KMC9S12A256BCFU [NXP]

16-BIT, FLASH, 8MHz, MICROCONTROLLER, PQFP80, QFP-80;
KMC9S12A256BCFU
型号: KMC9S12A256BCFU
厂家: NXP    NXP
描述:

16-BIT, FLASH, 8MHz, MICROCONTROLLER, PQFP80, QFP-80

时钟 外围集成电路
文件: 总96页 (文件大小:720K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
9S12A256DGV1/D  
4/2002  
MC9S12A256  
Device Guide  
V01.01  
Original Release Date: 8 March 2002  
Revised: 12 April 2002  
Motorola, Inc  
Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or  
design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein;  
neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended,  
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to  
support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was  
negligent regarding the design or manufacture of the part.  
1
MC9S12A256 Device Guide — V01.01  
Revision History  
Version Revision Effective  
Author  
Description of Changes  
Number  
Date  
Date  
8 MAR  
2002  
8 MAR  
2002  
V01.00  
Initial release  
Replaced document order number with version except for cover  
sheet  
Table A-4 Operating Conditions — Changed minimum values for  
V
and V  
to 2.35 V  
DD  
DDPLL  
12 APRIL 12 APRIL  
2002 2002  
Table A-6 5V I/O Characteristics — Changed input capacitance  
for standard I/O pin to 6 pF  
V01.01  
Table A-9 ATD Electrical Characteristics — Changed maximum  
value for C  
to 22 pF  
INS  
Table A-15 Oscillator Characteristics — Removed oscillator  
start-up time from POR or STOP  
For additional information, refer to the MC9S12A256 8-Bit Microcontroller Unit Mask Set Errata  
(Motorola document order number, 9S12A256MSE1). The errata can be found on the World Wide Web at:  
http://www.motorola.com/semiconductors/  
2
MC9S12A256 Device Guide — V01.01  
Table of Contents  
Section 1 Introduction  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Device Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Part ID Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Section 2 Signal Description  
2.1  
Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Signal Properties Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Detailed Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
EXTAL, XTAL Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
RESET External Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
TEST Test Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
VREGEN Voltage Regulator Enable Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
XFC PLL Loop Filter Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
BKGD / TAGHI / MODC Background Debug, Tag High, and Mode Pin . . . . . . . .29  
PAD15 / AN15 / ETRIG1 Port AD Input Pin of ATD1 . . . . . . . . . . . . . . . . . . . . . .29  
PAD[14:08] / AN[14:08] Port AD Input Pins of ATD1 . . . . . . . . . . . . . . . . . . . . . .29  
PAD7 / AN07 / ETRIG0 Port AD Input Pin of ATD0 . . . . . . . . . . . . . . . . . . . . . . .29  
2.2  
2.3  
2.3.1  
2.3.2  
2.3.3  
2.3.4  
2.3.5  
2.3.6  
2.3.7  
2.3.8  
2.3.9  
2.3.10 PAD[06:00] / AN[06:00] Port AD Input Pins of ATD0 . . . . . . . . . . . . . . . . . . . . . .29  
2.3.11 PA[7:0] / ADDR[15:8] / DATA[15:8] Port A I/O Pins . . . . . . . . . . . . . . . . . . . . . . .29  
2.3.12 PB[7:0] / ADDR[7:0] / DATA[7:0] Port B I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . .29  
2.3.13 PE7 / NOACC / XCLKS Port E I/O Pin 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
2.3.14 PE6 / MODB / IPIPE1 Port E I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
2.3.15 PE5 / MODA / IPIPE0 Port E I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
2.3.16 PE4 / ECLK Port E I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
2.3.17 PE3 / LSTRB / TAGLO Port E I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
2.3.18 PE2 / R/W Port E I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
2.3.19 PE1 / IRQ Port E Input Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
2.3.20 PE0 / XIRQ Port E Input Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
2.3.21 PH7 / KWH7 / SS2 Port H I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
3
MC9S12A256 Device Guide V01.01  
2.3.22 PH6 / KWH6 / SCK2 Port H I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
2.3.23 PH5 / KWH5 / MOSI2 Port H I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
2.3.24 PH4 / KWH4 / MISO2 Port H I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
2.3.25 PH3 / KWH3 / SS1 Port H I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
2.3.26 PH2 / KWH2 / SCK1 Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
2.3.27 PH1 / KWH1 / MOSI1 Port H I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
2.3.28 PH0 / KWH0 / MISO1 Port H I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
2.3.29 PJ7 / KWJ7 / SCL PORT J I/O Pin 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
2.3.30 PJ6 / KWJ6 / SDA PORT J I/O Pin 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
2.3.31 PJ[1:0] / KWJ[1:0] Port J I/O Pins [1:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
2.3.32 PK7 / ECS / ROMONE Port K I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
2.3.33 PK[5:0] / XADDR[19:14] Port K I/O Pins [5:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
2.3.34 PM7 Port M I/O Pin 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
2.3.35 PM6 Port M I/O Pin 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
2.3.36 PM5 / SCK0 Port M I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
2.3.37 PM4 / MOSI0 Port M I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
2.3.38 PM3 / SS0 Port M I/O Pin 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
2.3.39 PM2 / MISO0 Port M I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
2.3.40 PM1 Port M I/O Pin 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
2.3.41 PM0 Port M I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
2.3.42 PP7 / KWP7 / PWM7 / SCK2 Port P I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
2.3.43 PP6 / KWP6 / PWM6 / SS2 Port P I/O Pin 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
2.3.44 PP5 / KWP5 / PWM5 / MOSI2 Port P I/O Pin 5. . . . . . . . . . . . . . . . . . . . . . . . . . .33  
2.3.45 PP4 / KWP4 / PWM4 / MISO2 Port P I/O Pin 4. . . . . . . . . . . . . . . . . . . . . . . . . . .34  
2.3.46 PP3 / KWP3 / PWM3 / SS1 Port P I/O Pin 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
2.3.47 PP2 / KWP2 / PWM2 / SCK1 Port P I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
2.3.48 PP1 / KWP1 / PWM1 / MOSI1 Port P I/O Pin 1. . . . . . . . . . . . . . . . . . . . . . . . . . .34  
2.3.49 PP0 / KWP0 / PWM0 / MISO1 Port P I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . .34  
2.3.50 PS7 / SS0 Port S I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
2.3.51 PS6 / SCK0 Port S I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
2.3.52 PS5 / MOSI0 Port S I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
2.3.53 PS4 / MISO0 Port S I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
2.3.54 PS3 / TXD1 Port S I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
2.3.55 PS2 / RXD1 Port S I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
2.3.56 PS1 / TXD0 Port S I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
4
MC9S12A256 Device Guide V01.01  
2.3.57 PS0 / RXD0 Port S I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
2.3.58 PT[7:0] / IOC[7:0] Port T I/O Pins [7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
2.4  
Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
2.4.1  
2.4.2  
VDDX, VSSX Power & Ground Pins for I/O Drivers. . . . . . . . . . . . . . . . . . . . . . . . .36  
VDDR, VSSR Power & Ground Pins for I/O Drivers &  
for Internal Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
2.4.3  
2.4.4  
2.4.5  
2.4.6  
2.4.7  
VDD1, VDD2, VSS1, VSS2 Core Power Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
VDDA, VSSA Power Supply Pins for ATD and VREG. . . . . . . . . . . . . . . . . . . . . . . .36  
VRH, VRL ATD Reference Voltage Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
VDDPLL, VSSPLL Power Supply Pins for PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
VREGEN On Chip Voltage Regulator Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Section 3 System Clock Description  
3.1  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Section 4 Modes of Operation  
4.1  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Normal Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Special Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Test Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Securing the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Operation of the Secured Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Unsecuring the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
4.2  
4.2.1  
4.2.2  
4.2.3  
4.3  
4.3.1  
4.3.2  
4.3.3  
4.4  
Section 5 Resets and Interrupts  
5.1  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Vector Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Effects of Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
5.2  
5.2.1  
5.3  
5.3.1  
5.3.2  
Section 6 HCS12 Core Block Description  
5
MC9S12A256 Device Guide V01.01  
Section 7 Clock and Reset Generator (CRG) Block Description  
7.1  
Device-Specific Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
XCLKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
7.1.1  
Section 8 Enhanced Capture Timer (ECT) Block Description  
Section 9 Analog to Digital Converter (ATD) Block Description  
Section 10 Inter-IC Bus (IIC) Block Description  
Section 11 Serial Communications Interface (SCI) Block Description  
Section 12 Serial Peripheral Interface (SPI) Block Description  
Section 13 Pulse Width Modulator (PWM) Block Description  
Section 14 Flash EEPROM 256K Block Description  
Section 15 EEPROM 4K Block Description  
Section 16 RAM Block Description  
Section 17 Port Integration Module (PIM) Block Description  
Section 18 Voltage Regulator (VREG) Block Description  
Appendix A Electrical Characteristics  
A.1  
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Power Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Current Injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
ESD Protection and Latch-up Immunity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Power Dissipation and Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
A.1.1  
A.1.2  
A.1.3  
A.1.4  
A.1.5  
A.1.6  
A.1.7  
A.1.8  
A.1.9  
A.1.10 Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
6
MC9S12A256 Device Guide V01.01  
A.2  
ATD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Factors Influencing Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
ATD Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
NVM, Flash, and EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
NVM Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
NVM Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Voltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Reset, Oscillator and PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Phase Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
General Muxed Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
A.2.1  
A.2.2  
A.2.3  
A.3  
A.3.1  
A.3.2  
A.4  
A.5  
A.5.1  
A.5.2  
A.5.3  
A.6  
A.6.1  
A.6.2  
A.7  
A.7.1  
Appendix B Package Information  
B.1  
B.2  
B.3  
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
112-Pin LQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
80-Pin QFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
7
MC9S12A256 Device Guide V01.01  
8
MC9S12A256 Device Guide V01.01  
List of Figures  
Figure 1-1 MC9S12A256 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Figure 1-2 MC9S12A256 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Figure 2-1 Pin Assignments in 112-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Figure 2-2 Pin Assignments in 80-Pin QFP for MC9S12A256 . . . . . . . . . . . . . . . . . . . . . . .25  
Figure 2-3 PLL Loop Filter Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Figure 3-1 Clock Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Figure 18-1 Recommended PCB Layout 112 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Figure 18-2 Recommended PCB Layout for 80 QFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Figure A-1 ATD Accuracy Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure A-2 Basic PLL Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure A-3 Jitter Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure A-4 Maximum Bus Clock Jitter Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure A-5 SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure A-6 SPI Master Timing (CPHA =1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure A-7 SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure A-8 SPI Slave Timing (CPHA =1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure A-9 General External Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Figure B-1 112-Pin LQFP Mechanical Dimensions (Case no. 987) . . . . . . . . . . . . . . . . . . 92  
Figure B-2 80-Pin QFP Mechanical Dimensions (Case no. 841B) . . . . . . . . . . . . . . . . . . . 93  
9
MC9S12A256 Device Guide V01.01  
10  
MC9S12A256 Device Guide V01.01  
List of Tables  
Table 0-1 Document References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Table 1-1 Device Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Table 1-2 Assigned Part ID Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Table 1-3 Memory Size Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Table 2-1 Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Table 2-2 MC9S12A256 Power and Ground Connection Summary . . . . . . . . . . . . . . . . . . .37  
Table 4-1 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Table 5-1 Interrupt Vector Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Table A-1 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Table A-2 ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Table A-3 ESD and Latch-Up Protection Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Table A-4 Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Table A-5 Thermal Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Table A-6 5V I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Table A-7 Supply Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Table A-8 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Table A-9 ATD Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Table A-10 ATD Conversion Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Table A-11 NVM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Table A-12 NVM Reliability Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Table A-13 Voltage Regulator Recommended Load Capacitances . . . . . . . . . . . . . . . . . . . .75  
Table A-14 Startup Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
Table A-15 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Table A-16 PLL Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
Table A-17 SPI Master Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Table A-18 SPI Slave Mode Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Table A-19 Expanded Bus Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
11  
MC9S12A256 Device Guide V01.01  
12  
MC9S12A256 Device Guide V01.01  
Preface  
The Device User Guide provides information about the MC9S12A256 device made up of standard HCS12  
blocks and the HCS12 processor core.  
This document is part of the customer documentation. A complete set of device manuals also includes the  
CPU12 Reference Manual (Motorola order number, CPU12RM/AD) and all the individual Block User  
Guides of the implemented modules. In a effort to reduce redundancy all module specific information is  
located only in the respective Block User Guide. If applicable, special implementation details of the  
module are given in the block description sections of this document.  
See Table 0-1 for names and versions of the referenced documents throughout the Device User Guide.  
Table 0-1 Document References  
User Guide  
Version  
V01  
V02  
V01  
V02  
V02  
V02  
V02  
V01  
V02  
V02  
V01  
V01  
Document Order Number  
HCS12COREUG/D  
S12CRGV3/D  
HCS12 Core User Guide  
CRG Block Guide  
ECT_16B8C Block Guide  
ATD_10B8C Block Guide  
IIC Block Guide  
S12ECT16B8CV1/D  
S12ATD10B8CV2/D  
S12IICV2/D  
SCI Block Guide  
S12SCIV2/D  
SPI Block Guide  
S12SPIV2/D  
PWM_8B8C Block Guide  
FTS256K Block Guide  
EETS4K Block Guide  
VREG Block Guide  
PIM_9A256 Block Guide  
S12PWM8B8CV1/D  
S12FTS256KV2/D  
S12EETS4KV2/D  
S12VREGV1/D  
S12A256PIMV1/D  
13  
 
MC9S12A256 Device Guide V01.01  
14  
MC9S12A256 Device Guide V01.01  
Section 1 Introduction  
1.1 Overview  
The MC9S12A256 microcontroller unit (MCU) is a 16-bit device composed of standard on-chip  
peripherals including a 16-bit central processing unit (HCS12 CPU), 256K bytes of Flash EEPROM, 12K  
bytes of RAM, 4K bytes of EEPROM, two asynchronous serial communications interfaces (SCI), three  
serial peripheral interfaces (SPI), an 8-channel IC/OC enhanced capture timer, two 8-channel, 10-bit  
analog-to-digital converters (ADC), an 8-channel pulse-width modulator (PWM), 29 discrete digital I/O  
channels (Port A, Port B, Port K and Port E), 20 discrete digital I/O lines with interrupt and wakeup  
capability and an Inter-IC Bus. System resource mapping, clock generation, interrupt control and bus  
interfacing are managed by the System Integration Module (SIM). The MC9S12A256 has full 16-bit data  
paths throughout. However, the external bus can operate in an 8-bit narrow mode so single 8-bit wide  
memory can be interfaced for lower cost systems. The inclusion of a PLL circuit allows power  
consumption and performance to be adjusted to suit operational requirements.  
1.2 Features  
HCS12 Core  
– 16-bit HCS12 CPU  
i. Upward compatible with M68HC11 instruction set  
ii. Interrupt stacking and programmer’s model identical to M68HC11  
iii.Instruction queue  
iv. Enhanced indexed addressing  
– MEBI (Multiplexed External Bus Interface)  
– MMC (Module Mapping Control)  
– INT (Interrupt control)  
– BKP (Breakpoints)  
– BDM (Background Debug Mode)  
CRG (low current oscillator, PLL, reset, clocks, COP watchdog, real time interrupt, clock monitor)  
8-bit and 4-bit ports with interrupt functionality  
– Digital filtering  
– Programmable rising or falling edge trigger  
Memory  
– 256K Flash EEPROM  
– 4K byte EEPROM  
– 12K byte RAM  
15  
MC9S12A256 Device Guide V01.01  
Two 8-channel Analog-to-Digital Converters  
10-bit resolution  
External conversion trigger capability  
Enhanced Capture Timer  
16-bit main counter with 7-bit prescaler  
8 programmable input capture or output compare channels  
Two 8-bit or one 16-bit pulse accumulators  
8 PWM channels  
Programmable period and duty cycle  
8-bit 8-channel or 16-bit 4-channel  
Separate control for each pulse width and duty cycle  
Center-aligned or left-aligned outputs  
Programmable clock select logic with a wide range of frequencies  
Fast emergency shutdown input  
Usable as interrupt inputs  
Serial interfaces  
Two asynchronous Serial Communications Interfaces (SCI)  
Three Synchronous Serial Peripheral Interface (SPI)  
Inter-IC Bus (IIC)  
Compatible with I2C Bus standard  
Multi-master operation  
Software programmable for one of 256 different serial clock frequencies  
112-Pin LQFP and 80-pin QFP packages  
I/O lines with 5V input and drive capability  
5V A/D converter inputs  
Operation at 50MHz equivalent to 25MHz Bus Speed  
Development support  
Single-wire background debugmode (BDM)  
On-chip hardware breakpoints  
16  
MC9S12A256 Device Guide V01.01  
1.3 Modes of Operation  
User modes  
Normal and Emulation Operating Modes  
Normal Single-Chip Mode  
Normal Expanded Wide Mode  
Normal Expanded Narrow Mode  
Emulation Expanded Wide Mode  
Emulation Expanded Narrow Mode  
Special Operating Modes  
Special Single-Chip Mode with active Background Debug Mode  
Special Test Mode (Motorola use only)  
Special Peripheral Mode (Motorola use only)  
Low power modes  
Stop Mode  
Pseudo Stop Mode  
Wait Mode  
17  
MC9S12A256 Device Guide V01.01  
1.4 Block Diagram  
Figure 1-1 shows a block diagram of the MC9S12A256 device.  
18  
MC9S12A256 Device Guide V01.01  
Figure 1-1 MC9S12A256 Block Diagram  
VRH  
VRL  
VDDA  
VSSA  
VRH  
VRL  
VDDA  
VSSA  
VRH  
VRL  
VDDA  
VSSA  
256K Byte Flash EEPROM  
12K Byte RAM  
ATD0  
ATD1  
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
PAD00  
PAD01  
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
PAD08  
PAD09  
4K Byte EEPROM  
PAD02  
PAD03  
PAD04  
PAD05  
PAD06  
PAD10  
PAD11  
PAD12  
PAD13  
PAD14  
VDDR  
VSSR  
VREGEN  
VDD1,2  
VSS1,2  
Voltage Regulator  
PAD07  
PAD15  
PIX0  
PK0 XADDR14  
PK1 XADDR15  
Single-wire Background  
BKGD  
PIX1  
PIX2  
PIX3  
PIX4  
PIX5  
ECS  
CPU12  
Debug Module  
PPAGE  
PK2  
XADDR16  
XFC  
VDDPLL  
VSSPLL  
EXTAL  
XTAL  
PK3 XADDR17  
PK4 XADDR18  
PK5 XADDR19  
Clock and  
Reset  
Generation  
Module  
PLL  
Periodic Interrupt  
COP Watchdog  
Clock Monitor  
Breakpoints  
PK7  
ECS  
IOC0  
IOC1  
IOC2  
IOC3  
IOC4  
IOC5  
IOC6  
IOC7  
PT0  
PT1  
PT2  
PT3  
PT4  
PT5  
RESET  
PE0  
PE1  
PE2  
PE3  
PE4  
PE5  
PE6  
PE7  
XIRQ  
IRQ  
R/W  
LSTRB  
ECLK  
MODA  
MODB  
Enhanced Capture  
Timer  
System  
Integration  
Module  
(SIM)  
PT6  
PT7  
NOACC/XCLKS  
RXD  
TXD  
RXD  
TXD  
PS0  
PS1  
SCI0  
TEST  
PS2  
PS3  
PS4  
PS5  
PS6  
PS7  
SCI1  
SPI0  
MISO  
MOSI  
SCK  
SS  
Multiplexed Address/Data Bus  
DDRA  
PTA  
DDRB  
PTB  
PM0  
PM1  
PM2  
PM3  
PM4  
PM5  
PM6  
PM7  
Multiplexed  
Wide Bus  
KWJ0  
KWJ1  
KWJ6  
KWJ7  
PJ0  
PJ1  
PJ6  
PJ7  
Multiplexed  
Narrow Bus  
SDA  
SCL  
IIC  
Internal Logic 2.5V  
VDD1,2  
VSS1,2  
I/O Driver 5V  
PWM0  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
PWM6  
PWM7  
KWP0  
KWP1  
KWP2  
KWP3  
KWP4  
KWP5  
KWP6  
KWP7  
PP0  
PP1  
PP2  
PP3  
PP4  
PP5  
VDDX  
VSSX  
PWM  
A/D Converter 5V &  
Voltage Regulator Reference  
PLL 2.5V  
VDDPLL  
VSSPLL  
VDDA  
VSSA  
PP6  
PP7  
MISO  
MOSI  
SCK  
SS  
MISO  
MOSI  
SCK  
SS  
KWH0  
KWH1  
KWH2  
KWH3  
KWH4  
KWH5  
KWH6  
KWH7  
PH0  
PH1  
PH2  
PH3  
PH4  
PH5  
Voltage Regulator 5V & I/O  
SPI1  
SPI2  
VDDR  
VSSR  
PH6  
PH7  
19  
MC9S12A256 Device Guide V01.01  
1.5 Device Memory Map  
Table 1-1 and Figure 1-2 show the device memory map of the MC9S12A256 after reset. Note that after  
reset the bottom 1K of the EEPROM ($0000 - $03FF) are hidden by the register space.  
Table 1-1 Device Memory Map  
Size  
(Bytes)  
Address  
Module  
$0000 - $0017 CORE (Ports A, B, E, Modes, Inits, Test)  
$0018 - $0019 Reserved  
24  
2
$001A - $001B Device ID register (PARTID)  
$001C - $001F CORE (MEMSIZ, IRQ, HPRIO)  
$0020 - $0027 Reserved  
2
4
8
$0028 - $002F CORE (Background Debug Mode)  
$0030 - $0033 CORE (PPAGE, Port K)  
8
4
$0034 - $003F Clock and Reset Generator (PLL, RTI, COP)  
$0040 - $007F Enhanced Capture Timer 16-bit 8 channels  
$0080 - $009F Analog to Digital Converter 10-bit 8 channels (ATD0)  
$00A0 - $00C7 Pulse Width Modulator 8-bit 8 channels (PWM)  
$00C8 - $00CF Serial Communications Interface 0 (SCI0)  
$00D0 - $00D7 Serial Communications Interface 0 (SCI1)  
$00D8 - $00DF Serial Peripheral Interface (SPI0)  
$00E0 - $00E7 Inter IC Bus  
12  
64  
32  
40  
8
8
8
8
$00E8 - $00EF Reserved  
8
$00F0 - $00F7 Serial Peripheral Interface (SPI1)  
$00F8 - $00FF Serial Peripheral Interface (SPI2)  
$0100- $010F Flash Control Register  
8
8
16  
12  
4
$0110 - $011B EEPROM Control Register  
$011C - $011F Reserved  
$0120 - $013F Analog to Digital Converter 10-bit 8 channels (ATD1)  
$0140 - $023F Reserved  
32  
256  
64  
384  
4096  
12288  
$0240 - $027F Port Integration Module (PIM)  
$0280 - $03FF Reserved  
$0000 - $0FFF EEPROM array  
$1000 - $3FFF RAM array  
Fixed Flash EEPROM array  
$4000 - $7FFF  
16384  
16384  
incl. 0.5K, 1K, 2K or 4K Protected Sector at start  
$8000 - $BFFF Flash EEPROM Page Window  
Fixed Flash EEPROM array  
$C000 - $FFFF incl. 0.5K, 1K, 2K or 4K Protected Sector at end  
and 256 bytes of Vector Space at $FF80 - $FFFF  
16384  
20  
 
 
MC9S12A256 Device Guide V01.01  
Figure 1-2 MC9S12A256 Memory Map  
$0000  
$0000  
$0400  
REGISTERS  
(Mappable to any 2k Block  
within the first 32K)  
$03FF  
$0000  
4K Bytes EEPROM  
$1000  
$4000  
(Mappable to any 4K Block)  
$0FFF  
$1000  
12K Bytes RAM  
(Mappable to any 16K  
and alignable to top or  
bottom)  
$3FFF  
$4000  
16K Fixed Flash  
Page $3E = 62  
(This is dependant on the  
state of the ROMHM bit)  
$7FFF  
$8000  
$8000  
16K Page Window  
16 x 16K Flash EEPROM  
pages  
EXTERN  
$BFFF  
$C000  
$C000  
16K Fixed Flash  
Page $3F = 63  
$FFFF  
$FF00  
BDM  
$FF00  
$FFFF  
(if active)  
$FFFF  
VECTORS  
VECTORS  
VECTORS  
SPECIAL  
SINGLE CHIP  
EXPANDED*  
NORMAL  
SINGLE CHIP  
* Assuming that a 0 was driven onto port K bit 7 during MCU reset is reset into  
normal expanded wide or narrow mode.  
21  
MC9S12A256 Device Guide V01.01  
1.6 Part ID Assignments  
The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses $001A and $001B after  
reset). The read-only value is a unique part ID for each revision of the chip. Table 1-2 shows the assigned  
part ID number.  
Table 1-2 Assigned Part ID Numbers  
1
Device  
Mask Set Number  
Part ID  
$0010  
$0011  
MC9S12A256  
MC9S12A256  
NOTES:  
1. The coding is as follows:  
Bit 15-12: Major family identifier  
Bit 11-8: Minor family identifier  
Bit 7-4: Major mask set revision number including FAB transfers  
Bit 3-0: Minor - non full - mask set revision  
The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses $001C  
and $001D after reset). Table 1-3 shows the read-only values of these registers. Refer to the HCS12 Core  
User Guide (Motorola order number, HCS12COREUG/D) for further details.  
Table 1-3 Memory Size Registers  
Register name  
MEMSIZ0  
Value  
$25  
MEMSIZ1  
$81  
22  
 
 
MC9S12A256 Device Guide V01.01  
Section 2 Signal Description  
This section describes signals that connect off-chip. It includes a pinout diagram, a table of signal  
properties, and detailed discussion of signals. It is built from the signal description sections of the Block  
User Guides of the individual IP blocks on the device.  
2.1 Device Pinout  
The MC9S12A256 is available in a 112-pin low profile quad flat pack (LQFP) and is also available in a  
80-pin quad flat pack (QFP). Most pins perform two or more functions, as described in the Signal  
Descriptions. Figure 2-1 and Figure 2-2 show the pin assignments.  
23  
MC9S12A256 Device Guide V01.01  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
SS1/PWM3/KWP3/PP3  
SCK1/PWM2/KWP2/PP2  
MOSI1/PWM1/KWP1/PP1  
MISO1/PWM0/KWP0/PP0  
XADDR17/PK3  
XADDR16/PK2  
XADDR15/PK1  
XADDR14/PK0  
IOC0/PT0  
1
2
3
4
5
6
7
8
VRH  
VDDA  
PAD15/AN15/ETRIG1  
PAD07/AN07/ETRIG0  
PAD14/AN14  
PAD06/AN06  
PAD13/AN13  
PAD05/AN05  
PAD12/AN12  
PAD04/AN04  
PAD11/AN11  
PAD03/AN03  
PAD10/AN10  
PAD02/AN02  
PAD09/AN09  
PAD01/AN01  
PAD08/AN08  
9
IOC1/PT1  
IOC2/PT2  
IOC3/PT3  
VDD1  
VSS1  
IOC4/PT4  
IOC5/PT5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
MC9S12A256  
IOC6/PT6  
IOC7/PT7  
PAD00/AN00  
VSS2  
VDD2  
XADDR19/PK5  
XADDR18/PK4  
KWJ1/PJ1  
PA7/ADDR15/DATA15  
PA6/ADDR14/DATA14  
PA5/ADDR13/DATA13  
PA4/ADDR12/DATA12  
PA3/ADDR11/DATA11  
PA2/ADDR10/DATA10  
PA1/ADDR9/DATA9  
PA0/ADDR8/DATA8  
KWJ0/PJ0  
MODC/TAGHI/BKGD  
ADDR0/DATA0/PB0  
ADDR1/DATA1/PB1  
ADDR2/DATA2/PB2  
ADDR3/DATA3/PB3  
ADDR4/DATA4/PB4  
Signals shown in Bold are not available on the 80 Pin Package  
Figure 2-1 Pin Assignments in 112-Pin LQFP  
24  
MC9S12A256 Device Guide V01.01  
60  
59  
58  
57  
SS1/PWM3/KWP3/PP3  
SCK1/PWM2/KWP2/PP2  
MOSI1/PWM1/KWP1/PP1  
MISO1/PWM0/KWP0/PP0  
IOC0/PT0  
1
2
3
4
VRH  
VDDA  
PAD07/AN07/ETRIG0  
PAD06/AN06  
56  
5
PAD05/AN05  
55  
IOC1/PT1  
6
PAD04/AN04  
54  
IOC2/PT2  
7
PAD03/AN03  
53  
IOC3/PT3  
8
PAD02/AN02  
52  
VDD1  
9
PAD01/AN01  
51  
50  
49  
48  
47  
46  
45  
44  
VSS1  
IOC4/PT4  
IOC5/PT5  
IOC6/PT6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PAD00/AN00  
VSS2  
VDD2  
PA7/ADDR15/DATA15  
PA6/ADDR14/DATA14  
PA5/ADDR13/DATA13  
PA4/ADDR12/DATA12  
PA3/ADDR11/DATA11  
MC9S12A256  
IOC7/PT7  
MODC/TAGHI/BKGD  
ADDR0/DATA0/PB0  
ADDR1/DATA1/PB1  
ADDR2/DATA2/PB2  
ADDR3/DATA3/PB3  
ADDR4/DATA4/PB4  
43  
42  
41  
PA2/ADDR10/DATA10  
PA1/ADDR9/DATA9  
PA0/ADDR8/DATA8  
Figure 2-2 Pin Assignments in 80-Pin QFP for MC9S12A256  
25  
MC9S12A256 Device Guide V01.01  
2.2 Signal Properties Summary  
Table 2-1 summarizes the pin functionality. Signals shown in bold are not available in the 80 pin  
package.  
Table 2-1 Signal Properties  
Pin Name  
Pin Name  
Pin Name  
Function 3  
Pin Name  
Function 4  
Powered by  
Description  
Function 1 Function 2  
EXTAL  
XTAL  
V
Oscillator Pins  
DDPLL  
V
RESET  
TEST  
External Reset  
Test Input  
DDR  
N.A.  
V
V
Voltage Regulator Enable Input  
PLL Loop Filter  
REGEN  
DDX  
V
XFC  
DDPLL  
V
BKGD  
TAGHI  
MODC  
Background Debug, Tag High, Mode Input  
DDR  
Port AD Input, Analog Input AN7 of  
ATD1, External Trigger Input of ATD1  
PAD15  
PAD[14:8]  
PAD07  
AN15  
AN[14:08]  
AN07  
ETRIG1  
Port AD Inputs, Analog Inputs AN[6:0]  
of ATD1  
ETRIG0  
V
DDA  
Port AD Input, Analog Input AN7 of ATD0,  
External Trigger Input of ATD0  
Port AD Inputs, Analog Inputs AN[6:0] of  
ATD0  
PAD[06:00]  
PA[7:0]  
AN[06:00]  
ADDR[15:8]/  
DATA[15:8]  
Port A I/O, Multiplexed Address/Data  
Port B I/O, Multiplexed Address/Data  
ADDR[7:0]/  
DATA[7:0]  
PB[7:0]  
PE7  
PE6  
PE5  
PE4  
PE3  
PE2  
PE1  
PE0  
PH7  
PH6  
PH5  
PH4  
PH3  
PH2  
PH1  
PH0  
NOACC  
IPIPE1  
IPIPE0  
ECLK  
LSTRB  
R/W  
XCLKS  
MODB  
MODA  
Port E I/O, Access, Clock Select  
Port E I/O, Pipe Status, Mode Input  
Port E I/O, Pipe Status, Mode Input  
Port E I/O, Bus Clock Output  
TAGLO  
Port E I/O, Byte Strobe, Tag Low  
Port E I/O, R/W in expanded modes  
Port E Input, Maskable Interrupt  
Port E Input, Non Maskable Interrupt  
Port H I/O, Interrupt, SS of SPI2  
Port H I/O, Interrupt, SCK of SPI2  
Port H I/O, Interrupt, MOSI of SPI2  
Port H I/O, Interrupt, MISO of SPI2  
Port H I/O, Interrupt, SS of SPI1  
Port H I/O, Interrupt, SCK of SPI1  
Port H I/O, Interrupt, MOSI of SPI1  
Port H I/O, Interrupt, MISO of SPI1  
V
DDR  
IRQ  
XIRQ  
KWH7  
KWH6  
KWH5  
KWH4  
KWH3  
KWH2  
KWH1  
KWH0  
SS2  
SCK2  
MOSI2  
MISO2  
SS1  
SCK1  
MOSI1  
MISO1  
26  
 
 
MC9S12A256 Device Guide V01.01  
Pin Name  
Pin Name  
Pin Name  
Function 3  
Pin Name  
Function 4  
Powered by  
Description  
Function 1 Function 2  
PJ7  
PJ6  
KWJ7  
KWJ6  
SCL  
SDA  
Port J I/O, Interrupt, SCL of IIC  
Port J I/O, Interrupt, SDA of IIC  
Port J I/O, Interrupts  
PJ[1:0]  
KWJ[1:0]  
Port K I/O, Emulation Chip Select, ROM  
On Enable  
PK7  
ECS  
ROMONE  
PK[5:0]  
PM7  
PM6  
PM5  
PM4  
PM3  
PM2  
PM1  
PM0  
XADDR[19:14]  
Port K I/O, Extended Addresses  
Port M I/O  
Port M I/O  
SCK0  
MOSI0  
SS0  
MISO0  
Port M I/O, SCK of SPI0  
Port M I/O, MOSI of SPI0  
Port M I/O, SS of SPI0  
Port M I/O, MISO of SPI0  
Port M I/O  
Port M I/O  
Port P I/O, Interrupt, Channel 7 of PWM,  
SCK of SPI2  
PP7  
PP6  
PP5  
PP4  
PP3  
PP2  
PP1  
PP0  
KWP7  
KWP6  
KWP5  
KWP4  
KWP3  
KWP2  
KWP1  
KWP0  
PWM7  
PWM6  
PWM5  
PWM4  
PWM3  
PWM2  
PWM1  
PWM0  
SCK2  
SS2  
Port P I/O, Interrupt, Channel 6 of PWM,  
SS of SPI2  
Port P I/O, Interrupt, Channel 5 of PWM,  
MOSI of SPI2  
MOSI2  
MISO2  
SS1  
VDDX  
Port P I/O, Interrupt, Channel 4 of PWM,  
MISO2 of SPI2  
Port P I/O, Interrupt, Channel 3 of PWM,  
SS of SPI1  
Port P I/O, Interrupt, Channel 2 of PWM,  
SCK of SPI1  
SCK1  
MOSI1  
MISO1  
Port P I/O, Interrupt, Channel 1 of PWM,  
MOSI of SPI1  
Port P I/O, Interrupt, Channel 0 of PWM,  
MISO2 of SPI1  
PS7  
PS6  
SS0  
SCK0  
MOSI0  
MISO0  
TXD1  
Port S I/O, SS of SPI0  
Port S I/O, SCK of SPI0  
Port S I/O, MOSI of SPI0  
Port S I/O, MISO of SPI0  
Port S I/O, TXD of SCI1  
Port S I/O, RXD of SCI1  
Port S I/O, TXD of SCI0  
Port S I/O, RXD of SCI0  
Port T I/O, Timer channels  
PS5  
PS4  
PS3  
PS2  
RXD1  
TXD0  
PS1  
PS0  
RXD0  
IOC[7:0]  
PT[7:0]  
27  
MC9S12A256 Device Guide V01.01  
2.3 Detailed Signal Descriptions  
2.3.1 EXTAL, XTAL Oscillator Pins  
EXTAL and XTAL are the crystal driver and external clock pins. On reset all the device clocks are derived  
from the EXTAL input frequency. XTAL is the crystal output.  
2.3.2 RESET External Reset Pin  
An active low bidirectional control signal, it acts as an input to initialize the MCU to a known start-up state,  
and an output when an internal MCU function causes a reset.  
2.3.3 TEST Test Pin  
This input only pin is reserved for test.  
NOTE: The TEST pin must be tied to VSS in all applications.  
2.3.4 VREGEN Voltage Regulator Enable Pin  
This input only pin enables or disables the on-chip voltage regulator.  
2.3.5 XFC PLL Loop Filter Pin  
PLL loop filter, see A.5.3 Phase Locked Loop. If needed, contact your Motorola representative for the  
interactive application note to compute PLL loop filter elements. Any current leakage on this pin must be  
avoided.  
XFC  
R
0
C
P
MCU  
C
S
V
V
DDPLL  
DDPLL  
Figure 2-3 PLL Loop Filter Connections  
28  
MC9S12A256 Device Guide V01.01  
2.3.6 BKGD / TAGHI / MODC Background Debug, Tag High, and Mode Pin  
The BKGD/TAGHI/MODC pin is used as a pseudo-open-drain pin for the background debug  
communication. In MCU expanded modes of operation when instruction tagging is on, an input low on  
this pin during the falling edge of E-clock tags the high half of the instruction word being read into the  
instruction queue. It is used as a MCU operating mode select pin during reset. The state of this pin is  
latched to the MODC bit at the rising edge of RESET.  
2.3.7 PAD15 / AN15 / ETRIG1 Port AD Input Pin of ATD1  
PAD15 is a general purpose input pin and analog input AN7 of the analog to digital converter ATD1. It  
can act as an external trigger input for the ATD1.  
2.3.8 PAD[14:08] / AN[14:08] Port AD Input Pins of ATD1  
PAD14 - PAD08 are general purpose input pins and analog inputs AN[6:0] of the analog to digital  
converter ATD1.  
2.3.9 PAD7 / AN07 / ETRIG0 Port AD Input Pin of ATD0  
PAD7 is a general purpose input pin and analog input AN7 of the analog to digital converter ATD0. It can  
act as an external trigger input for the ATD0.  
2.3.10 PAD[06:00] / AN[06:00] Port AD Input Pins of ATD0  
PAD06 - PAD00 are general purpose input pins and analog inputs AN[6:0] of the analog to digital  
converter ATD0.  
2.3.11 PA[7:0] / ADDR[15:8] / DATA[15:8] Port A I/O Pins  
PA7-PA0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are  
used for the multiplexed external address and data bus.  
2.3.12 PB[7:0] / ADDR[7:0] / DATA[7:0] Port B I/O Pins  
PB7-PB0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are  
used for the multiplexed external address and data bus.  
2.3.13 PE7 / NOACC / XCLKS Port E I/O Pin 7  
PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC  
signal, when enabled, is used to indicate that the current bus cycle is an unused or freecycle. This signal  
will assert when the CPU is not using the bus.  
The XCLKS input selects between an external clock or oscillator configuration. The state of this pin is  
latched at the rising edge of RESET. If the input is a logic low the EXTAL pin is configured for an external  
29  
 
MC9S12A256 Device Guide V01.01  
clock drive. If input is a logic high an oscillator circuit is configured on EXTAL and XTAL. Since this pin  
is an input with a pull-up device, if the pin is left floating, the default configuration is an oscillator circuit  
on EXTAL and XTAL.  
2.3.14 PE6 / MODB / IPIPE1 Port E I/O Pin 6  
PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.  
The state of this pin is latched to the MODB bit at the rising edge of RESET. This pin is shared with the  
instruction queue tracking signal IPIPE1. This pin is an input with a pull-down device which is only active  
when RESET is low.  
2.3.15 PE5 / MODA / IPIPE0 Port E I/O Pin 5  
PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.  
The state of this pin is latched to the MODA bit at the rising edge of RESET. This pin is shared with the  
instruction queue tracking signal IPIPE0. This pin is an input with a pull-down device which is only active  
when RESET is low.  
2.3.16 PE4 / ECLK Port E I/O Pin 4  
PE4 is a general purpose input or output pin. It can be configured to drive the internal bus clock ECLK.  
ECLK can be used as a timing reference.  
2.3.17 PE3 / LSTRB / TAGLO Port E I/O Pin 3  
PE3 is a general purpose input or output pin. In MCU expanded modes of operation, LSTRB can be used  
for the low-byte strobe function to indicate the type of bus access and when instruction tagging is on,  
TAGLO is used to tag the low half of the instruction word being read into the instruction queue.  
2.3.18 PE2 / R/W Port E I/O Pin 2  
PE2 is a general purpose input or output pin. In MCU expanded modes of operations, this pin drives the  
read/write output signal for the external bus. It indicates the direction of data on the external bus.  
2.3.19 PE1 / IRQ Port E Input Pin 1  
PE1 is a general purpose input pin and the maskable interrupt request input that provides a means of  
applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.  
2.3.20 PE0 / XIRQ Port E Input Pin 0  
PE0 is a general purpose input pin and the non-maskable interrupt request input that provides a means of  
applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.  
30  
MC9S12A256 Device Guide V01.01  
2.3.21 PH7 / KWH7 / SS2 Port H I/O Pin 7  
PH7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the  
MCU to exit STOP or WAIT mode. It can be configured as slave select pin SS of the Serial Peripheral  
Interface 2 (SPI2).  
2.3.22 PH6 / KWH6 / SCK2 Port H I/O Pin 6  
PH6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the  
MCU to exit STOP or WAIT mode. It can be configured as serial clock pin SCK of the Serial Peripheral  
Interface 2 (SPI2).  
2.3.23 PH5 / KWH5 / MOSI2 Port H I/O Pin 5  
PH5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as master output (during master mode) or slave input  
pin (during slave mode) MOSI of the Serial Peripheral Interface 2 (SPI2).  
2.3.24 PH4 / KWH4 / MISO2 Port H I/O Pin 4  
PH4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as master input (during master mode) or slave output  
(during slave mode) pin MISO of the Serial Peripheral Interface 2 (SPI2).  
2.3.25 PH3 / KWH3 / SS1 Port H I/O Pin 3  
PH3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the  
MCU to exit STOP or WAIT mode. It can be configured as slave select pin SS of the Serial Peripheral  
Interface 1 (SPI1).  
2.3.26 PH2 / KWH2 / SCK1 Port H I/O Pin 2  
PH2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the  
MCU to exit STOP or WAIT mode. It can be configured as serial clock pin SCK of the Serial Peripheral  
Interface 1 (SPI1).  
2.3.27 PH1 / KWH1 / MOSI1 Port H I/O Pin 1  
PH1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as master output (during master mode) or slave input  
pin (during slave mode) MOSI of the Serial Peripheral Interface 1 (SPI1).  
31  
MC9S12A256 Device Guide V01.01  
2.3.28 PH0 / KWH0 / MISO1 Port H I/O Pin 0  
PH0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as master input (during master mode) or slave output  
(during slave mode) pin MISO of the Serial Peripheral Interface 1 (SPI1).  
2.3.29 PJ7 / KWJ7 / SCL PORT J I/O Pin 7  
PJ7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as the serial clock pin SCL of the IIC module.  
2.3.30 PJ6 / KWJ6 / SDA PORT J I/O Pin 6  
PJ6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as the serial data pin SDA of the IIC module.  
2.3.31 PJ[1:0] / KWJ[1:0] Port J I/O Pins [1:0]  
PJ1 and PJ0 are general purpose input or output pins. They can be configured to generate an interrupt  
causing the MCU to exit STOP or WAIT mode.  
2.3.32 PK7 / ECS / ROMONE Port K I/O Pin 7  
PK7 is a general purpose input or output pin. During MCU expanded modes of operation, this pin is used  
as the emulation chip select output (ECS). During MCU normal expanded modes of operation, this pin is  
used to enable the Flash EEPROM memory in the memory map (ROMONE). At the rising edge of RESET,  
the state of this pin is latched to the ROMON bit.  
2.3.33 PK[5:0] / XADDR[19:14] Port K I/O Pins [5:0]  
PK5-PK0 are general purpose input or output pins. In MCU expanded modes of operation, these pins  
provide the expanded address XADDR[19:14] for the external bus.  
2.3.34 PM7 Port M I/O Pin 7  
PM7 is a general purpose input or output pin.  
2.3.35 PM6 Port M I/O Pin 6  
PM6 is a general purpose input or output pin.  
2.3.36 PM5 / SCK0 Port M I/O Pin 5  
PM5 is a general purpose input or output pin. It can be configured as the serial clock pin SCK of the Serial  
Peripheral Interface 0 (SPI0).  
32  
MC9S12A256 Device Guide V01.01  
2.3.37 PM4 / MOSI0 Port M I/O Pin 4  
PM4 is a general purpose input or output pin. It can be configured as the master output (during master  
mode) or slave input pin (during slave mode) MOSI for the Serial Peripheral Interface 0 (SPI0).  
2.3.38 PM3 / SS0 Port M I/O Pin 3  
PM3 is a general purpose input or output pin. It can be configured as the slave select pin SS of the Serial  
Peripheral Interface 0 (SPI0).  
2.3.39 PM2 / MISO0 Port M I/O Pin 2  
PM2 is a general purpose input or output pin. It can be configured as the master input (during master mode)  
or slave output pin (during slave mode) MISO for the Serial Peripheral Interface 0 (SPI0).  
2.3.40 PM1 Port M I/O Pin 1  
PM1 is a general purpose input or output pin.  
2.3.41 PM0 Port M I/O Pin 0  
PM0 is a general purpose input or output pin.  
2.3.42 PP7 / KWP7 / PWM7 / SCK2 Port P I/O Pin 7  
PP7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 7 output. It  
can be configured as serial clock pin SCK of the Serial Peripheral Interface 2 (SPI2).  
2.3.43 PP6 / KWP6 / PWM6 / SS2 Port P I/O Pin 6  
PP6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 6 output. It  
can be configured as slave select pin SS of the Serial Peripheral Interface 2 (SPI2).  
2.3.44 PP5 / KWP5 / PWM5 / MOSI2 Port P I/O Pin 5  
PP5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 5 output. It  
can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of  
the Serial Peripheral Interface 2 (SPI2).  
33  
MC9S12A256 Device Guide V01.01  
2.3.45 PP4 / KWP4 / PWM4 / MISO2 Port P I/O Pin 4  
PP4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 4 output. It  
can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of  
the Serial Peripheral Interface 2 (SPI2).  
2.3.46 PP3 / KWP3 / PWM3 / SS1 Port P I/O Pin 3  
PP3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 3 output. It  
can be configured as slave select pin SS of the Serial Peripheral Interface 1 (SPI1).  
2.3.47 PP2 / KWP2 / PWM2 / SCK1 Port P I/O Pin 2  
PP2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 2 output. It  
can be configured as serial clock pin SCK of the Serial Peripheral Interface 1 (SPI1).  
2.3.48 PP1 / KWP1 / PWM1 / MOSI1 Port P I/O Pin 1  
PP1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 1 output. It  
can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of  
the Serial Peripheral Interface 1 (SPI1).  
2.3.49 PP0 / KWP0 / PWM0 / MISO1 Port P I/O Pin 0  
PP0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 0 output. It  
can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of  
the Serial Peripheral Interface 1 (SPI1).  
2.3.50 PS7 / SS0 Port S I/O Pin 7  
PS6 is a general purpose input or output pin. It can be configured as the slave select pin SS of the Serial  
Peripheral Interface 0 (SPI0).  
2.3.51 PS6 / SCK0 Port S I/O Pin 6  
PS6 is a general purpose input or output pin. It can be configured as the serial clock pin SCK of the Serial  
Peripheral Interface 0 (SPI0).  
34  
MC9S12A256 Device Guide V01.01  
2.3.52 PS5 / MOSI0 Port S I/O Pin 5  
PS5 is a general purpose input or output pin. It can be configured as master output (during master mode)  
or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0).  
2.3.53 PS4 / MISO0 Port S I/O Pin 4  
PS4 is a general purpose input or output pin. It can be configured as master input (during master mode) or  
slave output pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0).  
2.3.54 PS3 / TXD1 Port S I/O Pin 3  
PS3 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial  
Communication Interface 1 (SCI1).  
2.3.55 PS2 / RXD1 Port S I/O Pin 2  
PS2 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial  
Communication Interface 1 (SCI1).  
2.3.56 PS1 / TXD0 Port S I/O Pin 1  
PS1 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial  
Communication Interface 0 (SCI0).  
2.3.57 PS0 / RXD0 Port S I/O Pin 0  
PS0 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial  
Communication Interface 0 (SCI0).  
2.3.58 PT[7:0] / IOC[7:0] Port T I/O Pins [7:0]  
PT7-PT0 are general purpose input or output pins. They can be configured as input capture or output  
compare pins IOC7-IOC0 of the Enhanced Capture Timer (ECT).  
2.4 Power Supply Pins  
MC9S12A256 power and ground pins are described below.  
NOTE: All VSS pins must be connected together in the application.  
35  
MC9S12A256 Device Guide V01.01  
2.4.1 VDDX, VSSX Power & Ground Pins for I/O Drivers  
External power and ground for I/O drivers. Because fast signal transitions place high, short-duration  
current demands on the power supply, use bypass capacitors with high-frequency characteristics and place  
them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are  
loaded.  
2.4.2 VDDR, VSSR Power & Ground Pins for I/O Drivers & for Internal  
Voltage Regulator  
External power and ground for I/O drivers and input to the internal voltage regulator. Because fast signal  
transitions place high, short-duration current demands on the power supply, use bypass capacitors with  
high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements  
depend on how heavily the MCU pins are loaded.  
2.4.3 VDD1, VDD2, VSS1, VSS2 Core Power Pins  
Power is supplied to the MCU through VDD and VSS. Because fast signal transitions place high,  
short-duration current demands on the power supply, use bypass capacitors with high-frequency  
characteristics and place them as close to the MCU as possible. This 2.5V supply is derived from the  
internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is  
turned off, if VREGEN is tied to ground.  
NOTE: No load allowed except for bypass capacitors.  
2.4.4 VDDA, VSSA Power Supply Pins for ATD and VREG  
VDDA, VSSA are the power supply and ground input pins for the voltage regulator and the analog to digital  
converter. It also provides the reference for the internal voltage regulator. This allows the supply voltage  
to the ATD and the reference voltage to be bypassed independently.  
2.4.5 VRH, VRL ATD Reference Voltage Input Pins  
VRH and VRL are the reference voltage input pins for the analog to digital converter.  
2.4.6 VDDPLL, VSSPLL Power Supply Pins for PLL  
Provides operating voltage and ground for the Oscillator and the Phased-Locked Loop. This allows the  
supply voltage to the Oscillator and PLL to be bypassed independently.This 2.5V voltage is generated by  
the internal voltage regulator.  
NOTE: No load allowed except for bypass capacitors.  
36  
MC9S12A256 Device Guide V01.01  
2.4.7 VREGEN On Chip Voltage Regulator Enable  
Enables the internal 5V to 2.5V voltage regulator. If this pin is tied low, VDD1,2 and VDDPLL must be  
supplied externally.  
Table 2-2 MC9S12A256 Power and Ground Connection Summary  
Pin Number  
Nominal  
Voltage  
Mnemonic  
Description  
112-pin QFP  
V
V
13, 65  
14, 66  
41  
2.5 V  
0V  
DD1, 2  
Internal power and ground generated by internal regulator  
SS1, 2  
V
5.0 V  
0 V  
External power and ground, supply to pin drivers and internal  
voltage regulator.  
DDR  
SSR  
DDX  
V
40  
V
107  
106  
83  
5.0 V  
0 V  
External power and ground, supply to pin drivers.  
V
V
SSX  
5.0 V  
Operating voltage and ground for the analog-to-digital  
converters and the reference for the internal voltage regulator,  
allows the supply voltage to the A/D to be bypassed  
independently.  
DDA  
V
86  
0 V  
SSA  
V
85  
84  
43  
0 V  
RL  
Reference voltages for the analog-to-digital converter.  
V
5.0 V  
2.5 V  
RH  
V
V
Provides operating voltage and ground for the Phased-Locked  
Loop. This allows the supply voltage to the PLL to be  
bypassed independently. Internal power and ground  
generated by internal regulator.  
DDPLL  
SSPLL  
REGEN  
45  
97  
0 V  
5V  
V
Internal Voltage Regulator enable/disable  
37  
MC9S12A256 Device Guide V01.01  
38  
MC9S12A256 Device Guide V01.01  
Section 3 System Clock Description  
3.1 Overview  
The Clock and Reset Generator provides the internal clock signals for the core and all peripheral modules.  
Figure 3-1 shows the clock connections from the CRG to all modules.  
Consult the HCS12 Clock and Reset Generator (CRG) Block Guide (Motorola document order number,  
S12CRGV3/D) for details on clock generation.  
1/2  
BDM  
S12_CORE  
core clock  
Flash  
RAM  
EEPROM  
ECT  
ATD0, 1  
PWM  
EXTAL  
XTAL  
bus clock  
CRG  
SCI0, SCI1  
SPI0, 1, 2  
IIC  
oscillator clock  
PIM  
Figure 3-1 Clock Connections  
39  
 
MC9S12A256 Device Guide V01.01  
40  
MC9S12A256 Device Guide V01.01  
Section 4 Modes of Operation  
4.1 Overview  
Eight possible modes determine the operating configuration of the MC9S12A256. Each mode has an  
associated default memory map and external bus configuration.  
Three low power modes exist for the device.  
4.2 Modes of Operation  
The operating mode out of reset is determined by the states of the MODC, MODB, and MODA pins during  
reset (Table 4-1). The MODC, MODB, and MODA bits in the MODE register show the current operating  
mode and provide limited mode switching during operation. The states of the MODC, MODB, and MODA  
pins are latched into these bits on the rising edge of the reset signal.  
Table 4-1 Mode Selection  
MODC  
MODB  
MODA  
Mode Description  
Special Single Chip, BDM allowed and ACTIVE. BDM is allowed in all  
other modes but a serial command is required to make BDM active.  
0
0
0
0
0
0
1
1
0
1
1
0
0
1
0
1
0
1
Emulation Expanded Narrow, BDM allowed  
Special Test (Expanded Wide), BDM allowed  
Emulation Expanded Wide, BDM allowed  
Normal Single Chip, BDM allowed  
Normal Expanded Narrow, BDM allowed  
Peripheral; BDM allowed but bus operations would cause bus conflicts  
(must not be used)  
1
1
1
1
0
1
Normal Expanded Wide, BDM allowed  
There are two basic types of operating modes:  
1. Normal modes: Some registers and bits are protected against accidental changes.  
2. Special modes: Allow greater access to protected control registers and bits for special purposes such  
as testing.  
A system development and debug feature, background debug mode (BDM), is available in all modes. In  
special single-chip mode, BDM is active immediately after reset.  
Some aspects of Port E are not mode dependent. Bit 1 of Port E is a general purpose input or the IRQ  
interrupt input. IRQ can be enabled by bits in the CPUs condition codes register but it is inhibited at reset  
so this pin is initially configured as a simple input with a pull-up. Bit 0 of Port E is a general purpose input  
or the XIRQ interrupt input. XIRQ can be enabled by bits in the CPUs condition codes register but it is  
inhibited at reset so this pin is initially configured as a simple input with a pull-up. The ESTR bit in the  
EBICTL register is set to one by reset in any user mode.This assures that the reset vector can be fetched  
41  
 
MC9S12A256 Device Guide V01.01  
even if it is located in an external slow memory device. The PE6/MODB/IPIPE1 and PE5/MODA/IPIPE0  
pins act as high-impedance mode select inputs during reset.  
The following paragraphs discuss the default bus setup and describe which aspects of the bus can be  
changed after reset on a per mode basis.  
4.2.1 Normal Operating Modes  
These modes provide three operating configurations. Background debug is available in all three modes,  
but must first be enabled for some operations by means of a BDM background command, then activated.  
4.2.1.1 Normal Single-Chip Mode  
There is no external expansion bus in this mode. All pins of Ports A, B and E are configured as general  
purpose I/O pins Port E bits 1 and 0 are available as general purpose input only pins with internal pull-ups  
enabled. All other pins of Port E are bidirectional I/O pins that are initially configured as high-impedance  
inputs with internal pull-ups enabled. Ports A and B are configured as high-impedance inputs with their  
internal pull-ups disabled.  
The pins associated with Port E bits 6, 5, 3, and 2 cannot be configured for their alternate functions IPIPE1,  
IPIPE0, LSTRB, and R/W while the MCU is in single chip modes. In single chip modes, the associated  
control bits PIPOE, LSTRE, and RDWE are reset to zero. Writing the opposite state into them in single  
chip mode does not change the operation of the associated Port E pins.  
In normal single chip mode, the MODE register is writable one time. This allows a user program to change  
the bus mode to narrow or wide expanded mode and/or turn on visibility of internal accesses.  
Port E, bit 4 can be configured for a free-running E clock output by clearing NECLK=0. Typically the only  
use for an E clock output while the MCU is in single chip modes would be to get a constant speed clock  
for use in the external application system.  
4.2.1.2 Normal Expanded Wide Mode  
In expanded wide modes, Ports A and B are configured as a 16-bit multiplexed address and data bus and  
Port E bit 4 is configured as the E clock output signal. These signals allow external memory and peripheral  
devices to be interfaced to the MCU.  
Port E pins other than PE4/ECLK are configured as general purpose I/O pins (initially high-impedance  
inputs with internal pull-up resistors enabled). Control bits PIPOE, NECLK, LSTRE, and RDWE in the  
PEAR register can be used to configure Port E pins to act as bus control outputs instead of general purpose  
I/O pins.  
It is possible to enable the pipe status signals on Port E bits 6 and 5 by setting the PIPOE bit in PEAR, but  
it would be unusual to do so in this mode. Development systems where pipe status signals are monitored  
would typically use the special variation of this mode.  
The Port E bit 2 pin can be reconfigured as the R/W bus control signal by writing 1to the RDWE bit in  
PEAR. If the expanded system includes external devices that can be written, such as RAM, the RDWE bit  
42  
MC9S12A256 Device Guide V01.01  
would need to be set before any attempt to write to an external location. If there are no writable resources  
in the external system, PE2 can be left as a general purpose I/O pin.  
The Port E bit 3 pin can be reconfigured as the LSTRB bus control signal by writing 1to the LSTRE bit  
in PEAR. The default condition of this pin is a general purpose input because the LSTRB function is not  
needed in all expanded wide applications.  
The Port E bit 4 pin is initially configured as ECLK output with stretch. The E clock output function  
depends upon the settings of the NECLK bit in the PEAR register, the IVIS bit in the MODE register and  
the ESTR bit in the EBICTL register. The E clock is available for use in external select decode logic or as  
a constant speed clock for use in the external application system.  
4.2.1.3 Normal Expanded Narrow Mode  
This mode is used for lower cost production systems that use 8-bit wide external EPROMs or RAMs. Such  
systems take extra bus cycles to access 16-bit locations but this may be preferred over the extra cost of  
additional external memory devices.  
Ports A and B are configured as a 16-bit address bus and Port A is multiplexed with data. Internal visibility  
is not available in this mode because the internal cycles would need to be split into two 8-bit cycles.  
Since the PEAR register can only be written one time in this mode, use care to set all bits to the desired  
states during the single allowed write.  
The PE3/LSTRB pin is always a general purpose I/O pin in normal expanded narrow mode. Although it  
is possible to write the LSTRE bit in PEAR to 1in this mode, the state of LSTRE is overridden and Port  
E bit 3 cannot be reconfigured as the LSTRB output.  
It is possible to enable the pipe status signals on Port E bits 6 and 5 by setting the PIPOE bit in PEAR, but  
it would be unusual to do so in this mode. LSTRB would also be needed to fully understand system  
activity. Development systems where pipe status signals are monitored would typically use special  
expanded wide mode or occasionally special expanded narrow mode.  
The PE4/ECLK pin is initially configured as ECLK output with stretch. The E clock output function  
depends upon the settings of the NECLK bit in the PEAR register, the IVIS bit in the MODE register and  
the ESTR bit in the EBICTL register. In normal expanded narrow mode, the E clock is available for use  
in external select decode logic or as a constant speed clock for use in the external application system.  
The PE2/R/W pin is initially configured as a general purpose input with a pull-up but this pin can be  
reconfigured as the R/W bus control signal by writing 1to the RDWE bit in PEAR. If the expanded  
narrow system includes external devices that can be written such as RAM, the RDWE bit would need to  
be set before any attempt to write to an external location. If there are no writable resources in the external  
system, PE2 can be left as a general purpose I/O pin.  
4.2.1.4 Internal Visibility  
Internal visibility is available when the MCU is operating in expanded wide modes or emulation narrow  
mode. It is not available in single-chip, peripheral or normal expanded narrow modes. Internal visibility is  
enabled by setting the IVIS bit in the MODE register.  
43  
MC9S12A256 Device Guide V01.01  
If an internal access is made while E, R/W, and LSTRB are configured as bus control outputs and internal  
visibility is off (IVIS=0), E will remain low for the cycle, R/W will remain high, and address, data and the  
LSTRB pins will remain at their previous state.  
When internal visibility is enabled (IVIS=1), certain internal cycles will be blocked from going external.  
During cycles when the BDM is selected, R/W will remain high, data will maintain its previous state, and  
address and LSTRB pins will be updated with the internal value. During CPU no access cycles when the  
BDM is not driving, R/W will remain high, and address, data and the LSTRB pins will remain at their  
previous state.  
4.2.1.5 Emulation Expanded Wide Mode  
In expanded wide modes, Ports A and B are configured as a 16-bit multiplexed address and data bus and  
Port E provides bus control and status signals. These signals allow external memory and peripheral devices  
to be interfaced to the MCU. These signals can also be used by a logic analyzer to monitor the progress of  
application programs.  
The bus control related pins in Port E (PE7/NOACC, PE6/MODB/IPIPE1, PE5/MODA/IPIPE0,  
PE4/ECLK, PE3/LSTRB/TAGLO, and PE2/R/W) are all configured to serve their bus control output  
functions rather than general purpose I/O. Notice that writes to the bus control enable bits in the PEAR  
register in emulation mode are restricted.  
4.2.1.6 Emulation Expanded Narrow Mode  
Expanded narrow modes are intended to allow connection of single 8-bit external memory devices for  
lower cost systems that do not need the performance of a full 16-bit external data bus. Accesses to internal  
resources that have been mapped external (i.e., PORTA, PORTB, DDRA, DDRB, PORTE, DDRE, PEAR,  
PUCR, RDRIV) will be accessed with a 16-bit data bus on Ports A and B. Accesses of 16-bit external  
words to addresses which are normally mapped external will be broken into two separate 8-bit accesses  
using Port A as an 8-bit data bus. Internal operations continue to use full 16-bit data paths. They are only  
visible externally as 16-bit information if IVIS=1.  
Ports A and B are configured as multiplexed address and data output ports. During external accesses,  
address A15, data D15 and D7 are associated with PA7, address A0 is associated with PB0 and data D8  
and D0 are associated with PA0. During internal visible accesses and accesses to internal resources that  
have been mapped external, address A15 and data D15 is associated with PA7 and address A0 and data  
D0 is associated with PB0.  
The bus control related pins in Port E (PE7/NOACC, PE6/MODB/IPIPE1, PE5/MODA/IPIPE0,  
PE4/ECLK, PE3/LSTRB/TAGLO, and PE2/R/W) are all configured to serve their bus control output  
functions rather than general purpose I/O. Notice that writes to the bus control enable bits in the PEAR  
register in emulation mode are restricted.  
The main difference between special modes and normal modes is that some of the bus control and system  
control signals cannot be written in emulation modes.  
44  
MC9S12A256 Device Guide V01.01  
4.2.2 Special Operating Modes  
There are two special operating modes that correspond to normal operating modes. These operating modes  
are commonly used in factory testing and system development.  
4.2.2.1 Special Single-Chip Mode  
When the MCU is reset in this mode, the background debug mode is enabled and active. The MCU does  
not fetch the reset vector and execute application code as it would in other modes. Instead the active  
background mode is in control of CPU execution and BDM firmware is waiting for additional serial  
commands through the BKGD pin. When a serial command instructs the MCU to return to normal  
execution, the system will be configured as described below unless the reset states of internal control  
registers have been changed through background commands after the MCU was reset.  
There is no external expansion bus after reset in this mode. Ports A and B are initially simple bidirectional  
I/O pins that are configured as high-impedance inputs with internal pull-ups disabled; however, writing to  
the mode select bits in the MODE register (which is allowed in special modes) can change this after reset.  
All of the Port E pins (except PE4/ECLK) are initially configured as general purpose high-impedance  
inputs with pull-ups enabled. PE4/ECLK is configured as the E clock output in this mode.  
The pins associated with Port E bits 6, 5, 3, and 2 cannot be configured for their alternate functions IPIPE1,  
IPIPE0, LSTRB, and R/W while the MCU is in single chip modes. In single chip modes, the associated  
control bits PIPOE, LSTRE and RDWE are reset to zero. Writing the opposite value into these bits in  
single chip mode does not change the operation of the associated Port E pins.  
Port E, bit 4 can be configured for a free-running E clock output by clearing NECLK=0. Typically the only  
use for an E clock output while the MCU is in single chip modes would be to get a constant speed clock  
for use in the external application system.  
4.2.2.2 Special Test Mode  
In expanded wide modes, Ports A and B are configured as a 16-bit multiplexed address and data bus and  
Port E provides bus control and status signals. In special test mode, the write protection of many control  
bits is lifted so that they can be thoroughly tested without needing to go through reset.  
4.2.3 Test Operating Mode  
There is a test operating mode in which an external master, such as an I.C. tester, can control the on-chip  
peripherals.  
4.2.3.1 Peripheral Mode  
This mode is intended for Motorola factory testing of the MCU. In this mode, the CPU is inactive and an  
external (tester) bus master drives address, data and bus control signals in through Ports A, B and E. In  
effect, the whole MCU acts as if it was a peripheral under control of an external CPU. This allows faster  
testing of on-chip memory and peripherals than previous testing methods. Since the mode control register  
is not accessible in peripheral mode, the only way to change to another mode is to reset the MCU into a  
different mode. Background debugging should not be used while the MCU is in special peripheral mode  
45  
MC9S12A256 Device Guide V01.01  
as internal bus conflicts between BDM and the external master can cause improper operation of both  
functions.  
4.3 Security  
The device will make available a security feature preventing the unauthorized read and write of the  
memory contents. This feature allows:  
Protection of the contents of FLASH,  
Protection of the contents of EEPROM,  
Operation in single-chip mode,  
Operation from external memory with internal FLASH and EEPROM disabled.  
The user must be reminded that part of the security must lie with the users code. An extreme example  
would be users code that dumps the contents of the internal program. This code would defeat the purpose  
of security. At the same time the user may also wish to put a back door in the users program. An example  
of this is the user downloads a key through the SCI which allows access to a programming routine that  
updates parameters stored in EEPROM.  
4.3.1 Securing the Microcontroller  
Once the user has programmed the FLASH and EEPROM (if desired), the part can be secured by  
programming the security bits located in the FLASH module. These non-volatile bits will keep the part  
secured through resetting the part and through powering down the part.  
The security byte resides in a portion of the Flash array.  
Check the HCS12 256K FLASH Block Guide (Motorola document order number, S12FTS256KV2/D) for  
more details on the security configuration.  
4.3.2 Operation of the Secured Microcontroller  
4.3.2.1 Normal Single Chip Mode  
This will be the most common usage of the secured part. Everything will appear the same as if the part was  
not secured with the exception of BDM operation. The BDM operation will be blocked.  
4.3.2.2 Executing from External Memory  
The user may wish to execute from external space with a secured microcontroller. This is accomplished  
by resetting directly into expanded mode. The internal FLASH and EEPROM will be disabled. BDM  
operations will be blocked.  
46  
MC9S12A256 Device Guide V01.01  
4.3.3 Unsecuring the Microcontroller  
In order to unsecure the microcontroller, the internal FLASH and EEPROM must be erased. This can be  
done through an external program in expanded mode.  
Once the user has erased the FLASH and EEPROM, the part can be reset into special single chip mode.  
This invokes a program that verifies the erasure of the internal FLASH and EEPROM. Once this program  
completes, the user can erase and program the FLASH security bits to the unsecured state. This is generally  
done through the BDM, but the user could also change to expanded mode (by writing the mode bits  
through the BDM) and jumping to an external program (again through BDM commands). Note that if the  
part goes through a reset before the security bits are reprogrammed to the unsecure state, the part will be  
secured again.  
4.4 Low Power Modes  
Consult the respective Block User Guide for information on the module behavior in Stop, Pseudo Stop,  
and Wait Mode.  
47  
MC9S12A256 Device Guide V01.01  
48  
MC9S12A256 Device Guide V01.01  
Section 5 Resets and Interrupts  
5.1 Overview  
Consult the Exception Processing section of the HCS12 Core User Guide (Motorola order number,  
HCS12COREUG/D) for information on resets and interrupts.  
5.2 Vectors  
5.2.1 Vector Table  
Table 5-1 lists interrupt sources and vectors in default order of priority.  
Table 5-1 Interrupt Vector Locations  
CCR  
Mask  
HPRIO Value  
to Elevate  
Vector Address  
Interrupt Source  
Local Enable  
$FFFE, $FFFF  
$FFFC, $FFFD  
$FFFA, $FFFB  
$FFF8, $FFF9  
$FFF6, $FFF7  
$FFF4, $FFF5  
$FFF2, $FFF3  
$FFF0, $FFF1  
$FFEE, $FFEF  
$FFEC, $FFED  
$FFEA, $FFEB  
$FFE8, $FFE9  
$FFE6, $FFE7  
$FFE4, $FFE5  
$FFE2, $FFE3  
$FFE0, $FFE1  
$FFDE, $FFDF  
$FFDC, $FFDD  
$FFDA, $FFDB  
$FFD8, $FFD9  
Reset  
None  
None  
None  
None  
None  
X-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
None  
PLLCTL (CME, SCME)  
COP rate select  
None  
Clock Monitor fail reset  
COP failure reset  
Unimplemented instruction trap  
SWI  
None  
XIRQ  
None  
IRQ  
IRQCR (IRQEN)  
CRGINT (RTIE)  
TIE (C0I)  
$F2  
$F0  
$EE  
$EC  
$EA  
$E8  
$E6  
$E4  
$E2  
$E0  
$DE  
$DC  
$DA  
$D8  
Real Time Interrupt  
Enhanced Capture Timer channel 0  
Enhanced Capture Timer channel 1  
Enhanced Capture Timer channel 2  
Enhanced Capture Timer channel 3  
Enhanced Capture Timer channel 4  
Enhanced Capture Timer channel 5  
Enhanced Capture Timer channel 6  
Enhanced Capture Timer channel 7  
Enhanced Capture Timer overflow  
Pulse accumulator A overflow  
Pulse accumulator input edge  
SPI0  
TIE (C1I)  
TIE (C2I)  
TIE (C3I)  
TIE (C4I)  
TIE (C5I)  
TIE (C6I)  
TIE (C7I)  
TSRC2 (TOF)  
PACTL (PAOVI)  
PACTL (PAI)  
SP0CR1 (SPIE, SPTIE)  
SC0CR2  
(TIE, TCIE, RIE, ILIE)  
$FFD6, $FFD7  
$FFD4, $FFD5  
SCI0  
SCI1  
I-Bit  
I-Bit  
$D6  
$D4  
SC1CR2  
(TIE, TCIE, RIE, ILIE)  
$FFD2, $FFD3  
$FFD0, $FFD1  
$FFCE, $FFCF  
$FFCC, $FFCD  
$FFCA, $FFCB  
ATD0  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
ATD0CTL2 (ASCIE)  
ATD1CTL2 (ASCIE)  
PTJIF (PTJIE)  
$D2  
$D0  
$CE  
$CC  
$CA  
ATD1  
Port J  
Port H  
PTHIF(PTHIE)  
Modulus Down Counter underflow  
MCCTL(MCZI)  
49  
 
MC9S12A256 Device Guide V01.01  
$FFC8, $FFC9  
$FFC6, $FFC7  
$FFC4, $FFC5  
$FFC2, $FFC3  
$FFC0, $FFC1  
$FFBE, $FFBF  
$FFBC, $FFBD  
$FFBA, $FFBB  
$FFB8, $FFB9  
Pulse Accumulator B Overflow  
I-Bit  
I-Bit  
I-Bit  
PBCTL(PBOVI)  
CRGINT(LOCKIE)  
CRGINT (SCMIE)  
$C8  
$C6  
$C4  
CRG PLL lock  
CRG Self Clock Mode  
Reserved  
IIC Bus  
SPI1  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
IBCR (IBIE)  
$C0  
$BE  
$BC  
$BA  
$B8  
SP1CR1 (SPIE, SPTIE)  
SP2CR1 (SPIE, SPTIE)  
EECTL(CCIE, CBEIE)  
FCTL(CCIE, CBEIE)  
SPI2  
EEPROM  
FLASH  
$FF90 to  
$FFB7  
Reserved  
$FF8E, $FF8F  
$FF8C, $FF8D  
Port P Interrupt  
I-Bit  
I-Bit  
PTPIF (PTPIE)  
$8E  
$8C  
PWM Emergency Shutdown  
PWMSDN (PWMIE)  
$FF80 to  
$FF8B  
Reserved  
5.3 Effects of Reset  
When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the  
respective module Block User Guides for register reset states.  
5.3.1 I/O Pins  
Refer to the HCS12 Core User Guide (Motorola order number, HCS12COREUG/D) for mode dependent  
pin configuration of port A, B, E and K out of reset.  
Refer to the MC9S12A256 Port Integration Module (PIM) Block Guide (Motorola document order  
number, S12A256PIMV1/D) for reset configurations of all peripheral module ports.  
NOTE: For devices assembled in 80-pin QFP packages all non-bonded out pins should be  
configured as outputs after reset in order to avoid current drawn from floating  
inputs. Refer to Table 2-1 for affected pins.  
5.3.2 Memory  
Refer to Table 1-1 for locations of the memories depending on the operating mode after reset.  
The RAM array is not automatically initialized out of reset.  
50  
MC9S12A256 Device Guide V01.01  
Section 6 HCS12 Core Block Description  
Consult the HCS12 Core User Guide (Motorola order number, HCS12COREUG/D) for information about  
the HCS12 core modules, i.e., central processing unit (CPU), interrupt module (INT), module mapping  
control module (MMC), multiplexed external bus interface (MEBI), breakpoint module (BKP) and  
background debug mode module (BDM).  
Section 7 Clock and Reset Generator (CRG) Block  
Description  
Consult the HCS12 Clock and Reset Generator (CRG) Block Guide (Motorola document order number,  
S12CRGV3/D) for information about the Clock and Reset Generator module.  
7.1 Device-Specific Information  
7.1.1 XCLKS  
The XCLKS input signal is active low (see 2.3.13 PE7 / NOACC / XCLKS Port E I/O Pin 7).  
Refer to Figure 2-3. Pierce Oscillator Connections (XCLKS=1) of the HCS12 Clock and Reset Generator  
(CRG) Block Guide (Motorola document order number, S12CRGV3/D).  
Section 8 Enhanced Capture Timer (ECT) Block Description  
Consult the HCS12 16-Bit, 8-Channel Enhanced Capture Timer (ECT) Block Guide (Motorola document  
order number, S12ECT16B8CV1/D) for information about the Enhanced Capture Timer module.  
Section 9 Analog to Digital Converter (ATD) Block  
Description  
There are two Analog to Digital Converters (ATD1 and ATD0) implemented on the MC9S12A256.  
Consult the HCS12 10-Bit, 8-Channel Analog-to-Digital Converter (ATD) Block Guide (Motorola  
document order number, S12ATD10B8CV2/D) for information about each Analog to Digital Converter  
module.  
Section 10 Inter-IC Bus (IIC) Block Description  
Consult the HCS12 Inter-Integrated Circuit (IIC) Block Guide (Motorola document order number,  
S12IICV2/D) for information about the Inter-IC Bus module.  
51  
MC9S12A256 Device Guide V01.01  
Section 11 Serial Communications Interface (SCI) Block  
Description  
There are two Serial Communications Interfaces (SCI1 and SCI0) implemented on the MC9S12A256  
device. Consult the HCS12 Serial Communications Interface (SCI) Block Guide (Motorola document  
order number, S12SCIV2/D) for information about each Serial Communications Interface module.  
Section 12 Serial Peripheral Interface (SPI) Block  
Description  
There are three Serial Peripheral Interfaces(SPI2, SPI1 and SPI0) implemented on MC9S12A256. Consult  
the HCS12 Serial Peripheral Interface (SPI) Block Guide (Motorola document order number,  
S12SPIV2/D) for information about each Serial Peripheral Interface module.  
Section 13 Pulse Width Modulator (PWM) Block Description  
Consult the HCS12 8-Bit, 8-Channel Pulse Width Modulator (PWM) Block Guide (Motorola document  
order number, S12PWM8B8CV1/D) for information about the Pulse Width Modulator module.  
Section 14 Flash EEPROM 256K Block Description  
Consult the HCS12 256K FLASH Block Guide (Motorola document order number, S12FTS256KV1/D) for  
information about the flash module.  
Section 15 EEPROM 4K Block Description  
Consult the HCS12 4K EEPROM Block Guide (Motorola document order number, S12EETS4KV1/D) for  
information about the EEPROM module.  
Section 16 RAM Block Description  
This module supports single-cycle misaligned word accesses.  
52  
MC9S12A256 Device Guide V01.01  
Section 17 Port Integration Module (PIM) Block Description  
Consult the MC9S12A128 Port Integration Module (PIM) Block Guide (Motorola document order  
number, S12A128PIMV1/D) for information about the Port Integration Module.  
Section 18 Voltage Regulator (VREG) Block Description  
Consult the HCS12 Voltage Regulator Block Guide (Motorola document order number, S12VREGV1/D)  
for information about the dual output linear voltage regulator.  
Component  
Purpose  
Type  
Value  
100 .. 220nF  
100 .. 220nF  
100nF  
V
V
V
V
filter cap  
C1  
C2  
C3  
C4  
C5  
ceramic X7R  
ceramic X7R  
ceramic X7R  
X7R/tantalum  
ceramic X7R  
X7R/tantalum  
DD1  
DD2  
DDA  
filter cap  
filter cap  
filter cap  
filter cap  
>=100nF  
100nF  
DDR  
V
DDPLL  
V
filter cap  
C6  
C7  
>=100nF  
DDX  
OSC load cap  
OSC load cap  
PLL loop filter cap  
PLL loop filter cap  
DC cutoff cap  
PLL loop filter res  
Quartz  
C8  
C9  
C10  
C11  
R1  
See A.5.3 Phase Locked Loop  
Q1  
53  
MC9S12A256 Device Guide V01.01  
The PCB must be carefully laid out to ensure proper operation of the voltage regulator as well as  
of the MCU itself. The following rules must be observed:  
Every supply pair must be decoupled by a ceramic capacitor connected as near as  
possible to the corresponding pins(C1 - C6).  
Central point of the ground star should be the VSSR pin.  
Use low ohmic low inductance connections between VSS1, VSS2, and VSSR  
.
VSSPLL must be directly connected to VSSR  
.
Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area  
for C7, C8, C11 and Q1 as small as possible.  
Do not place other signals or supplies underneath area occupied by C7, C8, C10 and Q1  
and the connection area to the MCU.  
Central power input should be fed in at the VDDA/VSSA pins.  
54  
MC9S12A256 Device Guide V01.01  
Figure 18-1 Recommended PCB Layout 112 LQFP  
VSSA  
C3  
VSSX  
VDDA  
VDD1  
VSS1  
C1  
VSS2  
C2  
VDD2  
VSSR  
VDDR  
Q1  
VSSPLL  
VDDPLL  
R1  
55  
MC9S12A256 Device Guide V01.01  
Figure 18-2 Recommended PCB Layout for 80 QFP  
C3  
VSSA  
VSSX  
VDDA  
VDD1  
C1  
VSS2  
C2  
VSS1  
VDD2  
VSSR  
VDDR  
Q1  
VSSPLL  
VDDPLL  
R1  
56  
MC9S12A256 Device Guide V01.01  
Appendix A Electrical Characteristics  
A.1 General  
NOTE: The electrical characteristics given in this section are preliminary and should be  
used as a guide only. Values cannot be guaranteed by Motorola and are subject to  
change without notice.  
This supplement contains the most accurate electrical information for the MC9S12A256 microcontroller  
available at the time of publication. The information should be considered PRELIMINARY and is subject  
to change.  
This introduction is intended to give an overview on several common topics like power supply, current  
injection etc.  
A.1.1 Parameter Classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the  
customer a better understanding the following classification is used and the parameters are tagged  
accordingly in the tables where appropriate.  
NOTE: This classification is shown in the column labeled “C” in the parameter tables  
where appropriate.  
P:  
Those parameters are guaranteed during production testing on each individual device.  
C:  
Those parameters are achieved by the design characterization by measuring a statistically relevant  
sample size across process variations.  
T:  
Those parameters are achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted. All values shown in the typical column are within  
this category.  
D:  
Those parameters are derived mainly from simulations.  
57  
MC9S12A256 Device Guide V01.01  
A.1.2 Power Supply  
The MC9S12A256 utilizes several pins to supply power to the I/O ports, A/D converter, oscillator and PLL  
as well as the digital core.  
The VDDA, VSSA pair supplies the A/D converter and the resistor ladder of the internal voltage regulator.  
The VDDX, VSSX, VDDR, and VSSR pairs supply the I/O pins, VDDR supplies also the internal voltage  
regulator.  
VDD1, VSS1, VDD2, and VSS2 are the supply pins for the digital logic, VDDPLL, VSSPLL supply the  
oscillator and the PLL.  
VSS1 and VSS2 are internally connected by metal.  
VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD  
protection.  
NOTE: In the following context VDD5 is used for either VDDA, VDDR, and VDDX; VSS5 is  
used for either VSSA, VSSR, and VSSX unless otherwise noted.  
IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR pins.  
V
DD is used for VDD1, VDD2, and VDDPLL, VSS is used for VSS1, VSS2, and VSSPLL  
.
IDD is used for the sum of the currents flowing into VDD1 and VDD2  
.
A.1.3 Pins  
There are four groups of functional pins.  
A.1.3.1 5V I/O pins  
Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog  
inputs, BKGD and the RESET pins.The internal structure of all those pins is identical, however some of  
the functionality may be disabled. E.g. for the analog inputs the output drivers, pull-up and pull-down  
resistors are disabled permanently.  
A.1.3.2 Analog Reference  
This group is made up by the VRH and VRL pins.  
A.1.3.3 Oscillator  
The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied  
by VDDPLL  
.
A.1.3.4 TEST  
This pin is used for production testing only.  
58  
MC9S12A256 Device Guide V01.01  
A.1.3.5 VREGEN  
This pin is used to enable the on chip voltage regulator.  
A.1.4 Current Injection  
Power supply must maintain regulation within operating VDD5 or VDD range during instantaneous and  
operating maximum current conditions. If positive injection current (Vin > VDD5) is greater than IDD5, the  
injection current may flow out of VDD5 and could result in external power supply going out of regulation.  
Ensure external VDD5 load will shunt current greater than maximum injection current. This will be the  
greatest risk when the MCU is not consuming power; e.g., if no system clock is present, or if clock rate is  
very low which would reduce overall power consumption.  
A.1.5 Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima  
is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the  
device.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields;  
however, it is advised that normal precautions be taken to avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused  
inputs are tied to an appropriate logic voltage level (e.g., either VSS5 or VDD5).  
59  
 
MC9S12A256 Device Guide V01.01  
Table A-1 Absolute Maximum Ratings1  
Num  
Rating  
Symbol  
Min  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
Max  
6.0  
3.0  
3.0  
0.3  
0.3  
6.0  
6.0  
3.0  
10.0  
Unit  
V
V
1
2
3
4
5
6
7
8
9
I/O, Regulator and Analog Supply Voltage  
DD5  
2
V
V
Digital Logic Supply Voltage  
DD  
2
V
V
PLL Supply Voltage  
DDPLL  
Voltage difference V  
Voltage difference V  
to V  
to V  
and V  
and V  
V
DDX  
SSX  
DDR  
DDA  
VDDX  
V
SSR  
SSA  
VSSX  
V
Digital I/O Input Voltage  
Analog Reference  
V
IN  
V
V
V
RH, RL  
V
XFC, EXTAL, XTAL inputs  
TEST input  
V
ILV  
V
V
TEST  
Instantaneous Maximum Current  
Single pin limit for all digital I/O pins  
I
10  
11  
12  
-25  
-25  
+25  
+25  
mA  
mA  
D
3
Instantaneous Maximum Current  
I
DL  
4
Single pin limit for XFC, EXTAL, XTAL  
Instantaneous Maximum Current  
I
-0.25  
0
mA  
DT  
5
Single pin limit for TEST  
T
13  
Storage Temperature Range  
65  
155  
°C  
stg  
NOTES:  
1. Beyond absolute maximum ratings device might be damaged.  
2. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply.  
The absolute maximum ratings apply when the device is powered from an external source.  
3. All digital I/O pins are internally clamped to V  
and V  
, V  
and V  
or V  
and V  
.
SSX  
DDX  
SSR  
DDR  
SSA  
DDA  
4. Those pins are internally clamped to V  
and V  
.
SSPLL  
DDPLL  
5. This pin is clamped low to V  
, but not clamped high. This pin must be tied low in applications.  
SSPLL  
60  
 
MC9S12A256 Device Guide V01.01  
A.1.6 ESD Protection and Latch-up Immunity  
All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade  
Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body  
Model (HBM), the Machine Model (MM) and the Charge Device Model.  
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification. Complete DC parametric and functional testing is performed per the applicable device  
specification at room temperature followed by hot temperature, unless specified otherwise in the device  
specification.  
Table A-2 ESD and Latch-up Test Conditions  
Model  
Description  
Symbol  
Value  
1500  
100  
Unit  
Ohm  
pF  
Series Resistance  
R1  
C
Storage Capacitance  
Human Body  
Number of Pulse per pin  
positive  
negative  
-
3
3
-
Series Resistance  
R1  
C
0
Ohm  
pF  
Storage Capacitance  
200  
Machine  
Latch-up  
Number of Pulse per pin  
positive  
negative  
-
3
3
-
Minimum input voltage limit  
Maximum input voltage limit  
-2.5  
7.5  
V
V
Table A-3 ESD and Latch-Up Protection Characteristics  
Num C  
Rating  
Symbol  
Min  
2000  
200  
Max  
Unit  
V
1
2
3
C Human Body Model (HBM)  
-
-
-
V
V
V
HBM  
V
C Machine Model (MM)  
MM  
V
C Charge Device Model (CDM)  
500  
CDM  
Latch-up Current at T = 125°C  
A
I
4
5
C
C
+100  
-100  
-
-
mA  
mA  
positive  
negative  
LAT  
Latch-up Current at T = 27°C  
A
I
+200  
-200  
positive  
negative  
LAT  
61  
MC9S12A256 Device Guide V01.01  
A.1.7 Operating Conditions  
This chapter describes the operating conditions of the device. Unless otherwise noted those conditions  
apply to all the following data.  
NOTE: Please refer to the temperature rating of the device (C) with regards to the ambient  
temperature TA and the junction temperature TJ. For power dissipation  
calculations refer to A.1.8 Power Dissipation and Thermal  
Characteristics.  
Table A-4 Operating Conditions  
Rating  
Symbol  
Min  
4.5  
Typ  
Max  
5.25  
2.75  
2.75  
0.1  
Unit  
V
V
I/O, Regulator and Analog Supply Voltage  
5
2.5  
2.5  
0
DD5  
1
V
2.35  
2.35  
-0.1  
-0.1  
0.5  
V
Digital Logic Supply Voltage  
DD  
2
V
V
PLL Supply Voltage  
DDPLL  
Voltage Difference V  
to V  
to V  
and V  
and V  
V
DDX  
SSX  
DDR  
DDA  
VDDX  
Voltage Difference V  
0
0.1  
V
SSR  
SSA  
VSSX  
f
Oscillator  
-
16  
MHz  
MHz  
osc  
f
Bus Frequency  
MC9S12A256C  
0.5  
-
25  
bus  
T
Operating Junction Temperature Range  
-40  
-40  
-
100  
85  
°C  
°C  
J
2
T
27  
Operating Ambient Temperature Range  
A
NOTES:  
1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The  
absolute maximum ratings apply when this regulator is disabled and the device is powered from an external  
source.  
2. Please refer to A.1.8 Power Dissipation and Thermal Characteristics for more details about the relation be-  
tween ambient temperature T and device junction temperature T .  
A
J
62  
 
 
 
MC9S12A256 Device Guide V01.01  
A.1.8 Power Dissipation and Thermal Characteristics  
Power dissipation and thermal characteristics are closely related. The user must assure that the maximum  
operating junction temperature is not exceeded. The average chip-junction temperature (TJ) in °C can be  
obtained from:  
T
= T + (P • Θ  
)
J
A
D
JA  
T = Junction Temperature, [°C]  
J
T
P
= Ambient Temperature, [°C]  
A
= Total Chip Power Dissipation, [W]  
D
Θ
= Package Thermal Resistance, [°C/W]  
JA  
The total power dissipation can be calculated from:  
P
= P  
+ P  
D
INT  
IO  
P
= Chip Internal Power Dissipation, [W]  
INT  
Two cases with internal voltage regulator enabled and disabled must be considered:  
1. Internal Voltage Regulator disabled  
P
= I  
V
+ I  
V
+ I  
V
INT  
DD DD DDPLL DDPLL DDA DDA  
2
P
=
R
I
IO  
DSON IO  
i
i
PIO is the sum of all output currents on I/O ports associated with VDDX and VDDR  
For RDSON is valid:  
.
V
OL  
R
= ------------ ;fo r ou tp uts drive n lo w  
DSON  
I
OL  
respectively  
V
V  
DD5  
OH  
R
= ----------------------------------- ;fo r outp uts d rive n hig h  
DSON  
I
OH  
2. Internal voltage regulator enabled  
P
= I  
V
+ I  
V
INT  
DDR  
DDR DDA DDA  
63  
MC9S12A256 Device Guide V01.01  
IDDR is the current shown in Table A-7 and not the overall current flowing into VDDR, which  
additionally contains the current flowing into the external loads with output high.  
2
P
=
R
I
IO  
DSON IO  
i
i
PIO is the sum of all output currents on I/O ports associated with VDDX and VDDR  
.
Table A-5 Thermal Package Characteristics1  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
2
o
θ
1
2
3
4
T
T
T
T
-
-
54  
Thermal Resistance LQFP112, single sided PCB  
C/W  
JA  
Thermal Resistance LQFP112, double sided PCB  
o
θ
-
-
-
-
-
-
41  
51  
41  
C/W  
JA  
3
with 2 internal planes  
o
θ
Thermal Resistance LQFP 80, single sided PCB  
C/W  
JA  
Thermal Resistance LQFP 80, double sided PCB  
with 2 internal planes  
o
θ
C/W  
JA  
NOTES:  
1. The values for thermal resistance are achieved by package simulations  
2. PC Board according to EIA/JEDEC Standard 51-2  
3. PC Board according to EIA/JEDEC Standard 51-7  
A.1.9 I/O Characteristics  
This section describes the characteristics of all 5V I/O pins. All parameters are not always applicable, e.g.,  
not all pins feature pull up/down resistances.  
64  
MC9S12A256 Device Guide — V01.01  
Table A-6 5V I/O Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C Rating  
Symbol  
Min  
Typ  
Max  
Unit  
V
V
0.65*V  
1
P Input High Voltage  
-
-
DD5  
IH  
V
V
+ 0.3  
DD5  
T Input High Voltage  
P Input Low Voltage  
T Input Low Voltage  
C Input Hysteresis  
-
-
-
V
IH  
V
0.35*V  
2
-
-
V
DD5  
IL  
V
V
- 0.3  
SS5  
-
V
IL  
V
3
4
250  
mV  
HYS  
Input Leakage Current (pins in high impedance input  
1
I
mode)  
P
P
P
–2.5  
-
-
-
2.5  
-
µA  
V
in  
V
= V  
or V  
DD5 SS5  
in  
Output High Voltage (pins in output mode)  
Partial Drive I = +2mA  
V
V
– 0.8  
5
6
OH  
= +10mA  
DD5  
OH  
Full Drive I  
OH  
Output Low Voltage (pins in output mode)  
Partial Drive I = +2mA  
V
OL  
= +10mA  
-
0.8  
V
OL  
Full Drive I  
OL  
Internal Pull Up Device Current,  
I
7
8
9
P
P
P
P
-
-10  
-
-
-
-
-130  
-
µA  
µA  
µA  
PUL  
tested at V Max.  
IL  
Internal Pull Up Device Current,  
I
PUH  
tested at V Min.  
IH  
Internal Pull Down Device Current,  
I
130  
PDH  
tested at V Min.  
IH  
Internal Pull Down Device Current,  
I
10  
11  
10  
-
-
-
µA  
PDL  
tested at V Max.  
IL  
C
D Input Capacitance  
6
pF  
in  
2
Injection current  
I
12  
T
-2.5  
-25  
-
2.5  
25  
mA  
ICS  
Single Pin limit  
Total Device Limit. Sum of all injected currents  
I
ICP  
3
t
13  
14  
P
P
3
µs  
µs  
Port H, J, P Interrupt Input Pulse filtered  
PULSE  
3
t
10  
Port H, J, P Interrupt Input Pulse passed  
PULSE  
NOTES:  
1. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for  
each 8°C to 12°C in the temperature range from 50°C to 125°C.  
2. Refer to A.1.4 Current Injection, for more details  
3. Parameter only applies in STOP or Pseudo STOP mode.  
65  
 
 
MC9S12A256 Device Guide V01.01  
A.1.10 Supply Currents  
This section describes the current consumption characteristics of the device as well as the conditions for  
the measurements.  
A.1.10.1 Measurement Conditions  
All measurements are without output loads. Unless otherwise noted the currents are measured in single  
chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator in  
Colpitts mode. Production testing is performed using a square wave signal at the EXTAL input.  
A.1.10.2 Additional Remarks  
In expanded modes the currents flowing in the system are highly dependent on the load at the address, data  
and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be  
given. A very good estimate is to take the single chip currents and add the currents due to the external  
loads.  
Table A-7 Supply Current Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
Run supply currents  
1
P
mA  
I
Single Chip, Internal regulator enabled  
65  
DD5  
Wait Supply current  
All modules enabled, PLL on  
I
2
P
P
40  
5
mA  
DDW  
1
only RTI enabled  
1, 2  
Pseudo Stop Current (RTI and COP disabled)  
-40°C  
27°C  
70°C  
85°C  
C
P
C
C
P
C
370  
400  
450  
550  
600  
650  
500  
I
3
4
5
µA  
DDPS  
CTemp Option 100°C  
105°C  
1600  
1, 2  
Pseudo Stop Current (RTI and COP enabled)  
C
C
C
C
C
570  
600  
650  
750  
850  
-40°C  
27°C  
70°C  
85°C  
105°C  
I
µA  
µA  
DDPS  
2
Stop Current  
C
P
C
C
P
C
12  
25  
100  
130  
160  
200  
-40°C  
27°C  
70°C  
85°C  
100  
I
DDS  
1200  
CTemp Option 100°C  
105°C  
NOTES:  
1. PLL off  
2. At those low power dissipation levels T = T can be assumed  
J
A
66  
 
 
MC9S12A256 Device Guide V01.01  
A.2 ATD Characteristics  
This section describes the characteristics of the analog to digital converter.  
A.2.1 ATD Operating Characteristics  
The Table A-8 shows conditions under which the ATD operates.  
The following constraints exist to obtain full-scale, full range results:  
VSSA VRL VIN VRH VDDA. This constraint exists since the sample buffer amplifier can not drive  
beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively  
be clipped.  
Table A-8 ATD Operating Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
Reference Potential  
1
D
Low  
High  
V
V
V /2  
DDA  
V
V
RL  
SSA  
V
V
/2  
V
RH  
DDA  
DDA  
1
2
3
C
V
-V  
4.50  
5.00  
5.25  
2.0  
V
Differential Reference Voltage  
RH RL  
ATDCLK  
D ATD Clock Frequency  
f
0.5  
MHz  
ATD 10-Bit Conversion Period  
D
2
4
5
Clock Cycles  
N
T
14  
7
28  
14  
Cycles  
µs  
CONV10  
Conv, Time at 2.0MHz ATD Clock f  
ATDCLK  
CONV10  
ATD 8-Bit Conversion Period  
D
2
N
T
12  
6
26  
13  
Cycles  
µs  
Clock Cycles  
CONV8  
CONV8  
Conv, Time at 2.0MHz ATD Clock f  
ATDCLK  
Recovery Time (V  
D
=5.0 Volts)  
6
7
8
t
20  
µs  
DDA  
REC  
P Reference Supply current 2 ATD blocks on  
P Reference Supply current 1 ATD block on  
I
I
0.750  
0.375  
mA  
mA  
REF  
REF  
NOTES:  
1. Full accuracy is not guaranteed when differential voltage is less than 4.50V  
2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample  
period of 16 ATD clocks.  
67  
 
 
MC9S12A256 Device Guide V01.01  
A.2.2 Factors Influencing Accuracy  
Three factors - source resistance, source capacitance and current injection - have an influence on the  
accuracy of the ATD.  
A.2.2.1 Source Resistance  
Due to the input pin leakage current as specified in Table A-6 in conjunction with the source resistance  
there will be a voltage drop from the signal source to the ATD input. The maximum source resistance RS  
specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or  
operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source  
resistance is allowed.  
A.2.2.2 Source Capacitance  
When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due  
to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input  
voltage 1LSB, then the external filter capacitor, Cf 1024 * (CINS- CINN).  
A.2.2.3 Current Injection  
There are two cases to consider.  
1. A current is injected into the channel being converted. The channel being stressed has conversion  
values of $3FF ($FF in 8-bit mode) for analog inputs greater than VRH and $000 for values less than  
VRL unless the current is higher than specified as disruptive condition.  
2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this  
current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy  
of the conversion depending on the source resistance.  
The additional input voltage error on the converted channel can be calculated as VERR = K * RS *  
IINJ, with IINJ being the sum of the currents injected into the two pins adjacent to the converted  
channel.  
Table A-9 ATD Electrical Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
R
1
C Max input Source Resistance  
-
-
1
KΩ  
S
Total Input Capacitance  
Non Sampling  
Sampling  
C
2
T
10  
22  
pF  
INN  
C
INS  
I
3
4
5
C Disruptive Analog Input Current  
-2.5  
2.5  
mA  
A/A  
A/A  
NA  
-4  
K
C Coupling Ratio positive current injection  
C Coupling Ratio negative current injection  
10  
p
-2  
K
10  
n
68  
MC9S12A256 Device Guide V01.01  
A.2.3 ATD Accuracy  
Table A-10 specifies the ATD conversion performance excluding any errors due to current injection,  
input capacitance and source resistance.  
Table A-10 ATD Conversion Performance  
Conditions are shown in Table A-4 unless otherwise noted  
V
= V - V = 5.12V. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV  
REF  
RH RL  
f
= 2.0MHz  
ATDCLK  
Num C  
Rating  
Symbol  
LSB  
DNL  
INL  
Min  
Typ  
Max  
Unit  
mV  
1
2
3
4
5
6
7
8
P 10-Bit Resolution  
5
P 10-Bit Differential Nonlinearity  
1  
2.5  
-3  
1
2.5  
3
Counts  
Counts  
Counts  
mV  
P 10-Bit Integral Nonlinearity  
±1.5  
±2.0  
20  
1
P
AE  
10-Bit Absolute Error  
P 8-Bit Resolution  
P 8-Bit Differential Nonlinearity  
P 8-Bit Integral Nonlinearity  
1
LSB  
DNL  
INL  
0.5  
1.0  
-1.5  
0.5  
1.0  
1.5  
Counts  
Counts  
Counts  
±0.5  
±1.0  
P
AE  
8-Bit Absolute Error  
NOTES:  
1. These values include the quantization error which is inherently 1/2 count for any A/D converter.  
For the following definitions see also Figure A-1.  
Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps.  
V V  
i
i 1  
DNL(i) =  
1  
-------------------------  
1LSB  
The Integral Non-Linearity (INL) is defined as the sum of all DNLs:  
n
V V  
n
0
INL(n) =  
DNL(i) =  
n  
--------------------  
1LSB  
i = 1  
69  
 
 
MC9S12A256 Device Guide V01.01  
DNL  
10-Bit Absolute Error Boundary  
LSB  
Vi-1  
Vi  
$3FF  
$3FE  
$3FD  
$3FC  
$3FB  
$3FA  
$3F9  
$3F8  
$3F7  
$3F6  
$3F5  
$3F4  
$3F3  
8-Bit Absolute Error Boundary  
$FF  
$FE  
$FD  
2
9
8
7
6
5
4
3
2
1
0
Ideal Transfer Curve  
10-Bit Transfer Curve  
1
8-Bit Transfer Curve  
5
10  
15  
20  
25  
30  
35  
40  
45  
5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120  
Vin  
mV  
Figure A-1 ATD Accuracy Definitions  
NOTE: Figure A-1 shows only definitions, for specification values refer to Table A-10.  
70  
 
MC9S12A256 Device Guide V01.01  
A.3 NVM, Flash, and EEPROM  
NOTE: Unless otherwise noted the abbreviation NVM (Non Volatile Memory) is used for  
both Flash and EEPROM.  
A.3.1 NVM Timing  
The time base for all NVM program or erase operations is derived from the oscillator. A minimum  
oscillator frequency fNVMOSC is required for performing program or erase operations. The NVM modules  
do not have any means to monitor the frequency and will not prevent program or erase operation at  
frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at  
a lower frequency a full program or erase transition is not assured.  
The Flash and EEPROM program and erase operations are timed using a clock derived from the oscillator  
using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within  
the limits specified as fNVMOP  
.
The minimum program and erase times shown in Table A-11 are calculated for maximum fNVMOP and  
maximum fbus. The maximum times are calculated for minimum fNVMOP and a fbus of 2MHz.  
A.3.1.1 Single Word Programming  
The programming time for single word programming is dependant on the bus frequency as a well as on  
the frequency fNVMOP and can be calculated according to the following formula.  
1
1
t
= 9 ------------------------ + 25 -----------  
swpgm  
f
f
NVMOP  
bus  
A.3.1.2 Burst Programming  
This applies only to the Flash where up to 32 words in a row can be programmed consecutively using burst  
programming by keeping the command pipeline filled. The time to program a consecutive word can be  
calculated as:  
1
1
t
= 4 ------------------------ + 9 -----------  
bwpgm  
f
f
NVMOP  
bus  
The time to program a whole row is:  
t
= t  
+ 31 t  
brpgm  
swpgm  
bwpgm  
Burst programming is more than 2 times faster than single word programming.  
71  
 
MC9S12A256 Device Guide V01.01  
A.3.1.3 Sector Erase  
Erasing a 512 byte Flash sector or a 4 byte EEPROM sector takes:  
1
------------------------  
t
4000  
era  
f
NVMOP  
The setup time can be ignored for this operation.  
A.3.1.4 Mass Erase  
Erasing a NVM block takes:  
1
------------------------  
t
20000  
mass  
f
NVMOP  
The setup time can be ignored for this operation.  
A.3.1.5 Blank Check  
The time it takes to perform a blank check on the Flash or EEPROM is dependant on the location of the  
first non-blank word starting at relative address zero. It takes one bus cycle per word to verify plus a setup  
of the command.  
t
location t  
+ 10 t  
check  
cyc  
cyc  
72  
 
MC9S12A256 Device Guide V01.01  
Table A-11 NVM Timing Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
Min  
0.5  
1
Typ  
Max  
Unit  
MHz  
MHz  
kHz  
µs  
1
f
1
2
D External Oscillator Clock  
50  
NVMOSC  
f
D Bus frequency for Programming or Erase Operations  
D Operating Frequency  
NVMBUS  
f
3
150  
200  
NVMOP  
2
3
t
4
P Single Word Programming Time  
46  
74.5  
swpgm  
4
2
3
t
5
D
D
µs  
Flash Burst Programming consecutive word  
20.4  
31  
bwpgm  
4
2
3
t
6
µs  
Flash Burst Programming Time for 32 Words  
brpgm  
678.4  
1035.5  
5
3
t
7
P Sector Erase Time  
ms  
20  
26.7  
133  
era  
5
3
t
8
P Mass Erase Time  
ms  
100  
mass  
6
7
t
t
9
D Blank Check Time Flash per block  
D Blank Check Time EEPROM per block  
11  
11  
32778  
check  
cyc  
6
7
t
t
10  
2058  
check  
cyc  
NOTES:  
1. Restrictions for oscillator in crystal mode apply!  
2. Minimum Programming times are achieved under maximum NVM operating frequency f  
and maximum bus frequency  
NVMOP  
f
.
bus  
3. Maximum Erase and Programming times are achieved under particular combinations of f  
and bus frequency f  
.
bus  
NVMOP  
Refer to formulae in A.3.1.1 Single Word Programming- A.3.1.4 Mass Erase for guidance.  
4. urst Programming operations are not applicable to EEPROM  
5. Minimum Erase times are achieved under maximum NVM operating frequency f  
6. Minimum time, if first word in the array is not blank  
.
NVMOP  
7. Maximum time to complete check on an erased block  
73  
 
 
 
 
 
 
MC9S12A256 Device Guide V01.01  
A.3.2 NVM Reliability  
The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process  
monitors and burn-in to screen early life failures.  
The failure rates for data retention and program/erase cycling are specified at the operating conditions  
noted.  
The program/erase cycle count on the sector is incremented every time a sector or mass erase event is  
executed.  
NOTE: All values shown in Table A-12 are target values and subject to further extensive  
characterization.  
Table A-12 NVM Reliability Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Data Retention  
Num  
C
NVM Array  
Cycles  
Lifetime  
10 years  
10 years  
1
2
C
C
Flash/EEPROM (40 to +85°C)  
EEPROM (40 to +85°C)  
1000  
10,000  
NOTE: Flash cycling performance is 1000 cycles at 40 to + 85°C. Data Retention is  
specified for 10 years.  
NOTE: EEPROM cycling performance is 10,000 cycles at 40 to +85°C. Data retention is  
specified for 10 years.  
NOTE: These figures are provided for commercial quality levels not automotive.  
74  
 
MC9S12A256 Device Guide V01.01  
A.4 Voltage Regulator  
The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits. No external  
DC load is allowed.  
Table A-13 Voltage Regulator Recommended Load Capacitances  
Rating  
Symbol  
Min  
Typ  
220  
220  
Max  
Unit  
nF  
Load Capacitance on V  
C
DD1, 2  
DDPLL  
LVDD  
Load Capacitance on V  
C
nF  
LVDDPLL  
75  
MC9S12A256 Device Guide V01.01  
A.5 Reset, Oscillator, and PLL  
This section summarizes the electrical characteristics of the various startup scenarios for Oscillator and  
Phase-Locked-Loop (PLL).  
A.5.1 Startup  
Table A-14 summarizes several startup characteristics explained in this section. Detailed description of  
the startup behavior can be found in the HCS12 Clock and Reset Generator (CRG) Block Guide (Motorola  
document order number, S12CRGV3/D).  
Table A-14 Startup Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
V
V
1
2
3
4
5
6
T
T
POR release level  
POR assert level  
2.07  
PORR  
V
0.97  
2
V
PORA  
PW  
t
D Reset input pulse width, minimum input time  
D Startup from Reset  
RSTL  
osc  
n
n
192  
20  
196  
14  
RST  
osc  
PW  
D Interrupt pulse width, IRQ edge-sensitive mode  
D Wait recovery startup time  
ns  
IRQ  
t
t
WRS  
cyc  
A.5.1.1 POR  
The release level VPORR and the assert level VPORA are derived from the VDD supply. They are also valid  
if the device is powered externally. After releasing the POR reset the oscillator and the clock quality check  
are started. If after a time tCQOUT no valid oscillation is detected, the MCU will start using the internal self  
clock. The fastest startup time possible is given by nuposc  
.
A.5.1.2 SRAM Data Retention  
Provided an appropriate external reset signal is applied to the MCU, preventing the CPU from executing  
code when VDD5 is out of specification limits, the SRAM contents integrity is guaranteed if after the reset  
the PORF bit in the CRG Flags Register has not been set.  
A.5.1.3 External Reset  
When external reset is asserted for a time greater than PWRSTL the CRG module generates an internal  
reset, and the CPU starts fetching the reset vector without doing a clock quality check, if there was an  
oscillation before reset.  
76  
 
MC9S12A256 Device Guide V01.01  
A.5.1.4 Stop Recovery  
Out of STOP the controller can be woken up by an external interrupt. A clock quality check as after POR  
is performed before releasing the clocks to the system.  
A.5.1.5 Pseudo Stop and Wait Recovery  
The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in  
both modes. The controller can be woken up by internal or external interrupts. After twrs the CPU starts  
fetching the interrupt vector.  
A.5.2 Oscillator  
The device features an internal Colpitts oscillator. By asserting the XCLKS input during reset this  
oscillator can be bypassed allowing the input of a square wave. Before asserting the oscillator to the  
internal system clocks the quality of the oscillation is checked for each start from either power-on, STOP  
or oscillator fail. tCQOUT specifies the maximum time before switching to the internal self clock mode after  
POR or STOP if a proper oscillation is not detected. The quality check also determines the minimum  
oscillator start-up time tUPOSC. The device also features a clock monitor. A Clock Monitor Failure is  
asserted if the frequency of the incoming clock signal is below the Assert Frequency fCMFA.  
Table A-15 Oscillator Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
Min  
0.5  
Typ  
Max  
Unit  
MHz  
µA  
f
1
2
3
4
5
6
7
8
9
C Crystal oscillator range  
16  
OSC  
i
P Startup Current  
100  
OSC  
1
2
t
C Oscillator start-up time  
ms  
s
8
100  
UPOSC  
t
D Clock Quality check time-out  
0.45  
50  
2.5  
200  
50  
CQOUT  
f
P Clock Monitor Failure Assert Frequency  
100  
KHz  
MHz  
ns  
CMFA  
3
f
P
0.5  
9.5  
9.5  
External square wave input frequency  
EXT  
t
D External square wave pulse width low  
D External square wave pulse width high  
D External square wave rise time  
EXTL  
t
ns  
EXTH  
t
1
1
ns  
EXTR  
t
10 D External square wave fall time  
ns  
EXTF  
C
11  
12  
D Input Capacitance (EXTAL, XTAL pins)  
9
pF  
IN  
DC Operating Bias in Colpitts Configuration on  
V
C
1.1  
V
DCBIAS  
EXTAL Pin  
NOTES:  
1. f = 4MHz, C = 22pF.  
osc  
2. Maximum value is for extreme cases using high Q, low frequency crystals  
3. XCLKS =0 during reset  
77  
MC9S12A256 Device Guide V01.01  
A.5.3 Phase Locked Loop  
The oscillator provides the reference clock for the PLL. The PLL´s Voltage Controlled Oscillator (VCO)  
is also the system clock source in self clock mode.  
A.5.3.1 XFC Component Selection  
This section describes the selection of the XFC components to achieve a good filter characteristics.  
VDDPLL  
Cs  
Cp  
R
Phase  
VCO  
KV  
fref  
fvco  
fosc  
1
KΦ  
refdv+1  
Detector  
fcmp  
Loop Divider  
1
1
2
synr+1  
Figure A-2 Basic PLL Functional Diagram  
The following procedure can be used to calculate the resistance and capacitance values using typical  
values for K1, f1 and ich from Table A-16.  
The VCO Gain at the desired VCO output frequency is approximated by:  
(f f  
)
1
vco  
---------------------------  
1V  
K
1
K
= K  
e
V
1
The phase detector relationship is given by:  
K
= i  
K
Φ
ch  
V
ich is the current in tracking mode.  
78  
 
MC9S12A256 Device Guide V01.01  
The loop bandwidth fC should be chosen to fulfill the Gardners stability criteria by at least a factor of 10,  
typical values are 50. ζ = 0.9 ensures a good transient response.  
2 ζ f  
f
ref  
1
50  
ref  
4 50  
f < ------------------------------------------ ------ f < ------------- ;= 0.9)  
C
C
2
π
ζ + 1 + ζ  
And finally the frequency relationship is defined as  
f
VCO  
n = --------------- = 2 (s y n r + 1 )  
f
ref  
With the above inputs the resistance can be calculated as:  
2 π n f  
C
R = -----------------------------  
K
Φ
The capacitance Cs can now be calculated as:  
2
2 ζ  
0.516  
C
= ---------------------- --------------;= 0.9)  
s
π f  
R
f
R
C
C
The capacitance Cp should be chosen in the range of:  
C 20 C C 10  
s
p
s
The stabilization delays shown in Table A-16 are dependant on PLL operational settings and external  
component selection (e.g. crystal, XFC filter).  
A.5.3.2 Jitter Information  
The basic functionality of the PLL is shown in Figure A-2. With each transition of the clock fcmp, the  
deviation from the reference clock fref is measured and input voltage to the VCO is adjusted  
accordingly.The adjustment is done continuously with no abrupt changes in the clock output frequency.  
Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock  
jitter. This jitter affects the real minimum and maximum clock periods as illustrated in Figure A-3.  
79  
MC9S12A256 Device Guide V01.01  
1
2
3
N-1  
N
0
tmin1  
tnom  
tmax1  
tminN  
tmaxN  
Figure A-3 Jitter Definitions  
The relative deviation of tnom is at its maximum for one clock period, and decreases towards zero for larger  
number of clock periods (N).  
Defining the jitter as:  
t
(N)  
t
(N)  
max  
min  
J(N) = max 1 –  
, 1 –  
----------------------  
----------------------  
N t  
N t  
nom  
nom  
For N < 100, the following equation is a good fit for the maximum jitter:  
j
1
J(N) =  
+ j  
-------  
2
N
J(N)  
1
5
10  
20  
N
Figure A-4 Maximum Bus Clock Jitter Approximation  
This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the  
effect of the jitter to a large extent.  
80  
MC9S12A256 Device Guide V01.01  
Table A-16 PLL Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C Rating  
P Self Clock Mode frequency  
D VCO locking range  
Symbol  
Min  
1
Typ  
Max  
5.5  
Unit  
MHz  
MHz  
f
1
2
SCM  
f
8
50  
VCO  
Lock Detector transition from Acquisition to Tracking  
mode  
1
|∆  
|
3
D
3
4
%
trk  
1
|∆  
|
4
5
D Lock Detection  
0
1.5  
2.5  
%
Lock  
1
|∆  
|
D Un-Lock Detection  
0.5  
unl  
%
Lock Detector transition from Tracking to Acquisition  
mode  
1
|∆  
|
6
D
6
8
%
unt  
2
t
7
8
9
C
D
D
0.5  
0.3  
ms  
ms  
PLLON Total Stabilization delay (Auto Mode)  
stab  
2
t
PLLON Acquisition mode stabilization delay  
acq  
2
t
0.2  
ms  
PLLON Tracking mode stabilization delay  
al  
K
10 D Fitting parameter VCO loop gain  
11 D Fitting parameter VCO loop frequency  
-120  
75  
MHz/V  
MHz  
µA  
1
f
1
| i  
| i  
|
|
12 D Charge pump current acquisition mode  
38.5  
3.5  
ch  
ch  
13 D Charge pump current tracking mode  
µA  
2
j
14  
15  
C
C
1.1  
%
Jitter fit parameter 1  
Jitter fit parameter 2  
1
2
j
0.13  
%
2
NOTES:  
1. % deviation from target frequency  
2. f = 4MHz, f = 25MHz equivalent f = 50MHz: REFDV = #$03, SYNR = #$018, Cs = 4.7nF, Cp = 470pF, Rs =  
VCO  
REF  
BUS  
10K.  
81  
 
 
MC9S12A256 Device Guide V01.01  
A.6 SPI  
A.6.1 Master Mode  
Figure A-5 and Figure A-6 illustrate the master mode timing. Timing values are shown in Table A-17.  
1
SS  
(OUTPUT)  
2
1
3
11  
12  
SCK  
(CPOL = 0)  
(OUTPUT)  
4
4
SCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
2
BIT 6 . . . 1  
MSB IN  
LSB IN  
9
9
10  
MOSI  
(OUTPUT)  
2
BIT 6 . . . 1  
LSB OUT  
MSB OUT  
1. If configured as output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure A-5 SPI Master Timing (CPHA = 0)  
82  
 
MC9S12A256 Device Guide V01.01  
1
SS  
(OUTPUT)  
1
12  
11  
11  
12  
3
2
SCK  
(CPOL = 0)  
(OUTPUT)  
4
4
SCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
2
MSB IN  
BIT 6 . . . 1  
LSB IN  
10  
BIT 6 . . . 1  
9
MOSI  
(OUTPUT)  
2
PORT DATA  
MASTER LSB OUT  
PORT DATA  
MASTER MSB OUT  
1. If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure A-6 SPI Master Timing (CPHA =1)  
Table A-17 SPI Master Mode Timing Characteristics1  
Conditions are shown in Table A-4 unless otherwise noted, C  
= 200pF on all outputs  
LOAD  
Num C  
Rating  
Symbol  
Min  
DC  
4
Typ  
Max  
1/4  
Unit  
f
f
1
1
2
3
4
5
6
9
P Operating Frequency  
SCK Period t = 1./f  
op  
bus  
t
t
P
2048  
sck  
op  
sck  
bus  
t
t
D Enable Lead Time  
D Enable Lag Time  
1/2  
1/2  
lead  
sck  
t
t
lag  
sck  
t
t
30  
1024 t  
bus  
D Clock (SCK) High or Low Time  
D Data Setup Time (Inputs)  
D Data Hold Time (Inputs)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
wsck  
bus  
t
25  
0
su  
t
hi  
t
D Data Valid (after Enable Edge)  
25  
v
t
10 D Data Hold Time (Outputs)  
11 D Rise Time Inputs and Outputs  
0
ho  
t
25  
25  
r
t
12 D Fall Time Inputs and Outputs  
f
NOTES:  
1. The numbers 7, 8 in the column labeled Numare missing. This has been done on purpose to be consistent between the  
Master and the Slave timing shown in Table A-18.  
83  
MC9S12A256 Device Guide V01.01  
A.6.2 Slave Mode  
Figure A-7 and Figure A-8 illustrate the slave mode timing. Timing values are shown in Table A-18.  
SS  
(INPUT)  
1
12  
11  
11  
12  
3
SCK  
(CPOL = 0)  
(INPUT)  
4
4
2
SCK  
(CPOL = 1)  
(INPUT)  
8
7
9
10  
10  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE LSB OUT  
MSB OUT  
6
SLAVE  
5
MOSI  
(INPUT)  
BIT 6 . . . 1  
MSB IN  
LSB IN  
Figure A-7 SPI Slave Timing (CPHA = 0)  
SS  
(INPUT)  
3
1
12  
11  
12  
2
SCK  
(CPOL = 0)  
(INPUT)  
4
4
11  
10  
SCK  
(CPOL = 1)  
(INPUT)  
8
9
MISO  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
SLAVE MSB OUT  
(OUTPUT)  
7
5
6
MOSI  
(INPUT)  
MSB IN  
BIT 6 . . . 1  
Figure A-8 SPI Slave Timing (CPHA =1)  
84  
 
 
MC9S12A256 Device Guide V01.01  
Table A-18 SPI Slave Mode Timing Characteristics  
Conditions are shown in Table A-4 unless otherwise noted, C  
= 200pF on all outputs  
LOAD  
Num C  
Rating  
Symbol  
Min  
DC  
4
Typ  
Max  
1/4  
Unit  
f
f
1
1
2
3
4
5
6
7
8
9
P Operating Frequency  
SCK Period t = 1./f  
op  
bus  
t
t
P
2048  
sck  
op  
sck  
bus  
t
t
D Enable Lead Time  
D Enable Lag Time  
1
lead  
cyc  
t
t
1
lag  
cyc  
t
t
30  
D Clock (SCK) High or Low Time  
D Data Setup Time (Inputs)  
D Data Hold Time (Inputs)  
D Slave Access Time  
ns  
ns  
ns  
wsck  
cyc  
t
25  
25  
su  
t
hi  
t
t
1
1
a
cyc  
t
t
D Slave MISO Disable Time  
D Data Valid (after SCK Edge)  
dis  
cyc  
t
25  
ns  
ns  
ns  
ns  
v
t
10 D Data Hold Time (Outputs)  
11 D Rise Time Inputs and Outputs  
12 D Fall Time Inputs and Outputs  
0
ho  
t
25  
25  
r
t
f
85  
MC9S12A256 Device Guide V01.01  
A.7 External Bus Timing  
A timing diagram of the external multiplexed-bus is illustrated in Figure A-9 with the actual timing  
values shown on table Table A-19. All major bus signals are included in the diagram. While both a data  
write and data read cycle are shown, only one or the other would occur on a particular bus cycle.  
A.7.1 General Muxed Bus Timing  
The expanded bus timings are highly dependent on the load conditions. The timing parameters shown  
assume a balanced load across all outputs.  
86  
MC9S12A256 Device Guide V01.01  
1, 2  
3
4
ECLK  
PE4  
5
6
16  
10  
9
15  
11  
Addr/Data  
(read)  
PA, PB  
data  
data  
data  
addr  
7
8
12  
14  
data  
13  
Addr/Data  
(write)  
PA, PB  
addr  
17  
19  
23  
26  
18  
Non-Multiplexed  
Addresses  
PK5:0  
20  
21  
22  
ECS  
PK7  
24  
27  
25  
28  
R/W  
PE2  
29  
32  
LSTRB  
PE3  
31  
34  
30  
33  
NOACC  
PE7  
35  
36  
IPIPO0  
IPIPO1, PE6,5  
Figure A-9 General External Bus Timing  
87  
MC9S12A256 Device Guide V01.01  
Table A-19 Expanded Bus Timing Characteristics  
Conditions are shown in Table A-4 unless otherwise noted, C  
= 50pF  
LOAD  
Num C  
Rating  
Symbol  
Min  
0
Typ  
Max  
Unit  
MHz  
ns  
f
1
2
3
4
5
6
7
8
9
P Frequency of operation (E-clock)  
P Cycle time  
25.0  
o
t
40  
19  
19  
cyc  
PW  
D Pulse width, E low  
ns  
EL  
1
PW  
D
ns  
Pulse width, E high  
D Address delay time  
Address valid time to E rise (PW t  
EH  
t
8
ns  
AD  
)
t
D
11  
2
ns  
EL AD  
AV  
t
D Muxed address hold time  
D Address hold to data valid  
D Data hold to address  
ns  
MAH  
t
7
ns  
AHDS  
t
2
ns  
DHA  
t
10 D Read data setup time  
11 D Read data hold time  
13  
0
ns  
DSR  
t
ns  
DHR  
t
12 D Write data delay time  
13 D Write data hold time  
7
ns  
DDW  
t
2
ns  
DHW  
1
t
14  
15  
16  
D
D
D
12  
ns  
ns  
Write data setup time (PW t  
)
DSW  
EH DDW  
1
t
19  
6
Address access time (t t t  
)
ACCA  
cyc AD DSR  
1
t
ns  
ns  
ns  
ns  
ns  
ns  
E high access time (PW t  
)
ACCE  
EH DSR  
t
17 D Non-multiplexed address delay time  
Non-muxed address valid to E rise (PW t  
6
NAD  
)
t
18  
D
15  
2
EL NAD  
NAV  
t
19 D Non-multiplexed address hold time  
NAH  
t
20 D Chip select delay time  
16  
CSD  
1
t
21  
D
11  
2
Chip select access time (t t  
t  
)
ACCS  
cyc CSD DSR  
t
22 D Chip select hold time  
23 D Chip select negated time  
24 D Read/write delay time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CSH  
t
8
CSN  
t
7
7
7
RWD  
Read/write valid time to E rise (PW t  
)
t
25  
D
14  
2
EL RWD  
RWV  
t
26 D Read/write hold time  
27 D Low strobe delay time  
RWH  
t
LSD  
Low strobe valid time to E rise (PW t  
)
t
28  
D
14  
2
EL LSD  
LSV  
t
29 D Low strobe hold time  
LSH  
t
30 D NOACC strobe delay time  
NOD  
NOACC valid time to E rise (PW t  
)
t
31  
D
14  
EL NOD  
NOV  
88  
MC9S12A256 Device Guide V01.01  
Table A-19 Expanded Bus Timing Characteristics (Continued)  
Conditions are shown in Table A-4 unless otherwise noted, C  
= 50pF  
LOAD  
Num C  
Rating  
Symbol  
Min  
2
Typ  
Max  
Unit  
ns  
t
32 D NOACC hold time  
33 D IPIPO[1:0] delay time  
NOH  
t
2
7
ns  
P0D  
IPIPO[1:0] valid time to E rise (PW t  
)
t
34  
35  
D
D
11  
ns  
EL P0D  
P0V  
1
t
2
25  
ns  
ns  
IPIPO[1:0] delay time (PW -t  
)
P1D  
EH P1V  
t
36 D IPIPO[1:0] valid time to E fall  
11  
P1V  
NOTES:  
1. Affected by clock stretch: add N x t  
where N=0,1, 2 or 3, depending on the number of clock stretches.  
cyc  
89  
 
MC9S12A256 Device Guide V01.01  
90  
MC9S12A256 Device Guide V01.01  
Appendix B Package Information  
B.1 General  
This section provides the physical dimensions of the MC9S12A256 packages.  
91  
MC9S12A256 Device Guide V01.01  
B.2 112-Pin LQFP Package  
4X  
0.20 T L-M N  
4X 28 TIPS  
0.20 T L-M N  
4X  
P
J1  
J1  
PIN 1  
IDENT  
112  
85  
C
L
1
84  
VIEW Y  
X
108X  
G
X=L, M OR N  
VIEW Y  
V
B
L
M
AA  
J
B1  
V1  
28  
57  
BASE  
METAL  
F
D
29  
56  
M
0.13  
T L-M N  
N
SECTION J1-J1  
A1  
S1  
ROTATED 90 COUNTERCLOCKWISE  
°
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
A
2. DIMENSIONS IN MILLIMETERS.  
3. DATUMS L, M AND N TO BE DETERMINED AT  
SEATING PLANE, DATUM T.  
S
4. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE, DATUM T.  
5. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE  
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS  
A AND B INCLUDE MOLD MISMATCH.  
6. DIMENSION D DOES NOT INCLUDE DAMBAR  
C2  
VIEW AB  
θ2  
C
0.050  
112X  
0.10  
T
SEATING  
PLANE  
MILLIMETERS  
DIM MIN  
MAX  
20.000 BSC  
10.000 BSC  
θ3  
A
A1  
B
B1  
C
T
20.000 BSC  
10.000 BSC  
---  
1.600  
0.150  
1.450  
0.370  
0.750  
0.330  
C1 0.050  
C2 1.350  
θ
D
E
F
0.270  
0.450  
0.270  
G
J
K
P
0.650 BSC  
0.090  
0.170  
R R2  
0.500 REF  
0.325 BSC  
R1 0.100  
R2 0.100  
0.200  
0.200  
0.25  
R R1  
S
S1  
V
V1  
Y
22.000 BSC  
11.000 BSC  
22.000 BSC  
11.000 BSC  
0.250 REF  
1.000 REF  
GAGE PLANE  
(K)  
Z
C1  
θ1  
AA 0.090  
0.160  
E
8 °  
0 °  
3 °  
11 °  
11 °  
θ
7 °  
13 °  
13 °  
θ 1  
θ 2  
θ 3  
(Y)  
(Z)  
VIEW AB  
Figure B-1 112-Pin LQFP Mechanical Dimensions (Case no. 987)  
92  
MC9S12A256 Device Guide V01.01  
B.3 80-Pin QFP Package  
L
60  
61  
41  
40  
B
P
B
-A-  
L
-B-  
V
B
-A-,-B-,-D-  
DETAIL A  
DETAIL A  
21  
80  
F
1
20  
-D-  
A
S
M
S
S
S
0.20  
H
A-B  
A-B  
D
D
0.05 A-B  
J
N
M
S
0.20  
C
D
M
E
DETAIL C  
M
S
S
0.20  
C
A-B  
D
SECTION B-B  
C
DATUM  
PLANE  
VIEW ROTATED 90  
-H-  
°
-C-  
0.10  
H
SEATING  
PLANE  
M
G
NOTES:  
MILLIMETERS  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
DIM MIN  
MAX  
14.10  
14.10  
2.45  
0.38  
2.40  
A
B
C
D
E
13.90  
13.90  
2.15  
0.22  
2.00  
0.22  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE  
LEAD WHERE THE LEAD EXITS THE PLASTIC  
BODY AT THE BOTTOM OF THE PARTING LINE.  
4. DATUMS -A-, -B- AND -D- TO BE  
DETERMINED AT DATUM PLANE -H-.  
5. DIMENSIONS S AND V TO BE DETERMINED  
AT SEATING PLANE -C-.  
U
T
F
0.33  
G
H
J
K
L
0.65 BSC  
DATUM  
PLANE  
---  
0.13  
0.65  
0.25  
0.23  
0.95  
-H-  
R
6. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE  
12.35 REF  
M
N
P
5
10  
0.17  
°
°
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS  
A AND B DO INCLUDE MOLD MISMATCH  
AND ARE DETERMINED AT DATUM PLANE -H-.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 TOTAL IN  
EXCESS OF THE D DIMENSION AT MAXIMUM  
MATERIAL CONDITION. DAMBAR CANNOT  
BE LOCATED ON THE LOWER RADIUS OR  
THE FOOT.  
0.13  
0.325 BSC  
K
Q
R
S
0
7
0.30  
Q
°
°
W
0.13  
16.95  
0.13  
17.45  
---  
---  
17.45  
0.45  
X
T
DETAIL C  
U
V
W
X
0
°
16.95  
0.35  
1.6 REF  
Figure B-2 80-Pin QFP Mechanical Dimensions (Case no. 841B)  
93  
MC9S12A256 Device Guide V01.01  
94  
MC9S12A256 Device Guide V01.01  
User Guide End Sheet  
95  
MC9S12A256 Device Guide V01.01  
FINAL PAGE OF  
96  
PAGES  
96  

相关型号:

KMC9S12A256BCPV

16-BIT, FLASH, 8MHz, MICROCONTROLLER, PQFP112, TQFP-112
NXP

KMC9S12A256BCPV

Microcontroller, 16-Bit, FLASH, 8MHz, CMOS, PQFP112, TQFP-112
MOTOROLA

KMC9S12D64CFU

16-BIT, FLASH, 25MHz, MICROCONTROLLER, PQFP80, QFP-80
MOTOROLA

KMC9S12D64CPV

16-BIT, FLASH, 25MHz, MICROCONTROLLER, PQFP112, LQFP-112
MOTOROLA

KMC9S12D64MFU

16-BIT, FLASH, 25MHz, MICROCONTROLLER, PQFP80, QFP-80
MOTOROLA

KMC9S12D64MPV

16-BIT, FLASH, 25MHz, MICROCONTROLLER, PQFP112, LQFP-112
MOTOROLA

KMC9S12D64VFU

Microcontroller, 16-Bit, FLASH, 25MHz, CMOS, PQFP80, QFP-80
MOTOROLA

KMC9S12D64VPV

Microcontroller, 16-Bit, FLASH, 25MHz, CMOS, PQFP112, LQFP-112
MOTOROLA

KMC9S12DG256BCPV

Microcontroller, 16-Bit, FLASH, 25MHz, CMOS, PQFP112, 20 X 20 MM, 1.40 MM HEIGHT, 0.65 MM PITCH, PLASTIC, LQFP-112
MOTOROLA

KMC9S12DJ64CFU

Microcontroller, 16-Bit, FLASH, 25MHz, CMOS, PQFP80, QFP-80
MOTOROLA

KMC9S12DJ64CPV

Microcontroller, 16-Bit, FLASH, 25MHz, CMOS, PQFP112, LQFP-112
MOTOROLA

KMC9S12DJ64CPV

暂无描述
NXP