LH7A400N0B000B3A [NXP]

32-Bit System-on-Chip;
LH7A400N0B000B3A
型号: LH7A400N0B000B3A
厂家: NXP    NXP
描述:

32-Bit System-on-Chip

文件: 总65页 (文件大小:814K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LH7A400  
32-Bit System-on-Chip  
Preliminary data sheet  
• Three Programmable Timers  
FEATURES  
• 32-bit ARM9TDMI™ RISC Core  
• Three UARTs  
– Classic IrDA (115 kbit/s)  
• Smart Card Interface (ISO7816)  
– 16 kB Cache: 8 kB Instruction and 8 kB Data  
– MMU (Windows CE™ Enabled)  
– Up to 250 MHz; see Table 1 for options  
• Two DC-to-DC Converters  
• MultiMediaCard™ Interface  
• AC97 Codec Interface  
• 80 kB On-Chip Static RAM  
• Programmable Interrupt Controller  
• External Bus Interface  
– Up to 125 MHz; see Table 1 for options  
– Asynchronous SRAM/ROM/Flash  
– Synchronous DRAM/Flash  
– PCMCIA  
• Smart Battery Monitor Interface  
• Real Time Clock (RTC)  
• Up to 60 General Purpose I/Os  
• Watchdog Timer  
• JTAG Debug Interface and Boundary Scan  
• Operating Voltage  
– CompactFlash  
• Clock and Power Management  
– 32.768 kHz and 14.7456 MHz Oscillators  
– Programmable PLL  
– 1.8 V Core  
– 3.3 V Input/Output  
• 5 V Tolerant Digital Inputs (except oscillator pins)  
– Oscillator pins P15, P16, R13, and T13 are  
1.8 V 10 %.  
• Programmable LCD Controller  
– Up to 1,024 × 768 Resolution  
– Supports STN, Color STN, AD-TFT, HR-TFT, TFT  
– Up to 64 k-Colors and 15 Gray Shades  
• Operating Temperature: 40°C to +85°C  
• 256-ball BGA or 256-ball LFBGA Package  
• DMA (10 Channels)  
– AC97  
DESCRIPTION  
– MMC  
The LH7A400, powered by an ARM922T, is a com-  
plete System-on-Chip with a high level of integration to  
satisfy a wide range of requirements and expectations.  
– USB  
• USB Device Interface (USB 2.0, Full Speed)  
• Synchronous Serial Port (SSP)  
– Motorola SPI™  
This high degree of integration lowers overall  
system costs, reduces development cycle time and  
accelerates product introduction.  
– Texas Instruments SSI  
– National MICROWIRE™  
Table 1. LH7A400 versions  
BUS  
CORE  
PART NUMBER  
LH7A400N0F076B5  
LH7A400N0F000B3A  
LH7A400N0F000B5  
LH7A400N0G000B5  
LOW POWER CURRENT BY MODE (TYP.)  
TEMP. RANGE  
CLOCK  
CLOCK  
0°C to +70°C/  
40°C to +85°C  
250 MHz/  
245 MHz  
125 MHz Run = 250 mA; Halt = 50 mA; Standby = 129 µA  
100 MHz Run = 125 mA; Halt: 25 mA; Standby = 42 µA  
100 MHz Run = 125 mA; Halt: 25 mA; Standby = 42 µA  
100 MHz Run = 125 mA; Halt: 25 mA; Standby = 42 µA  
200 MHz/  
195 MHz  
0°C to +70°C/  
40°C to +85°C  
200 MHz/  
195 MHz  
0°C to +70°C/  
40°C to +85°C  
200 MHz/  
195 MHz  
0°C to +70°C/  
40°C to +85°C  
Preliminary data sheet  
1
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
Table 2. Ordering information  
Package  
Type number  
Version  
Name  
BGA256  
Description  
plastic ball grid array package; 256 balls  
LH7A400N0G000B5  
LH7A400N0F000B3A  
SOT1018-1  
plastic low profile fine-pitch ball grid array  
package; 256 balls  
LFBGA256  
LFBGA256  
LFBGA256  
SOT1020-1  
SOT1020-1  
SOT1020-1  
plastic low profile fine-pitch ball grid array  
package; 256 balls  
LH7A400N0F000B5  
LH7A400N0F076B5  
plastic low profile fine-pitch ball grid array  
package; 256 balls  
2
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
LH7A400  
14.7456 MHz 32.768 kHz  
REAL TIME  
CLOCK  
OSCILLATOR,  
PLL1 and PLL2, POWER  
MANAGEMENT, and  
RESET CONTROL  
WATCHDOG  
TIMER  
TIMER (3)  
ARM922T  
INTERRUPT  
CONTROLLER  
GENERAL  
PURPOSE I/O  
(60)  
STATIC  
(ASYNCHRONOUS)  
MEMORY  
CONTROLLER  
(SMC)  
SYNCHRONOUS  
SERIAL PORT  
ADVANCED  
PERIPHERAL  
BUS BRIDGE  
BATTERY  
MONITOR  
INTERFACE  
PCMCIA/CF  
CONTROLLER  
EXTERNAL  
BUS  
INTERFACE  
SYNCHRONOUS  
DYNAMIC RAM  
CONTROLLER  
(SDMC)  
UART (3)  
IrDA  
INTERFACE  
LCD AHB  
BUS  
USB DEVICE  
INTERFACE  
80KB  
SRAM  
MULTIMEDIACARD  
INTERFACE  
COLOR LCD  
CONTROLLER  
DMA  
CONTROLLER  
ADVANCED AUDIO  
CODEC (AC97)  
ADVANCED LCD  
INTERFACE  
AUDIO CODEC  
INTERFACE  
SMART CARD  
INTERFACE  
(ISO7816)  
ADVANCED  
HIGH-PERFORMANCE  
BUS (AHB)  
ADVANCED  
PERPHERAL  
BUS (APB)  
DC to DC  
INTERFACE  
(2)  
LH7A400-1  
Figure 1. LH7A400 block diagram  
Preliminary data sheet  
Rev. 01 16 July 2007  
3
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
LH7A400  
ball A1  
index area  
2
4
6
8
10 12 14 16  
9 11 13 15  
1
3
5
7
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
002aad223  
Transparent top view  
Figure 2. Pin configuration (BGA256)  
LH7A400  
ball A1  
index area  
2
4
6
8
10 12 14 16  
9 11 13 15  
1
3
5
7
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
002aad224  
Transparent top view  
Figure 3. Pin configuration (LFBGA256)  
4
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
Table 3. Functional Pin List  
BGA LFBGA  
SIGNAL  
RESET  
STATE  
STANDBY  
STATE  
OUTPUT  
DRIVE  
DESCRIPTION  
I/O NOTES  
PIN  
PIN  
G7  
F1  
C10  
F9  
K7  
F11  
F14  
G8  
H13  
J9  
M1  
M5  
T6  
R14  
M14  
J11  
J12  
F13  
B14  
E10  
B8  
VDD  
I/O Ring Power  
K15  
L7  
N6  
N8  
N12  
N13  
P11  
B8  
H7  
G3  
C6  
K4  
D5  
N5  
D13  
E8  
P6  
T14  
R16  
N16  
K13  
H9  
F7  
G13  
H9  
VSS  
I/O Ring Ground  
J14  
K7  
C15  
A11  
E8  
L8  
L10  
L12  
M11  
M14  
C4  
A5  
F7  
E1  
J4  
D7  
P3  
D10  
F4  
T8  
K9  
F10  
J4  
VDDC  
Core Power  
L13  
E15  
D12  
A7  
J8  
K8  
L6  
H5  
G7  
H4  
M3  
L9  
H8  
T10  
N15  
H12  
B15  
C9  
L4  
L9  
VSSC  
Core Ground  
N3  
N7  
N10  
R5  
G6  
Preliminary data sheet  
Rev. 01 16 July 2007  
5
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
Table 3. Functional Pin List (Cont’d)  
BGA LFBGA  
RESET  
STATE  
STANDBY  
STATE  
OUTPUT  
DRIVE  
SIGNAL  
DESCRIPTION  
I/O NOTES  
PIN  
PIN  
R11  
N12  
P12  
T11  
D3  
P12  
M10  
R13  
N11  
E4  
VDDA  
Analog Power for PLL  
VSSA  
Analog Ground for PLL  
Power On Reset  
nPOR  
Input  
Input  
No Change  
No Change  
I
I
3
3
User Reset; should be pulled HIGH for normal or  
JTAG operation.  
H6  
D1  
nURESET  
D4  
E4  
C2  
E2  
F2  
D2  
WAKEUP  
nPWRFL  
nEXTPWR  
Wake Up  
Input  
Input  
Input  
No Change  
No Change  
No Change  
I
I
I
3
3
3
Power Fail Signal  
External Power  
14.7456 MHz Crystal Oscillator pins. An external  
clock source can be connected to XTALIN leaving  
XTALOUT open.  
R13  
T13  
P16  
P15  
R14  
R15  
N14  
M13  
XTALIN  
Input  
HIGH  
Input  
No Change  
HIGH  
I
XTALOUT  
XTAL32IN  
XTAL32OUT  
O
I
32.768 kHz Real Time Clock Crystal Oscillator  
pins. An external clock source can be connected to  
XTAL32IN leaving XTAL32OUT open.  
No Change  
No Change  
Output  
O
P14  
J6  
M12  
J5  
CLKEN  
PGMCLK  
nCS0  
External Osc Clock Enable Output  
Programmable Clock (14.7456 MHz MAX.)  
Async Memory Chip Select 0  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
LOW  
8 mA  
8 mA  
O
O
O
O
O
LOW or HIGH  
No Change  
No Change  
No Change  
K11  
K10  
P13  
P14  
P16  
N15  
12 mA  
12 mA  
12 mA  
nCS1  
Async Memory Chip Select 1  
nCS2  
Async Memory Chip Select 2  
nCS3/  
nMMSPICS  
• Async Memory Chip Select 3  
• MultiMediaCard SPI Mode Chip Select  
HIGH:  
nCS3  
M12  
N16  
No Change  
12 mA  
O
L12  
M15  
N13  
L16  
L15  
L14  
H11  
K12  
J15  
L11  
L13  
L14  
K11  
L16  
K14  
J15  
J12  
J10  
H16  
H14  
H11  
G16  
G9  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
J13  
D9  
J10  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
H15  
H13  
G15  
G11  
G12  
F15  
F12  
E14  
D16  
H10  
D14  
F10  
A16  
A14  
B13  
Data Bus  
LOW  
LOW  
12 mA I/O  
G14  
G12  
F15  
E15  
D16  
F12  
E13  
D14  
E12  
B16  
D12  
A16  
6
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
Table 3. Functional Pin List (Cont’d)  
BGA LFBGA  
SIGNAL  
RESET  
STATE  
STANDBY  
STATE  
OUTPUT  
DRIVE  
DESCRIPTION  
I/O NOTES  
PIN  
PIN  
C13  
E12  
G10  
B12  
B11  
D11  
B13  
B14  
C12  
A14  
B12  
A12  
D26  
D27  
D28  
D29  
D30  
D31  
Data Bus  
LOW  
LOW  
12 mA I/O  
• Asynchronous Address Bus  
• Asynchronous Memory Write Byte Enable 1  
HIGH:  
nWE1  
M16  
N14  
M15  
M16  
A0/nWE1  
A1/nWE2  
HIGH  
HIGH  
12 mA  
12 mA  
O
O
• Asynchronous Address Bus  
• Asynchronous Memory Write Byte Enable 2  
HIGH:  
nWE2  
M13  
K16  
K15  
K14  
J8  
L15  
K12  
K13  
K16  
J13  
A2/SA0  
A3/SA1  
A4/SA2  
A5/SA3  
A6/SA4  
J16  
J14  
J9  
J11  
A7/SA5  
J16  
A8/SA6  
• Asynchronous Address Bus  
• Synchronous Address Bus  
LOW  
LOW  
12 mA  
O
H15  
H10  
H12  
G15  
G10  
G11  
F16  
A9/SA7  
H16  
H14  
G16  
G14  
G13  
F16  
A10/SA8  
A11/SA9  
A12/SA10  
A13/SA11  
A14/SA12  
A15/SA13  
• Async Address Bus  
• Sync Device Bank Address 0  
F14  
E16  
E16  
F13  
A16/SB0  
A17/SB1  
LOW  
LOW  
LOW  
LOW  
12 mA  
12 mA  
O
O
• Async Address Bus  
• Sync Device Bank Address 1  
E13  
F11  
D15  
C16  
B16  
A15  
A13  
E14  
D15  
C16  
C15  
C14  
B15  
E11  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
Asynchronous Address Bus  
LOW  
LOW  
12 mA  
O
• Async Memory Address Bus  
• Smart Card Interface I/O (Data)  
G8  
F8  
A8  
D8  
B7  
A7  
A25/SCIO  
LOW: A25  
LOW: A26  
LOW: A27  
LOW  
LOW  
LOW  
12 mA I/O  
12 mA I/O  
• Async Memory Address Bus  
• Smart Card Interface Clock  
A26/SCCLK  
A27/SCRST  
• Async Memory Address Bus  
• Smart Card Interface Reset  
12 mA  
O
D8  
C8  
C8  
F8  
D9  
nOE  
Async Memory Output Enable  
HIGH  
HIGH  
HIGH  
No Change  
No Change  
No Change  
12 mA  
12 mA  
8 mA  
O
O
O
nWE0  
nWE3  
Async Memory Write Byte Enable 0  
Async Memory Write Byte Enable 3  
D10  
• Async Memory Chip Select 6  
• Sync Memory Clock Enable 1 or 2  
B10  
C10  
E9  
CS6/SCKE1_2  
CS7/SCKE0  
LOW: CS6  
LOW: CS7  
No Change  
No Change  
12 mA  
O
O
• Async Memory Chip Select 7  
• Sync Memory Clock Enable 0  
A10  
12 mA  
12 mA  
G9  
A10  
C14  
A11  
B10  
C13  
SCKE3  
SCLK  
Sync Memory Clock Enable 3  
Sync Memory Clock  
LOW  
LOW  
HIGH  
LOW  
O
I/O  
O
No Change  
No Change  
2
nSCS0  
Sync Memory Chip Select 0  
12 mA  
Preliminary data sheet  
Rev. 01 16 July 2007  
7
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
Table 3. Functional Pin List (Cont’d)  
BGA LFBGA  
RESET  
STANDBY  
OUTPUT  
DRIVE  
SIGNAL  
nSCS1  
DESCRIPTION  
I/O NOTES  
PIN  
PIN  
STATE  
STATE  
D13  
E11  
A12  
C12  
C11  
F9  
A15  
D11  
E10  
A13  
B11  
C11  
C9  
Sync Memory Chip Select 1  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
No Change  
No Change  
No Change  
No Change  
No Change  
No Change  
No Change  
No Change  
No Change  
No Change  
12 mA  
12 mA  
12 mA  
12 mA  
12 mA  
12 mA  
12 mA  
12 mA  
12 mA  
12 mA  
O
O
O
O
O
O
O
O
O
O
nSCS2  
nSCS3  
nSWE  
nCAS  
Sync Memory Chip Select 2  
Sync Memory Chip Select 3  
Sync Memory Write Enable  
Sync Memory Column Address Strobe Signal  
Sync Memory Row Address Strobe Signal  
Sync Memory Data Mask 0  
Sync Memory Data Mask 1  
Sync Memory Data Mask 2  
Sync Memory Data Mask 3  
• GPIO Port A  
nRAS  
A9  
DQM0  
DQM1  
DQM2  
DQM3  
B9  
A9  
D9  
B9  
E9  
A8  
J5  
K1  
K2  
PA0/LCDVD16 • LCD Data bit 16. This CLCDC output signal is  
always LOW.  
Input: PA0  
Input: PA1  
No Change  
No Change  
8 mA  
8 mA  
I/O  
I/O  
• GPIO Port A  
K1  
PA1/LCDVD17 • LCD Data bit 17. This CLCDC output signal is  
always LOW.  
K2  
K3  
K5  
L1  
L2  
L3  
K3  
K4  
K6  
K5  
L1  
L2  
PA2  
PA3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PA4  
GPIO Port A  
PA5  
Input  
No Change  
No Change  
8 mA  
PA6  
PA7  
PB0/  
UARTRX1  
• GPIO Port B  
• UART1 Receive Data Input  
L4  
L3  
Input: PB0  
Input: PB1  
8 mA  
8 mA  
I/O  
LOW if  
PINMUX:  
UART3CON  
= 1 (bit 3);  
otherwise  
No Change  
• GPIO Port B  
• UART3 Transmit Data Out  
L5  
M1  
PB1/UARTTX3  
I/O  
PB2/  
UARTRX3  
• GPIO Port B  
• UART3 Receive Data In  
L7  
M2  
M4  
N1  
M2  
M3  
L5  
Input: PB2  
Input: PB3  
Input: PB4  
Input: PB5  
No Change  
No Change  
No Change  
No Change  
8 mA  
8 mA  
8 mA  
8 mA  
I/O  
I/O  
I/O  
I/O  
PB3/  
UARTCTS3  
• GPIO Port B  
• UART3 Clear to Send  
PB4/  
UARTDCD3  
• GPIO Port B  
• UART3 Data Carrier Detect  
PB5/  
UARTDSR3  
• GPIO Port B  
• UART3 Data Set Ready  
N1  
• GPIO Port B  
• Single Wire Data  
• Smart Battery Data  
PB6/SWID/  
SMBD  
N2  
N2  
Input: PB6  
No Change  
8 mA  
8 mA  
I/O  
PB7/  
SMBCLK  
• GPIO Port B  
• Smart Battery Clock  
N3  
P1  
P2  
R1  
K6  
L8  
M4  
P1  
P2  
R1  
M5  
P3  
Input: PB7  
LOW: PC0  
LOW: PC1  
LOW: PC2  
LOW: PC3  
LOW: PC4  
No Change  
No Change  
No Change  
No Change  
No Change  
No Change  
I/O  
7
PC0/  
UARTTX1  
• GPIO Port C  
• UART1 Transmit Data Output  
12 mA I/O  
12 mA I/O  
12 mA I/O  
12 mA I/O  
12 mA I/O  
• GPIO Port C  
• HR-TFT Power Save  
PC1/LCDPS  
PC2/  
LCDVDDEN  
• GPIO Port C  
• HR-TFT Power Sequence Control  
• GPIO Port C  
• HR-TFT Gray Scale Voltage Reverse  
PC3/LCDREV  
PC4/  
LCDSPS  
• GPIO Port C  
• HR-TFT Reset Row Driver Counter  
8
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
Table 3. Functional Pin List (Cont’d)  
BGA LFBGA  
SIGNAL  
RESET  
STATE  
STANDBY  
STATE  
OUTPUT  
DRIVE  
DESCRIPTION  
I/O NOTES  
PIN  
PIN  
PC5/  
LCDCLS  
• GPIO Port C  
• HR-TFT Row Driver Clock  
T1  
N4  
LOW: PC5  
No Change  
No Change  
No Change  
12 mA I/O  
12 mA I/O  
12 mA I/O  
PC6/LCDHR- • GPIO Port C  
LP  
T2  
R2  
R2  
N5  
LOW: PC6  
LOW: PC7  
• LCD Latch Pulse  
PC7/  
LCDSPL  
• GPIO Port C  
• LCD Start Pulse Left  
M11  
L11  
K8  
M9  
K10  
P10  
T11  
T12  
R11  
R12  
T13  
T9  
PD0/LCDVD8  
PD1/LCDVD9  
PD2/LCDVD10  
PD3/LCDVD11  
PD4/LCDVD12  
PD5/LCDVD13  
PD6/LCDVD14  
PD7/LCDVD15  
PE0/LCDVD4  
PE1/LCDVD5  
PE2/LCDVD6  
LOW: PD0  
LOW: PD1  
LOW: PD2  
LOW: PD3  
LOW: PD4  
LOW: PD5  
LOW: PD6  
LOW: PD7  
Input: PE0  
Input: PE1  
Input: PE2  
I/O  
I/O  
I/O  
LOW if  
PINMUX:  
PDOCON = 1  
(bit 1);  
otherwise,  
No Change  
N11  
R9  
I/O  
12 mA  
• GPIO Port D  
• LCD Video Data Bus  
I/O  
T9  
I/O  
I/O  
I/O  
I/O  
I/O  
P10  
R10  
L10  
N10  
M9  
LOW if  
PINMUX:  
PDOCON or  
PEOCON = 1  
(bits [1:0]);  
otherwise  
K9  
• GPIO Port E  
• LCD Video Data Bus  
T10  
I/O  
12 mA  
M10  
A6  
R10  
A5  
PE3/LCDVD7  
PF0/INT0  
Input: PE3  
I/O  
No Change  
• GPIO Port F  
• External FIQ Interrupt. Interrupts can be level or Input: PF0  
edge triggered and are internally debounced.  
No Change  
8 mA  
I/O  
3
• GPIO Port F  
• External IRQ Interrupts. Interrupts can be level or  
edge triggered and are internally debounced.  
B6  
C6  
B4  
E7  
PF1/INT1  
PF2/INT2  
Input: PF1  
Input: PF2  
No Change  
No Change  
8 mA  
8 mA  
I/O  
I/O  
3
3
• GPIO Port F  
H8  
B5  
B3  
C5  
PF3/INT3  
• External IRQ Interrupt. Interrupts can be level or Input: PF3  
edge triggered and are internally debounced.  
No Change  
8 mA  
8 mA  
I/O  
I/O  
3
3
• GPIO Port F  
LOW if SCI is  
Enabled;  
otherwise  
PF4/INT4/  
SCVCCEN  
• External IRQ Interrupt. Interrupts can be level or  
edge triggered and are internally debounced.  
Input: PF4  
• Smart Card Supply Voltage Enable  
No Change  
• GPIO Port F  
PF5/INT5/  
SCDETECT  
• External IRQ Interrupt. Interrupts can be level or  
Input: PF5  
D6  
E6  
D6  
A4  
No Change  
No Change  
8 mA  
8 mA  
I/O  
I/O  
3
3
edge triggered and are internally debounced.  
• Smart Card Detection  
• GPIO Port F  
• External IRQ Interrupt. Interrupts can be level or  
PF6/INT6/  
PCRDY1  
edge triggered and are internally debounced.  
• Ready for Card 1 for PC Card (PCMCIA or CF) in  
single or dual card mode  
Input: PF6  
Input: PF7  
• GPIO Port F  
• External IRQ Interrupt. Interrupts can be level or  
edge triggered and are internally debounced.  
• Ready for Card 2 for PC Card (PCMCIA or CF) in  
single or dual card mode  
PF7/INT7/  
PCRDY2  
C5  
A3  
No Change  
8 mA  
I/O  
3
• GPIO Port G  
R3  
T3  
M6  
T1  
PG0/nPCOE  
PG1/nPCWE  
• Output Enable for PC Card (PCMCIA or CF) in  
single or dual card mode  
LOW: PG0 No Change  
8 mA  
8 mA  
I/O  
I/O  
• GPIO Port G  
• Write Enable for PC Card (PCMCIA or CF) in sin- LOW: PG1 No Change  
gle or dual card mode  
Preliminary data sheet  
Rev. 01 16 July 2007  
9
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
Table 3. Functional Pin List (Cont’d)  
BGA LFBGA  
RESET  
STATE  
STANDBY  
STATE  
OUTPUT  
DRIVE  
SIGNAL  
PG2/  
DESCRIPTION  
I/O NOTES  
PIN  
PIN  
• GPIO Port G  
L6  
P4  
• I/O Read Strobe for PC Card (PCMCIA or CF) in LOW: PG2 No Change  
single or dual card mode  
8 mA  
8 mA  
8 mA  
I/O  
nPCIOR  
• GPIO Port G  
PG3/  
nPCIOW  
M6  
N6  
R3  
T2  
• I/O Write Strobe for PC Card (PCMCIA or CF) in LOW: PG3 No Change  
single or dual card mode  
I/O  
I/O  
• GPIO Port G  
PG4/nPCREG • Register Memory Access for PC Card (PCMCIA LOW: PG4 No Change  
or CF) in single or dual card mode  
• GPIO Port G  
• Card Enable 1 for PC Card (PCMCIA or CF) in  
M7  
M8  
P5  
R4  
PG5/nPCCE1  
single or dual card mode. This signal and  
nPCCE2 are used by the PC Card for decoding  
low and high byte accesses.  
LOW: PG5 No Change  
LOW: PG6 No Change  
8 mA  
8 mA  
I/O  
I/O  
• GPIO Port G  
• Card Enable 2 for PC Card (PCMCIA or CF) in  
single or dual card mode. This signal and  
nPCCE1 are used by the PC Card for decoding  
low and high byte accesses.  
PG6/nPCCE2  
PG7/PCDIR  
• GPIO Port G  
N4  
P4  
T3  
P6  
• Direction for PC Card (PCMCIA or CF) in single LOW: PG7 No Change  
or dual card mode  
8 mA  
8 mA  
I/O  
I/O  
• GPIO Port H  
PH0/  
PCRESET1  
• Reset Card 1 for PC Card (PCMCIA or CF) in sin- Input: PH0  
gle or dual card mode  
No Change  
• GPIO Port H  
PH1/CFA8/  
PCRESET2  
• Address Bit 8 for PC Card (CF) in single card mode  
• Reset Card 2 for PC Card (PCMCIA or CF) in  
dual card mode  
R4  
T4  
T4  
Input: PH1  
No Change  
8 mA  
8 mA  
I/O  
I/O  
• GPIO Port H  
PH2/  
nPCSLOTE1  
• Enable Card 1 for PC Card (PCMCIA or CF) in sin-  
Input: PH2  
M7  
No Change  
gle or dual card mode. This signal is used for gating  
other control signals to the appropriate PC Card.  
• GPIO Port H  
• Address Bit 9 for PC Card (CF) in single card mode  
• Address Bit 25 for PC Card (PCMCIA) in single  
PH3/CFA9/  
N7  
P8  
P5  
T5  
R6  
R7  
PCMCIAA25/  
nPCSLOTE2  
card mode  
Input: PH3  
No Change  
No Change  
No Change  
8 mA  
8 mA  
8 mA  
I/O  
I/O  
I/O  
• Enable Card 2 for PC Card (PCMCIA or CF) in  
dual card mode. This signal is used for gating  
other control signals to the appropriate PC Card.  
• GPIO Port H  
PH4/  
nPCWAIT1  
• WAIT Signal for Card 1 for PC Card (PCMCIA or Input: PH4  
CF) in single or dual card mode  
• GPIO Port H  
• Address Bit 10 for PC Card (CF) in single  
card mode  
• Address Bit 24 for PC Card (PCMCIA) in single  
card mode  
PH5/CFA10/  
PCMCIAA24/  
nPCWAIT2  
Input: PH5  
• WAIT Signal for Card 2 for PC Card (PCMCIA or  
F) in dual card mode  
PH6/  
• GPIO Port H  
R5  
T5  
P7  
T6  
Input: PH6  
No Change  
No Change  
8 mA  
8 mA  
I/O  
I/O  
nAC97RESET • Audio Codec (AC97) Reset  
• GPIO Port H  
PH7/  
nPCSTATRE  
• Status Read Enable for PC Card (PCMCIA or F) Input: PH7  
in single or dual card mode  
R6  
R8  
T7  
LCDFP  
LCDLP  
LCD Frame Synchronization pulse  
LCD Line Synchronization pulse  
LOW  
LOW  
LOW  
LOW  
12 mA  
12 mA  
O
O
R9  
10  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
Table 3. Functional Pin List (Cont’d)  
BGA LFBGA  
SIGNAL  
RESET  
STATE  
STANDBY  
STATE  
OUTPUT  
DRIVE  
DESCRIPTION  
I/O NOTES  
PIN  
PIN  
LCDENAB/  
LCDM  
LCD TFT Data Enable  
LCD STN AC Bias  
LCD Data Clock  
LOW:  
LCDENAB  
P9  
P9  
LOW  
LOW  
12 mA  
12 mA  
O
N9  
P7  
N9  
M8  
P8  
LCDDCLK  
LCDVD0  
LCDVD1  
LCDVD2  
LCDVD3  
USBDP  
LOW  
O
O
O
O
O
R7  
LCD Video Data Bus  
LOW  
LOW  
12 mA  
T7  
R8  
N8  
T8  
T15  
T16  
T16  
R16  
USB Data Positive (Differential Pair)  
USB Data Negative (Differential Pair)  
Input  
Input  
No Change  
No Change  
I/O  
I/O  
10  
10  
USBDN  
• DC-DC Converter Pulse Width  
• Modulator 0 Enable  
E7  
D7  
C7  
A6  
nPWME0  
nPWME1  
Input  
Input  
No Change  
No Change  
I
I
• DC-DC Converter Pulse Width  
• Modulator 1 Enable  
• DC-DC Converter Pulse Width  
C7  
B7  
B6  
B5  
PWM0  
PWM1  
• Modulator 0 Output during normal operation and  
Polarity Selection input at reset  
Input  
Input  
No Change  
No Change  
8 mA  
8 mA  
I/O  
I/O  
• DC-DC Converter Pulse Width  
• Modulator 1 Output during normal operation and  
Polarity Selection input at reset  
• Audio Codec (AC97) Clock  
• Audio Codec (ACI) Clock  
C4  
D5  
A2  
A1  
ACBITCLK  
ACOUT  
Input  
LOW  
No Change  
No Change  
8 mA  
8 mA  
I/O  
O
• Audio Codec (AC97) Output  
• Audio Codec (ACI) Output  
• Audio Codec (AC97)  
B4  
B2  
ACSYNC  
ACIN  
Synchronization  
• Audio Codec (ACI) Synchronization  
LOW  
Input  
No Change  
8 mA  
O
• Audio Codec (AC97) Input  
• Audio Codec (ACI) Input  
A4  
A3  
B3  
A2  
E2  
E3  
E6  
C3  
B1  
D4  
E1  
F3  
No Change  
LOW  
I
O
I/O  
I/O  
I
MMCCLK/  
MMSPICLK  
• MultiMediaCard Clock (20 MHz MAX.)  
• MultiMediaCard SPI Mode Clock  
LOW:  
MMCCLK  
8 mA  
8 mA  
8 mA  
MMCCMD/  
MMSPIDIN  
• MultiMediaCard Command  
• MultiMediaCard SPI Mode Data Input  
Input:  
MMCCMD  
Input  
MMCDATA/  
• MultiMediaCard Data  
Input:  
MMCDATA  
Input  
MMSPIDOUT • MultiMediaCard SPI Mode Data Output  
• UART2 Clear to Send Signal. This pin is an  
UARTCTS2  
Input  
Input  
No Change  
No Change  
output for JTAG boundary scan only.  
• UART2 Data Carrier Detect Signal. This pin is  
UARTDCD2  
I
output for JTAG boundary scan only.  
E5  
F2  
G4  
G5  
UARTDSR2  
UARTIRTX1  
UART2 Data Set Ready Signal  
IrDA Transmit  
Input  
LOW  
No Change  
No Change  
I
8 mA  
8 mA  
8 mA  
O
IrDA Receive. This pin is an output for JTAG  
boundary scan only.  
F3  
F4  
J7  
G6  
F1  
G3  
UARTIRRX1  
UARTTX2  
UARTRX2  
Input  
HIGH  
Input  
No Change  
No Change  
No Change  
I
O
I
UART2 Transmit Data Output  
UART2 Receive Data Input. This pin is an output  
for JTAG boundary scan only.  
H4  
J1  
J2  
J3  
J6  
J7  
SSPCLK  
SSPRX  
SSPTX  
Synchronous Serial Port Clock  
Synchronous Serial Port Receive  
Synchronous Serial Port Transmit  
LOW  
Input  
LOW  
No Change  
No Change  
LOW  
O
I
8 mA  
8 mA  
I/O  
SSPFRM/  
nSSPFRM  
J3  
J2  
Synchronous Serial Port Frame Sync  
Input  
Input  
I/O  
Preliminary data sheet  
Rev. 01 16 July 2007  
11  
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
Table 3. Functional Pin List (Cont’d)  
BGA LFBGA  
RESET  
STANDBY  
OUTPUT  
DRIVE  
SIGNAL  
COL0  
DESCRIPTION  
I/O NOTES  
PIN  
PIN  
G2  
G1  
H3  
H5  
H6  
H7  
H2  
H1  
J1  
STATE  
STATE  
F6  
F5  
COL1  
COL2  
COL3  
COL4  
COL5  
COL6  
COL7  
TBUZ  
G1  
G2  
G4  
G5  
H1  
H2  
H3  
Keyboard Interface  
HIGH  
HIGH  
8 mA  
8 mA  
O
O
Timer Buzzer (254 kHz MAX.)  
LOW  
Input  
LOW  
Boot Device Media Change. Used with WIDTH0  
and WIDTH1 to specify boot memory device.  
C3  
F5  
MEDCHG  
No Change  
I
3
3
External Memory Width Pins. Also, used with  
MEDCHG to specify the boot memory device size.  
The pins must be pulled HIGH with a 33 kresistor.  
P11  
R12  
T14  
T15  
WIDTH0  
WIDTH1  
Input  
No Change  
I
D1  
D2  
E3  
F6  
BATOK  
Battery OK  
Input  
Input  
No Change  
No Change  
I
I
3
3
nBATCHG  
Battery Change  
JTAG Data In. This signal is internally pulled-up t  
o VDD.  
A1  
B1  
B2  
C1  
E5  
C2  
D3  
C1  
TDI  
Input  
Input  
No Change  
No Change  
No Change  
No Change  
I
I
4
3
JTAG Clock. This signal should be externally  
pulled-up to VDD with a 33 kresistor.  
TCK  
TDO  
TMS  
JTAG Data Out. This signal should be externally  
pulled up to VDD with a 33 kresistor.  
High-Z  
Input  
4 mA  
O
I
JTAG Test Mode select. This signal is internally  
pulled-up to VDD.  
4
4
Test Pin 0. Internally pulled up to VDD. For Normal  
mode, leave open. For JTAG mode, tie to GND.  
See Table 4.  
T12  
R15  
P15  
P13  
nTEST0  
nTEST1  
Input  
No Change  
I
Test Pin 1. internally pulled up to VDD. For Normal  
and JTAG mode, leave open. See Table 4.  
1. Signals beginning with ‘n’ are Active LOW.  
2. The SCLK pin can source up to 12 mA and sink up to 20 mA. See ‘DC Characteristics’.  
3. Schmitt trigger input; see ’DC Specifications’, page 31 for triggers points and hysteresis.  
4. Input only for JTAG boundary scan mode.  
5. Output only for JTAG boundary scan mode.  
6. The internal pullup and pull-down resistance on all digital I/O pins is 50 kΩ  
7. When used as SMBCLK, this pin must have a resistor.  
8. The RESET STATE is defined as the state during power-on reset.  
9. The STANDBY STATE is defined as the state when the device is in standby. During this state,  
I/O cells are forced to input (Input), output driving low (LOW), output driving high (HIGH), or their  
current state is preserved (No Change). In some case, function selection has an overall effect on the standby state.  
10.All unused USB Device pins with a differential pair must be pulled  
to ground with a 15 kresistor.  
Table 4. nTest Pin Function  
MODE  
JTAG  
nTEST0  
nTEST1  
nURESET  
0
1
1
1
1
x
Normal  
12  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
Table 5. LCD Data Multiplexing  
STN  
LCD  
BGA  
PIN  
LFBGA  
PIN  
MONO 4-BIT  
MONO 8-BIT  
COLOR  
AD-TFT/  
HR-TFT  
DATA  
TFT  
SIGNAL  
SINGLE  
PANEL  
DUAL  
PANEL  
SINGLE  
DUAL  
PANEL  
SINGLE  
DUAL  
PANEL  
PANEL  
PANEL  
K1  
J5  
K2  
K1  
LCDVD17  
LCDVD16  
LCDVD15  
LCDVD14  
LCDVD13  
LCDVD12  
LCDVD11  
LCDVD10  
LCDVD9  
LCDVD8  
LCDVD7  
LCDVD6  
LCDVD5  
LCDVD4  
LCDVD3  
LCDVD2  
LCDVD1  
LCDVD0  
LOW  
LOW  
R10  
P10  
T9  
T13  
R12  
R11  
T12  
T11  
P10  
K10  
M9  
MLSTN7  
MLSTN6  
MLSTN5  
MLSTN4  
MLSTN3  
MLSTN2  
MLSTN1  
MLSTN0  
MUSTN7  
MUSTN6  
MUSTN5  
MUSTN4  
MUSTN3  
MUSTN2  
MUSTN1  
MUSTN0  
CLSTN7  
CLSTN6  
CLSTN5  
CLSTN4  
CLSTN3  
CLSTN2  
CLSTN1  
CLSTN0  
CUSTN7  
CUSTN6  
CUSTN5  
CUSTN4  
CUSTN3  
CUSTN2  
CUSTN1  
CUSTN0  
Intensity  
BLUE4  
BLUE3  
BLUE2  
BLUE1  
BLUE0  
GREEN4  
GREEN3  
GREEN2  
GREEN1  
GREEN0  
RED4  
Intensity  
BLUE4  
BLUE3  
BLUE2  
BLUE1  
BLUE0  
GREEN4  
GREEN3  
GREEN2  
GREEN1  
GREEN0  
RED4  
R9  
N11  
K8  
L11  
M11  
M10  
M9  
N10  
L10  
N8  
R10  
T10  
K9  
MLSTN3  
MLSTN2  
MLSTN1  
MLSTN0  
MUSTN3  
MUSTN2  
MUSTN1  
MUSTN0  
MUSTN7  
MUSTN6  
MUSTN5  
MUSTN4  
MUSTN3  
MUSTN2  
MUSTN1  
MUSTN0  
CUSTN7  
CUSTN6  
CUSTN5  
CUSTN4  
CUSTN3  
CUSTN2  
CUSTN1  
CUSTN0  
T9  
T8  
MUSTN3  
MUSTN2  
MUSTN1  
MUSTN0  
RED3  
RED3  
T7  
R8  
RED2  
RED2  
R7  
P8  
RED1  
RED1  
P7  
M8  
RED0  
RED0  
Notes:  
1. The Intensity bit is identically generated for all three colors.  
2. MU = Monochrome Upper  
3. CU = Color Upper  
4. CL = Color Lower  
Preliminary data sheet  
Rev. 01 16 July 2007  
13  
LH7A400  
BGA PIN  
NXP Semiconductors  
32-Bit System-on-Chip  
Table 6. 256-Ball BGA Package  
Numerical Pin List  
Table 6. 256-Ball BGA Package  
Numerical Pin List (Cont’d)  
SIGNAL  
BGA PIN SIGNAL  
A1  
A2  
TDI  
C14  
C15  
C16  
D1  
nSCS0  
VSS  
MMCDATA/MMSPIDOUT  
A3  
MMCCLK/MMSPICLK  
ACIN  
A21  
A4  
BATOK  
nBATCHG  
nPOR  
A5  
VSS  
D2  
A6  
PF0/INT0  
VDDC  
D3  
A7  
D4  
WAKEUP  
ACOUT  
PF5/INT5/SCDETECT  
nPWME1  
nOE  
A8  
A27/SCRST  
DQM0  
D5  
A9  
D6  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B1  
SCLK  
D7  
VSS  
D8  
nSCS3  
D9  
DQM2  
A24  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
E1  
nWE3  
D24  
D31  
A23  
VDDC  
D23  
nSCS1  
D21  
TCK  
B2  
TDO  
A20  
B3  
MMCCMD/MMSPIDIN  
ACSYNC  
PF4/INT4/SCVCCEN  
PF1/INT1  
PWM1  
D19  
B4  
VDDC  
B5  
E2  
UARTCTS2  
UARTDCD2  
nPWRFL  
UARTDSR2  
PF6/INT6/PCRDY1  
nPWME0  
VSS  
B6  
E3  
B7  
E4  
B8  
VDD  
E5  
B9  
DQM1  
E6  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
C1  
CS6/SCKE1_2  
D30  
E7  
E8  
D29  
E9  
DQM3  
D25  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
F1  
VDD  
VDD  
nSCS2  
D27  
VSSC  
A22  
A18  
TMS  
D18  
C2  
nEXTPWR  
MEDCHG  
ACBITCLK  
PF7/INT7/PCRDY2  
PF2/INT2  
PWM0  
VDDC  
C3  
A17/SB1  
VDD  
C4  
C5  
F2  
UARTIRTX1  
UARTIRRX1  
UARTTX2  
COL1  
C6  
F3  
C7  
F4  
C8  
nWE0  
F5  
C9  
VSSC  
F6  
COL0  
C10  
C11  
C12  
C13  
CS7/SCKE0  
nCAS  
F7  
VSS  
F8  
A26/SCCLK  
nRAS  
nSWE  
F9  
D26  
F10  
D22  
14  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
Table 6. 256-Ball BGA Package  
Numerical Pin List (Cont’d)  
Table 6. 256-Ball BGA Package  
Numerical Pin List (Cont’d)  
BGA PIN  
SIGNAL  
BGA PIN  
SIGNAL  
F11  
F12  
F13  
F14  
F15  
F16  
G1  
A19  
J8  
J9  
A6/SA4  
A9/SA7  
D10  
D17  
VDD  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
K1  
A16/SB0  
D16  
VDD  
VDD  
A15/SA13  
COL2  
D9  
A8/SA6  
D8  
G2  
COL3  
G3  
VSS  
A7/SA5  
PA1/LCDVD17  
PA2  
G4  
COL4  
G5  
COL5  
K2  
G6  
VSSC  
K3  
PA3  
G7  
VDD  
K4  
VSS  
G8  
A25/SCIO  
SCKE3  
D28  
K5  
PA4  
G9  
K6  
PC3/LCDREV  
VDD  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
H1  
K7  
D14  
K8  
PD2/LCDVD10  
VDDC  
D15  
K9  
A14/SA12  
A13/SA11  
D13  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
L1  
nCS1  
nCS0  
D7  
A12/SA10  
COL6  
VSS  
A5/SA3  
A4/SA2  
A3/SA1  
PA5  
H2  
COL7  
H3  
TBUZ  
H4  
SSPCLK  
VSSC  
H5  
L2  
PA6  
H6  
nURESET  
VSS  
L3  
PA7  
H7  
L4  
PB0/UARTRX1  
PB1/UARTTX3  
PG2/nPCIOR  
PB2/UARTRX3  
PC4/LCDSPS  
VSSC  
H8  
PF3/INT3  
VSS  
L5  
H9  
L6  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
J1  
D20  
L7  
D6  
L8  
VSSC  
L9  
D12  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
M1  
M2  
M3  
PE0/LCDVD4  
PD1/LCDVD9  
D0  
A11/SA9  
D11  
A10/SA8  
SSPRX  
SSPTX  
SSPFRM/nSSPFRM  
VDDC  
VDDC  
D5  
J2  
D4  
J3  
D3  
J4  
VDD  
J5  
PA0/LCDVD16  
PGMCLK  
UARTRX2  
PB3/UARTCTS3  
VSSC  
J6  
J7  
Preliminary data sheet  
Rev. 01 16 July 2007  
15  
LH7A400  
BGA PIN  
NXP Semiconductors  
32-Bit System-on-Chip  
Table 6. 256-Ball BGA Package  
Numerical Pin List (Cont’d)  
Table 6. 256-Ball BGA Package  
Numerical Pin List (Cont’d)  
SIGNAL  
BGA PIN SIGNAL  
M4  
M5  
PB4/UARTDCD3  
VDD  
P16  
R1  
XTAL32IN  
PC2/LCDVDDEN  
PC7/LCDSPL  
PG0/nPCOE  
PH1/CFA8/PCRESET2  
PH6/nAC97RESET  
LCDFP  
M6  
PG3/nPCIOW  
PG5/nPCCE1  
PG6/nPCCE2  
PE2/LCDVD6  
PE3/LCDVD7  
PD0/LCDVD8  
nCS3/nMMSPICS  
A2/SA0  
R2  
M7  
R3  
M8  
R4  
M9  
R5  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
N1  
R6  
R7  
LCDVD1  
R8  
LCDLP  
R9  
PD4/LCDVD12  
PD7/LCDVD15  
VDDA  
VDD  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
T1  
D1  
A0/nWE1  
WIDTH1  
PB5/UARTDSR3  
PB6/SWID/SMBD  
PB7/SMBCLK  
PG7/PCDIR  
VSS  
XTALIN  
N2  
VDD  
N3  
nTEST1  
N4  
VSS  
N5  
PC5/LCDCLS  
PC6/LCDHRLP  
PG1/nPCWE  
PH2/nPCSLOTE1  
PH7/nPCSTATRE  
VDD  
N6  
PG4/nPCREG  
PH3/CFA9/PCMCIAA25/nPCSLOTE2  
LCDVD3  
T2  
N7  
T3  
N8  
T4  
N9  
LCDDCLK  
T5  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
P1  
PE1/LCDVD5  
PD3/LCDVD11  
VDDA  
T6  
T7  
LCDVD2  
T8  
VDDC  
D2  
T9  
PD5/LCDVD13  
VSSC  
A1/nWE2  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
VSSC  
VSSA  
VSS  
nTEST0  
PC0/UARTTX1  
PC1/LCDPS  
VDDC  
XTALOUT  
VSS  
P2  
P3  
USBDP  
P4  
PH0/PCRESET1  
PH5/CFA10/PCMCIAA24/nPCWAIT2  
VSS  
USBDN  
P5  
P6  
P7  
LCDVD0  
P8  
PH4/nPCWAIT1  
LCDENAB/LCDM  
PD6/LCDVD14  
WIDTH0  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
VSSA  
nCS2  
CLKEN  
XTAL32OUT  
16  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
Table 7. 256-Ball LFBGA Package  
Table 7. 256-Ball LFBGA Package  
Numerical Pin List  
Numerical Pin List  
LFBGA PIN  
SIGNAL  
LFBGA PIN  
SIGNAL  
A1  
A2  
ACOUT  
ACBITCLK  
PF7/INT7/PCRDY2  
PF6/INT6/PCRDY1  
PF0/INT0  
nPWME1  
A27/SCRST  
DQM3  
C14  
C15  
C16  
D1  
A22  
A21  
A3  
A20  
A4  
nURESET  
nEXTPWR  
TDO  
A5  
D2  
A6  
D3  
A7  
D4  
MMCDATA/MMSPIDOUT  
VSS  
A8  
D5  
A9  
DQM1  
D6  
PF5/INT5/SCDETECT  
VDDC  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B1  
CS7/SCKE0  
SCKE3  
D7  
D8  
A25/SCIO  
nWE3  
D31  
D9  
nSWE  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
E1  
VDDC  
D29  
nSCS2  
D24  
nSCS1  
D25  
VSS  
MMCCMD/MMSPIDIN  
ACSYNC  
PF3/INT3  
PF1/INT1  
PWM1  
D21  
B2  
A19  
B3  
D18  
B4  
UARTCTS2  
WAKEUP  
BATOK  
nPOR  
B5  
E2  
B6  
PWM0  
E3  
B7  
A26/SCCLK  
VSS  
E4  
B8  
E5  
TDI  
B9  
DQM2  
E6  
ACIN  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
C1  
SCLK  
E7  
PF2/INT2  
VSS  
nCAS  
E8  
D30  
E9  
CS6/SCKE1_2  
nSCS3  
A24  
D26  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
F1  
D27  
A23  
D22  
D23  
D20  
TMS  
A18  
C2  
TCK  
D17  
C3  
MMCCLK/MMSPICLK  
VDDC  
A16/SB0  
UARTTX2  
nPWRFL  
UARTDCD2  
VDDC  
C4  
C5  
PF4/INT4/SCVCCEN  
VSS  
F2  
C6  
F3  
C7  
nPWME0  
nOE  
F4  
C8  
F5  
MEDCHG  
nBATCHG  
C9  
DQM0  
F6  
C10  
C11  
C12  
C13  
VDD  
F7  
F8  
F9  
VSS  
nRAS  
nWE0  
VDD  
D28  
nSCS0  
Preliminary data sheet  
Rev. 01 16 July 2007  
17  
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
Table 7. 256-Ball LFBGA Package  
Table 7. 256-Ball LFBGA Package  
Numerical Pin List  
Numerical Pin List  
LFBGA PIN  
SIGNAL  
LFBGA PIN  
SIGNAL  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
G1  
VDDC  
J6  
J7  
SSPRX  
SSPTX  
VDDC  
VDD  
VDD  
D19  
J8  
A17/SB1  
VDD  
J9  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
K1  
D8  
D16  
A7/SA5  
D7  
A15/SA13  
COL1  
A6/SA4  
VSS  
G2  
COL0  
G3  
UARTRX2  
UARTDSR2  
UARTIRTX1  
UARTIRRX1  
VSSC  
VDD  
D6  
G4  
A8/SA6  
PA0/LCDVD16  
PA1/LCDVD17  
PA2  
G5  
G6  
K2  
G7  
K3  
G8  
K4  
PA3  
G9  
D13  
K5  
PA5  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
H1  
A13/SA11  
A14/SA12  
D15  
K6  
PA4  
K7  
VSS  
K8  
VDDC  
PE1/LCDVD5  
PD1/LCDVD9  
D3  
VSS  
K9  
D14  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
L1  
A12/SA10  
D12  
A3/SA1  
A4/SA2  
D5  
COL7  
H2  
COL6  
H3  
COL2  
VDD  
H4  
VSSC  
COL3  
A5/SA3  
PA6  
H5  
H6  
COL4  
L2  
PA7  
H7  
COL5  
L3  
PB0/UARTRX1  
VSSC  
PB4/UARTDCD3  
VDDC  
VDD  
H8  
VSSC  
VSS  
L4  
H9  
L5  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
J1  
A10/SA8  
D11  
L6  
L7  
A11/SA9  
VDD  
L8  
VSS  
L9  
VSSC  
VSS  
D10  
L10  
L11  
L12  
A9/SA7  
D9  
D0  
VSS  
TBUZ  
L13  
L14  
L15  
L16  
M1  
D1  
J2  
J3  
J4  
J5  
SSPFRM/nSSPFRM  
SSPCLK  
D2  
A2/SA0  
VDDC  
D4  
PGMCLK  
PB1/UARTTX3  
18  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
Table 7. 256-Ball LFBGA Package  
Table 7. 256-Ball LFBGA Package  
Numerical Pin List  
Numerical Pin List  
LFBGA PIN  
SIGNAL  
LFBGA PIN  
SIGNAL  
M2  
M3  
PB2/UARTRX3  
PB3/UARTCTS3  
PB7/SMBCLK  
PC3/LCDREV  
PG0/nPCOE  
PH2/nPCSLOTE1  
LCDVD0  
P14  
P15  
P16  
R1  
nCS0  
nTEST0  
M4  
nCS1  
M5  
PC2/LCDVDDEN  
PC6/LCDHRLP  
PG3/nPCIOW  
PG6/nPCCE2  
VSSC  
M6  
R2  
M7  
R3  
M8  
R4  
M9  
PD0/LCDVD8  
VDDA  
R5  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
N1  
R6  
PH4/nPCWAIT1  
PH5/CFA10/PCMCIAA24/nPCWAIT2  
LCDVD2  
VSS  
R7  
CLKEN  
R8  
XTAL32OUT  
VSS  
R9  
LCDLP  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
T1  
PE3/LCDVD7  
PD5/LCDVD13  
PD6/LCDVD14  
VSSA  
A0/nWE1  
A1/nWE2  
PB5/UARTDSR3  
PB6/SWID/SMBD  
VSSC  
N2  
XTALIN  
N3  
XTALOUT  
N4  
PC5/LCDCLS  
PC7/LCDSPL  
VDD  
USBDN  
N5  
PG1/nPCWE  
PG4/nPCREG  
PG7/PCDIR  
N6  
T2  
N7  
VSSC  
T3  
N8  
VDD  
T4  
PH1/CFA8/PCRESET2  
PH3/CFA9/PCMCIAA25/nPCSLOTE2  
PH7/nPCSTATRE  
LCDFP  
N9  
LCDDCLK  
VSSC  
T5  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
P1  
T6  
VSSA  
T7  
VDD  
T8  
LCDVD3  
VDD  
T9  
PE0/LCDVD4  
PE2/LCDVD6  
PD3/LCDVD11  
PD4/LCDVD12  
PD7/LCDVD15  
WIDTH0  
XTAL32IN  
nCS2  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
nCS3/nMMSPICS  
PC0/UARTTX1  
PC1/LCDPS  
PC4/LCDSPS  
PG2/nPCIOR  
PG5/nPCCE1  
PH0/PCRESET1  
P2  
P3  
WIDTH1  
P4  
USBDP  
P5  
P6  
P7  
P8  
PH6/AC97RESET  
LCDVD1  
P9  
LCDENAB/LCDM  
PD2/LCDVD10  
VDD  
P10  
P11  
P12  
P13  
VDDA  
nTEST1  
Preliminary data sheet  
Rev. 01 16 July 2007  
19  
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
TOUCH  
SCREEN  
CONTR.  
ROM  
FLASH  
1
4
7
2
5
8
0
3
6
9
#
SMART  
CARD  
*
SSP  
UART  
SRAM  
STN/TFT/  
AD-TFT  
GPIO  
SCI  
MULTIMEDIA  
CARD  
MMC  
SDRAM  
LH7A400  
DMA  
COMPACT  
FLASH  
CODEC  
AC97  
PC  
CARD  
PCMCIA  
UART  
USB  
IR  
BMI  
DC to DC  
VOLTAGE  
GENERATION  
CIRCUITRY  
BATTERY  
LH7A400-3  
Figure 4. Application Diagram  
The 32.768 kHz clock provides the source for the  
Real Time Clock tree and power-down logic.This clock  
is used for the power state control in the design and is  
the only clock in the LH7A400 that runs permanently.  
The 32.768 kHz clock is divided down to 1 Hz using a  
ripple divider to save power. This generated 1 Hz clock  
is used in the Real Time Clock counter.  
SYSTEM DESCRIPTIONS  
ARM922T Processor  
The LH7A400 microcontroller features the  
ARM922T cached core with an Advanced High Perfor-  
mance Bus (AHB) interface. The processor is a mem-  
ber of the ARM9T family of processors. For more  
information, see the ARM document, ‘ARM922T Tech-  
nical Reference Manual’, available on ARM’s website  
at www.arm.com.  
The 14.7456 MHz source is used to generate the  
main system clocks for the LH7A400. It is the source  
for PLL1 and PLL2, it acts as the primary clock to the  
peripherals and is the source clock to the Programma-  
ble clock (PGM) divider.  
Clock and State Controller  
The clocking scheme in the LH7A400 is based  
around two primary oscillator inputs. These are the  
14.7456 MHz input crystal and the 32.768 kHz real time  
clock oscillator. See Figure 5. The 14.7456 MHz oscil-  
lator is used to generate the main system clock  
domains for the LH7A400, where as the 32.768 kHz is  
used for controlling the power down operations and  
real time clock peripheral. The clock and state control-  
ler provides the clock gating and frequency division  
necessary, and then supplies the clocks to the proces-  
sor and to the rest of the system. The amount of clock  
gating that actually takes place is dependent on the  
current power saving mode selected.  
PLL1 provides the main clock tree for the chip, it  
generates the following clocks: FCLK, HCLK and  
PCLK. FCLK is the clock that drives the ARM922T  
core. HCLK is the main bus (AHB) clock, as such it  
clocks all memory interfaces, bus arbitrators and the  
AHB peripherals. HCLK is generated by dividing FCLK  
by 1, 2, 3, or 4. HCLK can be gated by the system to  
enable low power operation. PCLK is the peripheral  
bus (APB) clock. It is generated by dividing HCLK by  
either 2, 4, or 8.  
PLL2 is used to generate a fixed frequency of  
48 MHz for the USB peripheral.  
20  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
14.7456 MHz  
MAIN OSC.  
FCLK  
32.768 kHz  
RTC OSC.  
STATE CONTROLLER  
HCLK  
(TO PROCESSOR CORE)  
DIVIDE REGISTER  
HCLK  
/2, /4, /8  
PCLKs  
LH7A400-4  
Figure 5. Clock and State Controller Block Diagram  
Power Modes  
Data Paths  
The LH7A400 has three operational states: Run,  
Halt, and Standby. In Run mode, all clocks are hard-  
ware-enabled and the processor is clocked. Halt mode  
stops the processor clock while waiting for an event  
such as a key press, but the device continues to func-  
tion. Finally, Standby equates to the computer being  
switched ‘off’, i.e. no display (LCD disabled) and the  
main oscillator is shut down. The 32.768 kHz oscillator  
operates in all three modes.  
The data paths in the LH7A400 are:  
• The AMBA AHB bus  
• The AMBA APB bus  
• The External Bus Interface  
• The LCD AHB bus  
• The DMA busses.  
AMBA AHB BUS  
The Advanced Microprocessor Bus Architecture  
Advanced High-performance Bus (AMBA AHB) bus is a  
high speed 32-bit-wide data bus. The AMBA AHB is for  
high-performance, high clock frequency system modules.  
Reset Modes  
There are three external signals that can generate  
resets to the LH7A400; these are nPOR (power on  
reset), nPWRFL (power failure) and nURESET (user  
reset). If any of these are active, a system reset is gen-  
erated internally. A nPOR reset performs a full system  
reset. The nPWRFL and nURESET resets will perform  
a full system reset except for the SDRAM refresh con-  
trol, SDRAM Global Configuration, SDRAM Device  
Configuration and the RTC peripheral registers. The  
SDRAM controller will issue a self-refresh command to  
external SDRAM before the system enters this reset  
(the nPWRFL and nURESET resets only, not so for the  
nPOR reset). This allows the system to maintain its  
Real Time Clock and SDRAM contents. On coming out  
of reset, the chip enters Standby mode. Once in Run  
mode the PWRSR register can be interrogated to deter-  
mine the nature of the reset, and the trigger source,  
after which software can then take appropriate actions.  
Peripherals that have high bandwidth requirements  
are connected to the LH7A400 core processor using  
the AHB bus. These include the external and internal  
memory interfaces, the LCD registers, palette RAM  
and the bridge to the Advanced Peripheral Bus (APB)  
interface. The APB Bridge transparently converts the  
AHB access into the slower speed APB accesses. All  
of the control registers for the APB peripherals are pro-  
grammed using the AHB - APB bridge interface. The  
main AHB data and address lines are configured using  
a multiplexed bus. This removes the need for tri-state  
buffers and bus holders, and simplifies bus arbitration.  
Preliminary data sheet  
Rev. 01 16 July 2007  
21  
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
AMBA APB BUS  
The LH7A400 can boot from either synchronous or  
asynchronous ROM/Flash. The selection is determined  
by the value of the MEDCHG pin at Power On Reset as  
shown in Table 8. When booting from synchronous  
memory, then synchronous bank 4 (nSCS3) is mapped  
into memory location zero. When booting from asyn-  
chronous memory, asynchronous memory bank 0  
(nSCS0) is mapped into memory location zero.  
The AMBA APB bus is a lower-speed 32-bit-wide  
peripheral data bus. The speed of this bus is selectable  
to be a divide-by-2, divide-by-4 or divide-by-8 of the  
speed of the AHB bus.  
EXTERNAL BUS INTERFACE  
The External Bus Interface (EBI) provides a 32-bit  
wide, high speed gateway to external memory devices.  
The memory devices supported include:  
Figure 6 shows the memory map of the LH7A400  
system for the two boot modes.  
• Asynchronous RAM/ROM/Flash  
• Synchronous DRAM/Flash  
• PCMCIA interfaces  
Once the LH7A400 has booted, the boot code can  
configure the ARM922T MMU to remap the low mem-  
ory space to a location in RAM. This allows the user to  
set the interrupt vector table.  
• CompactFlash interfaces.  
The EBI can be controlled by either the Asynchro-  
nous memory controller or Synchronous memory con-  
troller. There is an arbiter on the EBI input, with priority  
given to the Synchronous Memory Controller interface.  
Table 8. Boot Modes  
LATCHED LATCHED  
LATCHED  
BOOT MODE  
BOOT-  
WIDTH1  
BOOT-  
WIDTH0  
MEDCHG  
8-bit ROM  
0
0
1
1
0
1
0
1
0
0
0
0
LCD AHB BUS  
16-bit ROM  
32-bit ROM  
32-bit ROM  
The LCD controller has its own local memory bus  
that connects it to the system’s embedded memory and  
external SDRAM. The function of this local data bus is  
to allow the LCD controller to perform its video refresh  
function without congesting the AHB bus. This leads to  
better system performance and lower power consump-  
tion. There is an arbiter on both the embedded memory  
and the synchronous memory controller. In both cases  
the LCD bus is given priority.  
16-bit SFlash  
(Initializes Mode Register)  
0
0
1
1
0
1
0
1
1
1
1
1
16-bit SROM  
(Initializes Mode Register)  
32-bit SFlash  
(Initializes Mode Register)  
32-bit SROM  
(Initializes Mode Register)  
DMA BUSES  
The LH7A400 has a DMA system that connects the  
higher speed/higher data volume APB peripherals  
(MMC, USB and AC97) to the AHB bus. This enables  
the efficient transfer of data between these peripherals  
and external memory without the intervention of the  
ARM922T core. The DMA engine does not support  
memory to memory transfers.  
Interrupt Controller  
The LH7A400 interrupt controller is designed to con-  
trol the interrupts from 28 different sources. Four inter-  
rupt sources are mapped to the FIQ input of the  
ARM922T and 24 are mapped to the IRQ input. FIQs  
have a higher priority than the IRQs. If two interrupts  
with the same priority become active at the same time,  
the priority must be resolved in software.  
Memory Map  
When an interrupt becomes active, the interrupt con-  
troller generates an FIQ or IRQ if the corresponding  
mask bit is set. No latching of interrupts takes place in  
the controller. After a Power On Reset all mask register  
bits are cleared, therefore masking all interrupts.  
Hence, enabling of the mask register must be done by  
software after a power-on-reset.  
The LH7A400 system has a 32-bit-wide address bus.  
This allows it to address up to 4GB of memory. This  
memory space is subdivided into a number of memory  
banks; see Figure 6. Four of these banks (each of  
256MB) are allocated to the Synchronous memory con-  
troller. Eight of the banks (again, each 256MB) are allo-  
cated to the Asynchronous memory controller. Two of  
these eight banks are designed for PCMCIA systems.  
Part of the remaining memory space is allocated to the  
embedded SRAM, and to the control registers of the  
AHB and APB. The rest is unused.  
22  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
256MB  
256MB  
F000.0000  
E000.0000  
ASYNCHRONOUS MEMORY (nCS0)  
SYNCHRONOUS MEMORY (nSCS3)  
SYNCHRONOUS MEMORY (nSCS2)  
SYNCHRONOUS MEMORY (nSCS1)  
SYNCHRONOUS MEMORY (nSCS0)  
RESERVED  
SYNCHRONOUS MEMORY (nSCS2)  
SYNCHRONOUS MEMORY (nSCS1)  
SYNCHRONOUS MEMORY (nSCS0)  
256MB  
256MB  
D000.0000  
C000.0000  
B001.4000  
B000.0000  
RESERVED  
80KB  
EMBEDDED SRAM  
EMBEDDED SRAM  
RESERVED  
RESERVED  
8000.3800  
8000.2000  
AHB INTERNAL REGISTERS  
APB INTERNAL REGISTERS  
ASYNCHRONOUS MEMORY (CS7)  
ASYNCHRONOUS MEMORY (CS6)  
PCMCIA/CompactFlash (nPCSLOTE2)  
PCMCIA/CompactFlash (nPCSLOTE1)  
ASYNCHRONOUS MEMORY (nCS3)  
ASYNCHRONOUS MEMORY (nCS2)  
ASYNCHRONOUS MEMORY (nCS1)  
SYNCHRONOUS ROM (nSCS3)  
AHB INTERNAL REGISTERS  
APB INTERNAL REGISTERS  
ASYNCHRONOUS MEMORY (CS7)  
ASYNCHRONOUS MEMORY (CS6)  
PCMCIA/CompactFlash (nPCSLOTE2)  
PCMCIA/CompactFlash (nPCSLOTE1)  
ASYNCHRONOUS MEMORY (nCS3)  
ASYNCHRONOUS MEMORY (nCS2)  
ASYNCHRONOUS MEMORY (nCS1)  
ASYNCHRONOUS ROM (nCS0)  
8000.0000  
7000.0000  
256MB  
256MB  
256MB  
6000.0000  
5000.0000  
256MB  
256MB  
256MB  
256MB  
256MB  
4000.0000  
3000.0000  
2000.0000  
1000.0000  
0000.0000  
SYNCHRONOUS MEMORY BOOT  
ASYNCHRONOUS MEMORY BOOT  
LH7A400-6  
Figure 6. Memory Mapping for Each Boot Mode  
4 kB page boundary in SDRAM, allowing software to  
set the MMU (in the LCD controller) page tables such  
that the two memory areas appear contiguous. Byte,  
Half-Word and Word accesses are permissible.  
External Bus Interface  
The external bus interface allows the ARM922T,  
LCD controller and DMA engine access to an external  
memory system. The LCD controller has access to an  
internal frame buffer in embedded SRAM and an exten-  
sion buffer in Synchronous Memory for large displays.  
The processor and DMA engine share the main system  
bus, providing access to all external memory devices  
and the embedded SRAM frame buffer.  
Asynchronous Memory Controller  
The Asynchronous memory controller is incorpo-  
rated as part of the memory controller to provide an  
interface between the AMBA AHB system bus and  
external (off-chip) memory devices.  
An arbitration unit ensures that control over the  
External Bus Interface (EBI) is only granted when an  
existing access has been completed. See Figure 7.  
The Asynchronous Memory Controller provides sup-  
port for up to eight independently configurable memory  
banks simultaneously. Each memory bank is capable  
of supporting:  
Embedded SRAM  
• SRAM  
The amount of Embedded SRAM contained in the  
LH7A400 is 80 kB. This Embedded memory is  
designed to be used for storing code, data, or LCD  
frame data and to be contiguous with external SDRAM.  
The 80 kB is large enough to store a QVGA panel (320  
× 240) at 8 bits per pixel, equivalent to 70 kB of informa-  
tion.  
• ROM  
• Flash EPROM  
• Burst ROM memory.  
Each memory bank may use devices using either 8-,  
16-, or 32-bit external memory data paths. The memory  
controller supports only little-endian operation.  
Containing the frame buffer on chip reduces the  
overall power consumed in any application that uses  
the LH7A400. Normally, the system has to perform  
external accesses to acquire this data. The LCD con-  
troller is designed to automatically use an overflow  
frame buffer in SDRAM if a larger screen size is  
required. This overflow buffer can be located on any  
The memory banks can be configured to support:  
• Non-burst read and write accesses only to high-  
speed CMOS static RAM.  
• Non-burst write accesses, nonburst read accesses  
and asynchronous page mode read accesses to  
fast-boot block flash memory.  
Preliminary data sheet  
Rev. 01 16 July 2007  
23  
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
EXTERNAL TO  
THE LH7A400  
INTERNAL TO  
THE LH7A400  
ARM922T  
ASYNCHRONOUS  
STATIC  
MEMORY  
CONTROLLER  
(SMC)  
SDRAM  
SDRAM  
SRAM  
ROM  
EXTERNAL  
BUS  
INTERFACE  
(EBI)  
DATA  
PCMCIA/CF  
SUPPORT  
ADDRESS  
and  
CONTROL  
SYNCHRONOUS  
DYNAMIC  
MEMORY  
CONTROLLER  
(SDMC)  
80KB  
EMBEDDED  
SRAM  
LCD  
AHB  
LCD MEMORY  
MANAGEMENT  
UNIT (MMU)  
COLOR LCD  
CONTROLLER  
(CLCDC)  
DMA  
CONTROLLER  
AD-TFT  
LCD TIMING  
CONTROLLER  
ADVANCED  
HIGH-PERFORMANCE  
BUS (AHB)  
LH7A400-8  
Figure 7. External Bus Interface Block Diagram  
24  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
The Asynchronous Memory Controller has six main  
functions:  
MMC bus lines can be divided into three groups:  
• Power supply: VDD and VSS  
• Data Transfer: MMCCMD, MMCDATA  
• Clock: MMCLK.  
• Memory bank select  
• Access sequencing  
• Wait states generation  
• Byte lane write control  
• External bus interface  
• CompactFlash or PCMCIA interfacing.  
MULTIMEDIACARD ADAPTER  
The MultiMediaCard Adapter implements MultiMedia-  
Card specific functions, serves as the bus master for the  
MultiMediacard Bus and implements the standard inter-  
face to the MultiMediaCard Cards (card initialization,  
CRC generation and validation, command/response  
transactions, etc.).  
Synchronous Memory Controller  
The Synchronous memory controller provides a high  
speed memory interface to a wide variety of Synchro-  
nous memory devices, including SDRAM, Synchro-  
nous Flash and Synchronous ROMs.  
Smart Card Interface (SCI)  
The SCI (ISO7816) interfaces to an external Smart  
Card reader. The SCI can autonomously control data  
transfer to and from the smart card. Transmit and  
receive data FIFOs are provided to reduce the required  
interaction between the CPU core and the peripheral.  
The key features of the controller are:  
• LCD DMA port for high bandwidth  
• Up to four Synchronous Memory banks that can be  
independently set up  
• Special configuration bits for Synchronous ROM  
operation  
SCI FEATURES  
• Supports asynchronous T0 and T1 transmission  
protocols  
• Ability to program Synchronous Flash devices using  
write and erase commands  
• Supports clock rate conversion factor F = 372, with  
bit rate adjustment factors D = 1, 2, or 4 supported  
• On booting from Synchronous ROM, (and optionally  
with Synchronous Flash), a configuration sequence is  
performed before releasing the processor from reset  
• Eight-character-deep buffered Tx and Rx paths  
• Direct interrupts for Tx and Rx FIFO level monitoring  
• Interrupt status register  
• Data is transferred between the controller and the  
SDRAM in quad-word bursts. Longer transfers within  
the same page are concatenated, forming a seam-  
less burst  
• Hardware-initiated card deactivation sequence on  
detection of card removal  
• Programmable for 16- or 32-bit data bus size  
• Software-initiated card deactivation sequence on  
transaction complete  
• Two reset domains are provided to enable SDRAM  
contents to be preserved over a ‘soft’ reset  
• Limited support for synchronous Smart Cards via  
registered input/output.  
• Power saving Synchronous Memory SCKE and  
external clock modes provided.  
PROGRAMMABLE PARAMETERS  
• Smart Card clock frequency  
MultiMediaCard (MMC)  
• Communication baud rate  
• Protocol convention  
The MMC adapter combines all of the requirements  
and functions of an MMC host. The adapter supports  
the full MMC bus protocol, defined by the MMC Defini-  
tion Group’s specification v.2.11. The controller can  
also implement the SPI interface to the cards.  
• Card activation/deactivation time  
• Check for maximum time for first character of  
Answer to Reset - ATR reception  
• Check for maximum duration of ATR character  
stream  
INTERFACE DESCRIPTION AND MMC OVERVIEW  
The MMC controller uses the three-wire serial data  
bus (clock, command, and data) to transfer data to and  
from the MMC card, and to configure and acquire status  
information from the card’s registers.  
• Check for maximum time of receipt of first character  
of data stream  
• Check for maximum time allowed between characters  
• Character guard time  
• Block guard time  
• Transmit/receive character retry.  
Preliminary data sheet  
Rev. 01 16 July 2007  
25  
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
Direct Memory Access Controller (DMA)  
Color LCD Controller  
The DMA Controller interfaces streams from the fol-  
lowing three peripherals to the system memory:  
The LH7A400’s LCD Controller is programmable to  
support up to 1,024 × 768, 16-bit color LCD panels. It  
interfaces directly to STN, color STN, TFT, AD-TFT,  
and HR-TFT panels. Unlike other LCD controllers, the  
LH7A400’s LCD Controller incorporates the timing con-  
version logic from TFT to HR- and AD-TFT, allowing a  
direct interface to these panels and minimizing external  
chip count.  
• USB (1 Tx and 1 Rx DMA Channel)  
• MMC (1 Tx and 1 Rx DMA Channel)  
• AC97 (3 Tx and 3 Rx DMA Channels).  
Each has its own bi-directional peripheral DMA bus  
capable of transferring data in both directions simulta-  
neously. All memory transfers take place via the main  
system AHB bus.  
The Color LCD Controller features support for:  
• Up to 1,024 × 768 Resolution  
• 16-bit Video Bus  
DMA Specific features are:  
• Independent DMA channels for Tx and Rx  
• STN, Color STN, AD-TFT, HR-TFT, TFT panels  
• Single and Dual Scan STN panels  
• Up to 15 Gray Shades  
• Two Buffer Descriptors per channel to avoid poten-  
tial data under/over-flows due to software introduced  
latency  
• No Buffer wrapping  
• Up to 64,000 Colors  
• Buffer size may be equal to, greater than, or less  
than the packet size. Transfers can automatically  
switch between buffers.  
AC97 Advanced Audio Codec Interface  
The AC97 Advanced Audio Codec controller  
includes a 5-pin serial interface to an external audio  
codec. The AC97 LINK is a bi-directional, fixed rate,  
serial Pulse Code Modulation (PCM) digital stream,  
dividing each audio frame into 12 outgoing and 12  
incoming data streams (slots), each with 20-bit sample  
resolution.  
• Maskable interrupt generation  
• Internal arbitration between DMA Channels and  
external bus arbiter.  
• For DMA Data transfer sizes, byte, word and quad-  
word data transfers are supported.  
A set of control and status registers are available to  
the system processor for setting up DMA operations  
and monitoring their status. A system interrupt is gen-  
erated when any or all of the DMA channels wish to  
inform the processor that a new buffer needs to be allo-  
cated. The DMA controller services three peripherals  
using ten DMA channels, each with its own peripheral  
DMA bus capable of transferring data in both directions  
simultaneously.  
The AC97 controller contains logic that controls the  
AC97 link to the Audio Codec and an interface to the  
AMBA APB.  
Its main features include:  
• Serial-to-parallel conversion for data received from  
the external codec  
• Parallel-to-serial conversion for data transmitted to  
the external codec  
The MMC and USB peripherals each use two DMA  
channels, one for transmit and one for receive. The  
AC97 peripheral uses six DMA channels (three trans-  
mit and three receive) to allow different sample fre-  
quency data queues to be handled with low software  
overheads. The DMA Controller does not support  
memory to memory transfers.  
• Reception/Transmission of control and status infor-  
mation via the AMBA APB interface  
• Supports up to 4 different codec sampling rates at a  
time with its 4 transmit and 4 receive channels. The  
transmit and receive paths are buffered with internal  
FIFO memories, allowing data to be stored indepen-  
dently in both transmit and receive modes. The out-  
going data for the FIFOs can be written via either the  
APB interface or with DMA channels 1 - 3.  
USB Device  
The features of the USB are:  
• Fully compliant to USB 1.1 specification  
• Provides a high level interface that shields the firm-  
ware from USB protocol details  
• Compatible with both OpenHCI and Intel’s UHCI  
standards  
• Supports full-speed (12 Mbps) functions  
• Supports Suspend and Resume signalling.  
26  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
The transmit and receive paths are buffered with inter-  
nal FIFO memories allowing up to 16 bytes to be stored  
independently in both transmit and receive modes.  
Audio Codec Interface (ACI)  
The ACI provides:  
• A digital serial interface to an off-chip 8-bit CODEC  
The UART can generate:  
• All the necessary clocks and timing pulses to per-  
form serialization or de-serialization of the data  
stream to or from the CODEC device.  
• Four individually maskable interrupts from the  
receive, transmit and modem status logic blocks  
• A single combined interrupt so that the output is  
asserted if any of the individual interrupts are  
asserted and unmasked.  
The interface supports full duplex operation and the  
transmit and receive paths are buffered with internal  
FIFO memories allowing up to 16 bytes to be stored  
independently in both transmit and receive modes.  
If a framing, parity, or break error occurs during  
reception, the appropriate error bit is set, and is stored  
in the FIFO. If an overrun condition occurs, the overrun  
register bit is set immediately and the FIFO data is pre-  
vented from being overwritten. UART1 also supports  
IrDA 1.0 (15.2 kbit/s).  
The ACI includes a programmable frequency divider  
that generates a common transmit and receive bit clock  
output from the on-chip ACI clock input (ACICLK).  
Transmit data values are output synchronous with the  
rising edge of the bit clock output. Receive data values  
are sampled on the falling edge of the bit clock output.  
The start of a data frame is indicated by a synchroniza-  
tion output signal that is synchronous with the bit clock.  
The modem status input signals Clear to Send  
(CTS), Data Carrier Detect (DCD) and Data Set Ready  
(DSR) are supported on UART2 and UART3.  
Synchronous Serial Port (SSP)  
Timers  
The LH7A400 SSP is a master-only interface for  
synchronous serial communication with device periph-  
eral devices that has either Motorola SPI, National  
Semiconductor MICROWIRE or Texas Instruments  
Synchronous Serial Interfaces.  
Two identical timers are integrated in the LH7A400.  
Each of these timers has an associated 16-bit read/write  
data register and a control register. Each timer is loaded  
with the value written to the data register immediately,  
this value will then be decremented on the next active  
clock edge to arrive after the write. When the timer  
underflows, it will immediately assert its appropriate  
interrupt. The timers can be read at any time. The clock  
source and mode is selectable by writing to various bits  
in the system control register. Clock sources are  
508 kHz and 2 kHz.  
The LH7A400 SSP performs serial-to-parallel con-  
version on data received from a peripheral device. The  
transmit and receive paths are buffered with internal  
FIFO memories allowing up to eight 16-bit values to be  
stored independently in both transmit and receive  
modes. Serial data is transmitted on SSPTXD and  
received on SSPRXD.  
Timer 3 (TC3) has the same basic operation, but is  
clocked from a single 7.3728 MHz source. It has the  
same register arrangement as Timer 1 and Timer 2, pro-  
viding a load, value, control and clear register. Once the  
timer has been enabled and is written to, unlike the  
Timer 1 and Timer 2, will decrement the timer on the  
next rising edge of the 7.3728 MHz clock after the data  
register has been updated. All the timers can operate in  
two modes, free running mode or pre-scale mode.  
The LH7A400 SSP includes a programmable bit rate  
clock divider and prescaler to generate the serial output  
clock SCLK from the input clock SSPCLK. Bit rates are  
supported to 2 MHz and beyond, subject to choice of  
frequency for SSPCLK; the maximum bit rate will usu-  
ally be determined by peripheral devices.  
UART/IrDA  
The LH7A400 contains three UARTs, UART1,  
UART2, and UART3.  
FREE-RUNNING MODE  
In free-running mode, the timer will wrap around to  
0xFFFF when it underflows and continue counting down.  
The UART performs:  
• Serial-to-Parallel conversion on data received from  
the peripheral device  
PRE-SCALE MODE  
In pre-scale (periodic) mode, the value written to  
each timer is automatically re-loaded when the timer  
underflows. This mode can be used to produce a pro-  
grammable frequency to drive an external buzzer or  
generate a periodic interrupt.  
• Parallel-to-Serial conversion on data transmitted to  
the peripheral device.  
Preliminary data sheet  
Rev. 01 16 July 2007  
27  
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
Real Time Clock (RTC)  
DC-to-DC Converter  
The RTC can be used to provide a basic alarm func-  
tion or long time-base counter. This is achieved by gen-  
erating an interrupt signal after counting for a  
programmed number of cycles of a real-time clock  
input. Counting in one second intervals is achieved by  
use of a 1 Hz clock input to the RTC.  
The features of the DC-DC Converter interface are:  
• Dual drive PWM outputs, with independent closed  
loop feedback  
• Software programmable configuration of one of 8  
output frequencies (each being a fixed divide of the  
input clock).  
• Software programmable configuration of duty cycle  
from 0 to 15/16, in intervals of 1/16.  
Battery Monitor Interface (BMI)  
The LH7A400 BMI is a serial communication inter-  
face specified for two types of Battery Monitors/Gas  
Gauges. The first type employs a single wire interface.  
The second interface employs a two-wire multi-master  
bus, the Smart Battery System Specification. If both  
interfaces are enabled at the same time, the Single  
Wire Interface will have priority. A brief overview of  
these two interface types are given here.  
• Output polarity (for positive or negative voltage gen-  
eration) is hardware-configured during power-on  
reset via the polarity select inputs  
• Each PWM output can be dynamically switched to  
one of a pair of preprogrammed frequency/duty  
cycle combinations via external pins.  
Watchdog Timer (WDT)  
SINGLE WIRE INTERFACE  
The Watchdog Timer provides hardware protection  
against malfunctions. It is a programmable timer that is  
reset by software at regular intervals. Failure to reset  
the timer will cause a FIQ interrupt. Failure to service  
the FIQ interrupt will then generate a System Reset.  
The WDT features are:  
The Single Wire Interface performs:  
• Serial-to-parallel conversion on data received from  
the peripheral device  
• Parallel-to-serial conversion on data transmitted to  
the peripheral device  
• Driven by the system clock  
• Data packet coding/decoding on data transfers  
(incorporating Start/Data/Stop data packets)  
16  
31  
• 16 programmable time-out periods: 2 through 2  
clock cycles  
The Single Wire interface uses a command-based  
protocol, in which the host initiates a data transfer by  
sending a WriteData/Command word to the Battery  
Monitor. This word will always contain the Command  
section, which tells the Single Wire Interface device the  
location for the current transaction. The most signifi-  
cant bit of the Command determines if the transaction  
is Read or Write. In the case of a Write transaction,  
then the word will also contain a WriteData section with  
the data to be written to the peripheral.  
• Generates a system reset (resets LH7A400) or a  
FIQ Interrupt whenever a time-out period is reached  
• Software enable, lockout, and counter-reset mecha-  
nisms add security against inadvertent writes  
• Protection mechanism guards against  
interrupt-service-failure:  
– The first WDT time-out triggers FIQ and asserts  
nWDFIQ status flag  
– If FIQ service routine fails to clear nWDFIQ, then  
the next WDT time-out triggers a System Reset.  
SMART BATTERY INTERFACE  
The SMBus Interface performs:  
General Purpose I/O (GPIO)  
• Serial-to-Parallel conversion on data received from  
the peripheral device  
The LH7A400 GPIO has eight ports, each with a  
data register and a data direction register. It also has  
added registers including Keyboard Scan, PINMUX,  
GPIO Interrupt Enable, INTYPE1/2, GPIOFEOI, and  
PGHCON.  
• Parallel-to-Serial conversion of data transmitted to  
the peripheral device.  
The Smart Battery Interface uses a two-wire multi-  
master bus (the SMBus), meaning that more than one  
device capable of controlling the bus can be connected  
to it. A master device initiates a bus transfer and provides  
the clock signals. A slave device can receive data pro-  
vided by the master or it can provide data to the master.  
Since more than one device may attempt to take control  
of the bus as a master, SMBus provides an arbitration  
mechanism, by relying on the wired-AND connection of  
all SMBus interfaces to the SMBus.  
The data direction register determines whether a  
port is configured as an input or an output while the  
data register is used to read the value of the GPIO pins.  
The GPIO Interrupt Enable, INTYPE1/2, and GPI-  
OFEOI registers are used to control edge-triggered  
Interrupts on Port F. The PINMUX register controls  
what signals are output of Port D and Port E when they  
are set as outputs, while the PGHCON controls the  
operations of Port G and H.  
28  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings  
PARAMETER  
MINIMUM MAXIMUM  
DC Core Supply Voltage (VDDC)  
DC I/O Supply Voltage (VDD)  
0.3 V  
0.3 V  
0.3 V  
0.5 V  
2.4 V  
4.6 V  
2.4 V  
5.5 V  
2 kV  
DC Analog Supply Voltage (VDDA)  
5 V Tolerant Digital Input Pin Voltage  
ESD, Human Body Model (Analog pins AN0 - AN9 rated at 500 V)  
ESD, Charged Device Model  
1 kV  
Storage Temperature  
55°C  
125°C  
NOTE: Except for Storage Temperature, these ratings are only for  
transient conditions. Operation at or beyond absolute maxi-  
mum rating conditions may affect reliability and cause per-  
manent damage to the device.  
Recommended Operating Conditions  
PARAMETER  
MINIMUM  
TYPICAL  
MAXIMUM  
NOTES  
DC Core Supply Voltage (VDDC)  
DC Core Supply Voltage (VDDC)  
DC I/O Supply Voltage (VDD)  
1.71 V  
2.0 V  
1.8 V  
2.1 V  
3.3 V  
3.3 V  
1.8 V  
1.89 V  
2.2 V  
1, 4  
1, 5  
2, 6  
2, 7  
3.0 V  
3.6 V  
DC I/O Supply Voltage (VDD)  
3.14 V  
1.71 V  
10 MHz  
10 MHz  
3.6 V  
DC Analog Supply Voltage for PLLs (VDDA)  
Clock Frequency (0°C to +70°C)  
Clock Frequency (40°C to +85°C)  
Bus Clock Frequency (40°C to +85°C)  
Clock Frequency (0°C to +70°C)  
Clock Frequency (40°C to +85°C)  
Bus Clock Frequency (40°C to +85°C)  
External Clock Input (XTALIN)  
External Clock Input (XTALIN) Voltage  
Operating Temperature  
1.89 V  
200 MHz  
195 MHz  
100 MHz  
250 MHz  
245 MHz  
125 MHz  
20 MHz  
1.89 V  
3, 4, 6  
3, 4, 6  
3, 4, 6  
3, 5, 7  
3, 5, 7  
3, 5, 7  
8
10 MHz  
10 MHz  
14 MHz  
1.71 V  
14.7456 MHz  
1.8 V  
40°C  
25°C  
+85°C  
NOTES:  
1. Core Voltage should never exceed I/O Voltage after initial power up. See “Power Supply Sequencing” on page 33  
2. USB is not functional below 3.0 V  
3. Using 14.7456 MHz Main Oscillator Crystal and 32.768 kHz RTC Oscillator Crystal  
4. VDDC = 1.71 V to 1.89 V (LH7A400N0G000xx)  
5. VDDC = 2.1 V ± 5 % (LH7A400N0G076xx only)  
6. VDD = 3.0 V to 3.6 V (LH7A400N0G000xx)  
7. VDD = 3.14V to 3.60 V (LH7A400N0G076xx only)  
8. IMPORTANT: Most peripherals will NOT function with crystals other than 14.7456 MHz.  
Preliminary data sheet  
Rev. 01 16 July 2007  
29  
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
245  
240  
235  
230  
225  
220  
215  
1.89 V (+5%)  
1.80 V  
210  
205  
200  
195  
1.71 V (-5%)  
85  
25  
35  
45  
55  
65  
75  
TEMP (°C)  
LH7A400-206  
Figure 8. Temperature/Voltage/Speed Chart  
(For LH7A400N0G000xx)  
Table 9. Clock Frequency vs. Voltages (VDDC) vs. Temperature  
PARAMETER  
1.71 V  
211 MHz 225 MHz 240 MHz  
4.74 ns 4.44 ns 4.17 ns  
200 MHz 212 MHz 227 MHz  
5.00 ns 4.72 ns 4.41 ns  
195 MHz 208 MHz 222 MHz  
5.13 ns 4.81 ns 4.50 ns  
1.8 V  
1.89 V  
Clock Frequency (FCLK)  
Clock Period (FCLK)  
25°C  
70°C  
Clock Frequency (FCLK)  
Clock Period (FCLK)  
Clock Frequency (FCLK)  
Clock Period (FCLK)  
85°C  
NOTES:  
1. Table 9 is representative of a typical wafer process. Guaranteed  
values are in the Recommended  
Operating Conditions table.  
2. LH7A400N0G000xx  
30  
Rev. 01 16 July 2007  
Preliminary data sheet  
 
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
DC/AC SPECIFICATIONS  
Unless otherwise noted, all data provided in these  
specifications are based on 40°C to +85°C, VDDC =  
1.71 V to 1.89 V, VDD = 3.0 V to 3.6 V, VDDA = 1.71 V  
to 1.89 V.  
DC Specifications  
SYMBOL  
PARAMETER  
MIN. TYP. MAX. UNIT  
CONDITIONS  
NOTES  
CMOS and Schmitt Trigger Input HIGH Volt-  
age  
VIH  
2.0  
5.5  
0.8  
V
V
CMOS and Schmitt Trigger Input LOW Volt-  
age  
VIL  
0.2  
VHST  
Schmitt Trigger Hysteresis  
Output Drive 2  
0.25  
2.6  
V
V
VIL to VIH  
IOH = 4 mA  
IOH = 8 mA  
IOH = 12 mA  
IOL = 4 mA  
VOH  
VOL  
Output Drive 3  
2.6  
V
Output Drive 4 and 5  
Output Drive 2  
2.6  
V
1
1
0.4  
0.4  
0.4  
0.4  
10  
V
Output Drive 3  
V
IOL = 8 mA  
Output Drive 4  
V
IOL = 12 mA  
IOL = 20 mA  
VIN = VDD or GND  
Output Drive 5  
V
Input Leakage Current  
10  
200  
10  
µA  
IIN  
Input Leakage Current  
(with pull-up resistors installed)  
20  
µA  
VIN = VDD or GND  
IOZ  
Output Tri-state Leakage Current  
10  
50  
µA  
µA  
mA  
mA  
µA  
pF  
VOUT = VDD or GND  
ISTARTUP Startup Current  
2
IACTIVE  
IHALT  
Active Current  
Halt Current  
125  
25  
180  
41  
ISTANDBY Standby Current  
42  
CIN  
Input Capacitance  
Output Capacitance  
4
4
COUT  
pF  
NOTES:  
1. Output Drive 5 can sink 20 mA of current, but sources 12 mA of current.  
2. Current consumption until oscillators are stabilized.  
AC Test Conditions  
PARAMETER  
RATING  
UNIT  
DC I/O Supply Voltage (VDD)  
3.0 to 3.6  
V
DC Core Supply Voltage (VDDC)  
Input Pulse Levels  
1.71 to 1.89  
VSS to 3  
2
V
V
Input Rise and Fall Times  
ns  
V
Input and Output Timing Reference Levels  
VDD/2  
Preliminary data sheet  
Rev. 01 16 July 2007  
31  
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
CURRENT CONSUMPTION BY OPERATING MODE  
Table 10. Current Consumption by Mode  
Current consumption can depend on a number of  
parameters. To make this data more usable, the values  
presented in Table 10 were derived under the condi-  
tions presented here.  
SYMBOL PARAMETER  
Maximum Specified Value  
The values specified in the MAXIMUM column were  
determined using these operating characteristics:  
TYP. MAX. TYP. UNITS  
ACTIVE MODE  
• All IP blocks either operating or enabled at maximum  
frequency and size configuration  
ICORE  
IIO  
Core Current  
I/ O Current  
110  
15  
135  
45  
250  
mA  
mA  
• Core operating at maximum power configuration  
• All voltages at maximum specified values  
HALT MODE (ALL PERIPHERALS DISABLED)  
• Maximum specified ambient temperature (tAMB).  
ICORE  
IIO  
Core Current  
I/ O Current  
24  
1
39  
2
50  
mA  
mA  
Typical  
STANDBY MODE (TYPICAL CONDITIONS ONLY)  
The values in the TYPICAL column were determined  
using a ‘typical’ application under ‘typical’ environmental  
conditions and the following operating characteristics:  
ICORE  
IIO  
Core Current  
I/ O Current  
40  
2
125  
4
µA  
µA  
• LINUX operating system running from SDRAM  
PERIPHERAL CURRENT CONSUMPTION  
• UART and AC97 peripherals operating; all other  
peripherals as needed by the OS  
In addition to the modal current consumption, Table  
11 shows the typical current consumption for each of  
the on-board peripheral blocks. The values were deter-  
mined with the CPU clock running at 200 MHz, typical  
conditions, and no I/O loads. This current is supplied by  
the 1.8 VDDC power supply.  
• LCD enabled with 320 × 240 × 16-bit color, 60 Hz  
refresh rate, data in SDRAM  
• I/O loads at nominal  
• Cache enabled  
• FCLK = 200 MHz or 250 MHz; HCLK = 100 MHz or  
125 MHz; PCLK = 50 MHz or 62.5 MHz  
Table 11. Peripheral Current Consumption  
• All voltages at typical values  
PERIPHERAL  
AC97  
TYPICAL  
UNITS  
• Nominal case temperature (tAMB).  
1.3  
1.0  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
UART (Each)  
RTC  
0.005  
0.1  
Timers (Each)  
LCD (+I/O)  
MMC  
5.4 (1.0)  
0.6  
SCI  
23  
PWM (each)  
BMI-SWI  
BMI-SBus  
SDRAM (+I/O)  
USB (+PLL)  
ACI  
< 0.1  
1.0  
1.0  
1.5 (14.8)  
5.6 (3.3)  
0.8  
32  
Rev. 01 16 July 2007  
Preliminary data sheet  
 
 
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
• ACBITCLK, AC97 clock  
Power Supply Sequencing  
NXP recommends that the 1.8 V power supply be  
energized before the 3.3 V supply. If this is not possi-  
ble, the 1.8 V supply may not lag the 3.3 V supply by  
more than 100 µs. If longer delay time is needed, it is  
recommended that the voltage difference between the  
two power supplies be within 1.5 V during power supply  
ramp up.  
• SCLK, Synchronous Memory clock.  
All signal transitions are measured at the 50 % point.  
For outputs from the LH7A400, tOVXXX (e.g. tOVA)  
represents the amount of time for the output to become  
valid from a valid address bus, or rising edge of the  
peripheral clock. Maximum requirements for tOVXXX  
are shown in Table 12.  
To avoid a potential latchup condition, voltage  
should be applied to input pins only after the device is  
powered-on as described above.  
The signal tOHXXX (e.g. tOHA) represents the  
amount of time the output will be held valid from the valid  
address bus, or rising edge of the peripheral clock. Min-  
imum requirements for tOHXXX are listed in Table 12.  
AC Specifications  
For Inputs, tISXXX (e.g. tISD) represents the amount  
of time the input signal must be valid before a valid  
address bus, or rising edge of the peripheral clock  
(except SSP and ACI). Maximum requirements for  
tISXXX are shown in Table 12.  
All signals described in Table 12 relate to transi-  
tions after a reference clock signal. The illustration in  
Figure 9 represents all cases of these sets of mea-  
surement parameters.  
The reference clock signals in this design are:  
• HCLK, internal System Bus clock (‘C’ in timing data)  
• PCLK, Peripheral Bus clock  
The signal tIHXXX (e.g. tIHD) represents the  
amount of time the output must be held valid from the  
valid address bus, or rising edge of the peripheral clock  
(except SSP and ACI). Minimum requirements are  
shown in Table 12.  
• SSPCLK, Synchronous Serial Port clock  
• UARTCLK, UART Interface clock  
• LCDDCLK, LCD Data clock from the  
LCD Controller  
REFERENCE  
CLOCK  
tOHXXX  
tOVXXX  
OUTPUT  
SIGNAL (O)  
tISXXX tIHXXX  
INPUT  
SIGNAL (I)  
7A400-28  
Figure 9. LH7A400 Signal Timing  
Preliminary data sheet  
Rev. 01 16 July 2007  
33  
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
Table 12. AC Signal Characteristics  
SIGNAL  
TYPE  
LOAD  
SYMBOL  
MIN.  
MAX.  
DESCRIPTION  
1
ASYNCHRONOUS MEMORY INTERFACE SIGNALS (+ [wait states × HCLK period])  
Output 50 pF  
Output 50 pF  
tRC  
4 × tHCLK – 7.0 ns 4 × tHCLK + 7.5 ns Read Cycle Time  
4 × tHCLK – 7.0 ns 4 × tHCLK + 7.5 ns Write Cycle Time  
A[27:0]  
tWC  
tWS  
tHCLK ns  
tHCLK – 6.0 ns  
tHCLK – 7.0 ns  
tHCLK – 5.0 ns  
tHCLK – 7.0 ns  
15 ns  
tHCLK ns  
Wait State Width  
tDVWE  
tDHWE  
tDVBE  
tDHBE  
tDSCS  
tDHCS  
tDSOE  
tDHOE  
tDSBE  
tDHBE  
tCS  
tHCLK – 2.0 ns  
Data Valid to Write Edge (nWE invalid)  
Data Hold after Write Edge (nWE invalid)  
Data Valid to nBLE Invalid  
Data Hold after nBLE Invalid  
Data Setup to nCSx Invalid  
Data Hold to nCSx Invalid  
Data Setup to nOE Invalid  
Data Hold to nOE Invalid  
tHCLK + 2.0 ns  
Output 50 pF  
tHCLK – 1.0 ns  
tHCLK + 3.0 ns  
D[31:0]  
0 ns  
15 ns  
Input  
0 ns  
15 ns  
Data Setup to nBLE Invalid  
Data Hold to nBLE Invalid  
0 ns  
2 × tHCLK – 3.0 ns 2 × tHCLK + 3.0 ns nCSx Width  
nCS[7:0]  
SA[13:0]  
Output 30 pF  
Output 50 pF  
tAVCS  
tAHCS  
tHCLK – 4.0 ns  
tHCLK  
tHCLK  
Address Valid to nCSx Valid  
tHCLK + 4.5 ns  
Address Hold after nCSx Invalid  
SYNCHRONOUS MEMORY INTERFACE SIGNALS  
tOVA  
tOHA  
5.53/7.54 ns  
5.53/7.54 ns  
5.53/7.54 ns  
Address Valid  
1.53/1.54 ns  
Address Hold  
SA[17:16]/SB[1:0] Output 50 pF  
tOVB  
Bank Select Valid  
Data Hold  
tOHD  
1.5ns  
2 ns  
1.53/2.54 ns  
1.03/1.54 ns  
2 ns  
Output 50 pF  
tOVD  
Data Valid  
D[31:0]  
tISD  
Data Setup  
Input  
tIHD  
Data Hold  
tOVCA  
tOHCA  
tOVRA  
tOHRA  
tOVSDW  
tOHSDW  
tOVC  
5.53/7.54 ns  
5.53/7.54 ns  
5.53/7.54 ns  
CAS Valid  
nCAS  
nRAS  
nSWE  
Output 30 pF  
Output 30 pF  
Output 30 pF  
1.53/24 ns  
CAS Hold  
2 ns  
RAS Valid  
1.53/24 ns  
2 ns  
1.53/24 ns  
RAS Hold  
Write Enable Valid  
Write Enable Hold  
Clock Enable Valid  
Data Mask Valid  
Synchronous Chip Select Valid  
Synchronous Chip Select Hold  
SCKE[1:0]  
DQM[3:0]  
Output 30 pF  
Output 30 pF  
2 ns  
5.53/7.54 ns  
5.53/7.54 ns  
5.53/7.54 ns  
tOVDQ  
tOVSC  
tOHSC  
2 ns  
2 ns  
1.53/24 ns  
nSCS[3:0]  
Output 30 pF  
PCMCIA INTERFACE SIGNALS (+ wait states × HCLK period)  
tOVDREG  
tOHDREG  
tOVD  
tHCLK  
nREG Valid  
nPCREG  
D[31:0]  
Output 30 pF  
Output 50 pF  
Input  
4 × tHCLK – 5 ns  
4 × tHCLK – 5 ns  
4 × tHCLK – 5 ns  
4 × tHCLK – 5 ns  
4 × tHCLK – 5 ns  
3 × tHCLK – 5 ns  
3 × tHCLK – 5 ns  
4 × tHCLK – 5 ns  
nREG Hold  
tHCLK  
Data Valid  
tOHD  
Data Hold  
tISD  
tHCLK - 10 ns  
tHCLK  
Data Setup Time  
Data Hold Time  
Chip Enable 1 Valid  
Chip Enable 1 Hold  
Chip Enable 2 Valid  
Chip Enable 2 Hold  
Output Enable Valid  
Output Enable Hold  
Write Enable Valid  
Write Enable Hold  
Card Direction Valid  
Card Direction Hold  
tIHD  
tOVCE1  
tOHCE1  
tOVCE2  
tOHCE2  
tOVOE  
tOHOE  
tOVWE  
tOHWE  
tOVPCD  
tOHPCD  
nPCCE1  
nPCCE2  
nPCOE  
nPCWE  
PCDIR  
Output 30 pF  
Output 30 pF  
Output 30 pF  
Output 30 pF  
Output 30 pF  
tHCLK  
tHCLK + 1 ns  
tHCLK + 1 ns  
tHCLK  
34  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
Table 12. AC Signal Characteristics (Cont’d)  
SIGNAL  
TYPE  
LOAD  
SYMBOL  
MIN.  
MAX.  
DESCRIPTION  
MMC INTERFACE SIGNALS  
tOS  
tOH  
tOS  
tOH  
5 ns  
MMC Command Setup  
MMCCMD  
Output 100 pF  
Output 100 pF  
5 ns  
MMC Command Hold  
MMC Data Setup  
MMC Data Hold  
5 ns  
MMCDATA  
5 ns  
3 ns  
tIS  
tIH  
tIS  
tIH  
MMC Data Setup  
MMCDATA  
MMCCMD  
Input  
Input  
3 ns  
MMC Data Hold  
3 ns  
MMC Command Setup  
MMC Command Hold  
3 ns  
AC97 INTERFACE SIGNALS  
tOVAC97  
tOHAC97  
tISAC97  
15 ns  
AC97 Output Valid/Sync Valid  
AC97 Output Hold/Sync Hold  
AC97 Input Setup  
ACOUT/ACSYNC Output 30 pF  
10 ns  
10 ns  
2.5 ns  
72 ns  
ACIN  
Input  
Input  
tIHAC97  
AC97 Input Hold  
ACBITCLK  
tACBITCLK  
90 ns  
AC97 Clock Period  
SYNCHRONOUS SERIAL PORT (SSP)  
tOVSSPFRM  
10 ns  
SSPFRM Valid  
SSPFRM  
SSPTX  
Output  
tOHSSPFRM  
tOVSSPOUT  
tOHSSPOUT  
tISSSPIN  
5 ns  
SSPFRM Hold  
10 ns  
SSP Transmit Valid  
SSP Transmit Hold  
SSP Receive Setup  
SSP Clock Period  
Output 50 pF  
5 ns  
14 ns  
SSPRX  
Input  
SSPCLK  
Output  
tSSPCLK  
8.819 ms  
271 ns  
AUDIO CODEC INTERFACE (ACI)  
15 ns  
tOVD  
tOHD  
tIS  
ACOUT delay from rising clock edge  
ACOUT Hold  
ACOUT  
ACIN  
Output 30 pF  
Input  
10 ns  
10 ns  
ACIN Setup  
tIH  
2.5 ns  
ACIN Hold  
COLOR LCD CONTROLLER  
LCDVD [17:0]  
Output 30 pF  
tOV  
3 ns  
LCD Data Clock to Data Valid  
NOTES:  
1. Register BCRx:WST1 = 0b000  
2. For Output Drive strength specifications, refer to Table 3  
3. LH7A400N0G076xx only  
4. LH7A400N0G000xx only  
Preliminary data sheet  
Rev. 01 16 July 2007  
35  
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
deassertion of nCS by a maximum of one HCLK, or at  
minimum, can coincide (see Table 12). Figure 12 and  
Figure 13 show the waveform and timing for an Exter-  
nal Asynchronous Memory Read.  
SMC Waveforms  
Figure 10 and Figure 11 show the waveform and  
timing for an External Asynchronous Memory Write.  
Note that the deassertion of nWE can precede the  
0
1
2
3
4
HCLK  
tWC  
A[27:0]  
VALID ADDRESS  
tDVWE,  
tDVBE  
tDHWE,  
tDHBE  
D[31:0]  
VALID DATA  
tAVCS  
tAVWE  
tCS  
tAHCS  
nCSx  
nWE  
nCS Valid  
tWE  
tCSHWE  
nWE Valid  
WRITE EDGE  
tCSHBE  
tAVBE  
tBEW  
nBLE Valid  
nBLE  
LH7A400-201  
Figure 10. External Asynchronous Memory Write with 0 Wait States (BCRx:WST1 = 0b000)  
36  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
0
1
2
3
4
5
6
7
8
HCLK  
VALID ADDRESS  
VALID DATA  
A[27:0]  
D[31:0]  
nCSx  
nCSx Valid  
WRITE EDGE  
nWE  
nWE Valid  
nBLE Valid  
nBLE  
WAIT  
WAIT  
WAIT  
WAIT  
STATE 1 STATE 2 STATE 3 STATE 4  
0 WAIT STATE  
tWS  
tWS  
tWS  
tWS  
LH7A400-203  
Figure 11. External Asynchronous Memory Write with 4 Wait States (BCRx:WST1 = 0b100)  
Preliminary data sheet  
Rev. 01 16 July 2007  
37  
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
0
1
2
3
4
HCLK  
tRC  
tAHCS,  
tAHOE, tAHBE  
A[27:0]  
D[31:0]  
VALID ADDRESS  
VALID  
DATA  
tDSCS  
DATA  
LATCHED  
HERE  
tAVCS  
tCS  
tDHCS  
nCSx  
nCS Valid  
tOE  
tDSOE  
tAVOE  
tDHOE  
nOE  
nOE Valid  
tBER  
tDSBE  
tAVBE  
tDHBE  
nBLE  
nBLE Valid  
LH7A400-200  
Figure 12. External Asynchronous Memory Read with 0 Wait States (BCRx:WST1 = 0b000)  
38  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
0
1
2
3
4
5
6
7
8
9
10  
HCLK  
A[27:0]  
VALID ADDRESS  
nCSx Valid  
nCS[3:0,  
CS[7:6]  
nOE  
nBLE  
nOE Valid  
nBLE Valid  
D[31:0]  
VALID DATA  
WAIT  
WAIT  
WAIT  
WAIT  
STATE 1 STATE 2 STATE 3 STATE 4  
0 WAIT STATE,  
DATA WOULD BE  
LATCHED HERE  
4 WAIT STATES,  
DATA LATCHED  
HERE  
tWS tWS tWS tWS  
LH7A400-202  
Figure 13. External Asynchronous Memory Read with 4 Wait States (BCRx:WST1 = 0b100)  
Figure 16 and Figure 17 show Texas Instruments  
synchronous serial frame format, Figure 18 through  
Synchronous Memory Controller Waveforms  
Figure 14 shows the timing for a Synchronous Burst  
Figure 25 show the Motorola SPI format, and Figure 26  
Read (page already open). Figure 15 shows the timing  
and Figure 27 show National Semiconductor’s MICRO-  
for Activate a Bank and Write.  
WIRE data frame format.  
For Texas Instruments SSI format, the SSPFRM pin  
is pulsed prior to each frame’s transmission for one  
SSP Waveforms  
The Synchronous Serial Port (SSP) supports three  
serial clock period beginning at its rising edge. For this  
data frame formats:  
frame format, both the SSP and the external slave  
• Texas Instruments SSI  
device drive their output data on the rising edge of the  
• Motorola SPI  
clock and latch data from the other device on the falling  
edge. See Figure 16 and Figure 17.  
• National Semiconductor MICROWIRE  
Each frame format is between 4 and 16 bits in  
length, depending upon the programmed data size.  
Each data frame is transmitted beginning with the  
Most Significant Bit (MSB) i.e. ‘big endian’. For all  
three formats, the SSP serial clock is held LOW (inac-  
tive) while the SSP is idle. The SSP serial clock tran-  
sitions only during active transmission of data. The  
SSPFRM signal marks the beginning and end of a  
frame. The SSPEN signal controls an off-chip line  
driver’s output enable pin.  
Preliminary data sheet  
Rev. 01 16 July 2007  
39  
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
tSCLK  
SCLK  
tOHXXX  
READ  
tOHA, tOHB  
SDRAMcmd  
tOVXXX  
nDQM  
SA[13:0],  
SB[1:0]  
BANK,  
COLUMN  
tISD tIHD  
DATA n  
tOVA, tOVB  
D[31:0]  
NOTES:  
DATA n + 2  
DATA n + 1  
1. SDRAMcmd is the combination of nRAS, nCAS, nSWE, and nSCSx.  
2. tOVXXX represents tOVRA, tOVCA, tOVSVW, or tOVSC.  
3. tOHXXX represents tOHRA, tOHCA, tOHSVW, or tOHSC.  
4. DQM[3:0] is static LOW.  
DATA n + 3  
5. SCKE is static HIGH.  
LH7A400-23  
Figure 14. Synchronous Burst Read  
SCLK  
SCKE  
tOVC  
tOVXXX tOHXXX  
ACTIVE  
tOHA  
WRITE  
SDRAMcmd  
SA[13:0],  
SB[1:0]  
BANK,  
ROW  
BANK,  
COLUMN  
tOVA  
DATA  
D[31:0]  
tOVD  
tOHD  
NOTES:  
1. SDRAMcmd is the combination of nRAS, nCAS, nSWE, and nSCSx.  
2. tOVXXX represents tOVRA, tOVCA, tOVSVW, or tOVSC. Refer to the AC timing table.  
3. tOHXXX represents tOHRA, tOHCA, tOHSVW, or tOHSC.  
LH7A400-24  
Figure 15. Synchronous Bank Activate and Write  
40  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
SSPCLK  
SSPFRM  
SSPTXD/  
SSPRXD  
MSB  
LSB  
4 to 16 BITS  
LH7A400-97  
Figure 16. Texas Instruments Synchronous Serial Frame Format (Single Transfer)  
SSPCLK  
SSPFRM  
SSPTXD/  
MSB  
LSB  
SSPRXD  
4 to 16 BITS  
LH7A400-98  
Figure 17. Texas Instruments Synchronous Serial Frame Format (Continuous Transfer)  
SSPCLK  
nSSPFRM  
LSB  
LSB  
Q
SSPRXD  
MSB  
4 to 16 BITS  
MSB  
SSPTXD  
NOTE: Q is undefined.  
LH7A400-99  
Figure 18. Motorola SPI Frame Format (Single Transfer) with SPO = 0 and SPH = 0  
Preliminary data sheet  
Rev. 01 16 July 2007  
41  
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
SSPCLK  
nSSPFRM  
SSPTXD/  
SSSRXD  
LSB  
LSB  
MSB  
MSB  
4 to 16 BITS  
LH7A400-100  
Figure 19. Motorola SPI Frame Format (Continuous Transfer) with SPO = 0 and SPH = 0  
SSPCLK  
nSSPFRM  
Q
LSB  
LSB  
Q
SSPRXD  
SSPTXD  
MSB  
MSB  
4 to 16 BITS  
NOTE: Q is undefined.  
LH7A400-101  
Figure 20. Motorola SPI Frame Format (Single Transfer) with SPO = 0 and SPH = 1  
SSPCLK  
nSSPFRM  
SSPTXD/  
LSB  
MSB  
LSB  
MSB  
SSSRXD  
4 to 16 BITS  
LH7A400-102  
Figure 21. Motorola SPI Frame Format (Continuous Transfer) with SPO = 0 and SPH = 1  
SSPCLK  
nSSPFRM  
SSPTXD/  
LSB  
MSB  
LSB  
MSB  
SSSRXD  
4 to 16 BITS  
LH7A400-103  
Figure 22. Motorola SPI Frame Format (Continuous Transfer) with SPO = 1 and SPH = 1  
42  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
SSPCLK  
nSSPFRM  
SSPRXD  
Q
LSB  
LSB  
MSB  
4 to 16 BITS  
SSPTXD  
MSB  
NOTE: Q is undefined.  
LH7A400-104  
Figure 23. Motorola SPI Frame Format (Single Transfer) with SPO = 1 and SPH = 0  
SSPCLK  
nSSPFRM  
SSPTXD/  
LSB  
MSB  
LSB  
MSB  
SSPRXD  
4 to 16 BITS  
LH7A400-105  
Figure 24. Motorola SPI Frame Format (Continuous Transfer) with SPO = 1 and SPH = 0  
SSPCLK  
nSSPFRM  
SSPRXD  
Q
Q
MSB  
MSB  
LSB  
LSB  
4 to 16 BITS  
SSPTXD  
NOTE: Q is undefined.  
LH7A400-106  
Figure 25. Motorola SPI Frame Format (Single Transfer) with SPO = 1 and SPH = 1  
Preliminary data sheet  
Rev. 01 16 July 2007  
43  
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
For National Semiconductor MICROWIRE format,  
an 8-bit control message is transmitted to the off-chip  
slave. During this transmission no incoming data is  
received by the SSP. After the message has been sent,  
the external slave device decodes the message. After  
waiting one serial clock period after the last bit of the 8-  
bit control message was received it responds by return-  
ing the requested data. The returned data can be 4 to  
16 bits in length, making the total frame length between  
13 to 25 bits. See Figure 26 and Figure 27.  
the serial frame pin (SSPFRM) is active LOW. Both the  
SSP and external slave device drive their output data  
on the falling edge of the clock, and latch data from the  
other device on the rising edge of the clock. Unlike the  
full-duplex transmission of the other two frame formats,  
the National Semiconductor MICROWIRE format uti-  
lizes a master-slave messaging technique that oper-  
ates in half-duplex. When a frame begins in this mode,  
SSPCLK  
nSSPFRM  
MSB  
LSB  
SSPTXD  
SSPRXD  
8-BIT CONTROL  
0
MSB  
LSB  
4 to 16 BITS  
OUTPUT DATA  
LH7A400-107  
Figure 26. MICROWIRE Frame Format (Single Transfer)  
SSPCLK  
nSSPFRM  
SSPTXD  
LSB  
MSB  
LSB  
8-BIT CONTROL  
0
MSB  
LSB  
MSB  
SSPRXD  
4 to 16 BITS  
OUTPUT DATA  
LH7A400-108  
Figure 27. MICROWIRE Frame Format (Continuous Transfers)  
44  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
PC Card (PCMCIA) Waveforms  
Figure 28 shows the waveforms and timing for a  
PCMCIA Read Transfer, Figure 29 shows the wave-  
forms and timing for a PCMCIA Write Transfer.  
PRECHARGE ACCESS  
TIME TIME  
HOLD  
TIME  
(See Note 1) (See Note 1) (See Note 1)  
HCLK  
A[25:0]  
ADDRESS  
nPCREG  
tOVDREG  
tOVCEx  
tOHDREG  
tOHCEx  
nPCCEx  
(See Note 2)  
PCDIR  
tOVPCD  
tOHPCD  
DATA  
D[15:0]  
nPCOE  
tISD  
tIHD  
tOVOE  
tOHOE  
NOTES:  
1. Precharge time, access time, and hold  
time are programmable wait-state times.  
2.  
nPCCE1 nPCCE2 TRANSFER TYPE  
0
0
1
1
0
1
0
1
Common Memory  
Attribute Memory  
I/O  
None  
LH7A400-11  
Figure 28. PCMCIA Read Transfer  
Preliminary data sheet  
Rev. 01 16 July 2007  
45  
 
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
PRECHARGE ACCESS  
HOLD  
TIME  
TIME  
TIME  
(See Note 1) (See Note 1) (See Note 1)  
HCLK  
A[25:0]  
ADDRESS  
nPCREG  
tOVDREG  
tOVCEx  
tOHDREG  
tOHCEx  
nPCCEx  
(See Note 2)  
PCDIR  
D[15:0]  
tOVPCD  
tOVD  
DATA  
tOHD  
nPCWE  
tOVWE  
tOHWE  
NOTES:  
1. Precharge time, access time, and hold  
time are programmable wait-state times.  
2.  
nPCCE1 nPCCE2 TRANSFER TYPE  
0
0
1
1
0
1
0
1
Common Memory  
Attribute Memory  
I/O  
None  
LH7A400-12  
Figure 29. PCMCIA Write Transfer  
ACCESS  
nPCWE,  
nPCOE  
PRECHARGE  
HOLD  
nCSx  
LH7A400-209  
Figure 30. PCMCIA Precharge, Access, and Hold Waveform  
46  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
MMC Interface Waveform  
AC97 Interface Waveform  
Figure 31 shows the waveforms and timing for an  
MMC command or data Read and Write.  
Figure 32 shows the waveforms and timing for the  
AC97 interface Data Setup and Hold.  
MMC CLOCK  
tIS tIH  
SOC INPUT  
DATA/CMD  
DATA  
tOS  
tOH  
SOC OUTPUT  
INVALID  
DATA  
INVALID  
DATA/CMD  
LH7A400-14  
Figure 31. MMC Command/Data Read and Write Timing  
tACBITCLK  
ACBITCLK  
tOVAC97  
tOHAC97  
ACOUT/ACSYNC  
ACIN  
tISAC97 tIHAC97  
LH7A400-16  
Figure 32. AC97 Data Setup and Hold  
Preliminary data sheet  
Rev. 01 16 July 2007  
47  
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
Audio Codec Interface Waveforms  
Color LCD Controller Waveforms  
Figure 33 and Figure 34 show the timing for the ACI.  
Transmit data is clocked on the rising edge of ACBIT-  
CLK (whether transmitted by the LH7A400 ACI or by the  
external codec chip); receive data is clocked on the fall-  
ing edge. This allows full-speed, full duplex operation.  
Figure 35 shows the Valid Output Setup Time for  
LCD data. Timing diagrams for each CLCDC mode  
appear in Figure 36 through Figure 41.  
ACBITCLK  
ACSYNC/ACOUT  
tOS  
tOH  
ACIN  
tIS tIH  
LH7A400-169  
Figure 33. ACI Signal Timing  
ACBITCLK  
ACSYNC  
BIT  
7
6
5
4
3
2
1
0
7
6
ACIN/ACOUT  
ACIN/ACOUT  
SAMPLED ON  
FALLING EDGE  
LH7A400-181  
Figure 34. ACI Data stream  
LCDDCLK  
tOV  
DATA VALID  
LCDVD  
(SoC Output)  
LH7A400-211  
Figure 35. CLCDC Valid Output Data Time  
48  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
Figure 36. STN Horizontal Timing Diagram  
Preliminary data sheet  
Rev. 01 16 July 2007  
49  
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
Figure 37. STN Vertical Timing Diagram  
50  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
Figure 38. TFT Horizontal Timing Diagram  
Preliminary data sheet  
Rev. 01 16 July 2007  
51  
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
Figure 39. TFT Vertical Timing Diagram  
52  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
1 AD-TFT or HR-TFT HORIZONTAL LINE  
CLCDC CLOCK  
(INTERNAL)  
TIMING0:HSW  
R8 LCDLP  
(HORIZONTAL SYNC PULSE)  
LCDDCLK  
(PANEL DATA CLOCK)  
TIMING2:PCD  
TIMING2:BCD  
TIMING2:IPC  
TIMING2:CPL  
LCDVD[17:0]  
16 × (TIMING0:PPL+1)  
001 002 003 004 005 006 007 008  
PIXEL DATA  
320  
TIMING0:HSW +  
TIMING0:HBP  
LCDENAB  
(INTERNAL DATA ENABLE)  
N9 LCDDCLK  
(DELAYED FOR HR-TFT)  
LCDVD[17:0]  
(DELAYED FOR HR-TFT)  
001 002 003 004 005 006  
317 318 319 320  
1 LCDDCLK  
ALITIMING2:SPLDEL  
LCDSPL  
(LINE START PULSE LEFT)  
R2  
R8  
1 LCDDCLK  
ALITIMING1:LPDEL  
LCDLP  
(HORIZONTAL SYNC PULSE)  
ALITIMING1:PSCLS  
ALITIMING2:PS2CLS2  
LCDCLS  
T1  
LCDPS  
P2  
ALITIMING1:REVDEL  
K6 LCDREV  
NOTE:  
Circled numbers are LHA400 pin numbers.  
LH7A400-111  
Figure 40. AD-TFT and HR-TFT Horizontal Timing Diagram  
Preliminary data sheet  
Rev. 01 16 July 2007  
53  
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
TIMING1:VSW  
1.5 µs - 4 µs  
LCDSPS  
(Vertical Sync)  
L8  
LCDHRLP  
(Horizontal Sync)  
T2  
LCDVD  
(LCD Data)  
2x H-LINE  
R2 LCDSPL  
LH7A400-66  
Figure 41. AD-TFT and HR-TFT Vertical Timing Diagram  
CLOCK AND STATE CONTROLLER (CSC)  
WAVEFORMS  
Figure 42 shows the behavior of the LH7A400 when  
coming out of Reset or Power On. Figure 43 shows exter-  
nal reset timing, and Table 13 gives the timing parame-  
ters. Figure 44 depicts signal timing following a Reset.  
‘battery good’ indication caused by alkaline battery  
recovery that can immediately follow a battery-low  
switch off. The battery sampling takes place on the ris-  
ing edge of the 1 Hz clock. This clock is derived from  
the 32.768 kHz oscillator. The WAKEUP pin can be  
pulsed, but at least one edge must follow the 2 second  
delay to be recognized. For more information, see the  
application note “Implementing Auto-Wakeup on the  
LH7A4xx Series Devices” at www.nxp.com.  
At Power-On, nPOR must be held LOW at least until  
the 32.768 kHz oscillator is stable, and must be deas-  
serted at least two 32.768 kHz clock periods before the  
WAKEUP signal is asserted. Once the 14.7456 MHz  
oscillator is stable, the PLLs require 250 µs to lock.  
Figure 45 shows the recommended components for  
the NXP LH7A400 32.768 kHz external oscillator cir-  
cuit. Figure 46 shows the same for the 14.7456 MHz  
external oscillator circuit. In both figures, the NAND  
gate represents the internal logic of the chip.  
On transition from Standby to Run (including a Cold  
Boot), the Wakeup pin must not be asserted for 2 sec-  
onds after assertion of nPOR to allow time for sampling  
BATOK and nEXTPWR. The delay prevents a false  
Table 13. Reset AC Timing  
DESCRIPTION  
PARAMETER  
tOSC32  
tOSC14  
MIN. MAX.  
UNIT  
32.768 kHz Oscillator Stabilization Time after Power On*  
14.7456 MHz Oscillator Stabilization Time after Wake UP  
550  
ms  
ms  
4
tURESET/tPWRFL nURESET/nPWRFL Pulse Width  
4
32.768 kHz clock periods  
NOTE: *VDDC = VDDCmin  
54  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
VDDCmin  
VDDC  
XTAL32  
tOSC32  
WAKEUP  
tOSC14  
XTAL14  
nPOR  
LH7A400-25  
Figure 42. Oscillator Start-up  
tURESET  
tPWRFL  
nURESET  
nPWRFL  
LH7A400-26  
Figure 43. External Reset  
nPOR  
2 sec.  
WAKEUP  
(asynchronous)  
7.8125 ms  
CLKEN  
7.8125 ms  
START UP  
HCLK  
STABLE CLOCK  
LH7A400-175  
Figure 44. Signal Timing After Reset  
Preliminary data sheet  
Rev. 01 16 July 2007  
55  
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
ENABLE  
INTERNAL TO  
THE LH7A400  
EXTERNAL TO  
THE LH7A400  
XTALIN  
Y1  
XTALOUT  
32.768 kHz  
R1  
18 MΩ  
C1  
15 pF  
C2  
18 pF  
GND  
GND  
NOTES:  
RECOMMENDED CRYSTAL SPECIFICATIONS  
1. Y1 is a parallel-resonant type crystal. (See table)  
2. The nominal values for C1 and C2 shown are for  
a crystal specified at 12.5 pF load capacitance (CL).  
3. The values for C1 and C2 are dependent upon  
the cystal's specified load capacitance and PCB  
stray capacitance.  
PARAMETER  
DESCRIPTION  
32.768 kHz Crystal  
Tolerance  
Aging  
Parallel Mode  
30 ppm  
3 ppm  
4. R1 must be in the circuit.  
Load Capacitance  
ESR (MAX.)  
Drive Level  
12.5 pF  
50 kΩ  
1.0 µW (MAX.)  
MTRON SX1555 or equivalent  
5. Ground connections should be short and return  
to the ground plane which is connected to the  
processor's core ground pins.  
Recommended Part  
6. Tolerance for R1, C1, C2 is 5%.  
LH7A400-187  
Figure 45. 32.768 kHz External Oscillator Components and Schematic  
56  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
ENABLE  
INTERNAL TO  
THE LH7A400  
EXTERNAL TO  
THE LH7A400  
XTALIN  
XTALOUT  
Y1  
14.7456 MHz  
R1  
1 MΩ  
C1  
18 pF  
C2  
22 pF  
GND  
GND  
RECOMMENDED CRYSTAL SPECIFICATIONS  
PARAMETER DESCRIPTION  
14.7456 MHz Crystal (AT-Cut) Parallel Mode  
NOTES:  
1. Y1 is a parallel-resonant type crystal. (See table)  
2. The nominal values for C1 and C2 shown are for  
a crystal specified at 18 pF load capacitance (CL).  
3. The values for C1 and C2 are dependent upon  
the cystal's specified load capacitance and PCB  
stray capacitance.  
Tolerance  
50 ppm  
Stability  
100 ppm  
Aging  
5 ppm  
4. R1 must be in the circuit.  
Load Capacitance  
ESR (MAX.)  
Drive Level  
Recommended Part  
18 pF  
40 Ω  
5. Ground connections should be short and return  
to the ground plane which is connected to the  
processor's core ground pins.  
100 µW (MAX.)  
MTRON SX2050 or equivalent  
6. Tolerance for R1, C1, C2 is 5%.  
LH7A400-188  
Figure 46. 14.7456 MHz External Oscillator Components and Schematic  
Preliminary data sheet  
Rev. 01 16 July 2007  
57  
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
Operating Temperature and Noise Immunity  
The junction temperature, Tj, is the operating tem-  
perature of the transistors in the integrated circuit. The  
switching speed of the CMOS circuitry within the SoC  
depends partly on Tj, and the lower the operating tem-  
perature, the faster the CMOS circuits will switch.  
Increased switching noise generated by faster switch-  
ing circuits could affect the overall system stability. The  
amount of switching noise is directly affected by the  
application executed on the SoC.  
VDDC  
(SOURCE)  
VDDC  
LH7A400  
10 µH  
VDDA  
+
22 µF  
0.1 µF  
VSSA  
NXP recommends that users implementing a system  
to meet industrial temperature standards should use an  
external oscillator rather than a crystal to drive the sys-  
tem clock input of the System-on-Chip. This change  
from crystal to oscillator will increase the robustness  
(i.e., noise immunity of the clock input to the SoC).  
LH7A400-189  
Figure 47. VDDA, VSSA Filter Circuit  
UNUSED INPUT SIGNAL CONDITIONING  
Floating input signals can cause excessive power  
consumption. Unused inputs without internal pull-up or  
pull-down resistors should be pulled up or down exter-  
nally (NXP recommends tying HIGH), to tie the signal  
to its inactive state. 33 Kor less is recommended.  
Printed Circuit Board Layout Practices  
LH7A400 POWER SUPPLY DECOUPLING  
The LH7A400 has separate power and ground pins  
for different internal circuitry sections. The VDD and  
VSS pins supply power to I/O buffers, while VDDC and  
VSSC supply power to the core logic, and VDDA/VSSA  
supply analog power to the PLLs.  
Some GPIO signals default to inputs. If the pins that  
carry these signals are unused, software can program  
these signals as outputs, eliminating the need for pull-  
ups or pull-downs. Power consumption may be higher  
than expected until software completes programming  
the GPIO. Some LH7A400 inputs have internal pull-  
ups or pull-downs. If unused, these inputs do not  
require external conditioning.  
Each of the VDD and VDDC pins must be provided  
with a low impedance path to the corresponding board  
power supply. Likewise, the VSS, VSSA, and VSSC  
pins must be provided with a low impedance path to the  
board ground.  
OTHER CIRCUIT BOARD LAYOUT PRACTICES  
Each power supply must be decoupled to ground  
using at least one 0.1 µF high frequency capacitor  
located as close as possible to a VDDx, VSSx pin pair  
on each of the four sides of the chip. If room on the cir-  
cuit board allows, add one 0.01 µF high frequency  
capacitor near each VDDx, VSSx pair on the chip.  
All outputs have fast rise and fall times. Printed cir-  
cuit trace interconnection length must therefore be  
reduced to minimize overshoot, undershoot and reflec-  
tions caused by transmission line effects of these fast  
output switching times. This recommendation particu-  
larly applies to the address and data buses.  
To be effective, the capacitor leads and associated  
circuit board traces connecting to the chip VDDx, VSSx  
pins must be kept to less than half an inch (12.7 mm)  
per capacitor lead. There must be one bulk 10 µF  
capacitor for each power supply placed near one side  
of the chip.  
When considering capacitance, calculations must  
consider all device loads and capacitances due to the  
circuit board traces. Capacitance due to the traces will  
depend upon a number of factors, including the trace  
width, dielectric material the circuit board is made from  
and proximity to ground and power planes.  
RECOMMENDED PLL, VDDA, VSSA FILTER  
Attention to power supply decoupling and printed cir-  
cuit board layout becomes more critical in systems with  
higher capacitive loads. As these capacitive loads  
increase, transient currents in the power supply and  
ground return paths also increase.  
The VDDA pins supply power to the chip PLL cir-  
cuitry. VSSA is the ground return path for the PLL cir-  
cuit. NXP recommends a low-pass filter attached as  
shown in Figure 47. The values of the inductor and  
capacitors are not critical. The low-pass filter prevents  
high frequency noise from adversely affecting the PLL  
circuits. The distance from the IC pin to the high fre-  
quency capacitor should be as short as possible.  
58  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
PACKAGE SPECIFICATIONS  
BGA256: plastic ball grid array package; 256 balls  
SOT1018-1  
D
B
D
A
1
ball A1  
index area  
A
2
A
1
E
1
E
A
detail X  
e
1
C
M
M
v  
w  
C A  
C
B
b
e
1/2 e  
y
1
y
C
T
R
P
M
K
H
F
N
L
e
J
e
2
G
E
C
A
1/2 e  
D
B
ball A1  
index area  
1
3
5
7
9
11  
13  
15  
2
4
6
8
10  
12  
14  
16  
X
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
1
A
2
b
D
D
1
E
E
1
e
e
1
e
2
v
w
y
y
1
max  
0.5  
0.3  
1.45 0.55 17.2 15.75 17.2 15.75  
1.25 16.8 14.75 16.8 14.75  
mm  
1.95  
1
15  
15  
0.25  
0.1  
0.15 0.35  
0.45  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
07-07-07  
07-07-07  
SOT1018-1  
Figure 48. Package outline SOT1018-1 (BGA256)  
Preliminary data sheet  
Rev. 01 16 July 2007  
59  
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
LFBGA256: plastic low profile fine-pitch ball grid array package; 256 balls  
SOT1020-1  
D
B
A
ball A1  
index area  
A
2
A
1
E
A
detail X  
e
1
C
y
M
v  
w  
C A  
C
B
b
e
1/2 e  
y
1
M
C
T
R
P
N
M
K
H
e
L
J
e
2
G
1/2 e  
F
E
D
B
C
A
ball A1  
index area  
1
3
5
7
9
11  
13  
15  
X
2
4
6
8
10  
12  
14  
16  
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
1
A
2
b
D
E
e
e
1
e
2
v
w
y
y
1
max  
0.4  
0.3  
1.35  
1.15  
0.5  
0.4  
14.1 14.1  
13.9 13.9  
mm  
1.7  
0.8  
12  
12  
0.15 0.08 0.12  
0.1  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
07-07-07  
07-07-07  
SOT1020-1  
Figure 49. Package outline SOT1020-1 (LFBGA256)  
60  
Rev. 01 16 July 2007  
Preliminary data sheet  
32-Bit System-on-Chip  
NXP Semiconductors  
LH7A400  
REVISION HISTORY  
Table 14. Revision history  
Document ID  
Release date Data sheet status  
Change notice Supersedes  
FAST LH7A400 v1-5 5-9-07  
LH7A400_N_1 20070716  
Preliminary data  
sheet  
-
Modifications:  
• First NXP version based on the LH7A400 data sheet of 20070509  
Preliminary data sheet  
Rev. 01 16 July 2007  
61  
LH7A400  
NXP Semiconductors  
32-Bit System-on-Chip  
1. Legal information  
1.1  
Data sheet status  
[1][2]  
[3]  
Document status  
Product status  
Definition  
Objective [short] data sheet  
Development  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of a NXP Semiconductors product can reasonably be expected to  
result in personal injury, death or severe property or environmental damage.  
NXP Semiconductors accepts no liability for inclusion and/or use of NXP  
Semiconductors products in such equipment or applications and therefore  
such inclusion and/or use is at the customer’s own risk.  
1.2  
Definitions  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the full  
data sheet shall prevail.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
1.3  
Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without limitation  
specifications and product descriptions, at any time and without notice. This  
document supersedes and replaces all information supplied prior to the  
publication hereof.  
1.4  
Trademarks  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
2. Contact information  
For additional information, please visit: http://www.nxp.com  
For sales office addresses, send an email to: salesaddresses@nxp.com  
© NXP B.V. 2007. All rights reserved.  
IMPORTANT NOTICE  
Dear customer,  
As from June 1st, 2007 NXP Semiconductors has acquired the LH7xxx ARM Microcontrollers from  
Sharp Microelectronics. The following changes are applicable to the attached data sheet. In data  
sheets where the previous Sharp or Sharp Corporation references remain, please use the new  
links as shown below.  
For www.sharpsma.com use www.nxp.com/microcontrollers  
for indicated sales addresses use salesaddresses@nxp.com (email)  
The copyright notice at the bottom of each page (or elsewhere in the document, depending on the  
version)  
- Copyright © (year) by SHARP Corporation.  
is replaced with:  
- © NXP B.V. (year). All rights reserved.  
If you have any questions related to the data sheet, please contact our nearest sales office via  
e-mail or phone (details via salesaddresses@nxp.com). Thank you for your cooperation and  
understanding, In addition to that the Annex A (attached hereto) is added to the document.  
NXP Semiconductors  
ANNEX A: Disclaimers (11)  
1. t001dis100.fm: General (DS, AN, UM)  
General — Information in this document is believed to be accurate and reliable. However, NXP  
Semiconductors does not give any representations or warranties, expressed or implied, as to the  
accuracy or completeness of such information and shall have no liability for the consequences of  
use of such information.  
2. t001dis101.fm: Right to make changes (DS, AN, UM)  
Right to make changes — NXP Semiconductors reserves the right to make changes to  
information published in this document, including without limitation specifications and product  
descriptions, at any time and without notice. This document supersedes and replaces all  
information supplied prior to the publication hereof.  
3. t001dis102.fm: Suitability for use (DS, AN, UM)  
Suitability for use — NXP Semiconductors products are not designed, authorized or warranted  
to be suitable for use in medical, military, aircraft, space or life support equipment, nor in  
applications where failure or malfunction of a NXP Semiconductors product can reasonably be  
expected to result in personal injury, death or severe property or environmental damage. NXP  
Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in  
such equipment or applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
4. t001dis103.fm: Applications (DS, AN, UM)  
Applications — Applications that are described herein for any of these products are for  
illustrative purposes only. NXP Semiconductors makes no representation or warranty that such  
applications will be suitable for the specified use without further testing or modification.  
5. t001dis104.fm: Limiting values (DS)  
Limiting values — Stress above one or more limiting values (as defined in the Absolute  
Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting  
values are stress ratings only and operation of the device at these or any other conditions above  
those given in the Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
6. t001dis105.fm: Terms and conditions of sale (DS)  
Terms and conditions of sale — NXP Semiconductors products are sold subject to the general  
terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms,  
including those pertaining to warranty, intellectual property rights infringement and limitation of  
liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any  
inconsistency or conflict between information in this document and such terms and conditions, the  
latter will prevail.  
7. t001dis106.fm: No offer to sell or license (DS)  
No offer to sell or license — Nothing in this document may be interpreted or construed as an  
offer to sell products that is open for acceptance or the grant, conveyance or implication of any  
license under any copyrights, patents or other industrial or intellectual property rights.  
8. t001dis107.fm: Hazardous voltage (DS, AN, UM; if applicable)  
Hazardous voltage — Although basic supply voltages of the product may be much lower, circuit  
voltages up to 60 V may appear when operating this product, depending on settings and  
application. Customers incorporating or otherwise using these products in applications where  
such high voltages may appear during operation, assembly, test etc. of such application, do so at  
their own risk. Customers agree to fully indemnify NXP Semiconductors for any damages  
resulting from or in connection with such high voltages. Furthermore, customers are drawn to  
safety standards (IEC 950, EN 60 950, CENELEC, ISO, etc.) and other (legal) requirements  
applying to such high voltages.  
9. t001dis108.2.fm: Bare die (DS; if applicable)  
Bare die (if applicable) — Products indicated as Bare Die are subject to separate specifications  
and are not tested in accordance with standard testing procedures. Product warranties and  
guarantees as stated in this document are not applicable to Bare Die Products unless such  
warranties and guarantees are explicitly stated in a valid separate agreement entered into by  
NXP Semiconductors and customer.  
10. t001dis109.fm: AEC unqualified products (DS, AN, UM; if applicable)  
AEC unqualified products — This product has not been qualified to the appropriate Automotive  
Electronics Council (AEC) standard Q100 or Q101 and should not be used in automotive critical  
applications, including but not limited to applications where failure or malfunction of an NXP  
Semiconductors product can reasonably be expected to result in personal injury, death or severe  
property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or  
use of NXP Semiconductors products in such equipment or applications and therefore such  
inclusion and/or use is for the customer’s own risk.  
11. t001dis110.fm: Suitability for use in automotive applications only (DS, AN, UM; if  
applicable)  
Suitability for use in automotive applications only — This NXP Semiconductors product has  
been developed for use in automotive applications only. The product is not designed, authorized  
or warranted to be suitable for any other use, including medical, military, aircraft, space or life  
support equipment, nor in applications where failure or malfunction of an NXP Semiconductors  
product can reasonably be expected to result in personal injury, death or severe property or  
environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP  
Semiconductors products in such equipment or applications and therefore such inclusion and/or  
use is at the customer’s own risk.  

相关型号:

LH7A400N0B000B5

32-Bit System-on-Chip
NXP

LH7A400N0C000

32-Bit System-on-Chip
SHARP

LH7A400N0E000

32-Bit System-on-Chip
SHARP

LH7A400N0E000B3A

32-Bit System-on-Chip
NXP

LH7A400N0E000B5

32-Bit System-on-Chip
NXP

LH7A400N0F000B3A

32-Bit System-on-Chip
NXP

LH7A400N0F000B5

32-Bit System-on-Chip
NXP

LH7A400N0F000B5,55

LH7A400N0F000B5
NXP

LH7A400N0F000XX

RISC Microcontroller, 32-Bit, FLASH, 195MHz, CMOS, PBGA256, LEAD FREE, PLASTIC, BGA-256
SHARP

LH7A400N0F076

Micro Peripheral IC, PBGA256,
SHARP

LH7A400N0F076B5

32-Bit System-on-Chip
NXP

LH7A400N0F076B5,55

LH7A400N0F076B5
NXP