB21  
PTB22  
TSI0_CH12  
DISABLED  
DISABLED  
DISABLED  
TSI0_CH12  
PTB19  
PTB20  
PTB21  
PTB22  
TPM2_CH1  
LPSPI2_PCS1 FXIO0_D19  
CMP0_OUT  
LPSPI2_PCS0  
LPSPI2_SCK  
CMP1_OUT  
LPSPI2_  
SOUT  
69  
70  
PTB23  
PTC0  
DISABLED  
PTB23  
PTC0  
LPSPI2_SIN  
43  
ADC0_SE14/  
TSI0_CH13  
ADC0_SE14/  
TSI0_CH13  
LPSPI2_PCS1  
USB_SOF_  
OUT  
CMP0_OUT  
71  
72  
44  
45  
PTC1/  
LLWU_P6  
ADC0_SE15/  
TSI0_CH14  
ADC0_SE15/  
TSI0_CH14  
PTC1/  
LLWU_P6  
LPI2C1_SCL  
LPI2C1_SDA  
LPUART1_  
RTS_b  
TPM0_CH0  
PTC2  
ADC0_SE11/  
CMP1_IN0/  
TSI0_CH15  
ADC0_SE11/  
CMP1_IN0/  
TSI0_CH15  
PTC2  
LPUART1_  
CTS_b  
TPM0_CH1  
73  
46  
PTC3/  
CMP1_IN1  
CMP1_IN1  
PTC3/  
LPSPI0_PCS1 LPUART1_RX TPM0_CH2  
CLKOUT  
LLWU_P7  
LLWU_P7  
74  
75  
76  
47  
48  
49  
VSS  
VDD  
VSS  
VSS  
VDD  
VDD  
PTC4/  
LLWU_P8  
DISABLED  
PTC4/  
LLWU_P8  
LPSPI0_PCS0 LPUART1_TX  
TPM0_CH3  
CMP1_OUT  
CMP0_OUT  
77  
50  
PTC5/  
LLWU_P9  
DISABLED  
PTC5/  
LLWU_P9  
LPSPI0_SCK  
LPTMR0_  
ALT2/  
LPTMR1_  
ALT2  
78  
79  
51  
52  
PTC6/  
LLWU_P10  
CMP0_IN0  
CMP0_IN1  
CMP0_IN0  
CMP0_IN1  
PTC6/  
LLWU_P10  
LPSPI0_  
SOUT  
PTC7  
PTC7  
LPSPI0_SIN  
USB_SOF_  
OUT  
FXIO0_D20  
80  
81  
82  
83  
53  
54  
55  
56  
PTC8  
PTC9  
PTC10  
CMP0_IN2  
CMP0_IN3  
DISABLED  
DISABLED  
CMP0_IN2  
CMP0_IN3  
PTC8  
PTC9  
PTC10  
LPI2C0_SCL  
LPI2C0_SDA  
LPI2C1_SCL  
LPI2C1_SDA  
TPM0_CH4  
TPM0_CH5  
FXIO0_D21  
FXIO0_D22  
FXIO0_D23  
PTC11/  
PTC11/  
LLWU_P11  
LLWU_P11  
84  
85  
86  
PTC12  
PTC13  
PTC14  
DISABLED  
DISABLED  
DISABLED  
PTC12  
PTC13  
PTC14  
LPI2C1_SCLS  
LPI2C1_SDAS  
TPM0_CLKIN  
TPM1_CLKIN  
EMVSIM0_  
CLK  
30  
NXP Semiconductors  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
Pinouts and Packaging  
100  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP LQFP  
87  
PTC15  
DISABLED  
PTC15  
EMVSIM0_  
RST  
88  
89  
90  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
PTC16  
DISABLED  
PTC16  
EMVSIM0_  
VCCEN  
91  
92  
93  
57  
PTC17  
PTC18  
DISABLED  
DISABLED  
DISABLED  
PTC17  
PTC18  
EMVSIM0_IO  
LPSPI0_PCS3  
EMVSIM0_PD LPSPI0_PCS2  
PTD0/  
LLWU_P12  
PTD0/  
LLWU_P12  
LPSPI0_PCS0 LPUART2_  
RTS_b  
TPM0_CH0  
TPM0_CH1  
FXIO0_D0  
FXIO0_D1  
FXIO0_D2  
94  
95  
58  
59  
PTD1  
ADC0_SE5b  
DISABLED  
ADC0_SE5b  
PTD1  
LPSPI0_SCK  
LPUART2_  
CTS_b  
PTD2/  
LLWU_P13  
PTD2/  
LLWU_P13  
LPSPI0_  
SOUT  
LPUART2_RX TPM0_CH2  
96  
97  
60  
61  
PTD3  
DISABLED  
DISABLED  
PTD3  
LPSPI0_SIN  
LPUART2_TX  
TPM0_CH3  
FXIO0_D3  
FXIO0_D4  
PTD4/  
LLWU_P14  
PTD4/  
LLWU_P14  
LPSPI1_PCS0 LPUART2_RX TPM0_CH4  
LPUART0_  
RTS_b  
98  
99  
62  
63  
64  
PTD5  
ADC0_SE6b  
ADC0_SE7b  
DISABLED  
ADC0_SE6b  
ADC0_SE7b  
PTD5  
LPSPI1_SCK  
LPUART2_TX  
LPUART0_RX  
LPUART0_TX  
TPM0_CH5  
LPUART0_  
CTS_b  
FXIO0_D5  
FXIO0_D6  
FXIO0_D7  
PTD6/  
LLWU_P15  
PTD6/  
LLWU_P15  
LPSPI1_  
SOUT  
100  
PTD7  
PTD7  
LPSPI1_SIN  
4.2 K32 L2A Pinouts  
The below figure shows the pinout diagram for the devices supported by this  
document. Many signals may be multiplexed onto a single pin. To determine what  
signals can be used on which pin, see the previous section.  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
31  
NXP Semiconductors  
Pinouts and Packaging  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PTE0  
PTE1/LLWU_P0  
PTE2/LLWU_P1  
PTE3  
VDD  
2
VSS  
3
PTC3/LLWU_P7  
PTC2  
4
5
PTC1/LLWU_P6  
PTC0  
PTE4/LLWU_P2  
PTE5  
6
7
PTB23  
PTB22  
PTB21  
PTB20  
PTB19  
PTB18  
PTB17  
PTB16  
PTB11  
PTE6/LLWU_P16  
VDD  
8
9
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
PTE16  
PTE17/LLWU_P19  
PTE18/LLWU_P20  
PTE19  
PTB10  
PTB9  
PTB8  
PTE20  
PTB7  
PTE21  
PTB3  
PTE22  
PTB2  
PTE23  
PTB1  
VDDA  
PTB0/LLWU_P5  
PTA20  
VREFH/VREF_OUT  
VREFL  
PTA19  
VSSA  
Figure 4. 100 LQFP Pinout Diagram  
32  
NXP Semiconductors  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
Dimensions  
PTE0  
PTE1/LLWU_P0  
VDD  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VDD  
VSS  
2
3
PTC3/LLWU_P7  
PTC2  
VSS  
4
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
5
PTC1/LLWU_P6  
PTC0  
6
7
PTB19  
8
PTB18  
PTE20  
9
PTB17  
PTE21  
10  
11  
12  
13  
14  
15  
16  
PTB16  
PTE22  
PTB3  
PTE23  
PTB2  
VDDA  
PTB1  
VREFH/VREF_OUT  
VREFL  
PTB0/LLWU_P5  
PTA20  
VSSA  
PTA19  
Figure 5. 64 LQFP Pinout Diagram  
5 Dimensions  
5.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
33  
NXP Semiconductors  
Ratings  
To find a package drawing, go to nxp.com and perform a keyword search for the  
drawing’s document number:  
If you want the drawing for this package  
64-pin LQFP  
Then use this document number  
98ASS23234W  
98ASS23308W  
100-pin LQFP  
6 Ratings  
6.1 Thermal handling ratings  
Table 8. Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
–55  
1
2
TSDR  
Solder temperature, lead-free  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
6.2 Moisture handling ratings  
Table 9. Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
6.3 ESD handling ratings  
Table 10. ESD handling ratings  
Symbol  
VHBM  
Description  
Min.  
–2000  
–500  
Max.  
+2000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
1
2
VCDM  
Electrostatic discharge voltage, charged-device  
model  
V
Table continues on the next page...  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
34  
NXP Semiconductors  
General  
Table 10. ESD handling ratings (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
ILAT  
Latch-up current at ambient temperature of 105 °C  
–100  
+100  
mA  
3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human  
Body Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
6.4 Voltage and current operating ratings  
Table 11. Voltage and current operating ratings  
Symbol  
VDD  
IDD  
Description  
Min.  
–0.3  
Max.  
3.8  
Unit  
V
Digital supply voltage  
Digital supply current  
IO pin input voltage  
120  
mA  
V
VIO  
–0.3  
–25  
VDD + 0.3  
25  
ID  
Instantaneous maximum current single pin limit (applies to  
all port pins)  
mA  
VDDA  
Analog supply voltage  
USB_DP input voltage  
USB_DM input voltage  
USB regulator input  
VDD – 0.3  
–0.3  
VDD + 0.3  
3.63  
V
V
V
V
VUSB_DP  
VUSB_DM  
VREGIN  
–0.3  
3.63  
–0.3  
6.0  
7 General  
7.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
35  
NXP Semiconductors  
General  
High  
Low  
VIH  
80%  
50%  
20%  
Input Signal  
Midpoint1  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH - VIL) / 2  
Figure 6. Input signal measurement reference  
All digital I/O switching characteristics, unless otherwise specified, assume that the  
output pins have the following characteristics.  
• CL=30 pF loads  
• Slew rate disabled  
• Normal drive strength  
7.2 Nonswitching electrical specifications  
7.2.1 Voltage and current operating requirements  
Table 12. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.71  
1.71  
–0.1  
–0.1  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
VDDA  
Analog supply voltage  
3.6  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
0.1  
V
0.1  
V
VIH  
Input high voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.71 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.71 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
IICIO  
Input hysteresis  
0.06 × VDD  
-5  
V
IO pin negative DC injection current — single pin  
• VIN < VSS-0.3V  
1
mA  
Table continues on the next page...  
36  
NXP Semiconductors  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
General  
Notes  
Table 12. Voltage and current operating requirements (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents of 16  
contiguous pins  
-25  
mA  
• Negative current injection  
VODPU  
VRAM  
Open drain pullup voltage level  
VDD  
1.2  
VDD  
V
V
2
VDD voltage required to retain RAM  
1. All I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If VIN  
greater than VIO_MIN (= VSS-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If  
this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting  
resistor is calculated as R = (VIO_MIN - VIN)/|IICIO|.  
2. Open drain outputs must be pulled to VDD  
.
7.2.2 LVD, HVD, and POR operating requirements  
Table 13. VDD supply LVD, HVD, and POR operating requirements  
Symbol Description  
Min.  
0.8  
Typ.  
1.1  
Max.  
1.5  
Unit  
V
Notes  
VPOR  
Falling VDD POR detect voltage  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV = 01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV = 00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
60  
2.78  
2.88  
2.98  
3.08  
V
V
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
V
• Level 4 falling (LVWV = 11)  
V
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
mV  
1
Falling low-voltage detect threshold — low  
range (LVDV=00)  
1.54  
1.60  
1.66  
V
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV = 00)  
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
40  
1.86  
1.96  
2.06  
2.16  
V
V
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
V
• Level 4 falling (LVWV = 11)  
V
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period — factory  
trimmed  
1000  
1100  
μs  
Table continues on the next page...  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
37  
NXP Semiconductors  
General  
Table 13. VDD supply LVD, HVD, and POR operating requirements (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VHVDL  
VHVDH  
VHYSH  
High voltage detect threshold — low range  
(HVDV=0) — Rising  
3.4  
3.5  
3.6  
V
2
High voltage detect threshold — low range  
(HVDV=0) — Falling  
3.35  
3.65  
3.6  
3.45  
3.75  
3.7  
50  
3.55  
3.85  
3.8  
High voltage detect threshold — high range  
(HVDV=1) — Rising  
V
2
High voltage detect threshold — high range  
(HVDV=1) — Falling  
High voltage detect hysteresis — low range  
(HVDV=0)  
mV  
High voltage detect hysteresis — high range  
(HVDV=1)  
50  
1. Rising thresholds are falling threshold + hysteresis voltage  
2. The selection of high voltage detect trip voltage is controlled by PMC_HVDSC1[HVDV].  
7.2.3 Voltage and current operating behaviors  
Table 14. Voltage and current operating behaviors  
Symbol Description  
VOH Output high voltage — Normal drive pad  
Min.  
Typ.  
Max.  
Unit  
Notes  
1
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –2.5 mA  
VDD – 0.5  
VDD – 0.5  
V
V
VOH  
Output high voltage — High drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –20 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –10 mA  
1
VDD – 0.5  
VDD – 0.5  
V
V
IOHT  
VOL  
Output high current total for all ports  
Output low voltage — Normal drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 2.5 mA  
100  
mA  
1
1
0.5  
0.5  
V
V
VOL  
Output low voltage — High drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA  
0.5  
0.5  
100  
1
V
V
IOLT  
IIN  
Output low current total for all ports  
mA  
μA  
Input leakage current (per pin) for full  
temperature range  
2
2
IIN  
Input leakage current (per pin) at 25 °C  
0.025  
μA  
Table continues on the next page...  
38  
NXP Semiconductors  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
General  
Table 14. Voltage and current operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IIN  
Input leakage current (total all pins) for full  
41  
μA  
2
temperature range  
IOZ  
Hi-Z (off-state) leakage current (per pin)  
Internal pullup resistors  
1
μA  
kΩ  
RPU  
20  
50  
3
1. PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6 and PTD7 I/O have both high drive and normal drive capability  
selected by the associated PORTx_PCRn[DSE] control bit. All other GPIOs are normal drive only. PTD4, PTD5,  
PTD6, PTD7, PTE20, PTE21, PTE22, and PTE23 are also fast pins.  
2. Measured at VDD = 3.6 V  
3. Measured at VDD supply voltage = VDD min and Vinput = VSS  
7.2.4 Power mode transition operating behaviors  
All specifications in the following table assume this clock configuration in Run mode:  
• CPU and system clocks = 48 MHz  
• Bus and flash clock = 24 MHz  
• SCG configured in FIRC mode; peripheral functional clocks from  
FIRCDIV3_CLK and USB clock from FIRCDIV1_CLK  
Table 15. Power mode transition operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
tPOR After a POR event, amount of time from the  
300  
μs  
1
point VDD reaches 1.8 V to execution of the first  
instruction across the operating temperature  
range of the chip.  
• VLLS0 RUN  
• VLLS1 RUN  
• VLLS2 RUN  
• VLLS3 RUN  
• LLS3 RUN  
• LLS2 RUN  
188  
188  
125  
125  
5.5  
193  
193  
130  
130  
6.1  
μs  
μs  
μs  
μs  
μs  
μs  
5.5  
6.1  
Table continues on the next page...  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
39  
NXP Semiconductors  
General  
Table 15. Power mode transition operating behaviors (continued)  
Symbol Description  
• VLPS RUN  
Min.  
Typ.  
Max.  
Unit  
Notes  
5.5  
6.1  
μs  
• STOP RUN  
5.5  
6.1  
μs  
1. Normal boot (FTFA_FOPT[LPBOOT]=11).  
7.2.5 Power consumption operating behaviors  
NOTE  
The values in the following table are based on  
characterization data with a few samples.  
NOTE  
The actual power consumption measured in the related  
condition, with certain peripherals running, is the sum of  
related low power current consumption of the device listed in  
Table 16 and the related low power mode peripheral adders in  
Table 17.  
NOTE  
The maximum values represent characterized results  
equivalent to the mean plus three times the standard deviation  
(mean + 3σ).  
Table 16. Power consumption operating behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
2
IDD_HSRUN High speed run mode current at 96 MHz  
- all peripheral clocks disabled, code  
executing from flash, while(1) loop  
• at 1.8 V  
• at 3.0 V  
12.6  
12.8  
17.4  
17.6  
mA  
mA  
IDD_HSRUN High speed run mode current at 96 MHz  
- all peripheral clocks enabled, code  
3
executing from flash, while(1) loop  
• at 1.8 V  
• at 3.0 V  
15.5  
15.7  
20.4  
20.6  
mA  
mA  
Table continues on the next page...  
40  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
General  
Table 16. Power consumption operating behaviors (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_RUN  
Run mode current at 72 MHz - all  
peripheral clocks disabled, code  
executing from flash, while(1) loop  
4
5
6
7
• at 1.8 V  
• at 3.0 V  
9.4  
9.6  
13.6  
13.8  
mA  
mA  
IDD_RUN  
IDD_RUN  
IDD_RUN  
Run mode current at 48 Mhz - all  
peripheral clocks disabled, code  
executing from flash, while(1) loop  
7.3  
7.4  
11.4  
11.5  
mA  
mA  
• at 1.8 V  
• at 3.0 V  
Run mode current at 72 MHz - all  
peripheral clocks enabled, code  
executing from flash, while(1) loop  
11.6  
11.7  
15.9  
16.0  
mA  
mA  
• at 1.8 V  
• at 3.0 V  
Run mode current at 48 Mhz - all  
peripheral clocks enabled, code  
executing from flash, while(1) loop  
8.9  
9.1  
13.1  
13.3  
mA  
mA  
• at 1.8 V  
• at 3.0 V  
IDD_WAIT  
IDD_WAIT  
IDD_VLPR  
IDD_VLPR  
IDD_VLPR  
IDD_VLPR  
Wait mode high frequency current at 72  
MHz, at 3.0 V - all peripheral clocks  
disabled, while(1) loop  
7.0  
9.0  
mA  
mA  
μA  
μA  
μA  
μA  
μA  
4
5
Wait mode current at 3.0 V at 48 Mhz —  
all peripheral clocks disabled, while(1)  
loop  
5.7  
10.4  
Very-low-power run mode current at 3.0  
V — all peripheral clocks enabled at 4  
MHz, while(1) loop  
483.7  
557.6  
400.3  
415.2  
285.9  
1011.7  
1720.2  
926.5  
941.1  
1145.6  
8
Very-low-power run mode current at 3.0  
V — all peripheral clocks enabled at 8  
MHz, while(1) loop  
9
Very-low-power run mode current at 3.0  
V — all peripheral clocks disabled at 4  
MHz, while(1) loop  
10  
11  
10  
Very-low-power run mode current at 3.0  
V — all peripheral clocks disabled at 8  
MHz, while(1) loop  
IDD_VLPW Very-low-power wait mode current at  
3.0 V — all peripheral clocks disabled at  
4 MHz, while(1) loop  
Table continues on the next page...  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
41  
NXP Semiconductors  
General  
Table 16. Power consumption operating behaviors (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VLPW Very-low-power wait mode current at  
3.0 V — all peripheral clocks disabled at  
8 MHz, while(1) loop  
415.6  
1498.7  
μA  
11  
IDD_STOP  
Stop mode current at 3.0 V  
• -40 to 25 °C  
264.5  
287.0  
325.3  
374.7  
496.7  
320.5  
356.1  
445.4  
590.8  
952.3  
μA  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
IDD_VLPS  
Very-low-power stop mode current at  
3.0 V  
4.2  
16.4  
35.9  
μA  
• -40 to 25 °C  
11.0  
24.0  
44.0  
93.4  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
84.5  
156.2  
300.2  
IDD_LLS2  
Low-leakage stop mode 2 current at 3.0  
V
2.7  
4.7  
5.4  
μA  
• -40 to 25 °C  
10.6  
22.7  
49.0  
88.6  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
8.6  
14.7  
30.4  
IDD_LLS3  
Low-leakage stop mode 3 current at 3.0  
V
3.0  
5.9  
5.9  
14.5  
32.0  
65.2  
122.0  
μA  
• -40 to 25 °C  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
11.4  
19.7  
40.9  
IDD_VLLS3 Very-low-leakage stop mode 3 current  
at 3.0 V  
2.2  
4.6  
5.1  
μA  
• -40 to 25 °C  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
10.9  
24.4  
44.8  
91.0  
9.0  
15.9  
33.1  
Table continues on the next page...  
42  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
General  
Table 16. Power consumption operating behaviors (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VLLS2 Very-low-leakage stop mode 2 current  
at 3.0 V  
1.8  
3.3  
3.4  
6.8  
μA  
• -40 to 25 °C  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
6.1  
14.5  
26.4  
54.4  
10.4  
21.6  
IDD_VLLS1 Very-low-leakage stop mode 1 current  
at 3.0V  
0.65  
1.1  
2.1  
3.6  
8.5  
0.88  
1.6  
μA  
• -40 to 25 °C  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
3.3  
21.0  
32.2  
IDD_VLLS0 Very-low-leakage stop mode 0 current  
(SMC_STOPCTRL[PORPO] = 0) at 3.0  
V
372.0  
768.6  
1734  
3291  
8025  
598  
1331  
3038  
20575  
27560  
nA  
• -40 to 25 °C  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
IDD_VLLS0 Very-low-leakage stop mode 0 current  
12  
(SMC_STOPCTRL[PORPO] = 1) at 3.0  
V
94.1  
480.9  
1416  
2970  
7642  
311  
1024  
2760  
19574  
27325  
nA  
• -40 to 25 °C  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device.  
See each module's specification for its supply current.  
2. 96 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock.  
SCG configured as System PLL mode (SCG_HCCR[SCS]=0110), PLL clock source is SOSC from external 8 MHz  
crystal. All peripheral functional clocks disabled by clearing all xxDIV3, xxDIV2, and xxDIV1 in SCG_SOSCDIV and  
SCG_SPLLDIV registers. FIRC and SIRC disabled by clearing SCG_FIRCCSR[FIRCEN] and  
SCG_SIRCCSR[SIRCEN].  
3. 96 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock.  
SCG configured as System PLL mode (SCG_HCCR[SCS]=0110), PLL clock source is SOSC from external 8 MHz  
crystal. All peripheral functional clocks except USB = 24 MHz from SPLLDIV3_CLK. USB functional clock = 48 MHz  
from SPLLDIV1_CLK. FIRC and SIRC disabled by clearing SCG_FIRCCSR[FIRCEN] and SCG_SIRCCSR[SIRCEN].  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
43  
NXP Semiconductors  
General  
4. 72 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock.  
SCG configured as System PLL mode (SCG_RCCR[SCS]=0110), PLL clock source is SOSC from external 8 MHz  
crystal. All peripheral functional clocks disabled by clearing all xxDIV3, xxDIV2, and xxDIV1 in SCG_SOSCDIV and  
SCG_SPLLDIV registers. FIRC and SIRC disabled by clearing SCG_FIRCCSR[FIRCEN] and SCG_SIRCCSR[SIRCEN].  
5. 48 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock.  
SCG configured as FIRC 48 MHz mode (SCG_RCCR[SCS]=0011). All peripheral functional clocks disabled by clearing  
all xxDIV3, xxDIV2, and xxDIV1 in SCG_FIRCDIV register. PLL, SOSC, and SIRC disabled by clearing  
SCG_SPLLCSR[SPLLEN], SCG_SOSCCSR[SOSCEN], and SCG_SIRCCSR[SIRCEN].  
6. 72 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock.  
SCG configured as System PLL mode (SCG_RCCR[SCS]=0110), PLL clock source is SOSC from external 8 MHz  
crystal. All peripheral functional clocks except USB = 24 MHz from SPLLDIV3_CLK. USB functional clock = 48 MHz  
from SPLLDIV1_CLK. FIRC and SIRC disabled by clearing SCG_FIRCCSR[FIRCEN] and SCG_SIRCCSR[SIRCEN].  
7. 48 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock.  
SCG configured as FIRC 48 MHz mode (SCG_RCCR[SCS]=0011). All peripheral functional clocks except USB = 24  
MHz from FIRCDIV3_CLK. USB functional clock = 48 MHz from FIRCDIV1_CLK. PLL, SOSC, and SIRC disabled by  
clearing SCG_SPLLCSR[SPLLEN], SCG_SOSCCSR[SOSCEN], and SCG_SIRCCSR[SIRCEN].  
8. 4 MHz core and system clock (DIVCORE_CLK), 1 MHz bus/slow clock(DIVSLOW_CLK), and 1 MHz flash clock. SCG  
configured as SIRC 8 MHz mode (SCG_VCCR[SCS]=0010). All peripheral functional clocks except USB = 1M Hz from  
SIRCDIV3_CLK. USB clock disabled. PLL, SOSC, and FIRC disabled by clearing SCG_SPLLCSR[SPLLEN],  
SCG_SOSCCSR[SOSCEN], and SCG_FIRCCSR[FIRCEN].  
9. 8 MHz core and system clock (DIVCORE_CLK), 1 MHz bus/slow clock(DIVSLOW_CLK), and 1 MHz flash clock. SCG  
configured as SIRC 8 MHz mode (SCG_VCCR[SCS]=0010). All peripheral functional clocks except USB = 1M Hz from  
SIRCDIV3_CLK. USB clock disabled. PLL, SOSC, and FIRC disabled by clearing SCG_SPLLCSR[SPLLEN],  
SCG_SOSCCSR[SOSCEN], and SCG_FIRCCSR[FIRCEN].  
10. 4 MHz core and system clock (DIVCORE_CLK), 1 MHz bus/slow clock(DIVSLOW_CLK), and 1 MHz flash clock. SCG  
configured as SIRC 8 MHz mode (SCG_VCCR[SCS]=0010). All peripheral functional clocks disabled by clearing all  
xxDIV3, xxDIV2, and xxDIV1 in SCG_SIRCDIV register. PLL, SOSC, and FIRC disabled by clearing  
SCG_SPLLCSR[SPLLEN], SCG_SOSCCSR[SOSCEN], and SCG_FIRCCSR[FIRCEN].  
11. 8 MHz core and system clock (DIVCORE_CLK), 1 MHz bus/slow clock(DIVSLOW_CLK), and 1 MHz flash clock. SCG  
configured as SIRC 8 MHz mode (SCG_VCCR[SCS]=0010). All peripheral functional clocks disabled by clearing all  
xxDIV3, xxDIV2, and xxDIV1 in SCG_SIRCDIV register. PLL, SOSC, and FIRC disabled by clearing  
SCG_SPLLCSR[SPLLEN], SCG_SOSCCSR[SOSCEN], and SCG_FIRCCSR[FIRCEN].  
12. No brownout  
Table 17. Low power mode peripheral adders — typical value  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
IEREFSTEN8MHz  
External 8 MHz crystal clock adder with 402.9 462.1 477.5  
System OSC. Measured by entering  
VLPS mode with the crystal enabled  
(SCG_SOSCCFG[RANGE] = 10,  
492  
506.2 530.4  
uA  
SCG_SOSCCFG[HGO] = 0,  
SCG_SOSCCFG[EREFS] = 1, and  
SC2P/SC4P/SC8P = 0).  
IEREFSTEN32KHz  
External 32 kHz crystal clock adder with  
System OSC by means of  
SCG_SOSCCFG[RANGE] = 01,  
SCG_SOSCCFG[HGO] = 0,  
SCG_SOSCCFG[EREFS] = 1, and  
SC2P/SC4P/SC8P = 0. Measured by  
entering all the following modes with the  
crystal enabled:  
• VLLS1  
nA  
373.9 539.2 612.3 644.9 523.7 1000  
568.4 552.6 650.8 757.9 995.6 1400  
582.8 565.0 615.5 797.1 968.5 1700  
• VLLS3  
Table continues on the next page...  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
44  
NXP Semiconductors  
General  
Table 17. Low power mode peripheral adders — typical value (continued)  
Symbol  
Description  
Temperature (°C)  
50 70  
Unit  
-40  
25  
85  
105  
• LLS3  
• VLPS  
• STOP  
472.4 635.2 776.9 425.6 1500 2800  
528.0 534.1 636.6 9600 20300 40900  
ILPTMR  
LPTMR peripheral adder measured by  
placing the device in VLLS1 mode with  
LPTMR enabled using LPO clock.  
151.0  
18.8  
7.7  
21.8  
19.9  
7.6  
174.0 31.0  
nA  
µA  
ICMP  
CMP peripheral adder measured by  
placing the device in VLLS1 mode with  
CMP enabled using the 6-bit DAC and a  
single external input for compare.  
19.6  
20.0  
20.4  
20.5  
Includes 6-bit DAC power consumption.  
IRTC  
RTC peripheral adder measured by  
placing the device in VLLS1 mode and  
the RTC ALARM set for 1 minute.  
Includes selected clock source power  
consumption.  
• OSC32KCLK (32KHz external  
crystal)  
• LPO (internal 1K Hz Low Power  
Oscillator)  
116.0 1400 1400 1500 1500 120.0  
nA  
35.0  
1400 1400 1600 1400 120.0  
ILPUART  
LPUART peripheral adder measured by  
placing the device in STOP mode with  
selected clock source waiting for RX  
data at 115200 baud rate. Includes  
selected clock source power  
consumption.  
85.7  
41.2  
89.4  
43.5  
87.3  
38.7  
88.4  
36.8  
85.3  
39.6  
86.6  
37.0  
µA  
• Slow IRC clock from SCG (8 MHz  
internal reference clock)  
• OSCERCLK (8 MHz external  
crystal)  
ILPSPI  
LPSPI peripheral adder measured by  
placing the device in VLPS mode with  
selected clock source, LPSPI is  
configured as master mode with bit rate  
of 4 Mbps. Includes selected clock  
source power consumption.  
69.4  
66.7  
65.9  
66.1  
65.8  
66.0  
µA  
• Slow IRC clock from SCG (8 MHz  
internal reference clock)  
• OSCERCLK (8 MHz external  
crystal)  
431.9 489.9 503.5 518.6 533.0 557.0  
ITPM  
TPM peripheral adder measured by  
placing the device in STOP mode with  
selected clock source configured for  
output compare generating 100 Hz  
clock signal. No load is placed on the  
I/O generating the clock signal. Includes  
selected clock source and I/O switching  
currents.  
µA  
80.7  
35.5  
84.2  
37.2  
84.2  
37.3  
84.4  
37.1  
84.8  
37.7  
86.3  
37.7  
Table continues on the next page...  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
45  
NXP Semiconductors  
General  
Table 17. Low power mode peripheral adders — typical value (continued)  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
• Slow IRC clock from SCG (8 MHz  
internal reference clock)  
• OSCERCLK (8 MHz external  
crystal)  
ILPI2C  
LPI2C peripheral adder measured by  
placing the device in VLPS mode with  
selected clock source, LPI2C is  
configured as master, and bit rate is  
400 Kbps. Includes selected clock  
source power consumption.  
• Slow IRC clock from SCG (8 MHz  
internal reference clock)  
µA  
69.7  
66.7  
66.9  
67.6  
68.2  
68.2  
582.9 597.9 610.8 623.8 637.0 660.2  
• OSCERCLK (8 MHz external  
crystal)  
IBG  
Bandgap adder when BGEN bit is set  
and device is placed in VLPS mode.  
• Bandgap buffer disabled  
µA  
µA  
96.8  
95.4  
96.4  
98.2  
98.2  
98.5  
137.5 129.6 133.0 135.5 136.9 139.6  
372.9 380.5 384.0 388.3 392.2 394.6  
• Bandgap buffer enabled  
IADC  
ADC peripheral adder combining the  
measured values at VDD and VDDA by  
placing the device in STOP mode. ADC  
is configured for low power mode using  
the ADC asynchronous clock (ADACK)  
and continuous conversions.  
IWDOG  
WDOG peripheral adder measured by  
placing the device in STOP mode,  
WDOG is configured to time out at 1  
second. Includes selected clock source  
power consumption.  
µA  
68.8  
11.2  
56.0  
68.5  
10.1  
57.1  
69.2  
10.1  
58.6  
69.9  
10.2  
58.5  
71.7  
10.5  
58.6  
72.6  
10.7  
60.0  
• Slow IRC clock from SCG (8 MHz  
internal reference clock)  
• OSCERCLK (8 MHz external  
crystal)  
• LPO (internal 1 kHz Lower Power  
Oscillator)  
ISIRC_8MHz  
SIRC adder when SIRC is configured to 67.2  
8 MHz. Measured by entering VLPS  
mode with 8 MHz IRC enabled, and  
63.0  
21.2  
63.3  
21.4  
63.2  
21.5  
63.3  
21.7  
63.6  
21.4  
µA  
µA  
SIRCDIV1, SIRCDIV2, SIRCDIV3 =000.  
ISIRC_2MHz  
SIRC adder when SIRC is configured to 22.3  
2 MHz. Measured by entering STOP or  
VLPS mode with 2 MHz IRC enabled,  
and SIRCDIV1, SIRCDIV2, SIRCDIV3  
=000.  
46  
NXP Semiconductors  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
General  
7.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• SCG is configured as SPLL mode with SOSC as the clock source for RUN mode  
current measurement, and as SIRC mode for VLPR mode current measurement  
• USB regulator disabled  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFA  
• For the ALLON curve, all peripheral clocks are enabled as specified in notes of  
Power consumption operating behaviors.  
Figure 7. Run mode supply current vs. core frequency  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
47  
NXP Semiconductors  
General  
Figure 8. VLPR mode supply current vs. core frequency  
7.2.6 EMC radiated emissions operating behaviors  
Table 18. EMC radiated emissions operating behaviors  
Symbol  
Description  
Frequency  
band  
Typ.  
Unit  
Notes  
(MHz)  
VRE1  
VRE2  
Radiated emissions voltage, band 1  
Radiated emissions voltage, band 2  
Radiated emissions voltage, band 3  
Radiated emissions voltage, band 4  
IEC level  
0.15–50  
50–150  
18  
21  
21  
24  
L
dBμV  
dBμV  
dBμV  
dBμV  
1, 2  
VRE3  
150–500  
500–1000  
0.15–1000  
VRE4  
VRE_IEC  
2, 3  
1. Determined according to IEC Standard 61967-2 (and SAE J1752/3), Integrated Circuits - Measurement of  
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported  
emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the  
measured orientations in each frequency range.  
48  
NXP Semiconductors  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
General  
2. VDD = 3.3 V, VREGIN= 5V, TA = 25 °C, fOSC = 8 MHz (crystal), fSYS_CORE = 96 MHz, fBUS = 24 MHz  
3. IEC/SAE level maximum: L≤24dB mV  
7.2.7 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.nxp.com.  
2. Perform a keyword search for “EMC design.”  
7.2.8 Capacitance attributes  
Table 19. Capacitance attributes  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN  
Input capacitance  
7
pF  
7.3 Switching specifications  
7.3.1 Device clock specifications  
Table 20. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Run mode1  
Normal run mode  
fSYS  
System and core clock (DIVCORE_CLK)  
96  
72  
MHz High speed run  
mode  
MHz Normal speed run  
mode  
8
MHz VLPR mode  
fBUS  
Bus clock/Slow clock (DIVSLOW_CLK)  
Flash clock  
24  
MHz High speed run  
mode and Normal  
speed run mode  
1
MHz VLPR mode  
fFLASH  
24  
MHz High speed run  
mode and Normal  
speed run mode  
1
1
1
MHz VLPR mode  
KHz All modes  
KHz All modes  
fLLWU  
fRCM  
LLWU clock  
RCM clock  
Table continues on the next page...  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
49  
NXP Semiconductors  
General  
Table 20. Device clock specifications (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Run mode1  
fWDOG, fTSI WDOG clock, TSI clock  
24  
MHz High speed run  
mode and Normal  
speed run mode  
1
242  
MHz VLPR mode  
fADC  
ADC clock  
MHz High speed run  
mode and Normal  
speed run mode  
8
32.768  
1
MHz VLPR mode  
KHz All modes  
MHz All modes  
MHz All modes  
fRTC  
fTSTMR  
RTC clock  
TSTMR clock  
LPTMR clock  
fLPTMR  
24  
fTPM, fLPIT  
fLPSPI, fLPI2C  
,
TPM clock, LPIT clock, LPSPI clock, LPI2C clock,  
, LPUART clock, EMVSIM clock, FlexIO clock  
96  
MHz High speed run  
mode  
fLPUART  
fEMVSIM  
fFLEXIO  
,
,
72  
MHz Normal speed run  
mode  
8
MHz VLPR mode  
fUSB  
USB clock  
48  
MHz High speed run  
mode and Normal  
speed run mode  
0
MHz VLPR mode  
fERCLK  
External reference clock  
48  
MHz High speed run  
mode and Normal  
speed run mode  
16  
32  
MHz VLPR mode  
fosc_hi_2  
Oscillator crystal or resonator frequency — high  
frequency mode (high range)  
(SCG_SOSCCFG[RANGE]=11)  
MHz High speed run  
mode and Normal  
speed run mode  
16  
96  
MHz VLPR mode  
fCAU, fGPIO CAU clock, GPIO clock  
MHz High speed run  
mode  
72  
8
MHz Normal speed run  
mode  
MHz VLPR mode  
1. Normal run mode, High speed run mode, and VLPR mode.  
2. See ADC electrical specifications  
7.3.2 General switching specifications  
These general-purpose specifications apply to all signals configured for GPIO, LPI2C,  
and LPUART signals.  
50  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
General  
Table 21. General switching specifications  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter disabled)  
— Synchronous path  
1.5  
Bus clock  
cycles  
1
GPIO pin interrupt pulse width (digital glitch filter disabled,  
analog filter enabled) — Asynchronous path  
100  
50  
ns  
ns  
ns  
ns  
GPIO pin interrupt pulse width (digital glitch filter disabled,  
analog filter disabled) — Asynchronous path  
External RESET and NMI pin interrupt pulse width —  
Asynchronous path  
100  
16  
2
2
GPIO pin interrupt pulse width — Asynchronous path  
Port rise/fall time  
Normal drive pins  
3
• 2.7 ≤ VDD ≤ 3.6 V  
• Fast slew rate  
3
ns  
10.5  
• Slow slew rate  
• 1.71 ≤ VDD ≤ 2.7 V  
• Fast slew rate  
4
17  
• Slow slew rate  
High drive pins  
4
Normal/low drive enabled  
• 2.7 ≤ VDD ≤ 3.6 V  
• Fast slew rate  
2.5  
ns  
10.5  
• Slow slew rate  
• 1.71 ≤ VDD ≤ 2.7 V  
• Fast slew rate  
4
17  
• Slow slew rate  
High drive enabled  
• 2.7 ≤ VDD ≤ 3.6 V  
• Fast slew rate  
2
11  
• Slow slew rate  
• 1.71 ≤ VDD ≤ 2.7 V  
• Fast slew rate  
2.5  
17  
• Slow slew rate  
Normal drive fast pins  
5
• 2.7 ≤ VDD ≤ 3.6 V  
• Fast slew rate  
0.5  
10  
ns  
• Slow slew rate  
• 1.71 ≤ VDD ≤ 2.7 V  
• Fast slew rate  
0.75  
19  
• Slow slew rate  
High drive fast pins  
6
Normal/low drive enabled  
• 2.7 ≤ VDD ≤ 3.6 V  
0.5  
ns  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
51  
NXP Semiconductors  
General  
Table 21. General switching specifications  
Description  
Min.  
Max.  
Unit  
Notes  
• Fast slew rate  
11  
• Slow slew rate  
• 1.71 ≤ VDD ≤ 2.7 V  
• Fast slew rate  
1
19  
• Slow slew rate  
High drive enabled  
• 2.7 ≤ VDD ≤ 3.6 V  
• Fast slew rate  
2
13  
• Slow slew rate  
• 1.71 ≤ VDD ≤ 2.7 V  
• Fast slew rate  
4
21  
• Slow slew rate  
1. The synchronous and asynchronous timing must be met.  
2. This is the shortest pulse that is guaranteed to be recognized.  
3. For high drive pins with high drive enabled, load is 75pF; other pins load (normal/low drive) is 25pF. Fast slew rate is  
enabled by clearing PORTx_PCRn[SRE].  
4. High drive pins are PTB0,PTB1, PTC3, and PTC4. High drive capability is enabled by setting PORTx_PCRn[DSE].  
5. Normal drive fast pins are PTE20, PTE21, PTE22, and PTE23.  
6. High drive fast pins are PTD4, PTD5, PTD6, and PTD7. High drive capability is enabled by setting PORTx_PCRn[DSE].  
NOTE  
Only PTA4, PTA20, and PTB19 pins have analog/passive  
filter.  
7.4 Thermal specifications  
7.4.1 Thermal operating requirements  
Table 22. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
°C  
Notes  
Die junction temperature  
Ambient temperature  
TA  
105  
°C  
1
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed the maximum. The simplest method to  
determine TJ is: TJ = TA + RθJA × chip power dissipation.  
52  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
7.4.2 Thermal attributes  
Table 23. Thermal attributes  
Board type1  
Symbol  
Description  
100 LQFP 64 LQFP  
Unit  
Notes  
Four-layer (2s2p)  
RθJA  
Thermal resistance, junction to  
ambient (natural convection)  
51  
44  
°C/W  
Four-layer (2s2p)  
ΨJT  
Thermal characterization  
4
1.2  
°C/W  
2
parameter, junction to package top  
outside center (natural convection)  
1. Thermal test board meets JEDEC specification for this package (JESD51-9).  
2. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air).  
8 Peripheral operating requirements and behaviors  
8.1 Core modules  
8.1.1 SWD electricals  
Table 24. SWD full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
J1  
SWD_CLK frequency of operation  
• Serial wire debug  
0
25  
MHz  
ns  
J2  
J3  
SWD_CLK cycle period  
SWD_CLK clock pulse width  
• Serial wire debug  
1/J1  
20  
ns  
J4  
J9  
SWD_CLK rise and fall times  
10  
0
3
ns  
ns  
ns  
ns  
ns  
SWD_DIO input data setup time to SWD_CLK rise  
SWD_DIO input data hold time after SWD_CLK rise  
SWD_CLK high to SWD_DIO data valid  
SWD_CLK high to SWD_DIO high-Z  
32  
J10  
J11  
J12  
5
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
53  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
J2  
J4  
J3  
J3  
SWD_CLK (input)  
J4  
Figure 9. Serial wire clock input timing  
SWD_CLK  
SWD_DIO  
SWD_DIO  
SWD_DIO  
SWD_DIO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
Output data valid  
Figure 10. Serial wire data timing  
8.2 System modules  
There are no specifications necessary for the device's system modules.  
8.3 Clock modules  
8.3.1 System Clock Generation (SCG) specifications  
54  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
8.3.1.1 Fast IRC (FIRC) specifications  
Table 25. Fast IRC (FIRC) specifications  
Symbol  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Notes  
Vdd_firc  
Supply voltage  
Ffirc_target IRC target frequency (nominal)  
Trim range = 00  
MHz  
1
48  
52  
56  
60  
Trim range = 01  
Trim range = 10  
Trim range = 11  
Δffirc_ol_lv Open loop total deviation of FIRC frequency at low  
voltage (VDD=1.71V-1.89V) over full temperature  
• Regulator disable  
2
0.5  
0.5  
0.5  
1.5  
1.5  
1.5  
%Ffirc_targ  
et  
(SCG_FIRCCSR[FIRCREGOFF]=1)  
• Regulator enable  
(SCG_FIRCCSR[FIRCREGOFF]=0)  
Δffirc_ol_hv Open loop total deviation of FIRC frequency at high  
%Ffirc_targ 2, 3  
voltage (VDD=1.89V-3.6V) over full temperature  
et  
Regulator enable  
(SCG_FIRCCSR[FIRCREGOFF]=0)  
Δffirc_cl  
Fine Trim Resolution  
0.1  
%Ffirc_targ  
et  
Jcyc_firc  
Tst_firc  
Idd_firc  
Period Jitter (RMS)  
Startup time  
35  
2
150  
3
ps  
μs  
4
Current consumption:  
• 48 MHz  
350  
360  
380  
400  
400  
420  
460  
500  
μA  
• 52 MHz  
• 56 MHz  
• 60 MHz  
1. FIRC trim range is programmable via SCG_FIRCCFG[RANGE].  
2. For temperatures -40 to 85 °C, the maximum value is 1%, characterized on a few samples of different slots. This  
value is not guaranteed by production.  
3. Closed loop operation of the FIRC is only usable for USB device operation; it is not usable for USB host operation. It is  
enabled by configuring for USB Device, selecting FIRC as USB clock source, and enabling the clock recover function  
(USBn_CLK_RECOVER_CTRL[CLOCK_RECOVER_EN]=1, SCG_FIRCCSR[FIRCREGOFF]=0).  
4. FIRC startup time is defined as the time between clock enablement and clock availability for system use.  
8.3.1.2 Slow IRC (SIRC) specifications  
Table 26. Slow IRC specifications  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_sirc2M Supply current in 2 MHz mode  
14  
17  
μA  
Table continues on the next page...  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
55  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 26. Slow IRC specifications  
(continued)  
Symbol  
Description  
Min.  
Typ.  
25  
2
Max.  
35  
Unit  
μA  
Notes  
IDD_sirc8M Supply current in 8 MHz mode  
fsirc  
Output frequency  
MHz  
1
2
8
Δfsirc  
Total deviation of trimmed frequency over voltage  
and temperature  
%fsirc  
3
4
• 0 to 105 °C  
• -40 to 0 °C  
Δfsirc_t  
Total deviation of trimmed frequency over  
temperature @VDD=3.3V  
2
3
3
%fsirc  
Tsu_sirc  
Jcyc_sirc  
Startup time  
12.5  
μs  
ps  
Period jitter (RMS)  
• fsirc = 2 MHz  
• fsirc = 8 Mhz  
350  
100  
1. Selection of output frequency for Slow IRC between 2 MHz and 8 MHz is controlled by SCG_ SIRCCFG[RANGE].  
2. Maximum deviation occurs at cold temperature (-40 °C) and hot temperature (105 °C).  
3. This specification was obtained using a NXP developed PCB. Jitter is dependent on the noise characteristics of each  
PCB and results will vary.  
8.3.1.3 System PLL specifications  
Table 27. System PLL Specifications  
Symbol  
fpll_ref  
Description  
Min.  
8
Typ.  
Max.  
16  
Unit  
MHz  
MHz  
MHz  
Notes  
PLL reference frequency range  
VCO output frequency  
PLL output frequency  
fvcoclk_2x  
fvcoclk  
Ipll  
180  
90  
288  
144  
PLL operating current — VCO @ 180 MHz (f osc_hi_2  
= 10 MHz , f pll_ref = 10 MHz ,VDIV multiplier = 18)  
1
1.1  
2.0  
mA  
PLL operating current — VCO @ 288 MHz (f osc_hi_2  
= 32 MHz , f pll_ref = 8 MHz ,VDIV multiplier = 36)  
Jcyc_pll  
PLL period jitter (RMS)  
• fvco = 180 MHz  
2
2
120  
80  
ps  
ps  
• fvco = 288 MHz  
Jacc_pll  
PLL accumilated jitter over 1 μs (RMS)  
• fvco = 180 MHz  
600  
300  
• fvco = 288 MHz  
Dunl  
Lock exit frequency tolerance  
Lock detector detection time  
4.47  
5.97  
150 × 10-6  
%
s
tpll_lock  
3
56  
NXP Semiconductors  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
Peripheral operating requirements and behaviors  
Table 27. System PLL Specifications  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
+ 1075(1/  
f pll_ref  
)
1. Excludes any oscillator currents that are also consuming power while PLL is in operation.  
2. This specification was obtained using an NXP developed PCB. PLL jitter is dependent on the noise characteristics of  
each PCB and results will vary.  
3. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL  
disabled to PLL enabled. If a crystal/resonator is being used as the reference, this specification assumes it is already  
running.  
8.3.2 Oscillator electrical specifications  
8.3.2.1 Oscillator DC electrical specifications  
Table 28. Oscillator DC electrical specifications  
Symbol Description  
VDD Supply voltage  
Min.  
Typ.  
Max.  
Unit  
Notes  
1.71  
3.6  
V
IDDOSC Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
500  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
mA  
mA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
• 24 MHz  
• 32 MHz  
1.5  
IDDOSC Supply current — high gain mode (HGO=1)  
1
• 32 kHz  
25  
400  
500  
2.5  
3
μA  
μA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
μA  
mA  
mA  
mA  
• 24 MHz  
• 32 MHz  
4
Cx  
Cy  
RF  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
2, 4  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
Table continues on the next page...  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
57  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 28. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Feedback resistor — high-frequency, low-  
MΩ  
power mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
1
MΩ  
kΩ  
kΩ  
kΩ  
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Series resistor — low-frequency, high-gain  
mode (HGO=1)  
200  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
0
kΩ  
V
5
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
VDD  
1.0  
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation  
3. Cx,Cy can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For  
all other cases external capacitors must be used.  
4. When low power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to  
any other devices.  
8.3.2.2 Oscillator frequency specifications  
Table 29. Oscillator frequency specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fosc_lo Oscillator crystal or resonator frequency — low-  
32  
40  
kHz  
frequency range  
(SCG_SOSCCFG[RANGE]=01)  
fosc_hi_1 Oscillator crystal or resonator frequency —  
medium frequency range  
1
8
MHz  
(SCG_SOSCCFG[RANGE]=10)  
Table continues on the next page...  
58  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 29. Oscillator frequency specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fosc_hi_2 Oscillator crystal or resonator frequency — high  
frequency range  
8
32  
MHz  
(SCG_SOSCCFG[RANGE]=11)  
fec_extal Input clock frequency (external clock mode)  
tdc_extal Input clock duty cycle (external clock mode)  
40  
50  
48  
60  
MHz  
%
1, 2  
tcst  
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
750  
ms  
3, 4, 5  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
250  
0.6  
ms  
ms  
Crystal startup time — 8 MHz medium  
frequency (SCG_SOSCCFG[RANGE]=11), low-  
power mode (HGO=0)  
Crystal startup time — 8 MHz medium  
frequency (SCG_SOSCCFG[RANGE]=10),  
high-gain mode (HGO=1)  
1
ms  
1. Other frequency limits may apply when external clock is being used as a reference for the PLL.  
2. When transitioning to system PLL mode, restrict the frequency of the input clock so that, when it is divided by  
PREDIV, it remains within the limits of the PLL reference input clock frequency.  
3. Proper PC board layout procedures must be followed to achieve specifications.  
4. Crystal startup time is defined as the time between the oscillator being enabled and the SCG_SOSCCSR[SOSCVLD]  
being set.  
5. Crystal startup time is dependent on external crystal and/or resonator and loading capacitance as well as series  
resistance.  
8.4 Memories and memory interfaces  
8.4.1 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
8.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps  
are active and do not include command overhead.  
Table 30. Flash program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
13  
Max.  
18  
Unit  
μs  
Notes  
thvpgm4 Longword Program high-voltage time  
thversscr Sector Erase high-voltage time  
1
113  
ms  
Table continues on the next page...  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
59  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 30. Flash program/erase timing specifications (continued)  
Symbol Description  
Min.  
Typ.  
52  
Max.  
452  
Unit  
ms  
Notes  
thversblk128k Erase Block high-voltage time for 128 KB  
1
1
thversall  
Erase All high-voltage time  
104  
904  
ms  
1. Maximum time based on expectations at cycling end-of-life.  
8.4.1.2 Flash timing specifications — commands  
Table 31. Flash command timing specifications  
Symbol Description  
Read 1s Block execution time  
• 128 KB program flash  
Min.  
Typ.  
Max.  
Unit  
Notes  
1
trd1blk128k  
1.7  
ms  
trd1sec1k Read 1s Section execution time (flash sector)  
65  
60  
45  
μs  
μs  
μs  
μs  
1
1
tpgmchk  
trdrsrc  
Program Check execution time  
Read Resource execution time  
Program Longword execution time  
Erase Flash Block execution time  
• 128 KB program flash  
30  
1
tpgm4  
145  
2
tersblk128k  
88  
600  
ms  
tersscr  
trd1all  
Erase Flash Sector execution time  
Read 1s All Blocks execution time  
Read Once execution time  
14  
114  
1.8  
25  
ms  
ms  
μs  
2
1
trdonce  
1
tpgmonce Program Once execution time  
65  
175  
μs  
2
tersall  
Erase All Blocks execution time  
1300  
30  
ms  
μs  
tvfykey  
Verify Backdoor Access Key execution time  
1
1. Assumes 25 MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
8.4.1.3 Flash high voltage current behaviors  
Table 32. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
2.5  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
60  
NXP Semiconductors  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
Peripheral operating requirements and behaviors  
8.4.1.4 Reliability specifications  
Table 33. Flash reliability specifications  
Symbol Description  
Min.  
5
Typ.1  
Max.  
Unit  
years  
years  
cycles  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
50  
20  
100  
50 K  
10 K  
2
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a  
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in  
Engineering Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 125 °C.  
8.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
8.6 Analog  
8.6.1 ADC electrical specifications  
8.6.1.1 16-bit ADC operating conditions  
Table 34. 16-bit ADC operating conditions  
Symbol Description  
VDDA Supply voltage  
ΔVDDA Supply voltage  
Conditions  
Min.  
1.71  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
Absolute  
2
Delta to VDD (VDD – VDDA  
)
-100  
0
+100  
+100  
mV  
mV  
V
ΔVSSA  
Ground voltage Delta to VSS (VSS – VSSA  
)
-100  
0
2
VADIN  
Input voltage  
• 16-bit differential mode  
• All other modes  
• 16-bit mode  
VREFL  
31/32 ×  
VREFH  
VREFL  
VREFH  
CADIN  
Input  
8
4
10  
5
pF  
capacitance  
• 8-bit / 10-bit / 12-bit  
modes  
RADIN  
RAS  
Input series  
resistance  
2
5
kΩ  
kΩ  
Analog source  
resistance  
16-bit modes  
3, 4  
0.5  
Table continues on the next page...  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
61  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 34. 16-bit ADC operating conditions (continued)  
Symbol Description  
Conditions  
• fADCK > 8 MHz  
Min.  
Typ.1  
Max.  
Unit  
Notes  
1
kΩ  
• fADCK = 4–8 MHz  
• fADCK < 4 MHz  
2
kΩ  
13-bit / 12-bit modes  
• fADCK > 16 MHz  
• fADCK > 8 MHz  
• fADCK = 4–8 MHz  
• fADCK < 4 MHz  
0.5  
1
kΩ  
kΩ  
kΩ  
kΩ  
2
5
11-bit / 10-bit modes  
• fADCK > 8 MHz  
• fADCK = 4–8 MHz  
• fADCK < 4MHz  
2
5
kΩ  
kΩ  
kΩ  
10  
9-bit / 8-bit modes  
• fADCK > 8 MHz  
• fADCK < 8 MHz  
5
kΩ  
kΩ  
10  
fADCK  
ADC conversion ≤ 13-bit mode  
1.0  
2.0  
24.0  
12.0  
MHz  
MHz  
5
6
clock frequency  
16-bit mode  
Crate  
ADC conversion ≤ 13-bit modes  
rate  
No ADC hardware averaging  
20.000  
37.037  
1200  
ksps  
ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
Crate  
ADC conversion 16-bit mode  
6
rate  
No ADC hardware averaging  
461.467  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
3. Assumes ADLSMP=0  
4. This resistance is external to the MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS  
CAS time constant should be kept to < 1 ns.  
*
5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
62  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
leakage  
ZAS  
ADC SAR  
ENGINE  
RAS  
RADIN  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 11. ADC input impedance equivalency diagram  
8.6.1.2 16-bit ADC electrical characteristics  
Table 35. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
Notes  
IDDA_ADC Supply current  
mA  
3
ADC asynchronous  
clock source  
• ADLPC = 1, ADHSC = 0  
• ADLPC = 1, ADHSC = 1  
• ADLPC = 0, ADHSC = 0  
• ADLPC = 0, ADHSC = 1  
2.4  
4.0  
5.2  
6.2  
MHz  
MHz  
MHz  
MHz  
tADACK = 1/  
fADACK  
2.4  
fADACK  
3.0  
4.4  
Sample Time  
See Reference Manual chapter for sample times  
TUE  
DNL  
Total unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
LSB4  
5
5
1.4  
Differential non-  
linearity  
• 12-bit modes  
• <12-bit modes  
0.7  
0.2  
–1.1 to  
+1.9  
–0.3 to  
0.5  
INL  
Integral non-linearity  
• 12-bit modes  
1.0  
–2.7 to  
+1.9  
LSB4  
5
Table continues on the next page...  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
63  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 35. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
0.5  
–0.7 to  
+0.5  
• <12-bit modes  
5
EFS  
EQ  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• 16-bit modes  
• ≤13-bit modes  
–4  
–1.4  
–1 to 0  
–5.4  
–1.8  
LSB4  
LSB4  
VADIN = VDDA  
Quantization error  
0.5  
ENOB Effective number of 16-bit differential mode  
6
bits  
12.8  
11.9  
14.5  
13.8  
bits  
bits  
• Avg = 32  
• Avg = 4  
16-bit single-ended mode  
• Avg = 32  
12.2  
11.4  
13.9  
13.1  
bits  
bits  
dB  
• Avg = 4  
Signal-to-noise plus See ENOB  
SINAD  
6.02 × ENOB + 1.76  
distortion  
THD  
Total harmonic  
distortion  
16-bit differential mode  
• Avg = 32  
7
7
dB  
dB  
-94  
-85  
16-bit single-ended mode  
• Avg = 32  
SFDR Spurious free  
dynamic range  
16-bit differential mode  
• Avg = 32  
dB  
dB  
82  
78  
95  
90  
16-bit single-ended mode  
• Avg = 32  
EIL  
Input leakage error  
IIn × RAS  
mV  
IIn = leakage  
current  
(refer to the  
MCU's  
voltage and  
current  
operating  
ratings)  
Temp sensor slope Across the full temperature  
range of the device  
1.55  
706  
1.62  
716  
1.69  
726  
mV/°C  
mV  
8
VTEMP25 Temp sensor  
voltage  
25 °C  
8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
64  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with  
1 MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
8. ADC conversion clock < 3 MHz  
Typical ADC 16-bit Differential ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
15.00  
14.70  
14.40  
14.10  
13.80  
13.50  
13.20  
12.90  
12.60  
Hardware Averaging Disabled  
Averaging of 4 samples  
12.30  
12.00  
Averaging of 8 samples  
Averaging of 32 samples  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 12. Typical ENOB vs. ADC_CLK for 16-bit differential mode  
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
14.00  
13.75  
13.50  
13.25  
13.00  
12.75  
12.50  
12.25  
12.00  
11.75  
11.50  
11.25  
Averaging of 4 samples  
Averaging of 32 samples  
11.00  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 13. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
65  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
8.6.2 Voltage reference electrical specifications  
Table 36. VREF full-range operating requirements  
Symbol  
Description  
Min.  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
Supply voltage for 1.2V output  
Supply voltage for 2.1V output  
Temperature  
2.4  
3.6  
V
TA  
CL  
Operating temperature  
range of the device  
°C  
Output load capacitance  
100  
nF  
1, 2  
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range  
of the device.  
Table 37. VREF full-range operating behaviors  
Symbol Description  
Min.  
1.190  
2.092  
1.188  
2.087  
Typ.  
1.195  
2.1  
Max.  
1.2  
Unit  
V
Notes  
Vout Voltage reference output with factory trim at  
1
nominal VDDA and temperature=25°C  
2.108  
1.202  
2.113  
V
Vout  
Voltage reference 1.2 V output— factory trim  
Voltage reference 2.1 V output — factory trim  
Voltage reference trim step for 1.2 V output  
Voltage reference trim step for 2.1 V output  
Aging coefficient  
1.195  
2.1  
V
1
1
V
Vstep  
0.5  
mV  
mV  
uV/yr  
µA  
µA  
µA  
mV  
µs  
1
1.5  
1
Ac  
Ibg  
Ilp  
400  
80  
1
Bandgap only current  
60  
Low-power buffer current  
180  
480  
0.2  
360  
960  
1
Ihp  
High-power buffer current  
1
ΔVLOAD Load regulation — current is 1.0 mA  
1, 2  
1
Tstup  
Buffer startup time  
100  
2
Vvdrift  
Voltage drift for 1.2 V output (Vmax -Vmin  
across the full voltage range)  
0.5  
mV  
Voltage drift for 2.1 V output (Vmax -Vmin  
across the full voltage range)  
0.9  
2
3.5  
15  
26  
mV  
mV  
mV  
Vtdrift  
Temperature drift for 1.2 V output (Vmax -Vmin  
across the full temperature range)  
3
Temperature drift for 2.1 V output (Vmax -Vmin  
across the full temperature range)  
3.5  
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register for Vout selection  
of 1.2 V or 2.1 V.  
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
3. To get best performance of VREF temperature drift, VREF_SC[ICOMPEN] must be set.  
66  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 38. VREF limited-range operating requirements  
Symbol  
Description  
Temperature  
Min.  
Max.  
50  
Unit  
Notes  
TA  
0
°C  
Table 39. VREF limited-range operating behaviors  
Symbol  
Vout  
Description  
Min.  
1.173  
2.088  
Max.  
1.225  
2.115  
Unit  
V
Notes  
Voltage reference output 1.2 V with factory trim  
Voltage reference output 2.1 V with factory trim  
Vout  
V
8.6.3 CMP and 6-bit DAC electrical specifications  
Table 40. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, high-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
VH  
5
mV  
mV  
mV  
mV  
10  
20  
30  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
VDD – 0.5  
50  
250  
7
0.5  
200  
600  
40  
V
V
Output low  
Propagation delay, high-speed mode (EN=1, PMODE=1)  
Propagation delay, low-speed mode (EN=1, PMODE=0)  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
20  
ns  
tDLS  
80  
ns  
μs  
IDAC6b  
INL  
μA  
LSB3  
LSB  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
67  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
HYSTCTR  
Setting  
00  
01  
10  
11  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 14. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
68  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 15. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
8.6.4 12-bit DAC electrical characteristics  
8.6.4.1 12-bit DAC operating requirements  
Table 41. 12-bit DAC operating requirements  
Symbol  
VDDA  
VDACR  
CL  
Desciption  
Min.  
Max.  
3.6  
3.6  
100  
1
Unit  
V
Notes  
Supply voltage  
Reference voltage  
Output load capacitance  
Output load current  
1.13  
V
1
2
pF  
mA  
IL  
1. The DAC reference can be selected to be VDDA or VREF_OUT  
.
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
69  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
8.6.4.2 12-bit DAC operating behaviors  
Table 42. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
250  
μA  
P
IDDA_DACH Supply current — high-speed mode  
100  
15  
900  
200  
30  
μA  
μs  
μs  
μs  
P
tDACLP Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
1
1
1
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
tCCDACLP Code-to-code settling time (0xBF8 to  
0xC08) — low-power mode and high-speed  
mode  
0.7  
1
Vdacoutl DAC output voltage range low — high-  
speed mode, no load, DAC set to 0x000  
100  
mV  
mV  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
VDACR  
INL  
DNL  
DNL  
Integral non-linearity error — high speed  
mode  
8
1
1
LSB  
LSB  
LSB  
2
3
4
Differential non-linearity error — VDACR > 2  
V
Differential non-linearity error — VDACR  
VREF_OUT  
=
VOFFSET Offset error  
EG Gain error  
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V  
60  
0.4  
0.1  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
TCO  
TGE  
Rop  
SR  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Output resistance (load = 3 kΩ)  
Slew rate -80hF7Fh80h  
3.7  
μV/C  
%FSR/C  
Ω
6
0.000421  
250  
V/μs  
• High power (SPHP  
)
1.2  
1.7  
• Low power (SPLP  
3dB bandwidth  
)
0.05  
0.12  
BW  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0 + 100 mV to VDACR −100 mV  
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV  
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V  
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV  
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set  
to 0x800, temperature range is across the full range of the device  
70  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
8
6
4
2
0
-2  
-4  
-6  
-8  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Digital Code  
Figure 16. Typical INL error vs. digital code  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
71  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
1.499  
1.4985  
1.498  
1.4975  
1.497  
1.4965  
1.496  
55  
85  
25  
105  
125  
-40  
Temperature °C  
Figure 17. Offset at half scale vs. temperature  
8.7 Timers  
See General switching specifications.  
8.8 Communication interfaces  
8.8.1 EMV SIM specifications  
Each EMV SIM module interface consists of a total of five pins.  
72  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
The interface is designed to be used with synchronous Smart cards, meaning the EMV  
SIM module provides the clock used by the Smart card. The clock frequency is  
typically 372 times the Tx/Rx data rate.  
There is no timing relationship between the clock and the data. The clock that the  
EMV SIM module provides to the Smart card is used by the Smart card to recover the  
clock from the data in the same manner as standard UART data exchanges. All five  
signals of the EMV SIM module are asynchronous with each other.  
There are no required timing relationships between signals in normal mode. The smart  
card is initiated by the interface device; the Smart card responds with Answer to  
Reset. Although the EMV SIM interface has no defined requirements, the ISO/IEC  
7816 defines reset and power-down sequences (for detailed information see ISO/IEC  
7816).  
SI10  
EMVSIMn_PD  
EMVSIMn_RST  
SI7  
EMVSIMn_CLK  
SI8  
EMVSIMn_IO  
SI9  
EMVSIMn_VCCEN  
Figure 18. EMV SIM Clock Timing Diagram  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
73  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
The following table defines the general timing requirements for the EMV SIM  
interface.  
Table 43. Timing Specifications, High Drive Strength  
ID  
Parameter  
Symbol  
Min  
Max  
Unit  
MHz  
SI EMV SIM clock frequency (EMVSIMn_CLK)1  
1
SI EMV SIM clock rise time (EMVSIMn_CLK)2  
2
SI EMV SIM clock fall time (EMVSIMn_CLK)2  
3
Sfreq  
Srise  
Sfall  
1
5
20  
0.08 × (1/Sfreq)  
ns  
ns  
ns  
μs  
μs  
0.08 × (1/Sfreq)  
SI EMV SIM input transition time (EMVSIMn_IO,  
4
Si EMV SIM I/O rise time / fall time (EMVSIMn_IO)3  
5
Si EMV SIM RST rise time / fall time (EMVSIMn_RST)4  
6
Stran  
Tr/Tf  
Tr/Tf  
25  
EMVSIMn_PD)  
0.8  
0.8  
1. 50% duty cycle clock,  
2. With C = 50 pF  
3. With Cin = 30 pF, Cout = 30 pF,  
4. With Cin = 30 pF,  
8.8.1.1 EMV SIM Reset Sequences  
Smart cards may have internal reset, or active low reset. The following subset describes  
the reset sequences in these two cases.  
8.8.1.1.1 Smart Cards with Internal Reset  
Following figure shows the reset sequence for Smart cards with internal reset. The reset  
sequence comprises the following steps:  
• After power-up, the clock signal is enabled on EMVSIMn_CLK (time T0)  
• After 200 clock cycles, EMVSIMn_IO must be asserted.  
• The card must send a response on EMVSIMn_IO acknowledging the reset between  
400–40000 clock cycles after T0.  
74  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
EMVSIMn_VCCEN  
EMVSIMn_CLK  
EMVSIMn_IO  
RESPONSE  
1
2
T0  
Figure 19. Internal Reset Card Reset Sequence  
The following table defines the general timing requirements for the SIM interface.  
Table 44. Timing Specifications, Internal Reset Card Reset Sequence  
Ref  
Min  
Max  
Units  
1
200  
EMVSIMx_CLK  
clock cycles  
2
400  
40,000  
EMVSIMx_CLK  
clock cycles  
8.8.1.1.2 Smart Cards with Active Low Reset  
Following figure shows the reset sequence for Smart cards with active low reset. The  
reset sequence comprises the following steps::  
• After power-up, the clock signal is enabled on EMVSIMn_CLK (time T0)  
• After 200 clock cycles, EMVSIMn_IO must be asserted.  
• EMVSIMn_RST must remain low for at least 40,000 clock cycles after T0 (no  
response is to be received on RX during those 40,000 clock cycles)  
• EMVSIMn_RST is asserted (at time T1)  
• EMVSIMn_RST must remain asserted for at least 40,000 clock cycles after T1,  
and a response must be received on EMVSIMn_IO between 400 and 40,000 clock  
cycles after T1.  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
75  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
EMVSIMn_VCCEN  
EMVSIMn_RST  
EMVSIMn_CLK  
RESPONSE  
EMVSIMn_IO  
2
1
3
3
T0  
T1  
Figure 20. Active-Low-Reset Smart Card Reset Sequence  
The following table defines the general timing requirements for the EMVSIM  
interface..  
Table 45. Timing Specifications, Internal Reset Card Reset Sequence  
Ref No  
Min  
Max  
200  
Units  
1
2
3
EMVSIMx_CLK clock cycles  
EMVSIMx_CLK clock cycles  
EMVSIMx_CLK clock cycles  
400  
40,000  
40,000  
8.8.1.2 EMVSIM Power-Down Sequence  
Following figure shows the EMV SIM interface power-down AC timing diagram.Table  
46 table shows the timing requirements for parameters (SI7–SI10) shown in the figure.  
The power-down sequence for the EMV SIM interface is as follows:  
• EMVSIMn_SIMPD port detects the removal of the Smart Card  
• EMVSIMn_RST is negated  
• EMVSIMn_CLK is negated  
• EMVSIM_IO is negated  
• EMVSIMx_VCCENy is negated  
Each of the above steps requires one OSC32KCLK period (usually 32 kHz, also known  
as rtcclk in below figure). Power-down may be initiated by a Smart card removal  
detection; or it may be launched by the processor.  
76  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
SI10  
EMVSIMn_PD  
EMVSIMn_RST  
SI7  
EMVSIMn_CLK  
EMVSIMn_IO  
SI8  
SI9  
EMVSIMn_VCCEN  
Figure 21. Smart Card Interface Power Down AC Timing  
Table 46. Timing Requirements for Power-down Sequence  
Ref No  
Parameter  
Symbol  
Min  
Max  
Units  
SI7  
EMVSIM reset to SIM clock stop Srst2clk  
0.9 × 1/  
Frtcclk1  
1.1 × 1/Frtcclk  
μs  
SI8  
SI9  
EMVSIM reset to SIM Tx data  
low  
Srst2dat  
Srst2ven  
Spd2rst  
1.8 × 1/  
Frtcclk  
2.2 × 1/Frtcclk  
3.3 × 1/Frtcclk  
1.1 × 1/Frtcclk  
μs  
μs  
μs  
EMVSIM reset to SIM voltage  
enable low  
2.7 × 1/  
Frtcclk  
SI10  
EMVSIM presence detect to  
SIM reset low  
0.9 × 1/  
Frtcclk  
1. Frtcclk is OSC32KCLK, and this clock must be enabled during the power down sequence.  
NOTE  
Same timing is also followed when auto power down is  
initiated. See Reference Manual for reference.  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
77  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
8.8.2 USB electrical specifications  
The USB electricals for the USB On-the-Go module conform to the standards  
documented by the Universal Serial Bus Implementers Forum. For the most up-to-date  
standards, visit usb.org.  
NOTE  
The Fast IRC do not meet the USB jitter specifications for  
certification for Host mode operation.  
8.8.3 USB VREG electrical specifications  
Table 47. USB VREG electrical specifications  
Symbol Description  
Min.  
2.7  
Typ.1  
Max.  
5.5  
Unit  
V
Notes  
VREGIN Input supply voltage  
IDDon  
IDDstby  
IDDoff  
Quiescent current — Run mode, load current  
equal zero, input supply (VREGIN) > 3.6 V  
125  
186  
μA  
Quiescent current — Standby mode, load  
current equal zero  
1.1  
10  
μA  
Quiescent current — Shutdown mode  
650  
4
nA  
μA  
• VREGIN = 5.0 V and temperature=25 °C  
• Across operating voltage and temperature  
ILOADrun Maximum load current — Run mode  
ILOADstby Maximum load current — Standby mode  
120  
1
mA  
mA  
VReg33out Regulator output voltage — Input supply  
(VREGIN) > 3.6 V  
• Run mode  
3
3.3  
2.8  
3.6  
3.6  
3.6  
V
V
V
• Standby mode  
2.1  
2.1  
VReg33out Regulator output voltage — Input supply  
(VREGIN) < 3.6 V, pass-through mode  
2
COUT  
ESR  
External output capacitor  
1.76  
1
2.2  
8.16  
100  
μF  
External output capacitor equivalent series  
resistance  
mΩ  
ILIM  
Short circuit current  
290  
mA  
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.  
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad  
.
78  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
8.8.4 LPSPI switching specifications  
The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus  
with master and slave operations. Many of the transfer attributes are programmable.  
The following tables provide timing characteristics for classic SPI timing modes.  
All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted,  
as well as input signal transitions of 3 ns and a 30 pF maximum load on all LPSPI  
pins.  
NOTE  
• Slew rate disabled pads are those pins with  
PORTx_PCRn[SRE] bit cleared. Slew rate enabled pads  
are those pins with PORTx_PCRn[SRE] bit set.  
• To achieve high bit rate, it is recommended to use fast  
pins (PTE20, PTE21, PTE22, PTE23, PTD4, PTD5,  
PTD6, and PTD7) and/or high drive pins (PTC3, PTC4,  
PTD4, PTD5, PTD6, and PTD7).  
Table 48. LPSPI master mode timing on slew rate disabled pads  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Hz  
Note  
1
2
fop  
Frequency of operation  
fperiph/2048  
2 x tperiph  
fperiph/2  
1
2
tSPSCK  
SPSCK period  
2048 x  
tperiph  
ns  
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
1024 x  
tperiph  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
18  
0
ns  
ns  
ns  
ns  
ns  
15  
8
tv  
0
9
tHO  
tRI  
10  
tperiph - 25  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. fperiph is the LPSPI peripheral functional clock.  
2. tperiph = 1/fperiph  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
79  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 49. LPSPI master mode timing on slew rate enabled pads  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Hz  
Note  
1
2
fop  
Frequency of operation  
fperiph/2048  
2 x tperiph  
fperiph/2  
1
2
tSPSCK  
SPSCK period  
2048 x  
tperiph  
ns  
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
1024 x  
tperiph  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
96  
0
ns  
ns  
ns  
ns  
ns  
52  
8
tv  
0
9
tHO  
tRI  
10  
tperiph - 25  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
36  
ns  
Fall time output  
1. fperiph is the LPSPI peripheral functional clock  
2. tperiph = 1/fperiph  
1
SS  
(OUTPUT)  
3
2
10  
10  
11  
11  
4
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
8
MSB IN  
LSB IN  
9
MOSI  
(OUTPUT)  
2
BIT 6 . . . 1  
MSB OUT  
LSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 22. LPSPI master mode timing (CPHA = 0)  
80  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
1
SS  
(OUTPUT)  
2
10  
10  
11  
11  
4
3
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
LSB IN  
MSB IN  
9
8
MOSI  
(OUTPUT)  
2
PORT DATA  
BIT 6 . . . 1  
MASTER MSB OUT  
PORT DATA  
MASTER LSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 23. LPSPI master mode timing (CPHA = 1)  
Table 50. LPSPI slave mode timing on slew rate disabled pads  
Num.  
1
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Hz  
Note  
1
fop  
tSPSCK  
tLead  
tLag  
Frequency of operation  
0
2
SPSCK period  
Enable lead time  
Enable lag time  
4 x tperiph  
ns  
2
3
1
tperiph  
tperiph  
ns  
3
4
1
5
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
6
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
2.5  
3.5  
0
ns  
7
ns  
8
tperiph  
tperiph  
31  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph - 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. fperiph is the LPSPI peripheral functional clock  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
81  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 51. LPSPI slave mode timing on slew rate enabled pads  
Num.  
1
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Hz  
Note  
1
fop  
tSPSCK  
tLead  
tLag  
Frequency of operation  
0
2
SPSCK period  
Enable lead time  
Enable lag time  
4 x tperiph  
ns  
2
3
1
tperiph  
tperiph  
ns  
3
4
1
5
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
6
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
2
7
ns  
7
ns  
8
0
tperiph  
tperiph  
122  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph - 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
36  
ns  
Fall time output  
1. fperiph is the LPSPI peripheral functional clock  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
SS  
(INPUT)  
2
12  
12  
13  
13  
4
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
3
SPSCK  
(CPOL=1)  
(INPUT)  
9
8
10  
11  
11  
see  
note  
SEE  
NOTE  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE MSB  
7
SLAVE LSB OUT  
6
MOSI  
(INPUT)  
LSB IN  
MSB IN  
BIT 6 . . . 1  
NOTE: Not defined  
Figure 24. LPSPI slave mode timing (CPHA = 0)  
82  
NXP Semiconductors  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
Peripheral operating requirements and behaviors  
SS  
(INPUT)  
4
2
12  
12  
13  
3
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
13  
SPSCK  
(CPOL=1)  
(INPUT)  
11  
9
10  
SLAVE MSB OUT  
see  
note  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
8
6
7
MOSI  
(INPUT)  
MSB IN  
LSB IN  
NOTE: Not defined  
Figure 25. LPSPI slave mode timing (CPHA = 1)  
8.8.5 LPI2C  
Table 52. LPI2C specifications  
Symbol Description  
Min.  
Max.  
100  
Unit  
Notes  
1
fSCL  
SCL clock frequency  
Standard mode (Sm)  
Fast mode (Fm)  
0
0
0
0
0
kHz  
400  
1, 2  
1, 3  
1, 4  
1, 5  
Fast mode Plus (Fm+)  
Ultra Fast mode (UFm)  
High speed mode (Hs-mode)  
1000  
5000  
3400  
1. See General switching specifications, measured at room temperature.  
2. Measured with the maximum bus loading of 400pF at 3.3V VDD with pull-up Rp = 580Ω on normal drive pins or 350Ω  
on high drive pins, and at 1.8V VDD with Rp = 880Ω. For all other cases, select appropriate Rp per I2C Bus  
Specification and the pin drive capability.  
3. Fm+ is only supported on high drive pin with high drive enabled. It is measured with the maximum bus loading of  
400pF at 3.3V VDD with Rp = 350Ω. For all other cases, select appropriate Rp per I2C Bus Specification and the pin  
drive capability.  
4. UFm is only supported on high drive pin with high drive enabled and push-pull output only mode. It is measured at  
3.3V VDD with the maximum bus loading of 400pF. For 1.8V VDD, the maximum speed is 4Mbps.  
5. Hs-mode is only supported in slave mode and on the high drive pins with high drive enabled.  
8.8.6 LPUART  
See General switching specifications.  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
83  
NXP Semiconductors  
Design considerations  
8.9 Human-machine interfaces (HMI)  
8.9.1 TSI electrical specifications  
Table 53. TSI electrical specifications  
Symbol  
TSI_RUNF  
TSI_RUNV  
Description  
Min.  
Typ.  
100  
Max.  
Unit  
µA  
Fixed power consumption in run mode  
Variable power consumption in run mode  
(depends on oscillator's current selection)  
1.0  
128  
µA  
TSI_EN  
TSI_DIS  
Power consumption in enable mode  
Power consumption in disable mode  
TSI analog enable time  
100  
1.2  
66  
µA  
µA  
µs  
pF  
V
TSI_TEN  
TSI_CREF  
TSI_DVOLT  
TSI reference capacitor  
1.0  
Voltage variation of VP & VM around nominal  
values  
0.19  
1.03  
9 Design considerations  
9.1 Hardware design considerations  
This device contains protective circuitry to guard against damage due to high static  
voltage or electric fields. However, take normal precautions to avoid application of any  
voltages higher than maximum-rated voltages to this high-impedance circuit.  
9.1.1 Printed circuit board recommendations  
• Place connectors or cables on one edge of the board and do not place digital circuits  
between connectors.  
• Drivers and filters for I/O functions must be placed as close to the connectors as  
possible. Connect TVS devices at the connector to a good ground. Connect filter  
capacitors at the connector to a good ground.  
• Physically isolate analog circuits from digital circuits if possible.  
• Place input filter capacitors as close to the MCU as possible.  
• For best EMC performance, route signals as transmission lines; use a ground plane  
directly under LQFP/MAPBGA packages.  
84  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Design considerations  
9.1.2 Power delivery system  
Consider the following items in the power delivery system:  
• Use a plane for ground.  
• Use a plane for MCU VDD supply if possible.  
• Always route ground first, as a plane or continuous surface, and never as  
sequential segments.  
• Route power next, as a plane or traces that are parallel to ground traces.  
• Place bulk capacitance, 10 μF or more, at the entrance of the power plane.  
• Place bypass capacitors for MCU power domain as close as possible to each  
VDD/VSS pair, including VDDA/VSSA and VREFH/VREFL.  
• The minimum bypass requirement is to place 0.1 μF capacitors positioned as near  
as possible to the package supply pins.  
• The VREG_IN voltage range is 2.7 V to 5.5 V. Typically, 5.0V is applied here. If  
USB module is used, this pin must be powered to make the USB transceiver also  
powered. It is recommended to include a filter circuit with one bulk capacitor (no  
less than 2.2 μF) and one 0.1 μF capacitor to VREG_IN at this pin to improve  
USB performance. Total capacitors on VBUS should be less than 10 μF.  
• Take special care to minimize noise levels on the VREFH/VREFL inputs. An  
option is to use the internal reference voltage (output 1.2 V or 2.1 V typically) as  
the ADC reference.  
NOTE  
The internal reference voltage output (VREF_OUT) is  
bonded to the VREFH pin. When the VREF_OUT output is  
used, a 0.1 μF capacitor is required as a filter. Do not  
connect any other supply voltage to the pin that has  
VREF_OUT activated.  
9.1.3 Analog design  
Each ADC input must have an RC filter as shown in the following figure. The  
maximum value of R must be smaller than RAS max if high resolution is required.  
The value of C must be chosen to ensure that the RC time constant is very small  
compared to the sample period. See AN4373: Cookbook for SAR ADC  
Measurements for how to select proper RC values.  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
85  
NXP Semiconductors  
Design considerations  
MCU  
1
2
Input signal  
ADCx  
R
C
Figure 26. RC circuit for ADC input  
High voltage measurement circuits require voltage division, current limiting, and  
overvoltage protection as shown the following figure. The voltage divider formed by R1  
– R4 must yield a voltage less than or equal to VREFH. Typically, VREFH is  
connected to VDDA. The current must be limited to less than the negative injection  
current limit. Since the ADC pins do not have diodes to VDD, external clamp diodes  
must be included to protect against transient over-voltages.  
MCU  
R1  
R2  
R3  
VDD  
1
1
1
2
2
2
R5  
1
2
ADCx  
High voltage input  
R4  
1
2
C
BAT54SW  
Figure 27. High voltage measurement with an ADC input  
9.1.4 Digital design  
Ensure that all I/O pins cannot get pulled above VDD (Max I/O is VDD+0.3V).  
CAUTION  
Do not provide power to I/O pins prior to VDD, especially the  
RESET_b pin.  
• High drive pins  
86  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Design considerations  
PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6 and PTD7 I/O have both high  
drive and normal drive capability selected by the associated PTx_PCRn[DSE]  
control bit. All other GPIOs are normal drive only. When in high drive mode, the  
sink/source current for a high drive pin can reach 20 mA. However, the total  
current flowing into the MCU VDD must not exceed maximum limit of IDD.  
• Fast pins  
PTE20, PTE21, PTE22, PTE23, PTD4, PTD5, PTD6, PTD7 can support fast slew  
rate of 0.5 ns and are used for high speed communications. It is set/cleared by  
PTx_PCRn[SRE].  
• Default I/O state  
Most of digital pins are disabled (in high impedance state) after power up, so a  
pull-up/down is needed to a determined level for some applications. Please refer  
to the Signal Multiplexing and Pin Assignments chapter to know the default IO  
state for a dedicate pin.  
• RESET_b pin  
The RESET_b pin is an open-drain I/O pin that has an internal pullup resistor. An  
external RC circuit is recommended to filter noise as shown in the following  
figure. The resistor value must be in the range of 4.7 kΩ to 10 kΩ; the  
recommended capacitance value is 0.1 μF. The RESET_b pin also has a selectable  
digital filter to reject spurious noise.  
VDD  
MCU  
10k  
RESET_b  
RESET_b  
0.1uF  
Figure 28. Reset circuit  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
87  
NXP Semiconductors  
Design considerations  
When an external supervisor chip is connected to the RESET_b pin, a series  
resistor must be used to avoid damaging the supervisor chip or the RESET_b pin,  
as shown in the following figure. The series resistor value (RS below) must be in  
the range of 100 Ω to 1 kΩ depending on the external reset chip drive strength. The  
supervisor chip must have an active high, open-drain output.  
VDD  
Supervisor Chip  
MCU  
10k  
1
2
OUT  
RESET_b  
RS  
Active high,  
open drain  
0.1uF  
Figure 29. Reset signal connection to external reset chip  
• NMI pin  
Do not add a pull-down resistor or capacitor on the NMI_b pin, because a low level  
on this pin will trigger non-maskable interrupt. When this pin is enabled as the NMI  
function, an external pull-up resistor (10 kΩ) as shown in the following figure is  
recommended for robustness.  
If the NMI_b pin is used as an I/O pin, use the following two ways to disable NMI  
function:  
a. Define NMI interrupt handler in which NMI pin function is remapped to other  
pin mux function  
b. Disable NMI function by programming flash configuration byte at 0x40d for  
FOPT, change FOPT[NMI_DIS] bit to zero. It will not take effect until next  
reset.  
88  
NXP Semiconductors  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
Design considerations  
VDD  
MCU  
10k  
NMI_b  
Figure 30. NMI pin biasing  
• Debug interface  
This MCU uses the standard Arm SWD interface protocol as shown in the  
following figure. While pull-up or pull-down resistors are not required  
(SWD_DIO has an internal pull-up and SWD_CLK has an internal pull-down),  
external 10 kΩ pull resistors are recommended for system robustness. The  
RESET_b pin recommendations mentioned above must also be considered.  
VDD  
10k  
VDD  
J1  
SWD_DIO  
SWD_CLK  
1
3
5
7
9
2
4
6
8
RESET_b  
10k  
10  
0.1uF  
HDR_5X2  
Figure 31. SWD debug interface  
• Low leakage stop mode wakeup  
Select low leakage wakeup pins (LLWU_Px) to wake the MCU from one of the  
low leakage stop modes (LLS/VLLSx). See K32 L2A Signal Multiplexing and  
Pin Assignments chapter for pin selection.  
• Unused pin  
Unused GPIO pins must be left floating (no electrical connections) with the MUX  
field of the pin’s PORTx_PCRn register equal to 000. This disables the digital  
input path to the MCU.  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
89  
NXP Semiconductors  
Design considerations  
If the USB module is not used, leave the USB data pins (USB0_DP, USB0_DM)  
floating.  
• EMVSIM  
When using EMVSIM, a typical 4.7 KΩ pull up resistor should be added on the  
EMVSIM_IO pin.  
P3V3  
R103  
4.7K  
EMVSIM HEADER  
JP1  
1
2
3
EMVSIM_CLK  
PTC14  
EMVSIM_RST  
EMVSIM_VCCEN  
EMVSIM_IO  
4
5
6
7
PTC15  
PTC16  
PTC17  
PTC18  
EMVSIM_PD  
HDR TH 1X7  
GND  
Figure 32. EMVSIM interface  
• Pull up resistor for getting correct power consumption result  
Connect the pull up resistor to VDD_MCU for the pins like RESET and NMI. For  
other pull up resistor, do not use VDD_MCU.  
9.1.5 Crystal oscillator  
When using an external crystal or ceramic resonator as the frequency reference for the  
MCU clock system, refer to the following table and diagrams.  
The feedback resistor, RF, is incorporated internally with the low power oscillators. An  
external feedback is required when using high gain (HGO=1) mode. In harsh EMC  
environment, it is recommended to use high gain mode. For low frequency (32 to 40  
kHz), switching between high gain and low power is not supported.  
The series resistor, RS, is used to limit current to external crystal or resonator to avoid  
overdrive, and is required in high gain (HGO=1) mode when the crystal or resonator  
frequency is below 2 MHz. The low power oscillator (HGO=0) must not have any  
series resistor RS.  
Internal load capacitors (Cx, Cy) are provided in the low frequency (32.786kHz) mode.  
Use the SCxP bits in the SCG_SOSCCFG register to adjust the load capacitance for the  
crystal. Typically, values of 10 pf to 16 pF are sufficient for 32.768 kHz crystals that  
have a 12.5 pF CL specification. The internal load capacitor selection must not be used  
for high frequency crystals and resonators. See crystal or resonator manufacturer's  
recommendation for parameters about load capacitance and RF.  
90  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Design considerations  
Table 54. External crystal/resonator connections  
Oscillator mode  
Diagram  
Low frequency (32 kHz-40 kHz), low power  
Low frequency (32 kHz-40 kHz), high gain  
High/Medium frequency (1-32 MHz), low power  
High/Medium frequency (1-32MHz), high gain  
Diagram 1  
Diagram 2, Diagram 4  
Diagram 3  
Diagram 4  
OSCILLATOR  
EXTAL  
XTAL  
1
2
CRYSTAL  
Figure 33. Crystal connection – Diagram 1  
OSCILLATOR  
EXTAL  
XTAL  
1
2
RF  
RS  
1
2
CRYSTAL  
Figure 34. Crystal connection – Diagram 2  
OSCILLATOR  
EXTAL  
OSCILLATOR  
EXTAL  
XTAL  
XTAL  
1
2
1
3
CRYSTAL  
Cx  
Cy  
RESONATOR  
Figure 35. Crystal connection – Diagram 3  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
91  
NXP Semiconductors  
Part identification  
OSCILLATOR  
EXTAL  
OSCILLATOR  
EXTAL  
XTAL  
XTAL  
1
2
1
2
RF  
RF  
RS  
RS  
1
2
1
3
CRYSTAL  
Cx  
Cy  
RESONATOR  
Figure 36. Crystal connection – Diagram 4  
9.2 Software considerations  
All K32L2A MCUs are supported by comprehensive NXP and third-party hardware and  
software enablement solutions, which can reduce development costs and time to market.  
Featured software and tools are listed below.  
Evaluation and Prototyping Hardware  
• NXP Freedom Development Platform: http://www.nxp.com/freedom  
• Tower System Development Platform: http://www.nxp.com/tower  
IDEs for Kinetis MCUs  
• MCUXpresso Integrated Development Environment (IDE)https://www.nxp.com/  
design/software/development-software/mcuxpresso-software-and-tools-/  
mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE  
Run-time Software  
• K32 L2A SDK: http://mcuxpresso.nxp.com  
• MQX RTOS: http://www.nxp.com/mqx  
For all other partner-developed software and tools, visit http://www.nxp.com/partners.  
10 Part identification  
92  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
NXP Semiconductors  
Part identification  
10.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
10.2 Format  
Part numbers for this device have the following format:  
B PS C FS SPF T PG FR S PT  
10.3 Fields  
This table lists the possible values for each field in the part number (not all  
combinations are valid):  
Table 55. Part number fields descriptions  
Field  
Description  
Values  
B
Brand  
• K32  
• L2  
PS  
C
Product Series  
Core  
• A= Sub-family A  
• B= Sub-family B  
FS  
Flash size  
• 1 = 64 KB  
• 2 = 128 KB  
• 3 = 256 KB  
• 4 = 512 KB  
SPF  
Special Feature  
• 0 = Dual core  
• 1 = Single core  
T
Temperature range (°C)  
Package  
• V = –40 to 105  
PG  
• LH = 64 LQFP  
• LL = 100 LQFP  
FR  
S
Fequency (MHz)  
Silicon revision  
• 1 = 0 - 72 MHz  
• A = Initial Mask Set  
• B = 1st Major Spin  
PT  
Packaging Type  
• R = Std Reel  
10.4 Example  
This is an example part number:  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
93  
NXP Semiconductors  
Revision History  
K32L2A41VLL1A  
11 Revision History  
The following table provides a revision history for this document.  
Table 56. Revision History  
Rev. No.  
Date  
Substantial Changes  
Initial release  
0
1
08/2019  
12/2019  
• In the features section:  
• Under clocks, updated SIRC to "2/8 MHz slow internal reference clock (SIRC)".  
• Removed "Bluetooth, Wi-Fi connectivity".  
• Added a new bullet stating "USB FS OTG controller, capable of USB host or  
device operation".  
• In the Fields section:  
• Updated Special Feature values.  
• Removed "T=Tray" from packaging type.  
2
3
01/2020  
02/2021  
• Added section Dimensions.  
• In section Pinouts and Packaging, the default values of PTA1, PTA2, and PTA4/  
LLWU_P3 updated to TSI0_CH2, TSI0_CH3, and NMI0_b respectively.  
• In section Fast IRC (FIRC) specifications :  
• In the Open loop total deviation of FIRC frequency at low voltage  
(VDD=1.71V-1.89V) over full temperature specification, maximum regulator  
disable value updated to 1.5.  
• In the Open loop total deviation of FIRC frequency at high voltage  
(VDD=1.89V-3.6V) over full temperature specification, maximum value updated  
to 1.5.  
• Added footnote stating "For temperatures -40 to 85 °C, the maximum value is  
1%, characterized on a few samples of different slots. This value is not  
guaranteed by production.".  
• Updated "Freescale" to "NXP" throughout the document.  
• In section 16-bit ADC operating conditions, updated the link of the ADC calculator tool  
in the table footnotes.  
• In section Software considerations, updated "Kinetis Design Studio IDE" to  
"MCUXpresso Integrated Development Environment (IDE)". The associated link is  
also updated.  
94  
NXP Semiconductors  
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM, Rev. 3, 02/2021  
How To Reach Us  
Home Page:  
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However,  
NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the consequences of use of such information. NXP  
Semiconductors takes no responsibility for the content in this document if provided by an information source outside  
of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special  
or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related  
to the removal or replacement of any products or rework charges) whether or not such damages are based on tort  
(including negligence), warranty, breach of contract or any other legal theory.  
nxp.com  
Web Support:  
nxp.com/support  
Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate  
and cumulative liability towards customer for the products described herein shall be limited in accordance with the  
Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this  
document, including without limitation specifications and product descriptions, at any time and without notice. This  
document supersedes and replaces all information supplied prior to the publication hereof.  
Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.  
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to  
reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also  
extends to other open and/or proprietary technologies supported by NXP products for use in customer’s applications.  
NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow  
up appropriately.  
Customer shall select products with security features that best meet rules, regulations, and standards of the intended  
application and make the ultimate design decisions regarding its products and is solely responsible for compliance  
with all legal, regulatory, and security related requirements concerning its products, regardless of any information or  
support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable  
at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of  
NXP products.  
Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use  
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of  
an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property  
or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the  
customer’s own risk.  
Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors  
product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in  
accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion  
and/or use of non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in automotive applications to automotive  
specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b) whenever customer uses the product for  
automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk,  
and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting  
from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard  
warranty and NXP Semiconductors’ product specifications.  
Applications — Applications that are described herein for any of these products are for illustrative purposes only.  
NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use  
without further testing or modification.  
Customers are responsible for the design and operation of their applications and products using NXP Semiconductors  
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product  
Table continues on the next page...  
design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit  
for the customer’s applications and products planned, as well as for the planned application and use of customer’s  
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks  
associated with their applications and products.  
NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on  
any weakness or default in the customer’s applications or products, or the application or use by customer’s third party  
customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using  
NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or  
use by customer’s third party customer(s). NXP does not accept any liability in this respect.  
Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of  
IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation  
of the device at these or any other conditions above those given in the Recommended operating conditions section (if  
present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting  
values will permanently and irreversibly affect the quality and reliability of the device.  
Terms and conditions of commerical sale — NXP Semiconductors products are sold subject to the general terms  
and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a  
valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the  
respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general  
terms and conditions with regard to the purchase of NXP Semiconductors products by customer.  
Hazardous voltage — Although basic supply voltages of the product may be much lower, circuit voltages up to 60 V  
may appear when operating this product, depending on settings and application. Customers incorporating or otherwise  
using these products in applications where such high voltages may appear during operation, assembly, test etc. of such  
application, do so at their own risk. Customers agree to fully indemnify NXP Semiconductors for any damages resulting  
from or in connection with such high voltages. Furthermore, customers are drawn to safety standards (IEC 950, EN 60  
950, CENELEC, ISO, etc.) and other (legal) requirements applying to such high voltages.  
Export control — This document as well as the item(s) described herein may be subject to export control regulations.  
Export might require a prior authorization from competent authorities.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, EdgeLock, are trademarks of  
NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,  
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,  
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,  
ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its  
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,  
designs and trade secrets. All rights reserved.  
©
NXP B.V. 2021.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 02/2021  
Document identifier: K32L2Ax  

相关型号:

K32L2A31VLL1A

K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM
NXP

K32L2A41VLH1A

K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM
NXP

K32L2A41VLL1A

K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM
NXP

K32L2AX

K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM
NXP

K32L2B11VFM0A

K32 L2B Microcontroller
NXP

K32L2B11VFT0A

K32 L2B Microcontroller
NXP

K32L2B11VLH0A

K32 L2B Microcontroller
NXP

K32L2B11VMP0A

K32 L2B Microcontroller
NXP

K32L2B11VXX0A

K32 L2B Microcontroller
NXP

K32L2B21VFM0A

K32 L2B Microcontroller
NXP

K32L2B21VFT0A

K32 L2B Microcontroller
NXP

K32L2B21VLH0A

K32 L2B Microcontroller
NXP