LPC1124JBD48/303 [NXP]

32-bit ARM Cortex-M0 microcontroller; 64 kB flash and 8 kB SRAM; 12-bit ADC;
LPC1124JBD48/303
型号: LPC1124JBD48/303
厂家: NXP    NXP
描述:

32-bit ARM Cortex-M0 microcontroller; 64 kB flash and 8 kB SRAM; 12-bit ADC

静态存储器
文件: 总63页 (文件大小:1445K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC112x  
32-bit ARM Cortex-M0 microcontroller; 64 kB flash and 8 kB  
SRAM; 12-bit ADC  
Rev. 1 — 24 February 2015  
Product data sheet  
1. General description  
The LPC112x are a ARM Cortex-M0 based, low-cost 32-bit MCU family, designed for  
8/16-bit microcontroller applications, offering performance, low power, simple instruction  
set and memory addressing together with reduced code size compared to existing 8/16-bit  
architectures.  
The LPC112x operate at CPU frequencies of up to 50 MHz.  
The peripheral complement of the LPC112x includes 64 kB of flash memory, 8 kB of data  
memory, one Fast-mode Plus I2C-bus interface, three RS-485/EIA-485 UARTs, two SSP  
interfaces, four general purpose counter/timers, a 12-bit ADC, and up to 38 general  
purpose I/O pins.  
2. Features and benefits  
System:  
ARM Cortex-M0 processor, running at frequencies of up to 50 MHz.  
ARM Cortex-M0 built-in Nested Vectored Interrupt Controller (NVIC).  
Non-Maskable Interrupt (NMI) input selectable from several input sources.  
Serial Wire Debug.  
System tick timer.  
Memory:  
64 kB on-chip flash programming memory.  
256 byte page erase function.  
8 kB SRAM.  
In-System Programming (ISP) and In-Application Programming (IAP) via on-chip  
bootloader software.  
Digital peripherals:  
Up to 38 General Purpose I/O (GPIO) pins with configurable pull-up/pull-down  
resistors. A configurable open-drain mode is supported.  
GPIO pins can be used as edge and level sensitive interrupt sources.  
High-current output driver (20 mA) on one pin.  
High-current sink drivers (20 mA) on two I2C-bus pins in Fast-mode Plus.  
Four general purpose counter/timers with up to six capture inputs and up to 13  
match outputs.  
Programmable windowed WDT.  
Analog peripherals:  
12-bit ADC with 2 Msamples/s and eight channels.  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Serial interfaces:  
Three UARTs with fractional baud rate generation, internal FIFO, and RS-485  
support. One UART with modem control.  
Two SSP controllers with FIFO and multi-protocol capabilities.  
I2C-bus interface supporting full I2C-bus specification and Fast-mode Plus with a  
data rate of 1 Mbit/s with multiple address recognition and monitor mode.  
Clock generation:  
12 MHz internal RC oscillator trimmed to 1 % accuracy for 25 C Tamb +85 C  
that can optionally be used as a system clock.  
Crystal oscillator with an operating range of 1 MHz to 25 MHz.  
Programmable watchdog oscillator with a frequency range of 9.4 kHz to 2.3 MHz.  
PLL allows CPU operation up to the maximum CPU rate without the need for a  
high-frequency crystal. May be run from the system oscillator or the internal RC  
oscillator.  
Clock output function with divider that can reflect the system oscillator clock, IRC  
clock, CPU clock, and the Watchdog clock.  
Power control:  
Integrated PMU (Power Management Unit) to minimize power consumption during  
Sleep, Deep-sleep, and Deep power-down modes.  
Power profiles residing in boot ROM allowing to optimize performance and  
minimize power consumption for any given application through one simple function  
call.  
Three reduced power modes: Sleep, Deep-sleep, and Deep power-down.  
Processor wake-up from Deep-sleep mode via a dedicated start logic using up to  
13 of the functional pins.  
Power-On Reset (POR).  
Brownout detect with up to four separate thresholds for interrupt and forced reset.  
Unique device serial number for identification.  
Single power supply (1.8 V to 3.6 V).  
Available as LQFP48 package.  
3. Applications  
eMetering  
Lighting  
Alarm systems  
White goods  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC1125JBD48/303  
LPC1124JBD48/303  
LQFP48  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 7 SOT313-2  
1.4 mm  
LQFP48  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 7 SOT313-2  
1.4 mm  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
2 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
4.1 Ordering options  
Table 2.  
Ordering options  
Type number  
Flash  
Total  
SRAM  
UART  
RS-485  
I2C/  
Fast+  
SSP ADC  
channels  
GPIO  
Package  
LPC1125JBD48/303  
LPC1124JBD48/303  
64 kB  
32 kB  
8 kB  
8 kB  
3
3
1
1
2
2
8
38  
38  
LQFP48  
LQFP48  
8
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
3 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
5. Block diagram  
XTALIN  
SWD  
XTALOUT  
RESET  
CLOCK  
IRC  
GENERATION  
POWER CONTROL,  
SYSTEM  
LPC112x  
CLKOUT  
TEST/DEBUG  
INTERFACE  
POR  
FUNCTIONS  
clocks and controls  
ARM  
CORTEX-M0  
FLASH  
64 kB  
SRAM  
8 kB  
ROM  
slave  
system  
bus  
slave  
slave  
slave  
GPIO ports  
PIO0/1/2/3  
HIGH-SPEED  
GPIO  
AHB-LITE BUS  
slave  
AHB TO APB  
BRIDGE  
U0_RXD  
U0_TXD  
U0_DTR,  
U0_DSR,  
U0_CTS,  
UART0  
12-bit ADC  
SSP0  
ADC_[8:1]  
SSP0_SCK,  
SSP0_SSEL,  
SSP0_MISO,  
SSP0_MOSI  
SSP1_SCK,  
SSP1_SSEL,  
SSP1_MISO,  
SSP1_MOSI  
U0_DCD,  
U0_RI, U0_RTS  
U1_TXD  
U1_RXD  
UART1  
UART2  
SSP1  
U2_TXD  
U2_RXD  
I2C0_SCL  
I2C0_SDA  
2
I C  
CT32B0_MAT[3:0]  
CT32B0_CAP0  
32-bit COUNTER/TIMER 0  
32-bit COUNTER/TIMER 1  
16-bit COUNTER/TIMER 0  
16-bit COUNTER/TIMER 1  
WWDT  
IOCON  
CT32B1_MAT[3:0]  
CT32B1_CAP0  
CT16B0_MAT[2:0]  
CT16B0_CAP[1:0]  
SYSTEM CONTROL  
PMU  
CT16B1_MAT[1:0]  
CT16B1_CAP[1:0]  
aaa-016082  
Fig 1. LPC112x block diagram  
6. Pinning information  
6.1 Pinning  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
4 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
PIO2_3 37  
24 PIO2_9  
23 PIO0_7  
22 PIO0_6  
21 PIO3_5  
20 PIO2_5  
19 PIO2_4  
18 PIO3_4  
17 PIO1_9  
16 PIO0_5  
15 PIO0_4  
14 PIO0_3  
13 PIO2_1  
SWDIO/PIO1_3 38  
PIO1_4/WAKEUP 39  
VSSA 40  
VSS 41  
PIO1_11 42  
VDDA 43  
LPC112x  
VDD 44  
PIO1_5 45  
PIO1_6 46  
PIO1_7 47  
PIO3_3 48  
aaa-016083  
Fig 2. LQFP48 package  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
5 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
6.2 Pin description  
Table 3.  
Symbol  
Pin description  
Reset Start  
Type Description  
state logic  
[1]  
wake-up  
pin  
[8]  
[6]  
RESET/PIO0_0  
PIO0_1  
3
4
I; PU  
I; PU  
yes  
I
RESET — External reset input: A LOW-going pulse as  
short as 50 ns on this pin resets the device, causing  
I/O ports and peripherals to take on their default  
states, and processor execution to begin at address 0.  
I/O  
I/O  
PIO0_0 — General purpose port 0 input/output 0.  
yes  
PIO0_1 — General purpose port 0 input/output 1. A  
LOW level on this pin during reset starts the ISP  
command handler.  
O
O
I/O  
I/O  
I
CLKOUT — Clock output.  
CT32B0_MAT2 — Match output 2 for 32-bit timer 0.  
PIO0_2 — General purpose port 0 input/output 2.  
SSP0_SSEL — Slave select for SSP0.  
CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.  
ADC_PIN_TRIG0 — ADC pin trigger input 0.  
PIO0_3 — General purpose port 0 input/output 3.  
R — Reserved.  
[6]  
[6]  
PIO0_2  
PIO0_3  
10  
14  
I; PU  
I; PU  
yes  
yes  
I
I/O  
-
-
R — Reserved.  
I
U2_RXD — Receiver input for UART2.  
PIO0_4  
PIO0_5  
PIO0_6  
15  
16  
22  
I; IA  
I; IA  
I; PU  
yes  
yes  
yes  
I/O  
I/O  
PIO0_4 — General purpose port 0 input/output 4.  
I2C0_SCL — I2C-bus, open-drain clock input/output.  
High-current sink only if I2C Fast-mode Plus is  
selected in the I/O configuration register.  
[7]  
[6]  
I/O  
I/O  
PIO0_5 — General purpose port 0 input/output 5.  
I2C0_SDA — I2C-bus, open-drain data input/output.  
High-current sink only if I2C Fast-mode Plus is  
selected in the I/O configuration register.  
I/O  
-
PIO0_6 — General purpose port 0 input/output 6.  
R — Reserved.  
I/O  
O
SSP0_SCK — Serial clock for SSP0.  
U1_TXD — Transmitter output for UART1.  
[5]  
PIO0_7  
PIO0_8  
23  
26  
I; PU  
I; PU  
yes  
yes  
I/O  
PIO0_7 — General purpose port 0 input/output 7.  
High-current output driver.  
I
U0_CTS — Clear To Send input for UART0.  
ADC_PIN_TRIG1 — ADC pin trigger input 1.  
U1_RXD — Receiver input for UART1.  
PIO0_8 — General purpose port 0 input/output 8.  
SSP0_MISO — Master In Slave Out for SSP0.  
CT16B0_MAT0 — Match output 0 for 16-bit timer 0.  
R — Reserved.  
I
I
[6]  
I/O  
I/O  
O
-
I
ADC_PIN_TRIG2 — ADC pin trigger input 2.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
6 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
Pin description  
Reset Start  
Type Description  
state logic  
[1]  
wake-up  
pin  
[6]  
PIO0_9  
27  
I; PU  
yes  
I/O  
I/O  
O
PIO0_9 — General purpose port 0 input/output 9.  
SSP0_MOSI — Master Out Slave In for SSP0.  
CT16B0_MAT1 — Match output 1 for 16-bit timer 0.  
R — Reserved.  
-
I
ADC_PIN_TRIG3 — ADC pin trigger input 3.  
SWCLK — Serial wire clock.  
[6]  
[3]  
SWCLK/PIO0_10  
R/PIO0_11  
28  
30  
I; PU  
I; PU  
yes  
yes  
I/O  
I/O  
I/O  
O
PIO0_10 — General purpose port 0 input/output 10.  
SSP0_SCK — Serial clock for SSP0.  
CT16B0_MAT2 — Match output 2 for 16-bit timer 0.  
I
R — Reserved. Configure for an alternate function in  
the IOCON block.  
I/O  
AI  
O
I
PIO0_11 — General purpose port 0 input/output 11.  
ADC_7 — A/D converter, input 7.  
CT32B0_MAT3 — Match output 3 for 32-bit timer 0.  
[3]  
[3]  
[3]  
[3]  
R/PIO1_0  
31  
32  
35  
38  
I; PU  
yes  
R — Reserved. Configure for an alternate function in  
the IOCON block.  
I/O  
AI  
I
PIO1_0 — General purpose port 1 input/output 0.  
ADC_6 — A/D converter, input 6.  
CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.  
R/PIO1_1  
O; PU no  
O
R — Reserved. Configure for an alternate function in  
the IOCON block.  
I/O  
AI  
O
I
PIO1_1 — General purpose port 1 input/output 1.  
ADC_5 — A/D converter, input 5.  
CT32B1_MAT0 — Match output 0 for 32-bit timer 1.  
R/PIO1_2  
I; PU  
I; PU  
no  
no  
R — Reserved. Configure for an alternate function in  
the IOCON block.  
I/O  
AI  
PIO1_2 — General purpose port 1 input/output 2.  
ADC_4 — A/D converter, input 4.  
O
CT32B1_MAT1 — Match output 1 for 32-bit timer 1.  
SWDIO/PIO1_3  
I/O  
SWDIO — Serial Wire Debug I/O. SWDIO is enabled  
by default on this pin.  
I/O  
AI  
O
PIO1_3 — General purpose port 1 input/output 3.  
ADC_3 — A/D converter, input 3.  
CT32B1_MAT2 — Match output 2 for 32-bit timer 1.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
7 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
Pin description  
Reset Start  
Type Description  
state logic  
[1]  
wake-up  
pin  
[4]  
PIO1_4/  
39  
I; PU  
no  
IO  
PIO1_4 — General purpose port 1 input/output 4.  
WAKEUP  
General-purpose digital input/output pin. This pin also  
serves as the Deep power-down mode wake-up pin  
with 20 ns glitch filter. Pull this pin HIGH externally  
before entering Deep power-down mode. Pull this pin  
LOW to exit Deep power-down mode. A LOW-going  
pulse as short as 50 ns wakes up the part.  
AI  
O
I/O  
O
I
ADC_2 — A/D converter, input 2.  
CT32B1_MAT3 — Match output 3 for 32-bit timer 1.  
PIO1_5 — General purpose port 1 input/output 5.  
U0_RTS — Request To Send output for UART0.  
CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.  
PIO1_6 — General purpose port 1 input/output 6.  
[6]  
[6]  
PIO1_5  
PIO1_6  
45  
46  
I; PU  
I; PU  
no  
no  
I/O  
I
U0_RXD — Receiver input for UART0. In ISP mode,  
connect to UART.  
O
CT32B0_MAT0 — Match output 0 for 32-bit timer 0.  
PIO1_7 — General purpose port 1 input/output 7.  
[6]  
[6]  
PIO1_7  
PIO1_8  
47  
9
I; PU  
I; PU  
no  
no  
I/O  
O
U0_TXD — Transmitter output for UART0. In ISP  
mode, connect to UART.  
O
CT32B0_MAT1 — Match output 1 for 32-bit timer 0.  
PIO1_8 — General purpose port 1 input/output 8.  
CT16B1_CAP0 — Capture input 0 for 16-bit timer 1.  
R — Reserved.  
I/O  
I
-
O
U2_TXD — Transmitter output for U2.  
[6]  
[3]  
PIO1_9  
17  
29  
I; PU  
I; PU  
no  
no  
I/O  
O
PIO1_9 — General purpose port 1 input/output 9.  
CT16B1_MAT0 — Match output 0 for 16-bit timer 1.  
SSP1_MOSI — Master Out Slave In for SSP1.I  
PIO1_10 — General purpose port 1 input/output 10.  
ADC_8 — A/D converter, input 8.  
I/O  
I/O  
AI  
O
PIO1_10  
CT16B1_MAT1 — Match output 1 for 16-bit timer 1.  
SSP1_MISO — Master In Slave Out for SSP1.  
PIO1_11 — General purpose port 1 input/output 11.  
ADC_1 — A/D converter, input 1.  
I/O  
I/O  
AI  
I
[3]  
[6]  
PIO1_11  
PIO2_0  
42  
2
I; PU  
I; PU  
no  
no  
CT32B1_CAP1 — Capture input 1 for 32-bit timer 1.  
PIO2_0 — General purpose port 2 input/output 0.  
U0_DTR — Data Terminal Ready output for UART0.  
SSP1_SSEL — Slave Select for SSP1.  
IO  
O
I/O  
I
ADC_PIN_TRIG4 — ADC pin trigger input 4.  
PIO2_1 — General purpose port 2 input/output 1.  
U0_DSR — Data Set Ready input for UART0.  
SSP1_SCK — Serial clock for SSP1.  
[6]  
PIO2_1  
13  
I; PU  
no  
I/O  
I
I/O  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
8 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
Pin description  
Reset Start  
Type Description  
state logic  
[1]  
wake-up  
pin  
[6]  
[6]  
[6]  
PIO2_2  
PIO2_3  
PIO2_4  
25  
I; PU  
I; PU  
I; PU  
no  
I/O  
I
PIO2_2 — General purpose port 2 input/output 2.  
U0_DCD — Data Carrier Detect input for UART0.  
I/O  
I/O  
I
SSP1_MISO — Master In Slave Out for SSP1.  
PIO2_3 — General purpose port 2 input/output 3.  
U0_RI — Ring Indicator input for UART0.  
37  
19  
no  
no  
I/O  
I/O  
O
SSP1_MOSI — Master Out Slave In for SSP1.  
PIO2_4 — General purpose port 2 input/output 4.  
CT16B1_MAT1 — Match output 1 for 16-bit timer 1.  
SSP1_SSEL — Slave Select for SSP1.  
I/O  
I/O  
O
[6]  
[6]  
[6]  
PIO2_5  
PIO2_6  
PIO2_7  
20  
1
I; PU  
I; PU  
I; PU  
no  
no  
no  
PIO2_5 — General purpose port 2 input/output 5.  
CT32B0_MAT0 — Match output 0 for 32-bit timer 0.  
PIO2_6 — General purpose port 2 input/output 6.  
CT32B0_MAT1 — Match output 1 for 32-bit timer 0.  
PIO2_7 — General purpose port 2 input/output 7.  
CT32B0_MAT2 — Match output 2 for 32-bit timer 0.  
U0_RXD — Receiver input for UART0.  
I/O  
O
11  
I/O  
O
I
[6]  
[6]  
PIO2_8  
PIO2_9  
12  
24  
I; PU  
I; PU  
no  
no  
I/O  
I
PIO2_8 — General purpose port 2 input/output 8.  
CT32B0_MAT3 — Match output 3 for 32-bit timer 0.  
U0_TXD — Transmitter output for UART0.  
O
I/O  
I
PIO2_9 — General purpose port 2 input/output 9.  
CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.  
PIO2_10 — General purpose port 2 input/output 10.  
PIO3_0 — General purpose port 3 input/output 0.  
U0_DTR — Data Terminal Ready output for UART0.  
CT16B0_MAT0 — Match output 0 for 16-bit timer 0.  
U0_TXD — Transmitter Output for UART0.  
[6]  
[6]  
PIO2_10  
PIO3_0  
-
I: PU  
I; PU  
no  
no  
I/O  
I/O  
O
36  
O
O
[6]  
PIO3_2  
-
I; PU  
no  
I/O  
I
PIO3_2 — General purpose port 3 input/output 2.  
U0_DCD — Data Carrier Detect input for UART0.  
CT16B0_MAT2 — Match output 2 for 16-bit timer 0.  
SSP1_SCK — Serial clock for SSP1.  
O
I/O  
I/O  
I
[6]  
[6]  
[6]  
PIO3_3  
PIO3_4  
PIO3_5  
48  
18  
21  
I; PU  
I; PU  
I; PU  
no  
no  
no  
PIO3_3 — General purpose port 3 input/output 3.  
U0_RI — Ring Indicator input for UART0.  
I
CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.  
PIO3_4 — General purpose port 3 input/output 4.  
CT16B0_CAP1 — Capture input 1 for 16-bit timer 0.  
U0_RXD — Receiver input for UART0.  
I/O  
I
I
I/O  
I
PIO3_5 — General purpose port 3 input/output 5.  
CT16B1_CAP1 — Capture input 1 for 16-bit timer 1.  
U0_TXD — Transmitter output for UART0.  
O
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
9 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
Pin description  
Reset Start  
Type Description  
state logic  
[1]  
wake-up  
pin  
[2]  
[2]  
XTALIN  
6
7
-
-
-
Input to the oscillator circuit and internal clock  
generator circuits. Input voltage must not exceed  
1.8 V.  
XTALOUT  
VREFP  
VREFN  
VDD  
-
-
-
-
-
-
-
-
-
-
-
-
Output from the oscillator amplifier.  
Positive reference voltage for the ADC.  
Negative reference voltage for the ADC.  
33  
34  
8;  
44  
3.3 V supply voltage to the internal regulator and the  
external rail.  
VDDA  
VSSA  
VSS  
43  
40  
-
-
-
-
-
-
-
-
-
Analog supply voltage.  
Analog ground.  
Ground.  
5;  
41  
[1] Pin state at reset for default function: I = Input; AI = Analog Input; O = Output; PU = internal pull-up enabled (pins pulled up to full VDD  
level (VDD = 3.3 V)); IA = inactive, no pull-up/down enabled.  
[2] When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded  
(grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating.  
[3] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input.  
When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see Figure 27).  
[4] Pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When  
configured as a ADC input, digital section of the pad is disabled (see Figure 27). In deep power-down mode, this pin serves as the  
wake-up pin.  
[5] High-current output driver. Pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis  
(see Figure 27).  
[6] Standard digital I/O pin. Pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see  
Figure 27).  
[7] I2C-bus pins compliant with the I2C-bus specification for I2C standard mode, I2C Fast-mode, and I2C Fast-mode Plus. The pin requires  
an external pull-up to provide output functionality. When power is switched off, this pin is floating and does not disturb the I2C lines.  
Open-drain configuration applies to all functions on this pin.  
[8] 5 V tolerant pad. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up  
from Deep power-down mode. An external pull-up resistor is required on this pin for the Deep power-down mode. See Figure 28 for the  
reset pad configuration.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
10 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7. Functional description  
7.1 ARM Cortex-M0 processor  
The ARM Cortex-M0 is a general purpose, 32-bit microprocessor, which offers high  
performance and very low power consumption.  
7.2 On-chip flash program memory  
The LPC112x contain up to 64 kB of on-chip flash memory.  
7.3 On-chip SRAM  
The LPC112x contain a total of 8 kB on-chip static RAM memory.  
7.4 Memory map  
The LPC112x incorporate several distinct memory regions, shown in the following figures.  
Figure 3 shows the overall map of the entire address space from the user program  
viewpoint following reset. The interrupt vector area supports address remapping.  
The AHB peripheral area is 2 MB in size, and is divided to allow for up to 128 peripherals.  
The APB peripheral area is 512 kB in size and is divided to allow for up to 32 peripherals.  
Each peripheral of either type is allocated 16 kB of space. This allows simplifying the  
address decoding for each peripheral.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
11 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
AHB peripherals  
0x5020 0000  
LPC112x  
4 GB  
0xFFFF FFFF  
reserved  
0xE010 0000  
0xE000 0000  
127-16 reserved  
0x5004 0000  
private peripheral bus  
12-15  
8-11  
4-7  
GPIO PIO3  
GPIO PIO2  
GPIO PIO1  
GPIO PIO0  
reserved  
0x5003 0000  
0x5002 0000  
0x5020 0000  
0x5000 0000  
AHB peripherals  
0x5001 0000  
0x5000 0000  
0-3  
reserved  
APB peripherals  
0x4008 0000  
31-23 reserved  
SSP1  
0x4005 C000  
0x4005 8000  
0x4008 0000  
0x4000 0000  
22  
APB peripherals  
reserved  
1 GB  
21-19 reserved  
0x4004 C000  
0x4004 8000  
0x4004 4000  
0x4004 0000  
system control  
IOCON  
18  
17  
16  
15  
14  
SSP0  
0x2000 0000  
0.5 GB  
flash controller  
PMU  
0x4003 C000  
0x4003 8000  
reserved  
0x1FFF 4000  
0x1FFF 0000  
13-10 reserved  
16 kB boot ROM  
reserved  
0x4002 8000  
0x4002 4000  
0x4002 0000  
9
8
7
6
5
4
3
2
1
0
UART2  
UART1  
0x1000 2000  
8 kB SRAM  
reserved  
12-bit ADC  
0x4001 C000  
0x4001 8000  
32-bit counter/timer 1  
32-bit counter/timer 0  
16-bit counter/timer 1  
16-bit counter/timer 0  
UART0  
0x4001 4000  
0x4001 0000  
0x4000 C000  
0x4000 8000  
0x1000 0000  
0x0001 0000  
WWDT  
0x4000 4000  
0x4000 0000  
64 kB on-chip flash  
(LPC1125)  
2
I C-bus  
0x0000 E000  
0x0000 0000  
32 kB on-chip flash  
(LPC1124)  
0x0000 00C0  
active interrupt vectors  
0x0000 0000  
0 GB  
aaa-016174  
Fig 3. LPC112x memory map  
7.5 Nested Vectored Interrupt Controller (NVIC)  
The Nested Vectored Interrupt Controller (NVIC) is an integral part of the Cortex-M0. The  
tight coupling to the CPU allows for low interrupt latency and efficient processing of late  
arriving interrupts.  
7.5.1 Features  
Controls system exceptions and peripheral interrupts.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
12 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
On the LPC112x, the NVIC supports 32 vectored interrupts including up to 13 inputs  
to the start logic from individual GPIO pins.  
Four programmable interrupt priority levels with hardware priority level masking.  
Software interrupt generation.  
7.5.2 Interrupt sources  
Each peripheral device has one interrupt line connected to the NVIC but may have several  
interrupt flags. Individual interrupt flags may also represent more than one interrupt  
source.  
Any GPIO pin (total of up to 40 pins) regardless of the selected function, can be  
programmed to generate an interrupt on a level, or rising edge or falling edge, or both.  
7.6 IOCON block  
The IOCON block allows selected pins of the microcontroller to have more than one  
function. Configuration registers control the multiplexers to allow connection between the  
pin and the on-chip peripherals.  
Peripherals should be connected to the appropriate pins prior to being activated and prior  
to any related interrupt(s) being enabled. Activity of any enabled peripheral function that is  
not mapped to a related pin should be considered undefined.  
7.7 Fast general purpose parallel I/O  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Multiple outputs  
can be set or cleared in one write operation.  
LPC112x use accelerated GPIO functions:  
GPIO registers are a dedicated AHB peripheral so that the fastest possible I/O timing  
can be achieved.  
Entire port value can be written in one instruction.  
Additionally, any GPIO pin (total of 38 pins) providing a digital function can be  
programmed to generate an interrupt on a level, a rising or falling edge, or both.  
7.7.1 Features  
Bit level port registers allow a single instruction to set or clear any number of bits in  
one write operation.  
Direction control of individual bits.  
All I/O default to inputs with pull-ups enabled after reset with the exception of the  
I2C-bus pins PIO0_4 and PIO0_5.  
Pull-up/pull-down resistor configuration can be programmed through the IOCON block  
for each GPIO pin (except for pins PIO0_4 and PIO0_5).  
All GPIO pins (except PIO0_4 and PIO0_5) are pulled up to 3.3 V (VDD = 3.3 V) if their  
pull-up resistor is enabled in the IOCON block.  
Programmable open-drain mode.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
13 of 63  
LPC112x  
NXP Semiconductors  
7.8 UART  
32-bit ARM Cortex-M0 microcontroller  
The LPC112x contain three UARTs.  
Support for RS-485/9-bit mode allows both software address detection and automatic  
address detection using 9-bit mode.  
The UART includes a fractional baud rate generator. Standard baud rates such as  
115200 Bd can be achieved with any crystal frequency above 2 MHz.  
7.8.1 Features  
Maximum UART data bit rate of 3.125 MBit/s.  
16 Byte Receive and Transmit FIFOs.  
Register locations conform to 16C550 industry standard.  
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.  
Built-in fractional baud rate generator covering wide range of baud rates without a  
need for external crystals of particular values.  
FIFO control mechanism that enables software flow control implementation.  
Support for RS-485/9-bit mode.  
Support for modem control.  
7.9 SSP controller  
The LPC112x contains two SSP controllers.  
The SSP controller is capable of operation on a SSP, 4-wire SSI, or Microwire bus. It can  
interact with multiple masters and slaves on the bus. Only a single master and a single  
slave can communicate on the bus during a given data transfer. The SSP supports full  
duplex transfers, with frames of 4 bits to 16 bits of data flowing from the master to the  
slave and from the slave to the master. In practice, often only one of these data flows  
carries meaningful data.  
7.9.1 Features  
Maximum SSP speed of 25 Mbit/s (master) or 4.17 Mbit/s (slave) (in SSP mode).  
Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National  
Semiconductor Microwire buses.  
Synchronous serial communication.  
Master or slave operation.  
8-frame FIFOs for both transmit and receive.  
4-bit to 16-bit frame.  
7.10 I2C-bus serial I/O controller  
The LPC112x contains one I2C-bus controller.  
The I2C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock Line  
(SCL) and a Serial DAta line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
14 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
capability to both receive and send information (such as memory). Transmitters and/or  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C is a multi-master bus and can be  
controlled by more than one bus master connected to it.  
7.10.1 Features  
The I2C-interface is a standard I2C-bus compliant interface with open-drain pins. The  
I2C-bus interface also supports Fast-mode Plus with bit rates up to 1 Mbit/s.  
Easy to configure as master, slave, or master/slave.  
Programmable clocks allow versatile rate control.  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus.  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer.  
The I2C-bus can be used for test and diagnostic purposes.  
The I2C-bus controller supports multiple address recognition and a bus monitor mode.  
7.11 Analog-to-Digital Converter (ADC)  
The ADC supports a resolution of 12 bit and fast conversion rates of up to 2 Msamples/s.  
Sequences of analog-to-digital conversions can be triggered by multiple sources. Possible  
trigger sources are internal connections to the 16-bit timer match outputs, five external  
pins, and the ARM TXEV interrupt.  
The ADC includes a hardware threshold compare function with zero-crossing detection.  
7.11.1 Features  
12-bit successive approximation analog to digital converter.  
12-bit conversion rate of 2 Msamples/s.  
Input multiplexing among 8 pins.  
Two configurable conversion sequences with independent triggers.  
Optional automatic high/low threshold comparison and zero-crossing detection.  
Power-down mode and low-power operating mode.  
Measurement range VREFN to VREFP (typically 3 V; not to exceed VDDA voltage  
level).  
Burst conversion mode for single or multiple inputs.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
15 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.12 General purpose external event counter/timers  
The LPC112x include two 32-bit counter/timers and two 16-bit counter/timers. The  
counter/timer is designed to count cycles of the system derived clock. It can optionally  
generate interrupts or perform other actions at specified timer values, based on four  
match registers. Each counter/timer also includes up to two capture inputs to trap the  
timer value when an input signal transitions, optionally generating an interrupt.  
7.12.1 Features  
A 32-bit/16-bit timer/counter with a programmable 32-bit/16-bit prescaler.  
Counter or timer operation.  
Up to two capture channels per timer, that can take a snapshot of the timer value  
when an input signal transitions. A capture event may also generate an interrupt.  
The timer and prescaler may be configured to be cleared on a designated capture  
event. This feature permits easy pulse width measurement by clearing the timer on  
the leading edge of an input pulse and capturing the timer value on the trailing edge.  
Four match registers per timer that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Up to four external outputs corresponding to match registers, with the following  
capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
7.13 System tick timer  
The ARM Cortex-M0 includes a system tick timer (SYSTICK) that is intended to generate  
a dedicated SYSTICK exception at a fixed time interval (typically 10 ms).  
7.14 Windowed WatchDog Timer  
The purpose of the watchdog is to reset the controller if software fails to periodically  
service it within a programmable time window.  
7.14.1 Features  
Internally resets chip if not periodically reloaded during the programmable time-out  
period.  
Optional windowed operation requires reload to occur between a minimum and  
maximum time period, both programmable.  
Optional warning interrupt can be generated at a programmable time prior to  
watchdog time-out.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
16 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Incorrect feed sequence causes reset or interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 24-bit timer with internal prescaler.  
Selectable time period from (Tcy(WDCLK) 256 4) to (Tcy(WDCLK) 224 4) in  
multiples of Tcy(WDCLK) 4.  
The Watchdog Clock (WDCLK) source can be selected from the IRC or the dedicated  
watchdog oscillator (WDO). This gives a wide range of potential timing choices of  
watchdog operation under different power conditions.  
7.15 Clocking and power control  
7.15.1 Crystal oscillators  
The LPC112x include three independent oscillators. These are the system oscillator, the  
Internal RC oscillator (IRC), and the Watchdog oscillator. Each oscillator can be used for  
more than one purpose as required in a particular application.  
Following reset, the LPC112x will operate from the Internal RC oscillator until switched by  
software. This allows systems to operate without any external crystal and the bootloader  
code to operate at a known frequency.  
See Figure 4 for an overview of the LPC112x clock generation.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
17 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
ARM  
CORTEX-M0  
system clock  
SYSTEM CLOCK  
DIVIDER  
AHB clocks  
1 to 18  
(memories  
and peripherals)  
18  
SYSAHBCLKDIV  
SYSAHBCLKCTRL[1:18]  
IRC oscillator  
SSP0 PERIPHERAL  
CLOCK DIVIDER  
SSP0_PCLK  
UART0_PCLK  
SSP1_PCLK  
UART1_PCLK  
UART2_PCLK  
main clock  
watchdog oscillator  
UART0 PERIPHERAL  
CLOCK DIVIDER  
SSP1 PERIPHERAL  
CLOCK DIVIDER  
MAINCLKSEL  
(main clock select)  
sys_pllclkout  
UART1 PERIPHERAL  
CLOCK DIVIDER  
IRC oscillator  
SYSTEM PLL  
sys_pllclkin  
system oscillator  
UART2 PERIPHERAL  
CLOCK DIVIDER  
SYSPLLCLKSEL  
(system PLL clock select)  
IRC oscillator  
WDT CLOCK  
DIVIDER  
WDCLK  
watchdog oscillator  
WDTUEN  
(WDT clock update enable)  
IRC oscillator  
system oscillator  
CLKOUT PIN CLOCK  
DIVIDER  
CLKOUT pin  
watchdog oscillator  
CLKOUTUEN  
(CLKOUT update enable)  
aaa-016177  
Fig 4. LPC112x clock generation block diagram  
7.15.1.1 Internal RC oscillator  
The IRC may be used as the clock source for the WDT, and/or as the clock that drives the  
PLL and subsequently the CPU. The nominal IRC frequency is 12 MHz.  
Upon power-up or any chip reset, the LPC112x use the IRC as the clock source. Software  
may later switch to one of the other available clock sources.  
7.15.1.2 System oscillator  
The system oscillator can be used as the clock source for the CPU, with or without using  
the PLL.  
The system oscillator operates at frequencies of 1 MHz to 25 MHz. This frequency can be  
boosted to a higher frequency, up to the maximum CPU operating frequency, by the  
system PLL.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
18 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.15.1.3 Watchdog oscillator  
The watchdog oscillator can be used as a clock source that directly drives the CPU, the  
watchdog timer, or the CLKOUT pin. The watchdog oscillator nominal frequency is  
programmable between 9.4 kHz and 2.3 MHz. The frequency spread over processing and  
temperature is 40 %.  
7.15.2 System PLL  
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input  
frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO).  
The multiplier can be an integer value from 1 to 32. The CCO operates in the range of  
156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO within  
its frequency range while the PLL is providing the desired output frequency. The PLL  
output frequency must be lower than 100 MHz. The output divider may be set to divide by  
2, 4, 8, or 16 to produce the output clock. Since the minimum output divider value is 2, it is  
insured that the PLL output has a 50 % duty cycle. The PLL is turned off and bypassed  
following a chip reset and may be enabled by software. The program must configure and  
activate the PLL, wait for the PLL to lock, and then connect to the PLL as a clock source.  
The PLL settling time is 100 s.  
7.15.3 Clock output  
The LPC112x features a clock output function that routes the IRC oscillator, the system  
oscillator, the watchdog oscillator, or the main clock to an output pin.  
7.15.4 Wake-up process  
The LPC112x begin operation at power-up and when awakened from Deep power-down  
mode by using the 12 MHz IRC oscillator as the clock source. This allows chip operation  
to resume quickly. If the system oscillator or the PLL is needed by the application,  
software will need to enable these features and wait for them to stabilize before they are  
used as a clock source.  
7.15.5 Power control  
The LPC112x support a variety of power control features. There are three special modes  
of processor power reduction: Sleep mode, Deep-sleep mode, and Deep power-down  
mode. The CPU clock rate may also be controlled as needed by changing clock sources,  
reconfiguring PLL values, and/or altering the CPU clock divider value. This allows a  
trade-off of power versus processing speed based on application requirements. In  
addition, a register is provided for shutting down the clocks to individual on-chip  
peripherals, allowing fine tuning of power consumption by eliminating all dynamic power  
use in any peripherals that are not required for the application. Selected peripherals have  
their own clock divider which provides even better power control.  
7.15.5.1 Power profiles  
The power consumption in Active and Sleep modes can be optimized for the application  
through simple calls to the power profile. The power configuration routine configures the  
LPC112x for one of the following power modes:  
Default mode corresponding to power configuration after reset.  
CPU performance mode corresponding to optimized processing capability.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
19 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Efficiency mode corresponding to optimized balance of current consumption and CPU  
performance.  
Low-current mode corresponding to lowest power consumption.  
In addition, the power profile includes routines to select the optimal PLL settings for a  
given system clock and PLL input clock.  
7.15.5.2 Sleep mode  
When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep  
mode does not need any special sequence but re-enabling the clock to the ARM core.  
In Sleep mode, execution of instructions is suspended until either a reset or interrupt  
occurs. Peripheral functions continue operation during Sleep mode and may generate  
interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic  
power used by the processor itself, memory systems and related controllers, and internal  
buses.  
7.15.5.3 Deep-sleep mode  
In Deep-sleep mode, the chip is in Sleep mode, and in addition all analog blocks are shut  
down. As an exception, the user has the option to keep the watchdog oscillator and the  
BOD circuit running for self-timed wake-up and BOD protection. Deep-sleep mode allows  
for additional power savings.  
Up to 13 pins total serve as external wake-up pins to the start logic to wake up the chip  
from Deep-sleep mode.  
Unless the watchdog oscillator is selected to run in Deep-sleep mode, the clock source  
should be switched to IRC before entering Deep-sleep mode, because the IRC can be  
switched on and off glitch-free.  
7.15.5.4 Deep power-down mode  
In Deep power-down mode, power is shut off to the entire chip with the exception of the  
WAKEUP pin. The LPC112x can wake up from Deep power-down mode via the WAKEUP  
pin.  
A LOW-going pulse as short as 50 ns wakes up the part from Deep power-down mode.  
When entering Deep power-down mode, an external pull-up resistor is required on the  
WAKEUP pin to hold it HIGH. The RESET pin must also be held HIGH to prevent it from  
floating while in Deep power-down mode.  
7.16 System control  
7.16.1 Start logic  
The start logic connects external pins to corresponding interrupts in the NVIC. Each pin  
shown in Table 3 as input to the start logic has an individual interrupt in the NVIC interrupt  
vector table. The start logic pins can serve as external interrupt pins when the chip is  
running. In addition, an input signal on the start logic pins can wake up the chip from  
Deep-sleep mode when all clocks are shut down.  
The start logic must be configured in the system configuration block and in the NVIC  
before being used.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
20 of 63  
LPC112x  
NXP Semiconductors  
7.16.2 Reset  
32-bit ARM Cortex-M0 microcontroller  
Reset has four sources on the LPC112x: the RESET pin, the Watchdog reset, Power-On  
Reset (POR), and the BrownOut Detection (BOD) circuit. The RESET pin is a Schmitt  
trigger input pin. Assertion of chip reset by any source, once the operating voltage attains  
a usable level, starts the IRC and initializes the flash controller.  
A LOW-going pulse as short as 50 ns resets the part.  
When the internal Reset is removed, the processor begins executing at address 0, which  
is initially the Reset vector mapped from the boot block. At that point, all of the processor  
and peripheral registers have been initialized to predetermined values.  
An external pull-up resistor is required on the RESET pin if Deep power-down mode is  
used.  
7.16.3 Brownout detection  
The LPC112x includes up to four levels for monitoring the voltage on the VDD pin. If this  
voltage falls below one of the selected levels, the BOD asserts an interrupt signal to the  
NVIC. This signal can be enabled for interrupt in the Interrupt Enable Register in the NVIC  
in order to cause a CPU interrupt; if not, software can monitor the signal by reading a  
dedicated status register. Four threshold levels can be selected to cause a forced reset of  
the chip.  
7.16.4 Code security (Code Read Protection - CRP)  
This feature of the LPC112x allows user to enable different levels of security in the system  
so that access to the on-chip flash and use of the Serial Wire Debugger (SWD) and  
In-System Programming (ISP) can be restricted. When needed, CRP is invoked by  
programming a specific pattern into a dedicated flash location. IAP commands are not  
affected by the CRP.  
In addition, ISP entry via the PIO0_1 pin can be disabled without enabling CRP. For  
details see the LPC111x user manual.  
There are three levels of Code Read Protection:  
1. CRP1 disables access to the chip via the SWD and allows partial flash update  
(excluding flash sector 0) using a limited set of the ISP commands. This mode is  
useful when CRP is required and flash field updates are needed but all sectors can  
not be erased.  
2. CRP2 disables access to the chip via the SWD and only allows full flash erase and  
update using a reduced set of the ISP commands.  
3. Running an application with level CRP3 selected fully disables any access to the chip  
via the SWD pins and the ISP. This mode effectively disables ISP override using  
PIO0_1 pin, too. It is up to the user’s application to provide (if needed) flash update  
mechanism using IAP calls or call reinvoke ISP command to enable flash update via  
the UART.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
21 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
CAUTION  
If level three Code Read Protection (CRP3) is selected, no future factory testing can be  
performed on the device.  
In addition to the three CRP levels, sampling of pin PIO0_1 for valid user code can be  
disabled. For details see the LPC112x user manual.  
7.16.5 APB interface  
The APB peripherals are located on one APB bus.  
7.16.6 AHBLite  
The AHBLite connects the CPU bus of the ARM Cortex-M0 to the flash memory, the main  
static RAM, and the Boot ROM.  
7.16.7 External interrupt inputs  
All GPIO pins can be level or edge sensitive interrupt inputs. In addition, start logic inputs  
serve as external interrupts (see Section 7.16.1).  
7.17 Emulation and debugging  
Debug functions are integrated into the ARM Cortex-M0. Serial wire debug with four  
breakpoints and two watchpoints is supported.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
22 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
8. Limiting values  
Table 4.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
VDD  
Parameter  
Conditions  
Min  
0.5  
0.5  
0.5  
0.5  
Max  
+4.6  
+4.6  
+4.6  
+5.5  
Unit  
V
[2]  
[2]  
supply voltage (core and external rail)  
analog supply voltage  
reference voltage  
VDDA  
Vref  
V
on pin VREFP  
V
[5][2]  
VI  
input voltage  
5 V tolerant I/O  
pins; only valid  
when the VDD  
supply voltage is  
present  
V
[2][4]  
5 V tolerant  
open-drain pins  
PIO0_4 and  
PIO0_5  
0.5  
0.5  
+5.5  
4.6  
V
V
[2]  
[3]  
VIA  
analog input voltage  
pin configured as  
analog input  
IDD  
supply current  
per supply pin  
per ground pin  
-
-
-
100  
100  
100  
mA  
mA  
mA  
ISS  
ground current  
I/O latch-up current  
Ilatch  
(0.5VDD) < VI <  
(1.5VDD);  
Tj < 125 C  
[6]  
Tstg  
storage temperature  
non-operating  
65  
+150  
150  
1.5  
C  
C  
W
Tj(max)  
Ptot(pack)  
maximum junction temperature  
total power dissipation (per package)  
-
-
based on package  
heat transfer, not  
device power  
consumption  
[7]  
VESD  
electrostatic discharge voltage  
human body  
+6500  
V
model; all pins  
[1] The following applies to the limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated  
maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
c) The limiting values are stress ratings only. Operating the part at these values is not recommended, and proper operation is not  
guaranteed. The conditions for functional operation are specified in Table 6.  
[2] Maximum/minimum voltage above the maximum operating voltage (see Table 6) and below ground that can be applied for a short time  
(< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter lifetime of the device.  
[3] See Table 6 for maximum operating voltage.  
[4]  
V
DD present or not present. Compliant with the I2C-bus standard. 5.5 V can be applied to this pin when VDD is powered down.  
[5] Including voltage on outputs in 3-state mode.  
[6] The maximum non-operating storage temperature is different than the temperature for required shelf life which should be determined  
based on required shelf lifetime. Please refer to the JEDEC spec (J-STD-033B.1) for further details.  
[7] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
23 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9. Thermal characteristics  
The average chip junction temperature, Tj (C), can be calculated using the following  
equation:  
Tj = Tamb + PD Rthj a  
(1)  
Tamb = ambient temperature (C)  
Rth(j-a) = the package junction-to-ambient thermal resistance (C/W)  
PD = sum of internal and I/O power dissipation  
The internal power dissipation is the product of IDD and VDD. The I/O power dissipation of  
the I/O pins is often small and many times can be negligible. However it can be significant  
in some applications.  
Table 5.  
LQFP48  
ja  
Thermal resistance value (C/W): ±15 %  
JEDEC (4.5 in 4 in)  
0 m/s  
82.1  
73.7  
68.2  
1 m/s  
2.5 m/s  
8-layer (4.5 in 3 in)  
0 m/s  
1 m/s  
2.5 m/s  
jc  
115.2  
94.7  
86.3  
29.6  
34.2  
jb  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
24 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10. Static characteristics  
Table 6.  
Static characteristics  
Tamb = 40 C to +105 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
VDD  
supply voltage (core  
and external rail)  
1.8  
3.3  
3.6  
V
VDDA  
Vref  
analog supply voltage  
2.4  
2.4  
3.3  
-
3.6  
V
V
reference voltage  
on pin VREFP  
VDDA  
Power consumption in low-current mode[11]  
IDD  
supply current  
Active mode; code  
while(1){}  
executed from flash  
system clock = 1 MHz  
[2][3][5][6][7]  
-
-
-
-
-
0.7  
1.0  
1.5  
6.0  
0.8  
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
VDD = 3.3 V  
[2][3][5]  
[6][7]  
system clock = 6 MHz  
VDD = 3.3 V  
[2][3][4]  
[6][7]  
system clock = 12 MHz  
V
DD = 3.3 V  
system clock = 50 MHz  
DD = 3.3 V  
[2][3][6]  
[7][8]  
V
[2][3][4]  
[6][7]  
Sleep mode;  
system clock = 12 MHz  
V
DD = 3.3 V  
system clock = 50 MHz  
DD = 3.3 V  
[2][3][4]  
[6][7]  
-
2.4  
-
mA  
V
[2][3][9]  
IDD  
supply current  
supply current  
Deep-sleep mode;  
VDD = 3.3 V;  
Tamb = 25 C  
-
-
1.8  
-
8
A  
A  
Tamb = 105 C  
65  
[2][10]  
IDD  
Deep power-down mode;  
VDD = 3.3 V;  
T
amb = 25 C  
-
-
220  
-
900  
3.5  
nA  
Tamb = 105 C  
A  
Standard port pins, RESET  
IIL  
LOW-level input  
current  
VI = 0 V; on-chip pull-up  
resistor disabled  
-
-
0.5  
0.5  
10[17]  
10[17]  
nA  
nA  
IIH  
HIGH-level input  
current  
VI = VDD; on-chip  
pull-down resistor  
disabled  
IOZ  
OFF-state output  
current  
VO = 0 V; VO = VDD  
on-chip pull-up/down  
resistors disabled  
;
-
0.5  
-
10[17]  
5.0  
nA  
V
[12]  
[14]  
VI  
input voltage  
pin configured to provide  
a digital function;  
VDD 1.8 V  
0
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
25 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 6.  
Static characteristics …continued  
Tamb = 40 C to +105 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
VDD = 0 V  
Min  
Typ[1]  
Max  
3.6  
VDD  
-
Unit  
V
0
-
-
-
VO  
output voltage  
output active  
0
V
VIH  
HIGH-level input  
voltage  
0.7 VDD  
V
VIL  
LOW-level input  
voltage  
-
-
0.3VDD  
V
Vhys  
VOH  
hysteresis voltage  
-
0.4  
-
-
-
V
V
HIGH-level output  
voltage  
2.5 V VDD 3.6 V;  
IOH = 4 mA  
VDD 0.4  
1.8 V VDD < 2.5 V;  
IOH = 3 mA  
VDD 0.4  
-
-
-
-
-
V
VOL  
LOW-level output  
voltage  
2.5 V VDD 3.6 V;  
-
0.4  
0.4  
-
V
I
OL = 4 mA  
1.8 V VDD < 2.5 V;  
IOL = 3 mA  
-
V
IOH  
HIGH-level output  
current  
VOH = VDD 0.4 V;  
1.8 V VDD 3.6 V  
VOL = 0.4 V  
3  
mA  
IOL  
LOW-level output  
current  
3
-
-
-
-
mA  
mA  
1.8 V VDD 3.6 V  
VOH = 0 V  
[15]  
[15]  
IOHS  
HIGH-level  
45  
short-circuit output  
current  
IOLS  
LOW-level  
VOL = VDD  
-
-
50  
mA  
short-circuit output  
current  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
10  
50  
150  
A  
A  
VI = 0 V;  
15  
50  
85  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
VDD < VI < 5 V  
10  
50  
85  
A  
A  
0
0
0
High-drive output pin (PIO0_7)  
IIL  
LOW-level input  
current  
VI = 0 V; on-chip pull-up  
resistor disabled  
-
-
0.5  
0.5  
10[17]  
10[17]  
nA  
nA  
IIH  
HIGH-level input  
current  
VI = VDD; on-chip  
pull-down resistor  
disabled  
IOZ  
OFF-state output  
current  
VO = 0 V; VO = VDD  
on-chip pull-up/down  
resistors disabled  
;
-
0.5  
-
10[17]  
5.0  
nA  
V
[12]  
[14]  
VI  
input voltage  
pin configured to provide  
a digital function;  
VDD 1.8 V  
0
V
DD = 0 V  
0
0
-
-
3.6  
V
V
VO  
output voltage  
output active  
VDD  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
26 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 6.  
Static characteristics …continued  
Tamb = 40 C to +105 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
VIH  
HIGH-level input  
voltage  
0.7VDD  
-
-
V
VIL  
LOW-level input  
voltage  
-
-
0.3VDD  
V
Vhys  
VOH  
hysteresis voltage  
0.4  
-
-
-
-
V
V
HIGH-level output  
voltage  
2.5 V VDD 3.6 V;  
IOH = 20 mA  
VDD 0.5  
1.8 V VDD < 2.5 V;  
VDD 0.5  
-
-
-
-
-
V
I
OH = 12 mA  
2.5 V VDD 3.6 V;  
OL = 4 mA  
VOL  
LOW-level output  
voltage  
-
0.4  
0.4  
-
V
I
1.8 V VDD < 2.5 V;  
IOL = 3 mA  
-
V
IOH  
HIGH-level output  
current  
VOH = VDD 0.5 V;  
2.5 V VDD 3.6 V  
20  
mA  
1.8 V VDD < 2.5 V  
VOL = 0.4 V  
12  
4
-
-
-
-
mA  
mA  
IOL  
LOW-level output  
current  
2.5 V VDD 3.6 V  
1.8 V VDD < 2.5 V  
VOL = VDD  
3
-
-
-
-
mA  
mA  
[15]  
IOLS  
LOW-level  
50  
short-circuit output  
current  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
10  
50  
150  
A  
A  
VI = 0 V  
15  
50  
85  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
VDD < VI < 5 V  
10  
50  
85  
A  
A  
0
0
0
I2C-bus pins (PIO0_4 and PIO0_5)  
VIH  
HIGH-level input  
voltage  
0.7VDD  
-
-
-
-
V
V
VIL  
LOW-level input  
voltage  
0.3VDD  
Vhys  
IOL  
hysteresis voltage  
-
0.05VDD  
-
-
-
V
LOW-level output  
current  
VOL = 0.4 V; I2C-bus pins  
configured as standard  
mode pins  
3.5  
mA  
2.5 V VDD 3.6 V  
1.8 V VDD < 2.5 V  
3
-
-
-
-
IOL  
LOW-level output  
current  
VOL = 0.4 V; I2C-bus pins  
configured as Fast-mode  
Plus pins  
20  
mA  
2.5 V VDD 3.6 V  
1.8 V VDD < 2.5 V  
16  
-
-
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
27 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 6.  
Static characteristics …continued  
Tamb = 40 C to +105 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
2
Max  
4
Unit  
A  
[16]  
ILI  
input leakage current VI = VDD  
VI = 5 V  
-
-
10  
22  
A  
Oscillator pins  
Vi(xtal)  
crystal input voltage  
crystal output voltage  
0.5  
0.5  
1.8  
1.8  
1.95  
1.95  
V
V
Vo(xtal)  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
28 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 6.  
Static characteristics …continued  
Tamb = 40 C to +105 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
Pin capacitance  
Cio  
input/output  
capacitance  
pins configured for analog  
function  
I2C-bus pins (PIO0_4 and  
PIO0_5)  
-
-
-
-
-
-
7.1  
2.5  
2.8  
pF  
pF  
pF  
pins configured as GPIO  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.  
[2] amb = 25 C.  
T
[3] IDD measurements were performed with all pins configured as GPIO outputs driven LOW and pull-up resistors disabled.  
[4] IRC enabled; system oscillator disabled; system PLL disabled.  
[5] System oscillator enabled; IRC disabled; system PLL disabled.  
[6] BOD disabled.  
[7] All peripherals disabled in the SYSAHBCLKCTRL register. Peripheral clocks to UART and SSP0/1 disabled in system configuration  
block.  
[8] IRC disabled; system oscillator enabled; system PLL enabled.  
[9] All oscillators and analog blocks turned off in the PDSLEEPCFG register; PDSLEEPCFG = 0x0000 18FF.  
[10] WAKEUP pin pulled HIGH externally.  
[11] Low-current mode PWR_LOW_CURRENT selected when running the set_power routine in the power profiles.  
[12] Including voltage on outputs in 3-state mode.  
[13] VDD supply voltage must be present.  
[14] 3-state outputs go into 3-state mode in Deep power-down mode.  
[15] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
[16] To VSS  
.
[17] Characterized on samples. Not tested in production.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
29 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10.1 Power consumption  
Power measurements in Active, Sleep, and Deep-sleep modes were performed under the  
following conditions (see LPC112x user manual):  
Configure all pins as GPIO with pull-up resistor disabled in the IOCON block.  
Configure GPIO pins as outputs using the GPIOnDIR registers.  
Write 0 to all GPIOnDATA registers to drive the outputs LOW.  
aaa-016554  
7
48MHz  
I
DD  
36MHz  
24MHz  
12MHz  
6MHz  
(mA)  
6
4
3
1
0
1MHz  
-40  
-10  
20  
50  
80  
110  
Temperature (°C)  
Conditions: VDD = 3.3 V; active mode entered executing code while(1){} from flash; all  
peripherals disabled in the SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral  
clocks disabled; internal pull-up resistors disabled; BOD disabled; low-current mode.  
3 MHz - 6 MHz: system oscillator enabled; PLL, IRC disabled.  
12 MHz: IRC enabled; system oscillator, PLL disabled.  
24 MHz - 48 MHz: IRC disabled; system oscillator, PLL enabled.  
Fig 5. Active mode: Typical supply current IDD versus temperature for different system  
clock frequencies  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
30 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
aaa-016555  
2.5  
48MHz  
I
DD  
36MHz  
24MHz  
12MHz  
6MHz  
(mA)  
2
1MHz  
1.5  
1
0.5  
0
-40  
-10  
20  
50  
80  
110  
Temperature (°C)  
Conditions: VDD = 3.3 V; sleep mode entered from flash; all peripherals disabled in the  
SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral clocks disabled; internal  
pull-up resistors disabled; BOD disabled; low-current mode.  
3 MHz - 6 MHz: system oscillator enabled; PLL, IRC disabled.  
12 MHz: IRC enabled; system oscillator, PLL disabled.  
24 MHz - 48 MHz: IRC disabled; system oscillator, PLL enabled.  
Fig 6. Sleep mode: Typical supply current IDD versus temperature for different system  
clock frequencies  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
31 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
DDDꢀꢁꢂꢃꢃꢂꢃ  
ꢄꢅ  
ꢄꢂ  
ꢃꢅ  
ꢃꢂ  
,
''  
ꢈ—$ꢉ  
ꢊꢋꢌ9  
ꢊꢋꢊ9  
ꢃꢋꢆ9  
ꢀꢁꢂ  
ꢀꢃꢂ  
ꢄꢂ  
ꢅꢂ  
ꢆꢂ  
ꢃꢃꢂ  
7HPSHUDWXUHꢇꢈƒ&ꢉ  
Conditions: BOD disabled; all oscillators and analog blocks disabled in the PDSLEEPCFG register  
(PDSLEEPCFG = 0x0000 18FF).  
Fig 7. Deep-sleep mode: Typical supply current IDD versus temperature for different  
supply voltages VDD  
DDDꢀꢁꢂꢃꢃꢂꢄ  
ꢃꢋꢄ  
,
''  
ꢈ—$ꢉ  
ꢂꢋꢍ  
ꢂꢋꢌ  
ꢂꢋꢊ  
ꢊꢋꢌ9  
ꢊꢋꢊ9  
ꢃꢋꢆ9  
ꢀꢁꢂ  
ꢀꢃꢂ  
ꢄꢂ  
ꢅꢂ  
ꢆꢂ  
ꢃꢃꢂ  
7HPSHUDWXUHꢇꢈƒ&ꢉ  
Fig 8. Deep power-down mode: Typical supply current IDD versus temperature for  
different supply voltages VDD  
10.2 CoreMark data  
Remark: All CoreMark data were taken with the Keil uVision v. 5.1.0 tool.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
32 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
aaa-016556  
2
CM  
((iterations/s)/MHz)  
1.6  
1.2  
0.8  
0.4  
CPU performance  
Efficiency  
Default  
Low Power  
0
0
10  
20  
30  
40  
50  
Frequency (MHz)  
VDD = 3.3 V; T = 25 °C; active mode; typical samples.  
Fig 9. CoreMark score for different Power API modes  
aaa-016557  
12  
I
DD  
(mA)  
10  
8
Default  
CPU performance  
Efficiency  
Low Power  
6
4
2
0
0
10  
20  
30  
40  
Frequency (MHz)  
50  
VDD = 3.3 V; T = 25 °C; active mode; typical samples. System oscillator enabled; main clock  
derived from external clock signal; PLL and SYSAHBCLKDIV enabled for frequencies > 20 MHz.  
Fig 10. CoreMark current consumption for different power modes using external clock  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
33 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10.3 Peripheral power consumption  
The supply current per peripheral is measured as the difference in supply current between  
the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCFG  
and PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both  
registers and no code is executed. Measured on a typical sample at Tamb = 25 C. Unless  
noted otherwise, the system oscillator and PLL are running in both measurements.  
The supply currents are shown for system clock frequencies of 12 MHz and 48 MHz.  
Table 7.  
Power consumption for individual analog and digital blocks  
Peripheral  
Typical supply current in  
mA  
Notes  
n/a  
12 MHz 48 MHz  
IRC  
0.212  
-
-
-
-
-
-
System oscillator running; PLL off; independent  
of main clock frequency.  
System oscillator 0.1928  
at 12 MHz  
IRC running; PLL off; independent of main clock  
frequency.  
Watchdog  
oscillator at  
500 kHz/2  
0.002  
System oscillator running; PLL off; independent  
of main clock frequency.  
BOD  
0.051  
-
-
-
Independent of main clock frequency.  
Main PLL  
ADC  
-
-
-
0.0686  
0.0532 0.2074  
CLKOUT  
0.0104 0.0392 Main clock divided by 4 in the CLKOUTDIV  
register.  
CT16B0  
CT16B1  
CT32B0  
CT32B1  
GPIO  
-
-
-
-
-
0.0266 0.1028  
0.025  
0.026  
0.0956  
0.0998  
0.0246 0.0956  
0.2252 0.8754 GPIO pins configured as outputs and set to  
LOW. Direction and pin state are maintained if  
the GPIO is disabled in the SYSAHBCLKCFG  
register.  
IOCON  
I2C  
-
-
-
-
-
-
-
-
-
0.0324 0.1262  
0.0384 0.1484  
ROM  
0.017  
0.0482 0.187  
0.048 0.1862  
0.0658  
SSP0  
SSP1  
UART0  
UART1  
UART2  
WWDT  
0.0862 0.334  
0.0836 0.3236  
0.0818 0.3176  
0.039  
0.1964 Main clock selected as clock source for the  
WDT.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
34 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10.4 Electrical pin characteristics  
aaa-013973  
aaa-013974  
1.8  
OLH  
3.5  
V
OHL  
(V)  
V
(V)  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
3.2  
2.9  
2.6  
2.3  
2
-40 °CC  
25 °CC  
90 °CC  
105 °CC  
-40 °CC  
25 °CC  
90 °CC  
105 °CC  
0
4
8
12  
16  
20  
24  
0
20  
40  
60  
OH  
80  
I
(mA)  
I
(mA)  
OH  
Conditions: VDD = 1.8 V; on pin PIO0_7.  
Conditions: VDD = 3.3 V; on pin PIO0_7.  
Fig 11. High-drive output: Typical HIGH-level output voltage VOH versus HIGH-level output current IOH  
aaa-013964  
aaa-013972  
40  
30  
20  
10  
0
60  
45  
30  
15  
0
I
I
OLL  
(mA)  
OLL  
(mA)  
-40 °CC  
25 °CC  
90 °CC  
105 °CC  
-40 °CC  
25 °CC  
90 °CC  
105 °CC  
0
0.1  
0.2  
0.3  
0.4  
0.5  
(V)  
0.6  
0
0.1  
0.2  
0.3  
0.4  
0.5  
(V)  
0.6  
V
V
OL  
OL  
Conditions: VDD = 1.8 V; on pins PIO0_4 and PIO0_5.  
Conditions: VDD = 3.3 V; on pins PIO0_4 and PIO0_5.  
Fig 12. I2C-bus pins (high current sink): Typical LOW-level output current IOL versus LOW-level output voltage  
VOL  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
35 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
aaa-013975  
aaa-013976  
10  
15  
12  
9
I
I
OLL  
(mA)  
OLL  
(mA)  
8
6
4
2
0
-40 °CC  
25 °CC  
90 °CC  
105 °CC  
-40 °CC  
25 °CC  
90 °CC  
105 °CC  
6
3
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
(V)  
0.6  
0
0.1  
0.2  
0.3  
0.4  
0.5  
(V)  
0.6  
V
V
OL  
OL  
Conditions: VDD = 1.8 V; standard port pins and  
high-drive pin PIO0_7.  
Conditions: VDD = 3.3 V; standard port pins and  
high-drive pin PIO0_7.  
Fig 13. Typical LOW-level output current IOL versus LOW-level output voltage VOL  
aaa-013977  
aaa-013978  
1.8  
OHH  
3.5  
-40 °CC  
25 °CC  
90 °CC  
105 °CC  
V
(V)  
V
OHH  
(V)  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
3.2  
2.9  
2.6  
2.3  
2
-40 °CC  
25 °CC  
90 °CC  
105 °CC  
0
1.5  
3
4.5  
OH  
6
0
8
16  
24  
I
(mA)  
I
(mA)  
OH  
Conditions: VDD = 1.8 V; standard port pins.  
Conditions: VDD = 3.3 V; standard port pins.  
Fig 14. Typical HIGH-level output voltage VOH versus HIGH-level output source current IOH  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
36 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
aaa-013979  
aaa-013980  
0
0
I
I
pu  
(μuAA))  
pu  
(uμAA))  
-14  
-28  
-42  
-56  
-70  
-4  
-8  
-40 °CC  
105 °CC  
90 °CC  
25 °CC  
105 °CC  
-40 °CC  
90 °CC  
25 °CC  
-12  
-16  
0
0.7  
1.4  
2.1  
2.8  
V (V)  
3.5  
0
1
2
3
4
5
V (V)  
I
I
Conditions: VDD = 1.8 V; standard port pins.  
Conditions: VDD = 3.3 V; standard port pins.  
Fig 15. Typical pull-up current IPU versus input voltage VI  
aaa-013981  
aaa-013982  
35  
80  
60  
40  
20  
0
I
I
pd  
(μuAA))  
puud  
(uμAA))  
28  
21  
14  
7
-40 °CC  
25 °CC  
90 °CC  
105 °CC  
-40 °CC  
25 °CC  
90 °CC  
105 °CC  
0
0
0.7  
1.4  
2.1  
2.8  
3.5  
0
1
2
3
4
5
V (V)  
V (V)  
I
I
Conditions: VDD = 1.8 V; standard port pins.  
Conditions: VDD = 3.3 V; standard port pins.  
Fig 16. Typical pull-down current IPD versus input voltage VI  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
37 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
11. Dynamic characteristics  
11.1 Flash memory  
Table 8.  
Flash characteristics  
Tamb = 40 C to +105 C, unless otherwise specified.  
Symbol  
Nendu  
tret  
Parameter  
endurance  
Conditions  
Min  
10000  
10  
Typ  
Max  
Unit  
[1]  
100000  
-
cycles  
years  
years  
ms  
retention time  
powered  
-
-
unpowered  
20  
-
-
ter  
erase time  
sector or multiple  
consecutive  
sectors  
95  
100  
105  
[2]  
tprog  
programming  
time  
0.95  
1
1.05  
ms  
[1] Number of program/erase cycles.  
[2] Programming times are given for writing 256 bytes from RAM to the flash. Data must be written to the flash  
in blocks of 256 bytes.  
11.2 External clock  
Table 9.  
Dynamic characteristic: external clock  
Tamb = 40 C to +105 C; VDD over specified ranges.[1]  
Symbol  
fosc  
Parameter  
Min  
Typ[2]  
Max  
Unit  
MHz  
ns  
oscillator frequency  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
clock fall time  
1
-
-
-
-
-
-
25  
Tcy(clk)  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
40  
1000  
Tcy(clk) 0.4  
-
ns  
Tcy(clk) 0.4  
-
ns  
-
-
5
5
ns  
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
T
cy(clk)  
002aaa907  
Fig 17. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
38 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
11.3 Internal oscillators  
Table 10. Dynamic characteristics: IRC  
Tamb = 40 C to +105 C; 2.7 V VDD 3.6 V[1]  
.
Symbol Parameter  
Conditions  
Min  
Typ[2] Max  
12 12 + 1 %  
12 + 1 %  
Unit  
MHz  
MHz  
fosc(RC)  
internal RC oscilla- 25 C Tamb +85 C 12 - 1 %  
tor frequency  
40 C Tamb < 25 C 12 - 2.5 % 12  
85 C < Tamb 105 C 12 - 1.5 % 12  
12 + 1.5 % MHz  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are for room temperature (25 C), nominal supply  
voltages.  
DDDꢀꢁꢂꢁꢁꢅꢆ  
ꢃꢄꢋꢃꢅ  
I
ꢊꢋꢌꢇ9  
ꢈ0+]ꢉ  
ꢊꢋꢊꢇ9  
ꢊꢋꢂꢇ9  
ꢄꢋꢎꢇ9  
ꢃꢄꢋꢂꢆ  
ꢃꢄ  
ꢃꢃꢋꢍꢊ  
ꢃꢃꢋꢆꢅ  
ꢀꢁꢂ  
ꢀꢃꢂ  
ꢄꢂ  
ꢅꢂ  
ꢆꢂ  
ꢃꢃꢂ  
WHPSHUDWXUHꢇꢈƒ&ꢉ  
Conditions: Frequency values are typical values. 12 MHz 1 % accuracy is guaranteed for  
2.7 V VDD 3.6 V and Tamb = 25 C to +85 C. Variations between parts may cause the IRC to  
fall outside the 12 MHz 1 % accuracy specification for voltages below 2.7 V.  
Fig 18. Typical Internal RC oscillator frequency versus temperature  
Table 11. Dynamic characteristics: WatchDog oscillator  
Symbol Parameter  
Conditions  
Min Typ[1] Max Unit  
[2][3]  
[2][3]  
fosc(int) internal oscillator DIVSEL = 0x1F, FREQSEL = 0x1  
-
9.4  
-
kHz  
frequency  
in the WDTOSCCTRL register;  
DIVSEL = 0x00, FREQSEL = 0xF  
in the WDTOSCCTRL register  
-
2300  
-
kHz  
[1] Typical ratings are not guaranteed. The values listed are at nominal supply voltages.  
[2] The typical frequency spread over processing and temperature (Tamb = 40 C to +105 C) is 40 %.  
[3] See the LPC112x user manual.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
39 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
11.4 I/O pins  
Table 12. Dynamic characteristic: I/O pins[1]  
Tamb = 40 C to +105 C; 3.0 V VDD 3.6 V.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tr  
rise time  
pin configured 3.0  
as output  
-
5.0  
ns  
tf  
fall time  
pin configured 2.5  
as output  
-
5.0  
ns  
[1] Applies to standard port pins and RESET pin.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
40 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
11.5 I2C-bus  
Table 13. Dynamic characteristic: I2C-bus pins[1]  
Tamb = 40 C to +105 C.[2]  
Symbol  
Parameter  
Conditions  
Min  
Max  
100  
400  
1
Unit  
kHz  
kHz  
MHz  
ns  
fSCL  
SCL clock  
frequency  
Standard-mode  
Fast-mode  
0
0
0
-
Fast-mode Plus  
[4][5][6][7]  
tf  
fall time  
of both SDA and  
SCL signals  
300  
Standard-mode  
Fast-mode  
20 + 0.1 Cb 300  
ns  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
Fast-mode Plus  
Standard-mode  
Fast-mode  
-
120  
tLOW  
LOW period of  
the SCL clock  
4.7  
1.3  
0.5  
4.0  
0.6  
0.26  
0
-
-
-
-
-
-
-
-
-
-
-
-
Fast-mode Plus  
Standard-mode  
Fast-mode  
tHIGH  
HIGH period of  
the SCL clock  
Fast-mode Plus  
Standard-mode  
Fast-mode  
[3][4][8]  
[9][10]  
tHD;DAT  
data hold time  
0
Fast-mode Plus  
Standard-mode  
Fast-mode  
0
tSU;DAT  
data set-up  
time  
250  
100  
50  
Fast-mode Plus  
[1] See the I2C-bus specification UM10204 for details.  
[2] Parameters are valid over operating temperature range unless otherwise specified.  
[3] HD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission  
and the acknowledge.  
t
[4] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the  
VIH(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.  
[5] Cb = total capacitance of one bus line in pF.  
[6] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA  
output stage tf is specified at 250 ns. This allows series protection resistors to be connected in between the  
SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf.  
[7] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors  
are used, designers should allow for this when considering bus timing.  
[8] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than  
the maximum of tVD;DAT or tVD;ACK by a transition time (see UM10204). This maximum must only be met if  
the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the  
data must be valid by the set-up time before it releases the clock.  
[9]  
t
SU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in  
transmission and the acknowledge.  
[10] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement  
SU;DAT = 250 ns must then be met. This will automatically be the case if the device does not stretch the  
t
LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must  
output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the  
Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must  
meet this set-up time.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
41 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
t
f
t
SU;DAT  
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
t
t
HD;DAT  
VD;DAT  
t
f
t
HIGH  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
t
LOW  
1 / f  
S
SCL  
002aaf425  
Fig 19. I2C-bus pins clock timing  
11.6 SSP interfaces  
Table 14. Dynamic characteristics of SSP pins in SPI mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SSP master (in SPI mode)  
[1]  
[1]  
[2]  
Tcy(clk)  
clock cycle time  
data set-up time  
full-duplex mode  
when only transmitting  
in SPI mode  
50  
40  
20  
-
-
-
-
ns  
ns  
ns  
tDS  
2.4 V VDD 3.6 V  
2.0 V VDD < 2.4 V  
1.8 V VDD < 2.0 V  
in SPI mode  
[2]  
[2]  
[2]  
[2]  
[2]  
25  
29  
0
ns  
ns  
ns  
ns  
ns  
-
-
-
-
-
tDH  
data hold time  
-
tv(Q)  
th(Q)  
data output valid time in SPI mode  
data output hold time in SPI mode  
-
10  
-
0
SSP slave (in SPI mode)  
Tcy(PCLK) PCLK cycle time  
20  
0
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
[3][4]  
[3][4]  
[3][4]  
[3][4]  
tDS  
data set-up time  
data hold time  
in SPI mode  
in SPI mode  
-
tDH  
3 Tcy(PCLK) + 4  
-
tv(Q)  
th(Q)  
data output valid time in SPI mode  
data output hold time in SPI mode  
-
-
3 Tcy(PCLK) + 11  
2 Tcy(PCLK) + 5  
[1] Tcy(clk) = (SSPCLKDIV (1 + SCR) CPSDVSR) / fmain. The clock cycle time derived from the SSP bit rate Tcy(clk) is a function of the  
main clock frequency fmain, the SSP peripheral clock divider (SSPCLKDIV), the SSP SCR parameter (specified in the SSP0CR0  
register), and the SSP CPSDVSR parameter (specified in the SSP clock prescale register).  
[2] Tamb = 40 C to 105 C.  
[3]  
Tcy(clk) = 12 Tcy(PCLK).  
[4] Tamb = 25 C; for normal voltage supply range: VDD = 3.3 V.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
42 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
MOSI  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
CPHA = 1  
t
t
DH  
DS  
DATA VALID  
DATA VALID  
MISO  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
t
MOSI  
MISO  
t
CPHA = 0  
DS  
DH  
DATA VALID  
DATA VALID  
002aae829  
Pin names SCK, MISO, and MOSI refer to pins for both SSP peripherals, SSP0 and SSP1.  
Fig 20. SSP master timing in SPI mode  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
43 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
t
t
h(Q)  
v(Q)  
CPHA = 1  
DATA VALID  
DATA VALID  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
DATA VALID  
t
t
h(Q)  
CPHA = 0  
v(Q)  
DATA VALID  
002aae830  
Pin names SCK, MISO, and MOSI refer to pins for both SSP peripherals, SSP0 and SSP1.  
Fig 21. SSP slave timing in SPI mode  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
44 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
12. Analog characteristics  
12.1 BOD static characteristics  
Table 15. BOD static characteristics[1]  
Tamb = 25 C.  
Symbol Parameter  
Vth threshold voltage  
Conditions  
Min  
Typ  
Max  
Unit  
interrupt level 1  
assertion  
-
-
2.22  
2.35  
-
-
V
V
de-assertion  
interrupt level 2  
assertion  
-
-
2.52  
2.66  
-
-
V
V
de-assertion  
interrupt level 3  
assertion  
-
-
2.80  
2.90  
-
-
V
V
de-assertion  
reset level 0  
assertion  
-
-
1.46  
1.63  
-
-
V
V
de-assertion  
reset level 1  
assertion  
-
-
2.06  
2.15  
-
-
V
V
de-assertion  
reset level 2  
assertion  
-
-
2.35  
2.43  
-
-
V
V
de-assertion  
reset level 3  
assertion  
-
-
2.63  
2.71  
-
-
V
V
de-assertion  
[1] Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see LPC111x  
user manual.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
45 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
12.2 12-bit ADC  
Table 16. 12-bit ADC static characteristics  
Tamb = 40 C to +105 C; VDD = 2.4 V to 3.6 V; VREFP = VDDA; VSSA = 0; VREFN = VSSA  
.
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
VIA  
analog input voltage  
0
-
VDDA  
V
Cia  
analog input capacitance  
ADC clock frequency  
2.5  
50  
25  
2
1
-
pF  
[8]  
[9]  
[8]  
[9]  
[2]  
[3]  
[4]  
[5]  
fclk(ADC)  
VDDA 2.7 V  
VDDA 2.4 V  
VDDA 2.7 V  
VDDA 2.4 V  
MHz  
MHz  
fs  
sampling frequency  
-
-
-
-
-
-
Msamples/s  
Msamples/s  
LSB  
ED  
differential linearity error  
integral non-linearity  
offset error  
+/- 2  
EL(adj)  
EO  
+/- 2  
-
LSB  
+/- 3  
-
LSB  
Verr(fs)  
full-scale error voltage  
2 Msamples/s  
1 Msamples/s  
fs = 2 Msamples/s  
+/- 0.12  
+/- 0.07  
-
%
-
%
[6][7]  
Zi  
input impedance  
0.1  
-
M  
[1] The input resistance of ADC channel 0 is higher than for all other channels.  
[2] The differential linearity error (ED) is the difference between the actual step width and the ideal step width.  
See Figure 22.  
[3] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and  
the ideal transfer curve after appropriate adjustment of gain and offset errors. See Figure 22.  
[4] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the  
straight line which fits the ideal curve. See Figure 22.  
[5] The full-scale error voltage or gain error (EG) is the difference between the straight line fitting the actual  
transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See  
Figure 22.  
[6] Tamb = 25 C; maximum sampling frequency fs = 2 Msamples/s and analog input capacitance Cia = 0.32 pF.  
[7] Input impedance Zi is inversely proportional to the sampling frequency and the total input capacity including  
Cia and Cio: Zi 1 / (fs Ci). See Table 6 for Cio.  
[8] In the ADC TRM register, set VRANGE = 0 (default).  
[9] In the ADC TRM register, set VRANGE = 1.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
46 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
offset  
error  
O
gain  
error  
E
E
G
4095  
4094  
4093  
4092  
4091  
4090  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
4090 4091 4092 4093 4094 4095 4096  
1
2
3
4
5
6
7
V
IA  
(LSB  
)
ideal  
offset error  
E
O
VREFP - VREFN  
1 LSB =  
4096  
aaa-016908  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 22. 12-bit ADC characteristics  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
47 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
ADC  
R
= 0.25 kΩ...2.5 kΩ  
ADCn_0  
1
C
io  
R
= 5 Ω...25 Ω  
sw  
ADCn_[1:11]  
DAC  
C
ia  
C
io  
aaa-016869  
Fig 23. ADC input impedance  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
48 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
13. Application information  
13.1 ADC usage notes  
The following guidelines show how to increase the performance of the ADC in a noisy  
environment beyond the ADC specifications listed in Table 6:  
The ADC input trace must be short and as close as possible to the LPC112x chip.  
The ADC input traces must be shielded from fast switching digital signals and noisy  
power supply lines.  
Because the ADC and the digital core share the same power supply, the power supply  
line must be adequately filtered.  
To improve the ADC performance in a very noisy environment, put the device in Sleep  
mode during the ADC conversion.  
13.2 XTAL input  
The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a  
clock in slave mode, it is recommended that the input be coupled through a capacitor with  
Ci = 100 pF. To limit the input voltage to the specified range, choose an additional  
capacitor to ground Cg which attenuates the input voltage by a factor Ci/(Ci + Cg). In slave  
mode, a minimum of 200 mV (RMS) is needed.  
LPC1xxx  
XTALIN  
C
i
C
g
100 pF  
002aae788  
Fig 24. Slave mode operation of the on-chip oscillator  
In slave mode the input clock signal should be coupled by means of a capacitor of 100 pF  
(Figure 24), with an amplitude between 200 mV (RMS) and 1000 mV (RMS). This  
corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V.  
The XTALOUT pin in this configuration can be left unconnected.  
External components and models used in oscillation mode are shown in Figure 25 and in  
Table 17 and Table 18. Since the feedback resistance is integrated on chip, only a crystal  
and the capacitances CX1 and CX2 need to be connected externally in case of  
fundamental mode oscillation (the fundamental frequency is represented by L, CL and  
RS). Capacitance CP in Figure 25 represents the parallel package capacitance and should  
not be larger than 7 pF. Parameters FOSC, CL, RS and CP are supplied by the crystal  
manufacturer (see Table 17).  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
49 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
LPC1xxx  
L
XTALIN  
XTALOUT  
C
L
C
P
=
XTAL  
R
S
C
X2  
C
X1  
002aaf424  
Fig 25. Oscillator modes and models: oscillation mode of operation and external crystal  
model used for CX1/CX2 evaluation  
Table 17. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters) low frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
1 MHz to 5 MHz  
10 pF  
< 300   
< 300   
< 300   
< 300   
< 200   
< 100   
< 160   
< 60   
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
20 pF  
30 pF  
5 MHz to 10 MHz  
10 pF  
20 pF  
30 pF  
10 MHz to 15 MHz  
15 MHz to 20 MHz  
10 pF  
20 pF  
10 pF  
< 80   
Table 18. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters) high frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
15 MHz to 20 MHz  
10 pF  
< 180   
< 100   
< 160   
< 80   
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
39 pF, 39 pF  
20 pF  
20 MHz to 25 MHz  
10 pF  
20 pF  
13.3 XTAL Printed Circuit Board (PCB) layout guidelines  
The crystal should be connected on the PCB as close as possible to the oscillator input  
and output pins of the chip. Take care that the load capacitors CX1, CX2, and CX3 in case  
of third overtone crystal usage have a common ground plane. The external components  
must also be connected to the ground plain. Loops must be made as small as possible in  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
50 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
order to keep the noise coupled in via the PCB as small as possible. Also parasitics  
should stay as small as possible. Values of CX1 and CX2 should be chosen smaller  
accordingly to the increase in parasitics of the PCB layout.  
13.4 Connecting power, clocks, and debug functions  
Figure 26 shows the basic board connections used to power the LPC112x and provide  
debug capabilities via the serial wire port.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
51 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
3.3 V  
SWD connector  
Note 4  
3.3 V  
~10 kΩ - 100 kΩ  
SWDIO/PIO1_3  
SWCLK/PIO0_10  
1
2
4
3
5
7
XTALIN  
~10 kΩ - 100 kΩ  
n.c.  
n.c.  
6
8
C1  
Note 1  
n.c.  
DGND  
C2  
XTALOUT  
RESET/PIO0_0  
DGND  
9
10  
V
SS  
DGND  
DGND  
Note 2  
3.3 V  
V
(2 pins)  
DD  
V
SSA  
LPC112x  
0.1 μF  
0.01 μF  
AGND  
DGND  
PIO0_1  
ISP select pin  
Note 5  
ADC_0  
Note 3  
3.3 V  
VREFP  
0.1 μF  
10 μF  
0.1 μF  
VREFN  
AGND  
AGND  
AGND  
DGND  
aaa-014718  
(1) See Section 13.2 “XTAL input” for the values of C1 and C2.  
(2) Position the decoupling capacitors of 0.1 μF and 0.01 μF as close as possible to the VDD pin. Add one set of decoupling  
capacitors to each VDD pin.  
(3) Position the decoupling capacitors of 0.1 μF as close as possible to the VREFN and VDD pins. The 10 μF bypass capacitor  
filters the power line. Tie VREFP to VDD if the ADC is not used. Tie VREFN to VSS if ADC is not used.  
(4) Uses the ARM 10-pin interface for SWD.  
(5) When measuring signals of low frequency, use a low-pass filter to remove noise and to improve ADC performance. Also see  
Ref. 4.  
Fig 26. Power, clock, and debug connections  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
52 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
13.5 Termination of unused pins  
Table 19 shows how to terminate pins that are not used in the application. In many cases,  
unused pins may should be connected externally or configured correctly by software to  
minimize the overall power consumption of the part.  
Unused pins with GPIO function should be configured as outputs set to LOW with their  
internal pull-up disabled. To configure a GPIO pin as output and drive it LOW, select the  
GPIO function in the IOCON register, select output in the GPIO DIR register, and write a 0  
to the GPIO PORT register for that pin. Disable the pull-up in the pin’s IOCON register.  
In addition, it is recommended to configure all GPIO pins that are not bonded out on  
smaller packages as outputs driven LOW with their internal pull-up disabled.  
Table 19. Termination of unused pins  
Pin  
Default Recommended termination of unused pins  
state[1]  
RESET/PIO0_0  
I; PU  
In an application that does not use the RESET pin or its GPIO function, the  
termination of this pin depends on whether Deep power-down mode is used:  
Deep power-down used: Connect an external pull-up resistor and keep pin in  
default state (input, pull-up enabled) during all other power modes.  
Deep power-down not used and no external pull-up connected: can be left  
unconnected if internal pull-up is disabled and pin is driven LOW and  
configured as output by software.  
all PIOn_m (not  
open-drain)  
I; PU  
Can be left unconnected if driven LOW and configured as GPIO output with pull-up  
disabled by software.  
PIOn_m (I2C open-drain)  
VREFP  
IA  
-
Can be left unconnected if driven LOW and configured as GPIO output by software.  
Tie to VDD.  
Tie to VSS.  
VREFN  
-
[1] I = Input, O = Output, IA = Inactive (no pull-up/pull-down enabled), F = floating, PU = Pull-Up.  
13.6 Pin states in different power modes  
Table 20. Pin states in different power modes  
Pin  
Active  
Sleep  
Deep-sleep/Power- Deep power-down  
down  
PIOn_m pins (not As configured in the IOCON[1]. Default: internal pull-up  
I2C) enabled.  
Floating.  
PIO0_4, PIO0_5 As configured in the IOCON[1].  
Floating.  
(open-drain  
I2C-bus pins)  
RESET  
Reset function enabled. Default: input, internal pull-up  
enabled.  
Reset function disabled; floating; if the part  
is in deep power-down mode, the RESET  
pin needs an external pull-up to reduce  
power consumption.  
PIO1_4/  
WAKEUP  
As configured in the IOCON[1]. WAKEUP function inactive. Wake-up function enabled; can be disabled  
by software.  
[1] Default and programmed pin states are retained in sleep, deep-sleep, and power-down modes.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
53 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
13.7 Standard I/O pad configuration  
Figure 27 shows the possible pin modes for standard I/O pins with analog input function:  
Digital output driver.  
Digital input: Pull-up enabled/disabled.  
Digital input: Pull-down enabled/disabled.  
Digital input: Repeater mode enabled/disabled.  
Digital output: Pseudo open-drain mode enable/disabled.  
Analog input.  
V
DD  
V
DD  
open-drain enable  
output enable  
data output  
strong  
pull-up  
ESD  
pin configured  
as digital output  
driver  
PIN  
strong  
pull-down  
ESD  
V
SS  
V
DD  
weak  
pull-up  
pull-up enable  
weak  
pull-down  
repeater mode  
enable  
pin configured  
as digital input  
pull-down enable  
data input  
select analog input  
pin configured  
as analog input  
analog input  
002aah159  
Fig 27. Standard I/O pad configuration  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
54 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
13.8 Reset pad configuration  
V
DD  
V
DD  
V
DD  
R
pu  
ESD  
20 ns RC  
GLITCH FILTER  
reset  
PIN  
ESD  
V
SS  
002aaf274  
Fig 28. Reset pad configuration  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
55 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
14. Package outline  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm  
SOT313-2  
c
y
X
36  
25  
A
E
37  
24  
Z
E
e
H
E
A
2
A
(A )  
3
A
1
w M  
p
θ
pin 1 index  
b
L
p
L
13  
48  
detail X  
1
12  
Z
v M  
D
A
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 7.1  
0.17 0.12 6.9  
7.1  
6.9  
9.15 9.15  
8.85 8.85  
0.75  
0.45  
0.95 0.95  
0.55 0.55  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT313-2  
136E05  
MS-026  
Fig 29. LQFP48 package outline  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
56 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
15. Soldering  
Footprint information for reflow soldering of LQFP48 package  
SOT313-2  
Hx  
Gx  
(0.125)  
P2  
P1  
Hy Gy  
By  
Ay  
C
D2 (8×)  
D1  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ax  
Ay  
Bx  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.500 0.560 10.350 10.350 7.350 7.350 1.500 0.280 0.500 7.500 7.500 10.650 10.650  
sot313-2_fr  
Fig 30. Reflow soldering of the LQFP48 package  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
57 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
16. Abbreviations  
Table 21. Abbreviations  
Acronym  
ADC  
AHB  
APB  
BOD  
GPIO  
PLL  
Description  
Analog-to-Digital Converter  
Advanced High-performance Bus  
Advanced Peripheral Bus  
BrownOut Detection  
General Purpose Input/Output  
Phase-Locked Loop  
RC  
Resistor-Capacitor  
SPI  
Serial Peripheral Interface  
Serial Synchronous Interface  
Synchronous Serial Port  
Transverse ElectroMagnetic  
SSI  
SSP  
TEM  
UART  
Universal Asynchronous Receiver/Transmitter  
17. References  
[1] User manual UM10839.  
[2] Errata sheet ES_LPC112x.  
[3] I2C-bus specification UM10204.  
[4] Technical note ADC design guidelines:  
http://www.nxp.com/documents/technical_note/TN00009.pdf  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
58 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
18. Revision history  
Table 22. Revision history  
Document ID  
Release date  
Data sheet status  
Change notice Supersedes  
LPC112x v.1.0  
20150224  
Product data sheet  
-
-
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
59 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
19. Legal information  
19.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
19.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
19.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
60 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
19.4 Trademarks  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP Semiconductors N.V.  
20. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
61 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
21. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
7.15.5.3 Deep-sleep mode. . . . . . . . . . . . . . . . . . . . . . 20  
7.15.5.4 Deep power-down mode . . . . . . . . . . . . . . . . 20  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
7.16  
System control . . . . . . . . . . . . . . . . . . . . . . . . 20  
Start logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Brownout detection . . . . . . . . . . . . . . . . . . . . 21  
Code security  
3
7.16.1  
7.16.2  
7.16.3  
7.16.4  
4
4.1  
5
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6  
(Code Read Protection - CRP) . . . . . . . . . . . 21  
APB interface. . . . . . . . . . . . . . . . . . . . . . . . . 22  
AHBLite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
External interrupt inputs. . . . . . . . . . . . . . . . . 22  
Emulation and debugging . . . . . . . . . . . . . . . 22  
7.16.5  
7.16.6  
7.16.7  
7.17  
7
Functional description . . . . . . . . . . . . . . . . . . 11  
ARM Cortex-M0 processor. . . . . . . . . . . . . . . 11  
On-chip flash program memory . . . . . . . . . . . 11  
On-chip SRAM . . . . . . . . . . . . . . . . . . . . . . . . 11  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Nested Vectored Interrupt Controller  
(NVIC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 13  
IOCON block . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Fast general purpose parallel I/O . . . . . . . . . . 13  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
SSP controller. . . . . . . . . . . . . . . . . . . . . . . . . 14  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
I2C-bus serial I/O controller . . . . . . . . . . . . . . 14  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Analog-to-Digital Converter  
(ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
General purpose external event  
counter/timers. . . . . . . . . . . . . . . . . . . . . . . . . 16  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
System tick timer . . . . . . . . . . . . . . . . . . . . . . 16  
Windowed WatchDog Timer . . . . . . . . . . . . . 16  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Clocking and power control . . . . . . . . . . . . . . 17  
Crystal oscillators . . . . . . . . . . . . . . . . . . . . . . 17  
7.1  
7.2  
7.3  
7.4  
7.5  
8
9
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 23  
Thermal characteristics . . . . . . . . . . . . . . . . . 24  
10  
Static characteristics . . . . . . . . . . . . . . . . . . . 25  
Power consumption . . . . . . . . . . . . . . . . . . . 30  
CoreMark data . . . . . . . . . . . . . . . . . . . . . . . . 32  
Peripheral power consumption . . . . . . . . . . . 34  
Electrical pin characteristics. . . . . . . . . . . . . . 35  
10.1  
10.2  
10.3  
10.4  
7.5.1  
7.5.2  
7.6  
7.7  
7.7.1  
7.8  
7.8.1  
7.9  
7.9.1  
7.10  
7.10.1  
7.11  
11  
Dynamic characteristics. . . . . . . . . . . . . . . . . 38  
Flash memory . . . . . . . . . . . . . . . . . . . . . . . . 38  
External clock. . . . . . . . . . . . . . . . . . . . . . . . . 38  
Internal oscillators . . . . . . . . . . . . . . . . . . . . . 39  
I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
I2C-bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
SSP interfaces . . . . . . . . . . . . . . . . . . . . . . . . 42  
11.1  
11.2  
11.3  
11.4  
11.5  
11.6  
12  
12.1  
12.2  
Analog characteristics . . . . . . . . . . . . . . . . . . 45  
BOD static characteristics . . . . . . . . . . . . . . . 45  
12-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
7.11.1  
7.12  
13  
Application information . . . . . . . . . . . . . . . . . 49  
ADC usage notes. . . . . . . . . . . . . . . . . . . . . . 49  
XTAL input . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
XTAL Printed Circuit Board (PCB) layout  
guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Connecting power, clocks, and debug  
functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Termination of unused pins . . . . . . . . . . . . . . 53  
Pin states in different power modes. . . . . . . . 53  
Standard I/O pad configuration . . . . . . . . . . . 54  
Reset pad configuration. . . . . . . . . . . . . . . . . 55  
13.1  
13.2  
13.3  
7.12.1  
7.13  
7.14  
7.14.1  
7.15  
7.15.1  
13.4  
13.5  
13.6  
13.7  
13.8  
7.15.1.1 Internal RC oscillator . . . . . . . . . . . . . . . . . . . 18  
7.15.1.2 System oscillator . . . . . . . . . . . . . . . . . . . . . . 18  
7.15.1.3 Watchdog oscillator . . . . . . . . . . . . . . . . . . . . 19  
7.15.2  
7.15.3  
7.15.4  
7.15.5  
14  
15  
16  
17  
18  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 56  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 58  
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 59  
System PLL . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Clock output . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Wake-up process . . . . . . . . . . . . . . . . . . . . . . 19  
Power control . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7.15.5.1 Power profiles . . . . . . . . . . . . . . . . . . . . . . . . 19  
7.15.5.2 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
continued >>  
LPC112x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 1. — 24 February 2015  
62 of 63  
LPC112x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
19  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 60  
19.1  
19.2  
19.3  
19.4  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 60  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
20  
21  
Contact information. . . . . . . . . . . . . . . . . . . . . 61  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP Semiconductors N.V. 2015.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 24 February 2015  
Document identifier: LPC112x  

相关型号:

LPC1125JBD48/303

32-bit ARM Cortex-M0 microcontroller; 64 kB flash and 8 kB SRAM; 12-bit ADC
NXP

LPC112CTP

VERTICAL CLIPLITE 4MM LITEPIPE
VCC

LPC112X

32-bit ARM Cortex-M0 microcontroller; 64 kB flash and 8 kB SRAM; 12-bit ADC
NXP

LPC115CTP

VERTICAL CLIPLITE 4MM LITEPIPE
VCC

LPC117CTP

VERTICAL CLIPLITE 4MM LITEPIPE
VCC

LPC11A02

NXP Microcontrollers Selection Guide
NXP

LPC11A02UKZ

LPC11A02UK - 16kB flash, 4kB SRAM, WLCSP package CSP 20-Pin
NXP

LPC11A04

NXP Microcontrollers Selection Guide
NXP

LPC11A11

NXP Microcontrollers Selection Guide
NXP

LPC11A12

NXP Microcontrollers Selection Guide
NXP

LPC11A13

NXP Microcontrollers Selection Guide
NXP

LPC11A13JHI33/201E

LPC11A13JHI33 - 24kB flash, 6kB SRAM, HVQFN32 package QFN 32-Pin
NXP